WO2018012282A1 - 検査装置 - Google Patents
検査装置 Download PDFInfo
- Publication number
- WO2018012282A1 WO2018012282A1 PCT/JP2017/023640 JP2017023640W WO2018012282A1 WO 2018012282 A1 WO2018012282 A1 WO 2018012282A1 JP 2017023640 W JP2017023640 W JP 2017023640W WO 2018012282 A1 WO2018012282 A1 WO 2018012282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection
- unit
- inspection apparatus
- noise
- wave
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/10—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/18—Investigating the presence of flaws defects or foreign matter
Definitions
- the present invention relates to an inspection apparatus that inspects a foreign object by irradiating a target with a detection wave.
- an X-ray inspection apparatus capable of inspecting a product non-destructively can inspect foreign matters and the like that cannot be seen from the outside by detecting X-rays transmitted through the object.
- Patent Document 1 discloses an X-ray inspection apparatus that performs foreign object inspection by irradiating X-rays while transporting a workpiece, which is an inspection object, with a transport belt.
- Patent Document 2 discloses a package that can acquire an image of a package in which contents such as food are wrapped in a translucent packaging sheet, and can determine whether or not a foreign object is caught in the seal portion. An inspection device is disclosed.
- the seal portion of the package includes a center seal portion in which a sheet material is closed in a cylindrical shape, and a end seal portion in which a cylindrical opening end is sealed.
- the center seal portion is provided in the central portion of the package, and therefore, when attempting to inspect the biting of foreign matter in the center seal portion, it overlaps with the package portion containing the contents. Therefore, it is difficult to separate the foreign matter in the packaging portion and the foreign matter in the center seal portion from the image projected by the X-ray inspection.
- An object of the present invention is to provide an inspection device capable of accurately inspecting a foreign matter at a center seal portion in a package.
- the present invention is an inspection apparatus for inspecting a package body having a packaging portion in which a sheet material is formed into a cylindrical shape and a center seal portion provided in a closing portion of the packaging portion, An irradiation unit that irradiates a detection wave toward the body and a detection unit that detects a detection wave that passes through the package, and the detection unit includes a first detection portion that detects the detection wave that passes through the center seal portion. And the first detection part has a detection region in which the detection wave emitted from the irradiation part is not blocked by the packaging part.
- the detection wave irradiated from the irradiation part reaches the center seal part without being blocked by the packaging part, and the detection wave transmitted through the center seal part is detected by the first detection part of the detection part. be able to.
- the foreign material of a center seal part can be test
- a center seal part may be disposed between the irradiation part and the first detection part.
- a center seal part is arrange
- the irradiation source of the detection wave in the irradiation unit may be arranged at the same height as the base of the center seal part or at the tip side of the center seal part from the base. Therefore, it can avoid that a packaging part is included in the irradiation area
- the detection unit has a second detection part that detects a detection wave that passes through the packaging part, and the detection wave emitted from the irradiation part is blocked by the center seal part in the second detection part. May have no detection area. Thereby, the detection wave irradiated from the irradiation part reaches the packaging part without being blocked by the center seal part, and the detection wave transmitted through the packaging part can be detected by the second detection part of the detection part.
- the position of the first detection portion in the extending direction of the center seal portion may be different from the position of the second detection portion. Therefore, it is possible to prevent any one of the first detection portion and the second detection portion from interfering with the other detection region.
- the detection unit may include a line sensor in which a plurality of detection elements are arranged in a straight line, and the first detection portion and the second detection portion may be included in the line sensor.
- a single line sensor can perform foreign matter inspection of both the center seal portion and the packaging portion.
- the inspection apparatus of the present invention may further include a signal processing unit that processes a signal based on the detection wave detected by the detection unit, and a determination unit that determines the presence or absence of a foreign substance based on the signal processed by the signal processing unit. Good. Thereby, the presence or absence of a foreign object can be determined based on the detection wave detected by the detection unit.
- the inspection apparatus of the present invention may further include a noise detection unit provided so that a detection wave from the irradiation unit does not enter, and the signal processing unit is a noise detection unit from a signal based on the detection wave detected by the detection unit. It is preferable to obtain a signal in which noise is canceled by subtracting a signal based on the detected detection wave. In this way, a signal with an excellent S / N ratio can be obtained.
- the noise detection unit may be arranged at a position where the detection wave from the irradiation unit is not irradiated. Moreover, you may further provide the shielding member which shields so that the detection wave from an irradiation part may inject into a noise detection part. Noise cancellation may be performed on an analog signal, or may be performed after an analog signal of a detection wave is converted into a digital signal by an AD converter.
- the detection unit may include a line sensor in which a plurality of detection elements are arranged in a straight line.
- This line sensor has an imaging timing each time an inspection wave that has passed through a package conveyed in a conveyance direction orthogonal to the linear arrangement direction of detection elements moves in the conveyance direction by the width of the detection element in the conveyance direction. It is preferable to detect at the first exposure amount and detect at the second exposure amount different from the imaging timing at the noise detection timing shifted in phase from the imaging timing. Accordingly, the signal processing unit detects at the imaging timing. It is preferable to obtain a signal in which noise is canceled by subtracting the signal based on the detection wave detected at the noise detection timing from the signal based on the detection wave. In this way, a signal with an excellent S / N ratio can be obtained.
- the signal processing unit may subtract the signal based on the detection wave detected by the noise detection element from the signal based on the detection wave detected by the imaging detection element. It is better to obtain a signal with canceled noise. In this way, a signal with an excellent S / N ratio can be obtained.
- the inspection apparatus of the present invention may further include a display unit that displays an image based on the detection wave detected by the detection unit. Thereby, the state of the foreign matter can be grasped from the image displayed on the display unit.
- an inspection apparatus capable of accurately inspecting the foreign matter at the center seal portion in the package.
- (A) And (b) is a schematic diagram which illustrates the structure of the inspection apparatus which concerns on 1st Embodiment.
- (A)-(c) is a schematic diagram explaining arrangement
- (A)-(c) is a schematic diagram which illustrates the structure of the inspection apparatus which concerns on 2nd Embodiment. It is a schematic diagram which illustrates the structure of the inspection apparatus which concerns on 3rd Embodiment. It is a figure which shows typically the timing of the imaging and noise detection in the test
- FIG. 1A and 1B are schematic views illustrating the configuration of an inspection apparatus according to this embodiment.
- FIG. 1A shows a perspective view
- FIG. 1B shows a cross-sectional view seen from the direction in which the center seal portion extends.
- the inspection apparatus 1 according to the present embodiment is an apparatus that inspects the package 100 with a detection wave.
- the detection waves include X-rays, ultraviolet rays, visible rays, infrared rays, terahertz waves, and the like.
- an X-ray inspection apparatus that uses X-rays as detection waves is taken as an example.
- the package 100 includes a packaging part 110 in which a sheet material is formed into a cylindrical shape, and a center seal part 120 provided at a closing part of the packaging part 110.
- a sheet material a laminated film in which CPP (Cast Polypropylene), PE (Polyethylene), aluminum-deposited PET (Polyethylene terephthalate), or the like is laminated is used.
- the package 100 is obtained by making such a sheet material into a cylindrical shape and thermocompression-bonding the closing portion.
- the part that accommodates the contents in the cylindrical shape is the packaging part 110
- the part that is closed and thermocompression bonded at the center part of the packaging part 110 is the center seal part 120.
- the direction in which the center seal portion 120 of the package 100 extends is the length direction D1, and the direction perpendicular to the length direction D1 and where the package portion 110 and the center seal portion 120 do not overlap is the width direction D2.
- a direction orthogonal to the length direction D1 and the width direction D2 is referred to as a height direction D3.
- the package 100 may be cut in a predetermined size in the length direction D1 or may be continuous in the length direction D1.
- the inspection apparatus 1 includes an irradiation unit 10 that irradiates an X-ray that is an example of a detection wave toward the package 100, and a detection unit 20 that detects X-rays that pass through the package 100.
- the irradiation unit 10 and the detection unit 20 are arranged so as to face the width direction D2 with the packaging body 100 therebetween.
- the irradiation unit 10 includes an X-ray source (X-ray irradiation source) 12 provided in the housing 11 and a slit 13 for narrowing X-rays emitted from the X-ray source 12.
- X-rays emitted from the X-ray source 12 are narrowed down to a predetermined range by the slit 13 and irradiated toward the package 100.
- the detection unit 20 is a part that detects X-rays irradiated from the irradiation unit 10 and transmitted through the package 100.
- the detection unit 20 includes a line sensor in which a plurality of detection elements (for example, CMOS sensors) are arranged in a straight line.
- the line sensor is arranged in the height direction, and the detection region by the detection unit 20 is set as the height direction D3.
- the package 100 is continuously test
- the relative movement of the irradiation part 10 and the detection part 20, and the package 100 is normally implement
- the detection unit 20 includes a first detection portion 21 that detects X-rays that pass through the center seal portion 120.
- the detection unit 20 may include a second detection portion 22 that detects X-rays that pass through the packaging unit 110.
- the first detection portion 21 is included in the line sensor LS1, and the second detection portion 22 is included in the line sensor LS2.
- Each of the line sensor LS1 and the line sensor LS2 is arranged such that a plurality of detection elements are arranged in the height direction D3.
- the first detection portion 21 has a detection region in which the X-rays irradiated from the irradiation unit 10 are not blocked by the packaging unit 110. Further, the second detection portion 22 has a detection region where the X-ray irradiated from the irradiation unit 10 is not blocked by the center seal unit 120.
- the X-ray source 12 in the irradiation unit 10 is disposed at the same height as the base of the center seal part 120, or at the tip side of the center seal part 120 from the base. ing.
- the X-ray source 12 is the same height as the reference line L or the packaging part 110 with respect to the reference line L. Located on the opposite side.
- the reference line L is, for example, a line in the width direction D2 along the transport surface of the transport device.
- the X-ray source 12 is disposed at the same height as the position of the transport surface or below the transport surface.
- the irradiation region S ⁇ b> 1 closer to the center seal portion 120 than the reference line L does not include the packaging unit 110. Therefore, in the first detection portion 21 that detects X-rays in the irradiation region S1, the center seal portion 120 and the packaging portion 110 do not overlap each other, and the center detection portion 21 is not affected by the packaging portion 110 in the first detection portion 21. X-rays that pass through only 120 can be detected.
- the irradiation region S2 closer to the packaging unit 110 than the reference line L includes a region that does not include the center seal portion 120. Therefore, in the second detection portion 22 that detects X-rays in the irradiation region S2, the center seal portion 120 and the packaging portion 110 do not overlap with each other, and only the packaging portion 110 is transmitted without being affected by the center seal portion 120. Lines can be detected.
- the center seal portion 120 is not included in the entire irradiation region S2.
- the farther the X-ray source 12 is from the reference line L on the side of the center seal portion 120 than the reference line L the more center seal portions 120 are included in the irradiation region S2.
- a region including the center seal portion 120 in the detection region of the second detection portion 22 may be excluded by signal processing.
- the first detection portion 21 is disposed in the vicinity of the center seal portion 120.
- the second detection portion 22 is disposed in the vicinity of the packaging unit 110. If X-rays that pass through the object are detected in the vicinity of the object, it is difficult to be affected by disturbances and highly accurate foreign object detection can be performed.
- FIGS. 2A to 2C are schematic views for explaining the arrangement of the irradiation unit and the detection unit.
- 2A to 2C illustrate a case where the center seal portion 120 is provided on the upper side of the packaging portion 110.
- FIG. 2A to 2C show a package 100 having an end seal portion 130 in addition to the center seal portion 120.
- FIG. The end seal part 130 is a part obtained by thermocompression bonding of the open end of the cylindrical packaging part 110 in the width direction D2.
- the irradiation unit 10 and the detection unit 20 are arranged to face each other in the width direction D2 of the package 100.
- a center seal part 120 is disposed between the first detection part 21 and the irradiation part 10 in the detection part 20, and a packaging part 110 is disposed between the second detection part 22 and the irradiation part 10.
- the position of the first detection portion 21 in the length direction D1 of the package 100 is different from the position of the second detection portion 22.
- the first detection portion 21 is not included in the X-ray irradiation region S2 irradiated from the irradiation unit 10
- the second detection portion 22 is not included in the irradiation region S1. Therefore, it is possible to prevent any one of the first detection portion 21 and the second detection portion 22 from interfering with the other detection region.
- the position of the first detection portion 21 in the length direction D1 of the package 100 matches the position of the second detection portion 22.
- the position of the first detection portion 21 in the height direction D3 is different from the position of the second detection portion 22.
- the position of the first detection portion 21 in the length direction D1 of the package 100 is the position of the second detection portion 22. Even if it corresponds, either one of the first detection portion 21 and the second detection portion 22 does not interfere with the other detection region.
- FIG. 3 is a block configuration diagram of the inspection apparatus according to the present embodiment.
- the inspection apparatus 1 includes a control unit 200 that controls the irradiation unit 10 and the detection unit 20.
- the control unit 200 controls the driver 15 to adjust the intensity of X-rays emitted from the irradiation unit 10.
- the control unit 200 includes a signal processing unit 201 and a determination unit 202.
- a memory 210 and a display unit 220 are connected to the control unit 200.
- the signals based on the X-rays detected by the first detection portion 21 and the second detection portion 22 are accumulated in the memory 210 and sent to the signal processing unit 201 of the control unit 200 at a desired timing.
- the signal processing unit 201 processes the signal sent from the memory 210 to form an image signal. That is, a predetermined amount of signals (line signals) based on X-rays captured by the line sensor are combined to form a two-dimensional image.
- the two-dimensional image is output to the display unit 220 that is a monitor.
- the determination unit 202 performs a process of determining the presence or absence of foreign matter based on the signal output from the signal processing unit 201. For example, when a signal exceeding a predetermined threshold is detected by the signal processing unit 201, there is a possibility of foreign matter.
- the determination unit 202 performs processing such as a continuous area of a signal that may be a foreign substance, pattern matching, and the like, and determines whether or not it is a foreign substance.
- the determination result is output to the display unit 220.
- the X-rays irradiated from the irradiation unit 10 reach the center seal unit 120 without being blocked by the packaging unit 110, and thus the X-rays transmitted through the center seal unit 120. Can be detected by the first detection portion 21.
- sticker part 120 can be test
- FIGS. 4A to 4C are schematic views showing a configuration example of an inspection apparatus according to the second embodiment.
- the configuration example shown in FIG. 4A is an example in which the detection unit 20 includes one line sensor LS10.
- One line sensor LS10 includes a first detection portion 21 and a second detection portion 22. That is, the detection area of one line sensor LS10 is divided into the first detection portion 21 and the second detection portion 22 and used. According to such a configuration, the foreign matter inspection of both the center seal part 120 and the packaging part 110 can be performed by one line sensor LS10.
- the detection unit 20 includes three line sensors LS1, LS2, and LS3.
- the X-ray source 12 of the irradiation unit 10 is arranged away from the reference line L.
- the line sensor LS1 is disposed in the vicinity of the center seal portion 120 and detects X-rays transmitted through the center seal portion 120.
- the line sensor LS2 is disposed in the vicinity of the packaging unit 110 and in the height direction D3.
- the line sensor LS3 is disposed in the vicinity of the packaging unit 110 and in the width direction D2.
- X-rays irradiated from the irradiation unit 10 are irradiated toward the package 100 from a position away from the reference line L.
- the X-ray irradiation area covers a wide range from the center seal part 120 to the packaging part 110.
- sticker part 120 in the line sensor LS1 can be detected, and the X-rays which permeate
- the line sensors LS2 and LS3 are arranged in an L shape along the packaging part 110, X-rays transmitted through a wide range of the packaging part 110 can be detected.
- 4C is an example in which the detection unit 20 includes one line sensor LS20.
- the X-ray source 12 of the irradiation unit 10 is arranged away from the reference line L.
- the line sensor LS20 is disposed obliquely with respect to each of the height direction D3 and the width direction D2.
- One line sensor LS20 includes a first detection portion 21 and a second detection portion 22.
- the package 100 is irradiated with X-rays obliquely from a position away from the reference line L.
- sticker part 120 is detected by the 1st detection part 21 of line sensor LS20, and the X-ray which permeate
- the inspection apparatus realizes high-accuracy inspection by canceling noise included in the detection data of the detection unit 20 in the inspection apparatus of the first embodiment or the second embodiment.
- parts that have already been described are assigned the same reference numerals and description thereof is omitted.
- the inspection apparatus includes a second detection unit 20 ⁇ / b> A in addition to the configuration of the inspection apparatus of the first embodiment or the second embodiment.
- 20 A of 2nd detection parts are provided in the position adjacent to the detection part 20 along the conveyance direction Dt so that the X-ray from the irradiation part 10 may not inject into a detection element.
- “so that X-rays from the irradiation unit 10 do not enter the detection element” means, for example, that the second detection unit 20A is outside the range of the X-ray irradiation region by the irradiation unit 10 (that is, the region where X-rays are not irradiated). ).
- the shielding member which shields an X-ray so that the X-ray from the irradiation part 10 may not inject into a detection element irrespective of the arrangement position of 2nd detection part 20A inside or outside an X-ray irradiation area
- the accuracy of noise cancellation increases as the second detection unit 20A is closer to the detection unit 20. For this reason, it is preferable that the second detection unit 20 ⁇ / b> A is disposed at a position close to the detection unit 20.
- the second detection unit 20A Since the second detection unit 20A is in a position where the X-rays from the irradiation unit 10 are not irradiated, the X-rays detected by the second detection unit 20A are not the X-rays from the irradiation unit 10 transmitted through the package 100. It is considered that the noise is caused by scattering or disturbance.
- the signal based on the X-ray detected by the second detection unit 20A is accumulated in the memory 210 and sent to the signal processing unit 201 of the control unit 200 at a desired timing.
- the signal processing unit 201 processes the signal sent from the memory 210 to form an image signal.
- the signal processing unit 201 subtracts the signal based on the X-ray detected by the second detection unit 20A from the signal based on the X-ray detected by the detection unit 20 to obtain a line signal in which noise is canceled. Then, a predetermined amount of line signals from which noise has been canceled is combined to form a two-dimensional image.
- the two-dimensional image is output to the display unit 220 that is a monitor.
- the inspection apparatus can obtain a two-dimensional image with reduced noise.
- noise cancellation may be performed on the analog signals output from the detection unit 20 and the second detection unit 20A, or may be performed after the analog signal is converted into a digital signal by an AD converter.
- the inspection apparatus according to the fourth embodiment realizes highly accurate inspection by canceling noise included in the detection data of the detection unit 20.
- parts that have already been described are assigned the same reference numerals and description thereof is omitted.
- the inspection apparatus according to the fourth embodiment has the same configuration as the inspection apparatus of the first embodiment or the second embodiment.
- the line sensor LS of the detection unit 20 generates an X-ray dose of 100 at an imaging timing each time the detection unit 20 moves by the width W of the detection element.
- % Exposure amount, and the X-ray dose is different from the imaging timing (for example, 0%) at the noise detection timing that is out of phase from the imaging timing by half the width W of the detection element in the transport direction.
- the exposure amount at the imaging timing and the noise detection timing is not limited to the above, and the exposure amount may be different between the two. Note that the phase difference between the noise detection timing and the imaging timing may be other than half the width W of the detection element in the transport direction.
- Signals based on the X-rays detected by the detection unit 20 are accumulated in the memory 210, and are controlled at a desired timing.
- the signal processing unit 201 processes the signal sent from the memory 210 to form an image signal. At this time, the signal processing unit 201 sets a line signal in which noise is canceled by subtracting a signal based on the X-ray detected at the noise detection timing from a signal based on the X-ray detected at the imaging timing.
- the imaging timing and the noise detection timing have a phase difference corresponding to one half of the width of the detection element in the transport direction, when noise is canceled, calculation based on this phase difference is performed. It is better to cancel the noise.
- the noise corresponding to the Nth line may be an average of signals based on X-rays detected at two noise detection timings shifted by a half phase from the Nth line.
- the signal processing unit 201 combines a predetermined amount of signal line signals from which noise has been canceled as described above to form a two-dimensional image.
- the two-dimensional image is output to the display unit 220 that is a monitor.
- the inspection apparatus according to the fifth embodiment realizes high-accuracy inspection by canceling noise included in the detection data of the detection unit 20, as in the inspection apparatuses according to the third and fourth embodiments. .
- parts that have already been described are assigned the same reference numerals and description thereof is omitted.
- the line sensor LS included in the detection unit 20 includes an imaging detection element 23 and a noise detection element 24.
- Others have the same configuration as the inspection apparatus of the first embodiment or the second embodiment.
- noise detection is performed such that a part of the plurality of detection elements arranged in a straight line in the line sensor of the detection unit 20 is shielded so that X-rays do not strike. It is assumed that the element 24 (a portion indicated by shading in the drawing).
- the element excluding the noise detection element 24 is the imaging detection element 23.
- the imaging detection element 23 and the noise detection element 24 may be alternately arranged in a linear arrangement direction (a direction orthogonal to the conveyance direction).
- the ratio (in area or number of elements) between the imaging detection element 23 and the noise detection element 24 may be, for example, 1: 1, but is not necessarily limited thereto.
- a signal based on the X-rays detected by the detection unit 20 (that is, a signal based on the X-rays detected by the imaging detection element 23 and a signal based on the X-rays detected by the noise detection element 24) is accumulated in the memory 210 and is stored in a desired manner. It is sent to the signal processing unit 201 of the control unit 200 at timing. The signal processing unit 201 processes the signal sent from the memory 210 to form an image signal. At this time, the signal processing unit 201 subtracts the signal based on the X-ray detected by the noise detection element 24 from the signal based on the X-ray detected by the imaging detection element 23 to obtain a line signal in which noise is canceled.
- the imaging detection element 23 and the noise detection element 24 have different positions in the arrangement direction of the detection elements of the line sensor. Therefore, when canceling noise, an operation based on the difference between the positions is performed. It is better to cancel the noise.
- the noise corresponding to a certain imaging detection element 23 may be an average of signals based on X-rays detected by two noise detection elements 24 adjacent to the imaging detection element 23.
- the signal processing unit 201 combines a predetermined amount of signal line signals from which noise has been canceled as described above to form a two-dimensional image.
- the two-dimensional image is output to the display unit 220 that is a monitor. With such a configuration, the inspection apparatus of the fifth embodiment can obtain a two-dimensional image with reduced noise.
- FIG. 8 is a schematic diagram illustrating an application example of the inspection apparatus according to the present embodiment.
- the inspection apparatus 1 according to the present embodiment is provided in a portion where the sheet material ST is formed in a cylindrical shape and the center seal portion 120 is thermocompression bonded.
- the sheet material ST is bent into a cylindrical shape while being fed in the transport direction Dt, and both side end portions STS facing each other are closed.
- both side end portions STS overlapped between the pair of heating rollers HR are fed, the both side end portions STS are thermocompression-bonded to form the center seal portion 120.
- a guide plate GP is provided on the downstream side in the conveying direction Dt of the heating roller HR.
- the center seal part 120 that has been subjected to thermocompression bonding is sent along the guide plate GP, whereby the center seal part 120 is gradually tilted and eventually pressed along the surface of the packaging part 110.
- the center seal portion 120 is continuously formed in the transport direction Dt of the sheet material ST, and the package 100 is formed.
- the inspection apparatus 1 according to the present embodiment is provided between a position where the center seal portion 120 is formed by the pair of heating rollers HR and a position where the center seal portion 120 is tilted by the guide plate GP.
- the center seal part 120 is raised with respect to the packaging part 110.
- the irradiation unit 10 and the detection unit 20 are arranged to face each other in the width direction D2 with the center seal portion 120 therebetween.
- the center seal portion 120 can be irradiated with X-rays in the width direction D2 before being tilted. Accordingly, X-rays that pass through the center seal portion 120 without overlapping with the packaging portion 110 can be detected, and foreign matter in the center seal portion 120 can be inspected.
- the package 100 When forming the center seal part 120 by thermocompression bonding, the package 100 is continuously sent in the length direction D1. At this time, even if a foreign object is caught in the center seal portion 120, the foreign object can be accurately detected by the inspection apparatus 1 according to the present embodiment.
- the inspection apparatus 1 According to the inspection apparatus 1 according to the present embodiment, it is possible to accurately inspect the foreign matter at the center seal portion in the package.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
包装体におけるセンターシール部の異物を的確に検査することができる検査装置を提供する。本発明は、シート材を筒状にした包装部(110)と、包装部の閉じ合わせ部に設けられたセンターシール部(120)とを有する包装体(100)を検査する検査装置(1)であって、包装体に向けて検出波を照射する照射部(10)と、包装体を透過する検出波を検出する検出部(20)と、を備え、検出部は、センターシール部を透過する検出波を検出する第1検出部分(21)を有し、第1検出部分は、照射部から照射された検出波が包装部(110)で遮られない検出領域を有することを特徴とする。
Description
本発明は、対象物に検出波を照射して異物等の検査を行う検査装置に関する。
製品の製造から梱包、出荷に至るまで、各工程では検査対象となる異物等の種類(材料、大きさなど)や判定に適した検査方法によって製品の検査を行っている。このうち製品を非破壊で検査できるX線検査装置では、対象物を透過したX線を検出することで、外側からは見えない内部の異物等を検査することができる。
特許文献1には、検査対象物であるワークを搬送ベルトで搬送しながらX線を照射して異物検査を行うX線検査装置が開示されている。また、特許文献2には、食品などの内容物が透光性の包装シートで包まれた包装体の画像を取得し、シール部に異物が噛み込まれているか否かを判別できる包装体の検査装置が開示されている。
包装体に内容物を収容して出荷する製品の異物検査では、内容物が収容された状態での異物の検査に加え、包装体に対する異物の検査も必要である。このような包装体の異物検査では、包装体のシール部への異物の噛み込みを的確に検査することが要求される。包装体のシール部には、シート材を筒状にして閉じ合わされた部分を熱圧着したセンターシール部と、筒状の開口端をシールしたエンドシール部とがある。
このシール部のうち、センターシール部は包装体の中央部に設けられているため、センターシール部の異物の噛み込みを検査しようとした場合、内容物を収容する包装部と重なることになる。したがって、X線検査によって映し出された画像から、包装部の異物とセンターシール部の異物とを切り分けることが困難となる。
本発明は、包装体におけるセンターシール部の異物を的確に検査することができる検査装置を提供することを目的とする。
上記課題を解決するため、本発明は、シート材を筒状にした包装部と、包装部の閉じ合わせ部に設けられたセンターシール部とを有する包装体を検査する検査装置であって、包装体に向けて検出波を照射する照射部と、包装体を透過する検出波を検出する検出部と、を備え、検出部は、センターシール部を透過する検出波を検出する第1検出部分を有し、第1検出部分は、照射部から照射された検出波が包装部で遮られない検出領域を有することを特徴とする。
このような構成によれば、照射部から照射された検出波が包装部で遮られずにセンターシール部に到達し、センターシール部を透過した検出波を検出部の第1検出部分で検出することができる。これにより、包装部や包装部内の収容物に影響を受けずにセンターシール部の異物を検査することができる。
本発明の検査装置において、照射部と第1検出部分との間にセンターシール部が配置されていてもよい。これにより、照射部と第1検出部分とを結ぶ検出波の照射領域にセンターシール部が配置され、検出波によってセンターシール部の異物を検査することができる。
本発明の検査装置において、照射部における検出波の照射源は、センターシール部の付け根と同じ高さ、または付け根よりもセンターシール部の先端側に配置されていてもよい。これにより、照射部と第1検出部分とを結ぶ検出波の照射領域に包装部が含まれることを回避することができる。
本発明の検査装置において、検出部は、包装部を透過する検出波を検出する第2検出部分を有し、第2検出部分は、照射部から照射された検出波がセンターシール部で遮られない検出領域を有していてもよい。これにより、照射部から照射された検出波がセンターシール部で遮られずに包装部に到達し、包装部を透過した検出波を検出部の第2検出部分で検出することができる。
本発明の検査装置において、センターシール部の延びる方向における第1検出部分の位置は、第2検出部分の位置と相違していてもよい。これにより、第1検出部分および第2検出部分のいずれか一方が他方の検出領域の邪魔になることを防ぐことができる。
本発明の検査装置において、検出部は、直線状に複数の検出素子が並ぶラインセンサを有し、第1検出部分および第2検出部分はラインセンサに含まれていてもよい。1つのラインセンサによってセンターシール部および包装部の両方の異物検査を行うことができる。
本発明の検査装置において、検出部で検出した検出波に基づく信号を処理する信号処理部と、信号処理部で処理した信号に基づき異物の有無を判定する判定部と、をさらに備えていてもよい。これにより、検出部で検出した検出波に基づいて異物の有無を判定することができる。
本発明の検査装置は、照射部からの検出波が入射しないように設けられたノイズ検出部をさらに備えるとよく、信号処理部は、検出部で検出した検出波に基づく信号からノイズ検出部で検出した検出波に基づく信号を差し引くことによりノイズをキャンセルした信号を得るとよい。このようにすれば、S/N比の優れた信号を得ることができる。ノイズ検出部は、照射部からの検出波が照射されない位置に配置されるとよい。また、ノイズ検出部に照射部からの検出波が入射しないよう遮蔽する遮蔽部材をさらに備えてもよい。なお、ノイズのキャンセルはアナログ信号に対して行ってもよいし、検出波のアナログ信号をAD変換機によりデジタル信号としてから行ってもよい。
本発明の検査装置において、検出部は、直線状に複数の検出素子が並ぶラインセンサを有するとよい。このラインセンサは、検出素子の直線状の配列方向に直交する搬送方向に搬送される包装体を透過した検査波を、搬送方向における検出素子の幅分だけ搬送方向に移動する都度の撮像タイミングで第1の露光量で検出し、撮像タイミングから位相がずれたノイズ検出タイミングで、撮像タイミングとは異なる第2の露光量で検出するとよく、これに伴い、信号処理部は、撮像タイミングで検出した検出波に基づく信号からノイズ検出タイミングで検出した検出波に基づく信号を差し引くことによりノイズをキャンセルした信号を得るとよい。このようにすれば、S/N比の優れた信号を得ることができる。
本発明の検査装置において、ラインセンサを構成する検出素子少なくとも一部は、検出波が遮蔽されたノイズ検出素子であり、ラインセンサを構成する検出素子の少なくとも他の一部は、検出波が遮蔽されない撮像用検出素子であるように構成するとよく、これに伴い、信号処理部は、撮像用検出素子で検出した検出波に基づく信号からノイズ検出素子で検出した検出波に基づく信号を差し引くことによりノイズをキャンセルした信号を得るとよい。このようにすれば、S/N比の優れた信号を得ることができる。
本発明の検査装置において、検出部で検出した検出波に基づく画像を表示する表示部をさらに備えていてもよい。これにより、表示部に表示される画像によって異物の状態を把握することができる。
本発明によれば、包装体におけるセンターシール部の異物を的確に検査することができる検査装置を提供することが可能になる。
(第1実施形態)
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
(装置構成)
図1(a)および(b)は、本実施形態に係る検査装置の構成を例示する模式図である。
図1(a)には斜視図が示され、図1(b)にはセンターシール部の延びる方向から見た断面図が示される。
本実施形態に係る検査装置1は、検出波によって包装体100を検査する装置である。検出波には、X線、紫外線、可視光線、赤外線、テラヘルツ波などが含まれる。本実施形態では、検出波としてX線を使用するX線検査装置を例とする。包装体100は、シート材を筒状にした包装部110と、包装部110の閉じ合わせ部に設けられたセンターシール部120とを有する。シート材としては、CPP(Cast Polypropylene)、PE(Polyethylene)、アルミ蒸着PET(Polyethylene terephthalate)などを積層したラミネートフィルムなどが用いられる。
図1(a)および(b)は、本実施形態に係る検査装置の構成を例示する模式図である。
図1(a)には斜視図が示され、図1(b)にはセンターシール部の延びる方向から見た断面図が示される。
本実施形態に係る検査装置1は、検出波によって包装体100を検査する装置である。検出波には、X線、紫外線、可視光線、赤外線、テラヘルツ波などが含まれる。本実施形態では、検出波としてX線を使用するX線検査装置を例とする。包装体100は、シート材を筒状にした包装部110と、包装部110の閉じ合わせ部に設けられたセンターシール部120とを有する。シート材としては、CPP(Cast Polypropylene)、PE(Polyethylene)、アルミ蒸着PET(Polyethylene terephthalate)などを積層したラミネートフィルムなどが用いられる。
包装体100は、このようなシート材を筒状にして、閉じ合わせ部分を熱圧着したものである。この包装体100において、筒状の内部に収容物を収容する部分が包装部110、包装部110の中央部において閉じ合わせて熱圧着した部分がセンターシール部120である。
なお、本実施形態において、包装体100のセンターシール部120が延びる方向を長さ方向D1、長さ方向D1と直交し包装部110とセンターシール部120とが重ならない方向を幅方向D2、長さ方向D1および幅方向D2と直交する方向を高さ方向D3と言うことにする。包装体100は、長さ方向D1に所定の大きさで切断されていても、長さ方向D1に連続しているものであってもよい。
検査装置1は、包装体100に向けて検出波の例であるX線を照射する照射部10と、包装体100を透過するX線を検出する検出部20と、を備える。照射部10および検出部20は、包装体100を間にして幅方向D2に対向するように配置される。
照射部10は、筐体11内に設けられるX線源(X線の照射源)12と、X線源12から放出されるX線を絞るスリット13とを有する。X線源12から放出されたX線は、スリット13によって所定の範囲に絞られ、包装体100に向けて照射される。
検出部20は、照射部10から照射され、包装体100を透過するX線を検出する部分である。検出部20は、複数の検出素子(例えば、CMOSセンサ)が直線状に並ぶラインセンサを含む。本実施形態では、ラインセンサを高さ方向に配置して検出部20による検出領域を高さ方向D3とする。そして、照射部10および検出部20と包装体100とを長さ方向D1に相対的に移動させることで、包装体100を長さ方向D1に連続的に検査する。なお、照射部10および検出部20と包装体100との相対的な移動は、通常、搬送装置などで包装体100を長さ方向D1に移動させることにより実現される。
本実施形態において、検出部20は、センターシール部120を透過するX線を検出する第1検出部分21を有する。検出部20は、包装部110を透過するX線を検出する第2検出部分22を有していてもよい。
第1検出部分21はラインセンサLS1に含まれ、第2検出部分22はラインセンサLS2に含まれる。ラインセンサLS1およびラインセンサLS2のそれぞれは、複数の検出素子が高さ方向D3に並ぶように配置される。
第1検出部分21は、照射部10から照射されたX線が包装部110で遮られない検出領域を有する。また、第2検出部分22は、照射部10から照射されたX線がセンターシール部120で遮られない検出領域を有する。
本実施形態では、図1(b)に示すように、照射部10におけるX線源12が、センターシール部120の付け根と同じ高さ、または付け根よりもセンターシール部120の先端側に配置されている。例えば、センターシール部120の付け根の位置における幅方向D2の線を基準線Lとした場合、X線源12は、基準線Lと同じ高さ、または基準線Lに対して包装部110とは反対側に配置される。
包装体100が搬送装置などで搬送される場合、基準線Lは例えば搬送装置の搬送面に沿った幅方向D2の線となる。この場合、X線源12は、搬送面の位置と同じ高さか、搬送面よりも下側に配置される。このようなX線源12の配置によって、照射部10と第1検出部分21とを結ぶX線の照射領域に包装部110が含まれることを回避することができる。
つまり、X線源12から検出部20までのX線の照射領域のうち、基準線Lよりもセンターシール部120側の照射領域S1には包装部110が含まれない。したがって、照射領域S1のX線を検出する第1検出部分21において、センターシール部120と包装部110とが重ならず、第1検出部分21では包装部110に影響を受けずにセンターシール部120のみを透過するX線を検出することができる。
一方、X線源12から検出部20までのX線の照射領域のうち、基準線Lよりも包装部110側の照射領域S2にはセンターシール部120が含まれない領域が構成される。したがって、照射領域S2のX線を検出する第2検出部分22において、センターシール部120と包装部110とが重ならず、センターシール部120に影響を受けずに包装部110のみを透過するX線を検出することができる。
ここで、X線源12が基準線Lの延長上に配置されていると、照射領域S2の全てにおいてセンターシール部120が含まれない。しかし、X線源12が基準線Lよりもセンターシール部120側で基準線Lから離れるほど、照射領域S2にセンターシール部120が多く含まれることになる。この場合、第2検出部分22の検出領域のうち、センターシール部120を含む領域を、信号処理で除外すればよい。
また、第1検出部分21はセンターシール部120の近傍に配置されていることが望ましい。同様に、第2検出部分22は包装部110の近傍に配置されていることが望ましい。対象物を透過するX線を対象物の近傍で検出すれば外乱の影響を受けにくく、精度の高い異物検出を行うことができる。
図2(a)~(c)は、照射部および検出部の配置を説明する模式図である。
なお、図2(a)~(c)では、センターシール部120が包装部110の上側に設けられている場合を例示している。また、図2(a)~(c)では、センターシール部120に加え、エンドシール部130を有する包装体100が示されている。エンドシール部130は、筒状の包装部110の開口端を幅方向D2に熱圧着した部分である。
なお、図2(a)~(c)では、センターシール部120が包装部110の上側に設けられている場合を例示している。また、図2(a)~(c)では、センターシール部120に加え、エンドシール部130を有する包装体100が示されている。エンドシール部130は、筒状の包装部110の開口端を幅方向D2に熱圧着した部分である。
図2(a)に示すように、照射部10と検出部20とは、包装体100の幅方向D2に互いに対向するよう配置される。検出部20のうち第1検出部分21と照射部10との間にはセンターシール部120が配置され、第2検出部分22と照射部10との間には包装部110が配置される。
図2(b)に示す例では、包装体100の長さ方向D1における第1検出部分21の位置が、第2検出部分22の位置と相違している。これにより、照射部10から照射されるX線の照射領域S2には第1検出部分21が含まれず、照射領域S1には第2検出部分22が含まれない。したがって、第1検出部分21および第2検出部分22のいずれか一方が他方の検出領域の邪魔になることを防ぐことができる。
図2(c)に示す例では、包装体100の長さ方向D1における第1検出部分21の位置が、第2検出部分22の位置と一致している。なお、高さ方向D3における第1検出部分21の位置は、第2検出部分22の位置とは相違している。照射部10のX線源12の位置が、基準線Lの延長上に配置されている場合、包装体100の長さ方向D1における第1検出部分21の位置が、第2検出部分22の位置と一致していても、第1検出部分21および第2検出部分22のいずれか一方が他方の検出領域の邪魔になることはない。
図3は、本実施形態に係る検査装置のブロック構成図である。
検査装置1は、照射部10および検出部20を制御する制御部200を備える。制御部200は、ドライバ15を制御して照射部10から照射されるX線の強度を調整する。制御部200は、信号処理部201および判定部202を有する。制御部200には、メモリ210および表示部220が接続される。
検査装置1は、照射部10および検出部20を制御する制御部200を備える。制御部200は、ドライバ15を制御して照射部10から照射されるX線の強度を調整する。制御部200は、信号処理部201および判定部202を有する。制御部200には、メモリ210および表示部220が接続される。
第1検出部分21および第2検出部分22で検出したX線に基づく信号はメモリ210に蓄積され、所望のタイミングで制御部200の信号処理部201に送られる。信号処理部201は、メモリ210から送られた信号を処理して画像信号を構成する。すなわち、ラインセンサで取り込んだX線に基づく信号(ライン信号)を所定量結合して2次元画像とする。2次元画像はモニタである表示部220に出力される。
また、判定部202は、信号処理部201から出力された信号に基づいて異物の有無を判定する処理を行う。例えば、信号処理部201で所定の閾値を超える信号が検出された場合には、異物の可能性がある。判定部202は、異物の可能性のある信号の連続する面積や、パターンマッチングなどの処理を行い、異物であるか否かの判定を行う。判定結果は表示部220に出力される。
このような本実施形態に係る検査装置1では、照射部10から照射されたX線が包装部110で遮られずにセンターシール部120に到達することから、センターシール部120を透過したX線を第1検出部分21で検出することができる。これにより、包装部110や包装部110内の収容物に影響を受けずにセンターシール部120の異物を的確に検査することができる。
(第2実施形態)
図4(a)~(c)は、第2実施形態に係る検査装置の構成例を示す模式図である。
図4(a)に示す構成例では、検出部20に1つのラインセンサLS10が含まれる例である。1つのラインセンサLS10には第1検出部分21および第2検出部分22が含まれる。すなわち、1つのラインセンサLS10の検出領域を第1検出部分21と第2検出部分22とで分けて使用している。このような構成によれば、1つのラインセンサLS10によってセンターシール部120および包装部110の両方の異物検査を行うことができる。
図4(a)~(c)は、第2実施形態に係る検査装置の構成例を示す模式図である。
図4(a)に示す構成例では、検出部20に1つのラインセンサLS10が含まれる例である。1つのラインセンサLS10には第1検出部分21および第2検出部分22が含まれる。すなわち、1つのラインセンサLS10の検出領域を第1検出部分21と第2検出部分22とで分けて使用している。このような構成によれば、1つのラインセンサLS10によってセンターシール部120および包装部110の両方の異物検査を行うことができる。
図4(b)に示す構成例では、検出部20に3つのラインセンサLS1、LS2およびLS3が含まれる例である。また、この構成例では、照射部10のX線源12が基準線Lから離れて配置されている。
ラインセンサLS1はセンターシール部120の近傍に配置され、センターシール部120を透過するX線を検出する。ラインセンサLS2は包装部110の近傍であって高さ方向D3に配置される。ラインセンサLS3は包装部110の近傍であって幅方向D2に配置される。
照射部10から照射されるX線は、基準線Lから離れた位置より包装体100に向けて照射される。X線の照射領域はセンターシール部120から包装部110の広い範囲をカバーしている。これにより、ラインセンサLS1ではセンターシール部120を透過したX線を検出し、ラインセンサLS2およびLS3では包装部110を透過したX線を検出することができる。特に、ラインセンサLS2およびLS3は包装部110に沿ってL字型に配置されているため、包装部110の広い範囲で透過するX線を検出することができる。
図4(c)に示す構成例では、検出部20に1つのラインセンサLS20が含まれる例である。また、この構成例では、照射部10のX線源12が基準線Lから離れて配置されている。
ラインセンサLS20は、高さ方向D3および幅方向D2のそれぞれに対して斜めに配置される。1つのラインセンサLS20には第1検出部分21および第2検出部分22が含まれる。この構成例では、基準線Lから離れた位置より包装体100に斜めにX線が照射される。そして、センターシール部120を透過したX線はラインセンサLS20の第1検出部分21で検出され、包装部110を透過したX線はラインセンサLS20の第2検出部分22で検出される。
ラインセンサLS20を斜めに配置することで、X線が包装部110を斜めに透過して第2検出部分22まで到達する。これにより、包装部110を透過するX線の透過長が、包装部110の幅方向D2に透過する場合に比べて短くなり、検出精度を高めることができる。
(第3実施形態)
第3実施形態に係る検査装置は、第1実施形態や第2実施形態の検査装置において、検出部20の検出データに含まれるノイズをキャンセルすることにより、精度の高い検査を実現する。なお、以下の説明では、既に説明した部分については、同一符号を付してその説明を省略する。
第3実施形態に係る検査装置は、第1実施形態や第2実施形態の検査装置において、検出部20の検出データに含まれるノイズをキャンセルすることにより、精度の高い検査を実現する。なお、以下の説明では、既に説明した部分については、同一符号を付してその説明を省略する。
第3実施形態に係る検査装置は、図5に示すように、第1実施形態又は第2実施形態の検査装置の構成に加え、第2検出部20Aを備える。第2検出部20Aは、搬送方向Dtに沿って検出部20に隣接する位置に、照射部10からのX線が検出素子に入射しないように設けられる。ここで、「照射部10からのX線が検出素子に入射しないように」とは、例えば、第2検出部20Aを照射部10によるX線照射領域の範囲外(つまりX線が照射されない領域)に、配置するとよい。あるいは、第2検出部20Aの配置位置がX線照射領域の内外いずれに関わらず、照射部10からのX線が検出素子に入射しないようにX線を遮蔽する遮蔽部材を設けてもよい。なお、ノイズキャンセルの精度は、第2検出部20Aが検出部20に近いほど高まる。このため、第2検出部20Aは検出部20に近い位置に配置されることが好ましい。第2検出部20Aには照射部10からのX線が照射されない位置にあるので、第2検出部20Aが検出するX線は、照射部10からのX線が包装体100を透過したものではなく、散乱や外乱等に起因するノイズと考えられる。
第2検出部20Aで検出したX線に基づく信号はメモリ210に蓄積され、所望のタイミングで制御部200の信号処理部201に送られる。信号処理部201は、メモリ210から送られた信号を処理して画像信号を構成する。このとき、信号処理部201は、検出部20で検出したX線に基づく信号から、第2検出部20Aで検出したX線に基づく信号を差し引くことによりノイズをキャンセルしたライン信号とする。そして、ノイズをキャンセルしたライン信号を所定量結合して2次元画像とする。2次元画像はモニタである表示部220に出力される。このような構成により、第3実施形態の検査装置では、ノイズを低減した2次元画像を得ることが可能となる。なお、なお、ノイズのキャンセルは検出部20及び第2検出部20Aが出力するアナログ信号に対して行ってもよいし、アナログ信号をAD変換機によりデジタル信号としてから行ってもよい。
(第4実施形態)
第4実施形態に係る検査装置は、第3実施形態に係る検査装置と同様に、検出部20の検出データに含まれるノイズをキャンセルすることにより、精度の高い検査を実現する。なお、以下の説明では、既に説明した部分については、同一符号を付してその説明を省略する。
第4実施形態に係る検査装置は、第3実施形態に係る検査装置と同様に、検出部20の検出データに含まれるノイズをキャンセルすることにより、精度の高い検査を実現する。なお、以下の説明では、既に説明した部分については、同一符号を付してその説明を省略する。
第4実施形態に係る検査装置は、第1実施形態又は第2実施形態の検査装置と同様の構成を有する。図6に示したように、第4実施形態に係る検査装置では、検出部20のラインセンサLSは、搬送方向における検出素子の幅W分だけ移動する都度の撮像タイミングでX線の線量を100%の露光量で検出し、搬送方向における検出素子の幅Wの2分の1だけ撮像タイミングから位相がずれたノイズ検出タイミングでX線の線量を撮像タイミングとは異なる露光量(例えば0%)で検出する。なお、撮像タイミング及びノイズ検出タイミングでの露光量は上記に限定されず、両者で露光量が異なっていればよい。なおノイズ検出タイミングと撮像タイミングとの位相差は、搬送方向における検出素子の幅Wの2分の1以外でも構わない。
検出部20で検出したX線に基づく信号(すなわち、撮像タイミングで検出したX線に基づく信号及びノイズ検出タイミングで検出したX線に基づく信号)はメモリ210に蓄積され、所望のタイミングで制御部200の信号処理部201に送られる。信号処理部201は、メモリ210から送られた信号を処理して画像信号を構成する。このとき、信号処理部201は、撮像タイミングで検出したX線に基づく信号からノイズ検出タイミングで検出したX線に基づく信号を差し引くことによりノイズをキャンセルしたライン信号とする。上述したように、撮像タイミングとノイズ検出タイミングとは、搬送方向における検出素子の幅の2分の1に相当する位相差があるため、ノイズをキャンセルする際にはこの位相差を踏まえた演算によりノイズをキャンセルするとよい。例えば、N番目のラインに対応するノイズはN番目のラインから前後2分の1位相ずれた2つのノイズ検出タイミングで検出したX線に基づく信号の平均とするとよい。信号処理部201は、上記のようにしてノイズをキャンセルした信号ライン信号を所定量結合して2次元画像とする。2次元画像はモニタである表示部220に出力される。このような構成により、第4実施形態の検査装置では、ノイズを低減した2次元画像を得ることが可能となる。
(第5実施形態)
第5実施形態に係る検査装置は、第3実施形態及び第4実施形態に係る検査装置と同様に、検出部20の検出データに含まれるノイズをキャンセルすることにより、精度の高い検査を実現する。なお、以下の説明では、既に説明した部分については、同一符号を付してその説明を省略する。
第5実施形態に係る検査装置は、第3実施形態及び第4実施形態に係る検査装置と同様に、検出部20の検出データに含まれるノイズをキャンセルすることにより、精度の高い検査を実現する。なお、以下の説明では、既に説明した部分については、同一符号を付してその説明を省略する。
第5実施形態に係る検査装置は、図7に示したように、検出部20が有するラインセンサLSが、撮像用検出素子23と、ノイズ検出素子24とを備える。その他は第1実施形態又は第2実施形態の検査装置と同様の構成を有する。図7に示したように、第5実施形態に係る検査装置では、検出部20のラインセンサにおける直線状に並んだ複数の検出素子の一部をX線が当たらないように遮蔽されたノイズ検出素子24(図中で網掛けにより示された箇所)とする。ラインセンサの検出素子のうちノイズ検出素子24を除いたものが撮像用検出素子23となる。撮像用検出素子23とノイズ検出素子24とは、直線状の配列方向(搬送方向と直交する方向)において、交互に配置されるとよい。なお、撮像用検出素子23とノイズ検出素子24との(面積又は素子数における)比率は、例えば1対1とするとよいが、必ずしもこれに限定されない。
検出部20で検出したX線に基づく信号(すなわち、撮像用検出素子23で検出したX線に基づく信号及びノイズ検出素子24で検出したX線に基づく信号)はメモリ210に蓄積され、所望のタイミングで制御部200の信号処理部201に送られる。信号処理部201は、メモリ210から送られた信号を処理して画像信号を構成する。このとき、信号処理部201は、撮像用検出素子23で検出したX線に基づく信号からノイズ検出素子24で検出したX線に基づく信号を差し引くことによりノイズをキャンセルしたライン信号とする。上述したように、撮像用検出素子23とノイズ検出素子24とは、ラインセンサの検出素子の配列方向における位置が異なっているため、ノイズをキャンセルする際にはこの位置の差を踏まえた演算によりノイズをキャンセルするとよい。例えば、ある撮像用検出素子23に対応するノイズは当該撮像用検出素子23に隣接する2つのノイズ検出素子24で検出したX線に基づく信号の平均とするとよい。信号処理部201は、上記のようにしてノイズをキャンセルした信号ライン信号を所定量結合して2次元画像とする。2次元画像はモニタである表示部220に出力される。このような構成により、第5実施形態の検査装置では、ノイズを低減した2次元画像を得ることが可能となる。
(適用例)
図8は、本実施形態に係る検査装置の適用例を示す模式図である。
図8に示す適用例では、シート材STを筒状にしてセンターシール部120を熱圧着する部分に本実施形態に係る検査装置1が設けられている。
図8は、本実施形態に係る検査装置の適用例を示す模式図である。
図8に示す適用例では、シート材STを筒状にしてセンターシール部120を熱圧着する部分に本実施形態に係る検査装置1が設けられている。
シート材STを筒状にして包装体100を形成するには、シート材STを搬送方向Dtに送りながら筒状に湾曲させ、互いに向かい合った両側端部STSを閉じ合わせる。一対の加熱ローラHRの間に重ね合わされた両側端部STSが送り込まれることで両側端部STSは熱圧着され、センターシール部120となる。
加熱ローラHRの搬送方向Dtの下流側にはガイドプレートGPが設けられる。熱圧着されたセンターシール部120がガイドプレートGPに沿って送られることで、センターシール部120は徐々に倒されて、やがて包装部110の表面に沿って押し付けられる。
このようにしてシート材STの搬送方向Dtに連続的にセンターシール部120が形成され、包装体100が形成されていく。本実施形態に係る検査装置1は、一対の加熱ローラHRによってセンターシール部120が形成される位置から、ガイドプレートGPによってセンターシール部120が倒される位置までの間に設けられる。
一対の加熱ローラHRとガイドプレートGPとの間では、センターシール部120が包装部110に対して立ち上がった状態である。この位置において、センターシール部120を間にして照射部10と検出部20とを幅方向D2に対向するよう配置する。これにより、センターシール部120が形成された後、倒される前にセンターシール部120に対して幅方向D2にX線を照射することができる。したがって、包装部110と重なることなくセンターシール部120を透過するX線を検出して、センターシール部120の異物を検査することができる。
センターシール部120を熱圧着で形成する際には長さ方向D1に包装体100が連続的に送られる。この際、センターシール部120に異物を噛み込むことがあっても、本実施形態に係る検査装置1によってその異物を的確に検出することが可能となる。
以上説明したように、本実施形態に係る検査装置1によれば、包装体におけるセンターシール部の異物を的確に検査することが可能となる。
なお、上記に本実施形態およびその変形例および適用例を説明したが、本発明はこれらの例に限定されるものではない。例えば、上記実施形態では、X線源12が基準線Lと同じ高さ、または基準線Lに対して包装部110とは反対側に配置される例を示したが、X線源12を基準線Lよりも僅かに包装部110側に配置してもよい。また、前述の各実施形態またはその変形例および適用例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に包含される。
1…検査装置
10…照射部
11…筐体
12…X線源
13…スリット
15…ドライバ
20…検出部
21…第1検出部分
22…第2検出部分
100…包装体
110…包装部
120…センターシール部
130…エンドシール部
200…制御部
201…信号処理部
202…判定部
210…メモリ
220…表示部
D1…長さ方向
D2…幅方向
D3…高さ方向
Dt…搬送方向
GP…ガイドプレート
HR…加熱ローラ
L…基準線
LS1,LS2,LS3,LS10,LS20…ラインセンサ
S1,S2…照射領域
ST…シート材
10…照射部
11…筐体
12…X線源
13…スリット
15…ドライバ
20…検出部
21…第1検出部分
22…第2検出部分
100…包装体
110…包装部
120…センターシール部
130…エンドシール部
200…制御部
201…信号処理部
202…判定部
210…メモリ
220…表示部
D1…長さ方向
D2…幅方向
D3…高さ方向
Dt…搬送方向
GP…ガイドプレート
HR…加熱ローラ
L…基準線
LS1,LS2,LS3,LS10,LS20…ラインセンサ
S1,S2…照射領域
ST…シート材
Claims (13)
- シート材を筒状にした包装部と、前記包装部の閉じ合わせ部に設けられたセンターシール部とを有する包装体を検査する検査装置であって、
前記包装体に向けて検出波を照射する照射部と、
前記包装体を透過する前記検出波を検出する検出部と、
を備え、
前記検出部は、前記センターシール部を透過する前記検出波を検出する第1検出部分を有し、
前記第1検出部分は、前記照射部から照射された前記検出波が前記包装部で遮られない検出領域を有することを特徴とする検査装置。 - 前記照射部と前記第1検出部分との間に前記センターシール部が配置される、請求項1に記載の検査装置。
- 前記照射部における前記検出波の照射源は、前記センターシール部の付け根よりも前記センターシール部の先端側に配置される、請求項1または2に記載の検査装置。
- 前記検出部は、前記包装部を透過する前記検出波を検出する第2検出部分を有し、
前記第2検出部分は、前記照射部から照射された前記検出波が前記センターシール部で遮られない検出領域を有する、請求項1~3のいずれか1つに記載の検査装置。 - 前記センターシール部の延びる方向における前記第1検出部分の位置は、前記第2検出部分の位置と相違する、請求項4に記載の検査装置。
- 前記検出部は、直線状に複数の検出素子が並ぶラインセンサを有し、
前記第1検出部分および前記第2検出部分は前記ラインセンサに含まれる、請求項4に記載の検査装置。 - 前記検出部で検出した前記検出波に基づく信号を処理する信号処理部と、
前記信号処理部で処理した信号に基づき異物の有無を判定する判定部と、をさらに備えた請求項1~6のいずれか1つに記載の検査装置。 - 前記照射部からの検出波が入射しないように設けられたノイズ検出部をさらに備え、
前記信号処理部は、前記検出部で検出した前記検出波に基づく信号から前記ノイズ検出部で検出した前記検出波に基づく信号を差し引くことによりノイズをキャンセルした信号を得ることを特徴とする請求項7に記載の検査装置。 - 前記ノイズ検出部は、前記照射部からの検出波が照射されない位置に配置されることを特徴とする請求項8に記載の検査装置。
- 前記ノイズ検出部に前記照射部からの検出波が入射しないよう遮蔽する遮蔽部材をさらに備えることを特徴とする請求項8または9に記載の検査装置。
- 前記検出部は、直線状に複数の検出素子が並ぶラインセンサを有し、
前記ラインセンサは、前記検出素子の直線状の配列方向に直交する搬送方向に搬送される前記包装体を透過した検査波を、搬送方向における前記検出素子の幅分だけ搬送方向に移動する都度の撮像タイミングで第1の露光量で検出し、前記撮像タイミングから位相がずれたノイズ検出タイミングで、撮像タイミングとは異なる第2の露光量で検出し、
前記信号処理部は、前記撮像タイミングで検出した前記検出波に基づく信号から前記ノイズ検出タイミングで検出した前記検出波に基づく信号を差し引くことによりノイズをキャンセルした信号を得ることを特徴とする請求項7に記載の検査装置。 - 前記検出部は、直線状に複数の検出素子が並ぶラインセンサを有し、
前記ラインセンサを構成する前記検出素子少なくとも一部は、検出波が遮蔽されたノイズ検出素子であり、前記ラインセンサを構成する前記検出素子の少なくとも他の一部は、検出波が遮蔽されない撮像用検出素子であり、
前記信号処理部は、前記撮像用検出素子で検出した前記検出波に基づく信号から前記ノイズ検出素子で検出した前記検出波に基づく信号を差し引くことによりノイズをキャンセルした信号を得ることを特徴とする請求項7に記載の検査装置。 - 前記検出部で検出した前記検出波に基づく画像を表示する表示部をさらに備えた請求項1~10のいずれか1つに記載の検査装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018527502A JPWO2018012282A1 (ja) | 2016-07-13 | 2017-06-27 | 検査装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-138583 | 2016-07-13 | ||
JP2016138583 | 2016-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018012282A1 true WO2018012282A1 (ja) | 2018-01-18 |
Family
ID=60951746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/023640 WO2018012282A1 (ja) | 2016-07-13 | 2017-06-27 | 検査装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018012282A1 (ja) |
WO (1) | WO2018012282A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019158664A (ja) * | 2018-03-14 | 2019-09-19 | 株式会社 システムスクエア | 検査装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0772256A (ja) * | 1993-09-01 | 1995-03-17 | Fuji Photo Film Co Ltd | 画像信号補正装置および方法 |
JPH07146251A (ja) * | 1993-05-24 | 1995-06-06 | Anritsu Corp | シール部不良検出装置 |
JPH11318875A (ja) * | 1998-05-14 | 1999-11-24 | Matsushita Electric Ind Co Ltd | X線画像撮影装置 |
JP2011196796A (ja) * | 2010-03-18 | 2011-10-06 | Ishida Co Ltd | X線検査装置 |
US20140341339A1 (en) * | 2012-02-01 | 2014-11-20 | Smiths Heimann Gmbh | X-ray testing facility for detecting certain materials in a test object |
JP2016120932A (ja) * | 2014-12-24 | 2016-07-07 | 株式会社フジキカイ | 横形製袋充填機における不良品検出装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5295915B2 (ja) * | 2009-09-18 | 2013-09-18 | 浜松ホトニクス株式会社 | 放射線検出装置 |
JP5860710B2 (ja) * | 2012-02-02 | 2016-02-16 | アンリツインフィビス株式会社 | X線検査装置 |
-
2017
- 2017-06-27 JP JP2018527502A patent/JPWO2018012282A1/ja active Pending
- 2017-06-27 WO PCT/JP2017/023640 patent/WO2018012282A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146251A (ja) * | 1993-05-24 | 1995-06-06 | Anritsu Corp | シール部不良検出装置 |
JPH0772256A (ja) * | 1993-09-01 | 1995-03-17 | Fuji Photo Film Co Ltd | 画像信号補正装置および方法 |
JPH11318875A (ja) * | 1998-05-14 | 1999-11-24 | Matsushita Electric Ind Co Ltd | X線画像撮影装置 |
JP2011196796A (ja) * | 2010-03-18 | 2011-10-06 | Ishida Co Ltd | X線検査装置 |
US20140341339A1 (en) * | 2012-02-01 | 2014-11-20 | Smiths Heimann Gmbh | X-ray testing facility for detecting certain materials in a test object |
JP2016120932A (ja) * | 2014-12-24 | 2016-07-07 | 株式会社フジキカイ | 横形製袋充填機における不良品検出装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019158664A (ja) * | 2018-03-14 | 2019-09-19 | 株式会社 システムスクエア | 検査装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018012282A1 (ja) | 2019-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10393676B2 (en) | Radiation detection device, radiation image acquiring system, radiation inspection system, and radiation detection method | |
JP5720029B2 (ja) | 包装体の検査装置 | |
EP2352015B1 (en) | Radiation image acquiring system, and radiation detecting method | |
JPH0949883A (ja) | 異物検査装置 | |
JP5912427B2 (ja) | 非破壊検査装置及び当該装置での位置ずれ検出方法 | |
JP2017116282A (ja) | 放射線検出装置、放射線検査システム、及び、放射線検出装置の調整方法 | |
JP5240834B2 (ja) | シートフラップの状態検査装置 | |
JP2010286469A (ja) | X線検査装置 | |
WO2018012282A1 (ja) | 検査装置 | |
JP2008157821A (ja) | X線異物検査装置 | |
JP5993358B2 (ja) | 検査装置及びptp包装機 | |
US20230288349A1 (en) | Foreign matter inspection device | |
JP5726271B2 (ja) | 放射線検出装置、放射線画像取得システム、放射線検査システム、及び放射線検出方法 | |
JP2020027012A (ja) | 超音波検査装置、及び超音波検査方法 | |
JP6285674B2 (ja) | X線検査装置 | |
JP2020003387A (ja) | 検査装置、検査システム、検査方法、検査プログラム及び記録媒体 | |
JP6647873B2 (ja) | 検査装置 | |
JP2019158664A (ja) | 検査装置 | |
JP2020020593A (ja) | 放射線検査装置及び放射線検査方法 | |
JP3979872B2 (ja) | X線異物検出装置 | |
JP7328667B2 (ja) | 検査装置 | |
JP6506629B2 (ja) | X線受光装置およびこれを備えたx線検査装置 | |
KR102484138B1 (ko) | 검사 장치, 포장체 제조 장치 및 포장체 제조 방법 | |
JP2021148666A (ja) | X線検査装置 | |
JP2021195129A (ja) | フラップ検査装置及びフラップ検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018527502 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17827412 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17827412 Country of ref document: EP Kind code of ref document: A1 |