Nothing Special   »   [go: up one dir, main page]

WO2018010684A1 - 热水器系统及其控制方法 - Google Patents

热水器系统及其控制方法 Download PDF

Info

Publication number
WO2018010684A1
WO2018010684A1 PCT/CN2017/092898 CN2017092898W WO2018010684A1 WO 2018010684 A1 WO2018010684 A1 WO 2018010684A1 CN 2017092898 W CN2017092898 W CN 2017092898W WO 2018010684 A1 WO2018010684 A1 WO 2018010684A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
heater system
port
gas
Prior art date
Application number
PCT/CN2017/092898
Other languages
English (en)
French (fr)
Inventor
万华新
王�华
杜韬
姚振虎
陈明明
Original Assignee
艾欧史密斯(中国)热水器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710057567.6A external-priority patent/CN108361969B/zh
Priority claimed from CN201710205529.0A external-priority patent/CN107621087B/zh
Application filed by 艾欧史密斯(中国)热水器有限公司 filed Critical 艾欧史密斯(中国)热水器有限公司
Publication of WO2018010684A1 publication Critical patent/WO2018010684A1/zh
Priority to US16/279,807 priority Critical patent/US11125468B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means

Definitions

  • the invention relates to the field of water heaters, in particular to a water heater system and a control method thereof.
  • domestic water heater products mainly include electric water heaters, gas water heaters, solar water heaters and air energy water heaters.
  • the field of water heaters is mainly dominated by traditional electric water heaters and gas water heaters.
  • the object of the present invention is to provide a water heater system and a control method thereof, which can generate micro-bubble water for users to use, not only save water and environment, but also have strong cleaning performance, and greatly improve the user experience.
  • a water heater system comprising:
  • a heating unit capable of heating water
  • a tank body connectable to the heating unit, the tank body is provided with at least one inlet and an outlet, and the inlet can supply at least one of gas and water into the tank body;
  • a pressurized source capable of pressurizing the canister, the pressurized source providing mixing of gas and water in the canister The pressure.
  • a water heater system comprising:
  • a heating unit capable of heating water
  • a can body that can communicate with the heating unit
  • An introduction mechanism capable of communicating with the can body and for introducing a fluid flowing therein into a region where the can body stores a gas, and mixing the introduced fluid with a gas in the can body;
  • a pressurized source capable of pressurizing the canister, the pressurized source providing a pressure that mixes gas and water in the canister.
  • a method of controlling a water heater system comprising:
  • the control introduction mechanism communicates with the water supply line when the discharged water or the supplied gas reaches a predetermined amount, and the introduction mechanism introduces the fluid flowing therein into the area where the tank stores the gas and the tank
  • the gas in the gas is gas-liquid mixed, and the pressurized source applies a predetermined pressure to gas-liquid mixing of the gas and water in the can body.
  • a water heater system comprising:
  • a tank body connected to the inner tank capable of storing a predetermined amount of gas and water; the inner tank and the tank body being capable of communicating to form a gas storage mechanism;
  • a pressurized source capable of providing a predetermined pressure to compress the gas in the gas storage mechanism and mixing the water in the gas storage mechanism to form a gas-liquid mixture
  • a heating element that heats the liquid in the bladder and the tank.
  • a tank body connected to the heating unit and a pressurized source for pressurizing the tank body wherein the tank body is provided with gas and water. At least one inlet into the tank.
  • a gas or a liquid can be charged into the can body through the inlet and a pressure of mixing gas and water can be provided to the can body through the pressurized source, so that microbubble water can be formed in the can body.
  • Supply to the user Since the supply of air to the user's water is the same at the same flow rate, the amount of water used can be effectively saved; in addition, the microbubble water has better cleaning performance and physical sterilization function than ordinary water. Therefore, the user experience is greatly improved.
  • FIG. 1 is a schematic structural view of a water heater system provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural view of another water heater system provided in an embodiment of the present application.
  • 3a, 3b, and 3c are schematic views showing the principle of preparing microbubble water in a can body provided in an embodiment of the present application;
  • FIG. 4 is a schematic structural view of another water heater system provided in an embodiment of the present application.
  • 5A is a schematic structural view of a pressure adjusting device provided in an embodiment of the present application.
  • 5B is a schematic structural view of a pressure adjusting device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural view of a water heater system with a liner provided in an embodiment of the present application
  • FIG. 7 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 10 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 11 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 14 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 15 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • 16 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 17 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • FIG. 18 is a schematic structural view of still another water heater system with a liner provided in an embodiment of the present application.
  • 19 is a schematic diagram of a single tank operation of a water heater system with a liner provided in an embodiment of the present application;
  • 20 is a schematic diagram of a single tank operation of a water heater system with a liner provided in an embodiment of the present application;
  • 21 is a schematic view showing the operation of a water heater system with a liner provided in an embodiment of the present application
  • FIG. 22 is a schematic view showing the operation of a water heater system with a liner provided in an embodiment of the present application
  • FIG. 23 is a schematic diagram of a double tank switching principle of a water heater system provided in an embodiment of the present application.
  • FIG. 24 is a schematic view showing the operation of a water heater system provided in an embodiment of the present application.
  • 25 is a schematic view showing the operation of a water heater system provided in an embodiment of the present application.
  • 26 is a schematic diagram of a switching principle of a single tank and a bypass line in a water heater system provided in an embodiment of the present application;
  • FIG. 27 is a schematic structural view of a water heater system without a liner provided in an embodiment of the present application.
  • 29 is a schematic structural view of another water heater system without a liner provided in an embodiment of the present application.
  • FIG. 30 is a schematic structural view of an introduction mechanism and a can body provided in an embodiment of the present application.
  • 31A is a schematic cross-sectional view showing a section of a cross-sectional area of an introduction mechanism provided in an embodiment of the present application;
  • FIG. 31B is a schematic cross-sectional view showing a variable cross-sectional area portion of another introduction mechanism provided in an embodiment of the present application.
  • 31D is a schematic structural view of a variable cross-sectional area portion of still another introduction mechanism provided in the embodiment of the present application.
  • 32 is a flow chart showing the steps of a method for controlling a water heater system provided in an embodiment of the present application.
  • FIG. 33 is a schematic structural view of a first water heater system provided in an embodiment of the present application.
  • FIG. 34A is a schematic diagram of a state of gas-liquid mixing in a water heater system provided in an embodiment of the present application.
  • FIG. 34B is a schematic view showing a state of gas-liquid mixing in the water heater system provided in the embodiment of the present application.
  • Figure 35A is a schematic structural view of a pressure adjusting device
  • Figure 35B is a schematic structural view of another pressure adjusting device
  • 36A is a schematic cross-sectional view showing a cross-sectional area of a first tube provided in an embodiment of the present application
  • 36B is a schematic cross-sectional view showing a variable cross-sectional area portion of another first tube provided in an embodiment of the present application;
  • 36C is a schematic structural view of a variable cross-sectional area portion of another first tube provided in the embodiment of the present application.
  • 36D is a schematic structural view of a variable cross-sectional area portion of still another first tube provided in an embodiment of the present application.
  • FIG. 37 is a schematic structural diagram of a second water heater system provided in an embodiment of the present application.
  • 39 is a schematic structural view of a fourth water heater system provided in an embodiment of the present application.
  • FIG 40 is a schematic structural view of a fifth water heater system provided in an embodiment of the present application.
  • the invention provides a water heater system and a control method thereof, which can generate micro-bubble water for users to use, not only save water and environment, but also improve water cleaning performance, and greatly improve user experience.
  • a water heater system provided in an embodiment of the present application may include: a heating unit 1 capable of heating water; a tank 2 capable of communicating with the heating unit 1 , the tank body 2 is provided with at least one inlet 21 and an outlet 22, the inlet 21 being capable of supplying at least one of gas and water into the can body 2; a pressurized source capable of pressurizing the can body 2, the pressurization The source can provide a pressure at which the gas and water in the can body 2 are mixed.
  • the water heater system can be applied to any existing water heater, including an electric water heater, a gas water heater, a solar water heater, and an air energy water heater.
  • an electric water heater including an electric water heater, a gas water heater, a solar water heater, and an air energy water heater.
  • the present application is not specifically limited herein.
  • the pressurized source may provide a desired pressure for mixing the gas and water in the can body 2.
  • the pressurized source may include at least one of: a supercharging device 3 capable of communicating with the can body 2 and capable of supplying a predetermined pressure to water flowing into the can body 2, water having a predetermined pressure, or the like .
  • the heating unit 1 can be used to heat water.
  • the form of the heating unit 1 may be different depending on the type of the specific water heater, and is not specifically limited herein.
  • the heating unit 1 may include an electric heating rod in the inner tank and the inner tank;
  • the heating unit 1 may include a burner and heat exchange Device.
  • the can body 2 can communicate with the heating unit 1.
  • the can body 2 may be provided with at least one inlet.
  • the inlet 21 can be supplied to the can body 2 by at least one of a gas or a liquid.
  • the inlet 21 can be used for both circulating gas and liquid.
  • the tank body 2 when the tank body 2 is provided with two inlets, one of the inlets may be in communication with the inlet port for circulating gas, and the other inlet may be used for circulating liquid.
  • the number of the outlets on the can body 2 may also be one or more, which is not specifically limited herein. When the number of the outlets is one, it can communicate with the drain line or the water terminal.
  • the can body 2 may have a hollow cylindrical shape with opposite top and bottom ends.
  • the top end and the bottom end may be provided with a circular arc transition.
  • the can body 2 is in the use position, and its top end is on the top and bottom. The end is down.
  • the inlet 21 can be disposed near the top end, and the outlet 22 can be near the bottom end.
  • the shape of the can body 2 can also be other forms, which is not specifically limited herein.
  • the supercharging device 3 may pressurize the can body 2.
  • the form of the supercharging device 3 may be a water pump or an air pump, and of course, other devices capable of realizing the supercharging function, which are not specifically limited herein.
  • the pressurizing device 3 can provide a pressure required for mixing the gas and water when the can body 2 prepares microbubble water.
  • the water heater system described in the present application can prepare microbubble water by cooperating with the tank body 2 and the pressurizing device 3. Among them, a principle of preparing microbubbles in the can body 2 can be combined with reference to FIGS. 3a to 3c.
  • the can body 2 When it is desired to prepare microbubble water in the can body 2, as shown in Fig. 3a, the can body 2 may be first filled with air. As shown in Fig. 3b, the outlet 22 is then closed, and pressurized water is injected from the inlet 21 into the air of the can 2 under the pressure of the supercharging device 3. As the pressurized water is continuously injected from the inlet 21, the pressure inside the can body 2 is increased, and the water in the can body 2 is brought into contact with the gas phase, and is compressed and mixed under the action of pressure. As shown in Fig. 3c, the microbubble water can be discharged and opened to the user by opening the outlet 22.
  • the water heater system described in the present application is capable of supplying microbubble water to the user through the can body 2 in communication with the heating unit 1 and the pressurizing device 3.
  • the microbubbles refer to bubbles having a size of several or several tens of micrometers.
  • the surface of the microbubbles has a weak negative charge in the water, and can adsorb substances such as oils and proteins, thereby bringing them away from the skin and hair.
  • a large number of tiny bubbles per minute can penetrate deep into the hair roots and other places that are difficult to clean, and the dirt accumulated such as sebum and grease can be completely removed.
  • the microbubble water also has a unique bactericidal effect.
  • the sterilization process of the microbubble water includes two processes of attracting and killing, the microbubbles being electrostatically charged, which can adsorb bacteria and viruses in the water body; and then, after the bubbles are broken, the bubbles are excited around the bubbles.
  • a large amount of free radicals and ultra-high temperature and high pressure generated by cracking kill the adsorbed bacterial virus.
  • the above killing process is a complete physical killing process which is essentially different from the conventional disinfecting method, so it is more environmentally friendly than conventional chemical sterilization.
  • the water heater system is provided with a tank body 2 communicating with the heating unit 1 and a pressurizing device 3 capable of pressurizing the tank body 2, in use, the pressurizing device 3 and the
  • the can body 2 is matched to enable the microbubble water microbubble water to be supplied to the user in the can body 2. Since the supply of air to the user's water is the same at the same flow rate, the amount of water used can be effectively saved; in addition, the microbubble water has better cleaning performance and physical sterilization function than ordinary water. Therefore, the user experience is greatly improved.
  • a water supply line and a gas supply line are disposed upstream of the inlet of the can body 2 , and the inlet can communicate with the water supply line and/or the gas supply line.
  • the supercharging device 3 and the supply The water line and/or the gas supply line are in communication.
  • the inlet of the can body 2 may be one, and the water supply line and the gas supply line that can communicate with the inlet are disposed upstream of the inlet.
  • the gas supply line is capable of charging the can body 2 with gas when the inlet is in communication with the gas supply line.
  • the gas may be air.
  • the gas is not limited to air, and the present application is not specifically limited herein.
  • the water supply line can fill the can body 2 with water.
  • the supercharging device 3 may be in communication with at least one of the water supply line and the air supply line.
  • the pressurizing device 3 can be in communication with the water supply line, and the pressurizing device 3 can be a water pump.
  • a water pump can be provided in the water heater system to provide power for water circulation.
  • the supercharging device 3 when the supercharging device 3 is a water pump, it can utilize the existing water pump in the water heater system, instead of separately adding the supercharging device 3, thereby saving cost and saving space of the entire water heater system. , optimize product structure.
  • the pressurizing device 3 may be a water pump in communication with the heating device and the can body 2, the water pump includes a first water pump and a second water pump, and the second water pump and the first water pump A water pump is connected in series or in parallel.
  • the specific form of the supercharging device 3 may be a water pump that communicates with the heating device and the can body 2.
  • the number of the water pumps may be two or more, and the present application is not specifically limited herein.
  • the water pump may include a first water pump and a second water pump, and the first water pump and the second water pump may be connected in parallel or in series.
  • the first water pump and the second water pump may be selectively connected in series.
  • the pressure that can be provided when the first water pump and the second water pump are connected in series is greatly increased with respect to the pressure that can be provided by a single water pump, so that the pressure demand of the water heater system can be satisfied.
  • the first water pump and the second water pump may be selectively connected in parallel.
  • the flow rate that can be provided when the first water pump and the second water pump are connected in parallel is provided to a larger extent than the flow rate that can be provided by a single water pump, so that the flow demand of the water heater system can be satisfied. begging.
  • the water heater system needs to be disposed in the outer casing, and the two small water pumps can flexibly utilize the scattered space in the outer casing in a certain space of the outer casing, and can also reduce the water heater system to a certain extent.
  • the overall footprint in general, the water heater system needs to be disposed in the outer casing, and the two small water pumps can flexibly utilize the scattered space in the outer casing in a certain space of the outer casing, and can also reduce the water heater system to a certain extent.
  • the overall footprint is disposed in the outer casing, and the two small water pumps can flexibly utilize the scattered space in the outer casing in a certain space of the outer casing, and can also reduce the water heater system to a certain extent.
  • the supercharging device 3 is in communication with the air supply line, and the supercharging device 3 is an air pump.
  • the supercharging device 3 when the supercharging device 3 can communicate with the air supply line, the supercharging device 3 may specifically be an air pump.
  • the air pump When the air pump is turned on, the air pump may pressurize the air flowing therethrough, and may also pressurize the tank 2 connected thereto, that is, when the tank 2 prepares microbubble water, the air pump It provides the pressure required to mix gas and water.
  • the water heater system may further comprise a pressure regulating device 4 disposed downstream of the can body 2.
  • the pressure adjusting device 4 serves to maintain the pressure between the can body 2 and the pressure regulating device 4 within a predetermined range.
  • the pressure regulating device 4 may be in the form of one of pressure regulating valves, such as a self-operated pressure regulating valve; or a hydraulic pressure control valve, such as an overflow valve; or an electronic expansion that can be controlled by pressure.
  • the valve, the thermal expansion valve, and the like, or other forms, are not specifically limited herein.
  • the pressure regulating device 4 can maintain the pressure between the can body 2 and the pressure regulating device 4 above 0.1 MPa when the pressurizing device 3 is in an open state. .
  • the pressure adjusting device 4 disposed downstream of the can body 2 can control the pressure between the can body 2 and the pressure regulating device 4 at a predetermined time.
  • the control principle of the pressure regulating device 4 may be different according to the specific structure of the pressure adjusting device 4, and the present application is not specifically limited herein.
  • the predetermined pressure range may be 0.1 MPa or more.
  • the pressure between the can body 2 and the pressure regulating device 4 is controlled by the pressure adjusting device 4 to be 0.1 MPa or more, the pressure can contribute to generation and maintenance of microbubbles.
  • the pressure when the pressure is above 0.1 MPa, it is advantageous for more air to be dissolved in water to form microbubble water with higher solubility; on the other hand, the microbubble water is beneficial to the tube.
  • the state of the microbubble water is maintained to prevent the bubbles in the water from gradually increasing.
  • the range of the predetermined pressure is not limited to the above list, and other changes may be made by those skilled in the art in light of the essence of the technical application of the present application, but as long as the functions and effects achieved are related to the present application. The same or similar aspects are intended to be covered by the scope of the present application.
  • the pressure regulating device 4 has opposite inlet and outlet ends, and is internally provided with a pressure regulating mechanism such that the pressure at the inlet end is greater than the pressure at the outlet end.
  • the pressure regulating device 4 is formed with at least a throttle mechanism whose flow cross-sectional area is stepwise or abrupt in the direction of fluid flow, that is, the pressure regulating mechanism may be a throttle structure.
  • the throttling mechanism can be used to quickly reduce pressure and achieve outgassing.
  • the pressure regulating device 4 comprising a hollow tubular body having at least one throttling member disposed within the tubular body.
  • the throttle member may be a structure having a smaller diameter than the inner diameter of the tubular body.
  • flow holes in the number of openings are sequentially opened on the throttle plate along the fluid flow direction, so that the flow cross-sectional area increases step by step along the fluid flow direction as a whole.
  • the pressure regulating device 4 may further be provided with a back pressure spring with a variable cross-sectional area, or other throttling mechanism, which is not specifically limited herein.
  • a back pressure spring with a variable cross-sectional area or other throttling mechanism, which is not specifically limited herein.
  • Other changes may be made by those skilled in the art in light of the technical spirit of the present application. However, as long as the functions and effects thereof are the same or similar to the present application, they should be covered by the present application.
  • the heating unit 1 may include: a tank 11 capable of containing water, and a heating member 13 for heating water in the tank 11;
  • the device 3 is a water pump, and the water pump is in communication with the inner tank 11 and the can body 2, and the water pump can drive water into the can body 2 and supply the tank 2 with the pressure required for mixing water and gas.
  • a pressure regulating device 4 is disposed downstream of the can body 2.
  • the water heater system can be applied to a water heater provided with a liner 11.
  • the heating unit 1 may include a liner 11 and a heating member 13.
  • the inner tank 11 can be used for water filling.
  • the inner casing 11 may have a hollow cylindrical casing as a whole. Of course, it may have other shapes, which is not specifically limited herein.
  • the arrangement of the inner casing 11 may be horizontal or vertical, and the present application is not specifically limited herein.
  • the type and arrangement of the heating member 13 may vary with the type of the water heater.
  • the heating member 13 may be an electric heating rod.
  • the electric heating rod can be solid at one end
  • the inner end of the inner bladder 11 is defined, and the other end is inserted into the inner tank 11 to heat the water in the inner tank 11.
  • the heating member 13 may be a heat exchanger disposed on the inner tank 11.
  • the heat exchanger may be wrapped on the outer wall of the inner casing 11, and a high temperature and high pressure refrigerant is circulated in the heat exchanger. When the high temperature and high pressure refrigerant flows through the heat exchanger, heat can be transferred to the water in the inner tank 11.
  • the supercharging device 3 may be a water pump that communicates with the inner tank 11 and the can body 2.
  • the water pump can both drive water into the tank 2 and provide the tank 2 with the pressure required to mix water and gas.
  • the water heater system may further be provided with a detecting unit for electrically communicating with the control device.
  • the detecting unit is configured to send the start signal to the control device after detecting the start signal, and control the opening of the water pump by the control device.
  • the detecting unit may be at least one of a flow switch, a pressure switch, or a temperature probe.
  • a flow switch when the flow rate detected by the flow switch is greater than a predetermined value, an electrical signal can be sent to the control device.
  • a pressure switch when the pressure fluctuation detected by the pressure switch is greater than a predetermined value, a control signal may be sent to the control device.
  • a temperature probe when the temperature detected by the temperature probe is greater than a predetermined value, an electrical signal may be sent to the control device.
  • the detecting unit is not limited to the above example.
  • condition for starting the operation of the water pump is not limited to the manner of detecting by the detecting unit, and those skilled in the art may make other things under the inspiration of the technical essence of the present application. Changes, but as long as the functions and effects achieved are the same or similar to the present application, they should be covered by the scope of the present application.
  • the pressure adjusting device 4 serves to maintain the pressure between the can body 2 and the pressure regulating device 4 within a predetermined range.
  • the pressure regulating device 4 may be in the form of one of pressure regulating valves, such as a self-operated pressure regulating valve; or a hydraulic pressure control valve, such as an overflow valve; or an electronic expansion that can be controlled by pressure.
  • the valve, the thermal expansion valve, and the like, or other forms, are not specifically limited herein.
  • the pressure adjusting device 4 disposed downstream of the can body 2 can control the pressure between the can body 2 and the pressure regulating device 4 within a predetermined pressure range.
  • the control principle of the pressure regulating device 4 may be different according to the specific structure of the pressure adjusting device 4, and the present application is not specifically limited herein.
  • the inner tank 11 is a pressure-bearing inner tank, and the bile pressure of the inner tank 11 ranges from 0.1 MPa to 0.8 MPa.
  • the inner liner 11 since the inner liner 11 communicates with the water pump, the inner liner 11 is affected by the water pump 2 and also needs to withstand a certain pressure.
  • the influence of thermal expansion and contraction will also require the inner tank 11 to have a certain pressure bearing capacity.
  • the bladder 11 in communication with the water pump 2 is required to withstand a predetermined pressure during use. Specifically, the pressure may range from 0.1 MPa to 0.8 MPa.
  • the bile pressure range of the inner casing 11 may be relatively small; when the water pump 2 is located upstream of the inner casing 11, due to The inner tank 11 flows through the microbubble water outputted from the water pump 2, and therefore, the range of bile pressure can be relatively high to maintain the pressure required for the microbubble water.
  • the pressure in the inner liner 11 when the water in the inner liner 11 is heated by the heating member 13, the pressure in the inner liner 11 also rises as the temperature rises based on the principle of thermal expansion and contraction.
  • the can body 2 when the can body 2 is located downstream of the inner tank 11, and the can body 2 is in a state in which microbubble water is prepared, water having a higher pressure flows out from the inner tank 11 and is supplied to the can body. At 2 o'clock, it is advantageous to fuse with the gas in the can body 2 to form microbubble water.
  • the pressure in the inner casing 11 is increased, which corresponds to the formation of a preload in the inner casing 11 before the supercharging device 3 is opened.
  • the preload can provide the required pressure for the mixing of gas and water in the tank body 2, when the user opens the water terminal after the boosting device 3 is activated, it only needs to discharge the tank body at most 2 By the water in the water terminal line, the ideal microbubble water can be obtained, which effectively shortens the time for the user to obtain the microbubble water and improves the user experience.
  • the inner tank 11 is provided with an inlet pipe 111 for water inlet and an outlet pipe 112 for discharging water, and the water pump is disposed upstream of the inlet pipe 111.
  • the tank body 2 is disposed downstream of the water outlet pipe 112.
  • the inner tank 11 is provided with an inlet pipe 111 for water intake, and an outlet pipe 112 for discharging water.
  • the room temperature water supplied from the water supply line can be heated into the inner tank 11 through the water inlet pipe 111, and then the heated water flows out from the water outlet pipe 112.
  • the water pump 2 may be disposed upstream of the inlet pipe 111 of the inner casing 11.
  • the heated water in the inner casing 11 does not flow through the water pump 2.
  • the water flowing through the water pump 2 is the normal temperature water supplied from the water supply line, and therefore, there is no requirement for the water pump 2 to withstand high temperatures.
  • the water flowing through the water pump 2 is normal temperature water, calcium and magnesium ions in the water are not easily precipitated, so that the inside thereof is less likely to be fouled.
  • the can body 2 may be disposed downstream of the water outlet pipe 112.
  • the microbubble water flowing out of the can body 2 can pass through the pressure adjustment device After setting 4, the water terminal is directly supplied to the user.
  • the tank body 2 is disposed downstream of the water outlet pipe 112
  • the microbubble water flowing out therefrom does not flow through the inner tank 11, and on the one hand, the user can obtain microbubble water in a short time;
  • the inner tank 11 is provided with an inlet pipe 111 for water inlet and an outlet pipe 112 for discharging water; the water heater system further includes a water outlet pipe 112 disposed at the outlet pipe 112 A temperature regulating device 5 between the pressure regulating device 4 or the outlet pipe 112.
  • the inner tank 11 is provided with an inlet pipe 111 for water intake, and an outlet pipe 112 for discharging water.
  • the room temperature water supplied from the water supply line can be heated into the inner tank 11 through the water inlet pipe 111, and then the heated water flows out from the water outlet pipe 112.
  • the heating unit 1 may further include a temperature adjustment device 5 that can be used to regulate the temperature of the water flowing into or out of the can body 2.
  • the temperature adjustment device 5 may be a mechanical temperature adjustment device 5, which can adjust the temperature manually; it can be an electronic temperature adjustment device 5, which can automatically adjust the temperature according to the control program of the control device.
  • the temperature setting range of the temperature adjustment device 5 may be fixed or adjustable. Specifically, when the temperature setting range of the temperature adjustment device 5 is fixed, the outlet water temperature is fixed within the set range. When the temperature setting range of the temperature adjustment device 5 is adjustable, the water discharge temperature can be adjusted as needed.
  • the temperature adjustment device 5 may be in the form of a water mixing valve, a thermostatic valve, or the like, or may be a thermostatic water discharge structure disposed on the water outlet pipe 112 of the inner casing 11.
  • the form of the temperature adjustment device 5 is not limited to the above list, and other modifications may be made by those skilled in the art in light of the essence of the technical application of the present application, provided that the functions and effects achieved are the same as the application. Or similar, should be covered by the scope of this application.
  • the temperature adjusting device 5 may be disposed between the water outlet pipe 112 and the pressure regulating device 4 or the water outlet pipe 112 for regulating the water temperature flowing into or out of the tank body 2.
  • the water temperature is brought close to the user's set outlet water temperature.
  • the microbubble water obtained by mixing the water and the gas at the temperature is also close to the set temperature of the user. At this time, it is not necessary or only a small amount of cold water is mixed into the microbubble water to reach the water temperature set by the user.
  • the content of microbubbles in the microbubble water can be well ensured, which is favorable for the user to obtain the microbubble water with a higher concentration.
  • the microbubble water flowing out of the can body 2 approaches the set temperature of the user, the user-set effluent water temperature can be achieved without or only a small amount of cold water is mixed into the microbubble water.
  • the content of microbubbles in the microbubble water can be well ensured, which is advantageous for use. The household gets a higher concentration of microbubble water.
  • the temperature adjustment device 5 may be disposed on the water outlet pipe.
  • the temperature adjustment device 5 may be a constant temperature structure disposed on the water outlet pipe 112, and the constant temperature structure can automatically adjust the water outlet temperature of the water outlet pipe 112.
  • the can body 2 is downstream of the temperature regulating device 5, it is ensured that the water entering the can body 2 from the water outlet pipe 112 is between a predetermined range to approach the user's set outlet water temperature.
  • the water heater system may further include a cold water pipe 15 communicating with the water inlet pipe 111 , the tank body 2 being disposed downstream of the water outlet pipe 112 , the temperature An adjusting device 5 is disposed between the water outlet pipe 112 and the tank body 2, and includes a first port communicating with the water outlet pipe 112 and a second port communicating with the cold water pipe 15 and the tank body 2 Connected third port.
  • the water pump may be disposed upstream of the water inlet pipe 111.
  • the heated water in the inner casing 11 does not flow through the water pump 2.
  • the water flowing through the water pump 2 is the normal temperature water supplied from the water supply line, and therefore, there is no requirement for the water pump 2 to withstand high temperatures. Further, since the water flowing through the water pump 2 is normal temperature water, calcium and magnesium ions in the water are not easily precipitated, so that the inside thereof is less likely to be fouled.
  • the microbubble water flowing out of the can body 2 can be directly supplied to the water terminal of the user after passing through the pressure adjusting device 4.
  • the tank body 2 is disposed downstream of the water outlet pipe 112
  • the microbubble water flowing out therefrom does not flow through the inner tank 11, and on the one hand, the user can obtain microbubble water in a short time;
  • the water heater system further includes a cold water pipe 15 communicating with the water inlet pipe 111, and when the water pump is started, cold water flowing in from the water inlet end flows through the cold water pipe 15 communicating with the water inlet pipe 111.
  • the temperature adjustment device 5 is disposed on a pipeline between the water outlet pipe 112 and the tank body 2. Specifically, the temperature adjustment device 5 may include a first port in communication with the outlet pipe 112 and a second port in communication with the cold water pipe 15 and a third port in communication with the can body 2.
  • the water outlet pipe 111 can pass the hot water heated by the heating unit 1 into the temperature adjustment device 5 through the first port.
  • the cold water pipe 15 can pass the cold water flowing in from the water inlet end to the temperature adjusting device 5 through the second port.
  • the third port is a water outlet for flowing water mixed by the temperature adjusting device 5 to a temperature set by a user to flow into the can body 2.
  • the temperature adjusting device 5 may be provided with a temperature sensing unit. When the temperature of the water sensed by the temperature sensing unit exceeds the set water temperature of the user, the second port may be adjusted, the second port may be adjusted, or the first port may be adjusted at the same time. And an opening degree of the second port such that the temperature of the water flowing into the can body 2 from the third port of the temperature adjusting device 5 is close to the set outlet water temperature of the user. When the water flowing into the can body 2 approaches the set outlet water temperature of the user, the microbubble water obtained by mixing the water and the gas at the temperature is also close to the set temperature of the user.
  • the water heater system may further include a cold water pipe 15 communicating with the water inlet pipe, the tank body 2 being disposed downstream of the water outlet pipe 112, and the temperature adjustment A device 5 is disposed between the can body 2 and the pressure regulating device 4, including a first port in communication with the can body 2 and a second port in communication with the cold water pipe 15, and the pressure regulation The third port that the device 4 is connected to.
  • the water pump may be disposed upstream of the water inlet pipe 111.
  • the heated water in the inner casing 11 does not flow through the water pump 2.
  • the water flowing through the water pump 2 is the normal temperature water supplied from the water supply line, and therefore, there is no requirement for the water pump 2 to withstand high temperatures. Further, since the water flowing through the water pump 2 is normal temperature water, calcium and magnesium ions in the water are not easily precipitated, so that the inside thereof is less likely to be fouled.
  • the microbubble water flowing out of the can body 2 can be directly supplied to the water terminal of the user after passing through the pressure adjusting device 4.
  • the tank body 2 is disposed downstream of the water outlet pipe 112
  • the microbubble water flowing out therefrom does not flow through the inner tank 11, and on the one hand, the user can obtain microbubble water in a short time;
  • the water heater system further includes a cold water pipe 15 in communication with the water inlet pipe 111.
  • a cold water pipe 15 in communication with the water inlet pipe 111.
  • the temperature adjustment device 5 is disposed between the can body 2 and the pressure adjustment device 4.
  • the temperature adjustment device 5 may include a first port in communication with the can body 2 and a second port in communication with the cold water pipe 15 and a third port in communication with the pressure regulating device 4.
  • the can body 2 can pass microbubble water into the temperature adjustment device 5 through the first port.
  • the cold water pipe 15 can pass the cold water flowing in from the water inlet end to the temperature adjusting device 5 through the second port.
  • the third port is a water outlet for passing the The temperature of the temperature adjusting device 5 mixed with the temperature close to the user set temperature flows out, and is supplied to the user through the pressure adjusting device 4.
  • at least one of the first port and the second port may be a port whose opening degree can be adjusted.
  • the temperature adjustment device 5 may be provided with a temperature sensing unit. When the temperature of the water sensed by the temperature sensing unit exceeds the set water temperature of the user, the second port may be adjusted, the second port may be adjusted, or the first adjustment may be simultaneously performed.
  • the opening of one port and the second port is such that the temperature of the water flowing out of the third port of the temperature regulating device 5 is close to the set outlet temperature of the user.
  • the concentration of the normal microbubble water is 5%
  • the concentration of the microbubbles More than 5%. Since the temperature regulating device 5 is located upstream of the pressure regulating device 4, under the pressure of the pressure regulating device 4, the pressure in the temperature adjusting device 5 can also reach the pressure required to prepare the microbubble water.
  • the water heater system may further include a cold water pipe 15 communicating with the water inlet pipe 111, and the tank body 2 is disposed downstream of the water outlet pipe 112, a temperature regulating device 5 is disposed between the water outlet pipe 112 and the water pump, and includes a first port communicating with the water outlet pipe 112 and a second port communicating with the cold water pipe 15 and communicating with the water pump Third port.
  • the gas-liquid mixture flowing out of the can body 2 can be directly supplied to the water terminal of the user after passing through the pressure adjusting device 4.
  • the tank body 2 is disposed downstream of the water outlet pipe 112
  • the gas-liquid mixture flowing out therefrom does not flow through the inner tank 11, and on the one hand, the user can obtain microbubble water in a short time;
  • the water heater system further includes a cold water pipe 15 communicating with the water inlet pipe 111, and when the water pump is started, cold water flowing in from the water inlet end flows through the cold water pipe 15 communicating with the water inlet pipe 111.
  • the temperature adjustment device 5 is disposed between the water outlet pipe 112 and the water pump.
  • the temperature adjustment device 5 may include a first port in communication with the outlet pipe 112 and a second port in communication with the cold water pipe 15 and a third port in communication with the water pump.
  • the outlet pipe 112 can pass the hot water heated by the heating unit 1 into the temperature adjustment device 5 through the first port.
  • the cold water pipe 15 can pass the cold water flowing in from the water inlet end to the temperature adjusting device 5 through the second port.
  • the third port is a water outlet for flowing water that is mixed by the temperature adjusting device 5 to a temperature set by a user into the water pump, and after being pressurized by the water pump, the inflow is located downstream of the water pump. In the tank 2.
  • the first port and the second port may be a port whose opening degree can be adjusted.
  • the temperature adjustment device 5 may be provided with a temperature sensing unit. When the temperature of the water sensed by the temperature sensing unit exceeds the set water temperature of the user, the second port may be adjusted, the second port may be adjusted, or the first adjustment may be simultaneously performed.
  • the opening of one port and the second port is such that the temperature of the water flowing into the can body 2 from the third port of the temperature regulating device 5 is close to the set outlet water temperature of the user.
  • the gas-liquid mixture obtained by mixing the water and the gas at the temperature is also close to the set temperature of the user.
  • cold water entering from the inlet pipe can enter the water pump directly through the cold water pipe 15 and be supplied to the tank body 2 after being pressurized by a water pump.
  • the pressurized water supplied to the can body 2 to prepare the microbubble water is all supplied by the cold water pipe 15, and at this time, the inner tank 11 does not supply hot water to the temperature regulating device.
  • the pressurized water supplied to the can body 2 to prepare the microbubble water may be entirely supplied from the inner tank 11, and at this time, the cold water pipe 15 does not enter the cold water to the temperature regulating device. That is to say, the pressure water supplied to the tank 2 by the water pump is all hot water.
  • the inner tank 11 is provided with an inlet pipe 111 for water inlet and an outlet pipe 112 for discharging water, and the water pump and the can body 2 are disposed at the inlet pipe 111 . Upstream; the water pump is disposed upstream of the can body 2.
  • the inner tank 11 is provided with an inlet pipe 111 for water inlet, and a water outlet for discharging water. Tube 112.
  • the room temperature water supplied from the water supply line can be heated into the inner tank 11 through the water inlet pipe 111, and then the heated water flows out from the water outlet pipe 112.
  • the can body 2 may be disposed upstream of the inlet pipe 111 of the inner casing 11 and downstream of the water pump.
  • the heated water in the inner casing 11 does not flow through the can body 2.
  • the water flowing through the can body 2 is the normal temperature water supplied to the water supply pipe, and therefore, the can body 2 does not have a high temperature resistance requirement.
  • the water flowing through the can body 2 is normal temperature water, calcium and magnesium ions in the water are not easily precipitated, so that the inside thereof is less likely to be fouled.
  • the inner tank 11 is provided with an inlet pipe 111 for water inlet and an outlet pipe 112 for discharging water, and the water pump, the can body 2 is disposed at the outlet pipe 112. Downstream; the water pump is disposed upstream of the can body 2.
  • the inner tank 11 is provided with an inlet pipe 111 for water intake, and an outlet pipe 112 for discharging water.
  • the room temperature water supplied from the water supply line can be heated into the inner tank 11 through the water inlet pipe 111, and then the heated water flows out from the water outlet pipe 112.
  • the water pump and the can body 2 may be disposed downstream of the water outlet pipe 112.
  • the pressurized water it supplies can be supplied directly to the can body 2 without passing through the inner casing 11.
  • the pressure water supplied from the water pump does not pass through the inner tank 11, it can precisely control the pressure of the water flowing into the tank body 2, so as to prevent the water from being disturbed by the fluctuation of the pressure inside the bladder 11 when flowing through the inner tank 11.
  • the gas-liquid mixture flowing out of the can body 2 can be released through the pressure regulating device 4, and the microbubble water is directly supplied to the user. terminal.
  • the tank body 2 is disposed downstream of the water outlet pipe 112
  • the gas-liquid mixture flowing out therefrom does not flow through the inner tank 11, and on the one hand, the user can obtain microbubble water in a short time;
  • the inner tank 11 is provided with an inlet pipe 111 for water inlet and an outlet pipe 112 for discharging water, and the water pump is disposed in the inner tank 11 . 2 disposed on the water outlet pipe 112 Downstream.
  • the inner tank 11 is provided with an inlet pipe 111 for water intake, and an outlet pipe 112 for discharging water.
  • the room temperature water supplied from the water supply line can be heated into the inner tank 11 through the water inlet pipe 111, and then the heated water flows out from the water outlet pipe 112.
  • the water pump may be disposed in the inner tank 11, and the tank body 2 may be disposed downstream of the water outlet pipe 112.
  • the water pump When the water pump is disposed in the inner tank 11, the volume of the water heater system can be reduced, the space required for the water heater system can be reduced, and the structure can be miniaturized.
  • the water pump may be disposed on the water outlet pipe of the inner tank 11. When the water pump is located on the water outlet pipe 112, it can pump the hot water heated in the inner tank 11 into the water outlet pipe 112, and accelerate the rate of the hot water in the inner tank 11 flowing into the water outlet pipe 112.
  • the gas-liquid mixture flowing out of the can body 2 can be released through the pressure regulating device 4, and the microbubble water is directly supplied to the user. terminal.
  • the tank body 2 is disposed downstream of the water outlet pipe 112
  • the gas-liquid mixture flowing out therefrom does not flow through the inner tank 11, and on the one hand, the user can obtain microbubble water in a short time;
  • the inner tank 11 is provided with an inlet pipe 111 for water inlet and an outlet pipe 112 for discharging water, and the water pump and the can body 2 are both disposed in the inner tank.
  • the water pump is disposed upstream of the tank body 2, and the gas-liquid mixed water in the tank body 2 can flow out of the inner tank 11 from the water outlet pipe 112.
  • the inner tank 11 is provided with an inlet pipe 111 for water intake, and an outlet pipe 112 for discharging water.
  • the room temperature water supplied from the water supply line can be heated into the inner tank 11 through the water inlet pipe 111, and then the heated water flows out from the water outlet pipe 112.
  • both the water pump and the can body 2 may be disposed in the inner tank 11.
  • the water pump When the water pump is disposed in the inner tank 11, the volume of the water heater system can be reduced, the space required for the water heater system can be reduced, and the structure can be miniaturized.
  • the water pump may be disposed on the water outlet pipe of the inner tank 11. When the water pump is located on the water outlet pipe, it can pump the hot water heated in the inner tank 11 into the water outlet pipe, and accelerate the rate of the hot water in the inner tank 11 flowing into the water outlet pipe.
  • the tank body 2 may be disposed on the water outlet pipe and located downstream of the water pump.
  • the inlet 2 of the can body 2 may be two. One of the inlets can be used for water ingress and the other can be used for intake.
  • the inlet for the intake air may be provided with a conduit 24 that extends into the interior of the can body 2 to facilitate supply of gas required for the preparation of microbubble water into the can body 2.
  • the inner tank 11 is provided with an inlet pipe 111 for water inlet and an outlet pipe 112 for discharging water, and the can body 2 is disposed inside the inner casing 11 .
  • the water pump is disposed upstream of the water inlet pipe 111.
  • the inner tank 11 is provided with an inlet pipe 111 for water intake, and an outlet pipe 112 for discharging water.
  • the room temperature water supplied from the water supply line can be heated into the inner tank 11 through the water inlet pipe 111, and then the heated water flows out from the water outlet pipe 112.
  • the can body 2 is disposed inside the inner casing 11, and the water pump is disposed upstream of the water inlet pipe 111.
  • the inlet of the can body 2 is connected to the outlet pipe and is located downstream of the water pump.
  • the inlet 2 of the can body 2 may be two.
  • One of the inlets is connected to the outlet pipe for water intake and the other is for intake.
  • the inlet for the intake air may be provided with a conduit 24 that extends into the interior of the can body 2 to facilitate supply of gas required to generate microbubble water into the can body 2.
  • the water pump 2 may be disposed upstream of the inlet pipe 111 of the inner casing 11.
  • the heated water in the inner casing 11 does not flow through the water pump 2.
  • the water flowing through the water pump 2 is the normal temperature water supplied from the water supply line, and therefore, there is no requirement for the water pump 2 to withstand high temperatures.
  • the water flowing through the water pump 2 is normal temperature water, calcium and magnesium ions in the water are not easily precipitated, so that the inside thereof is less likely to be fouled.
  • the inner tank 11 includes opposite first ends and second ends, and an end cap is disposed adjacent to the first end or the second end, the end cap and the end cap The first end or the second end of the inner liner 11 cooperates to form the can body 2.
  • the inner liner 11 may have a hollow cylindrical shape as a whole, and of course, it may have other shapes, which is not specifically limited herein.
  • the inner tank 11 has opposite ends, which are a first end and a second end, respectively. Generally, at least one of the first end and the second end of the inner tank 11 has a certain curvature instead of a flat plate structure.
  • an end cap may be disposed adjacent to the first end or the second end having the curvature.
  • the end cap cooperates with the first end or the second end of the inner liner 11 to form a can body 2 structure. Due to the formation of the can body 2 a part of the side wall utilizes the end surface of the inner casing 11 having a curvature, and the space outside the end surface having the curvature is effectively utilized, that is, the scattered space which can not be utilized is used for setting the tank body 2, which is advantageous for the volume of the water heater system. The size is reduced and the structure is compact and miniaturized.
  • the inner tank 11 includes opposite first ends and second ends, the first end or the second end being an inner concave surface, and an end cover is disposed facing the inner concave surface, The end cap cooperates with the concave surface to form the can body 2.
  • the inner liner 11 may have a hollow cylindrical shape as a whole, and of course, it may have other shapes, which is not specifically limited herein.
  • the inner tank 11 has opposite ends, which are a first end and a second end, respectively. Wherein at least one of the first end and the second end of the inner tank 11 is a concave surface instead of a planar structure.
  • the inner concave surface can be utilized to provide an end cap at a position facing the inner concave surface.
  • the end cap cooperates with the concave surface to form the can body 2. Since the formed side wall portion of the can body 2 utilizes the end surface of the inner casing 11 having an inner concave surface, that is, the can body 2 is provided by a small space outside the concave surface which cannot be utilized, which is advantageous for the volume reduction of the water heater system.
  • the structure is compact and compact.
  • the inner casing 11 includes opposite first and second ends, the first end or the second end being an inner concave surface, and at least a portion of the outer wall surface of the can body 2. It is adapted to the concave surface and is disposed at the concave surface.
  • the inner liner 11 may have a hollow cylindrical shape as a whole, and of course, it may have other shapes, which is not specifically limited herein.
  • the inner tank 11 has opposite ends, which are a first end and a second end, respectively. Wherein at least one of the first end and the second end of the inner tank 11 is a concave surface instead of a planar structure.
  • the can body 2 may be provided at the inner concave surface position. At least a portion of the outer wall surface of the can body 2 is adapted to the inner concave surface and is disposed at the inner concave surface. Wherein, the arc of at least part of the outer wall surface of the can body 2 may be the same as or close to the curvature of the inner concave surface. When the can body 2 is fixed to the end having the concave surface, the two can be matched.
  • a corresponding end cap shape may be provided based on the inner concave shape of the end portion of the inner liner 11 such that a part of the outer wall surface of the end cap cooperates with the inner concave surface. Since the formed side wall of the can body 2 is disposed on the end surface of the inner casing 11 having the concave surface, that is, the can body 2 is provided by the scattered space outside the concave surface which cannot be utilized, which is advantageous for the volume reduction of the water heater system. The structure is compact and miniaturized.
  • the water heater system may further include a control device, and the number of the can bodies 2 is at least one.
  • the tank body 2 is provided with an inlet and an outlet;
  • the water heater system has at least a first working state for enabling the tank body 2 to supply microbubble water to the water terminal, and can empty the tank body 2 a second working state of the gas;
  • the control device in the first working state, can control the inlet of the can body 2 to communicate with the water pump, and control the outlet of the can body 2 to communicate with the water terminal;
  • the control device In the second operating state, the control device can control the inlet of the can body 2 to communicate with the gas path, and control the outlet of the can body 2 to communicate with the drain pipe.
  • the water heater system may be provided with control means that can be used to control the connection state of the inlet and outlet of the can body 2 to change the operating state of the water heater system.
  • the number of the can bodies 2 may be one.
  • the can body 2 may be provided with an inlet and an outlet.
  • a control valve may be provided at the inlet and outlet positions of the can body 2.
  • the control valve can be electrically connected to the control device.
  • the control device can control the operating state of the can body 2 by controlling the communication state of the control valve.
  • the water heater system may have a second working state in which the can body 2 is in a first working state in which microbubble water is provided and the can body 2 is in an emptying air supply state.
  • the control device may control the inlet of the can body 2 to communicate with the water pump, and control the outlet thereof to communicate with the water terminal.
  • the user can perform water, and the water pump provides power to the microbubble water flow to flow to the user water terminal for use by the user.
  • the microbubble water in the can body 2 When the microbubble water in the can body 2 is used up or nearly used up, the microbubble water can be re-prepared in the can body 2 by the user's non-water time period.
  • the control device controls the can body 2 to be in an empty state. Specifically, the inlet of the can body 2 is controlled to communicate with the gas path, and the outlet thereof is controlled to communicate with the drainage pipe to fill the can body 2 with gas. When pressurized water enters the can body 2, it can be mixed with the gas in the can body 2 to regenerate microbubble water.
  • the can body 2 further includes a first can body 2a and a second can body 2b connected by a parallel connection.
  • the second tank 2a is provided with an inlet and an outlet.
  • the water heater system has a first working state capable of providing the first tank body 2a with microbubble water to the water terminal and a second working state capable of emptying the first tank body 2a;
  • the second tank 2b provides a third operational state of microbubble water to the water terminal and a fourth operational state in which the second tank 2b is evacuated.
  • control device In the first working state, the control device can control the inlet of the first tank 2a to communicate with the water pump, and control the outlet of the first tank 2a to communicate with the water terminal; In the second working state, the control device can control the inlet of the first tank 2a to communicate with the gas path, and control the outlet of the first tank 2a to communicate with the drain line.
  • control device can control the inlet of the second tank 2b to communicate with the water pump, and control the outlet of the second tank 2b to communicate with the water terminal;
  • control The device can control the inlet of the second tank 2b to communicate with the gas path, and control the outlet of the second tank 2b to communicate with the drain line.
  • the number of the can bodies 2 may be two or more, and the present application is not specifically limited herein.
  • the number of the can bodies 2 may be two, including the first can body 2a and the second can body 2b.
  • the specific setting and control principle of the first can body 2a reference may be made to the description in the foregoing embodiments, and the details are not described herein again.
  • the specific arrangement and control principle of a single said second can body 2b is similar to that of the first can body 2a, and can also be referred to the description in the above embodiment.
  • the water heater system may further include a control valve 6 electrically connected to the control device, and the control device controls the control valve 6 to switch the water heater system according to a first predetermined signal. Up to the first working state and the fourth working state, or controlling the water heater system to switch to the second working state and the third working state.
  • the water heater system may include a control valve 6 that is electrically coupled to the control device.
  • the control valve 6 may be disposed at an inlet and an outlet of the can body 2.
  • the control device may control the communication state of the control valve 6 according to the first predetermined signal to switch the working state of the water heater system.
  • the first predetermined signal may be at least one of a time signal, a flow rate signal obtained by the detecting unit, a liquid level signal in the tank 2, and a concentration signal of the gas in the gas-liquid mixture.
  • the first predetermined signal may also be in other forms, which is not specifically limited herein.
  • the volume of remaining microbubble water in the can body can be estimated by counting from when the user starts using water.
  • the microbubble water in one tank is nearly used up, it is switched by the control valve 6 to use another tank.
  • the other can body in which one can body is in use, the other can body can be in an emptying state, so that the microbubble water can be continuously supplied to the user by switching between the two can bodies.
  • the principle of its control is similar to that of timing.
  • a flow detection unit can be provided on the main road through which the water flows, for detecting the flow signal. The time is counted from when the user starts using water, and the liquid level in the tank is determined according to the relationship between time and flow.
  • the control valve 6 When the water level in a tank reaches a predetermined water level, for example, when it is nearly used up, it is switched by the control valve 6 to use another tank.
  • the other tank may be in an emptying state, so that the microbubble water can be continuously supplied to the user by switching between the two tanks.
  • the control valve 6 includes a first four-way valve and a second four-way valve, and an inlet and an inlet are disposed on the first can body 2a and the second can body 2b.
  • An outlet; the first port of the first four-way valve is in communication with the outlet pipe of the inner tank 11, the second port is in communication with the inlet of the first can body 2a, and the third port and the gas path Connected, the fourth port is in communication with the inlet of the second tank 2b;
  • the first port of the second four-way valve is in communication with the water terminal, the second port is in communication with the outlet of the first tank 2a, and the third port is connected to the drain
  • the fourth port is connected to the outlet of the second tank 2b;
  • the control device controls the first port of the first four-way valve to communicate with the second port according to the first predetermined signal, and controls the second four
  • the first port of the valve is in communication with the second port, and the control device controls the third port of the first four-way valve to communicate with the
  • control valve 6 may include a first four-way valve and a second four-way valve, and the first tank body 2a and the second body are realized by switching of the first four-way valve and the second four-way valve.
  • the can body 2b continuously supplies microbubble water to the user.
  • the first tank body 2a may be in a state of over-water, the inlet of which is connected to the outlet pipe of the inner tank 11 through the first four-way valve, and the outlet thereof is connected to the pressure through the second four-way valve.
  • the adjusting device 4 supplies the user with microbubble water through the first can body 2a when the user opens the water terminal.
  • the inlet of the second tank body 2b communicates with the air inlet, and the outlet thereof communicates with the water outlet port, and is in a state of air supply and drainage.
  • the inlet of the second tank 2b may be connected to the outlet pipe of the inner tank 11 such that pressurized water enters the second tank 2b through the inlet, and the second tank
  • the gas mixture in 2b forms a gas-liquid mixture.
  • the outlet of the second tank body 2b may be communicated with the pressure regulating device 4 through the second four-way valve, at which time the first tank The body 2a and the second can body 2b are in a state of simultaneously passing water, that is, both can supply water to the user terminal at the same time.
  • the first can body 2a When the volume of the microbubble water in the first can body 2 is zero or close to zero, the first can body 2a can be closed, and at this time, the second can body 2b is separately supplied with water to the user terminal.
  • the outlet of the first can body 2a can be communicated with the drain pipe to release the pressure in the first can body 2a while discharging the accumulated water in the can body.
  • the inlet of the first tank 2a may be in communication with the intake port to supplement the gas required for gas-liquid mixing.
  • the second tank body 2b repeats the change process of the first tank body 2a, including: when the gas in the tank body is full, first sealing for a period of time; then, the inlet thereof passes through the first four-way valve and the inner tank 11
  • the outlet pipes are connected, Performing gas-liquid mixing to prepare microbubble water; and then, when the volume of microbubble water in the second tank 2b is less than a predetermined volume, the outlet of the first tank 2a passes through the second four-way valve and pressure regulation
  • the device 4 is in communication to provide microbubble water to the user terminal; when the microbubble water in the second can 2b has been used up or nearly used up, the first can 2a can be separately supplied with water.
  • the outlet of the second tank body 2b may communicate with the drain pipe through the second four-way valve to discharge the accumulated water and pressure in the second tank body 2b,
  • the reciprocating cycle realizes that the first tank body 2a and the second tank body 2b continuously supply water to the user terminal.
  • the function of continuously supplying water to the user terminal by two parallel tanks is realized by two four-way valves, which is not only compact in structure, low in cost, and simple and reliable in control.
  • a state in which the first tank body 2a and the second tank body 2b pass water at the same time is provided, and the water is directly switched from being compared with one tank.
  • the switching between the two tanks can smoothly transition, which is beneficial to the user to obtain a stable and comfortable water experience.
  • the water heater system may further include a bypass line 7 in parallel with the can body 2, the bypass line 7 having opposite inlet and outlet ends
  • the water heater system has a fifth working state; in the fifth working state, the control device can control the inlet end of the bypass line 7 to communicate with the water pump according to a second predetermined signal to make water
  • the bypass line 7 flows to the water terminal.
  • the water heater system may further be provided with a bypass line 7 connected in parallel with the can body 2, the bypass line 7 for supplying water heated by the inner tank 11 to the water terminal.
  • the bypass line 7 has opposite inlet ends and outlet ends, and the inlet end thereof can communicate with the outlet pipe of the liner 11, and the outlet end thereof can communicate with the outlet terminal.
  • the water heater system may further include a fifth working state, which may be a state in which water in the inner tank 11 is provided to the user through the bypass line 7.
  • a fifth working state which may be a state in which water in the inner tank 11 is provided to the user through the bypass line 7.
  • the control device receives the second predetermined signal
  • the inlet end of the bypass line 7 may be controlled to communicate with the water pump to cause water to flow from the bypass line 7 to the water terminal.
  • the second predetermined signal may be at least one of a time signal, a flow rate signal obtained by the detecting unit, a liquid level signal of the can body 2, and a concentration signal of the gas in the gas-liquid mixture.
  • the second predetermined signal may also be a signal generated when the corresponding water terminal is turned on, or a signal generated according to a temporary setting of the user.
  • the second predetermined signal may also be in other forms, which is not specifically limited herein.
  • control device in the fifth operating state, can control the inlet end of the bypass line 7 to communicate with the water pump, and control the outlet of the bypass line 7 The end is connected to the outlet pipe.
  • the water heater system may further include a fifth working state, which may be a state in which water in the inner tank 11 is provided to the user through the bypass line 7.
  • a fifth working state which may be a state in which water in the inner tank 11 is provided to the user through the bypass line 7.
  • the control device may control the inlet end of the bypass line 7 to communicate with the water pump, and control the outlet end of the bypass line 7 to communicate with the outlet pipe. The water flows from the bypass line 7 to the water terminal.
  • the water heater system may further include a control valve 6 electrically connected to the control device, and the control device controls the control according to the detected second predetermined signal.
  • the valve 6 switches the water heater system to a first operational state or controls the water heater system to switch to a fifth operational state and a second operational state.
  • the water heater system may further include a control valve 6 electrically connected to the control device, and the can body 2 and the bypass line 7 are realized by controlling the on-off state of the control valve 6. Switching of water supply.
  • the control device When the control device receives the second predetermined signal, it is possible to control the bypass line 7 to pass water or the tank 2 to pass water by controlling the control valve 6.
  • the second predetermined signal may be at least one of a time signal, a flow rate signal obtained by the detecting unit, a liquid level signal of the can body 2, and a concentration signal of the gas in the gas-liquid mixture.
  • the second predetermined signal may also be a signal generated when the corresponding water terminal is turned on, or a signal generated according to a temporary setting of the user.
  • the second predetermined signal may also be in other forms, which is not specifically limited herein.
  • the bypass line 7 may be in a water-passing state, and water in the water heater system flows through the bypass line 7 to the user terminal; at this time, the inlet of the can body 2 may It is in communication with the intake port, and its outlet can be in communication with the drain pipe, at which time the can body 2 is in an intake and drain state. After the tank 2 has been purged, its inlet and outlet can be closed by the control valve 6. Further, the inlet of the can body 2 can communicate with the pressurized water to enter the can body 2 and mix with the gas in the can body 2 to form a gas-liquid mixture.
  • the outlet of the can body 2 can be communicated with the outlet pipe through the control valve 6, which in turn causes the can body 2 to be in a water-over state.
  • bypass line 7 can be closed by a control valve 6.
  • bypass line 7 can be re-applied through the control valve 6 to be in a water-over state.
  • the can body 2 can then be sealed by the control valve 6. Then, the outlet of the can body 2 is communicated with the drain pipe through the control valve 6, thereby draining the drain of the can body 2, and thus reciprocating, and switching between the can body 2 and the bypass line 7 is achieved.
  • the switching of the can body 2 and the bypass line 7 can be achieved by the control valve 6, when the can body 2 passes When water is used, the user can obtain micro-bubble water. When the bypass line 7 is over water, the user can obtain ordinary hot water, and the user can select according to needs, for example, when bathing or washing vegetables and fruits, the tank can be controlled. 2 Water can be used to wash with micro-bubble water to achieve the desired cleaning function; when the water cleaning function is not high, ordinary water can be used.
  • the heating unit 1 is provided with a water inlet for water inlet and a water outlet for water outlet;
  • the pressure device 3 is a water pump; the water pump is disposed upstream of the water inlet,
  • the can body 2 is disposed downstream of the water outlet.
  • the heating unit 1 can be used to heat water.
  • the form of the heating unit 1 may be different depending on the type of the specific water heater, and is not specifically limited herein.
  • the heating unit 1 may include an electric heating rod in the inner tank and the inner tank;
  • the heating unit 1 may include a burner and heat exchange Device.
  • the heating unit 1 is provided with a water inlet for water inlet and a water outlet for water outlet.
  • the room temperature water supplied from the water supply line can be heated into the heating unit 1 through the water inlet, and then the heated water flows out from the water outlet.
  • the water pump may be disposed upstream of the heating unit 1.
  • the water pump When the water pump is disposed upstream of the heating unit 1, water heated by the heating unit 1 does not flow through the water pump.
  • the water flowing through the water pump is the normal temperature water supplied to the water supply line, and therefore, there is no high temperature resistance requirement for the water pump.
  • the water flowing through the water pump is normal temperature water, calcium and magnesium ions in the water are not easily precipitated, so that the inside thereof is not easily scaled.
  • the can body 2 may be disposed downstream of the heating unit 1.
  • the microbubble water flowing out therefrom does not flow through the heating unit 1, thereby shortening the flow path of the microbubble water, which allows the user to obtain in a short time.
  • Microbubble water on the other hand, it is also possible to prevent the microbubble water from entering the water stored in the heating unit 1 from being diluted or heated by the heating unit 1, causing temperature fluctuations of temperature rise.
  • the heating unit 1 is provided with a water inlet for water inlet and a water outlet for water outlet;
  • the pressure device 3 is a water pump; the water pump, the tank 2 is disposed at the outlet Downstream of the nozzle.
  • the heating unit 1 can be used to heat water.
  • the form of the heating unit 1 may be different depending on the type of the specific water heater, and is not specifically limited herein.
  • the heating unit 1 may include an electric heating rod in the inner tank and the inner tank;
  • the heating unit 1 may include a burner and heat exchange Device.
  • the heating unit 1 is provided with a water inlet for water inlet and a water outlet for water outlet.
  • the room temperature water supplied from the water supply line can be heated into the heating unit 1 through the water inlet, and then the heated water flows out from the water outlet.
  • the water pump may be disposed downstream of the water outlet of the heating unit 1.
  • the pressurized water supplied thereto can be directly supplied to the tank body 2 without passing through the heating unit 1, thereby facilitating precise control of the water flowing into the tank body 2.
  • the pressure is prevented from being disturbed by fluctuations in the internal pressure of the water as it flows through the heating unit 1.
  • the can body 2 may be disposed downstream of the heating unit 1.
  • the microbubble water flowing out therefrom does not flow through the heating unit 1, thereby shortening the flow path of the microbubble water, which allows the user to obtain in a short time.
  • Microbubble water on the other hand, it is also possible to prevent the microbubble water from entering the water stored in the heating unit 1 from being diluted or heated by the heating unit 1, causing temperature fluctuations of temperature rise.
  • the heating unit 1 is provided with a water inlet for water inlet and a water outlet for water outlet;
  • the pressure device 3 is a water pump; the water pump, the tank 2 is disposed at the inlet The upstream of the nozzle.
  • the heating unit 1 can be used to heat water.
  • the form of the heating unit 1 may be different depending on the type of the specific water heater, and is not specifically limited herein.
  • the heating unit 1 may include an electric heating rod in the inner tank and the inner tank;
  • the heating unit 1 may include a burner and heat exchange Device.
  • the heating unit 1 is provided with a water inlet for water inlet and a water outlet for water outlet.
  • the room temperature water supplied from the water supply line can be heated into the heating unit 1 through the water inlet, and then the heated water flows out from the water outlet.
  • the water pump may be disposed upstream of the heating unit 1.
  • the water pump When the water pump is disposed upstream of the heating unit 1, water heated by the heating unit 1 does not flow through the water pump.
  • the water flowing through the water pump is the normal temperature water supplied to the water supply line, and therefore, there is no high temperature resistance requirement for the water pump.
  • the water flowing through the water pump is normal temperature water, calcium and magnesium ions in the water are not easily precipitated, so that the inside thereof is not easily scaled.
  • the can body 2 may be disposed upstream of the heating unit 1.
  • water heated by the heating unit 1 does not flow through the can body 2.
  • the water flowing through the can body 2 is the normal temperature water supplied to the water supply pipe, and therefore, the can body 2 does not have a high temperature resistance requirement.
  • the water flowing through the can body 2 is normal temperature water, calcium and magnesium ions in the water are not easily precipitated. Therefore, the inside is not easy to scale.
  • the heating unit 1 includes a heat exchanger 12 capable of circulating a flow of water, and a burner 14 for heating the flow of water in the heat exchanger 12.
  • the water heater system may be a gas water heater system.
  • the heating unit 1 may include a heat exchanger 12 and a burner 14. Wherein, the water to be heated flows through the heat exchanger 12, one end of which is in communication with the water inlet end, and the other end is in communication with the water outlet end.
  • the combustor 14 can be used to heat the flow of water in the heat exchanger 12.
  • the water heater system may further comprise a pressure regulating device 4 disposed downstream of the can body 2.
  • the pressure adjusting device 4 serves to maintain the pressure between the can body 2 and the pressure regulating device 4 within a predetermined range.
  • the pressure regulating device 4 may be in the form of one of pressure regulating valves, such as a self-operating pressure regulating valve; or a hydraulic pressure control valve 6, such as an overflow valve; or a pressure controllable electronic
  • the expansion valve, the thermal expansion valve, and the like, or other forms, are not specifically limited herein.
  • the pressure adjusting device 4 disposed downstream of the can body 2 can control the water pressure between the can body 2 and the pressure regulating device 4 within a predetermined pressure range.
  • the control principle of the pressure regulating device 4 may be different according to the specific structure of the pressure adjusting device 4, and the present application is not specifically limited herein.
  • the heat exchanger 12 is provided with a water inlet 121 for water inlet and a water outlet 122 for water outlet;
  • the pressure device 3 is a water pump;
  • the can body 2 is disposed downstream of the water outlet 122 upstream of the water inlet 121.
  • the water pump is disposed upstream of the water inlet 121, and the technical effect corresponding to the tank body 2 disposed downstream of the water outlet 122 can be referred to as a water pump disposed upstream of the heating unit 1, and the tank body 2
  • the embodiment disposed downstream of the heating unit 1 is not described herein again.
  • the heat exchanger 12 is provided with a water inlet 121 for water inlet and a water outlet 122 for water discharge, the pressure device 3 is a water pump;
  • the can body 2 is disposed upstream of the water inlet 121.
  • the technical effect corresponding to the water pump and the tank body 2 disposed upstream of the water inlet 121 can be referred to the embodiment in which the water pump and the tank body 2 are disposed upstream of the heating unit 1, and the present application does not Let me repeat.
  • the heat exchanger 12 is provided with a water inlet for water inlet. 121 and a water outlet 122 for discharging water
  • the pressure increasing device 3 is a water pump; the water pump and the tank body 2 are disposed downstream of the water outlet 121.
  • the technical effect corresponding to the water pump and the tank body 2 disposed downstream of the water outlet 121 can be referred to the embodiment in which the water pump and the tank body 2 are disposed downstream of the heating unit 1, and the present application does not Let me repeat.
  • the manner in which the temperature adjusting device 5 is disposed in the heating unit 1 or between the heating unit 1 and the pressure adjusting device 4 and the technical effect achieved can be referred to the outlet pipe 112 and the pressure.
  • the embodiments of the temperature adjusting device 5 between the adjusting devices 4 or the water outlet pipe 112 are not described herein again.
  • the number of the can bodies 2 is one
  • the supercharging device is a water pump
  • the water heater system further includes a control device
  • the water heater system has at least a first state in which the can body 2 supplies microbubble water to the water terminal and a second state in which the can body 2 can be emptied
  • the control device can control the can body 2 according to a third predetermined signal
  • the inlet is in communication with the water pump, and the outlet thereof is controlled to communicate with the water terminal, so that the water heater system has a first state of providing microbubble water to the outlet pipe through the tank body 2; or the tank body 2 can be controlled
  • the inlet is in communication with the gas path, and the outlet is controlled to communicate with the drain line such that the water heater system has a second state in which the tank 2 can be vented and vented.
  • the water heater system may be provided with control means that can be used to control the connection state of the inlet and outlet of the can body 2 to change the operating state of the water heater system.
  • the number of the can bodies 2 may be one.
  • the control valve may be disposed at an inlet and an outlet of the can body 2.
  • the control valve can be electrically connected to the control device.
  • the control device can control the operating state of the can body 2 by controlling the communication state of the control valve.
  • the water heater system may have a second state in which the can body 2 is in a first state in which microbubble water is supplied and the can body 2 is in an emptying air supply state.
  • the specific control method of the state of the can body 2 and the effect achieved by the control device can be referred to the embodiment of the above-mentioned liner, and the details are not described herein again.
  • the can body includes a first can body 2a and a second can body 2b connected by a parallel connection
  • the water heater system further includes an electrical connection with the control device.
  • Control valve 6, the control valve 6 is disposed between the first tank body 2a, the inlet and the outlet of the second tank body 2b, and the control device can control the control valve according to the third predetermined signal
  • the communication state of 6 is such that at least one of the first tank body 2a and the second tank body 2b can supply microbubble water to the water terminal.
  • the third predetermined signal includes at least one of the following: a time signal, a flow rate signal obtained by the detecting unit, a liquid level signal of the can body 2, and a concentration signal of the gas in the gas-liquid mixture.
  • the specific meaning and the manner of obtaining the third predetermined signal may refer to the first predetermined signal, which is not described herein again.
  • the water heater system further includes a bypass line 7 in parallel with the can body 2, the bypass line 7 having opposite inlet and outlet ends,
  • the control device controls the inlet end of the bypass line 7 to communicate with the water pump, and controls the outlet end of the bypass line 7 to communicate with the outlet pipe.
  • the water heater system further includes a control valve 6 electrically connected to the control device, and the control device controls a communication state of the control valve 6 according to a fourth predetermined signal.
  • the water heater system is switched between the first state or the second state.
  • control device controls the communication state of the control valve 6 according to the reception of the fourth predetermined signal, and the specific implementation manner of switching the water heater system between the first state or the second state
  • fourth predetermined signal may refer to the second predetermined signal, and the present application does not further describe herein.
  • the embodiment of the present application further provides a water heater system, which may include: a heating unit 1 capable of heating water; a tank 2 capable of communicating with the heating unit 1; and an introduction mechanism 8, capable of communicating with the can body 2, and for introducing a fluid flowing therein into a region where the can body 2 stores a gas, and gas-mixing the introduced fluid with the gas in the can body 2; A pressurized source capable of pressurizing the can body 2, the pressurized source capable of providing a pressure at which the gas and water in the can body 2 are mixed.
  • the pressurized source may provide a desired pressure for mixing the gas and water in the can body 2.
  • the pressurized source may include at least one of: a supercharging device 3 capable of communicating with the can body 2 and capable of supplying a predetermined pressure to water flowing into the can body 2, water having a predetermined pressure, or the like .
  • the heating unit 1 and the can body 2 are the same as those in the above embodiment, and the details are not described herein again.
  • the tank body 2 is provided with at least one inlet 21 and an outlet, and the inlet 21 can be provided with the introduction mechanism 8, and the introduction mechanism 8 can supply at least one of gas and water into the tank.
  • a body 2; a water supply line and an air supply line are disposed upstream of the introduction mechanism 8 of the can body 2, and the introduction mechanism 8 can be connected to the water supply line and the The supply air line is in communication, and the supercharging source is a supercharging device 3, and the supercharging device 3 is in communication with the water supply line and the air supply line.
  • the water heater system may further include a control device having at least a first working state enabling the can body 2 to supply microbubble water to the water terminal and capable of arranging the can body 2 a second working state of air supply; in the second working state, the control device can control the introduction mechanism 8 of the can body 2 to communicate with the air path, and control the outlet and the drain pipe of the can body 2
  • the roads are in communication to discharge water in the tank 2 and simultaneously enrich the air; in the first operating state, the control device can control the introduction mechanism 8 of the tank 2 and the water supply pipe
  • the road is in communication, and the outlet of the can body 2 is controlled to communicate with the water terminal. Under the action of the pressurized source, the gas and water in the can body 2 are gas-liquid mixed.
  • the introduction mechanism 8 is provided with a jet structure.
  • the fluidic structure can pressurize the fluid introduced into the introduction mechanism 8 to achieve a better aeration effect when the gas in the can body 2 is gas-liquid mixed with the fluid.
  • the jet structure may be a variable-sectional area portion 211 formed at an exit of the introduction mechanism 8. The cross-sectional area of the variable-sectional area portion 211 is entirely smaller than the cross-sectional area of the entire tubular body of the introduction mechanism 8.
  • variable-sectional area portion 211 may be an elliptical opening formed at the exit of the introduction mechanism 8.
  • variable-sectional area portion 211 may be a circular opening formed at the outlet 210 of the introduction mechanism 8 having a smaller aperture than the diameter of the tubular body of the introduction mechanism.
  • variable-sectional area portion 211 may be a cross-shaped opening formed at the exit of the introduction mechanism 8.
  • the outlet end of the introduction mechanism 8 is a closed end, and the variable-sectional area portion 211 may be a plurality of openings formed in the wall of the tube near the outlet 210 of the introduction mechanism 8.
  • variable-sectional area portion 211 may be in other forms, and the present application is not specifically limited herein. Other modifications may be made by those skilled in the art in light of the technical essence of the present application, but as long as they are implemented. The functions and effects are the same as or similar to the present application and are intended to be included within the scope of the present application.
  • a water heater system control method is further provided based on the water heater system, and the method may include the following steps:
  • Step S10 controlling the air supply unit to communicate with the tank body, and inputting gas from the gas supply unit into the tank body while discharging water in the tank body;
  • Step S12 when the discharged water or the supplied gas reaches a predetermined amount, the control introduction mechanism communicates with the water supply line, and the introduction mechanism introduces the fluid flowing therein into the area where the tank stores the gas and the same The gas in the tank is subjected to gas-liquid mixing, and the pressurized source applies a predetermined pressure to gas-liquid mixing of the gas and water in the tank.
  • the pressurized source applies a predetermined pressure to gas and liquid mixing of the gas and the water in the tank body: applying a predetermined pressure to the gas and water in the tank body by gas-liquid mixing using a pressure of water of a predetermined pressure ;or,
  • control method of the water heater system can be referred to the specific description of the water heater system embodiment, and the details are not described herein again.
  • control method of the water heater system can achieve the same technical effect as the water heater system.
  • the inner tube 2 may be provided with a first tube 21 and a second tube 22.
  • the first tube 21 has a first port 210 that extends into the bladder 2
  • the second tube 22 has a second port 220 that extends into the bladder 2.
  • the first tube 21 and the second tube 22 are respectively connected to the inner tank 2, one of which can be used for water inlet and the other can be used for water discharge.
  • the height of the first port 210 and the second port 220 may be different. For example, the height of the first port 210 corresponding to the first tube 21 may be higher than the height of the second port 220.
  • the can body 1 is provided with an input pipe 31 capable of communicating with a storage gas region of the inner tank 2 and an output pipe 31 connectable to a user terminal, the input pipe 31 having an inlet communicating with the inside of the can body 1,
  • the output pipe 31 has an outlet that communicates with the can body 1.
  • the can body 1 may be provided with an input pipe 31, that is, at least one inlet is provided.
  • One of the inlets may be in communication with the liner 2 through a conduit so that at least one of the gas or water in the liner 2 can enter the can body 1.
  • the inlet can be used for both a gas flow and a liquid flow.
  • each inlet can perform different functions, such as one for intake air and one for water intake.
  • the number of the output tubes on the can body 1 may be at least one, and the number of the outlets may be one or more, which is not specifically limited herein. When the number of the outlets is one, it can communicate with the liquid discharge port 12 or the water terminal.
  • the inlet and the outlet have a position difference, and the position of the inlet is higher than the position of the outlet, so that the inlet extends into the can body 1 and is higher than the liquid in the can body 1. In the position, the outlet is lower than the liquid level in the can body 1.
  • a jet structure may be provided at the inlet near the inner wall surface of the can body 1 and/or the inlet, and the jet structure may increase the fluid introduced into the input pipe 31. Pressure A better aeration effect is achieved when the gas in the tank 1 is gas-liquid mixed with the liquid.
  • the fluidic structure may be a variable-sectional area portion 311 formed at the inlet pipe 31 near the inlet 310.
  • variable-sectional area portion 311 may be an elliptical opening formed at the inlet 310 of the input tube 31.
  • variable-sectional area portion 311 may be a circular opening formed at the inlet 310 of the input tube 31 with a smaller aperture than the tube body aperture of the input tube 31.
  • variable-sectional area portion 311 may be a cross-shaped opening formed at the inlet 310 of the input tube 31.
  • the inlet 310 is a closed end, and the variable-sectional area portion 311 may be a plurality of openings formed in the wall of the inlet tube 31 adjacent to the inlet 310.
  • variable-sectional area portion 311 can also be in other forms, which is not specifically limited herein. Those skilled in the art may make other changes under the technical essence of the present application, but as long as it is implemented. The functions and effects are the same as or similar to the present application and are intended to be included within the scope of the present application.
  • the inner tank 2 and the tank body 1 may be connected in series along the fluid flow direction, and a predetermined amount of gas may be stored in the inner tank 2 after draining the gas into the gas storage mechanism.
  • the predetermined amount of gas may be set according to actual use requirements. Generally, when the water consumption demand is large, the predetermined amount of gas stored in the inner tank 2 may be relatively more, or even full. The gas is stored; when the water consumption requirement is small, the predetermined amount of gas stored in the inner tank 2 may be relatively small. Specifically, the present application does not limit the amount herein.
  • the microbubble water prepared by combining the gas stored in the tank 2 with the gas in the tank 1 can satisfy the user's one-time use.
  • the tank 1 When the air supply to the air storage means is performed, after the air supply of the inner tank 2 is completed, the tank 1 may be ventilated. Here, while the tank 1 is being ventilated, the venting of the connecting line between the tank 2 and the tank 1 is completed.
  • the gas in the gas storage mechanism may be compressed by a pressurized source. Specifically, a predetermined amount of gas in the inner liner 2 can be compressed into the can body 1 and pressure is supplied for mixing the gas and the liquid in the gas storage tank 1 to prepare microbubble water.
  • the pressurized source can compress the gas in the gas storage mechanism, and is the gas storage
  • the gas and liquid within the mechanism are mixed to provide pressure.
  • the pressurized source may include at least one of the following or a combination thereof: a pump 3, a liquid having a predetermined pressure.
  • the pump 3 may be a water pump, and when the water pump is turned on, the water pump may pressurize water flowing through the water pump, and may also pressurize the tank body 1 connected thereto, that is, prepare microbubble water.
  • the pump can provide the pressure required to mix the gas and water.
  • the water pump can also be used as a power unit for the water circulation of the water heater system. In general, a water pump can be provided in the water heater system to provide power for water circulation.
  • the pressurized source may also be a liquid having a predetermined pressure, such as water with a certain pressure, which can compress the gas in the gas storage mechanism when the pressurized water flows to the gas storage mechanism, and When the pressurized water collides with the compressed air, the gas-liquid mixing can be better achieved.
  • a predetermined pressure such as water with a certain pressure
  • the water heater system may include: a first state of venting the gas to the gas storage mechanism; and compressing the gas in the gas storage mechanism and mixing the gas and the liquid in the gas storage mechanism; a second state; correspondingly, in the first state, the inner tank 2 and the can body 1 can communicate to form a gas storage mechanism; in the second state, the pressurized source can The gas in the mechanism is compressed and provides pressure for mixing the gas and liquid within the gas storage mechanism.
  • the first state of the water heater system in use is a venting state of the venting water to the gas storage mechanism, and the venting gas is supplied to the gas storage mechanism to supplement the gas required for preparing the micro air bubbles into the water heater.
  • the second body of the water heater system in use is a gas-liquid mixed state in which the gas in the gas storage mechanism is compressed and gas-liquid mixing is performed in the gas storage mechanism.
  • a predetermined amount of gas in the inner tank 2 may be compressed into the can body 1, and then water under the action of the supercharging source can be injected through the inlet.
  • the can body 1 is mixed with the gas in the can body 1, and the can body 1 is subjected to gas-liquid mixing to prepare a microbubble water supply user terminal.
  • the can body 1 has opposite top and bottom ends, and the can body 1 is generally used at the top and the bottom at the bottom.
  • the can body 1 is provided with a pipe body extending from the bottom end to the top end, and the inlet is formed by a port of the pipe body close to the top end.
  • the pressurized water under the pressure of the pressurized source is sprayed upward through the pipe body, and firstly makes initial contact with the gas in the tank body to achieve a certain dissolution.
  • the pressurized water can strike the inner wall of the can body and then re-dissolve the gas with the gas, and the gas-dissolving efficiency is relatively high, thereby shortening the time for preparing the micro-bubbles.
  • the water heater system may also include a pressure regulating device 4 disposed downstream of the gas storage mechanism.
  • the pressure regulating device 4 can be arranged downstream of the entire water heater system for maintaining the pressure between the gas storage mechanism and itself within a predetermined range.
  • the pressure regulating device 4 may be in the form of one of pressure regulating valves, such as a self-operating pressure regulating valve, such as a gas releasing device, or a hydraulic pressure control valve, such as an overflow valve, or The electronic expansion valve, the thermal expansion valve, and the like, which may be controlled by pressure, or other forms may be used.
  • the control principle of the pressure regulating device 4 may be different according to the specific structure of the pressure adjusting device 4, and the present application This is not specifically limited.
  • the pressure regulating device 4 comprising a hollow tubular body having at least one throttling member disposed therein.
  • the throttle member may be a structure having a smaller diameter than the inner diameter of the tubular body.
  • flow holes in the number of openings are sequentially opened on the throttle plate along the fluid flow direction, so that the flow cross-sectional area increases step by step along the fluid flow direction as a whole.
  • the pressure regulating device 4 may further be provided with a back pressure spring with a variable cross-sectional area, or other throttling mechanism, which is not specifically limited herein.
  • a back pressure spring with a variable cross-sectional area or other throttling mechanism, which is not specifically limited herein.
  • Other changes may be made by those skilled in the art in light of the technical spirit of the present application. However, as long as the functions and effects thereof are the same or similar to the present application, they should be covered by the present application.
  • the predetermined pressure is a pressure required for gas-liquid mixing in the gas storage mechanism, which is favorable for the generation and maintenance of microbubbles.
  • the pressurized source is a water pump
  • the water pump is disposed upstream of the inner tank 2, and the pressure regulating device 4 can pump the water to the pressure regulating device 4 when the water pump is turned on. The pressure between them is maintained above 0.2 MPa.
  • the predetermined pressure is the pressure required for gas-liquid mixing in the inner tank 2, which is advantageous for micro Bubble generation and maintenance.
  • the pressure when the pressure is above 0.2 MPa, it is advantageous for more air to be dissolved in the water to form a microbubble water having a larger solubility; on the other hand, the microbubble water is beneficial to the tube.
  • the range of the predetermined pressure is not limited to the above list, and other changes may be made by those skilled in the art in light of the essence of the technical application of the present application, provided that the functions and effects achieved are the same as the present application. Or similar, should be covered by the scope of this application.
  • the water heater system may also include pressure sensing means for detecting the pressure of the water heater system.
  • the pressure detecting means may include: a first pressure detecting means 81 for detecting whether the pressure in the can body 1 reaches a predetermined working pressure, and for detecting the same
  • the second pressure detecting means 82 for determining whether the pressure in the can body 1 is lower than a predetermined holding pressure.
  • the first pressure detecting device 81 and the second pressure detecting device 82 may be disposed on a pipeline in which the tank body 1 communicates, for example, a tube that may be disposed between the tank body 1 and the pressure regulating device 4 On the road.
  • the first pressure detecting device 81 and the second pressure detecting device 82 may be electrically connected to the controller.
  • the controller may control the water heater system to enter the second state of gas-liquid mixing, and perform gas-liquid. mixing.
  • the controller can control the second state in which the water heater system stops gas-liquid mixing, thereby ensuring the water heater system It is possible to stably prepare microbubble water.
  • the microbubbles refer to bubbles having a size of several or several tens of micrometers.
  • the surface of the microbubbles has a weak negative charge in the water, and can adsorb substances such as oils and proteins, thereby bringing them away from the skin and hair.
  • a large number of tiny bubbles per minute can penetrate deep into the hair roots and other places that are difficult to clean, and the dirt accumulated such as sebum and grease can be completely removed.
  • the microbubble water also has a unique bactericidal effect.
  • the sterilization process of the microbubble water includes two processes of attracting and killing, the microbubbles being electrostatically charged, which can adsorb bacteria and viruses in the water body; and then, after the bubbles are broken, the bubbles are excited around the bubbles.
  • a large amount of free radicals and ultra-high temperature and high pressure generated by cracking kill the adsorbed bacterial virus.
  • the above killing process is a complete physical killing process which is essentially different from the conventional disinfecting method, so it is more environmentally friendly than conventional chemical sterilization.
  • the water heater system described in the present application can store a predetermined amount of gas in the inner liner 2, and combine the inner liner 2 and the can body 1.
  • a gas storage mechanism can be formed.
  • the gas for preparing the microbubble water in the gas storage mechanism includes a predetermined amount of gas stored in the tank 2 and a gas in the tank 1 and a gas between the tank 2 and the tank 1 . Since the gas storage mechanism utilizes the inner tank 2 and the pipeline between the inner tank 2 and the tank body 1 for gas storage, the volume of the tank body 1 can be greatly reduced, thereby making the overall structure of the water heater system required. The space is small, the installation position is low, and the need to meet the normal microbubble water needs of the user can be achieved. At the same time, the purpose of the user's indoor space can be better saved.
  • the predetermined amount of gas stored in the inner tank 2 can be adaptively adjusted according to the user's use requirement.
  • the amount of gas stored in the inner tank 2 can be adjusted to be larger.
  • the amount of gas stored in the liner 2 can be adjusted to be smaller, thereby satisfying various needs of different users.
  • the inner tank 2 and the tank body 1 are connected in series along a fluid flow direction, and the pressurized source can compress the gas in the inner tank 2 of the gas storage mechanism to the tank.
  • the pressure is supplied in the body 1 and the pressure is supplied when the gas and the liquid in the tank body 1 are mixed.
  • the inner tank 2 and the can body 1 are connected in series along the fluid flow direction to form the gas storage mechanism, and the fluid includes: water or gas can enter the inner liner 2 and pass through the inner liner 2 and A line between the can bodies 1 enters the can body 1.
  • the pressurized source can compress the gas in the inner tank 2 of the gas storage mechanism into the tank body 1 to provide pressure and Pressure is supplied for mixing the gas and liquid in the gas storage tank body 1.
  • the volume of the can body 1 can be greatly reduced with respect to the method of simply dissolving the gas by the can body 1. For example, when 6 liters of gas is required, 4 liters or more of gas can be stored in the liner 2.
  • gas-liquid mixing is performed, the gas in the inner liner 2 is compressed into the can body 1 to be gas-liquid mixed.
  • the water heater system may further include an air inlet 11 , a water supply port 13 , and a liquid discharge port 12 that can communicate with the gas storage mechanism.
  • the air inlet 11 is for circulating a gas supplied to the gas storage mechanism
  • the water supply port 13 is for circulating water supplied to the gas storage mechanism
  • the liquid discharge port 12 is for discharging the The gas storage mechanism discharges the predetermined water inside it when the gas is supplied.
  • the installation position and the number of the air inlet 11, the water supply port 13, and the liquid discharge port 12 are not specifically limited herein.
  • the number of the air inlets 11 may be one or two or more
  • the number of the liquid discharge ports 12 may be one or two or more.
  • the intake port 11 may be disposed upstream of the inner tank 2, and the liquid discharge port 12 may be disposed downstream of the can body 1.
  • the gas can be sequentially replenished into the inner tank 2 and the tank body through the air inlet 11; the inner tank 2 and the tank can be passed through the liquid discharge port 12.
  • the water in the body 1 is sequentially discharged from the liquid discharge port 12.
  • the number of the air inlets 11 may be one, and the number of the liquid discharge ports 12 may be one, thereby reducing the unnecessary opening of the water heater system as a whole, optimizing the structure, thereby reducing At the same time, it is also possible to minimize the leakage point of the pressure during subsequent gas-liquid mixing.
  • the air inlet 11 includes a first inlet and a second inlet, the first inlet is disposed upstream of the liner 2, and the second inlet is disposed upstream of the tank 1
  • the liquid discharge port 12 includes the first out a port and a second outlet, the first outlet being disposed downstream of the liner 2, and the second outlet being disposed downstream of the can body 1.
  • the water heater system may further include: a detecting component for controlling a gas filling amount of the gas storage mechanism, a controller electrically connected to the detecting component; and electrically connecting with the controller A switching device that controls the air inlet 11, the liquid discharge port 12, and the water supply port 13 to be turned on and off.
  • the switching device and the detecting component are electrically connected to the controller, and the controller may control opening and closing of the switching device according to an electrical signal acquired by the detecting component to implement The air inlet 11, the liquid discharge port 12, and the water supply port 13 are turned on and off.
  • the switching device may be in the form of a solenoid valve capable of controlling the communication of the pipeline, such as a pneumatic switch valve or an electric switch valve. The specific application is not specifically limited herein.
  • the switch device includes a plurality of solenoid valves that can control the opening of the air inlet 11 , the opening of the liquid discharge port 12 , and the closing of the water supply port 13 when in the first state; At the time, the intake port 11 is closed, the liquid discharge port 11 is closed, and the water supply port 13 is opened.
  • the detecting member may be any one or a combination of the following: a flow detecting member and a liquid level detecting member.
  • the specific flow detecting component may be a flow sensor 83 capable of acquiring flow information in the pipeline.
  • the flow sensor 83 may be disposed on a water supply line upstream of the inner liner 2. After the controller obtains the flow signal of the flow sensor 83, the flow rate of the fluid can be determined by combining the time signal, thereby determining whether the predetermined liquid level has been reached in the inner tank 2, and if so, to the switch device. A corresponding control signal is issued to change the opening and closing state of the switching device.
  • the specific liquid detecting member may be a liquid level meter capable of acquiring a liquid level signal in the inner tank 2.
  • the liquid level gauge is disposed in the inner tank 2 and can be used to acquire a liquid level signal in the inner tank 2 and provide the liquid level signal to the controller.
  • the controller may determine the liquid level in the inner tank 2 according to the liquid level signal, and determine whether the liquid level has reached a predetermined liquid level that needs to be reached, and if so, send a corresponding control signal to the switching device to change the switch. The opening and closing state of the device.
  • the detecting member may also be capable of inputting the gas storage device A timer that counts the gas time within the structure.
  • the specific form of the detecting component is not limited to the above examples, and other modifications may be made by those skilled in the art in light of the essence of the technical application of the present application, provided that the functions and effects achieved are the same as the present application. Or similar, should be covered by the scope of this application.
  • the water heater system may further include a first switching valve that can communicate with the first tube 21, the second tube 22, the system upstream line, and the tank body 1. 5.
  • the upstream pipeline of the system is located upstream of the inner tank 2 and can communicate with the air inlet 11 and the water supply port 13.
  • the first switching valve 5 is used to change the communication relationship between the first tube 21 and the second tube 22 and the upstream pipeline of the system and the tank body 1 to switch the working state of the water heater system.
  • the operating state of the water heater system may include a first state of venting the gas to the gas storage mechanism and a second state of compressing the gas in the gas storage mechanism and mixing the gas and the liquid in the gas storage mechanism .
  • the first state may include: a first sub-state for venting the inner tank 2 and a second sub-state for venting the tank 1 with venting air.
  • the switching device controls the air inlet 11 and the liquid discharge port 12 to open, and controls the water supply port 13 to be closed, while the first switching valve 5 opens the air inlet 11 Communicating with the first tube 21 and the second tube 22 communicating with the can body 1; gas can enter and be stored in the inner tank 2 through the air inlet 11 and the first tube 21 in sequence .
  • the controller When the controller receives the detection of the detection component indicating that the air supply in the inner tank 2 is completed, and the liquid level drops to a predetermined liquid level, a control signal is sent to the first switching valve 5, so that the water heater system enters the tank Body 1 drains the second substate of qi.
  • the first switching valve 5 communicates the intake port 11 with the second tube 22 and the first tube 21 communicates with the can body 1, and the gas can pass through The intake port 11, the second tube 22, and the inner liner 2 enter and are stored in the can body 1.
  • the water heater system can enter a second state of gas-liquid mixing.
  • the activation of the second state may be triggered by the user after opening the water terminal, or may be triggered by other trigger signals, for example, after a predetermined period of time after completion of drainage and qi in the can body 1, or may be a can When the liquid level in the body 1 is zero, or according to the water usage habit of the learning user, before the predetermined time period before the user needs water.
  • the triggering condition of the water heater system entering the second state may also be other, and the present application is not specifically limited herein.
  • the switching device controls the air inlet 11 and the liquid discharge port 12 to be closed, and the water supply port 13 is controlled to be closed, and the first switching valve 5 connects the water supply port 13 and the
  • the second tube 22 is in communication and the first tube 21 is in communication with the can body 1.
  • the pressurized source provides a preset working pressure for the water heater system.
  • the inner tank 2 and the tank body 1 When the inner tank 2 and the tank body 1 are sequentially connected in the fluid direction, when the water heater system is in operation, the inner tank 2 and the tank body 1 may be drained and ventilated.
  • the first tube 21 When the inner tank 2 is drained and ventilated, the first tube 21 can be used as an intake pipe, and the second tube 22 can be used as a drain pipe.
  • the height of the first port 210 of the first tube 21 extending into the inner liner 2 is higher than the predetermined liquid level of the inner tank 2.
  • the predetermined liquid level corresponds to the amount of gas that needs to be replenished in the liner 2 or the amount of water that needs to be discharged.
  • the first switching valve 5 can be switched so that the second tube 22 communicates with the air inlet 11 through which the second tube 22 is Intake; causing the first tube 21 to communicate with the can body 1.
  • Gas entering from the intake port 11 enters the inner liner 2 through the second tube 22, and after coming into contact with the water in the inner liner 2, passes through the first port 210 of the first tube 21 into the canister In the body 1, the water in the can body 1 is discharged and filled with air.
  • the gas of the inner tank 2 entering from the air inlet 11 can be mixed with the water in the inner tank 2, so that the water in the inner tank 2 is mixed with a certain gas.
  • the second pipe 22 may be connected to the water supply port 13 to supply pressurized water to the inner tank 2.
  • the pressurized water enters the inner liner 2 through the second pipe 22, the gas above the predetermined liquid level of the inner liner 2 can be compressed into the can body 1.
  • water mixed with air may be pressurized into the tank 1 through the first port 210 of the first tube 21 to perform gas-liquid mixing. To prepare microbubble water, and supply it to the user terminal.
  • the first switching valve 5 may include a first interface 51 communicating with an upstream pipeline of the system, a second interface 52 communicating with the second pipe 22, and a third interface 53 communicating with the can body 1, And a fourth interface 54 in communication with the first tube 21.
  • the first switching valve 5 can be a four-way valve that can communicate with each other in two combinations.
  • the first switching valve 5 can also be in the form of other valves, and the present application does not specifically Limited.
  • the first interface 51 of the first switching valve 5 is in communication with the fourth interface 54, and the second interface 52 is in communication with the third interface 53.
  • An end of the first tube 21 away from the first port 210 is in communication with the fourth interface 54
  • an end of the second tube 22 is away from the second port 220 and the second interface 52 .
  • the gas can enter the upstream pipeline of the system, the first interface 51 to the fourth interface 54 of the first switching valve 5 through the air inlet 11, and enter the inner tank 2 through the first tube 21, through the first
  • the second tube 22 sequentially discharges the water in the inner tank 2 through the second port 52 to the third port 53 of the first switching valve 5, and the can body 1 to the liquid discharge port 12.
  • the first interface 51 of the first switching valve 5 and the second interface 52 are in communication, and the third interface 53 and the fourth interface 54 are in communication.
  • one end of the second tube 22 away from the second port 220 is in communication with the second interface 52; the end of the first tube 21 away from the first port 210 thereof communicates with the fourth interface 54.
  • Gas can enter the upstream pipeline of the system through the air inlet 11 , the first interface 51 to the second interface of the first switching valve 5 52, entering the inner tank 2 through the second tube 22, and then passing the gas through the first tube 21 through the fourth interface 54 to the third interface 53 of the first switching valve 5 to the tank body 1 while The water in the can body 1 is discharged from the liquid discharge port 12.
  • the first interface 51 of the first switching valve 5 is in communication with the second interface 52, and the third interface 53 and the fourth interface 54 are in communication.
  • the interface communication relationship of the first switching valve 5 can be maintained unchanged.
  • the water of the water supply port 13 can enter the inner tank 2 through the second pipe 22, and the gas in the inner liner 2 is pressed into the can body 1 through the first pipe 21, and passes through the first A tube 21 pressurizes water into the can body 1 for gas-liquid mixing with the gas in the can body 1.
  • the gas stored in the piping of the inner liner 2 and the inner tank 2 connected to the can body 1 is fully utilized in the gas-liquid mixing, the water in the inner liner 2 is supplied to the inner tank.
  • the gas collides with the water to form a certain gas. Therefore, compared with the simple method of gas-liquid mixing by using the tank 1 for gas storage, the volume of the can body 1 can be greatly reduced, thereby saving cost and making The entire water heater system is miniaturized.
  • a liquid level defining mechanism for controlling the liquid level in the inner tank 2 may be disposed in the inner tank 2.
  • the liquid level defining mechanism may be a third tube 23 separately disposed in the inner tank 2, the third tube 23 having a third port 230 extending into the inner tank 2, the third port The position of 230 is flush with the predetermined level in the bladder 2.
  • the liquid level defining mechanism may be an opening provided on the first tube 21 of the inner liner 2, the opening being positioned flush with a predetermined liquid level in the inner liner 2.
  • the form of the liquid level defining mechanism is not limited to the above examples, and other modifications may be made by those skilled in the art in light of the essence of the technical application of the present application, but as long as the functions and effects achieved are the same as the present application. The same or similar aspects are intended to be covered by the scope of the present application.
  • the liquid level defining mechanism may be a third tube 23 separately disposed in the inner tank 2, and the port position of the third tube 23 extending into the inner tank 2 is at a pre-pit liquid level, or may be An opening is formed in the first tube 21, and the position of the opening is at a predetermined liquid level, or may be another structure capable of controlling the liquid level when the inner tank 2 is drained and ventilated, and the present application does not Specific limitations.
  • the water heater system may further include: a third tube 23 communicating with the inner tank 2, the third tube 23 having the inner tube
  • the third port 230 of the bladder 2 has a height at a predetermined liquid level of the inner tank 2 and is lower than the first port 210 and higher than the second port 220.
  • the inner tube can be defined by a third tube 23 provided with a third port 230 extending into the inner liner 2 The amount of air and the amount of water in the gallbladder 2.
  • the height of the third port 230 is located at a predetermined liquid level of the inner tank 2 and lower than the first port 210 and higher than the second port 220.
  • the second tube 22 may be in communication with the water supply port 13.
  • the system may further include a second switching valve 6 that is communicable with the first tube 21, the third tube 23, and the can body 1.
  • the second switching valve 6 is used to change the communication relationship between the first tube 21 and the third tube 23 and the can body 1 to switch the working state of the water heater system.
  • the operating state of the water heater system is the same as that in the above embodiment. Specifically, it may include a first state of venting the gas to the gas storage mechanism and a second state of gas-liquid mixing.
  • the first state may include: a first sub-state for venting the inner tank 2 and a second sub-state for venting the tank 1 with venting air.
  • the second switching valve 6 communicates the third tube 23 with the can body 1; gas can sequentially pass through the air inlet 11 and the second tube 22 enters and is stored in the bladder 2.
  • the second switching valve 6 communicates the first tube 21 with the can body 1, and gas can sequentially pass through the air inlet 11, the second tube 22, and The first tube 21 enters and is stored in the can body 1.
  • the second switching valve 6 communicates the first tube 21 with the can body 1, and water in the water supply port 13 can enter the inner tank 2 through the second tube 22.
  • the gas in the inner liner 2 is compressed into the can body 1, and pressurized water is injected into the can body 1 to perform gas-liquid mixing to prepare microbubble water for supply to the user terminal.
  • the second switching valve 6 includes a first valve port 61 communicating with the first pipe 21, a second valve port 62 communicating with the third pipe 23, and the tank body. 1 connected third valve port 63.
  • the second switching valve 6 may be a three-way valve in which three valve ports can be connected in combination, and the second switching valve 6 may be the same as the first water-reducing first switching valve 5, and is a four-way valve or the like.
  • the second switching valve 6 can also be in the form of other valves, which is not specifically limited herein.
  • the first valve port 61 and the third valve port 63 are disconnected to prevent the gas injected into the inner tank 2 from passing through the first tube 21 and the tank body 1 in sequence.
  • the liquid discharge port 12 is discharged outward.
  • the second valve port 62 communicates with the third valve port 63 so that the third tube 23 can communicate with the can body 1; and the switching device controls the air inlet 11 and the liquid discharge port 12 to open.
  • the water supply port 13 is closed. Gas entering from the intake port 11 enters the inner liner 2 through the second tube 22, and a predetermined amount of water in the inner liner 2 is discharged to the can body 1 through the third tube 23, passing through The liquid discharge port 12 is discharged.
  • the first valve port 61 and the third valve port 63 are in communication such that the first tube 21 communicates with the can body 1 from the air inlet 11 entering gas enters the inner tank 2 through the second tube 22, and gas is injected into the can body 1 through the first tube 21, thereby the can body 1 and the inner tank 2
  • the connecting line with the can body 1 is also filled with gas.
  • the second valve port 62 may communicate with the third valve port 63 such that the third tube 23 communicates with the can body 1.
  • the gas entering the inner liner 2 from the second tube 22 can enter the can body 1 from the third tube 23.
  • At least in the first sub-state at least one of the first tube 21 and the third tube 23 is in communication with the can body 1 to inject gas into the can body 1 At the same time, the water in the tank 1 is discharged.
  • the tank body 1 is drained and ventilated, the first tube 21 and the third tube 23 are simultaneously in communication with the tank body 1, and the efficiency of drainage and qi can be provided.
  • the first valve port 61 and the third valve port 63 are in communication to compress the gas in the inner liner 2 into the can body 1 through the first tube 21, and Pressurized water may be injected into the can body 1 through the first tube 21 for gas-liquid mixing.
  • the water heater system may further be provided with a temperature adjustment mechanism between the inner tank 2 and the can body 1.
  • the inlet side of the temperature adjustment mechanism can communicate with the water supply port 13 of the cold water on the one hand, the other end can communicate with the water discharge end of the inner tank 2, and the outlet side thereof communicates with the can body 1. That is, the temperature adjustment mechanism can supply the microbubble water to the tank body 1 by adjusting the ratio of the cold water entering the inlet side and the hot water supplied from the inner tank 2 to the tank body 1 when the user opens the water.
  • microbubble water with a suitable temperature concentration can be directly obtained.
  • the temperature of the microbubble water is too high due to the excessive temperature in the inner tank 2, and further, cold water is directly mixed into the microbubble water in order to obtain the microbubble water having a suitable temperature, thereby causing dilution of the microbubble water. problem.
  • the temperature adjustment mechanism may be a second switching valve 6, and the second switching valve 6 may further include a fourth communication with the upstream pipeline of the inner tank 2.
  • the valve port 64 in the second state, the first valve port 61 and the fourth valve port 64 of the second switching valve 6 are in communication with the third valve port 63, and the first valve port 61 is adjusted according to the preset temperature.
  • the function of temperature adjustment can be realized by the second switching valve 6.
  • the second switching valve 6 may further include a fourth valve port 64 communicating with the upstream pipeline of the inner tank 2.
  • the second switching valve 6 may further include a fourth valve port 64 communicating with the upstream pipeline of the inner tank 2.
  • the second valve port 62 of the second switching valve 6 is also in communication with the third valve port 63.
  • the first valve port 61 is for supplying the tank body 1 with hot water in the tank 2
  • the fourth valve port 64 is for supplying the tank body 1 with cold water flowing into the water supply port 13.
  • the water heater system may be configured with a preset temperature according to a user requirement, and the preset temperature is a temperature that the user desires to flow out of the water terminal.
  • the mixing ratio of the hot water to the cold water may be determined according to the water temperature in the inner tank 2 and the water temperature provided by the water supply port 13, thereby determining the first valve port 61 and the fourth valve port 64 of the second switching valve 6 and the The ratio of the opening degree of the third valve port 63 is to ensure that the water outlet is out of the microbubble water having a suitable temperature.
  • the first tube 21 further has an opening 211 extending into the inner liner 2, the opening 211 being located at a predetermined liquid level of the inner liner 2.
  • the liquid level defining mechanism may be the first tube 21 having the opening 211.
  • the opening is smaller than the first port 210 of the first tube 21 .
  • the flow area of the opening 211 and the flow area of the first port 210 may be within a predetermined ratio range.
  • the gas can be drained into the liner 2 through the second tube 22.
  • gas is continuously injected for a while, and a gas and a small amount of water can be injected into the can body 1 so that the can body 1 is filled with gas.
  • the air inlet 11 and the liquid discharge port 12 are closed, the water supply port 13 is opened, water is injected into the inner tank 2 through the second tube 22, and the air pressure can be introduced through the first port 210 of the first tube 21.
  • pressurized water can be injected into the can body 1 through the first port 210 and the opening to achieve gas-liquid mixing to prepare microbubble water.
  • a temperature adjustment device 7 may be provided.
  • the temperature adjustment device 7 may be disposed between the inner tank 2 and the can body 1.
  • the specific communication relationship and the functions and functions achieved may be referred to. The above embodiments are not described herein again.
  • the can body 1 may be located in the inner tank 2.
  • the input tube 31 is located in the inner tank 2, and one end of the output tube 32 is worn. Out of the liner 2.
  • the can body 1 can be located in the inner tank 2. At this time, the series mechanism of the input pipe 31, the can body 1 and the output pipe 32 can achieve the first embodiment in the above embodiment. The function of the tube 21.
  • the above embodiment has a compact structure as a whole, which can save space occupied by the tank body 1 and further reduce the space required for the water heater system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Devices For Dispensing Beverages (AREA)

Abstract

一种热水器系统及其控制方法,该热水器系统包括:能对水进行加热的加热单元(1);能与所述加热单元(1)连通的罐体(2),所述罐体(2)上设置有至少一个进口(21)和出口(22),所述进口(21)能供气体、水中的至少一种进入所述罐体(2);能为所述罐体(2)加压的增压源,所述增压源能提供使所述罐体(2)中的气体和水进行混合的压强。该热水器系统可以应用在现有的任意一种热水器中,包括电热水器、燃气热水器、太阳能热水器和空气能热水器等,其能够生成微气泡水供用户使用,不仅能节水环保,而且所述微气泡水具有较强的清洁性能,从而大大提高了用户的使用体验。

Description

热水器系统及其控制方法
交叉参考相关引用
本申请要求2016年07月14日递交的申请号为201610555194.0、发明名称为“热水器系统”,2016年07月14日递交的申请号为201620741638.5、发明名称为“热水器系统”,2017年01月26日递交的申请号为201710057567.6、发明名称为“热水器系统”,以及2017年03月31日递交的申请号为201710205529.0、发明名称为“热水器系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及热水器领域,特别涉及一种热水器系统及其控制方法。
背景技术
目前国内热水器产品主要有电热水器、燃气热水器、太阳能热水器和空气能热水器等。其中,热水器领域主要是以传统的电热水器和燃气热水器为主导。
随着人们生活水平的日益提高,人们对热水器的要求也越来越高。例如,用户对热水器使用要求除了安全可靠的基本要求之外,还提出了节水环保、舒适健康等进一步的要求。
因此,有必要对目前的热水器进行改进,以较佳地满足用户使用要求,提高用户的使用体验。
发明内容
本发明的目的是提供一种热水器系统及其控制方法,能够生成微气泡水供用户使用,不仅能节水环保,而且清洁性能强,大大提高了用户的使用体验。
本发明的上述目的可采用下列技术方案来实现:
一种热水器系统,包括:
能对水进行加热的加热单元;
能与所述加热单元连通的罐体,所述罐体上设置有至少一个进口和出口,所述进口能供气体、水中的至少一种进入所述罐体;
能为所述罐体加压的增压源,所述增压源能提供使所述罐体中的气体和水进行混合 的压强。
一种热水器系统,包括:
能对水进行加热的加热单元;
能与所述加热单元连通的罐体;
导入机构,能够与所述罐体连通,并且用于将流入其内的流体导入到所述罐体存储有气体的区域,并将导入的流体与罐体中的气体进行气液混合;
能为所述罐体加压的增压源,所述增压源能提供使所述罐体中的气体和水进行混合的压强。
一种热水器系统的控制方法,包括:
控制供气单元与罐体相连通,将气体自所述供气单元输入所述罐体内,同时将所述罐体中的水排出;
当排出的水或者供入的气体达到预定量时,控制导入机构与供水管路连通,所述导入机构将流入其内的流体导入到所述罐体存储有气体的区域并与所述罐体中的气体进行气液混合,同时增压源对所述罐体中的气体和水进行气液混合施加预定压力。
一种热水器系统,包括:
内胆,能够存储预定量的气体和水;
罐体,与所述内胆连接,能够存储预定量的气体和水;所述内胆和罐体能够连通形成储气机构;
增压源,能提供预定压力对所述储气机构内的气体进行压缩后和所述储气机构的内的水进行混合形成气液混合物;
加热件,能够对内胆和罐体内的液体进行加热。
由以上本申请实施方式提供的技术方案可见,通过设置与加热单元连通的罐体,以及为所述罐体增压的增压源,其中,所述罐体上设置有能供气体、水中的至少一个进入所述罐体的进口。使用时,通过所述进口可将气体、液体充入所述罐体中并通过所述增压源为所述罐体提供气体和水混合的压强,从而可以在所述罐体内形成微气泡水供给向用户。由于相同的流量下,供给向用户的水中掺入了空气,能够有效地节省水的使用量;另外,所述微气泡水相对于普通的水而言具有较佳的清洁性能、物理杀菌功能,因此,大大提高了用户的使用体验。
附图说明
图1是本申请实施方式中提供的一种热水器系统的结构示意图;
图2是本申请实施方式中提供的另一种热水器系统的结构示意图;
图3a、图3b、图3c是本申请实施方式中提供的一种罐体制备微气泡水的原理示意图;
图4是本申请实施方式中提供的另一种热水器系统的结构示意图;
图5A是本申请实施方式中提供的一种压力调节装置的结构示意图;
图5B是本申请实施方式中提供的一种压力调节装置的结构示意图;
图6是本申请实施方式中提供的一种带内胆的热水器系统的结构示意图;
图7是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图8是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图9是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图10是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图11是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图12是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图13是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图14是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图15是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图16是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图17是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图18是本申请实施方式中提供的又一种带内胆的热水器系统的结构示意图;
图19是本申请实施方式中提供的一种带内胆的热水器系统的单罐工作示意图;
图20是本申请实施方式中提供的一种带内胆的热水器系统的单罐工作示意图;
图21是本申请实施方式中提供的一种带内胆的热水器系统的工作示意图;
图22是本申请实施方式中提供的一种带内胆的热水器系统的工作示意图;
图23是本申请实施方式中提供的一种热水器系统的双罐切换原理示意图;
图24是本申请实施方式中提供的一种热水器系统的工作示意图;
图25是本申请实施方式中提供的一种热水器系统的工作示意图;
图26是本申请实施方式中提供的一种热水器系统中单罐、旁通管路的切换原理示意图;
图27是本申请实施方式中提供的一种不带内胆的热水器系统的结构示意图;
图28是本申请实施方式中提供的另一种不带内胆的热水器系统的结构示意图;
图29是本申请实施方式中提供的另一种不带内胆的热水器系统的结构示意图;
图30是本申请实施方式中提供的一种导入机构与罐体结合的结构示意图
图31A是本申请实施方式中提供的一种导入机构的变截面积部的截面示意图;
图31B是本申请实施方式中提供的另一种导入机构的变截面积部的截面示意图;
图31C是本申请实施方式中提供的又一种导入机构的变截面积部的结构示意图;
图31D是本申请实施方式中提供的又一种导入机构的变截面积部的结构示意图;
图32是本申请实施方式中提供的一种热水器系统的控制方法的步骤流程图;
图33是本申请实施方式中提供的第一种热水器系统的结构示意图;
图34A是本申请实施方式中提供的热水器系统中气液混合的状态示意图;
图34B是本申请实施方式中提供的热水器系统中气液混合的状态示意图;
图35A是一种压力调节装置的结构示意图;
图35B是另一种压力调节装置的结构示意图;
图36A是本申请实施方式中提供的一种第一管的变截面积部的截面示意图;
图36B是本申请实施方式中提供的另一种第一管的变截面积部的截面示意图;
图36C是本申请实施方式中提供的又一种第一管的变截面积部的结构示意图;
图36D是本申请实施方式中提供的又一种第一管的变截面积部的结构示意图;
图37是本申请实施方式中提供的第二种热水器系统的结构示意图;
图38是本申请实施方式中提供的第三种热水器系统的结构示意图;
图39是本申请实施方式中提供的第四种热水器系统的结构示意图;
图40是本申请实施方式中提供的第五种热水器系统的结构示意图。
具体实施方式
下面将结合附图和具体实施例,对本发明的技术方案作详细说明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所附权利要求所限定的范围内。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表 示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供一种热水器系统及其控制方法,能够生成微气泡水供用户使用,不仅能节水环保,还能提高水的清洁性能,大大提高了用户的使用体验。
请结合参阅图1至图2,本申请实施方式中提供的一种热水器系统可以包括:能对水进行加热的加热单元1;能与所述加热单元1连通的罐体2,所述罐体2上设置有至少一个进口21和出口22,所述进口21能供气体、水中的至少一种进入所述罐体2;能为所述罐体2加压的增压源,所述增压源能提供使所述罐体2中的气体和水进行混合的压强。
在本实施方式中,所述热水器系统可以应用在现有的任意一种热水器中,包括电热水器、燃气热水器、太阳能热水器和空气能热水器等,本申请在此并不作具体的限定。
在本实施方式中,所述增压源可以为所述罐体2中的气体和水进行混合提供所需的压强。具体的,该增压源可以包括下述中的至少一种:能与所述罐体2连通并且能够对流入罐体2内的水提供预定压力的增压装置3、具有预定压力的水等。
在本实施方式中,所述加热单元1能用于对水进行加热。所述加热单元1的形式可以根据具体的热水器类型的不同而不同,本申请中在此并不作具体的限定。例如,当所述热水器为电热水器时,所述加热单元1可以包括内胆及内胆中的电加热棒;当所述热水器为燃气热水器时,所述加热单元1可以包括燃烧器和换热器。
在本实施方式中,所述罐体2能与所述加热单元1相连通。所述罐体2上可以设置有至少一个进口。所述进口21能供气体或液体中的至少一种进入所述罐体2。具体的,如图1所示,当所述罐体2上设置有一个进口时,所述进口21既可以用于流通气体,也可以用于流通液体。如图2所示,当所述罐体2上设置有两个进口时,其中一个进口可以与进气口相连通,用于流通气体,另一个进口可以用于流通液体。此外,所述罐体2上的出口个数也可以为一个或者多个,本申请在此并不作具体的限定。当所述出口的个数为一个时,其能与排水管路或用水终端相连通。
在本实施方式中,所述罐体2的形状可以为中空的圆柱型,其具有相对的顶端和底端。所述顶端、底端可以设置有圆弧过渡。所述罐体2在使用位置下,其顶端在上、底 端在下。其中,所述进口21可以设置在靠近顶端的位置,所述出口22可以靠近底端的位置。当然,所述罐体2的形状还可以为其他形式,本申请在此并不作具体的限定。
在本实施方式中,所述增压装置3可以为所述罐体2加压。具体的,所述增压装置3的形式可以为水泵或者气泵,当然还可以为其他能够实现增压功能的装置,本申请在此并不作具体的限定。当所述罐体2处于制备微气泡水的状态时,所述增压装置3能提供罐体2制备微气泡水时,气体和水混合所需的压强。
本申请所述的热水器系统可以通过所述罐体2和增压装置3相配合制备微气泡水。其中,一种在所述罐体2内制备微气泡的原理可以结合参阅图3a至图3c。
当需要在所述罐体2内制备微气泡水时,如图3a所示,可以先将罐体2中充满空气。如图3b所示,然后将所述出口22封闭,在增压装置3的增压作用下,将带压的水从进口21喷入所述罐体2的空气中。随着带压水不断地从进口21喷入,所述罐体2内的压力增大,罐体2中的水和气相接触,在压力的作用下被压缩并混合。如图3c所述,打开所述出口22,即可将所述微气泡水排出,提供给用户。
本申请所述的热水器系统能够通过所述与加热单元1连通的罐体2以及增压装置3制备微气泡水供给向用户。所述微气泡是指尺寸在几个或者几十个微米的气泡。微气泡的表面在水中带有微弱的负电荷,能够吸附油脂、蛋白质等物质,从而将它们带离皮肤和毛发等。当使用带微气泡的微气泡水进行洗浴时,每分钟有大量的微小气泡可以深入到毛发根部等原本难以清理的部位,将堆积在这里的,例如皮脂、油脂等污垢彻底清除。
此外,所述微气泡水还具有独特的杀菌的作用。具体的,所述微气泡水的杀菌过程包括吸引与杀灭两个过程,所述微气泡带有静电,其可以吸附水体中的细菌与病毒;然后,随着气泡的破裂,于气泡周围激发大量的自由基及破裂所产生的超高温高压,把吸附的细菌病毒杀死。上述杀灭的过程是一个完全的物理杀灭过程与常规的消毒杀菌法有着本质的区别,所以相对于常规的化学杀菌而言更环保健康。
本申请实施方式中所述的热水器系统,通过设置与加热单元1连通的罐体2以及能为所述罐体2加压的增压装置3,使用时,所述增压装置3与所述罐体2相配合,能够在所述罐体2中能制备微气泡水微气泡水供给向用户。由于相同的流量下,供给向用户的水中掺入了空气,能够有效地节省水的使用量;另外,所述微气泡水相对于普通的水而言具有较佳的清洁性能、物理杀菌功能,因此,大大提高了用户的使用体验。
请结合参阅图4,在一个实施方式中,所述罐体2的进口上游设置有供水管路和供气管路,所述进口能与所述供水管路和/或所述供气管路连通,所述增压装置3与所述供 水管路和/或所述供气管路连通。
在本实施方式中,所述罐体2的进口可以为一个,所述进口上游设置有能与其相连通的供水管路和供气管路。当所述进口与所述供气管路相连通时,所述供气管路能够向所述罐体2中充入气体。一般的,所述气体可以为空气,当然所述气体并不限于空气,本申请在此并不作具体的限定。当所述进口与所述供水管路相连通时,所述供水管路能够向所述罐体2中充入水。在本实施方式中,所述增压装置3可以与所述供水管路、供气管路中的至少一个相连通。
请参阅图1或图2,在一个具体的实施方式中,所述增压装置3能与所述供水管路连通,所述增压装置3可以为水泵。
在本实施方式中,当所述增压装置3与所述供水管路相连通时,所述增压装置3具体的可以为水泵。当所述水泵开启运行时,所述水泵可以为流经其的水增压,同时也可以为与其连通的罐体2增压,即在所述罐体2制备微气泡水时,所述水泵能提供气体和水进行混合时所需的压强。此外,所述水泵也可以作为热水器系统水循环的动力装置。
一般的,热水器系统中可以设置有水泵以提供水循环的动力。在本实施方式中,当所述增压装置3为水泵时,其可以利用热水器系统中现有的水泵,而不用再单独增设增压装置3,从而有利于节约成本,节省整个热水器系统的空间,优化产品结构。
在一个实施方式中,所述增压装置3可以为与所述加热装置和所述罐体2连通的水泵,所述水泵包括第一水泵和第二水泵,所述第二水泵与所述第一水泵通过串联或并联的方式连接。
在本实施方式中,所述增压装置3的具体形式可以为水泵,其与所述加热装置和所述罐体2相连通。具体的,所述水泵的个数可以为2个或2个以上,本申请在此并不作具体的限定。例如所述水泵可以包括第一水泵和第二水泵,所述第一水泵与所述第二水泵可以通过并联或者串联的方式进行连接。
其中,当所述热水器系统所需的压力较大时,可以选择将所述第一水泵和所述第二水泵以串联的方式相连接。所述第一水泵、第二水泵相串联时所能提供的压力相对于单个水泵所能提供的压力而言有较大幅度地提高,从而可以满足所述热水器系统的压力需求。
其中,当所述热水器系统所需的流量较大时,可以选择将所述第一水泵和所述第二水泵以并联的方式相连接。所述第一水泵、第二水泵相并联时所能提供的流量相对于单个水泵所能提供的流量而言有较大幅度地提供,从而可以满足所述热水器系统的流量需 求。
此外,一般的,所述热水器系统需要设置在外壳中,在所述外壳空间一定的情况下,所述两个小的水泵能够灵活利用外壳中的零散空间,也可以在一定程度上缩小热水器系统的整体占用空间。
请参阅图4,在一个具体的实施方式中,所述增压装置3与所述供气管路连通,所述增压装置3为气泵。
在本实施方式中,当所述增压装置3能与所述供气管路连通时,所述增压装置3具体的可以为气泵。当所述气泵开启运行时,所述气泵可以为流经其的气增压,同时也可以为与其连通的罐体2增压,即在所述罐体2制备微气泡水时,所述气泵能提供气体和水进行混合时所需的压强。
在一个实施方式中,所述热水器系统还可以包括设置在所述罐体2下游的压力调节装置4。
在本实施方式中,所述压力调节装置4用于将罐体2至所述压力调节装置4之间的压力维持在预定的范围内。具体的,所述压力调节装置4的形式可以为压力调节阀中的一种,例如自力式压力调节阀;也可为液压压力控制阀,例如溢流阀;也可以为压力可以控制的电子膨胀阀、热力膨胀阀等,或者还可以为其他形式,本申请在此并不作具体的限定。
在一个具体的实施方式中,在所述增压装置3处于开启状态时,所述压力调节装置4能将所述罐体2至所述压力调节装置4之间的压力维持在0.1兆帕以上。
在本实施方式中,当所述增压装置3开启运行时,设置在所述罐体2下游的压力调节装置4能够控制所述罐体2至所述压力调节装置4之间的压力在预定压力范围内。具体的,所述压力调节装置4的控制原理可以根据所述压力调节装置4的具体结构的不同而不同,本申请在此并不作具体的限定。
其中,所述预定压力范围可以为0.1兆帕以上。当通过所述压力调节装置4控制所述罐体2至所述压力调节装置4之间的压力在0.1兆帕以上时,所述压力能够有利于生成微气泡的生成和维持。具体的,一方面当所述压力在在0.1兆帕以上时,有利于更多的空气溶解在水中,形成溶度较大的微气泡水;另一方面,有利于所述微气泡水在管路中流动时,维持微气泡水的状态,防止水中的气泡逐渐变大。
当然,所述预定压力的范围也并不限于上述列举,所属领域技术人员在本申请技术精髓的启示下,还可以做出其他的变更,但只要其实现的功能和达到的效果与本申请相 同或相似,均应涵盖于本申请保护范围内。
在一个具体的实施方式中,所述压力调节装置4具有相对的入口端和出口端,其内部设置有压力调节机构,使所述入口端的压力大于所述出口端的压力。
当压力较高的气液混合物流经所述压力调节装置4时,在所述压力调节装置4的调节作用下,气液混合物的压力被迅速降低,从而使得气液混合物中的气体体积变大,形成微气泡混合在水中,即为微气泡水。
具体的,压力调节装置4沿着流体流动的方向上至少形成有流通截面积逐级或突变的节流机构,即该压力调节机构可以为节流结构。利用该节流机构可快速降压,实现释气。
请参阅图5A,例如在沿着流体流动的方向上,设置有至少一级变孔径结构,该压力调节装置4包括一个中空的管体,其管体内设置有至少一个节流部件。该节流部件可以为孔径小于该管体内径的结构。此外,在所述节流板上沿着流体流动方向上可以依次开设有开孔个数依次增多的流通孔,使得整体上沿着流体流动方向上,流通截面积逐级增大。流体流经该节流机构时,由于流通截面积突然变小,其流体的压力会相应增大,从而能实现压力维持的功能。
请参阅图5B,所述压力调节装置4还可以设置有流通截面积变化的背压弹簧,或者其他节流机构,本申请在此不作具体的限定。所属领域技术人员在本申请的技术精髓启示下,还可能做出其他的变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
请参阅图6,在一个实施方式中,所述加热单元1可以包括:能够装水的内胆11,以及用于对所述内胆11中的水进行加热的加热件13;所述增压装置3为水泵,所述水泵与所述内胆11和所述罐体2连通,所述水泵能驱动水流入所述罐体2,并为罐体2提供水与气混合时所需的压强;所述罐体2下游设置有压力调节装置4。
在本实施方式中,所述热水器系统可以应用在设置有内胆11的热水器中。具体的,所述加热单元1可以包括:内胆11和加热件13。其中,所述内胆11可以用于装水。具体的,所述内胆11可以整体呈中空的圆柱形壳体,当然,其也可以为其他形状,本申请在此并不作具体的限定。所述内胆11的设置方式可以卧式,也可以为竖式,本申请在此并不作具体的限定。
其中,所述加热件13的类型和设置方式可以随着热水器类型的不同而不同。例如,当所述热水器为电热水器时,所述加热件13可以为电加热棒。所述电加热棒可以一端固 定在内胆11壁上,另一端伸入内胆11中,为内胆11中的水加热。当所述热水器为热泵热水器时,所述加热件13可以为设置在所述内胆11上的换热器。例如,所述换热器可以包裹在所述内胆11的外壁上,所述换热器中流通有高温高压的冷媒。当高温高压的冷媒流经所述换热器时,能将热量传递给内胆11中的水。
在本实施方式中,所述增压装置3可以为水泵,所述水泵与所述内胆11和所述罐体2连通。所述水泵既能驱动水流入所述罐体2,也能为罐体2提供水与气混合时所需的压强。
在本实施方式中,所述热水器系统还可以设置有用于和控制装置电性连通的检测单元。所述检测单元用于在检测到启动信号后,将所述启动信号发送给所述控制装置,通过所述控制装置控制所述水泵的开启。
具体的,所述检测单元可以为流量开关、压力开关或温度探头中的至少一种。例如,当所述检测单元为流量开关时,在所述流量开关检测的流量大于预定值时,可以向控制装置发出电信号。当所述检测单元为压力开关时,在所述压力开关检测到的压力波动大于预定值时,可以向控制装置发出控制信号。当所述检测单元为温度探头时,在所述温度探头检测到的温度大于预定值时,可以向控制装置发出电信号。当然,所述检测单元并不限于上述举例,另外,启动所述水泵工作的条件也不限于上述通过检测单元检测的方式,所属领域技术人员在本申请技术精髓的启示下,还可以做出其他的变更,但只要其实现的功能和达到的效果与本申请相同或相似,均应涵盖于本申请保护范围内。
在本实施方式中,设置有内胆11的热水器,例如电热水器、热泵热水器等带内胆的热水器系统可以在所述罐体2的下游设置有压力调节装置4。
在本实施方式中,所述压力调节装置4用于将罐体2至所述压力调节装置4之间的压力维持在预定的范围内。具体的,所述压力调节装置4的形式可以为压力调节阀中的一种,例如自力式压力调节阀;也可为液压压力控制阀,例如溢流阀;也可以为压力可以控制的电子膨胀阀、热力膨胀阀等,或者还可以为其他形式,本申请在此并不作具体的限定。
在本实施方式中,当所述水泵2开启运行时,设置在所述罐体2下游的压力调节装置4能够控制所述罐体2至所述压力调节装置4之间的压力在预定压力范围内。具体的,所述压力调节装置4的控制原理可以根据所述压力调节装置4的具体结构的不同而不同,本申请在此并不作具体的限定。
所述内胆11为承压内胆,所述内胆11的胆压范围为:0.1兆帕至0.8兆帕之间。在 本实施方式中,由于所述内胆11与所述水泵相连通,所述内胆11受到所述水泵2的影响,也需要承受一定的压力。除此之外,由于内胆11中水温的变化,热胀冷缩的影响也会需要内胆11具有一定的承压能力。综上而言,与所述水泵2相连通的内胆11在使用时需要承受预定的压力。具体的,所述压力的范围可以为0.1兆帕至0.8兆帕之间。例如,当所述水泵2位于所述内胆11的下游时,相对的,所述内胆11的胆压范围可以相对小一些;当所述水泵2位于所述内胆11的上游时,由于所述内胆11中流经有所述水泵2中输出的微气泡水,因此,相对而言,其胆压的范围可以高一些,以维持所述微气泡水所需的压力。
在本实施方式中,当所述内胆11中的水被加热件13加热时,基于热胀冷缩的原理,随着温度的升高,所述内胆11中的压力也会升高。例如当所述罐体2位于所述内胆11的下游,且所述罐体2处于制备微气泡水的状态下,具有较高压力的水从内胆11中流出,提供给所述罐体2时,有利于和罐体2中的气体快度融合形成微气泡水。另一方面,所述内胆11中的水在被加热后,会提高内胆11中的压力,相当于在增压装置3开启前,所述内胆11中就形成了预压。由于该预压能够为所述罐体2中的气和水混合提供所需的压强,因此,当所述增压装置3启动后,用户打开用水终端时,其最多只需要放掉罐体2至用水终端管路中的水,就能够获得理想的微气泡水,有效缩短了用户获得微气泡水的时间,提高了用户体验。
请参阅图6,在一个具体实施方式中,所述内胆11设置有用于进水的进水管111和用于出水的出水管112,所述水泵设置在所述进水管111的上游,所述罐体2设置在所述出水管112的下游。
在本实施方式中,所述内胆11设置有用于进水的进水管111,以及用于出水的出水管112。从供水管路提供的常温水可以通过所述进水管111进入所述内胆11中被加热,然后加热后的水从所述出水管112流出。
在本实施方式中,所述水泵2可以设置在所述内胆11进水管111的上游。当所述水泵2设置在所述内胆11进水管111的上游时,内胆11中加热后的水不会流经所述水泵2。相对而言,流经所述水泵2的水为供水管路提供的常温水,因此,对于所述水泵2而言,没有耐高温的要求。此外,由于流经所述水泵2的水为常温水,水中的钙镁等离子不易析出,因此其内部不容易结垢。
在本实施方式中,所述罐体2可以设置在所述出水管112的下游。当所述罐体2设置在所述出水管112的下游时,从所述罐体2流出的微气泡水能够经过所述压力调节装 置4后,直接供给向用户的用水终端。相对而言,当从罐体2设置在所述出水管112下游时,从其流出的微气泡水不流经所述内胆11,一方面可以让用户在短时间内获得微气泡水;另一方面,也可以避免所述微气泡水进入所述内胆11后被内胆11中存储的水稀释或者被加热件13加热,产生温升波动干扰。
请参阅图7至图9,在一个实施方式中,所述内胆11设置有用于进水的进水管111和用于出水的出水管112;所述热水器系统还包括设置在所述出水管112与所述压力调节装置4之间或所述出水管112上的温度调节装置5。
在本实施方式中,所述内胆11设置有用于进水的进水管111,以及用于出水的出水管112。从供水管路提供的常温水可以通过所述进水管111进入所述内胆11中被加热,然后加热后的水从所述出水管112流出。
在本实施方式中,所述加热单元1还可包括温度调节装置5,所述温度调节装置5可以用于调节流入或流出所述罐体2中的水温。具体的,所述温度调节装置5可以为机械式温度调节装置5,其可以通过手动进行温度的调节;可以为电子式温度调节装置5,其可以根据控制装置的控制程序自动调节温度。另外,所述温度调节装置5的温度设定范围可以为固定的,也可以为可调的。具体的,当所述温度调节装置5的温度设定范围为固定时,其出水温度固定在所述设定范围以内。当所述温度调节装置5的温度设定范围为可调时,其出水温度可以根据需要进行调整。具体的,所述温度调节装置5的形式可以为混水阀、恒温阀等,也可以为在所述内胆11的出水管112上设置的恒温出水结构。当然所述温度调节装置5的形式并不限于上述列举,所属领域技术人员在本申请技术精髓的启示下,还可以做出其他的变更,但只要其实现的功能和达到的效果与本申请相同或相似,均应涵盖于本申请保护范围内。
在本实施方式中,所述温度调节装置5可以设置在所述出水管112与所述压力调节装置4之间或所述出水管112上,用于调节流入或流出所述罐体2中的水温,使所述水温接近用户的设定出水温度。当流入所述罐体2的水接近用户的设定出水温度时,利用该温度的水与气混合得到的微气泡水也接近用户的设定温度。此时无需或者只需向所述微气泡水中混入少量的冷水即可达到用户设定的出水水温。当没有或者有少量的冷水加入所述微气泡水时,能够较好地保证微气泡水中微气泡的含量,有利于用户获得浓度较高的微气泡水。同样的,当流出所述罐体2的微气泡水接近用户的设定温度时,无需或者只需向所述微气泡水中混入少量的冷水即可达到用户设定的出水水温。当没有或者有少量的冷水加入所述微气泡水时,能够较好地保证微气泡水中微气泡的含量,有利于用 户获得浓度较高的微气泡水。
请参阅图7,在一个实施方式中,所述温度调节装置5可以设置在所述出水管上。具体的,所述温度调节装置5可以为设置在所述出水管112上的恒温结构,所述恒温结构能够自动调节所述出水管112的出水温度。当所述罐体2在所述温度调节装置5下游时,可以保证从所述出水管112进入所述罐体2的水在预定的范围之间,以接近用户的设定出水温度。
请参阅图8,在一个具体的实施方式中,所述热水器系统还可以包括与所述进水管111连通的冷水管15,所述罐体2设置在所述出水管112的下游,所述温度调节装置5设置在所述出水管112与所述罐体2之间,其包括与所述出水管112连通第一端口和与所述冷水管15连通的第二端口以及与所述罐体2连通的第三端口。
在本实施方式中,所述水泵可以设置在所述进水管111的上游。当所述水泵2设置在所述内胆11进水管111的上游时,内胆11中加热后的水不会流经所述水泵2。相对而言,流经所述水泵2的水为供水管路提供的常温水,因此,对于所述水泵2而言,没有耐高温的要求。此外,由于流经所述水泵2的水为常温水,水中的钙镁等离子不易析出,因此其内部不容易结垢。
当所述罐体2设置在所述出水管112的下游时,从所述罐体2流出的微气泡水能够经过所述压力调节装置4后,直接供给向用户的用水终端。相对而言,当从罐体2设置在所述出水管112下游时,从其流出的微气泡水不流经所述内胆11,一方面可以让用户在短时间内获得微气泡水;另一方面,也可以避免所述微气泡水进入所述内胆11后被内胆11中存储的水稀释或者被加热件13加热,产生升温的温度波动干扰。
所述热水器系统还包括与所述进水管111相连通的冷水管15,当所述水泵启动时,与所述进水管111相连通的冷水管15中流通有从进水端流入的冷水。所述温度调节装置5设置在所述出水管112与所述罐体2之间的管路上。具体的,所述温度调节装置5可以包括与所述出水管112连通的第一端口和与所述冷水管15连通的第二端口以及与所述罐体2连通的第三端口。所述出水管111可以通过所述第一端口向所述温度调节装置5中通入经加热单元1加热后的热水。所述冷水管15可以通过所述第二端口向所述温度调节装置5通入从进水端流入的冷水。当所述出水管111流出的热水温度过高时,可以将所述冷水掺入热水中,获得混合后接近用户设定出水温度的水。所述第三端口为出水口,用于将通过所述温度调节装置5混合好的温度接近用户设定温度的水流入所述罐体2中。
具体的,所述第一端口、第二端口中的至少一个可以为开度可以调节的端口。所述 温度调节装置5中可以设置有温度感应单元,当所述温度感应单元感应到的水温超过用户的设定出水温度时,可以通过打开所述第二端口,调节第二端口或者同时调节第一端口和第二端口的开度,以使从所述温度调节装置5的第三端口流入罐体2的水温度接近用户的设定出水温度。当流入所述罐体2的水接近用户的设定出水温度时,利用该温度的水与气混合得到的微气泡水也接近用户的设定温度。此时无需或者只需向所述微气泡水中混入少量的冷水即可达到用户设定的出水水温。当没有或者有少量的冷水加入所述微气泡水时,能够较好地保证微气泡水中微气泡的含量,有利于用户获得浓度较高的微气泡水。
请参阅图9,在一个具体的实施方式中,所述热水器系统还可以包括与所述进水管连通的冷水管15,所述罐体2设置在所述出水管112的下游,所述温度调节装置5设置在所述罐体2与所述压力调节装置4之间,其包括与所述罐体2连通的第一端口和与所述冷水管15连通的第二端口以及与所述压力调节装置4连通的第三端口。
在本实施方式中,所述水泵可以设置在所述进水管111的上游。当所述水泵2设置在所述内胆11进水管111的上游时,内胆11中加热后的水不会流经所述水泵2。相对而言,流经所述水泵2的水为供水管路提供的常温水,因此,对于所述水泵2而言,没有耐高温的要求。此外,由于流经所述水泵2的水为常温水,水中的钙镁等离子不易析出,因此其内部不容易结垢。
当所述罐体2设置在所述出水管112的下游时,从所述罐体2流出的微气泡水能够经过所述压力调节装置4后,直接供给向用户的用水终端。相对而言,当从罐体2设置在所述出水管112下游时,从其流出的微气泡水不流经所述内胆11,一方面可以让用户在短时间内获得微气泡水;另一方面,也可以避免所述微气泡水进入所述内胆11后被内胆11中存储的水稀释或者被加热件13加热,产生升温的温度波动干扰。
所述热水器系统还包括与所述进水管111相连通的冷水管15。当所述水泵启动时,与所述进水管111相连通的冷水管15中流通有从进水端流入的冷水。所述温度调节装置5设置在所述罐体2与所述压力调节装置4之间。具体的,所述温度调节装置5可以包括与所述罐体2连通的第一端口和与所述冷水管15连通的第二端口以及与所述压力调节装置4连通的第三端口。所述罐体2可以通过所述第一端口向所述温度调节装置5中通入微气泡水。所述冷水管15可以通过所述第二端口向所述温度调节装置5通入从进水端流入的冷水。当所述罐体2流出的微气泡水温度过高时,可以将所述冷水掺入微气泡水中,获得混合后接近用户设定出水温度的水。所述第三端口为出水口,用于将通过所述 温度调节装置5混合好的温度接近用户设定温度的水流出,通过所述压力调节装置4后提供给用户。具体的,所述第一端口、第二端口中的至少一个可以为开度可以调节的端口。所述温度调节装置5中可以设置有温度感应单元,当所述温度感应单元感应到的水温超过用户的设定出水温度时,可以通过打开所述第二端口,调节第二端口或者同时调节第一端口和第二端口的开度,以使从所述温度调节装置5的第三端口流出的水温度接近用户的设定出水温度。
在本实施方式中,当所述罐体2中形成的微气泡水处于过饱和状态下时,例如正常微气泡水的浓度为5%,而在过饱和状态下时,所述微气泡的浓度大于5%。由于所述温度调节装置5位于所述压力调节装置4的上游,在压力调节装置4压力的维持作用下,所述温度调节装置5内的压力也能够达到制备微气泡水所需的压力。当从第二端口向所述过饱和的微气泡水中掺入冷水时,所述冷水可以和与该微气泡水中多余的气泡形成新的微气泡水,上述二次生成微气泡水的过程不仅能够保证提供给用户终端的微气泡水满足预定的浓度要求,而且在同样体积的气体下,能够提高微气泡水的产量。
此外,对于空气而言,随着温度的降低,其溶解度会相应升高。当从第二端口向所述饱和的微气泡水中掺入冷水时,能够降低所述微气泡水的温度,从而提高空气的溶解度。此时,罐体中多余的空气可进一步溶解在掺入冷水的微气泡水中,进而可以抵消或者有效减缓在微气泡水掺入冷水造成的溶解度降低现象,保证供给用户终端的微气泡水满足预定的浓度要求。
请参阅图10,在一个具体的实施方式中,所述热水器系统还可以包括与所述进水管111连通的冷水管15,所述罐体2均设置在所述出水管112的下游,所述温度调节装置5设置在所述出水管112与所述水泵之间,其包括与所述出水管112连通的第一端口和与所述冷水管15连通的第二端口及与所述水泵连通的第三端口。
在本实施方式中,所述水泵可以设置在所述出水管112的下游。当所述水泵设置在所述出水管112的下游时,其提供的压力水可以直接提供给罐体2,而不用经过所述内胆11。当所述水泵提供的压力水不经过内胆11后,其可以精确控制流入罐体2的水的压力,避免该水因流经内胆11时受到内胆11的压力波动干扰。
当所述罐体2设置在所述出水管112的下游时,从所述罐体2流出的气液混合物能够经过所述压力调节装置4后,直接供给向用户的用水终端。相对而言,当从罐体2设置在所述出水管112下游时,从其流出的气液混合物不流经所述内胆11,一方面可以让用户在短时间内获得微气泡水;另一方面,也可以避免所述气液混合物进入所述内胆11 后被内胆11中存储的水稀释或者被加热件13加热,产生升温的温度波动干扰。
所述热水器系统还包括与所述进水管111相连通的冷水管15,当所述水泵启动时,与所述进水管111相连通的冷水管15中流通有从进水端流入的冷水。所述温度调节装置5设置在所述出水管112与所述水泵之间。具体的,所述温度调节装置5可以包括与所述出水管112连通的第一端口和与所述冷水管15连通的第二端口以及与所述水泵连通的第三端口。所述出水管112可以通过所述第一端口向所述温度调节装置5中通入经加热单元1加热后的热水。所述冷水管15可以通过所述第二端口向所述温度调节装置5通入从进水端流入的冷水。当所述出水管112流出的热水温度过高时,可以将所述冷水掺入热水中,获得混合后接近用户设定出水温度的水。所述第三端口为出水口,用于将通过所述温度调节装置5混合好的温度接近用户设定温度的水流入所述水泵中,通过所述水泵增压后,流入位于所述水泵下游的罐体2中。
具体的,所述第一端口、第二端口中的至少一个可以为开度可以调节的端口。所述温度调节装置5中可以设置有温度感应单元,当所述温度感应单元感应到的水温超过用户的设定出水温度时,可以通过打开所述第二端口,调节第二端口或者同时调节第一端口和第二端口的开度,以使从所述温度调节装置5的第三端口流入罐体2的水温度接近用户的设定出水温度。当流入所述罐体2的水接近用户的设定出水温度时,利用该温度的水与气混合得到的气液混合物也接近用户的设定温度。此时无需或者只需向所述气液混合物中混入少量的冷水即可达到用户设定的出水水温。当没有或者有少量的冷水加入所述微气泡水时,能够较好地保证气液混合物中气体的含量,有利于用户获得浓度较高的微气泡水。
在一种具体的应用场景下,从进水管进入的冷水可以直接通过所述冷水管15进入所述水泵,通过水泵增压后提供给所述罐体2。在上述情况下,提供给所述罐体2制备微气泡水的压力水全部由冷水管15提供,此时内胆11不向温度调节装置提供热水。此外,在另一种情况下,提供给所述罐体2制备微气泡水的压力水可以全部由内胆11提供,此时冷水管15不向温度调节装置进冷水。也就是说,通过水泵向罐体2提供的压力水全部是热水。
请参阅图11,在一个实施方式中,所述内胆11设置有用于进水的进水管111和用于出水的出水管112,所述水泵、所述罐体2设置在所述进水管111的上游;所述水泵设置在所述罐体2的上游。
在本实施方式中,所述内胆11设置有用于进水的进水管111,以及用于出水的出水 管112。从供水管路提供的常温水可以通过所述进水管111进入所述内胆11中被加热,然后加热后的水从所述出水管112流出。
在本实施方式中,所述水泵2可以设置在所述内胆11进水管111的上游。当所述水泵2设置在所述内胆11进水管111的上游时,内胆11中加热后的水不会流经所述水泵2。相对而言,流经所述水泵2的水为供水管路提供的常温水,因此,对于所述水泵2而言,没有耐高温的要求。此外,由于流经所述水泵2的水为常温水,水中的钙镁等离子不易析出,因此其内部不容易结垢。
在本实施方式中,所述罐体2也可以设置在所述内胆11进水管111的上游,所述水泵的下游。当所述罐体2位于所述水泵至所述内胆11进水管111之间时,内胆11中加热后的水不会流经所述罐体2。相对而言,流经所述罐体2的水为供水管路提供的常温水,因此,对于所述罐体2而言,没有耐高温的要求。此外,由于流经所述罐体2的水为常温水,水中的钙镁等离子不易析出,因此其内部不容易结垢。
请参阅图12,在一个实施方式中,所述内胆11设置有用于进水的进水管111和用于出水的出水管112,所述水泵、所述罐体2设置在所述出水管112的下游;所述水泵设置在所述罐体2的上游。
在本实施方式中,所述内胆11设置有用于进水的进水管111,以及用于出水的出水管112。从供水管路提供的常温水可以通过所述进水管111进入所述内胆11中被加热,然后加热后的水从所述出水管112流出。
在本实施方式中,所述水泵、所述罐体2可以设置在所述出水管112的下游。
当所述水泵设置在所述出水管112下游时,其提供的压力水可以直接提供给罐体2,而不用经过所述内胆11。当所述水泵提供的压力水不经过内胆11后,其可以精确控制流入罐体2的水的压力,避免该水因流经内胆11时受到内胆11胆内压力的波动干扰。
当所述罐体2设置在所述出水管112的下游时,从所述罐体2流出的气液混合物能够经过所述压力调节装置4后释放压力,形成微气泡水直接供给向用户的用水终端。相对而言,当从罐体2设置在所述出水管112下游时,从其流出的气液混合物不流经所述内胆11,一方面可以让用户在短时间内获得微气泡水;另一方面,也可以避免所述气液混合物进入所述内胆11后被内胆11中存储的水稀释或者被加热件13加热,产生升温的温度波动干扰。
请参阅图13,在一个实施方式中,所述内胆11设置有用于进水的进水管111和用于出水的出水管112,所述水泵设置在所述内胆11中,所述罐体2设置在所述出水管112 的下游。
在本实施方式中,所述内胆11设置有用于进水的进水管111,以及用于出水的出水管112。从供水管路提供的常温水可以通过所述进水管111进入所述内胆11中被加热,然后加热后的水从所述出水管112流出。
在本实施方式中,所述水泵可以设置在所述内胆11中,所述罐体2可以设置在所述出水管112的下游。
当所述水泵设置在所述内胆11中时,可以减小所述热水器系统的体积,降低所述热水器系统所需的占用空间,有利于结构的小型化。具体的,所述水泵可以设置在所述内胆11出水管上。当所述水泵位于所述出水管112上时,其可以将内胆11中加热的热水抽入出水管112中,加快内胆11中的热水流入所述出水管112的速率。
当所述罐体2设置在所述出水管112的下游时,从所述罐体2流出的气液混合物能够经过所述压力调节装置4后释放压力,形成微气泡水直接供给向用户的用水终端。相对而言,当从罐体2设置在所述出水管112下游时,从其流出的气液混合物不流经所述内胆11,一方面可以让用户在短时间内获得微气泡水;另一方面,也可以避免所述微气泡水进入所述内胆11后被内胆11中存储的水稀释或者被加热件13加热,产生升温的温度波动干扰。
请参阅图14,在一个实施方式中,所述内胆11设置有用于进水的进水管111和用于出水的出水管112,所述水泵和所述罐体2均设置在所述内胆11内,所述水泵设置在所述罐体2上游,所述罐体2中的气液混合水能从所述出水管112流出所述内胆11。
在本实施方式中,所述内胆11设置有用于进水的进水管111,以及用于出水的出水管112。从供水管路提供的常温水可以通过所述进水管111进入所述内胆11中被加热,然后加热后的水从所述出水管112流出。
在本实施方式中,所述水泵和所述罐体2均可以设置在所述内胆11内。
当所述水泵设置在所述内胆11中时,可以减小所述热水器系统的体积,降低所述热水器系统所需的占用空间,有利于结构的小型化。具体的,所述水泵可以设置在所述内胆11出水管上。当所述水泵位于所述出水管上时,其可以将内胆11中加热的热水抽入出水管中,加快内胆11中的热水流入所述出水管的速率。
当所述罐体2也设置在所述内胆11中时,可以进一步减小所述热水器系统的体积,降低所述热水器系统所需的占用空间,有利于结构的小型化。具体的,所述罐体2可以设置在所述出水管上,且位于所述水泵的下游。例如,所述罐体2的进口可以为两个。 其中一个进口可以用于进水;另一个进口可以用于进气。所述用于进气的进口上可以设置有导管24,所述导管24伸入所述罐体2内部,以便于向罐体2内供应用于制备微气泡水所需要的气体。
请参阅图15,在一个实施方式中,所述内胆11设置有用于进水的进水管111和用于出水的出水管112,所述罐体2设置在所述内胆11的内部,所述水泵设置在所述进水管111的上游。
在本实施方式中,所述内胆11设置有用于进水的进水管111,以及用于出水的出水管112。从供水管路提供的常温水可以通过所述进水管111进入所述内胆11中被加热,然后加热后的水从所述出水管112流出。
在本实施方式中,所述罐体2设置在所述内胆11的内部,所述水泵设置在所述进水管111的上游。
当所述罐体2设置在所述内胆11中时,可以进一步减小所述热水器系统的体积,降低所述热水器系统所需的占用空间,有利于结构的小型化。具体的,所述罐体2的进口与所述出水管相连,且位于所述水泵的下游。例如,所述罐体2的进口可以为两个。其中一个进口和出水管连通,用于进水;另一个进口可以用于进气。所述用于进气的进口上可以设置有导管24,所述导管24伸入所述罐体2内部,以便于向罐体2内供应用于产生微气泡水所需要的气体。
在本实施方式中,所述水泵2可以设置在所述内胆11进水管111的上游。当所述水泵2设置在所述内胆11进水管111的上游时,内胆11中加热后的水不会流经所述水泵2。相对而言,流经所述水泵2的水为供水管路提供的常温水,因此,对于所述水泵2而言,没有耐高温的要求。此外,由于流经所述水泵2的水为常温水,水中的钙镁等离子不易析出,因此其内部不容易结垢。
请参阅图16,在一个实施方式中,所述内胆11包括相对的第一端和第二端,在靠近所述第一端或第二端位置设置有端盖,所述端盖与所述内胆11的第一端或第二端配合形成所述罐体2。
在本实施方式中,所述内胆11可以整体呈中空的圆柱体,当然,其还可以为其他形状,本申请在此并不作具体的限定。所述内胆11具有相对的两端,分别为第一端和第二端。一般的,所述内胆11的第一端、第二端中至少一个具有一定的弧度,而非平板结构。
在本实施方式中,可以在靠近所述具有弧度的第一端或第二端位置设置有端盖。所述端盖与所述内胆11的第一端或第二端配合能够形成罐体2结构。由于形成的所述罐体 2侧壁一部分利用所述内胆11具有弧度的端面,有效利用所述具有弧度的端面外的空间,即利用原本不能被利用的零散空间用于设置了罐体2,有利于热水器系统体积的缩小,结构的紧凑、小型化。
请参阅图17,在一个实施方式中,所述内胆11包括相对的第一端和第二端,所述第一端或第二端为内凹面,面对所述内凹面设置端盖,所述端盖与所述内凹面配合形成所述罐体2。
在本实施方式中,所述内胆11可以整体呈中空的圆柱体,当然,其还可以为其他形状,本申请在此并不作具体的限定。所述内胆11具有相对的两端,分别为第一端和第二端。其中,所述内胆11的第一端、第二端中至少一个为内凹面,而非平面结构。
在本实施方式中,可以利用该内凹面,在面对所述内凹面位置设置端盖。所述端盖与所述内凹面配合形成所述罐体2。由于形成的所述罐体2侧壁一部分利用所述内胆11具有内凹面的端面,即利用原本不能被利用的内凹面外的零散空间设置了罐体2,有利于热水器系统体积的缩小,结构的紧凑、小型化。
请参阅图18,在一个实施方式中,所述内胆11包括相对的第一端和第二端,所述第一端或第二端为内凹面,所述罐体2的至少部分外壁面与所述内凹面相适配并设置在所述内凹面处。
在本实施方式中,所述内胆11可以整体呈中空的圆柱体,当然,其还可以为其他形状,本申请在此并不作具体的限定。所述内胆11具有相对的两端,分别为第一端和第二端。其中,所述内胆11的第一端、第二端中至少一个为内凹面,而非平面结构。
在本实施方式中,可以在所述内凹面位置设置有罐体2。所述罐体2的至少部分外壁面与所述内凹面相适配并设置在所述内凹面处。其中,所述罐体2的至少部分外壁面的弧度可以与所述内凹面的弧度相同或相接近。当所述罐体2与所述具有内凹面的一端固定时,两者能够相吻合。
在本实施方式中,可以基于内胆11端部的内凹面形状设置相应的端盖形状,使得所述端盖的部分外壁面与所述内凹面配合。由于形成的所述罐体2侧壁设置在所述内胆11具有内凹面的端面上,即利用原本不能被利用的内凹面外的零散空间设置了罐体2,有利于热水器系统体积的缩小,结构的紧凑、小型化。
请参阅图19至图20,在一个实施方式中,所述热水器系统还可以包括控制装置,所述罐体2的个数为至少一个。所述罐体2上设置有进口和出口;所述热水器系统至少具有能使所述罐体2向用水终端提供微气泡水的第一工作状态和能对所述罐体2排空补 气的第二工作状态;在所述第一工作状态下,所述控制装置能控制所述罐体2的进口与所述水泵相连通,控制所述罐体2的出口与用水终端相连通;在所述第二工作状态下,所述控制装置能控制所述罐体2的进口与气路相连通,控制所述罐体2的出口与排水管路相连通。
在本实施方式中,所述热水器系统可以设置有控制装置,其可以用于对所述罐体2的进口和出口的连接状态进行控制,以改变所述热水器系统的工作状态。
在本实施方式中,所述罐体2的个数可以为一个。所述罐体2上可以设置有进口和出口。在所述罐体2的进口、出口位置可以设置有控制阀。所述控制阀可以与所述控制装置电性连接。所述控制装置通过控制所述控制阀的连通状态进而可以控制所述罐体2的工作状态。具体的,所述热水器系统可以具有使所述罐体2处于提供微气泡水的第一工作状态和使所述罐体2处于排空补气的第二工作状态。
如图19所示,在所述第一工作状态下,所述控制装置可以控制所述罐体2的进口与所述水泵相连通,控制其出口与用水终端相连通。此时相应的,用户可以进行用水,所述水泵为所述微气泡水流动提供动力,使其流至用户用水终端,供用户使用。
当所述罐体2中的微气泡水被用完或者接近用完时,可以利用用户非用水时段在所述罐体2中重新制备微气泡水。
如图20所示,所述控制装置控制所述罐体2处于排空补气状态。具体的,控制所述罐体2的进口与气路相连通,控制其出口与排水管路相连通,以将所述罐体2中充满气体。当压力水进入所述罐体2时,可以与所述罐体2中的气体混合重新生成微气泡水。
请结合参阅图21,在一个实施方式中,所述罐体2还包括通过并联方式连接的第一罐体2a、第二罐体2b。所述第二罐体2a上设置有进口和出口。
所述热水器系统具有能使所述第一罐体2a向用水终端提供微气泡水的第一工作状态和能对所述第一罐体2a排空补气的第二工作状态;还具有能使所述第二罐体2b向用水终端提供微气泡水的第三工作状态和能对所述第二罐体2b排空补气的第四工作状态。
在所述第一工作状态下,所述控制装置能控制所述第一罐体2a的进口与所述水泵相连通,控制所述第一罐体2a的出口与用水终端相连通;在所述第二工作状态下,所述控制装置能控制所述第一罐体2a的进口与气路相连通,控制所述第一罐体2a的出口与排水管路相连通。
在所述第三工作状态下,所述控制装置能控制所述第二罐体2b的进口与所述水泵相连通,控制所述第二罐体2b的出口与用水终端相连通;在所述第四工作状态下,所述控 制装置能控制所述第二罐体2b的进口与气路相连通,控制所述第二罐体2b的出口与排水管路相连通。
在本实施方式中,所述罐体2的个数可以为两个或两个以上,本申请在此并不作具体的限定。例如,所述罐体2的个数可以为两个,包括第一罐体2a、第二罐体2b。其中,所述第一罐体2a的具体设置和控制原理可以参照上述实施方式中的描述,本申请在此不再赘述。此外,单个所述第二罐体2b的具体设置和控制原理与所述第一罐体2a的类似,也可以参照上述实施方式中的描述。
请参阅图21至图22,所述热水器系统还可以包括与所述控制装置电性连接的控制阀6,所述控制装置根据第一预定信号,控制所述控制阀6使所述热水器系统切换至第一工作状态和第四工作状态,或者控制所述热水器系统切换至第二工作状态和第三工作状态。
在本实施方式中,所述热水器系统可以包括与所述控制装置电性连接的控制阀6。所述控制阀6可以设置在所述罐体2的进口、出口位置。所述控制装置可以根据第一预定信号控制所述控制阀6的连通状态,切换所述热水器系统的工作状态。
具体的,所述第一预定信号可以为时间信号、通过检测单元获得的流量信号、罐体2中的液位信号、气液混合物中气体的浓度信号中的至少一种。当然所述第一预定信号还可以为其他形式,本申请在此并不作具体的限定。
例如,当所述第一预定信号为时间信号时,可以从用户开始用水时进行计时,推算罐体中剩余微气泡水的体积。至一个罐体中的微气泡水接近用完时,通过控制阀6切换至使用另一个罐体。如图21或22所示,其中,当一个罐体在使用时,另一个罐体可以处于排空补气状态,以便于通过两个罐体之间的切换能够向用户持续提供微气泡水。
例如,当所述第一预定信号为通过检测单元获得的流量信号时,其控制的原理与计时的方式类似。可以在水流流通的主路上设置流量检测单元,用于检测流量信号。从用户开始用水时进行计时,根据时间和流量的关系确定罐体中的液位。当一个罐体中水位达到预定水位,例如接近用完时,通过控制阀6切换至使用另一个罐体。其中,当一个罐体在使用时,另一个罐体可以处于排空补气状态,以便于通过两个罐体之间的切换能够向用户持续提供微气泡水。
请参阅图23,在一个具体的实施方式中,所述控制阀6包括第一四通阀和第二四通阀,所述第一罐体2a和第二罐体2b上均设置一个进口和一个出口;所述第一四通阀的第一端口与内胆11出水管连通,第二端口与第一罐体2a的进口连通,第三端口与气路 连通,第四端口与第二罐体2b的进口连通;所述第二四通阀的第一端口与用水终端连通,第二端口与第一罐体2a的出口连通,第三端口与排水管路连通,第四端口与第二罐体2b的出口连通;所述控制装置根据第一预定信号,控制所述第一四通阀的第一端口与第二端口连通,控制所述第二四通阀的第一端口与第二端口连通,同时所述控制装置控制所述第一四通阀的第三端口与第四端口连通,控制所述第二四通阀的第三端口与第四端口连通;或者所述控制装置根据所述第一预定信号,控制所述第一四通阀的第一端口与第四端口连通,控制所述第二四通阀的第一端口与第四端口连通,同时所述控制装置控制所述第一四通阀的第二端口与第三端口连通,控制所述第二四通阀的第二端口与第三端口连通。
在本实施方式中,所述控制阀6可以包括第一四通阀和第二四通阀,通过所述第一四通阀和第二四通阀的切换实现第一罐体2a和第二罐体2b连续向用户供应微气泡水。
具体的,如图23所示,所述第一罐体2a可以处于过水状态,其进口通过第一四通阀与内胆11的出水管连通,其出口通过第二四通阀连通有压力调节装置4,当用户打开用水终端时,通过所述第一罐体2a向用户提供微气泡水。此时所述第二罐体2b的进口与进气口相连通,其出口与排水口相连通,处于补气排水状态。
当所述第二罐体2b中的水排空后,即气补满后,其进口和出口可以封闭。
进一步的,可以将所述第二罐体2b的进口与所述内胆11的出水管相连通,使得压力水通过所述进口进入所述第二罐体2b中,与所述第二罐体2b中的气混合形成气液混合物。
当所述第一罐体2a中微气泡水的体积小于预定值后,可以将所述第二罐体2b的出口通过第二四通阀与压力调节装置4连通,此时所述第一罐体2a、第二罐体2b处于同时过水的状态下,即两者能同时向用户终端供水。
当所述第一罐体2中的微气泡水的体积为零或者接近零时,可以将所述第一罐体2a封闭,此时,由第二罐体2b单独向用户终端供水。
进一步的,可以将所述第一罐体2a的出口与排水管相连通,将所述第一罐体2a中的压力泄出,同时将罐体中的积水排出。
在所述第二罐体2b处于过水状态下,所述第一罐体2a的进口可以与进气口相连通,以便补入气液混合所需的气体。
进一步的,所述第二罐体2b重复上述第一罐体2a的变化过程,包括:当罐体中的气体充满后,先封闭一段时间;然后其进口通过第一四通阀与内胆11的出水管相连通, 进行气液混合,制备微气泡水;再接着,当所述第二罐体2b中的微气泡水体积小于预定体积时,所述第一罐体2a的出口通过第二四通阀与压力调节装置4相连通,从而向用户终端提供微气泡水;当所述第二罐体2b中的微气泡水已经用完或者接近用完时,可以由所述第一罐体2a单独供水。
在所述第一罐体2a单独供水时,所述第二罐体2b的出口可以通过第二四通阀与排水管相连通,以将第二罐体2b中的积水和压力排出,如此循环往复,实现第一罐体2a与第二罐体2b连续向用户终端供水。
在本实施方式中,通过两个四通阀实现了两个并联罐体连续向用户终端供水的功能,其不仅结构紧凑,所需成本较低,且控制时简单可靠。另外,在所述第一罐体2a、第二罐体2b切换过程中,设置有第一罐体2a与第二罐体2b同时过水的状态,相比与由一个罐体过水直接切换为另一个罐体过水的情况,上述切换的方式,两个罐体之间切换能平稳过渡,有利于用户获得一个稳定舒适的用水体验。
请参阅图24至图25,在一个实施方式中,所述热水器系统还可以包括与所述罐体2并联的旁通管路7,所述旁通管路7具有相对的入口端和出口端,所述热水器系统具有第五工作状态;在所述第五工作状态下,所述控制装置能根据第二预定信号控制旁通管路7的入口端与所述水泵相连通以使水自所述旁通管路7流向用水终端。
在本实施方式中,所述热水器系统还可以设置有与所述罐体2并联的旁通管路7,所述旁通管路7用于向用水终端提供经内胆11加热后的水。具体的,所述旁通管路7具有相对的入口端和出口端,其入口端可以和内胆11的出水管相连通,其出口端可以与出水终端相连通。
在本实施方式中,所述热水器系统还可以包括第五工作状态,所述第五工作状态可以为内胆11中的水通过所述旁通管路7提供给用户的状态。当所述控制装置接收到所述第二预定信号时,可以控制旁通管路7的入口端与所述水泵相连通以使水自所述旁通管路7流向用水终端。具体的,所述第二预定信号可以为时间信号、通过检测单元获得的流量信号、罐体2的液位信号、气液混合物中气体的浓度信号中的至少一种。此外,所述第二预定信号还可以为对应的用水终端被开启时所产生的信号,或者为根据用户的临时设定而产生的信号。当然所述第二预定信号还可以为其他形式,本申请在此并不作具体的限定。
在一个具体的实施方式中,在所述第五工作状态下,所述控制装置能控制所述旁通管路7的入口端与所述水泵相连通,控制所述旁通管路7的出口端与出水管连通。
在本实施方式中,所述热水器系统还可以包括第五工作状态,所述第五工作状态可以为内胆11中的水通过所述旁通管路7提供给用户的状态。当所述热水器系统需要进入第五工作状态时,所述控制装置可以控制旁通管路7的入口端与所述水泵相连通,控制所述旁通管路7的出口端与出水管连通,以使水自所述旁通管路7流向用水终端。
请参阅图26,在一个具体的实施方式中,所述热水器系统还可以包括与所述控制装置电性连接的控制阀6,所述控制装置根据检测到的第二预定信号,控制所述控制阀6使所述热水器系统切换至第一工作状态或控制所述热水器系统切换至第五工作状态和第二工作状态。
在本实施方式中,所述热水器系统还可以包括与所述控制装置电性连接的控制阀6,通过控制所述控制阀6的通断状态,实现所述罐体2与旁通管路7供水的切换。
当所述控制装置接收到所述第二预定信号时,可以通过控制控制阀6实现控制旁通管路7过水或所述罐体2过水。具体的,所述第二预定信号可以为时间信号、通过检测单元获得的流量信号、罐体2的液位信号、气液混合物中气体的浓度信号中的至少一种。此外,所述第二预定信号还可以为对应的用水终端被开启时所产生的信号,或者为根据用户的临时设定而产生的信号。当然所述第二预定信号还可以为其他形式,本申请在此并不作具体的限定。
具体的,如图26所示,所述旁通管路7可以处于过水状态,热水器系统中的水通过所述旁通管路7流向用户终端;此时,所述罐体2的进口可以与进气口相连通,其出口可以与排水管相连通,此时所述罐体2处于进气排水状态。当所述罐体2进气完毕后,可以通过所述控制阀6将其进口和出口封闭。进一步的,所述罐体2的进口可以与压力水相连通,从而进入罐体2,并与罐体2内的气体相混合形成气液混合物。
当所述罐体2中微气泡水制备完成后,可以通过控制阀6将所述罐体2的出口与出水管相连通,进而所述使得所述罐体2处于过水状态。
当所述罐体2处于过水状态后,可以通过控制阀6将所述旁通管路7封闭。
当所述罐体2中微气泡水的体积小于预定值时,可以通过所述控制阀6将所述旁通管路7重新接入,使其处于过水状态。
接着,可以通过所述控制阀6将所述罐体2进行密封。然后通过所述控制阀6将所述罐体2的出口与排水管连通,从而对所述罐体2泄压排水,如此循环往复,实现罐体2与旁通管路7的切换。
在本实施方式中,通过控制阀6可以实现罐体2与旁通管路7的切换,当罐体2过 水时,用户能够获得微气泡水,当所述旁通管路7过水时,用户能获得普通的热水,用户可以根据需要进行选择,例如洗浴或洗蔬菜瓜果时,可以控制罐体2过水,从而能使用微气泡水进行洗涤,达到理想的清洗功能;当对水的清洁功能要求不高时,可以用普通的水。
在一个实施方式中,所述加热单元1设置有用于进水的进水口和用于出水的出水口;所述增压装置3为水泵;所述水泵设置在所述进水口的上游,所述罐体2设置在所述出水口的下游。
在本实施方式中,所述加热单元1能用于对水进行加热。所述加热单元1的形式可以根据具体的热水器类型的不同而不同,本申请中在此并不作具体的限定。例如,当所述热水器为电热水器时,所述加热单元1可以包括内胆及内胆中的电加热棒;当所述热水器为燃气热水器时,所述加热单元1可以包括燃烧器和换热器。
所述加热单元1设置有进水的进水口和用于出水的出水口。从供水管路提供的常温水可以通过所述进水口进入所述加热单元1中被加热,然后被加热后的水从所述出水口流出。
在本实施方式中,所述水泵可以设置在所述加热单元1的上游。当所述水泵设置在所述加热单元1的上游时,经加热单元1加热后的水不会流经所述水泵。相对而言,流经所述水泵的水为供水管路提供的常温水,因此,对于所述水泵而言,没有耐高温的要求。此外,由于流经所述水泵的水为常温水,水中的钙镁离子不易析出,因此其内部不容易结垢。
在本实施方式中,所述罐体2可以设置在所述加热单元1的下游。当从罐体2设置在所述加热单元1下游时,从其流出的微气泡水不流经所述加热单元1,一方面缩短了微气泡水的流通路径,可以让用户在短时间内获得微气泡水;另一方面,也可以避免所述微气泡水进入所述加热单元1中存储的水稀释或者被加热单元1加热,产生升温的温度波动干扰。
在一个实施方式中,所述加热单元1设置有用于进水的进水口和用于出水的出水口;所述增压装置3为水泵;所述水泵、所述罐体2设置在所述出水口的下游。
在本实施方式中,所述加热单元1能用于对水进行加热。所述加热单元1的形式可以根据具体的热水器类型的不同而不同,本申请中在此并不作具体的限定。例如,当所述热水器为电热水器时,所述加热单元1可以包括内胆及内胆中的电加热棒;当所述热水器为燃气热水器时,所述加热单元1可以包括燃烧器和换热器。
所述加热单元1设置有进水的进水口和用于出水的出水口。从供水管路提供的常温水可以通过所述进水口进入所述加热单元1中被加热,然后被加热后的水从所述出水口流出。
在本实施方式中,所述水泵可以设置在所述加热单元1出水口的下游。当所述水泵设置在所述加热单元1出水口下游时,其提供的压力水可以直接提供给罐体2,而不用经过所述加热单元1,进而有利于精确控制流入罐体2的水的压力,避免该水因流经加热单元1时受到其内压力的波动干扰。
在本实施方式中,所述罐体2可以设置在所述加热单元1的下游。当从罐体2设置在所述加热单元1下游时,从其流出的微气泡水不流经所述加热单元1,一方面缩短了微气泡水的流通路径,可以让用户在短时间内获得微气泡水;另一方面,也可以避免所述微气泡水进入所述加热单元1中存储的水稀释或者被加热单元1加热,产生升温的温度波动干扰。
在一个实施方式中,所述加热单元1设置有用于进水的进水口和用于出水的出水口;所述增压装置3为水泵;所述水泵、所述罐体2设置在所述进水口的上游。
在本实施方式中,所述加热单元1能用于对水进行加热。所述加热单元1的形式可以根据具体的热水器类型的不同而不同,本申请中在此并不作具体的限定。例如,当所述热水器为电热水器时,所述加热单元1可以包括内胆及内胆中的电加热棒;当所述热水器为燃气热水器时,所述加热单元1可以包括燃烧器和换热器。
所述加热单元1设置有进水的进水口和用于出水的出水口。从供水管路提供的常温水可以通过所述进水口进入所述加热单元1中被加热,然后被加热后的水从所述出水口流出。
在本实施方式中,所述水泵可以设置在所述加热单元1的上游。当所述水泵设置在所述加热单元1的上游时,经加热单元1加热后的水不会流经所述水泵。相对而言,流经所述水泵的水为供水管路提供的常温水,因此,对于所述水泵而言,没有耐高温的要求。此外,由于流经所述水泵的水为常温水,水中的钙镁离子不易析出,因此其内部不容易结垢。
在本实施方式中,所述罐体2可以设置在所述加热单元1的上游。当所述罐体2设置在所述加热单元1的上游时,经加热单元1加热后的水不会流经所述罐体2。相对而言,流经所述罐体2的水为供水管路提供的常温水,因此,对于所述罐体2而言,没有耐高温的要求。此外,由于流经所述罐体2的水为常温水,水中的钙镁离子不易析出, 因此其内部不容易结垢。
请参阅图27,在一个实施方式中,所述加热单元1包括:能够流通水流的换热器12,以及用于对所述换热器12中的水流进行加热的燃烧器14。
在本实施方式中,所述热水器系统可以为燃气热水器系统。具体的,所述加热单元1可以包括:换热器12和燃烧器14。其中,所述换热器12中流通有待加热的水,其一端与进水端相连通,另一端与出水端相连通。所述燃烧器14可以用于对所述换热器12中的水流进行加热。
在一个实施方式中,所述热水器系统还可以包括设置在所述罐体2下游的压力调节装置4。
在本实施方式中,所述压力调节装置4用于将罐体2至所述压力调节装置4之间的压力维持在预定的范围内。具体的,所述压力调节装置4的形式可以为压力调节阀中的一种,例如自力式压力调节阀;也可为液压压力控制阀6,例如溢流阀;也可以为压力可以控制的电子膨胀阀、热力膨胀阀等,或者还可以为其他形式,本申请在此并不作具体的限定。
在本实施方式中,当所述水泵开启运行时,设置在所述罐体2下游的压力调节装置4能够控制所述罐体2至所述压力调节装置4之间的水压在预定压力范围内。具体的,所述压力调节装置4的控制原理可以根据所述压力调节装置4的具体结构的不同而不同,本申请在此并不作具体的限定。
请参阅图27,在一个具体的实施方式中,所述换热器12设置有用于进水的进水口121和用于出水的出水口122;所述增压装置3为水泵;所述水泵设置在所述进水口121的上游,所述罐体2设置在所述出水口122的下游。
在本实施方式中,所述水泵设置在所述进水口121的上游,所述罐体2设置在所述出水口122的下游对应的技术效果可以参见水泵设置在加热单元1上游、罐体2设置在所述加热单元1下游的实施方式,本申请在此不再赘述。
请参阅图28,在一个具体的实施方式中,所述换热器12设置有用于进水的进水口121和用于出水的出水口122,所述增压装置3为水泵;所述水泵、所述罐体2设置在所述进水口121的上游。
在本实施方式中,所述水泵、所述罐体2设置在所述进水口121的上游对应的技术效果可以参见水泵、罐体2设置在加热单元1上游的实施方式,本申请在此不再赘述。
请参阅图29,在一个具体的实施方式中,所述换热器12设置有用于进水的进水口 121和用于出水的出水口122,所述增压装置3为水泵;所述水泵、所述罐体2设置在所述出水口121的下游。
在本实施方式中,所述水泵、所述罐体2设置在所述出水口121的下游对应的技术效果可以参见水泵、罐体2设置在加热单元1下游的实施方式,本申请在此不再赘述。
在一个实施方式中,所述加热单元1中或所述加热单元1至所述压力调节装置4之间还设置有温度调节装置5。
在本实施方式中,所述加热单元1中或所述加热单元1至所述压力调节装置4之间设置温度调节装置5的方式和达到的技术效果可以参见所述出水管112与所述压力调节装置4之间或所述出水管112上的温度调节装置5的实施方式,本申请在此不再赘述。
请参阅图18至图19,在一个实施方式中,所述罐体2的个数为一个,所述增压装置为水泵,所述热水器系统还包括控制装置,所述热水器系统至少具有能使所述罐体2向用水终端提供微气泡水的第一状态和能对所述罐体2排空补气的第二状态;所述控制装置能根据第三预定信号控制所述罐体2的进口与所述水泵相连通,控制其出口与用水终端相连通,使所述热水器系统具有通过所述罐体2向出水管提供微气泡水的第一状态;或能控制所述罐体2的进口与气路相连通,控制其出口与排水管路相连通,使所述热水器系统具有能对所述罐体2进行排空补气的第二状态。
在本实施方式中,所述热水器系统可以设置有控制装置,其可以用于对所述罐体2的进口和出口的连接状态进行控制,以改变所述热水器系统的工作状态。其中,所述罐体2的个数可以为一个。所述控制阀可以设置在所述罐体2的进口、出口位置。所述控制阀可以与所述控制装置电性连接。所述控制装置通过控制所述控制阀的连通状态进而可以控制所述罐体2的工作状态。具体的,所述热水器系统可以具有使所述罐体2处于提供微气泡水的第一状态和使所述罐体2处于排空补气的第二状态。其中,具体所述控制装置通过控制阀的实现对所述罐体2的状态的具体控制方式以及达到的效果可以参见上述带内胆的实施方式,本申请在此不再赘述。
请参阅图21至图22,在一个实施方式中,所述罐体包括通过并联方式连接的第一罐体2a和第二罐体2b,所述热水器系统还包括与所述控制装置电性连接的控制阀6,所述控制阀6设置在所述第一罐体2a、第二罐体2b的进口、出口之间,所述控制装置能根据所述第三预定信号,控制所述控制阀6的连通状态,以使所述第一罐体2a、第二罐体2b中的至少一个能向用水终端提供微气泡水。
在本实施方式中,通过并联的方式设置双罐的具体方式以及达到的效果与上述带内 胆的实施方式的类似,本申请在此不再赘述。
具体的,所述第三预定信号包括下述中的至少一种:时间信号、通过检测单元获得的流量信号、罐体2的液位信号、气液混合物中气体的浓度信号。
在本实施方式中,所述第三预定信号的具体的含义、获取方式可以参照所述第一预定信号,本申请在此不再赘述。
请参阅图24至25,在一个实施方式中,所述热水器系统还包括与所述罐体2并联的旁通管路7,所述旁通管路7具有相对的入口端和出口端,在所述热水器系统处于第二状态下时,所述控制装置控制所述旁通管路7的入口端与所述水泵相连通,控制所述旁通管路7的出口端与出水管连通。
在本实施方式中,罐体2与旁通管路7并联的具体方式以及达到的效果与上述带内胆的实施方式的类似,本申请在此不再赘述。
请参阅图26,在一个实施方式中,所述热水器系统还包括与所述控制装置电性连接的控制阀6,所述控制装置根据第四预定信号,控制所述控制阀6的连通状态,使所述热水器系统在所述第一状态或第二状态之间切换。
在本实施方式中,所述控制装置根据接收到达第四预定信号,控制所述控制阀6的连通状态,使所述热水器系统在所述第一状态或第二状态之间切换的具体实现方式和实现的效果可以参照带内胆的实施方式,本申请在此不再赘述。其中,所述第四预定信号可以参照所述第二预定信号,本申请在此也不再赘述。
请结合参阅图1和图30,本申请实施方式中还提供一种热水器系统,其可以包括:能对水进行加热的加热单元1;能与所述加热单元1连通的罐体2;导入机构8,能够与所述罐体2连通,并且用于将流入其内的流体导入到所述罐体2存储有气体的区域,并将导入的流体与罐体2中的气体进行气液混合;能为所述罐体2加压的增压源,所述增压源能提供使所述罐体2中的气体和水进行混合的压强。
在本实施方式中,所述增压源可以为所述罐体2中的气体和水进行混合提供所需的压强。具体的,该增压源可以包括下述中的至少一种:能与所述罐体2连通并且能够对流入罐体2内的水提供预定压力的增压装置3、具有预定压力的水等。同样的,所述加热单元1、罐体2与上述实施方式中的相同,本申请在此不再赘述。
其中,所述罐体2上设置有至少一个进口21和出口,所述进口21上可以穿设有所述导入机构8,所述导入机构8能供气体、水中的至少一种进入所述罐体2;所述罐体2的导入机构8上游设置有供水管路和供气管路,所述导入机构8能与所述供水管路、所 述供气管路连通,所述增压源为增压装置3,所述增压装置3与所述供水管路、所述供气管路连通。
此外,所述加热单元1和罐体2等部件的具体结构和连接可以参照上述实施方式,具体的本申请在此不再赘述。在一个实施方式中,所述热水器系统还可以包括控制装置,所述热水器系统至少具有能使所述罐体2向用水终端提供微气泡水的第一工作状态和能对所述罐体2排空补气的第二工作状态;在所述第二工作状态下,所述控制装置能控制所述罐体2的导入机构8与气路相连通,控制所述罐体2的出口与排水管路相连通,以将所述罐体2中的水排出并同时补入空气;在所述第一工作状态下,所述控制装置能控制所述罐体2的导入机构8与所述供水管路相连通,控制所述罐体2的出口与用水终端相连通,在所述增压源的作用下,所述罐体2中的气体和水进行气液混合。
其中,在对所述罐体2排水补气时,在所述增压源为增压装置3的情况下,所述增压装置3可以打开,利用增压装置3增压作用进行注气和排水,以提高排水补气效率。此外,当所述增压源为压力水的情况下,可以利用重力自然排水补气,当罐体2的出口打开时,罐体2内的水可以在重力作用下排出,同时,气体可以从进口21进入所述罐体2内,从而完成排水补气。
其中,控制装置的具体形式和控制原理可以参照上述实施方式中的具体描述,本申请在此不再赘述。
进一步的,为了提高气液混合的效果,所述导入机构8上设有射流结构。该射流结构可以将导入机构8中导入的流体进行增压,从而使所述罐体2中的气体与流体进行气液混合时达到较佳的混气效果。具体的,所述射流结构可以为在所述导入机构8的出口处形成的变截面积部211。所述变截面积部211的截面积整体上小于所述导入机构8整体管体的截面积。
如图31A所示,所述变截面积部211可以为在所述导入机构8出口处形成的椭圆形开口。
或者,如图31C所示,所述变截面积部211可以为在所述导入机构8出口210处形成的孔径小于所述导入机构的管体孔径的圆形开口。
或者,如图31B所示,所述变截面积部211可以为在所述导入机构8出口处形成的十字型开口。
或者,如图31D所示,所述导入机构8的出口端为封闭端,所述变截面积部211可以为在靠近所述导入机构8出口210的管壁上形成的多个开孔。
此外,所述变截面积部211还可以其他形式,本申请在此并不作具体的限定,所属领域技术人员在本申请的技术精髓启示下,还可能做出其他的变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
请参阅图32,本申请实施方式中基于所述热水器系统,还相应提供了一种热水器系统的控制方法,所述方法可以包括如下步骤:
步骤S10:控制供气单元与罐体相连通,将气体自所述供气单元输入所述罐体内,同时将所述罐体中的水排出;
步骤S12:当排出的水或者供入的气体达到预定量时,控制导入机构与供水管路连通,所述导入机构将流入其内的流体导入到所述罐体存储有气体的区域并与所述罐体中的气体进行气液混合,同时增压源对所述罐体中的气体和水进行气液混合施加预定压力。
其中,所述增压源对所述罐体中的气体和水进行气液混合施加预定压力包括:利用预定压力的水的压力对所述罐体中的气体和水进行气液混合施加预定压力;或者,
启动增压装置对进入所述罐体中的水施加预定压力,同时对所述罐体中的气体和水进行气液混合施加预定压力。
在本实施方式中,所述热水器系统的控制方法中所描述的各个结构的功能等可以参照热水器系统实施方式的具体描述,本申请在此不再赘述。此外,所述热水器系统的控制方法能够达到与所述热水器系统相同的技术效果,具体的,请参照热水系统的实施方式的具体描述,本申请在此不再赘述。
本发明提供一种热水器系统,能够在实现气液混合,以生成微气泡水供用户使用,不仅能节水环保,供水清洁性能强,且整体结构所需占用空间较小,较佳地满足了用户的各种需求。
请结合参阅图33,本申请实施方式中提供的一种热水器系统可以包括:内胆2;与所述内胆2连接的罐体1,增压源和加热件20。所述内胆2能够存储预定量的气体和水,所述罐体1能够存储预定量的气体和水;所述内胆2能与所述罐体1连通形成储气机构;所述增压源与储气机构连接,所述增压源能对所述储气机构内的气体进行压缩,和为所述储气机构内的气体和液体进行混合时提供压力。
在本实施方式中,所述内胆2可以用于装水,或者装气,或者水与气的混合物等。所述内胆2整体上可以为中空的圆柱型壳体。当然,所述内胆2还可以为其他形状,本申请在此并不作具体的限定。此外,根据所述内胆2的安装方式分类,所述内胆2可以为横式内胆2也可以为竖式内胆2等,本申请在此并不作具体的限定。
所述内胆2还可以设置有能对内胆2中的水加热的加热件20。具体的,所述加热件20的形式可以根据实际的使用场景的不同而不同,本申请中在此并不作具体的限定。例如,当所述热水器为储水式电热水器时,所述加热件20可以为电加热棒。所述电加热棒一端可以固定在内胆2上,另一端向内胆2的水中延伸。所述电加热棒与内胆2中的水接触,其电加热产生的热能传递给内胆2中的水后,能将内胆2内的水加热。
所述内胆2上可以设置有第一管21和第二管22。所述第一管21具有伸入所述内胆2的第一端口210,所述第二管22具有伸入所述内胆2的第二端口220。所述第一管21、第二管22分别与所述内胆2相连通,其中一根可以用于进水,另一根可以用于出水。其中,所述第一端口210与所述第二端口220所在高度可以不同,例如,所述第一管21对应的第一端口210的高度可以高于所述第二端口220的高度。
在本实施方式中,所述罐体1可以用于装水,或者装气,或者水与气的混合物。所述罐体1能与所述内胆2相连通。所述罐体1的形状可以为中空的圆柱型,其具有相对的顶端和底端。所述顶端、底端可以设置有圆弧过渡。所述罐体1在使用位置下,其顶端在上、底端在下。当然,所述罐体1的形状还可以为其他形式,本申请在此并不作具体的限定。
所述罐体1上设有能够与内胆2存储气体区域连通的输入管31和能够与用户终端连通的输出管31,所述输入管31具有连通所述罐体1内的进口,所述输出管31具有连通所述罐体1的出口。
如图34A至图34B所示,所述罐体1上可以设置有一个输入管31,即设置有至少一个进口。其中一个进口可以通过管路与所述内胆2相连通,以便能供内胆2中的气体或水中的至少一种进入所述罐体1。当所述罐体1上设置有一个进口时,所述进口既可以用于流通气体,也可以用于流通液体。当所述罐体1上设置有多个进口时,每个进口可以实现不同的功能,例如一个用于进气,一个用于进水等。此外,所述罐体1上的输出管的个数可以为至少一个,相应的,出口个数也可以为一个或者多个,本申请在此并不作具体的限定。当所述出口的个数为一个时,其能与排液口12或用水终端相连通。
进一步的,所述进口和所述出口具有位置差,所述进口的位置高于出口的位置,从而使得所述进口伸入所述罐体1内,且高于所述罐体1内的液位,所述出口低于所述罐体1内的液位。
进一步的,为了提高气液混合的效果,在进口靠近所述罐体1内壁面和/或所述进口处可以设置设有射流结构,该射流结构可以将输入管31中导入的流体的进行增压,从而 使罐体1中的气体与液体进行气液混合时达到较佳的混气效果。
请参阅图36A至图36D,所述射流结构可以为在所述输入管31靠近所述进口310处形成的变截面积部311。
如图36A所示,所述变截面积部311可以为在所述输入管31的进口310处形成的椭圆形开口。
或者,如图36C所示,所述变截面积部311可以为在所述输入管31的进口310处形成的孔径小于所述输入管31管体孔径的圆形开口。
或者,如图36B所示,所述变截面积部311可以为在所述输入管31的进口310处形成的十字型开口。
或者,如图36D所示,所述进口310为封闭端,所述变截面积部311可以为在所述输入管31靠近所述进口310的管壁上形成的多个开孔。
此外,所述变截面积部311还可以其他形式,本申请在此并不作具体的限定,所属领域技术人员在本申请的技术精髓启示下,还可能做出其他的变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
在本实施方式中,所述内胆2能与所述罐体1连通形成储气机构,所述储气机构用于存储用于制备微气泡水所用的气体。具体的,所述储气机构除了包括能相互连通的内胆2和罐体1,还可以包括用于连接所述内胆2和罐体1的管路。
具体的,所述内胆2与罐体1可以沿着流体流动方向串联,当向所述储气机构中进行排水补气后,所述内胆2中可以存储有预定量的气体。具体的该预定量的气体可以根据实际的使用需求而设定,一般的,当用水量需求较大时,所述内胆2中存储的预定量的气体可以相对多些,甚至可以是全胆都存储气体;当用水量需求较小,所述内胆2中存储的预定量的气体可以相对少些,具体的,本申请在此并不作定量的限定。在优选的情况下,利用内胆2中存储的气体结合罐体1内的气体制备的微气泡水可以满足用户一次使用量即可。当向所述储气机构中进行排水补气时,在所述内胆2补气完成后,继而可以对所述罐体1进行补气。其中,在对所述罐体1进行补气的同时也完成了对内胆2与罐体1之间连接管路的排水补气。
当对所述储气机构完成排水补气后,可以利用增压源将所述储气机构内的气体进行压缩。具体的,可以将内胆2内预定量的气体压缩至罐体1内,并为所述储气机构罐体1内的气体和液体进行混合提供压力,以便制备得到微气泡水。
在本实施方式中,所述增压源能对所述储气机构内的气体进行压缩,和为所述储气 机构的内的气体和液体进行混合提供压力。具体的,所述增压源可以包括下述中的至少一种或其组合:泵3、具有预定压力的液体。其中,所述泵3可以为水泵,当所述水泵开启运行时,所述水泵可以为流经其的水增压,同时也可以为与其连通的罐体1增压,即在制备微气泡水时,所述水泵能提供气体和水进行混合时所需的压强。此外,所述水泵也可以作为热水器系统水循环的动力装置。一般的,热水器系统中可以设置有水泵以提供水循环的动力。
在本实施方式中,当所述增压源为水泵时,其可以利用热水器系统中现有的水泵,而不用再单独增设水泵,从而有利于节约成本,节省整个热水器系统的空间,优化产品结构。当然,所述增压源还可以为其他能够提供压力的增压装置的形式,具体的本申请在此并不作具体的限定。
此外,所述增压源还可以为具有预定压力的液体,例如带有一定压力的水,当该具有压力的水流向所述储气机构时,其可以将储气机构中的气体压缩,并且压力水与压缩的空气相冲撞时可以较好地实现气液混合。
在本实施方式中,所述热水器系统可以包括:对所述储气机构排水补气的第一状态以及压缩所述储气机构中的气体并在所述储气机构中进行气体和液体相混合的第二状态;相应的,在所述第一状态下,所述内胆2和罐体1能连通形成储气机构;在所述第二状态,所述增压源能对所述储气机构中的气体进行压缩,和为所述储气机构内的气体和液体相混合提供压力。
具体的,热水器系统在使用时的第一状态为对储气机构排水补气的排水补气状态,通过对储气机构进行排水补气,以将制备微气泡所需的气体补充入所述热水器系统的储气机构中。热水器系统在使用时的第二状体为压缩所述储气机构中的气体并在所述储气机构中进行气液混合的气液混合状态。
其中,所述气液混合时,可以在将内胆2中的预定量气体压缩至所述罐体1中,然后在在所述增压源作用下的水能通过所述进口喷入所述罐体1中与罐体1中的气体相混合,所述罐体1中进行气液混合,以制备得到微气泡水供给用户终端。
如图34B所示,具体的,所述罐体1具有相对的顶端和底端,所述罐体1在使用时一般顶端在上,底端在下。所述罐体1中设置有自所述底端向顶端伸入的管体,所述进口由所述管体靠近所述顶端的端口形成。使用时,当所述罐体中储存有气体时,在增压源增压作用下的压力水通过所述管体向上喷出,首先与罐体中的气体发成初步接触,达到一定的溶气效果;进一步的与罐体靠近顶端的内壁发生碰撞后压力水向各个方向扩散, 形成液滴、液膜并向水下冲击时卷入空气,实现较好的二次溶气。由于上述实施方式中,所述压力水能撞击罐体的内壁后再与气体发生二次溶气,相对而言,气溶效率较高,从而缩短微气泡制备的时间。
当然,也可以将所述罐体1中的气体压缩至内胆2中,然后在所述内胆2中进行气液混合;或者可以分别在所述内胆2和罐体1中进行气液混合,具体的,气液混合的方式和混合的位置本申请在此并不作具体的限定。
所述热水器系统还可以包括设置在所述储气机构下游的压力调节装置4。
所述压力调节装置4可以设置在整个热水器系统的下游位置,所述压力调节装置4用于将储气机构至其本身之间的压力维持在预定的范围内。具体的,所述压力调节装置4的形式可以为压力调节阀中的一种,例如自力式压力调节阀,例如释气装置等,也可为液压压力控制阀,例如溢流阀,也可以为压力可以控制的电子膨胀阀、热力膨胀阀等,或者还可以为其他形式,具体的,所述压力调节装置4的控制原理可以根据所述压力调节装置4的具体结构的不同而不同,本申请在此并不作具体的限定。
请参阅图35A,例如在沿着流体流动的方向上,设置有至少一级变孔径结构,该压力调节装置4包括一个中空的管体,其管体内设置有至少一个节流部件。该节流部件可以为孔径小于该管体内径的结构。此外,在所述节流板上沿着流体流动方向上可以依次开设有开孔个数依次增多的流通孔,使得整体上沿着流体流动方向上,流通截面积逐级增大。流体流经该节流机构时,由于流通截面积突然变小,其流体的压力会相应增大,从而能实现压力维持的功能。
请参阅图35B,所述压力调节装置4还可以设置有流通截面积变化的背压弹簧,或者其他节流机构,本申请在此不作具体的限定。所属领域技术人员在本申请的技术精髓启示下,还可能做出其他的变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
其中,所述预定压力为储气机构中气液混合所需的压力,有利于微气泡的生成和维持。例如,当所述增压源为水泵,所述水泵设置在所述内胆2的上游,当所述水泵开启运行时,所述压力调节装置4能将所述水泵至所述压力调节装置4之间的压力维持在0.2兆帕以上。当通过所述压力调节装置4控制所述水泵至所述压力调节装置4之间的压力在0.2兆帕以上时,所述预定压力为内胆2中气液混合所需的压力,有利于微气泡的生成和维持。具体的,一方面当所述压力在在0.2兆帕以上时,有利于更多的空气溶解在水中,形成溶度较大的微气泡水;另一方面,有利于所述微气泡水在管路中流动时,维 持微气泡水的状态,防止水中的气泡逐渐变大。
当然,所述预定压力的范围也并不限于上述列举,所属领域技术人员在本申请技术精髓的启示下,还可以做出其他的变更,但只要其实现的功能和达到的效果与本申请相同或相似,均应涵盖于本申请保护范围内。
所述热水器系统还可以包括用于检测所述热水器系统压力的压力检测装置。
当在所述罐体1中进行气液混合时,所述压力检测装置可以包括:用于检测所述罐体1内的压力是否达到预定工作压力的第一压力检测装置81和用于检测所述罐体1内的压力是否低于预定保压压力的第二压力检测装置82。
其中,所述第一压力检测装置81和第二压力检测装置82可以设置在所述罐体1连通的管路上,例如可以设置在所述罐体1至所述压力调节装置4之间的管路上。所述第一压力检测装置81和第二压力检测装置82可以与控制器电性连接。当所述第一压力检测装置81检测到的所述罐体1的压力达到预定工作压力时,此时所述控制器才可能控制所述热水器系统进入气液混合的第二状态,进行气液混合。当所述第而压力检测装置检测到的所述罐体1的压力低于保压压力时,所述控制器能控制所述热水器系统停止气液混合的第二状态,从而能够保证该热水器系统能够稳定地制备微气泡水。
所述微气泡是指尺寸在几个或者几十个微米的气泡。微气泡的表面在水中带有微弱的负电荷,能够吸附油脂、蛋白质等物质,从而将它们带离皮肤和毛发等。当使用带微气泡的微气泡水进行洗浴时,每分钟有大量的微小气泡可以深入到毛发根部等原本难以清理的部位,将堆积在这里的,例如皮脂、油脂等污垢彻底清除。
此外,所述微气泡水还具有独特的杀菌的作用。具体的,所述微气泡水的杀菌过程包括吸引与杀灭两个过程,所述微气泡带有静电,其可以吸附水体中的细菌与病毒;然后,随着气泡的破裂,于气泡周围激发大量的自由基及破裂所产生的超高温高压,把吸附的细菌病毒杀死。上述杀灭的过程是一个完全的物理杀灭过程与常规的消毒杀菌法有着本质的区别,所以相对于常规的化学杀菌而言更环保健康。
本申请所述的热水器系统通过将在内胆2中存储预定量的气体,并且将内胆2和罐体1进行组合,当内胆2与罐体1连通时能形成储气机构,所述储气机构内用于制备微气泡水的气体包括内胆2中存储的预定量的气体和罐体1中的气体以及内胆2与罐体1之间的连接管路之间的气体。由于该储气机构借助了内胆2以及内胆2与罐体1之间的管路进行储气,因此,所述罐体1的体积可以大大缩小,从而使得该热水器系统整体结构所需占用空间较小,对安装位置要求低,能够实现在满足用户正常的微气泡水使用需 求的同时能够较佳地节约用户的室内空间的目的。
此外,所述内胆2中存储的预定量的气体可以根据用户的使用需求进行适应性调节,当用户用水量较大时,可以将内胆2中存储的气体的量调节得大些,当用户用水量较小时,可以将内胆2中存储的气体的量调节得小些,从而满足了不同用户的各种需求。
如图33所示,在一个实施方式中,所述内胆2与罐体1沿着流体流动方向串联,所述增压源能对所述储气机构的内胆2内的气体压缩至罐体1内提供压力和为所述储气机构罐体1内的气体和液体进行混合时提供压力。
在本实施方式中,所述内胆2与罐体1在沿着流体流动方向上相串联形成所述储气机构,流体包括:水或气能进入所述内胆2后通过内胆2与罐体1之间的管路进入所述罐体1中。当所述内胆2和罐体1串联组成的储气机构完成排水补气后,所述增压源能对所述储气机构的内胆2内的气体压缩至罐体1内提供压力和为所述储气机构罐体1内的气体和液体进行混合时提供压力。其中,相对于单纯依靠罐体1进行溶气的方式而言,可以将罐体1的体积大大缩小。例如,当需要6升的气体时,可以将4升甚至更多的气体存储在内胆2中。当进行气液混合时,将该内胆2中的气体压缩进该罐体1中进行气液混合即可。
在本实施方式中,所述热水器系统还可以包括能与所述储气机构相连通的进气口11、供水口13及排液口12。其中,所述进气口11用于流通向所述储气机构供给的气体,所述供水口13用于流通向所述储气机构供给的水,所述排液口12用于将所述储气机构补气时将其内部预定的水排出。其中,所述进气口11、供水口13、排液口12的设置位置和个数本申请在此并不作具体的限定。例如,所述进气口11的个数可以为一个,也可以为两个或多个,所述排液口12的个数可以为一个,也可以为两个或多个。
在一个实施方式中,所述进气口11可以设置在所述内胆2的上游,所述排液口12可以设置在所述罐体1的下游。
当所述热水器系统进行排水补气时,通过所述进气口11可以将气依次补充入内胆2中和罐体1中;通过所述排液口12可以将所述内胆2和罐体1中的水依次从所述排液口12中排出。其中,所述进气口11的个数可以为一个,所述排液口12的个数可以为一个,从而使得整体上所述热水器系统的减少了不必要的开口,优化了结构,从而降低了成本;同时也可以尽可能减少后续气液混合时压力的泄漏点。
在一个实施方式中,所述进气口11包括第一进口和第二进口,所述第一进口设置在所述内胆2的上游,所述第二进口设置在所述罐体1的上游;所述排液口12包括第一出 口和第二出口,所述第一出口设置在所述内胆2的下游,所述第二出口设置在所述罐体1的下游。
在本实施方式中,所述进气口11的个数可以为多个,例如所述进气口11可以包括第一进口和第二进口,其中,所述第一进口可以设置在所述内胆2的上游,用于向所述内胆2供气;所述第二进口可以设置在所述罐体1的上游,用于向所述罐体1供气。所述排液口12的个数也可以为多个,例如所述排液口12可以包括第一出口和第二出口,其中所述第一出口可以设置在所述内胆2的下游,用于将所述内胆2中预定量的水排出,所述第二出口可以设置在所所述罐体1的下游,用于将所述罐体1中的水排出。
在一个实施方式中,所述热水器系统还可以包括:用于控制储气机构排水补气量的检测件,与所述检测件电性连接的控制器;以及与所述控制器电性连接且用于控制所述进气口11、排液口12及供水口13通断的开关装置。
在本实施方式中,所述开关装置、所述检测件与所述控制器电性连接,所述控制器可以根据所述检测件获取的电信号,控制所述开关装置的开闭从而实现所述进气口11、排液口12和供水口13的通断。其中,所述开关装置可以为能够控制管路连通或断开的电磁阀的形式,例如可以为气动开关阀或电动开关阀等,具体的,本申请在此并不作具体的限定。具体的,所述开关装置包括多个电磁阀,其能在在第一状态时,控制所述进气口11打开、所述排液口12打开、所述供水口13关闭;在第二状态时,控制所述进气口11关闭、所述排液口11关闭、所述供水口13打开。
具体的,所述检测件可以为下述中的任意一种或其组合:流量检测件、液位检测件。
其中,当所述检测件为流量检测件时,具体的该流量检测件可以为能够获取管路中流量信息的流量传感器83。该流量传感器83可以设置在所述内胆2上游的供水管路上。当所述控制器获取该流量传感器83的流量信号后,结合时间信号可以确定出流体的流量,进而判断出内胆2中是否已经达到需要达到的预定液位,若达到则向所述开关装置发出相应的控制信号,以改变开关装置的开闭状态。
当所述检测件为液位检测件时,具体的该液体检测件可以为能够获取内胆2中液位信号的液位计。该液位计设置所述内胆2中,可以用于获取内胆2中的液位信号并将该液位信号提供给控制器。控制器可以根据该液位信号确定出内胆2中的液位,并判断该液位是否已经达到需要达到的预定液位,若达到则向所述开关装置发出相应的控制信号,以改变开关装置的开闭状态。
此外,当注入的气体流量为已知的流量值时,所述检测件还可以为能对输入储气机 构内的气体时间进行统计的计时器。当然,所述检测件的具体形式并不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可以做出其他的变更,但只要其实现的功能和达到的效果与本申请相同或相似,均应涵盖于本申请保护范围内。
如图33所示,在一个具体的实施方式中,所述热水器系统还可以包括能与所述第一管21、第二管22、系统上游管路、及罐体1连通的第一切换阀5。其中,所述系统上游管路位于所述内胆2的上游,且能与所述进气口11、供水口13相连通。所述第一切换阀5用于改变所述第一管21、第二管22与所述系统上游管路、罐体1的连通关系,以切换所述热水器系统的工作状态。
所述热水器系统的工作状态可以包括对所述储气机构排水补气的第一状态以及压缩所述储气机构中的气体并在所述储气机构中进行气体和液体相混合的第二状态。
其中,所述第一状态可以包括:对所述内胆2排水补气的第一子状态和对所述罐体1排水补气的第二子状态。
在所述第一子状态下,所述开关装置控制所述进气口11、排液口12打开,控制所述供水口13关闭,同时所述第一切换阀5将所述进气口11与所述第一管21连通且所述第二管22与所述罐体1连通;气体能依次通过所述进气口11、所述第一管21进入并存储在所述内胆2中。
当控制器接收到检测件检测到的表示所述内胆2中补气完成,液位下降到预定液位时,给所述第一切换阀5发出控制信号,使得所述热水器系统进入对罐体1排水补气的第二子状态。
在所述第二子状态下,所述第一切换阀5将所述进气口11与所述第二管22连通且所述第一管21与所述罐体1连通,气体能依次通过所述进气口11、所述第二管22及所述内胆2进入并存储在所述罐体1中。当所述罐体1中完成排水补气后,所述热水器系统可以进入气液混合的第二状态。所述第二状态的启动可以由用户打开用水终端后触发,也可以通过其他触发信号触发,例如,可以是在所述罐体1中完成排水补气后的预定时长后,或者可以是表示罐体1中的液位为零时,或者可以根据学习用户的用水习惯,在用户需要用水之前的预定时长前。此外,所述热水器系统进入所述第二状态的触发条件还可以为其他,本申请在此并不作具体的限定。
在所述第二状态下,所述开关装置控制所述进气口11和排液口12关闭,控制所述供水口13关闭,同时所述第一切换阀5将所述供水口13与所述第二管22连通且所述第一管21与所述罐体1连通,所述增压源为所述热水器系统提供预设工作压力。
当所述内胆2与所述罐体1沿着流体方向顺次连通时,所述热水器系统在工作时,可以依次对内胆2、罐体1进行排水补气。其中对所述内胆2进行排水补气时,可以将所述第一管21作为进气管,所述第二管22作为排水管。其中,所述第一管21伸入内胆2中的第一端口210的高度高于内胆2的预定液位。该预定液位与所述内胆2中需要补入的气体量或需要排出的水量相对应。当内胆2中补入的气体量到达该预定液位时,可以通过所述第一切换阀5进行切换,使得第二管22与进气口11相连通,通过所述第二管22进行进气;使得所述第一管21与所述罐体1相连通。从进气口11进入的气体通过所述第二管22进入所述内胆2中,与内胆2中的水接触后,通过所述第一管21的第一端口210通入所述罐体1中,使得罐体1中的水排出,并充满空气。在此过程中,从所述进气口11进入的内胆2的气体能够与所述内胆2中的水进行混合,使得内胆2中的水融入一定的气体。
进一步的,当完成对所述储气机构的排水补气之后,可以将所述第二管22与供水口13相连通,向所述内胆2中进行供压力水。压力水通过第二管22进入所述内胆2中后,可以将内胆2预定液位以上的气体进行压缩进罐体1中。当液位到达所述第一管21的第一端口210后,可以通过所述第一管21的第一端口210将混有气的水压进所述罐体1中,进行气液混合,以制备微气泡水,供给用户终端。
在本实施方式中,所述第一切换阀5可以包括与系统上游管路连通的第一接口51,与第二管22连通的第二接口52,与罐体1连通的第三接口53,及与第一管21连通的第四接口54。具体的,所述第一切换阀5可以为四个接口之间能够两两组合连通的四通阀,当然,所述第一切换阀5还可以其他阀的形式,本申请在此并不作具体的限定。
在第一状态时,所述第一切换阀5的第一接口51和第四接口54连通,第二接口52和第三接口53连通。此时,所述第一管21远离所述第一端口210的一端与所述第四接口54相连通,所述第二管22远离所述第二端口220的一端与所述第二接口52相连通。气体能够通过进气口11进入所述系统上游管路、第一切换阀5的第一接口51至第四接口54,通过所述第一管21进入所述内胆2中,通过所述第二管22将内胆2中的水依次通过第一切换阀5的第二接口52至第三接口53、罐体1至排液口12排出。
当到达预定液位时,所述第一切换阀5的第一接口51和第二接口52连通,第三接口53和第四接口54相连通。此时,所述第二管22远离其第二端口220的一端和第二接口52相连通;所述第一管21远离其第一端口210的一端与所述第四接口54相连通。气体能够通过进气口11进入所述系统上游管路、第一切换阀5的第一接口51至第二接口 52,通过所述第二管22进入所述内胆2中,然后通过所述第一管21将气体通过第一切换阀5的第四接口54至第三接口53至罐体1,同时将罐体1中的水从排液口12排出。
在第二状态时,所述第一切换阀5的第一接口51和第二接口52连通,第三接口53和第四接口54连通。在所述第二状态下时,所述第一切换阀5的接口连通关系可以维持不变。供水口13的水可以通过所述第二管22进入所述内胆2中,并通过所述第一管21将内胆2中的气体压入所述罐体1中,并通过所述第一管21将水压入所述罐体1中,以便与罐体1中的气体进行气液混合。
在本实施方式中,由于在气液混合时,充分利用了内胆2中以及内胆2与罐体1连接的管路中存储的气体,再加上内胆2中的水在给内胆2补气时气与水冲撞融入了一定的气体,因此,相对于单纯的利用罐体1进行储气进行气液混合的方式而言,能够大大缩小罐体1的体积,从而节约成本和使得整个热水器系统小型化。
在另一实施方式中,所述内胆2中可以设置有用于控制内胆2中液位的液位限定机构。
具体的,所述液位限定机构可以为单独设置在所述内胆2中的第三管23,所述第三管23具有伸入内胆2中的第三端口230,所述第三端口230的位置与内胆2中的预定液位相齐平。或者,所述液位限定机构还可以为设置在所述内胆2的第一管21上的一个开口,所述开口的位置与内胆2中的预定液位相齐平。当然,所述液位限定机构的形式并不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可以做出其他的变更,但只要其实现的功能和达到的效果与本申请相同或相似,均应涵盖于本申请保护范围内。
当设置所述液位限定机构后,可以通过所述液位限定机构直接控制所述内胆2中的补气量和排水量,此时可以省略检测件的设置。其中,所述液位限定机构可以为单独设置在所述内胆2中的第三管23,切该第三管23伸入内胆2中的端口位置在预顶液位处,或者可以是在所述第一管21上开设一开口,该开口的位置位于预定液位处,或者还可以为其他能控制所述内胆2排水补气时的液位的结构,本申请在此并不作具体的限定。
请参阅图37或图38,在一个具体的实施方式中,所述的热水器系统还可以包括:与所述内胆2连通的第三管23,所述第三管23具有伸入所述内胆2的第三端口230,所述第三端口230的高度位于所述内胆2的预定液位处且低于所述第一端口210并高于所述第二端口220。
在本实施方式中,可通过设置有伸入内胆2的第三端口230的第三管23限定所述内 胆2中的补气量和排水量。具体的,所述第三端口230的高度位于所述内胆2的预定液位处且低于所述第一端口210并高于所述第二端口220。
在本实施方式中,所述第二管22可以与所述供水口13连通。所述系统还可以包括能和所述第一管21、第三管23以及所述罐体1相连通的第二切换阀6。所述第二切换阀6用于改变所述第一管21、第三管23与所述罐体1的连通关系,以切换所述热水器系统的工作状态。
所述热水器系统的包括的工作状态与上述实施方式中的相同,具体的,可以包括对储气机构排水补气的第一状态和气液混合的第二状。其中,所述第一状态可以包括:对所述内胆2排水补气的第一子状态和对所述罐体1排水补气的第二子状态。
其中,在所述第一子状态下,所述第二切换阀6将所述第三管23与所述罐体1相连通;气体能依次通过所述进气口11、所述第二管22进入并存储在所述内胆2中。在所述第二子状态下,所述第二切换阀6将所述第一管21与所述罐体1相连通,气体能依次通过所述进气口11、所述第二管22和第一管21进入并存储在所述罐体1中。在所述第二状态下,所述第二切换阀6将所述第一管21与所述罐体1相连通,供水口13中的水能够通过所述第二管22进入内胆2,将所述内胆2中的气体压缩进入罐体1中,并将压力水注入罐体1中,进行气液混合,以制备微气泡水,供给用户终端。
请参阅图37,在本实施方式中,所述第二切换阀6包括与第一管21连通第一阀口61,与第三管23连通的第二阀口62,及与所述罐体1连通的第三阀口63。具体的,所述第二切换阀6可以为三个阀口能两两组合连通的三通阀,此外,所述第二切换阀6可以与缩水第一切换阀5相同,为四通阀等。当然,所述第二切换阀6还可以为其他阀的形式,本申请在此并不作具体的限定。
在所述第一状态的第一子状态时,所述第一阀口61和第三阀口63断开,以防止注入内胆2中的气体依次通过所述第一管21、罐体1、排液口12向外泄出。同时,所述第二阀口62与第三阀口63连通,以便所述第三管23能与所述罐体1相连通;同时所述开关装置控制进气口11和排液口12打开,供水口13关闭。从所述进气口11进入的气体通过所述第二管22进入所述内胆2,并将内胆2中预定量的水通过所述第三管23排至所述罐体1,经过所述排液口12排出。
在所述第一状态的第二子状态时,所述第一阀口61和第三阀口63连通,以便所述第一管21与所述罐体1相连通,从所述进气口11进入的气体通过所述第二管22进入所述内胆2,并将气体通过所述第一管21注入所述罐体1中,从而将罐体1中以及内胆2 与罐体1之间的连接管路中也充满气体。与此同时,所述第二阀口62可以与所述第三阀口63相连通,以便所述第三管23与所述罐体1相连通。此时,从所述第二管22进入所述内胆2中的气体可以从所述第三管23进入所述罐体1中。
在所述第一状态下的第二子状态时,至少要保证所述第一管21、第三管23中的至少一根与所述罐体1相连通,以便将气体注入罐体1中同时将罐体1中的水排出。当对罐体1排水补气时,所述第一管21、第三管23同时与所述罐体1相连通,可以提供排水补气的效率。
在所述第二状态时,所述第一阀口61和第三阀口63连通,以便通过所述第一管21将内胆2中的气体压缩至所述罐体1中,另外,也可以通过所述第一管21将压力水注入所述罐体1中,以便进行气液混合。
在一个实施方式中,所述热水器系统在所述内胆2与所述罐体1之间还可以设置有温度调节机构。所述温度调节机构的入口侧一方面能与所述供冷水的供水口13相连通,另一方能够与所述内胆2的出水端相连通,其出口侧与所述罐体1相连通。也就是说,所述温度调节机构可以通过调节所述入口侧进入的冷水和内胆2提供的热水的比例,向所述罐体1提供温度适宜的水制备微气泡水,当用户打开用水终端时,可以直接获得温度适宜浓度较高的微气泡水。也就是说,避免了因内胆2中温度过高,造成微气泡水的温度过高,进一步为了获得温度适宜的微气泡水而向微气泡水中直接掺入冷水,造成微气泡水的稀释的问题。
请参阅图38,在一个具体的实施方式中,所述温度调节机构可以为第二切换阀6,所述第二切换阀6还可以包括与所述内胆2上游管路相连通的第四阀口64,在第二状态时,所述第二切换阀6的第一阀口61、第四阀口64与第三阀口63连通,并且根据预设温度调节第一阀口61、第四阀口64与第三阀口63的开度。
在本实施中,可以利用所述第二切换阀6实现温度调节的功能。具体的,所述第二切换阀6还可以包括与所述内胆2上游管路相连通的第四阀口64。当在第二状态下,所述供水口13打开后,从供水口13进入的水可以通过所述内胆2上游管路进入所述第四阀口64,从而进入与该第四阀口64相连通的罐体1中。
在所述第二状态下,所述第二切换阀6的第二阀口62也与所述第三阀口63相连通。所述第一阀口61用于向所述罐体1提供内胆2中的热水,所述第四阀口64用于向所述罐体1提供供水口13流入的冷水。其中,所述热水器系统可以根据用户需求设置有预设温度,所述预设温度为用户期望用水终端流出的温度。此时,所述热水器系统的控制器 可以根据所述内胆2中的水温和供水口13提供的水温确定热水与冷水的混合比例,从而确定所述第二切换阀6的第一阀口61、第四阀口64与所述第三阀口63的开度比例,以保证用水终端流出温度适宜的微气泡水。
请参阅图39,在一个具体的实施方式中,所述第一管21还具有伸入所内胆2的开口211,所述开口211位于所述内胆2的预定液位处。
在本实施方式中,所述液位限定机构可以为所述具有所述开口211的第一管21。所述开口小于所述第一管21的第一端口210,具体的,所述开口211的流通面积与所述第一端口210的流通面积可以在预定的比例范围以内。
使用时,可以通过所述第二管22向所述内胆2中进行注气排水。当液位到达所述开口211位置时,持续注气一段时间,可以将气体和少量的水注入所述罐体1中,使得所述罐体1中充满气体。然后关闭进气口11和排液口12,打开供水口13,水通过所述第二管22注入所述内胆2中,并能通过所述第一管21的第一端口210将气压入所述罐体1中,并且后续可以通过所述第一端口210和开口向所述罐体1中注入压力水,实现气液混合,以制备得到微气泡水。
在本实施方式中也可以设置有温度调节装置7,所述温度调节装置7可以设置在所述内胆2与所述罐体1之间,其具体的连通关系以及实现的功能和作用可以参照上述实施方式,本申请在此不再赘述。
请参阅图40,在另一个实施方式中,所述罐体1可以位于所述内胆2中,相应的,所述输入管31位于所述内胆2中,所述输出管32的一端穿出所述内胆2。在本实施方式中,所述罐体1可以位于所述内胆2中,此时相应的,所述输入管31、罐体1与输出管32组成的串联机构可以实现上述实施方式中第一管21的功能。
上述实施方式除了能够实现制备微气泡水的功能外,整体上结构紧凑,可以节约出罐体1所占用的空间,进一步缩小了热水器系统所需占用的空间。
本说明书中的上述各个实施方式均采用递进的方式描述,各个实施方式之间相同相似部分相互参照即可,每个实施方式重点说明的都是与其他实施方式不同之处。
以上所述仅为本发明的几个实施例,虽然本发明所揭露的实施方式如上,但所述内容只是为了便于理解本发明而采用的实施方式,并非用于限定本发明。任何本发明所属技术领域的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施方式的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附权利要 求书所界定的范围为准。

Claims (70)

  1. 一种热水器系统,其特征在于,包括:
    能对水进行加热的加热单元;
    能与所述加热单元连通的罐体,所述罐体上设置有至少一个进口和出口,所述进口能供气体、水中的至少一种进入所述罐体;
    能为所述罐体加压的增压源,所述增压源能提供使所述罐体中的气体和水进行混合的压强。
  2. 如权利要求1所述的热水器系统,其特征在于,还包括设置在所述罐体下游的压力调节装置。
  3. 如权利要求1所述的热水器系统,其特征在于,所述增压源包括下述中的至少一种:能与所述罐体连通并且能够对流入罐体内的水提供预定压力的增压装置、具有预定压力的水。
  4. 如权利要求1所述的热水器系统,其特征在于,所述罐体的进口上游设置有供水管路和供气管路,所述进口能与所述供水管路和/或所述供气管路连通,所述增压源为增压装置,所述增压装置与所述供水管路和/或所述供气管路连通。
  5. 如权利要求4所述的热水器系统,其特征在于,所述增压装置与所述供水管路连通,所述增压装置为水泵。
  6. 如权利要求4所述的热水器系统,其特征在于,所述增压装置与所述供气管路连通,所述增压装置为气泵。
  7. 如权利要求3所述的热水器系统,其特征在于,所述加热单元包括:能够装水的内胆,以及用于对所述内胆中的水进行加热的加热件;所述增压源为增压装置,所述增压装置为水泵,所述水泵与所述内胆和所述罐体连通,所述水泵能驱动水流入所述罐体,并为罐体提供水与气混合时所需的压强;
    所述罐体下游设置有压力调节装置。
  8. 如权利要求7所述的热水器系统,其特征在于,所述内胆设置有用于进水的进水管和用于出水的出水管,
    所述水泵设置在所述进水管的上游,所述罐体设置在所述出水管的下游。
  9. 如权利要求7所述的热水器系统,其特征在于,所述内胆设置有用于进水的进水管和用于出水的出水管;
    所述热水器系统还包括设置在所述出水管与所述压力调节装置之间或所述出水管上的温度调节装置。
  10. 如权利要求9所述的热水器系统,其特征在于,还包括与所述进水管连通的冷水管,所述罐体设置在所述出水管的下游,所述温度调节装置设置在所述出水管与所述罐体之间,其包括与所述出水管连通第一端口和与所述冷水管连通的第二端口以及与所述罐体连通的第三端口。
  11. 如权利要求9所述的热水器系统,其特征在于,还包括与所述进水管连通的冷水管,所述罐体设置在所述出水管的下游,所述温度调节装置设置在所述罐体与所述压力调节装置之间,其包括与所述罐体连通的第一端口和与所述冷水管连通的第二端口以及与所述压力调节装置连通的第三端口。
  12. 如权利要求9所述的热水器系统,其特征在于,还包括与所述进水管连通的冷水管,所述罐体均设置在所述出水管的下游,所述温度调节装置设置在所述出水管与所述水泵之间,其包括与所述出水管连通的第一端口和与所属冷水管连通的第二端口及与所述水泵连通的第三端口。
  13. 如权利要求7所述的热水器系统,其特征在于,所述内胆设置有用于进水的进水管和用于出水的出水管,
    所述水泵、所述罐体设置在所述进水管的上游;所述水泵设置在所述罐体的上游。
  14. 如权利要求7所述的热水器系统,其特征在于,所述内胆设置有用于进水的进水管和用于出水的出水管,
    所述水泵、所述罐体设置在所述出水管的下游;所述水泵设置在所述罐体的上游。
  15. 如权利要求7所述的热水器系统,其特征在于,所述内胆设置有用于进水的进水管和用于出水的出水管,所述水泵设置在所述内胆中,所述罐体设置在所述出水管的下游。
  16. 如权利要求7所述的热水器系统,其特征在于,所述内胆设置有用于进水的进水管和用于出水的出水管,所述水泵和所述罐体均设置在所述内胆内,所述水泵设置在所述罐体上游,所述罐体中的气液混合水能从所述出水管流出所述内胆。
  17. 如权利要求7所述的热水器系统,其特征在于,所述内胆设置有用于进水的进水管和用于出水的出水管,所述罐体设置在所述内胆的内部,所述水泵设置在所述进水管的上游。
  18. 如权利要求7所述的热水器系统,其特征在于,所述内胆包括相对的第一端和第二端,在靠近所述第一端或第二端位置设置有端盖,所述端盖与所述内胆的第一端或第二端配合形成所述罐体。
  19. 如权利要求18所述的热水器系统,其特征在于,所述内胆包括相对的第一端和第二端,所述第一端或第二端为内凹面,面对所述内凹面设置端盖,所述端盖与所述内凹面配合形成所述罐体。
  20. 如权利要求7所述的热水器系统,其特征在于,所述内胆包括相对的第一端和第二端,所述第一端或第二端为内凹面,所述罐体的至少部分外壁面与所述内凹面相适配并设置在所述内凹面处。
  21. 如权利要求7所述的热水器系统,其特征在于:
    所述内胆为承压内胆,所述内胆的胆压范围为:0.1兆帕至0.8兆帕之间。
  22. 如权利要求7所述的热水器系统,其特征在于,还包括控制装置,
    所述罐体包括第一罐体,所述第一罐体上设置有进口和出口;
    所述热水器系统至少具有能使所述第一罐体向用水终端提供微气泡水的第一工作状态和能对所述第一罐体排空补气的第二工作状态;
    在所述第一工作状态下,所述控制装置能控制所述第一罐体的进口与所述水泵相连通,控制所述第一罐体的出口与用水终端相连通;
    在所述第二工作状态下,所述控制装置能控制所述第一罐体的进口与气路相连通,控制所述第一罐体的出口与排水管路相连通。
  23. 如权利要求22所述的热水器系统,其特征在于,所述罐体还包括与所述第一罐体并联的第二罐体,所述第二罐体上设置有进口和出口;
    所述热水器系统还具有能使所述第二罐体向用水终端提供微气泡水的第三工作状态和能对第二罐体排空补气的第四工作状态;
    在所述第三工作状态下,所述控制装置能控制所述第二罐体的进口与所述水泵相连通,控制所述第二罐体的出口与用水终端相连通;
    在所述第四工作状态下,所述控制装置能控制所述第二罐体的进口与气路相连通,控制所述第二罐体的出口与排水管路相连通。
  24. 如权利要求23所述的热水器系统,其特征在于,还包括与所述控制装置电性连接的控制阀,
    所述控制装置根据检测到的第一预定信号,控制所述控制阀使所述热水器系统切换至第一工作状态和第四工作状态,或者控制所述热水器系统切换至第二工作状态和第三工作状态。
  25. 如权利要求24所述的热水器系统,其特征在于,所述控制阀包括第一四通阀和第二四通阀,所述第一罐体和第二罐体上均设置一个进口和一个出口;
    所述第一四通阀的第一端口与内胆出水管连通,第二端口与第一罐体的进口连通,第三端口与气路连通,第四端口与第二罐体的进口连通;
    所述第二四通阀的第一端口与用水终端连通,第二端口与第一罐体的出口连通,第三端口与排水管路连通,第四端口与第二罐体的出口连通;
    所述控制装置根据第一预定信号,控制所述第一四通阀的第一端口与第二端口连通,控制所述第二四通阀的第一端口与第二端口连通,同时所述控制装置控制所述第一 四通阀的第三端口与第四端口连通,控制所述第二四通阀的第三端口与第四端口连通;
    或者所述控制装置根据第一预定信号,控制所述第一四通阀的第一端口与第四端口连通,控制所述第二四通阀的第一端口与第四端口连通,同时所述控制装置控制所述第一四通阀的第二端口与第三端口连通,控制所述第二四通阀的第二端口与第三端口连通。
  26. 如权利要求22所述的热水器系统,其特征在于,还包括与所述第一罐体并联的旁通管路,所述旁通管路具有相对的入口端和出口端,
    所述热水器系统具有第五工作状态;
    在所述第五工作状态下,所述控制装置能控制旁通管路的入口端与所述水泵相连通,以使水自所述旁通管路流向用水终端。
  27. 如权利要求26所述的热水器系统,其特征在于,在所述第五工作状态下,所述控制装置能控制所述旁通管路的入口端与所述水泵相连通,控制所述旁通管路的出口端与用水终端连通。
  28. 如权利要求26或27所述的热水器系统,其特征在于,还包括与所述控制装置电性连接的控制阀,
    所述控制装置根据检测到的第二预定信号,控制所述控制阀使所述热水器系统切换至第一工作状态或控制所述热水器系统切换至第五工作状态和第二工作状态。
  29. 如权利要求3所述的热水器系统,其特征在于,所述增压源为增压装置,所述增压装置为与所述加热装置和所述罐体连通的水泵,所述水泵包括第一水泵和第二水泵,所述第二水泵与所述第一水泵通过串联或并联的方式连接。
  30. 如权利要求2所述的热水器系统,其特征在于,所述压力调节装置能将所述罐体至所述压力调节装置之间的压力维持在0.1兆帕以上。
  31. 如权利要求1所述的热水器系统,其特征在于,所述加热单元设置有用于进水的进水口和用于出水的出水口;所述增压源为水泵;
    所述水泵设置在所述进水口的上游,所述罐体设置在所述出水口的下游,或者,
    所述水泵、所述罐体设置在所述进水口的上游;或者,
    所述水泵、所述罐体设置在所述出水口的下游。
  32. 如权利要求31所述的热水器系统,其特征在于,所述加热单元包括:能够流通水流的换热器,以及用于对所述换热器中的水流进行加热的燃烧器。
  33. 如权利要求31所述的热水器系统,其特征在于,所述热水器系统还包括设置在所述罐体下游的压力调节装置。
  34. 如权利要求33所述的热水器系统,其特征在于,所述加热单元中或所述加热单元至所述压力调节装置之间还设置有温度调节装置。
  35. 如权利要求1所述的热水器系统,其特征在于,所述罐体的个数为至少一个,所述增压源为水泵,所述热水器系统还包括控制装置,所述热水器系统至少具有能使所述罐体向用水终端提供微气泡水的第一状态和能对所述罐体排空补气的第二状态;
    所述控制装置能根据第三预定信号控制所述罐体的进口与所述水泵相连通,控制其出口与用水终端相连通,使所述热水器系统具有通过所述罐体向出水管提供微气泡水的第一状态;
    或能控制所述罐体的进口与气路相连通,控制其出口与排水管路相连通,使所述热水器系统具有能对所述罐体进行排空补气的第二状态。
  36. 如权利要求35所述的热水器系统,其特征在于,所述罐体包括通过并联方式连接的第一罐体和第二罐体,所述热水器系统还包括与所述控制装置电性连接的控制阀,所述控制阀设置在所述第一罐体、第二罐体的进口、出口之间,
    所述控制装置能根据所述第三预定信号,控制所述控制阀的连通状态,以使所述第一罐体、第二罐体中的至少一个能向用水终端提供微气泡水。
  37. 如权利要求35所述的热水器系统,其特征在于,还包括与所述罐体并联的旁通管路,所述旁通管路具有相对的入口端和出口端,
    在所述热水器系统处于第二状态下时,所述控制装置控制所述旁通管路的入口端与所述水泵相连通,控制所述旁通管路的出口端与用水终端连通。
  38. 如权利要求37所述的热水器系统,其特征在于,还包括与所述控制装置电性连接的控制阀,
    所述控制装置根据第四预定信号,控制所述控制阀的连通状态,使所述热水器系统在所述第一状态或第二状态之间切换。
  39. 如权利要求2所述的热水器系统,其特征在于,所述压力调节装置具有相对的入口端和出口端,其内部设置有压力调节机构,使所述入口端的压力大于所述出口端的压力。
  40. 一种热水器系统,其特征在于,包括:
    能对水进行加热的加热单元;
    能与所述加热单元连通的罐体;
    导入机构,能够与所述罐体连通,并且用于将流入其内的流体导入到所述罐体存储有气体的区域,并将导入的流体与罐体中的气体进行气液混合;
    能为所述罐体加压的增压源,所述增压源能提供使所述罐体中的气体和水进行混合的压强。
  41. 如权利要求40所述的热水器系统,其特征在于,
    所述罐体上设置有至少一个进口和出口,所述进口上穿设有所述导入机构,所述导入机构能供气体、水中的至少一种进入所述罐体;所述罐体的导入机构上游设置有供水管路和供气管路,所述导入机构能与所述供水管路、所述供气管路连通,所述增压源为增压装置,所述增压装置与所述供水管路、所述供气管路连通。
  42. 如权利要求41所述的热水器系统,其特征在于,还包括控制装置,
    所述热水器系统至少具有能使所述罐体向用水终端提供微气泡水的第一工作状态和能对所述罐体排空补气的第二工作状态;
    在所述第二工作状态下,所述控制装置能控制所述罐体的导入机构与气路相连通,控制所述罐体的出口与排水管路相连通,以将所述罐体中的水排出并同时补入空气;
    在所述第一工作状态下,所述控制装置能控制所述罐体的导入机构与所述供水管路 相连通,控制所述罐体的出口与用水终端相连通,在所述增压源的作用下,所述罐体中的气体和水进行气液混合。
  43. 一种热水器系统的控制方法,其特征在于,所述方法包括:
    控制供气单元与罐体相连通,将气体自所述供气单元输入所述罐体内,同时将所述罐体中的水排出;
    当排出的水或者供入的气体达到预定量时,控制导入机构与供水管路连通,所述导入机构将流入其内的流体导入到所述罐体存储有气体的区域并与所述罐体中的气体进行气液混合,同时增压源对所述罐体中的气体和水进行气液混合施加预定压力。
  44. 如权利要求43所述的控制方法,其特征在于,所述增压源对所述罐体中的气体和水进行气液混合施加预定压力包括:利用预定压力的水的压力对所述罐体中的气体和水进行气液混合施加预定压力;或者,
    启动增压装置对进入所述罐体中的水施加预定压力,同时对所述罐体中的气体和水进行气液混合施加预定压力。
  45. 一种热水器系统,其特征在于,包括:
    内胆,能够存储预定量的气体和水;
    罐体,与所述内胆连接,能够存储预定量的气体和水;所述内胆和罐体能够连通形成储气机构;
    增压源,能提供预定压力对所述储气机构内的气体进行压缩后和所述储气机构的内的水进行混合形成气液混合物;
    加热件,能够对内胆和罐体内的液体进行加热。
  46. 如权利要求45所述的热水器系统,其特征在于,所述增压源包括下述中的至少一种:与内胆连接并且能够对流入内胆内的水提供预定压力的泵、具有预定压力的水。
  47. 如权利要求45所述的热水器系统,其特征在于,所述内胆与罐体沿着流体流动方向串联形成所述储气机构,所述增压源能对所述储气机构的内胆内的气体压缩至罐体内提供压力和为在所述储气机构的罐体内进行气体和液体混合提供压力。
  48. 如权利要求47所述的热水器系统,其特征在于,所述罐体上设有能够与内胆存储气体区域连通的输入管和能够与用户终端连通的输出管,所述输入管具有连通所述罐体内的进口,所述输出管具有连通所述罐体的出口。
  49. 如权利要求48所述的热水器系统,其特征在于,所述进口靠近所述罐体内壁面和/或所述进口处设有射流结构。
  50. 如权利要求49所述的热水器系统,其特征在于,所述射流结构为在所述输入管靠近所述进口处形成的变截面积部。
  51. 如权利要求48所述的热水器系统,其特征在于,所述罐体位于所述内胆中,相应的,所述输入管位于所述内胆中,所述输出管的一端穿出所述内胆;
    或者,所述罐体位于所述内胆的外部,所述输入管能与所述内胆相连通。
  52. 如权利要求48所述的热水器系统,其特征在于,所述系统还包括分别与储气机构连接的系统上游管路和与用水终端相连接的下游管路,所述下游管路上还设置有压力调节装置,且所述压力调节装置位于所述罐体下游。
  53. 如权利要求52所述的热水器系统,其特征在于,所述压力调节装置具有相对的入口端和出口端,其内部设置有压力调节机构,使所述入口端的压力大于所述出口端的压力。
  54. 如权利要求52所述的热水器系统,其特征在于,所述罐体设置于内胆内,所述输出管伸出所述罐体外的一端与所述下游管路连接;
    或者,所述罐体设置于所述内胆的外部,并且设置于所述下游管路上,所述输出管与所述下游管路相连接,所述输入管能与所述内胆相连通。
  55. 如权利要求45所述的热水器系统,其特征在于,所述热水器系统还包括设置在所述内胆上的第一管和第二管,所述第一管具有伸入所述内胆的第一端口,所述第二管具有伸入所述内胆的第二端口,所述第一端口的高度高于所述第二端口的高度。
  56. 如权利要求55所述的热水器系统,其特征在于,所述热水器系统还包括能与所述储气机构相连通的进气口、供水口及排液口,以及与所述进气口、排液口及供水口连接的若干开关装置。
  57. 如权利要求56所述的热水器系统,其特征在于,所述系统包括对所述储气机构排水补气的第一状态以及压缩所述储气机构中的气体并在所述储气机构中进行气体和液体相混合的第二状态;相应的,
    在所述第一状态下,所述内胆和罐体分别能够存储预定量的气体和水,并且所述内胆和罐体能连通形成储气机构;
    在所述第二状态下,所述增压源能对所述储气机构中的气体进行压缩,和为所述储气机构内的气体和液体相混合提供压力。
  58. 如权利要求57所述的热水器系统,其特征在于,所述开关装置在所述第一状态时,控制所述进气口打开、所述排液口打开、所述供水口关闭;在所述第二状态时,控制所述进气口关闭、所述排液口关闭、所述供水口打开。
  59. 如权利要求58所述的热水器系统,其特征在于,还包括:能与所述第一管、第二管、系统上游管路、及罐体连通的第一切换阀;
    所述第一切换阀用于改变所述第一管、第二管与所述系统上游管路、及罐体的之间的连通关系,以切换所述热水器系统的工作状态。
  60. 如权利要求59所述的热水器系统,其特征在于,所述第一状态包括:对所述内胆排水补气的第一子状态和对所述罐体排水补气的第二子状态;
    在所述第一子状态下,所述第一切换阀将所述系统上游管路与所述第一管连通,且所述第二管与所述罐体连通;当达到第一预定液位时切换第一子状态到第二子状态;
    在所述第二子状态下,所述第一切换阀将所述系统上游管路与所述第二管连通,且所述第一管与罐体连通;当达到第二预定液位时间切换第二子状态到第二状态;
    在所述第二状态下,所述第一切换阀将所述供水口与所述第二管连通,且所述第一管与所述罐体连通。
  61. 如权利要求60所述的热水器系统,其特征在于,所述第一切换阀包括与输入管路连接的第一接口,与第二管连通的第二接口,与罐体连通的第三接口,及与第一管连通的第四接口;在第一状态的第一子状态时,所述第一切换阀的第一接口和第四接口连通,第二接口和第三接口连通;
    在第一状态的第二子状态时,所述第一切换阀的第一接口和第二接口连通,第三接口和第四接口连通;
    在第二状态时,所述第一切换阀的第一接口和第二接口连通,第三接口和第四接口连通。
  62. 如权利要求60所述的热水器系统,其特征在于,所述热水器系统还包括检测所述储气机构液位的若干检测装置,在所述第一状态时,所述若干检测装置分别用于检测第一预定液位和第二预定液位。
  63. 如权利要求57所述的热水器系统,其特征在于,还包括:与所述内胆连通的第三管,所述第三管具有伸入所述内胆的第三端口,所述第三端口的高度位于所述内胆的第一预定液位处且低于所述第一端口并高于或者等于所述第二端口。
  64. 如权利要求63所述的热水器系统,其特征在于,所述第二管能与所述系统上游管路连通,所述系统还包括能和所述第一管、第三管、以及所述罐体相连通的第二切换阀,所述第二切换阀用于改变所述第一管、第三管与所述罐体的连通关系,以切换所述热水器系统的工作状态。
  65. 如权利要求64所述的热水器系统,其特征在于,
    所述第一状态包括:对所述内胆排水补气的第一子状态和对所述罐体排水补气的第二子状态;
    在所述第一子状态下,所述第二切换阀将所述第三管与所述罐体相连通;当达到第一预定液位时切换第一子状态到第二子状态;
    在所述第二子状态下,所述第二切换阀将所述第一管与所述罐体相连通,且所述第三管与所述罐体断开;当达到第二预定液位时切换第一状态到第二状态;
    在所述第二状态下,所述第二切换阀将所述第一管与所述罐体相连通。
  66. 如权利要求65所述的热水器系统,其特征在于,当所述第一子状态下,通过所述第三管限定所述内胆的液体排至所述第一预定液位,相应的,所述热水器系统包括用于检测所述第二预定液位的检测装置。
  67. 如权利要求66所述的热水器系统,其特征在于,
    所述第二切换阀包括与第一管连通第一阀口,与第三管连通的第二阀口,及与所述罐体连通的第三阀口;
    在所述第一状态的第一子状态时,所述第一阀口和第三阀口断开,所述第二阀口与第三阀口连通;
    在所述第一状态的第二子状态时,所述第一阀口和第三阀口连通,和/或所述第二阀口与第三阀口连通;
    在所述第二状态时,所述第一阀口和第三阀口连通。
  68. 如权利要求45至67任意一项所述的热水器系统,其特征在于,其还包括:设置在所述内胆与所述罐体之间的温度调节机构。
  69. 如权利要求68所述的热水器系统,其特征在于,所述温度调节机构为第二切换阀,所述第二切换阀包括与所述供水口相连通的第四端口,在第二状态时,所述第二切换阀的第一阀口、第四阀口与第三阀口连通,并且根据预设温度调节第一阀口、第四阀口与第三阀口的开度比例。
  70. 如权利要求45所述的热水器系统,其特征在于,所述系统还包括用于检测系统压力的压力检测装置和/或流量监测装置;
    当所述热水器系统压力达到预定压力时,和/或当所述热水器系统流量达到预定流量时,所述增压源启动。
PCT/CN2017/092898 2016-07-14 2017-07-14 热水器系统及其控制方法 WO2018010684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/279,807 US11125468B2 (en) 2016-07-14 2019-02-19 Water heater system and control method therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610555194 2016-07-14
CN201620741638 2016-07-14
CN201620741638.5 2016-07-14
CN201610555194.0 2016-07-14
CN201710057567.6A CN108361969B (zh) 2017-01-26 2017-01-26 热水器系统
CN201710057567.6 2017-01-26
CN201710205529.0 2017-03-31
CN201710205529.0A CN107621087B (zh) 2016-07-14 2017-03-31 热水器系统及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/279,807 Continuation US11125468B2 (en) 2016-07-14 2019-02-19 Water heater system and control method therefor

Publications (1)

Publication Number Publication Date
WO2018010684A1 true WO2018010684A1 (zh) 2018-01-18

Family

ID=60952232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092898 WO2018010684A1 (zh) 2016-07-14 2017-07-14 热水器系统及其控制方法

Country Status (1)

Country Link
WO (1) WO2018010684A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999682A (zh) * 2019-04-23 2019-07-12 上海行恒科技有限公司 一种高浓度微纳米气泡淋浴系统
CN111689593A (zh) * 2019-03-13 2020-09-22 佛山市顺德区美的饮水机制造有限公司 净水机
CN112817355A (zh) * 2021-02-26 2021-05-18 安徽中烟工业有限责任公司 一种冷热双用加水系统
CN113803884A (zh) * 2021-10-13 2021-12-17 华帝股份有限公司 热水器及控制方法
CN114061148A (zh) * 2021-10-29 2022-02-18 华帝股份有限公司 一种热水器及其控制方法
CN114264072A (zh) * 2021-12-06 2022-04-01 广东万家乐燃气具有限公司 一种水比例阀式微纳米气泡热水器及其控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127345A (ja) * 2005-11-04 2007-05-24 Osaka Gas Co Ltd 風呂設備及び風呂設備の運転方法
CN201268615Y (zh) * 2008-08-20 2009-07-08 邓闵键 改进的微气泡装置
US20120297530A1 (en) * 2011-05-27 2012-11-29 Yen-Chieh Huang Electrically insulated air-conducting water heater
CN104058492A (zh) * 2014-07-11 2014-09-24 宁波海伯精工机械制造有限公司 微气泡水产生方法及产生装置
CN204599682U (zh) * 2015-05-22 2015-09-02 刘雪容 一种微气泡头皮护理床
CN105258264A (zh) * 2015-09-25 2016-01-20 苏州三体智能科技有限公司 微米气泡水空调加湿装置及其实现方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127345A (ja) * 2005-11-04 2007-05-24 Osaka Gas Co Ltd 風呂設備及び風呂設備の運転方法
CN201268615Y (zh) * 2008-08-20 2009-07-08 邓闵键 改进的微气泡装置
US20120297530A1 (en) * 2011-05-27 2012-11-29 Yen-Chieh Huang Electrically insulated air-conducting water heater
CN104058492A (zh) * 2014-07-11 2014-09-24 宁波海伯精工机械制造有限公司 微气泡水产生方法及产生装置
CN204599682U (zh) * 2015-05-22 2015-09-02 刘雪容 一种微气泡头皮护理床
CN105258264A (zh) * 2015-09-25 2016-01-20 苏州三体智能科技有限公司 微米气泡水空调加湿装置及其实现方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111689593A (zh) * 2019-03-13 2020-09-22 佛山市顺德区美的饮水机制造有限公司 净水机
CN109999682A (zh) * 2019-04-23 2019-07-12 上海行恒科技有限公司 一种高浓度微纳米气泡淋浴系统
CN109999682B (zh) * 2019-04-23 2024-04-09 上海行恒科技有限公司 一种高浓度微纳米气泡淋浴系统
CN112817355A (zh) * 2021-02-26 2021-05-18 安徽中烟工业有限责任公司 一种冷热双用加水系统
CN113803884A (zh) * 2021-10-13 2021-12-17 华帝股份有限公司 热水器及控制方法
CN114061148A (zh) * 2021-10-29 2022-02-18 华帝股份有限公司 一种热水器及其控制方法
CN114264072A (zh) * 2021-12-06 2022-04-01 广东万家乐燃气具有限公司 一种水比例阀式微纳米气泡热水器及其控制系统

Similar Documents

Publication Publication Date Title
WO2018010684A1 (zh) 热水器系统及其控制方法
WO2018033144A1 (zh) 热水器及其控制方法
CN107621087B (zh) 热水器系统及其控制方法
US11125468B2 (en) Water heater system and control method therefor
JP5500866B2 (ja) 温水システム
EP2312068B1 (en) Sanitary cleaning device
CN207335147U (zh) 热水器
CN206905302U (zh) 热水器系统
CN106766231A (zh) 无冷水且热水回收的淋浴系统及其控制方法
CN108954849A (zh) 一种电子座便器的敞开式储热水箱的控制方法及控制系统
CN113041866A (zh) 微气泡发生装置和热水器
CN113041924A (zh) 微气泡发生装置和热水器
JP6192881B1 (ja) 循環配管システム及び二酸化炭素含有水供給システム
JP6397003B2 (ja) オゾンを使用して、表面を衛生化する、および水を処理するための装置および方法
CN108361969B (zh) 热水器系统
CN103932589A (zh) 管线机及其出水温度控制方法
CN108361970B (zh) 热水器及其控制方法
WO2018010685A1 (zh) 热水器系统
JP2010190466A (ja) 給湯装置
CN207438877U (zh) 热水器系统
CN115325708B (zh) 一种智能恒温出水调控装置及方法
KR100635792B1 (ko) 욕조의 온도 및 수위조절 시스템
CN215951780U (zh) 热水器
CN105757273B (zh) 节水淋浴套装
CN215337041U (zh) 热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827020

Country of ref document: EP

Kind code of ref document: A1