WO2018008615A1 - Electronic device - Google Patents
Electronic device Download PDFInfo
- Publication number
- WO2018008615A1 WO2018008615A1 PCT/JP2017/024415 JP2017024415W WO2018008615A1 WO 2018008615 A1 WO2018008615 A1 WO 2018008615A1 JP 2017024415 W JP2017024415 W JP 2017024415W WO 2018008615 A1 WO2018008615 A1 WO 2018008615A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductor
- coil
- loop
- inductor bridge
- axis direction
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 277
- 239000000463 material Substances 0.000 claims abstract description 72
- 239000002184 metal Substances 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 238000004804 winding Methods 0.000 claims abstract description 20
- 230000008859 change Effects 0.000 claims description 21
- 229920005992 thermoplastic resin Polymers 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 39
- 239000011229 interlayer Substances 0.000 description 18
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 239000011241 protective layer Substances 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000012447 hatching Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/06—Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
Definitions
- the present invention relates to an electronic device, and particularly to an electronic device including an inductor bridge having an inductance component.
- FIG. 11 is an exploded perspective view of one inductor bridge 100 shown in Patent Document 1.
- the inductor bridge 100 includes a flexible insulating base (a laminate of base layers 11a, 12a, 13a, and 14a) and a helical coil (loop conductors 31a, 32a, and 33a) formed on the insulating base. , 34a, a helical coil).
- the flexible inductor bridge when the flexible inductor bridge is provided in a limited space inside the electronic device, it may be provided in a state where a predetermined portion is bent. However, when the inductor bridge is bent, the interlayer capacitance of the helical coil may change with deformation of the insulating base material, and the electrical characteristics of the helical coil may change before and after bending.
- An object of the present invention is to provide an electronic device including an inductor bridge in which stray capacitance generated between other metal bodies is reduced and fluctuation of electrical characteristics due to deformation is suppressed.
- the electronic device of the present invention An inductor bridge, a first circuit, a second circuit, and a metal body; The first circuit and the second circuit are connected via the inductor bridge;
- the inductor bridge is An insulating base material having a first main surface and having flexibility;
- a conical coil formed on the insulating substrate and having a winding axis perpendicular to the first main surface;
- Have The conical coil is configured to include a plurality of loop-shaped conductors arranged along the winding axis direction of the conical coil, The change along the winding axis direction of the inner and outer diameters of the plurality of loop-shaped conductors is one direction, The plurality of loop-shaped conductors do not overlap each other when viewed from the winding axis direction,
- the small-diameter loop conductor having the smallest inner and outer diameters among the plurality of loop conductors is arranged closer to the metal body than the other loop conductors.
- the small-diameter loop-shaped conductor has the smallest inner and outer diameters among the plurality of loop-shaped conductors and the line length is short, and therefore has a smaller conductor area than other loop-shaped conductors. Therefore, with this configuration, the stray capacitance generated between the conical coil and the metal body is smaller than in the case where another loop conductor having a relatively large conductor area is disposed close to the other metal body. Get smaller.
- the other loop-shaped conductor having a relatively large conductor area is disposed at a position farther from the other metal body than the small-diameter loop-shaped conductor, so even if the inductor bridge is bent, the conical coil The amount of change in stray capacitance between the metal body and other metal bodies is small. Further, in this configuration, since the large-diameter loop conductor and the small-diameter loop conductor do not face each other, the interlayer capacitance between the large-diameter loop conductor and the small-diameter loop conductor is small.
- the insulating base material is preferably a laminate formed by laminating a plurality of base material layers made of a thermoplastic resin.
- the insulating base material is a thermoplastic resin, the shape can be easily plastically processed according to the mounting state (unevenness or the like of the mounting destination).
- the inductor bridge includes a bent portion in part.
- the conical coil is wound more than two turns, and when viewed from the winding axis direction, a portion of the conical coil that is wound most inside is provided.
- the first coil portion is defined, and the portion positioned n ⁇ 1 (n is an integer of 2 or more) toward the outer peripheral side with respect to the first coil portion is defined as the nth coil portion, and the first coil portion is defined.
- the line width of the part is preferably narrower than the line widths of the other coil parts.
- the line width of the n-th coil part is narrower than the line width of the n + 1-th coil part.
- the nth coil portion is closer to the metal body than the (n + 1) th coil portion. Therefore, with this configuration, stray capacitance generated between the conical coil and the metal body can be effectively reduced as compared with the case where the line width of the (n + 1) th coil part is narrower than the line width of the nth coil part.
- an inductor bridge in which a stray capacitance generated between other metal bodies is reduced and a change in electrical characteristics due to deformation is suppressed, and an electronic apparatus including the inductor bridge.
- FIG. 1A is a perspective view of the inductor bridge 101 according to the first embodiment
- FIG. 1B is an exploded perspective view of the inductor bridge 101
- FIG. 2A is a plan view showing a portion where the conical coil 3 is formed in the inductor bridge 101
- FIG. 2B is a cross-sectional view of that portion.
- FIG. 3 is a cross-sectional view illustrating a main part of the electronic apparatus 301 according to the first embodiment.
- FIG. 4 is a cross-sectional view sequentially showing the manufacturing process of the inductor bridge 101A.
- FIG. 5A is a partial cross-sectional view showing the relationship between the inductor bridge 101 and the metal body 2 before bending, and FIG.
- FIG. 5B shows the relationship between the inductor bridge 101 and the metal body 2 in a bent state. It is a fragmentary sectional view shown.
- 6A is a partial cross-sectional view of another inductor bridge 101A according to the first embodiment
- FIG. 6B is a partial cross-sectional view of an inductor bridge 101B of a comparative example.
- FIG. 7 is a cross-sectional view showing a main part of an electronic device 302 according to the second embodiment.
- FIG. 8 is a cross-sectional view illustrating a main part of an electronic device 303 according to the third embodiment.
- FIG. 9A is a plan view showing a portion where the conical coil 3C is formed in the inductor bridge 104 according to the fourth embodiment, and FIG.
- FIG. 9B is a cross-sectional view of that portion.
- FIG. 10A is a plan view showing a portion where the conical coil 3D is formed in the inductor bridge 105 according to the fifth embodiment, and FIG. 10B is a cross-sectional view of that portion.
- FIG. 11 is an exploded perspective view of one inductor bridge disclosed in Patent Document 1. In FIG.
- FIG. 1A is a perspective view of the inductor bridge 101 according to the first embodiment
- FIG. 1B is an exploded perspective view of the inductor bridge 101
- FIG. 2A is a plan view showing a portion where the conical coil 3 is formed in the inductor bridge 101
- FIG. 2B is a cross-sectional view of that portion.
- the protective layer 1 and the base material layer 14 are not shown, and the opening BR surrounded by the large-diameter loop conductor 32 is shown by a dot pattern.
- the inductor bridge 101 includes an insulating base 10, a conical coil 3 (described in detail later) formed on the insulating base 10, and connectors 51 and 52.
- the insulating substrate 10 is a rectangular parallelepiped thermoplastic resin flat plate having a first main surface VS1 and a second main surface VS2 facing the first main surface VS1, and having a longitudinal direction coinciding with the X-axis direction.
- the “first main surface” in the present embodiment is arranged so as to face a member (for example, a mounting substrate or a housing) having a metal body (described in detail later) in a state where the inductor bridge is provided in the electronic device. It is the surface to be done.
- the “metal body” in the present embodiment is a metal member that is closest to the conical coil (inductor portion) provided in the inductor bridge in a state where the inductor bridge is provided in the electronic device, for example, a conductor pattern provided on the mounting substrate. And shield cases, metal housings, and the like.
- the insulating base material 10 is a laminate formed by laminating the base material layers 11, 12, 13, 14 and the protective layer 1, and has flexibility.
- the plurality of base material layers 11, 12, 13, and 14 are sheet-like flat plates made of a thermoplastic resin whose main material is a liquid crystal polymer, for example, whose planar shape is rectangular, the longitudinal direction of which coincides with the X-axis direction. .
- the electrode 41 is formed on the back surface of the base material layer 11.
- the electrode 41 is a conductor pattern having a rectangular planar shape disposed near the first end of the base material layer 11 (the right end of the base material layer 11 in FIG. 1B).
- the electrode 41 is a conductor pattern such as a Cu foil.
- a small-diameter loop conductor 31 and a conductor 21 are formed on the back surface of the base material layer 12.
- the small-diameter loop-shaped conductor 31 is a rectangular loop-shaped conductor pattern of about 0.5 turns formed near the center of the base material layer 12.
- the conductor 21 is a linear conductor pattern extending in the X-axis direction, and is disposed at a position near the first end of the base material layer 12 from the vicinity of the center of the base material layer 12.
- the small-diameter loop conductor 31 and the conductor 21 are continuously formed, and the first end of the small-diameter loop conductor 31 is connected to the first end of the conductor 21.
- a second end of the conductor 21 is connected to the electrode 41 via an interlayer connection conductor V ⁇ b> 1 formed on the base material layer 11.
- the small-diameter loop conductor 31 and the conductor 21 are conductor patterns such as Cu foil, and the interlayer connection conductor V1 is a via conductor or a through hole, for example.
- the “small-diameter loop conductor” refers to a loop-shaped conductor having the smallest inner / outer diameter (inner diameter and outer diameter) among a plurality of loop conductors constituting the conical coil.
- a large-diameter loop conductor 32 and a conductor 22 are formed on the surface of the base material layer 13.
- the large-diameter loop conductor 32 is a rectangular loop-shaped conductor pattern of about 1 turn formed near the center of the base material layer 13.
- the small-diameter loop conductor 31 has a smaller inner and outer diameter than the large-diameter loop conductor 32.
- the conductor 22 is a linear conductor pattern extending in the X-axis direction, and is closer to the second end of the base material layer 13 (the left end of the base material layer 13 in FIG. 1B) from near the center of the base material layer 13. Placed in position.
- the first end of the large-diameter loop conductor 32 is connected to the small-diameter loop conductor 31 via an interlayer connection conductor V2 formed on the base material layers 12 and 13.
- the large-diameter loop conductor 32 and the conductor 22 are continuously formed, and the second end of the large-diameter loop conductor 32 is connected to the first end of the conductor 22.
- the large-diameter loop conductor 32 and the conductor 22 are conductor patterns such as Cu foil, and the interlayer connection conductor V2 is a via conductor or a through hole, for example.
- the electrode 42 is formed on the surface of the base material layer 14.
- the electrode 42 is a conductor pattern having a rectangular planar shape disposed near the second end of the base material layer 14 (the left end of the base material layer 14 in FIG. 1B).
- the electrode 42 is connected to the second end of the conductor 22 via an interlayer connection conductor V3 formed on the base material layer 14.
- the electrode 42 is a conductor pattern such as a Cu foil, and the interlayer connection conductor V3 is a via conductor or a through hole, for example.
- the protective layer 1 has substantially the same planar shape as the base material layer 14 and is laminated on the surface of the base material layer 14.
- the protective layer 1 has an opening AP1 corresponding to the position of the electrode 42. Therefore, the electrode 42 is exposed to the second main surface VS2 of the insulating base material 10.
- the protective layer 1 is, for example, a solder resist film.
- the protective layer 1 is not essential.
- the connector 51 is provided on the first main surface VS1 of the insulating base material 10, and is disposed at the first end in the longitudinal direction of the insulating base material 10 (the right end of the insulating base material 10 in FIG. 1A).
- the connector 51 is connected to the electrode 41.
- the connector 52 is provided on the second main surface VS ⁇ b> 2 of the insulating base 10 and is disposed at the second end in the longitudinal direction of the insulating base 10 (the left end of the insulating base 10).
- the connector 52 is connected to the electrode 42.
- the rectangular conical coil 3 of about 1.5 turns is configured including the small-diameter loop conductor 31, the large-diameter loop conductor 32, and the interlayer connection conductor V2.
- the conical coil 3 has a winding axis AX orthogonal to the first main surface VS1 and the second main surface VS2 (parallel to the Z-axis direction).
- the plurality of loop-shaped conductors are arranged along the winding axis AX direction (Z-axis direction) of the conical coil 3.
- the small-diameter loop-shaped conductor 31 having the smallest inner and outer diameters among the plurality of loop-shaped conductors is first than the other loop-shaped conductors (large-diameter loop-shaped conductor 32) in the Z-axis direction. Arranged close to main surface VS1.
- the small-diameter loop conductor 31 is disposed inside the opening BR surrounded by the large-diameter loop conductor 32 when viewed from the Z-axis direction. Further, the plurality of loop-shaped conductors (small-diameter loop-shaped conductor 31 and large-diameter loop-shaped conductor 32) do not overlap each other when viewed from the Z-axis direction.
- the change in the Z-axis direction of the inner and outer diameters of the plurality of loop-shaped conductors is one direction (see the outline DE of the conical coil 3 in FIG. 2B).
- “the change along the winding axis direction is one direction” means that the inner and outer diameters of the plurality of loop-shaped conductors change so as to increase (or decrease) along the Z-axis direction.
- the small-diameter loop-shaped conductor 31 is disposed closer to the first main surface VS1 than the other loop-shaped conductors (large-diameter loop-shaped conductor 32) in the Z-axis direction.
- the large-diameter loop conductor 32 having the largest diameter is disposed farthest from the first main surface VS1 in the Z-axis direction as compared with the other loop-shaped conductors (small-diameter loop conductor 31). That is, as shown in the outline DE of the conical coil 3 in FIG. 2B, the inner and outer diameters of the plurality of loop conductors are directed in the + Z direction (from the first main surface VS1 side to the second main surface VS2 side). It has changed to become larger.
- FIG. 3 is a cross-sectional view illustrating a main part of the electronic apparatus 301 according to the first embodiment.
- the electronic device 301 includes an inductor bridge 101A, a circuit board 71, and a mounting board 201.
- the circuit configured on the circuit board 71 corresponds to the “first circuit” in the present invention
- the circuit configured on the mounting board 201 corresponds to the “second circuit” in the present invention.
- the inductor bridge 101A differs from the inductor bridge 101 in that the insulating base material 10 includes a bent portion (bent portion) in part, and the other configurations are substantially the same.
- the inductor bridge 101A is connected to a circuit board 71 and a mounting board 201.
- the metal body 2 is mounted on the upper surface of the mounting substrate 201, and a conductor 81 is formed on the upper surface of the mounting substrate 201.
- the receptacle 61 is connected to the conductor 81 and is electrically connected to a circuit configured on the mounting substrate 201.
- the mounting substrate 201 is, for example, a printed wiring board, and the metal body 2 is, for example, a shield case or a battery pack.
- a receptacle 62 is mounted on the lower surface of the circuit board 71.
- the receptacle 62 is electrically connected to a first circuit formed on the circuit board 71.
- the first circuit formed on the circuit board 71 is, for example, a radiating element of a UHF band antenna.
- the connector 51 is connected to the receptacle 61, and the connector 52 is connected to the receptacle 62.
- the inductor bridge 101 ⁇ / b> A is arranged so that the first main surface VS ⁇ b> 1 side of the insulating base 10 faces the main surface PS ⁇ b> 1 of the mounting substrate 201. Therefore, the small-diameter loop conductor 31 is arranged closer to the metal body 2 than the other loop conductors (large-diameter loop conductor 32).
- FIG. 4 is a cross-sectional view sequentially showing the manufacturing process of the inductor bridge 101A.
- a laminated body is formed by laminating a base layer patterned with small-diameter loop conductors, large-diameter loop conductors, conductors, electrodes, etc., and after coating the protective layer, the insulating base material from the aggregate substrate state Individual element bodies are separated to obtain an inductor bridge 101 shown in (1) in FIG.
- the first main surface VS1 and the second main surface of the insulating base 10 are formed along the Z-axis direction using the upper die 5 and the lower die 6.
- VS2 is heated and pressurized (see the arrow indicated by (2) in FIG. 4).
- the position to be heated and pressed is a position closer to the first end (the right end of the insulating base material) from the center in the longitudinal direction (X-axis direction) of the insulating base material 10.
- the upper mold 5 and the lower mold 6 have a structure in which a cross-sectional shape is bent into a predetermined shape.
- the inductor bridge 101A is taken out from the upper mold 5 and the lower mold 6.
- an inductor bridge 101A having a bent portion (bent portion) is obtained.
- the inductor bridges 101 and 101A according to the present embodiment have the following effects.
- the small-diameter loop conductor 31 is disposed closer to the metal body 2 than the large-diameter loop conductor 32 in the Z-axis direction with the inductor bridge 101 provided in the electronic device.
- the small-diameter loop-shaped conductor 31 has the smallest inner and outer diameters among the plurality of loop-shaped conductors and a short line length, and therefore has a smaller conductor area than the other loop-shaped conductors (large-diameter loop-shaped conductor 32). Therefore, with this configuration, the stray capacitance generated between the conical coil 3 and the metal body 2 is smaller than when another loop conductor having a relatively large conductor area is disposed close to the metal body 2. .
- the insulating base material 10 is a thermoplastic resin, as shown to (2) in FIG. 4, a shape is easy according to a mounting state (unevenness
- the conical coil 3 is configured including the small-diameter loop conductor 31 and the large-diameter loop conductor 32 respectively formed on the plurality of base material layers 12 and 13. With this configuration, a conical coil having a predetermined number of turns and inductance can be formed on the insulating substrate 10.
- a plurality of loop conductors small-diameter loop conductor 31 and large-diameter loop conductor 32
- the plurality of loop conductors do not overlap each other when viewed from the Z-axis direction.
- the loop-shaped conductors small-diameter loop-shaped conductor 31 and large-diameter loop-shaped conductor 32
- the loop-shaped conductors do not face each other, so that the interlayer capacitance between the plurality of loop-shaped conductors is small.
- FIG. 5A is a partial cross-sectional view showing the relationship between the inductor bridge 101 and the metal body 2 before bending
- FIG. 5B shows the relationship between the inductor bridge 101 and the metal body 2 in a bent state. It is a fragmentary sectional view shown.
- the inductor bridge 101 is bent in an L shape (with the first main surface VS1 side inward) along the longitudinal direction of the insulating base material 10.
- the second main surface VS2 side is deformed to be pulled by the bending displacement of the insulating base material 10, and the first main surface VS1 side is deformed to be compressed.
- the large-diameter loop conductor 32 positioned closer to the second main surface VS2 in the Z-axis direction extends toward both ends of the insulating base 10 in the longitudinal direction. Displacement (see hollow arrow DF2 in FIG. 5B).
- the small-diameter loop conductor 31 located closer to the first main surface VS1 in the Z-axis direction is displaced so as to contract (the hollow arrow DF1 in FIG. 5B). reference).
- the small-diameter loop conductor 31 and the large-diameter loop conductor 32 do not overlap when viewed from the Z-axis direction (between surfaces). Therefore, the amount of change in the interlayer capacitance between the small-diameter loop conductor 31 and the large-diameter loop conductor 32 is small.
- another loop conductor (large diameter loop conductor 32) having a relatively large conductor area is separated from the metal body 2 more than the small diameter loop conductor 31. Placed in a different position. Therefore, even when the inductor bridge 101 is bent and another loop conductor having a large conductor area (large diameter loop conductor 32) is deformed, the amount of change in the stray capacitance between the conical coil 3 and the metal body 2 is small. .
- the inductor bridge 101 when the inductor bridge 101 is bent, the small-diameter loop conductor 31 is also deformed and the conductor area changes.
- the metal body 2 accompanying a change in the conductor area can be obtained as compared with the case where another loop conductor (large diameter loop conductor 32) having a relatively large conductor area is disposed close to the metal body 2. The amount of stray capacitance change between and is small.
- the inductor bridge in the present invention may have the following configuration.
- 6A is a partial cross-sectional view of another inductor bridge 101A according to the first embodiment
- FIG. 6B is a partial cross-sectional view of an inductor bridge 101B of a comparative example.
- 6A and 6B the thicknesses of the small-diameter loop conductors 31A and 31B and the large-diameter loop conductors 32A and 32B are exaggerated.
- the small-diameter loop conductors 31A and 31B and the large-diameter loop conductors 32A and 32B related to the inductor bridges 101A and 101B are connected to the inductor bridge 101 shown in FIG.
- the small-diameter loop conductor 31 and the large-diameter loop conductor 32 are thicker in the Z-axis direction.
- the thickness in the Z-axis direction of the small-diameter loop conductors 31A and 31B and the large-diameter loop conductors 32A and 32B is thicker than the thickness in the Z-axis direction of each base material layer before lamination.
- the thickness T1 in the Z-axis direction of the insulating base material 10A of the inductor bridges 101A and 101B is equal to the thickness in the Z-axis direction of the insulating base material 10 of the inductor bridge 101 shown in FIG.
- the distance L2 between the small-diameter loop conductor 31B and the large-diameter loop conductor 32B is The distance L1 between the small-diameter loop conductor 31A and the large-diameter loop conductor 32A is shorter (L1> L2). Therefore, when an external force causing bending is applied to the inductor bridge 101B of the comparative example, the amount of change in the interlayer capacitance of the conical coil 3B due to the deformation of the inductor bridge 101B is large.
- the small-diameter loop-shaped conductor 31A and the large-diameter loop-shaped conductor 32A do not overlap when viewed from the Z-axis direction, and therefore the change in the interlayer capacitance of the conical coil 3A accompanying the deformation of the inductor bridge 101A.
- the amount is small.
- the portion where the conical coil 3A is formed becomes difficult to bend, and the mechanical strength against external force is increased. Furthermore, the DCR (direct current resistance) of the conical coil 3A can be reduced by increasing the thickness in the Z-axis direction of the small-diameter loop conductor 31A and the large-diameter loop conductor 32A.
- Second Embodiment a structure different from the electronic device shown in the first embodiment will be described.
- FIG. 7 is a cross-sectional view showing a main part of the electronic device 302 according to the second embodiment.
- the electronic device 302 includes an inductor bridge 102, a resin casing 91, and a mounting substrate 202.
- a conductor pattern 4 is formed on the inner surface of the resin casing 91.
- the conductor pattern 4 is, for example, a ground conductor.
- the circuit configured on the mounting substrate 202 corresponds to the “first circuit” in the present invention
- the circuit (ground conductor) configured in the resin casing 91 corresponds to the “second circuit” in the present invention. To do.
- the inductor bridge 102 is connected to the conductor pattern 4 of the resin casing 91 and the conductor 82 of the mounting substrate 202.
- the inductor bridge 102 differs from the inductor bridge 101 according to the first embodiment in that a part of the inductor bridge is bent. Other configurations are substantially the same as those of the inductor bridge 101.
- Conductors 82 and 84 are formed on the top surface of the mounting substrate 202, and a conductor 83 is formed inside the mounting substrate 202.
- the receptacle 62 is connected to the conductor 82 and is electrically connected to a circuit configured on the mounting substrate 202.
- the mounting board 202 is, for example, a printed wiring board.
- the conductor 84 is the “metal body” in the present invention.
- a receptacle 61 is mounted on the inner surface of the resin casing 91.
- the receptacle 61 is electrically connected to the conductor pattern 4 (ground conductor) formed in the resin casing 91.
- the connector 51 of the inductor bridge 102 is connected to the receptacle 61, and the connector 52 is connected to the receptacle 62.
- the inductor bridge 102 is connected to the mounting substrate 202 and the resin casing 91, and as shown in FIG. 7, the small-diameter loop conductor 31 is more conductive than the other loop conductors (large-diameter loop conductor 32).
- 84 metal body
- the inductor bridge 102 the portion where the conical coil 3 is formed is exposed from the opening OP1 formed in the resin casing 91. Therefore, the conical coil 3 is not shielded from the electromagnetic field. Therefore, this inductor bridge 102 can be used as an antenna, and communication with the outside becomes possible.
- the inductor bridge 102 is bent in an L shape at a portion where the conical coil 3 is not formed. Specifically, the inductor bridge 102 is connected to the mounting substrate 202 and the conductor pattern 4 of the resin casing 91, and the first end from the center in the longitudinal direction of the insulating base material 10C (the insulating base material 10C in FIG. 7). The position near the right end) is bent in an L shape with the first main surface VS1 inside.
- the first main surface VS1 side is stressed in the ⁇ X direction
- the second main surface VS2 side is stressed in the + X direction. Therefore, the small-diameter loop conductor 31 positioned closer to the first main surface VS1 in the Z-axis direction is displaced so that its inner and outer diameters are reduced (see the hollow arrow DF1a in FIG. 7). Further, the large-diameter loop conductor 32 positioned closer to the second main surface VS2 in the Z-axis direction is displaced so that its inner and outer diameters are expanded (see the hollow arrow DF2a in FIG. 7).
- the small-diameter loop conductor 31 and the large-diameter loop conductor 32 do not overlap when viewed from the Z-axis direction. And the change in the interlayer capacitance between the large-diameter loop conductor 32 is small.
- the small-diameter loop-shaped conductor 31 has an inner and outer diameter that is “relatively” along the insulating substrate 10 as compared with other loop-shaped conductors (large-diameter loop-shaped conductor 32) when the inductor bridge is bent. It is preferable to arrange in a contracted position.
- the inductor bridge 102 is connected to the conductor pattern 4 formed on the inner surface of the resin casing 91 via the receptacle 61 is shown, but the present invention is not limited to this configuration.
- the inductor bridge may be connected to the metal casing by screwing or the like.
- FIG. 8 is a cross-sectional view showing a main part of an electronic device 303 according to the third embodiment.
- the electronic device 303 includes an inductor bridge 103, a resin casing 92, and a mounting substrate 203.
- a conductor pattern 4 (ground conductor) is formed on the inner surface of the resin casing 92.
- the conductor pattern 4 formed on the inner surface of the resin casing 92 is the “metal body” in the present invention.
- a conductor 82 is formed on the upper surface of the mounting substrate 203, and a conductor 83 is formed inside the mounting substrate 203.
- the inductor bridge 103 is connected to the conductor pattern 4 of the resin casing 92 and the conductor 82 of the mounting substrate 203.
- the inductor bridge 103 is the inductor bridge 102 according to the second embodiment in that the small-diameter loop conductor 31 is disposed closer to the conductor pattern 4 than the other loop conductors (large-diameter loop conductor 32). And different. Other configurations are substantially the same as those of the inductor bridge 102.
- the fourth embodiment shows an example in which the structure of the conical coil is different from the inductor bridge shown in the first embodiment.
- FIG. 9A is a plan view showing a portion where the conical coil 3C is formed in the inductor bridge 104 according to the fourth embodiment, and FIG. 9B is a cross-sectional view of that portion.
- the protective layer 1 is not shown for easy understanding of the structure.
- the inductor bridge 104 is different from the inductor bridge 101 according to the first embodiment in the structure of the conical coil. Other configurations are substantially the same as those of the inductor bridge 101. Hereinafter, a different part from 1st Embodiment is demonstrated.
- a large-diameter loop conductor 33C is formed on the surface of the base material layer 14.
- the large-diameter loop conductor 33C has a larger inner and outer diameter than the large-diameter loop conductor 32C and the small-diameter loop conductor 31C.
- the large-diameter loop conductor 32C has a larger inner and outer diameter than the small-diameter loop conductor 31C.
- Inductor bridge 104 includes a rectangular conical coil of about 3.5 turns including small-diameter loop conductor 31C, large-diameter loop conductors 32C and 33C, and interlayer connection conductors formed on a plurality of base material layers 12, 13, and 14, respectively. 3C is configured.
- a plurality of loop conductors are arranged along the Z-axis direction.
- the small-diameter loop conductor 31C having the smallest inner and outer diameters is disposed closer to the first main surface VS1 than the other loop conductors (large-diameter loop conductors 32C and 33C) in the Z-axis direction.
- the change along the Z-axis direction of the inner and outer diameters of the plurality of loop-shaped conductors is one direction.
- the inner and outer diameters of the plurality of loop conductors are in the + Z direction (from the first main surface VS1 side to the second main surface). It changes so as to increase toward the VS2 side.
- the small-diameter loop conductor 31C is disposed inside the opening surrounded by the large-diameter loop conductor 32C, and the large-diameter loop conductor 32C is inside the opening surrounded by the large-diameter loop conductor 33C. Is arranged.
- the inner and outer diameters of the plurality of loop-shaped conductors are not limited to those that change uniformly along the Z-axis direction. That is, the inner and outer diameters of the plurality of loop-shaped conductors are not limited to those that change in one direction in proportion to the movement distance in the Z-axis direction.
- the inner and outer diameters of four loop conductors (including small-diameter loop conductors) in the + Z direction are 2X ⁇ 4X ⁇ 5X ⁇ 8X (X is an arbitrary number)
- the configuration arranged along the Z-axis direction so as to be in this order is also included in the “change along the winding axis direction is one direction” in the present invention. In this case, it is a condition that the four loop-shaped conductors do not overlap each other when viewed from the Z-axis direction.
- the inner and outer diameters of four loop conductors (including small-diameter loop conductors) in the + Z direction are 2X ⁇ 5X ⁇ 3X ⁇ 4X (X is an arbitrary number) ) Are arranged along the Z-axis direction so as to be in the order of “), and are excluded from the state of“ the change along the winding axis direction is one direction ”in the present invention.
- FIG. 10A is a plan view showing a portion where the conical coil 3D is formed in the inductor bridge 105 according to the fifth embodiment, and FIG. 10B is a cross-sectional view of that portion.
- the first coil portion CP1 is indicated by hatching
- the second coil portion CP2 is indicated by a dot pattern
- the fourth coil portion CP4 is indicated by cross hatching.
- the inductor bridge 105 is different from the inductor bridge 101 according to the first embodiment in the structure of a conical coil. Other configurations are substantially the same as those of the inductor bridge 101. Hereinafter, a different part from 1st Embodiment is demonstrated.
- the conical coil 3C includes a large-diameter loop conductor 34D, a large-diameter loop conductor 33D, a large-diameter loop conductor 32D, a small-diameter loop conductor 31D, and an interlayer connection conductor (not shown).
- the conical coil 3C has a winding axis AX that is orthogonal to the first main surface VS1 and the second main surface VS2 (parallel to the Z-axis direction).
- the conical coil 3C is wound more than 2 turns (about 3.5 turns) and has a first coil part CP1, a second coil part CP2, a third coil part CP3, and a fourth coil part CP4.
- the first coil portion CP1 is a portion that winds most inside the conical coil 3C when viewed from the Z-axis direction.
- the second coil portion CP2 is a portion that is first positioned toward the outer peripheral side with respect to the first coil portion CP1 when viewed from the Z-axis direction.
- the third coil portion CP3 is a portion that is secondly located toward the outer peripheral side with respect to the first coil portion CP1 when viewed from the Z-axis direction.
- the fourth coil portion is a portion located third from the first coil portion CP1 toward the outer peripheral side when viewed from the Z-axis direction.
- a small-diameter loop conductor 31D of slightly more than 0.5 turns formed on the surface of the base material layer 11 is referred to as the first coil portion CP1.
- a one-turn large-diameter loop conductor 32D formed on the surface of the material layer 12 coincides with the second coil portion CP2.
- the one-turn large-diameter loop conductor 33D formed on the surface of the base material layer 13 coincides with the third coil portion CP3, and 1 formed on the surface of the base material layer 14
- the large-diameter loop conductor 34D of the turn coincides with the fourth coil portion CP4.
- the overall length of the first coil portion CP1 located on the innermost peripheral side is shorter than the other coil portions, and the overall length of the fourth coil portion CP4 is longer than the other coil portions.
- the fourth coil portion CP4 is arranged in the long order, the fourth coil portion CP4, the third coil portion CP3, the second coil portion CP2, and the first coil portion CP1 are arranged in this order.
- the line width T1 of the first coil portion CP1 is equal to the line width of the other coil portions (the line width T2 of the second coil portion CP2, the third coil). It is narrower than the line width T3 of the part CP3 and the line width T4 of the fourth coil part CP4. Further, the line width of the nth coil part is narrower than the line width of the (n + 1) th coil part. Specifically, the line width T2 of the second coil part CP2 is narrower than the line width T3 of the third coil part CP3, and the line width T3 of the third coil part CP3 is thinner than the line width T4 of the fourth coil part CP4. . When the line widths of the coil portions are arranged in order of narrowness, the first coil portion CP1, the second coil portion CP2, the third coil portion CP3, and the fourth coil portion CP4 become equivalent.
- the inductor bridge 105 according to the present embodiment has the following effects in addition to the effects described in the first embodiment.
- the line width T1 of the first coil portion CP1 is equal to the line width of the other coil portions (the line width T2 of the second coil portion CP2, the line width T3 of the third coil portion CP3, and the fourth coil). It is narrower than the line width T4) of the part CP4.
- the conductor area of the first coil portion CP1 closest to the metal body 2 can be reduced. Therefore, with this configuration, the facing area between the first coil portion CP1 and the metal body 2 can be reduced, and the line width of the other coil portions can be reduced (that is, the conductor area of the other coil portions can be reduced). ), Stray capacitance generated between the conical coil 3D and the metal body 2 can be further suppressed.
- the direct current resistance is reduced as compared with the case where the line widths of all the coil portions (the first coil portion CP1, the second coil portion CP2, the third coil portion CP3, and the fourth coil portion CP4) are reduced.
- the stray capacitance generated between the conical coil 3D and the metal body 2 can be effectively reduced while being reduced.
- the line width T2 of the second coil part CP2 is narrower than the line width T3 of the third coil part CP3, and the line width T3 of the third coil part CP3 is the line of the fourth coil part CP4.
- the nth coil part is closer to the metal body 2 than the (n + 1) th coil part. Therefore, with this configuration, the stray capacitance generated between the conical coil 3D and the metal body 2 can be effectively reduced as compared with the case where the line width of the (n + 1) th coil part is narrower than the line width of the nth coil part. .
- the conical coil 3D having four coil portions (the first coil portion CP1, the second coil portion CP2, the third coil portion CP3, and the fourth coil portion CP4) is shown, but the present invention is limited to this configuration. Is not to be done.
- the “conical coil” of the present invention may have an n-th coil portion (n is an integer of 2 or more).
- the n-th coil portion refers to a portion located at the (n ⁇ 1) th position toward the outer peripheral side with respect to the first coil portion CP1 when viewed from the Z-axis direction.
- planar shape of an insulating base material is a rectangle
- the planar shape of the insulating substrate can be changed as appropriate within the scope of the effects and effects of the present invention, and may be, for example, a polygon, a circle, an ellipse, an L shape, a crank shape, a T shape, a Y shape, or the like. .
- an inductor bridge including an insulating base material formed by laminating four base material layers has been described.
- the present invention is not limited to this configuration.
- the number of base material layers forming the insulating base material can be appropriately changed within a range where the functions and effects of the present invention are exhibited.
- the base material layer may be a single layer.
- a conical coil of about 1.5 turns or 2.5 turns is configured including loop-shaped conductors formed on a plurality of base material layers. It is not limited to.
- the number of turns of the conical coil provided in the inductor bridge can be changed as appropriate.
- the outline of the conical coil viewed from the winding axis direction (Z-axis direction) may be, for example, a circle, an ellipse, a rectangle, or a polygon.
- an example of a conical coil including a small-diameter loop conductor and a large-diameter loop conductor of less than one turn has been shown.
- a spiral-shaped small-diameter loop conductor and a large-diameter loop including one or more turns are shown. You may comprise a conical coil including a conductor.
- the example in which two connectors were provided on both the first main surface and the second main surface of the insulating base material was shown, it is not limited to this configuration.
- the two connectors may be provided only on the first main surface of the insulating base material, or may be provided only on the second main surface. Further, the arrangement and number of connectors can be appropriately changed depending on the circuit configuration of the inductor bridge.
- the connector is not essential. You may connect a connection part to a 1st circuit, a 2nd circuit, etc. by electroconductive joining materials, such as solder, without using a connector.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
An electronic device (301) comprises: a first circuit (a circuit substrate (71)); a second circuit (a circuit formed on a mounting substrate (201)); an inductor bridge (101) connecting the first circuit and the second circuit; and a metal member (conductor (81)). The inductor bridge (101) is provided with an insulating base material (10) and a conical coil (3) formed on the insulating base material (10). The conical coil (3) is configured by including a plurality of loop conductors (small diameter loop conductors (31) and large diameter loop conductors (32)) arranged along the winding axis direction (the Z-axis direction). Changes along the Z-axis direction in the inner and outer diameters of the plurality of loop conductors occur in a single direction. The small diameter loop conductors (31), which have the smallest inner and outer diameters among the plurality of loop conductors, are arranged closer to the metal member than the other loop conductors (the large diameter loop conductors (32)).
Description
本発明は、電子機器に関し、特にインダクタンス成分を有するインダクタブリッジを備えた電子機器に関するものである。
The present invention relates to an electronic device, and particularly to an electronic device including an inductor bridge having an inductance component.
従来、携帯端末等の小型電子機器において、筐体内に複数の基板等の実装回路部材を備える場合に、例えば特許文献1に示されているように、可撓性を有するフラットケーブルで実装回路部材間が接続されている。
2. Description of the Related Art Conventionally, in a small electronic device such as a portable terminal, when mounting circuit members such as a plurality of boards are provided in a housing, for example, as shown in Patent Document 1, a mounting circuit member is formed with a flexible flat cable. Are connected.
図11は、特許文献1に示されている一つのインダクタブリッジ100の分解斜視図である。このインダクタブリッジ100は、可撓性を有した絶縁基材(基材層11a,12a,13a,14aの積層体)と、絶縁基材に形成されるヘリカルコイル(ループ状導体31a,32a,33a,34aで構成されるヘリカル状のコイル)とを備えている。
FIG. 11 is an exploded perspective view of one inductor bridge 100 shown in Patent Document 1. FIG. The inductor bridge 100 includes a flexible insulating base (a laminate of base layers 11a, 12a, 13a, and 14a) and a helical coil ( loop conductors 31a, 32a, and 33a) formed on the insulating base. , 34a, a helical coil).
しかし、特許文献1に示されるようなインダクタブリッジを電子機器に設けた状態で、電子機器の筐体内にある金属体との間に不要な浮遊容量が発生することがある。
However, in the state where the inductor bridge as shown in Patent Document 1 is provided in the electronic device, an unnecessary stray capacitance may be generated between the metal body in the casing of the electronic device.
また、可撓性を有する上記インダクタブリッジを、電子機器の内部の限られた空間に設ける場合に、所定箇所が屈曲した状態で設けられることがある。ところが、インダクタブリッジが屈曲すると、絶縁基材の変形に伴ってヘリカルコイルの層間容量が変化することがあり、屈曲前後でヘリカルコイルの電気的特性が変化する場合がある。
Also, when the flexible inductor bridge is provided in a limited space inside the electronic device, it may be provided in a state where a predetermined portion is bent. However, when the inductor bridge is bent, the interlayer capacitance of the helical coil may change with deformation of the insulating base material, and the electrical characteristics of the helical coil may change before and after bending.
本発明の目的は、他の金属体との間に生じる浮遊容量を小さくし、且つ、変形による電気的特性の変動を抑制したインダクタブリッジを備える電子機器を提供することにある。
An object of the present invention is to provide an electronic device including an inductor bridge in which stray capacitance generated between other metal bodies is reduced and fluctuation of electrical characteristics due to deformation is suppressed.
(1)本発明の電子機器は、
インダクタブリッジと、第1回路と、第2回路と、金属体と、を備え、
前記第1回路と前記第2回路とが前記インダクタブリッジを介して接続され、
前記インダクタブリッジは、
第1主面を有し、可撓性を有する絶縁基材と、
前記絶縁基材に形成され、前記第1主面に直交する巻回軸を有するコニカルコイルと、
を有し、
前記コニカルコイルは、前記コニカルコイルの巻回軸方向に沿って配置される複数のループ状導体を含んで構成され、
前記複数のループ状導体の内外径の、前記巻回軸方向に沿った変化は一方向であり、
前記複数のループ状導体は、前記巻回軸方向から視て、互いに重ならず、
前記複数のループ状導体のうち内外径の最も小さな小径ループ状導体は、他のループ状導体よりも前記金属体に近接して配置されることを特徴とする。 (1) The electronic device of the present invention
An inductor bridge, a first circuit, a second circuit, and a metal body;
The first circuit and the second circuit are connected via the inductor bridge;
The inductor bridge is
An insulating base material having a first main surface and having flexibility;
A conical coil formed on the insulating substrate and having a winding axis perpendicular to the first main surface;
Have
The conical coil is configured to include a plurality of loop-shaped conductors arranged along the winding axis direction of the conical coil,
The change along the winding axis direction of the inner and outer diameters of the plurality of loop-shaped conductors is one direction,
The plurality of loop-shaped conductors do not overlap each other when viewed from the winding axis direction,
The small-diameter loop conductor having the smallest inner and outer diameters among the plurality of loop conductors is arranged closer to the metal body than the other loop conductors.
インダクタブリッジと、第1回路と、第2回路と、金属体と、を備え、
前記第1回路と前記第2回路とが前記インダクタブリッジを介して接続され、
前記インダクタブリッジは、
第1主面を有し、可撓性を有する絶縁基材と、
前記絶縁基材に形成され、前記第1主面に直交する巻回軸を有するコニカルコイルと、
を有し、
前記コニカルコイルは、前記コニカルコイルの巻回軸方向に沿って配置される複数のループ状導体を含んで構成され、
前記複数のループ状導体の内外径の、前記巻回軸方向に沿った変化は一方向であり、
前記複数のループ状導体は、前記巻回軸方向から視て、互いに重ならず、
前記複数のループ状導体のうち内外径の最も小さな小径ループ状導体は、他のループ状導体よりも前記金属体に近接して配置されることを特徴とする。 (1) The electronic device of the present invention
An inductor bridge, a first circuit, a second circuit, and a metal body;
The first circuit and the second circuit are connected via the inductor bridge;
The inductor bridge is
An insulating base material having a first main surface and having flexibility;
A conical coil formed on the insulating substrate and having a winding axis perpendicular to the first main surface;
Have
The conical coil is configured to include a plurality of loop-shaped conductors arranged along the winding axis direction of the conical coil,
The change along the winding axis direction of the inner and outer diameters of the plurality of loop-shaped conductors is one direction,
The plurality of loop-shaped conductors do not overlap each other when viewed from the winding axis direction,
The small-diameter loop conductor having the smallest inner and outer diameters among the plurality of loop conductors is arranged closer to the metal body than the other loop conductors.
小径ループ状導体は、複数のループ状導体のうち最も内外径が小さく、線路長が短いため、他のループ状導体に比べて導体面積が小さい。したがって、この構成により、導体面積が相対的に大きな他のループ状導体が、他の金属体に近接して配置される場合に比べて、コニカルコイルと金属体との間に発生する浮遊容量が小さくなる。
The small-diameter loop-shaped conductor has the smallest inner and outer diameters among the plurality of loop-shaped conductors and the line length is short, and therefore has a smaller conductor area than other loop-shaped conductors. Therefore, with this configuration, the stray capacitance generated between the conical coil and the metal body is smaller than in the case where another loop conductor having a relatively large conductor area is disposed close to the other metal body. Get smaller.
また、この構成では、相対的に導体面積の大きな他のループ状導体が、小径ループ状導体よりも他の金属体から離れた位置に配置されるため、インダクタブリッジが屈曲しても、コニカルコイルと他の金属体との間の浮遊容量の変化量は小さい。さらに、この構成では、大径ループ状導体と小径ループ状導体とが面同士で対向しないため、大径ループ状導体と小径ループ状導体との間の層間容量は小さい。
Further, in this configuration, the other loop-shaped conductor having a relatively large conductor area is disposed at a position farther from the other metal body than the small-diameter loop-shaped conductor, so even if the inductor bridge is bent, the conical coil The amount of change in stray capacitance between the metal body and other metal bodies is small. Further, in this configuration, since the large-diameter loop conductor and the small-diameter loop conductor do not face each other, the interlayer capacitance between the large-diameter loop conductor and the small-diameter loop conductor is small.
(2)上記(1)において、前記絶縁基材は、熱可塑性樹脂からなる複数の基材層を積層して形成される積層体であることが好ましい。この構成では、絶縁基材が熱可塑性樹脂であるため、実装状態(実装先の凹凸等)に合わせて形状を容易に塑性加工できる。
(2) In the above (1), the insulating base material is preferably a laminate formed by laminating a plurality of base material layers made of a thermoplastic resin. In this configuration, since the insulating base material is a thermoplastic resin, the shape can be easily plastically processed according to the mounting state (unevenness or the like of the mounting destination).
(3)上記(1)または(2)において、前記インダクタブリッジは、一部に屈曲部を備えることが好ましい。
(3) In the above (1) or (2), it is preferable that the inductor bridge includes a bent portion in part.
(4)上記(1)から(3)のいずれかにおいて、前記コニカルコイルは、2ターンより多く巻回し、前記巻回軸方向から視て、前記コニカルコイルにおいて最も内周を巻回する部分を第1コイル部と定義し、前記第1コイル部に対して外周側に向かってn-1(nは2以上の整数)番目に位置する部分を第nコイル部と定義し、前記第1コイル部の線幅は、その他のコイル部の線幅よりも細いことが好ましい。第1コイル部の線幅を細くすることにより、金属体に最も近接する第1コイル部の導体面積を小さくできる。そのため、この構成により、第1コイル部と金属体との対向面積を小さくでき、コニカルコイルと金属体との間に発生する浮遊容量をさらに抑制できる。
(4) In any one of the above (1) to (3), the conical coil is wound more than two turns, and when viewed from the winding axis direction, a portion of the conical coil that is wound most inside is provided. The first coil portion is defined, and the portion positioned n−1 (n is an integer of 2 or more) toward the outer peripheral side with respect to the first coil portion is defined as the nth coil portion, and the first coil portion is defined. The line width of the part is preferably narrower than the line widths of the other coil parts. By reducing the line width of the first coil portion, the conductor area of the first coil portion closest to the metal body can be reduced. Therefore, with this configuration, the facing area between the first coil portion and the metal body can be reduced, and the stray capacitance generated between the conical coil and the metal body can be further suppressed.
(5)上記(4)において、前記第nコイル部の線幅は、前記第n+1コイル部の線幅よりも細いことが好ましい。第nコイル部は第n+1コイル部よりも金属体に近接している。そのため、この構成により、第n+1コイル部の線幅が第nコイル部の線幅よりも細い場合に比べて、コニカルコイルと金属体との間に発生する浮遊容量を効果的に低減できる。
(5) In the above (4), it is preferable that the line width of the n-th coil part is narrower than the line width of the n + 1-th coil part. The nth coil portion is closer to the metal body than the (n + 1) th coil portion. Therefore, with this configuration, stray capacitance generated between the conical coil and the metal body can be effectively reduced as compared with the case where the line width of the (n + 1) th coil part is narrower than the line width of the nth coil part.
この構成により、電子機器に設けた状態で他の金属体との間に生じる浮遊容量を小さくし、且つ、変形による電気的特性の変動を抑制したインダクタブリッジを備える電子機器を実現できる。
With this configuration, it is possible to realize an electronic device including an inductor bridge that reduces the stray capacitance generated between other metal bodies in a state of being provided in the electronic device and suppresses variation in electrical characteristics due to deformation.
本発明によれば、他の金属体との間に生じる浮遊容量を小さくし、且つ、変形による電気的特性の変動を抑制したインダクタブリッジ、およびそれを備える電子機器を実現できる。
According to the present invention, it is possible to realize an inductor bridge in which a stray capacitance generated between other metal bodies is reduced and a change in electrical characteristics due to deformation is suppressed, and an electronic apparatus including the inductor bridge.
以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
Hereinafter, several specific examples will be given with reference to the drawings to show a plurality of modes for carrying out the present invention. In each figure, the same reference numerals are assigned to the same portions. In consideration of ease of explanation or understanding of the main points, the embodiments are shown separately for convenience, but the components shown in different embodiments can be partially replaced or combined. In the second and subsequent embodiments, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.
《第1の実施形態》
図1(A)は第1の実施形態に係るインダクタブリッジ101の斜視図であり、図1(B)はインダクタブリッジ101の分解斜視図である。図2(A)はインダクタブリッジ101の、コニカルコイル3の形成部分を示す平面図であり、図2(B)はその部分の断面図である。図2(A)では、構造を解りやすくするため、保護層1および基材層14の図示を省略し、大径ループ状導体32で囲まれる開口部BRをドットパターンで示している。 << First Embodiment >>
FIG. 1A is a perspective view of theinductor bridge 101 according to the first embodiment, and FIG. 1B is an exploded perspective view of the inductor bridge 101. FIG. 2A is a plan view showing a portion where the conical coil 3 is formed in the inductor bridge 101, and FIG. 2B is a cross-sectional view of that portion. In FIG. 2A, in order to make the structure easy to understand, the protective layer 1 and the base material layer 14 are not shown, and the opening BR surrounded by the large-diameter loop conductor 32 is shown by a dot pattern.
図1(A)は第1の実施形態に係るインダクタブリッジ101の斜視図であり、図1(B)はインダクタブリッジ101の分解斜視図である。図2(A)はインダクタブリッジ101の、コニカルコイル3の形成部分を示す平面図であり、図2(B)はその部分の断面図である。図2(A)では、構造を解りやすくするため、保護層1および基材層14の図示を省略し、大径ループ状導体32で囲まれる開口部BRをドットパターンで示している。 << First Embodiment >>
FIG. 1A is a perspective view of the
インダクタブリッジ101は、絶縁基材10、絶縁基材10に形成されるコニカルコイル3(後に詳述する)、コネクタ51,52を備える。
The inductor bridge 101 includes an insulating base 10, a conical coil 3 (described in detail later) formed on the insulating base 10, and connectors 51 and 52.
絶縁基材10は、第1主面VS1および第1主面VS1に対向する第2主面VS2を有し、長手方向がX軸方向に一致する、直方体状の熱可塑性樹脂の平板である。
The insulating substrate 10 is a rectangular parallelepiped thermoplastic resin flat plate having a first main surface VS1 and a second main surface VS2 facing the first main surface VS1, and having a longitudinal direction coinciding with the X-axis direction.
本実施形態における「第1主面」とは、インダクタブリッジを電子機器に設けた状態で、金属体(後に詳述する)を有する部材(例えば、実装基板や筐体)に対面するように配置される面である。本実施形態における「金属体」とは、インダクタブリッジを電子機器に設けた状態で、インダクタブリッジが備えるコニカルコイル(インダクタ部)に最も近接する金属部材であり、例えば実装基板に設けられた導体パターンやシールドケース、金属筐体等である。
The “first main surface” in the present embodiment is arranged so as to face a member (for example, a mounting substrate or a housing) having a metal body (described in detail later) in a state where the inductor bridge is provided in the electronic device. It is the surface to be done. The “metal body” in the present embodiment is a metal member that is closest to the conical coil (inductor portion) provided in the inductor bridge in a state where the inductor bridge is provided in the electronic device, for example, a conductor pattern provided on the mounting substrate. And shield cases, metal housings, and the like.
絶縁基材10は、基材層11,12,13,14および保護層1を積層して形成される積層体であり、可撓性を有する。複数の基材層11,12,13,14は、それぞれ長手方向がX軸方向に一致する、平面形状が矩形の、例えば液晶ポリマーを主材料とした熱可塑性樹脂からなるシート状の平板である。
The insulating base material 10 is a laminate formed by laminating the base material layers 11, 12, 13, 14 and the protective layer 1, and has flexibility. The plurality of base material layers 11, 12, 13, and 14 are sheet-like flat plates made of a thermoplastic resin whose main material is a liquid crystal polymer, for example, whose planar shape is rectangular, the longitudinal direction of which coincides with the X-axis direction. .
基材層11の裏面には、電極41が形成される。電極41は、基材層11の第1端(図1(B)における基材層11の右端)付近に配置される、平面形状が矩形の導体パターンである。電極41は例えばCu箔等の導体パターンである。
The electrode 41 is formed on the back surface of the base material layer 11. The electrode 41 is a conductor pattern having a rectangular planar shape disposed near the first end of the base material layer 11 (the right end of the base material layer 11 in FIG. 1B). The electrode 41 is a conductor pattern such as a Cu foil.
基材層12の裏面には、小径ループ状導体31および導体21が形成される。小径ループ状導体31は、基材層12の中央付近に形成される約0.5ターンの矩形ループ状の導体パターンである。導体21は、X軸方向に延伸する線状の導体パターンであり、基材層12の中央付近から基材層12の第1端寄りの位置に配置されている。小径ループ状導体31および導体21は連続形成されており、小径ループ状導体31の第1端は導体21の第1端に接続される。導体21の第2端は、基材層11に形成される層間接続導体V1を介して、電極41に接続される。小径ループ状導体31および導体21は例えばCu箔等の導体パターンであり、層間接続導体V1は例えばビア導体またはスルーホール等である。
A small-diameter loop conductor 31 and a conductor 21 are formed on the back surface of the base material layer 12. The small-diameter loop-shaped conductor 31 is a rectangular loop-shaped conductor pattern of about 0.5 turns formed near the center of the base material layer 12. The conductor 21 is a linear conductor pattern extending in the X-axis direction, and is disposed at a position near the first end of the base material layer 12 from the vicinity of the center of the base material layer 12. The small-diameter loop conductor 31 and the conductor 21 are continuously formed, and the first end of the small-diameter loop conductor 31 is connected to the first end of the conductor 21. A second end of the conductor 21 is connected to the electrode 41 via an interlayer connection conductor V <b> 1 formed on the base material layer 11. The small-diameter loop conductor 31 and the conductor 21 are conductor patterns such as Cu foil, and the interlayer connection conductor V1 is a via conductor or a through hole, for example.
なお、本発明における「小径ループ状導体」とは、コニカルコイルを構成する複数のループ状導体のうち最も内外径(内径および外径)の小さなループ状導体を言う。
In the present invention, the “small-diameter loop conductor” refers to a loop-shaped conductor having the smallest inner / outer diameter (inner diameter and outer diameter) among a plurality of loop conductors constituting the conical coil.
基材層13の表面には、大径ループ状導体32および導体22が形成される。大径ループ状導体32は、基材層13の中央付近に形成される約1ターンの矩形ループ状の導体パターンである。図2(A)に示すように、小径ループ状導体31は、大径ループ状導体32よりも内外径が小さい。導体22は、X軸方向に延伸する線状の導体パターンであり、基材層13の中央付近から基材層13の第2端(図1(B)における基材層13の左端)寄りの位置に配置されている。大径ループ状導体32の第1端は、基材層12,13に形成される層間接続導体V2を介して、小径ループ状導体31に接続される。大径ループ状導体32および導体22は連続形成されており、大径ループ状導体32の第2端は導体22の第1端に接続される。大径ループ状導体32および導体22は例えばCu箔等の導体パターンであり、層間接続導体V2は例えばビア導体またはスルーホール等である。
A large-diameter loop conductor 32 and a conductor 22 are formed on the surface of the base material layer 13. The large-diameter loop conductor 32 is a rectangular loop-shaped conductor pattern of about 1 turn formed near the center of the base material layer 13. As shown in FIG. 2A, the small-diameter loop conductor 31 has a smaller inner and outer diameter than the large-diameter loop conductor 32. The conductor 22 is a linear conductor pattern extending in the X-axis direction, and is closer to the second end of the base material layer 13 (the left end of the base material layer 13 in FIG. 1B) from near the center of the base material layer 13. Placed in position. The first end of the large-diameter loop conductor 32 is connected to the small-diameter loop conductor 31 via an interlayer connection conductor V2 formed on the base material layers 12 and 13. The large-diameter loop conductor 32 and the conductor 22 are continuously formed, and the second end of the large-diameter loop conductor 32 is connected to the first end of the conductor 22. The large-diameter loop conductor 32 and the conductor 22 are conductor patterns such as Cu foil, and the interlayer connection conductor V2 is a via conductor or a through hole, for example.
基材層14の表面には電極42が形成される。電極42は、基材層14の第2端(図1(B)における基材層14の左端)付近に配置される、平面形状が矩形の導体パターンである。電極42は、基材層14に形成される層間接続導体V3を介して、導体22の第2端に接続される。電極42は例えばCu箔等の導体パターンであり、層間接続導体V3は例えばビア導体またはスルーホール等である。
The electrode 42 is formed on the surface of the base material layer 14. The electrode 42 is a conductor pattern having a rectangular planar shape disposed near the second end of the base material layer 14 (the left end of the base material layer 14 in FIG. 1B). The electrode 42 is connected to the second end of the conductor 22 via an interlayer connection conductor V3 formed on the base material layer 14. The electrode 42 is a conductor pattern such as a Cu foil, and the interlayer connection conductor V3 is a via conductor or a through hole, for example.
保護層1は平面形状が基材層14と実質的に同一であり、基材層14の表面に積層される。保護層1は電極42の位置に応じた開口部AP1を有する。そのため、電極42は絶縁基材10の第2主面VS2に露出する。保護層1は例えばソルダーレジスト膜である。なお、保護層1は必須ではない。
The protective layer 1 has substantially the same planar shape as the base material layer 14 and is laminated on the surface of the base material layer 14. The protective layer 1 has an opening AP1 corresponding to the position of the electrode 42. Therefore, the electrode 42 is exposed to the second main surface VS2 of the insulating base material 10. The protective layer 1 is, for example, a solder resist film. The protective layer 1 is not essential.
コネクタ51は、絶縁基材10の第1主面VS1に設けられ、絶縁基材10の長手方向の第1端(図1(A)における絶縁基材10の右端)に配置される。コネクタ51は、電極41に接続される。コネクタ52は、絶縁基材10の第2主面VS2に設けられ、絶縁基材10の長手方向の第2端(絶縁基材10の左端)に配置される。コネクタ52は、電極42に接続される。
The connector 51 is provided on the first main surface VS1 of the insulating base material 10, and is disposed at the first end in the longitudinal direction of the insulating base material 10 (the right end of the insulating base material 10 in FIG. 1A). The connector 51 is connected to the electrode 41. The connector 52 is provided on the second main surface VS <b> 2 of the insulating base 10 and is disposed at the second end in the longitudinal direction of the insulating base 10 (the left end of the insulating base 10). The connector 52 is connected to the electrode 42.
インダクタブリッジ101では、小径ループ状導体31、大径ループ状導体32および層間接続導体V2を含んで約1.5ターンの矩形コニカルコイル3が構成される。図2(B)に示すように、コニカルコイル3は、第1主面VS1および第2主面VS2に直交する(Z軸方向に平行な)巻回軸AXを有する。
In the inductor bridge 101, the rectangular conical coil 3 of about 1.5 turns is configured including the small-diameter loop conductor 31, the large-diameter loop conductor 32, and the interlayer connection conductor V2. As shown in FIG. 2B, the conical coil 3 has a winding axis AX orthogonal to the first main surface VS1 and the second main surface VS2 (parallel to the Z-axis direction).
図2(B)に示すように、複数のループ状導体(小径ループ状導体31および大径ループ状導体32)は、コニカルコイル3の巻回軸AX方向(Z軸方向)に沿って配置される。図2(B)に示すように、複数のループ状導体のうち内外径の最も小さな小径ループ状導体31は、Z軸方向において他のループ状導体(大径ループ状導体32)よりも第1主面VS1に近接して配置されている。
As shown in FIG. 2B, the plurality of loop-shaped conductors (small-diameter loop-shaped conductor 31 and large-diameter loop-shaped conductor 32) are arranged along the winding axis AX direction (Z-axis direction) of the conical coil 3. The As shown in FIG. 2B, the small-diameter loop-shaped conductor 31 having the smallest inner and outer diameters among the plurality of loop-shaped conductors is first than the other loop-shaped conductors (large-diameter loop-shaped conductor 32) in the Z-axis direction. Arranged close to main surface VS1.
また、図2(A)に示すように、小径ループ状導体31は、Z軸方向から視て、大径ループ状導体32で囲まれる開口部BRの内側に配置されている。また、複数のループ状導体(小径ループ状導体31および大径ループ状導体32)は、Z軸方向から視て、互いにに重なっていない。
Further, as shown in FIG. 2A, the small-diameter loop conductor 31 is disposed inside the opening BR surrounded by the large-diameter loop conductor 32 when viewed from the Z-axis direction. Further, the plurality of loop-shaped conductors (small-diameter loop-shaped conductor 31 and large-diameter loop-shaped conductor 32) do not overlap each other when viewed from the Z-axis direction.
なお、本発明における「複数のループ状導体は、巻回軸方向から視て、互いに重ならない」というのは、複数のループ状導体同士が層間接続導体を介して接続されている部分以外、Z軸方向から視て、互いに重なっていない(交差していない)ことを言う。
In the present invention, “the plurality of loop-shaped conductors do not overlap each other when viewed from the winding axis direction” means that the plurality of loop-shaped conductors other than the portion where the plurality of loop-shaped conductors are connected via the interlayer connection conductor. This means that they do not overlap (do not cross) each other when viewed from the axial direction.
複数のループ状導体の内外径の、Z軸方向における変化は一方向である(図2(B)におけるコニカルコイル3の概形DEを参照)。本発明における「巻回軸方向に沿った変化は一方向である」とは、複数のループ状導体の内外径が、Z軸方向に沿って大きく(または小さく)なるように変化していることを言う。
The change in the Z-axis direction of the inner and outer diameters of the plurality of loop-shaped conductors is one direction (see the outline DE of the conical coil 3 in FIG. 2B). In the present invention, “the change along the winding axis direction is one direction” means that the inner and outer diameters of the plurality of loop-shaped conductors change so as to increase (or decrease) along the Z-axis direction. Say.
具体的には、小径ループ状導体31がZ軸方向において他のループ状導体(大径ループ状導体32)よりも第1主面VS1に近接して配置され、複数のループ状導体のうち内外径の最も大きな大径ループ状導体32が、Z軸方向において他のループ状導体(小径ループ状導体31)よりも第1主面VS1から最も遠い位置に配置されている。すなわち、図2(B)におけるコニカルコイル3の概形DEに示すように、複数のループ状導体の内外径は、+Z方向(第1主面VS1側から第2主面VS2側)に向かって大きくなるように変化している。
Specifically, the small-diameter loop-shaped conductor 31 is disposed closer to the first main surface VS1 than the other loop-shaped conductors (large-diameter loop-shaped conductor 32) in the Z-axis direction. The large-diameter loop conductor 32 having the largest diameter is disposed farthest from the first main surface VS1 in the Z-axis direction as compared with the other loop-shaped conductors (small-diameter loop conductor 31). That is, as shown in the outline DE of the conical coil 3 in FIG. 2B, the inner and outer diameters of the plurality of loop conductors are directed in the + Z direction (from the first main surface VS1 side to the second main surface VS2 side). It has changed to become larger.
次に、本発明のインダクタブリッジを備える電子機器について、図を参照して説明する。図3は第1の実施形態に係る電子機器301の主要部を示す断面図である。
Next, an electronic device including the inductor bridge of the present invention will be described with reference to the drawings. FIG. 3 is a cross-sectional view illustrating a main part of the electronic apparatus 301 according to the first embodiment.
電子機器301は、インダクタブリッジ101A、回路基板71および実装基板201を備える。本実施形態では、回路基板71に構成される回路が本発明における「第1回路」に相当し、実装基板201に構成される回路が本発明における「第2回路」に相当する。インダクタブリッジ101Aは、絶縁基材10が一部に屈曲部(曲げ加工された部分)を備える点でインダクタブリッジ101と異なり、その他の構成については実質的に同じである。
The electronic device 301 includes an inductor bridge 101A, a circuit board 71, and a mounting board 201. In the present embodiment, the circuit configured on the circuit board 71 corresponds to the “first circuit” in the present invention, and the circuit configured on the mounting board 201 corresponds to the “second circuit” in the present invention. The inductor bridge 101A differs from the inductor bridge 101 in that the insulating base material 10 includes a bent portion (bent portion) in part, and the other configurations are substantially the same.
図3に示すように、インダクタブリッジ101Aは、回路基板71および実装基板201に接続される。
As shown in FIG. 3, the inductor bridge 101A is connected to a circuit board 71 and a mounting board 201.
実装基板201の上面には金属体2が実装され、実装基板201の上面には導体81が形成されている。レセプタクル61は、導体81に接続され、実装基板201に構成される回路に電気的に接続されている。実装基板201は例えばプリント配線板であり、金属体2は例えばシールドケースやバッテリーパック等である。
The metal body 2 is mounted on the upper surface of the mounting substrate 201, and a conductor 81 is formed on the upper surface of the mounting substrate 201. The receptacle 61 is connected to the conductor 81 and is electrically connected to a circuit configured on the mounting substrate 201. The mounting substrate 201 is, for example, a printed wiring board, and the metal body 2 is, for example, a shield case or a battery pack.
また、回路基板71の下面にはレセプタクル62が実装されている。レセプタクル62は、回路基板71に形成される第1回路に電気的に接続されている。回路基板71に形成される第1回路は例えばUHF帯アンテナの放射素子である。
Further, a receptacle 62 is mounted on the lower surface of the circuit board 71. The receptacle 62 is electrically connected to a first circuit formed on the circuit board 71. The first circuit formed on the circuit board 71 is, for example, a radiating element of a UHF band antenna.
インダクタブリッジ101Aの、コネクタ51はレセプタクル61に接続され、コネクタ52はレセプタクル62に接続される。
In the inductor bridge 101A, the connector 51 is connected to the receptacle 61, and the connector 52 is connected to the receptacle 62.
図3に示すように、インダクタブリッジ101Aは、絶縁基材10の第1主面VS1側が実装基板201の主面PS1に対面するように配置される。そのため、小径ループ状導体31が他のループ状導体(大径ループ状導体32)よりも金属体2に近接して配置される。
As shown in FIG. 3, the inductor bridge 101 </ b> A is arranged so that the first main surface VS <b> 1 side of the insulating base 10 faces the main surface PS <b> 1 of the mounting substrate 201. Therefore, the small-diameter loop conductor 31 is arranged closer to the metal body 2 than the other loop conductors (large-diameter loop conductor 32).
本実施形態に係るインダクタブリッジ101Aは、例えば次の工程で製造される。図4は、インダクタブリッジ101Aの製造工程を順に示す断面図である。
The inductor bridge 101A according to the present embodiment is manufactured by, for example, the following process. FIG. 4 is a cross-sectional view sequentially showing the manufacturing process of the inductor bridge 101A.
まず、小径ループ状導体、大径ループ状導体、導体、電極等をパターンニングした基材層を積層して積層体を構成し、保護層をコーティングした後、その集合基板状態の絶縁基材から個々の素体を分離し、図4中の(1)に示すインダクタブリッジ101を得る。
First, a laminated body is formed by laminating a base layer patterned with small-diameter loop conductors, large-diameter loop conductors, conductors, electrodes, etc., and after coating the protective layer, the insulating base material from the aggregate substrate state Individual element bodies are separated to obtain an inductor bridge 101 shown in (1) in FIG.
次に、図4中の(2)に示すように、上部金型5および下部金型6を用いて、Z軸方向に沿って、絶縁基材10の第1主面VS1および第2主面VS2を加熱加圧する(図4中の(2)に示す矢印参照)。なお、加熱加圧する位置は、絶縁基材10の長手方向(X軸方向)の中央から第1端(絶縁基材の右端)寄りの位置である。上部金型5および下部金型6は、断面形状が所定の形状に屈曲した構造である。
Next, as shown in (2) in FIG. 4, the first main surface VS1 and the second main surface of the insulating base 10 are formed along the Z-axis direction using the upper die 5 and the lower die 6. VS2 is heated and pressurized (see the arrow indicated by (2) in FIG. 4). The position to be heated and pressed is a position closer to the first end (the right end of the insulating base material) from the center in the longitudinal direction (X-axis direction) of the insulating base material 10. The upper mold 5 and the lower mold 6 have a structure in which a cross-sectional shape is bent into a predetermined shape.
その後、上部金型5および下部金型6からインダクタブリッジ101Aを取り出す。このような製造方法により、屈曲部(曲げ加工された部分)を備えるインダクタブリッジ101Aを得る。
Thereafter, the inductor bridge 101A is taken out from the upper mold 5 and the lower mold 6. By such a manufacturing method, an inductor bridge 101A having a bent portion (bent portion) is obtained.
本実施形態に係るインダクタブリッジ101,101Aによれば、次のような効果を奏する。
The inductor bridges 101 and 101A according to the present embodiment have the following effects.
(a)本実施形態では、インダクタブリッジ101を電子機器に設けた状態で、小径ループ状導体31が、Z軸方向において大径ループ状導体32よりも金属体2に近接するように配置される。小径ループ状導体31は、複数のループ状導体のうち最も内外径が小さく、線路長が短いため、他のループ状導体(大径ループ状導体32)に比べて、導体面積が小さい。したがって、この構成により、導体面積が相対的に大きい他のループ状導体を金属体2に近接して配置する場合に比べて、コニカルコイル3と金属体2との間に発生する浮遊容量が小さい。
(A) In the present embodiment, the small-diameter loop conductor 31 is disposed closer to the metal body 2 than the large-diameter loop conductor 32 in the Z-axis direction with the inductor bridge 101 provided in the electronic device. . The small-diameter loop-shaped conductor 31 has the smallest inner and outer diameters among the plurality of loop-shaped conductors and a short line length, and therefore has a smaller conductor area than the other loop-shaped conductors (large-diameter loop-shaped conductor 32). Therefore, with this configuration, the stray capacitance generated between the conical coil 3 and the metal body 2 is smaller than when another loop conductor having a relatively large conductor area is disposed close to the metal body 2. .
(b)また、他のループ状導体よりも線路長が短い小径ループ状導体31に生じる磁界は、小径ループ状導体31よりも線路長が長い他のループ状導体に生じる磁界に比べて小さい。したがって、この構成により、金属体2に生じる渦電流によって磁界の形成が妨げられることは少ない。そのため、金属体2の近接によるインダクタンスの低下が少なく、また低損失のコニカルコイル3を有するインダクタブリッジ、およびそれを備える電子機器301を実現できる。
(B) The magnetic field generated in the small-diameter loop conductor 31 whose line length is shorter than the other loop-shaped conductors is smaller than the magnetic field generated in the other loop-shaped conductors whose line length is longer than that of the small-diameter loop conductor 31. Therefore, with this configuration, the formation of the magnetic field is hardly hindered by the eddy current generated in the metal body 2. Therefore, an inductance bridge having a low-loss conical coil 3 and an electronic device 301 including the same can be realized with little reduction in inductance due to the proximity of the metal body 2.
(c)また、本実施形態では、絶縁基材10が熱可塑性樹脂であるため、図4中の(2)に示すように、実装状態(実装先の凹凸等)に合わせて形状を容易に塑性加工(曲げ加工)できる。
(C) Moreover, in this embodiment, since the insulating base material 10 is a thermoplastic resin, as shown to (2) in FIG. 4, a shape is easy according to a mounting state (unevenness | corrugation etc. of a mounting destination). Plastic working (bending) is possible.
(d)本実施形態では、複数の基材層12,13にそれぞれ形成される小径ループ状導体31および大径ループ状導体32を含んでコニカルコイル3が構成される。この構成により、所定の巻回数およびインダクタンスを有するコニカルコイルを絶縁基材10に形成することができる。
(D) In the present embodiment, the conical coil 3 is configured including the small-diameter loop conductor 31 and the large-diameter loop conductor 32 respectively formed on the plurality of base material layers 12 and 13. With this configuration, a conical coil having a predetermined number of turns and inductance can be formed on the insulating substrate 10.
(e)本実施形態では、内外径の異なる複数のループ状導体(小径ループ状導体31および大径ループ状導体32)が、Z軸方向に沿って配置される。また、複数のループ状導体(小径ループ状導体31および大径ループ状導体32)は、Z軸方向から視て、互いに重なっていない。この構成により、ループ状導体(小径ループ状導体31および大径ループ状導体32)が互いに面同士では対向しないため、複数のループ状導体間の層間容量は小さい。
(E) In the present embodiment, a plurality of loop conductors (small-diameter loop conductor 31 and large-diameter loop conductor 32) having different inner and outer diameters are arranged along the Z-axis direction. Further, the plurality of loop conductors (small diameter loop conductor 31 and large diameter loop conductor 32) do not overlap each other when viewed from the Z-axis direction. With this configuration, the loop-shaped conductors (small-diameter loop-shaped conductor 31 and large-diameter loop-shaped conductor 32) do not face each other, so that the interlayer capacitance between the plurality of loop-shaped conductors is small.
次に、インダクタブリッジ101に対して曲げを生じさせる外力が加わった場合での、インダクタブリッジ101と金属体2との関係について図を参照して説明する。図5(A)は屈曲させる前のインダクタブリッジ101と金属体2との関係を示す部分断面図であり、図5(B)は屈曲させた状態のインダクタブリッジ101と金属体2との関係を示す部分断面図である。
Next, the relationship between the inductor bridge 101 and the metal body 2 when an external force causing bending to the inductor bridge 101 is applied will be described with reference to the drawings. FIG. 5A is a partial cross-sectional view showing the relationship between the inductor bridge 101 and the metal body 2 before bending, and FIG. 5B shows the relationship between the inductor bridge 101 and the metal body 2 in a bent state. It is a fragmentary sectional view shown.
図5(B)に示すように、インダクタブリッジ101は、絶縁基材10の長手方向に沿ってL字状に(第1主面VS1側を内側にして)屈曲している。このとき、絶縁基材10の曲げ変位により第2主面VS2側は引っ張られるように変形し、第1主面VS1側は圧縮するように変形する。この第2主面VS2側の引っ張り変形に伴って、Z軸方向において第2主面VS2寄りに位置する大径ループ状導体32は、絶縁基材10の長手方向の両端に向かって拡がるように変位する(図5(B)の中抜き矢印DF2参照)。また、第1主面VS1側の圧縮変形に伴って、Z軸方向において第1主面VS1寄りに位置する小径ループ状導体31は縮まるように変位する(図5(B)の中抜き矢印DF1参照)。
As shown in FIG. 5B, the inductor bridge 101 is bent in an L shape (with the first main surface VS1 side inward) along the longitudinal direction of the insulating base material 10. At this time, the second main surface VS2 side is deformed to be pulled by the bending displacement of the insulating base material 10, and the first main surface VS1 side is deformed to be compressed. Along with the tensile deformation on the second main surface VS2 side, the large-diameter loop conductor 32 positioned closer to the second main surface VS2 in the Z-axis direction extends toward both ends of the insulating base 10 in the longitudinal direction. Displacement (see hollow arrow DF2 in FIG. 5B). Further, along with the compressive deformation on the first main surface VS1 side, the small-diameter loop conductor 31 located closer to the first main surface VS1 in the Z-axis direction is displaced so as to contract (the hollow arrow DF1 in FIG. 5B). reference).
したがって、絶縁基材10が図5(B)のように屈曲した場合でも、小径ループ状導体31と大径ループ状導体32とが、Z軸方向から視て重なることがないため(面同士で重なっていないため)、小径ループ状導体31と大径ループ状導体32との間の層間容量の変化量は小さい。
Therefore, even when the insulating substrate 10 is bent as shown in FIG. 5B, the small-diameter loop conductor 31 and the large-diameter loop conductor 32 do not overlap when viewed from the Z-axis direction (between surfaces). Therefore, the amount of change in the interlayer capacitance between the small-diameter loop conductor 31 and the large-diameter loop conductor 32 is small.
また、本発明では、図5(B)に示すように、相対的に導体面積の大きな他のループ状導体(大径ループ状導体32)が、小径ループ状導体31よりも金属体2から離れた位置に配置される。そのため、インダクタブリッジ101が屈曲して導体面積の大きな他のループ状導体(大径ループ状導体32)が変形した場合でも、コニカルコイル3と金属体2との間の浮遊容量の変化量は小さい。
In the present invention, as shown in FIG. 5B, another loop conductor (large diameter loop conductor 32) having a relatively large conductor area is separated from the metal body 2 more than the small diameter loop conductor 31. Placed in a different position. Therefore, even when the inductor bridge 101 is bent and another loop conductor having a large conductor area (large diameter loop conductor 32) is deformed, the amount of change in the stray capacitance between the conical coil 3 and the metal body 2 is small. .
さらに、インダクタブリッジ101を屈曲した場合、小径ループ状導体31も変形し、導体面積が変化する。しかし、この構成により、相対的に導体面積の大きな他のループ状導体(大径ループ状導体32)を金属体2に近接して配置した場合に比べて、導体面積の変化に伴う金属体2との間の浮遊容量の変化量は小さい。
Furthermore, when the inductor bridge 101 is bent, the small-diameter loop conductor 31 is also deformed and the conductor area changes. However, with this configuration, the metal body 2 accompanying a change in the conductor area can be obtained as compared with the case where another loop conductor (large diameter loop conductor 32) having a relatively large conductor area is disposed close to the metal body 2. The amount of stray capacitance change between and is small.
本発明におけるインダクタブリッジは次のような構成でもよい。図6(A)は第1の実施形態に係る別のインダクタブリッジ101Aの部分断面図であり、図6(B)は比較例のインダクタブリッジ101Bの部分断面図である。図6(A)および図6(B)では、小径ループ状導体31A,31Bおよび大径ループ状導体32A,32Bの厚みを誇張して示している。
The inductor bridge in the present invention may have the following configuration. 6A is a partial cross-sectional view of another inductor bridge 101A according to the first embodiment, and FIG. 6B is a partial cross-sectional view of an inductor bridge 101B of a comparative example. 6A and 6B, the thicknesses of the small-diameter loop conductors 31A and 31B and the large-diameter loop conductors 32A and 32B are exaggerated.
図6(A)および(B)に示すように、インダクタブリッジ101A,101Bに係る小径ループ状導体31A,31Bおよび大径ループ状導体32A,32Bは、図2(B)に示すインダクタブリッジ101に係る小径ループ状導体31および大径ループ状導体32よりもZ軸方向の厚みが厚い。具体的には、小径ループ状導体31A,31Bおよび大径ループ状導体32A,32BのZ軸方向の厚みは、積層する前の各基材層のZ軸方向の厚みよりも厚い。なお、インダクタブリッジ101A,101Bの絶縁基材10AのZ軸方向の厚みT1は、図2(B)に示すインダクタブリッジ101の絶縁基材10のZ軸方向の厚みに等しい。
As shown in FIGS. 6A and 6B, the small-diameter loop conductors 31A and 31B and the large-diameter loop conductors 32A and 32B related to the inductor bridges 101A and 101B are connected to the inductor bridge 101 shown in FIG. The small-diameter loop conductor 31 and the large-diameter loop conductor 32 are thicker in the Z-axis direction. Specifically, the thickness in the Z-axis direction of the small-diameter loop conductors 31A and 31B and the large-diameter loop conductors 32A and 32B is thicker than the thickness in the Z-axis direction of each base material layer before lamination. The thickness T1 in the Z-axis direction of the insulating base material 10A of the inductor bridges 101A and 101B is equal to the thickness in the Z-axis direction of the insulating base material 10 of the inductor bridge 101 shown in FIG.
図6(B)に示すように、小径ループ状導体31Bと大径ループ状導体32Bとが面同士で対向する場合、小径ループ状導体31Bと大径ループ状導体32Bとの間の距離L2は、小径ループ状導体31Aと大径ループ状導体32Aとの間の距離L1よりも短い(L1>L2)。そのため、比較例のインダクタブリッジ101Bに対して曲げを生じさせる外力が加わった場合、インダクタブリッジ101Bの変形に伴うコニカルコイル3Bの層間容量の変化量は大きい。さらに、本実施形態によれば、小径ループ状導体31Aと大径ループ状導体32Aとが、Z軸方向から視て重なっていないため、インダクタブリッジ101Aの変形に伴うコニカルコイル3Aの層間容量の変化量は小さい。
As shown in FIG. 6B, when the small-diameter loop conductor 31B and the large-diameter loop conductor 32B face each other, the distance L2 between the small-diameter loop conductor 31B and the large-diameter loop conductor 32B is The distance L1 between the small-diameter loop conductor 31A and the large-diameter loop conductor 32A is shorter (L1> L2). Therefore, when an external force causing bending is applied to the inductor bridge 101B of the comparative example, the amount of change in the interlayer capacitance of the conical coil 3B due to the deformation of the inductor bridge 101B is large. Furthermore, according to the present embodiment, the small-diameter loop-shaped conductor 31A and the large-diameter loop-shaped conductor 32A do not overlap when viewed from the Z-axis direction, and therefore the change in the interlayer capacitance of the conical coil 3A accompanying the deformation of the inductor bridge 101A. The amount is small.
なお、小径ループ状導体31Aおよび大径ループ状導体32AのZ軸方向の厚みを厚くすることにより、コニカルコイル3Aの形成部分が屈曲し難くなり、外力に対する機械的強度が高まる。さらに、小径ループ状導体31Aおよび大径ループ状導体32AのZ軸方向の厚みを厚くすることにより、コニカルコイル3AのDCR(直流抵抗)を低減できる。
Note that by increasing the thickness of the small-diameter loop conductor 31A and the large-diameter loop conductor 32A in the Z-axis direction, the portion where the conical coil 3A is formed becomes difficult to bend, and the mechanical strength against external force is increased. Furthermore, the DCR (direct current resistance) of the conical coil 3A can be reduced by increasing the thickness in the Z-axis direction of the small-diameter loop conductor 31A and the large-diameter loop conductor 32A.
《第2の実施形態》
第2の実施形態では、第1の実施形態で示した電子機器とは異なる構造について示す。 << Second Embodiment >>
In the second embodiment, a structure different from the electronic device shown in the first embodiment will be described.
第2の実施形態では、第1の実施形態で示した電子機器とは異なる構造について示す。 << Second Embodiment >>
In the second embodiment, a structure different from the electronic device shown in the first embodiment will be described.
図7は第2の実施形態に係る電子機器302の主要部を示す断面図である。
FIG. 7 is a cross-sectional view showing a main part of the electronic device 302 according to the second embodiment.
電子機器302は、インダクタブリッジ102、樹脂筐体91および実装基板202を備える。樹脂筐体91の内面には導体パターン4が形成されている。導体パターン4は例えばグランド導体である。
The electronic device 302 includes an inductor bridge 102, a resin casing 91, and a mounting substrate 202. A conductor pattern 4 is formed on the inner surface of the resin casing 91. The conductor pattern 4 is, for example, a ground conductor.
本実施形態では、実装基板202に構成される回路が本発明における「第1回路」に相当し、樹脂筐体91に構成される回路(グランド導体)が本発明における「第2回路」に相当する。
In the present embodiment, the circuit configured on the mounting substrate 202 corresponds to the “first circuit” in the present invention, and the circuit (ground conductor) configured in the resin casing 91 corresponds to the “second circuit” in the present invention. To do.
図7に示すように、インダクタブリッジ102は、樹脂筐体91の導体パターン4および実装基板202の導体82に接続される。インダクタブリッジ102は、インダクタブリッジの一部が屈曲されている点で第1の実施形態に係るインダクタブリッジ101と異なる。その他の構成についてはインダクタブリッジ101と実質的に同じである。
As shown in FIG. 7, the inductor bridge 102 is connected to the conductor pattern 4 of the resin casing 91 and the conductor 82 of the mounting substrate 202. The inductor bridge 102 differs from the inductor bridge 101 according to the first embodiment in that a part of the inductor bridge is bent. Other configurations are substantially the same as those of the inductor bridge 101.
実装基板202の上面には導体82,84が形成され、実装基板202の内部には導体83が形成される。レセプタクル62は、導体82に接続され、実装基板202に構成される回路に電気的に接続されている。実装基板202は例えばプリント配線板である。本実施形態では、導体84が本発明における「金属体」である。
Conductors 82 and 84 are formed on the top surface of the mounting substrate 202, and a conductor 83 is formed inside the mounting substrate 202. The receptacle 62 is connected to the conductor 82 and is electrically connected to a circuit configured on the mounting substrate 202. The mounting board 202 is, for example, a printed wiring board. In the present embodiment, the conductor 84 is the “metal body” in the present invention.
また、樹脂筐体91の内面にはレセプタクル61が実装されている。レセプタクル61は、樹脂筐体91に形成される導体パターン4(グランド導体)に電気的に接続されている。
Also, a receptacle 61 is mounted on the inner surface of the resin casing 91. The receptacle 61 is electrically connected to the conductor pattern 4 (ground conductor) formed in the resin casing 91.
インダクタブリッジ102のコネクタ51は、レセプタクル61に接続され、コネクタ52は、レセプタクル62に接続される。インダクタブリッジ102は、実装基板202および樹脂筐体91に接続された状態で、図7に示すように、小径ループ状導体31は、他のループ状導体(大径ループ状導体32)よりも導体84(金属体)に近接して配置されている。
The connector 51 of the inductor bridge 102 is connected to the receptacle 61, and the connector 52 is connected to the receptacle 62. The inductor bridge 102 is connected to the mounting substrate 202 and the resin casing 91, and as shown in FIG. 7, the small-diameter loop conductor 31 is more conductive than the other loop conductors (large-diameter loop conductor 32). 84 (metal body).
また、インダクタブリッジ102は、コニカルコイル3が形成されている部分が、樹脂筐体91に形成された開口OP1から露出している。そのため、コニカルコイル3は電磁界遮蔽されることがない。したがって、このインダクタブリッジ102をアンテナとして用いることができ、外部との通信が可能となる。
Further, in the inductor bridge 102, the portion where the conical coil 3 is formed is exposed from the opening OP1 formed in the resin casing 91. Therefore, the conical coil 3 is not shielded from the electromagnetic field. Therefore, this inductor bridge 102 can be used as an antenna, and communication with the outside becomes possible.
インダクタブリッジ102は、図7に示すように、コニカルコイル3が形成されていない部分がL字状に屈曲されている。具体的には、インダクタブリッジ102は、実装基板202および樹脂筐体91の導体パターン4に接続された状態で、絶縁基材10Cの長手方向の中央から第1端(図7における絶縁基材10Cの右端)寄りの位置が、第1主面VS1を内側にしてL字状に屈曲されている。
As shown in FIG. 7, the inductor bridge 102 is bent in an L shape at a portion where the conical coil 3 is not formed. Specifically, the inductor bridge 102 is connected to the mounting substrate 202 and the conductor pattern 4 of the resin casing 91, and the first end from the center in the longitudinal direction of the insulating base material 10C (the insulating base material 10C in FIG. 7). The position near the right end) is bent in an L shape with the first main surface VS1 inside.
このとき、絶縁基材10Cの曲げ変位に伴い第1主面VS1側は-X方向に応力が加わり、第2主面VS2側は+X方向に応力が加わる。そのため、Z軸方向において第1主面VS1寄りに位置する小径ループ状導体31は、その内外径が縮まるように変位する(図7の中抜き矢印DF1a参照)。また、Z軸方向において第2主面VS2寄りに位置する大径ループ状導体32は、その内外径が拡がるように変位する(図7の中抜き矢印DF2a参照)。
At this time, with the bending displacement of the insulating base material 10C, the first main surface VS1 side is stressed in the −X direction, and the second main surface VS2 side is stressed in the + X direction. Therefore, the small-diameter loop conductor 31 positioned closer to the first main surface VS1 in the Z-axis direction is displaced so that its inner and outer diameters are reduced (see the hollow arrow DF1a in FIG. 7). Further, the large-diameter loop conductor 32 positioned closer to the second main surface VS2 in the Z-axis direction is displaced so that its inner and outer diameters are expanded (see the hollow arrow DF2a in FIG. 7).
したがって、図7に示すようにインダクタブリッジ102が屈曲した場合でも、小径ループ状導体31と大径ループ状導体32とが、Z軸方向から視て、重なることがないため、小径ループ状導体31と大径ループ状導体32との間の層間容量の変化量は小さい。
Therefore, even when the inductor bridge 102 is bent as shown in FIG. 7, the small-diameter loop conductor 31 and the large-diameter loop conductor 32 do not overlap when viewed from the Z-axis direction. And the change in the interlayer capacitance between the large-diameter loop conductor 32 is small.
このように、小径ループ状導体31は、インダクタブリッジが屈曲したときに、内外径が他のループ状導体(大径ループ状導体32)と比べて「相対的に」絶縁基材10に沿って縮まる位置に配置されることが好ましい。
Thus, the small-diameter loop-shaped conductor 31 has an inner and outer diameter that is “relatively” along the insulating substrate 10 as compared with other loop-shaped conductors (large-diameter loop-shaped conductor 32) when the inductor bridge is bent. It is preferable to arrange in a contracted position.
なお、本実施形態では、レセプタクル61を介して、樹脂筐体91の内面に形成された導体パターン4にインダクタブリッジ102を接続する例を示したが、この構成に限定されるものではない。電子機器が金属筐体を備える場合には、ネジ止め等によりインダクタブリッジを金属筐体に接続してもよい。
In the present embodiment, the example in which the inductor bridge 102 is connected to the conductor pattern 4 formed on the inner surface of the resin casing 91 via the receptacle 61 is shown, but the present invention is not limited to this configuration. When the electronic device includes a metal casing, the inductor bridge may be connected to the metal casing by screwing or the like.
《第3の実施形態》
第3の実施形態では、第2の実施形態で示した電子機器とは金属体の構造が異なる構造について示す。 << Third Embodiment >>
In the third embodiment, a structure in which the structure of the metal body is different from that of the electronic device shown in the second embodiment will be described.
第3の実施形態では、第2の実施形態で示した電子機器とは金属体の構造が異なる構造について示す。 << Third Embodiment >>
In the third embodiment, a structure in which the structure of the metal body is different from that of the electronic device shown in the second embodiment will be described.
図8は第3の実施形態に係る電子機器303の主要部を示す断面図である。
FIG. 8 is a cross-sectional view showing a main part of an electronic device 303 according to the third embodiment.
電子機器303は、インダクタブリッジ103、樹脂筐体92および実装基板203を備える。樹脂筐体92の内面には導体パターン4(グランド導体)が形成されている。本実施形態では、樹脂筐体92の内面に形成された導体パターン4が、本発明における「金属体」である。
The electronic device 303 includes an inductor bridge 103, a resin casing 92, and a mounting substrate 203. A conductor pattern 4 (ground conductor) is formed on the inner surface of the resin casing 92. In the present embodiment, the conductor pattern 4 formed on the inner surface of the resin casing 92 is the “metal body” in the present invention.
実装基板203の上面には導体82が形成され、実装基板203の内部には導体83が形成される。
A conductor 82 is formed on the upper surface of the mounting substrate 203, and a conductor 83 is formed inside the mounting substrate 203.
図8に示すように、インダクタブリッジ103は、樹脂筐体92の導体パターン4および実装基板203の導体82に接続される。インダクタブリッジ103は、小径ループ状導体31が他のループ状導体(大径ループ状導体32)よりも導体パターン4に近接して配置されている点で、第2の実施形態に係るインダクタブリッジ102と異なる。その他の構成についてはインダクタブリッジ102と実質的に同じである。
As shown in FIG. 8, the inductor bridge 103 is connected to the conductor pattern 4 of the resin casing 92 and the conductor 82 of the mounting substrate 203. The inductor bridge 103 is the inductor bridge 102 according to the second embodiment in that the small-diameter loop conductor 31 is disposed closer to the conductor pattern 4 than the other loop conductors (large-diameter loop conductor 32). And different. Other configurations are substantially the same as those of the inductor bridge 102.
《第4の実施形態》
第4の実施形態では、第1の実施形態に示すインダクタブリッジとはコニカルコイルの構造が異なる例を示す。 << Fourth Embodiment >>
The fourth embodiment shows an example in which the structure of the conical coil is different from the inductor bridge shown in the first embodiment.
第4の実施形態では、第1の実施形態に示すインダクタブリッジとはコニカルコイルの構造が異なる例を示す。 << Fourth Embodiment >>
The fourth embodiment shows an example in which the structure of the conical coil is different from the inductor bridge shown in the first embodiment.
図9(A)は第4の実施形態に係るインダクタブリッジ104の、コニカルコイル3Cの形成部分を示す平面図であり、図9(B)はその部分の断面図である。図9(A)では、構造を解りやすくするため、保護層1の図示を省略している。
FIG. 9A is a plan view showing a portion where the conical coil 3C is formed in the inductor bridge 104 according to the fourth embodiment, and FIG. 9B is a cross-sectional view of that portion. In FIG. 9A, the protective layer 1 is not shown for easy understanding of the structure.
インダクタブリッジ104は、コニカルコイルの構造が第1の実施形態に係るインダクタブリッジ101と異なる。その他の構成については、インダクタブリッジ101と実質的に同じである。以下、第1の実施形態と異なる部分について説明する。
The inductor bridge 104 is different from the inductor bridge 101 according to the first embodiment in the structure of the conical coil. Other configurations are substantially the same as those of the inductor bridge 101. Hereinafter, a different part from 1st Embodiment is demonstrated.
本実施形態では、基材層14の表面に大径ループ状導体33Cが形成されている。大径ループ状導体33Cは、大径ループ状導体32Cおよび小径ループ状導体31Cよりも内外径が大きい。大径ループ状導体32Cは、小径ループ状導体31Cよりも内外径が大きい。
In this embodiment, a large-diameter loop conductor 33C is formed on the surface of the base material layer 14. The large-diameter loop conductor 33C has a larger inner and outer diameter than the large-diameter loop conductor 32C and the small-diameter loop conductor 31C. The large-diameter loop conductor 32C has a larger inner and outer diameter than the small-diameter loop conductor 31C.
インダクタブリッジ104では、複数の基材層12,13,14にそれぞれ形成される小径ループ状導体31C、大径ループ状導体32C,33Cおよび層間接続導体を含んで約3.5ターンの矩形コニカルコイル3Cが構成される。
Inductor bridge 104 includes a rectangular conical coil of about 3.5 turns including small-diameter loop conductor 31C, large- diameter loop conductors 32C and 33C, and interlayer connection conductors formed on a plurality of base material layers 12, 13, and 14, respectively. 3C is configured.
図9(B)に示すように、複数のループ状導体(小径ループ状導体31Cおよび大径ループ状導体32C,33C)は、Z軸方向に沿って配置される。複数のループ状導体のうち内外径の最も小さな小径ループ状導体31Cは、Z軸方向において他のループ状導体(大径ループ状導体32C,33C)よりも第1主面VS1に近接して配置されている。
As shown in FIG. 9B, a plurality of loop conductors (small-diameter loop conductor 31C and large- diameter loop conductors 32C and 33C) are arranged along the Z-axis direction. Among the plurality of loop conductors, the small-diameter loop conductor 31C having the smallest inner and outer diameters is disposed closer to the first main surface VS1 than the other loop conductors (large- diameter loop conductors 32C and 33C) in the Z-axis direction. Has been.
また、複数のループ状導体の内外径の、Z軸方向に沿った変化は一方向である。具体的に本実施形態では、図9(B)に示すコニカルコイルの概形DEに示すように、複数のループ状導体の内外径は、+Z方向(第1主面VS1側から第2主面VS2側)に向かって大きくなるように変化している。
Moreover, the change along the Z-axis direction of the inner and outer diameters of the plurality of loop-shaped conductors is one direction. Specifically, in the present embodiment, as shown in the outline DE of the conical coil shown in FIG. 9B, the inner and outer diameters of the plurality of loop conductors are in the + Z direction (from the first main surface VS1 side to the second main surface). It changes so as to increase toward the VS2 side.
このように、「他のループ状導体」は複数であってもよい。なお、その場合でも、複数のループ状導体が、Z軸方向から視て、互いに重ならないことを条件とする。本実施形態では、小径ループ状導体31Cが、大径ループ状導体32Cで囲まれる開口部の内側に配置され、大径ループ状導体32Cが、大径ループ状導体33Cで囲まれる開口部の内側に配置されている。
Thus, there may be a plurality of “other loop conductors”. Even in this case, it is a condition that the plurality of loop-shaped conductors do not overlap each other when viewed from the Z-axis direction. In the present embodiment, the small-diameter loop conductor 31C is disposed inside the opening surrounded by the large-diameter loop conductor 32C, and the large-diameter loop conductor 32C is inside the opening surrounded by the large-diameter loop conductor 33C. Is arranged.
なお、本実施形態で示したように、複数のループ状導体の内外径は、Z軸方向に沿って一様に変化しているものに限定されるものではない。すなわち、複数のループ状導体の内外径は、Z軸方向の移動距離に比例して一方向に変化するものに限定されるものではない。例えば、+Z方向(第1主面側から第2主面側)に向かって4つのループ状導体(小径ループ状導体を含む)の内外径が2X→4X→5X→8X(Xは任意の数)の順になるようにZ軸方向に沿って配置される構成も、本発明における「巻回軸方向に沿った変化は一方向である」に含まれる。なお、この場合において、4つのループ状導体は、Z軸方向から視て、互いに重なっていないことを条件とする。一方、+Z方向(第1主面側から第2主面側)に向かって4つのループ状導体(小径ループ状導体を含む)の内外径が2X→5X→3X→4X(Xは任意の数)の順になるようにZ軸方向に沿って配置される構成は、本発明における「巻回軸方向に沿った変化は一方向である」状態から除外される。
Note that, as shown in the present embodiment, the inner and outer diameters of the plurality of loop-shaped conductors are not limited to those that change uniformly along the Z-axis direction. That is, the inner and outer diameters of the plurality of loop-shaped conductors are not limited to those that change in one direction in proportion to the movement distance in the Z-axis direction. For example, the inner and outer diameters of four loop conductors (including small-diameter loop conductors) in the + Z direction (from the first main surface side to the second main surface side) are 2X → 4X → 5X → 8X (X is an arbitrary number) The configuration arranged along the Z-axis direction so as to be in this order is also included in the “change along the winding axis direction is one direction” in the present invention. In this case, it is a condition that the four loop-shaped conductors do not overlap each other when viewed from the Z-axis direction. On the other hand, the inner and outer diameters of four loop conductors (including small-diameter loop conductors) in the + Z direction (from the first main surface side to the second main surface side) are 2X → 5X → 3X → 4X (X is an arbitrary number) ) Are arranged along the Z-axis direction so as to be in the order of “), and are excluded from the state of“ the change along the winding axis direction is one direction ”in the present invention.
《第5の実施形態》
第5の実施形態では、以上に示した各実施形態とは異なる構造のコニカルコイルの例を示す。 << Fifth Embodiment >>
In the fifth embodiment, an example of a conical coil having a structure different from that of each of the embodiments described above is shown.
第5の実施形態では、以上に示した各実施形態とは異なる構造のコニカルコイルの例を示す。 << Fifth Embodiment >>
In the fifth embodiment, an example of a conical coil having a structure different from that of each of the embodiments described above is shown.
図10(A)は第5の実施形態に係るインダクタブリッジ105の、コニカルコイル3Dの形成部分を示す平面図であり、図10(B)はその部分の断面図である。図10(A)では、構造を分かりやすくするため、第1コイル部CP1をハッチングで示し、第2コイル部CP2をドットパターンで示し、第4コイル部CP4をクロスハッチングで示している。
FIG. 10A is a plan view showing a portion where the conical coil 3D is formed in the inductor bridge 105 according to the fifth embodiment, and FIG. 10B is a cross-sectional view of that portion. In FIG. 10A, for easy understanding of the structure, the first coil portion CP1 is indicated by hatching, the second coil portion CP2 is indicated by a dot pattern, and the fourth coil portion CP4 is indicated by cross hatching.
インダクタブリッジ105は、コニカルコイルの構造が、第1の実施形態に係るインダクタブリッジ101と異なる。その他の構成については、インダクタブリッジ101と実質的に同じである。以下、第1の実施形態と異なる部分について説明する。
The inductor bridge 105 is different from the inductor bridge 101 according to the first embodiment in the structure of a conical coil. Other configurations are substantially the same as those of the inductor bridge 101. Hereinafter, a different part from 1st Embodiment is demonstrated.
本実施形態に係るコニカルコイル3Cは、大径ループ状導体34D、大径ループ状導体33D、大径ループ状導体32D、小径ループ状導体31D、および層間接続導体(図示省略)を含んで構成される。コニカルコイル3Cは、第1主面VS1および第2主面VS2に直交する(Z軸方向に平行な)巻回軸AXを有する。
The conical coil 3C according to the present embodiment includes a large-diameter loop conductor 34D, a large-diameter loop conductor 33D, a large-diameter loop conductor 32D, a small-diameter loop conductor 31D, and an interlayer connection conductor (not shown). The The conical coil 3C has a winding axis AX that is orthogonal to the first main surface VS1 and the second main surface VS2 (parallel to the Z-axis direction).
また、コニカルコイル3Cは、2ターンより多く巻回(約3.5ターン強)し、第1コイル部CP1、第2コイル部CP2、第3コイル部CP3および第4コイル部CP4を有する。第1コイル部CP1は、Z軸方向から視て、コニカルコイル3Cにおいて最も内周を巻回する部分である。第2コイル部CP2は、Z軸方向から視て、第1コイル部CP1に対して外周側に向かって1番目に位置する部分である。第3コイル部CP3は、Z軸方向から視て、第1コイル部CP1に対して外周側に向かって2番目に位置する部分である。第4コイル部は、Z軸方向から視て、第1コイル部CP1に対して外周側に向かって3番目に位置する部分である。
Further, the conical coil 3C is wound more than 2 turns (about 3.5 turns) and has a first coil part CP1, a second coil part CP2, a third coil part CP3, and a fourth coil part CP4. The first coil portion CP1 is a portion that winds most inside the conical coil 3C when viewed from the Z-axis direction. The second coil portion CP2 is a portion that is first positioned toward the outer peripheral side with respect to the first coil portion CP1 when viewed from the Z-axis direction. The third coil portion CP3 is a portion that is secondly located toward the outer peripheral side with respect to the first coil portion CP1 when viewed from the Z-axis direction. The fourth coil portion is a portion located third from the first coil portion CP1 toward the outer peripheral side when viewed from the Z-axis direction.
本実施形態では、図10(A)に示すように、基材層11の表面に形成された0.5ターン強の小径ループ状導体31Dが、第1コイル部CP1といっちしており、基材層12の表面に形成された1ターンの大径ループ状導体32Dが、第2コイル部CP2と一致している。また、本実施形態では、基材層13の表面に形成された1ターンの大径ループ状導体33Dが、第3コイル部CP3と一致しており、基材層14の表面に形成された1ターンの大径ループ状導体34Dが、第4コイル部CP4と一致している。
In the present embodiment, as shown in FIG. 10 (A), a small-diameter loop conductor 31D of slightly more than 0.5 turns formed on the surface of the base material layer 11 is referred to as the first coil portion CP1. A one-turn large-diameter loop conductor 32D formed on the surface of the material layer 12 coincides with the second coil portion CP2. In the present embodiment, the one-turn large-diameter loop conductor 33D formed on the surface of the base material layer 13 coincides with the third coil portion CP3, and 1 formed on the surface of the base material layer 14 The large-diameter loop conductor 34D of the turn coincides with the fourth coil portion CP4.
図10(A)に示すように、最も内周側に位置する第1コイル部CP1の全長は、その他のコイル部よりも短く、第4コイル部CP4の全長はその他のコイル部よりも長い。コイル部の全長を長い順に並べると、第4コイル部CP4、第3コイル部CP3、第2コイル部CP2、第1コイル部CP1の順となる。
As shown in FIG. 10A, the overall length of the first coil portion CP1 located on the innermost peripheral side is shorter than the other coil portions, and the overall length of the fourth coil portion CP4 is longer than the other coil portions. When the overall lengths of the coil portions are arranged in the long order, the fourth coil portion CP4, the third coil portion CP3, the second coil portion CP2, and the first coil portion CP1 are arranged in this order.
また、図10(A)および図10(B)に示すように、第1コイル部CP1の線幅T1は、その他のコイル部の線幅(第2コイル部CP2の線幅T2、第3コイル部CP3の線幅T3および第4コイル部CP4の線幅T4)よりも細い。また、第nコイル部の線幅は、第n+1コイル部の線幅よりも細い。具体的には、第2コイル部CP2の線幅T2が第3コイル部CP3の線幅T3よりも細く、第3コイル部CP3の線幅T3が第4コイル部CP4の線幅T4よりも細い。コイル部の線幅を細い順に並べると、第1コイル部CP1、第2コイル部CP2、第3コイル部CP3、第4コイル部CP4の準となる。
Further, as shown in FIGS. 10A and 10B, the line width T1 of the first coil portion CP1 is equal to the line width of the other coil portions (the line width T2 of the second coil portion CP2, the third coil). It is narrower than the line width T3 of the part CP3 and the line width T4 of the fourth coil part CP4. Further, the line width of the nth coil part is narrower than the line width of the (n + 1) th coil part. Specifically, the line width T2 of the second coil part CP2 is narrower than the line width T3 of the third coil part CP3, and the line width T3 of the third coil part CP3 is thinner than the line width T4 of the fourth coil part CP4. . When the line widths of the coil portions are arranged in order of narrowness, the first coil portion CP1, the second coil portion CP2, the third coil portion CP3, and the fourth coil portion CP4 become equivalent.
本実施形態に係るインダクタブリッジ105によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。
The inductor bridge 105 according to the present embodiment has the following effects in addition to the effects described in the first embodiment.
(a)本実施形態では、第1コイル部CP1の線幅T1が、その他のコイル部の線幅(第2コイル部CP2の線幅T2、第3コイル部CP3の線幅T3および第4コイル部CP4の線幅T4)よりも細い。第1コイル部CP1の線幅T1を細くすることにより、金属体2に最も近接する第1コイル部CP1の導体面積を小さくできる。そのため、この構成により、第1コイル部CP1と金属体2との対向面積を小さくでき、その他のコイル部の線幅を細くするよりも(すなわち、その他のコイル部の導体面積を小さくするよりも)、コニカルコイル3Dと金属体2との間に発生する浮遊容量をさらに抑制できる。
(A) In the present embodiment, the line width T1 of the first coil portion CP1 is equal to the line width of the other coil portions (the line width T2 of the second coil portion CP2, the line width T3 of the third coil portion CP3, and the fourth coil). It is narrower than the line width T4) of the part CP4. By reducing the line width T1 of the first coil portion CP1, the conductor area of the first coil portion CP1 closest to the metal body 2 can be reduced. Therefore, with this configuration, the facing area between the first coil portion CP1 and the metal body 2 can be reduced, and the line width of the other coil portions can be reduced (that is, the conductor area of the other coil portions can be reduced). ), Stray capacitance generated between the conical coil 3D and the metal body 2 can be further suppressed.
また、この構成により、全てのコイル部(第1コイル部CP1、第2コイル部CP2、第3コイル部CP3および第4コイル部CP4)の線幅を細くした場合と比較して、直流抵抗を小さくしつつ、コニカルコイル3Dと金属体2との間に発生する浮遊容量を効果的に低減できる。
Also, with this configuration, the direct current resistance is reduced as compared with the case where the line widths of all the coil portions (the first coil portion CP1, the second coil portion CP2, the third coil portion CP3, and the fourth coil portion CP4) are reduced. The stray capacitance generated between the conical coil 3D and the metal body 2 can be effectively reduced while being reduced.
(b)本実施形態では、第2コイル部CP2の線幅T2が、第3コイル部CP3の線幅T3よりも細く、第3コイル部CP3の線幅T3が、第4コイル部CP4の線幅T4よりも細い。すなわち、第nコイル部の線幅は、第n+1コイル部の線幅よりも細い。第nコイル部は第n+1コイル部よりも金属体2に近接している。そのため、この構成により、第n+1コイル部の線幅が第nコイル部の線幅よりも細い場合に比べて、コニカルコイル3Dと金属体2との間に発生する浮遊容量を効果的に低減できる。
(B) In the present embodiment, the line width T2 of the second coil part CP2 is narrower than the line width T3 of the third coil part CP3, and the line width T3 of the third coil part CP3 is the line of the fourth coil part CP4. Narrower than width T4. That is, the line width of the nth coil part is narrower than the line width of the (n + 1) th coil part. The nth coil part is closer to the metal body 2 than the (n + 1) th coil part. Therefore, with this configuration, the stray capacitance generated between the conical coil 3D and the metal body 2 can be effectively reduced as compared with the case where the line width of the (n + 1) th coil part is narrower than the line width of the nth coil part. .
なお、本実施形態では、4つのコイル部(第1コイル部CP1、第2コイル部CP2、第3コイル部CP3および第4コイル部CP4)を有するコニカルコイル3Dについて示したが、この構成に限定されるものではない。本発明の「コニカルコイル」は、第nコイル部(nは2以上の整数)を有していてもよい。第nコイル部は、Z軸方向から視て、第1コイル部CP1に対して外周側に向かってn-1番目に位置する部分を言う。
In the present embodiment, the conical coil 3D having four coil portions (the first coil portion CP1, the second coil portion CP2, the third coil portion CP3, and the fourth coil portion CP4) is shown, but the present invention is limited to this configuration. Is not to be done. The “conical coil” of the present invention may have an n-th coil portion (n is an integer of 2 or more). The n-th coil portion refers to a portion located at the (n−1) th position toward the outer peripheral side with respect to the first coil portion CP1 when viewed from the Z-axis direction.
《その他の実施形態》
以上に示した各実施形態では、絶縁基材の平面形状が矩形である例を示したが、この構成に限定されるものではない。絶縁基材の平面形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば多角形、円形、楕円形、L字形、クランク形、T字形、Y字形等であってもよい。 << Other Embodiments >>
In each embodiment shown above, although the example whose planar shape of an insulating base material is a rectangle was shown, it is not limited to this structure. The planar shape of the insulating substrate can be changed as appropriate within the scope of the effects and effects of the present invention, and may be, for example, a polygon, a circle, an ellipse, an L shape, a crank shape, a T shape, a Y shape, or the like. .
以上に示した各実施形態では、絶縁基材の平面形状が矩形である例を示したが、この構成に限定されるものではない。絶縁基材の平面形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば多角形、円形、楕円形、L字形、クランク形、T字形、Y字形等であってもよい。 << Other Embodiments >>
In each embodiment shown above, although the example whose planar shape of an insulating base material is a rectangle was shown, it is not limited to this structure. The planar shape of the insulating substrate can be changed as appropriate within the scope of the effects and effects of the present invention, and may be, for example, a polygon, a circle, an ellipse, an L shape, a crank shape, a T shape, a Y shape, or the like. .
また、以上に示した各実施形態では、4つの基材層を積層して形成される絶縁基材を備えたインダクタブリッジについて示したが、この構成に限定されるものではない。絶縁基材を形成する基材層の層数は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば基材層が単層であってもよい。
In each of the embodiments described above, an inductor bridge including an insulating base material formed by laminating four base material layers has been described. However, the present invention is not limited to this configuration. The number of base material layers forming the insulating base material can be appropriately changed within a range where the functions and effects of the present invention are exhibited. For example, the base material layer may be a single layer.
以上に示した各実施形態では、複数の基材層にそれぞれ形成されるループ状導体を含んで約1.5ターンまたは2.5ターンのコニカルコイルが構成される例について示したが、この構成に限定されるものではない。インダクタブリッジが備えるコニカルコイルのターン数は適宜変更が可能である。また、巻回軸方向(Z軸方向)から視たコニカルコイルの概形は、例えば円形、楕円形、矩形や多角形であってもよい。さらに、以上の実施形態では、1ターン未満の小径ループ状導体および大径ループ状導体を含んだコニカルコイルの例を示したが、1ターン以上のスパイラル状の小径ループ状導体および大径ループ状導体を含んでコニカルコイルを構成してもよい。
In each of the embodiments described above, an example in which a conical coil of about 1.5 turns or 2.5 turns is configured including loop-shaped conductors formed on a plurality of base material layers has been shown. It is not limited to. The number of turns of the conical coil provided in the inductor bridge can be changed as appropriate. Moreover, the outline of the conical coil viewed from the winding axis direction (Z-axis direction) may be, for example, a circle, an ellipse, a rectangle, or a polygon. Furthermore, in the above embodiment, an example of a conical coil including a small-diameter loop conductor and a large-diameter loop conductor of less than one turn has been shown. However, a spiral-shaped small-diameter loop conductor and a large-diameter loop including one or more turns are shown. You may comprise a conical coil including a conductor.
また、以上に示した各実施形態では、絶縁基材の第1主面および第2主面の両方に2つのコネクタが設けられた例を示したが、この構成に限定されるものではない。2つのコネクタは、絶縁基材の第1主面のみに設けられていてもよく、第2主面のみに設けられていてもよい。また、コネクタの配置、個数については、インダクタブリッジの回路構成によって適宜変更可能である。
Moreover, in each embodiment shown above, although the example in which two connectors were provided on both the first main surface and the second main surface of the insulating base material was shown, it is not limited to this configuration. The two connectors may be provided only on the first main surface of the insulating base material, or may be provided only on the second main surface. Further, the arrangement and number of connectors can be appropriately changed depending on the circuit configuration of the inductor bridge.
なお、本発明においてコネクタは必須ではない。コネクタを用いずにはんだ等の導電性接合材等によって、接続部を第1回路および第2回路等に接続してもよい。
In the present invention, the connector is not essential. You may connect a connection part to a 1st circuit, a 2nd circuit, etc. by electroconductive joining materials, such as solder, without using a connector.
最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
Finally, the description of the above embodiment is illustrative in all respects and not restrictive. Modifications and changes can be made as appropriate by those skilled in the art. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope equivalent to the claims.
AP1…開口部
AX…コニカルコイルの巻回軸
DE…コニカルコイルの概形
CP1…第1コイル部
CP2…第2コイル部
CP3…第3コイル部
CP4…第4コイル部
BR…開口部
OP1…開口
PS1…実装基板の主面
V1,V2,V3…層間接続導体
VS1…第1主面
VS2…第2主面
W1…絶縁基材の厚み
1…保護層
2…金属体
3,3A,3B,3C…コニカルコイル
4…導体パターン(金属体)
5…上部金型
6…下部金型
10,10A,10B…絶縁基材
11,12,13,14,11a,12a,13a,14a…基材層
21,22…導体
31,31A,31B,31C,31D…小径ループ状導体
32,32A,32B,32C,32D,33B,33C,33D,34D…大径ループ状導体
31a,32a,33a,34a…ループ状導体
41,42…電極
51,52…コネクタ
61,62…レセプタクル
71…回路基板
81,82,83…導体
84…導体(金属体)
91,92…樹脂筐体
100,101,101A,101B,102,103,104,105…インダクタブリッジ
201,202,203…実装基板
301,302,303…電子機器 AP1 ... opening AX ... winding axis DE of conical coil ... general shape CP1 of conical coil ... first coil part CP2 ... second coil part CP3 ... third coil part CP4 ... fourth coil part BR ... opening OP1 ... opening PS1... Main surface V1, V2, V3 of mounting substrate. Interlayer connection conductor VS1. First main surface VS2. Second main surface W1. Insulatingbase material thickness 1. Protective layer 2. Metal bodies 3, 3A, 3B, 3C. ... Conical coil 4 ... Conductor pattern (metal body)
5 ...Upper die 6 ... Lower die 10, 10A, 10B ... Insulating base material 11, 12, 13, 14, 11a, 12a, 13a, 14a ... Base material layers 21, 22 ... Conductors 31, 31A, 31B, 31C , 31D ... small- diameter loop conductors 32, 32A, 32B, 32C, 32D, 33B, 33C, 33D, 34D ... large- diameter loop conductors 31a, 32a, 33a, 34a ... loop-shaped conductors 41, 42 ... electrodes 51, 52 ... Connectors 61, 62 ... Receptacle 71 ... Circuit boards 81, 82, 83 ... Conductor 84 ... Conductor (metal body)
91, 92 ... Resin casings 100, 101, 101A, 101B, 102, 103, 104, 105 ... Inductor bridges 201, 202, 203 ... Mounting boards 301, 302, 303 ... Electronic equipment
AX…コニカルコイルの巻回軸
DE…コニカルコイルの概形
CP1…第1コイル部
CP2…第2コイル部
CP3…第3コイル部
CP4…第4コイル部
BR…開口部
OP1…開口
PS1…実装基板の主面
V1,V2,V3…層間接続導体
VS1…第1主面
VS2…第2主面
W1…絶縁基材の厚み
1…保護層
2…金属体
3,3A,3B,3C…コニカルコイル
4…導体パターン(金属体)
5…上部金型
6…下部金型
10,10A,10B…絶縁基材
11,12,13,14,11a,12a,13a,14a…基材層
21,22…導体
31,31A,31B,31C,31D…小径ループ状導体
32,32A,32B,32C,32D,33B,33C,33D,34D…大径ループ状導体
31a,32a,33a,34a…ループ状導体
41,42…電極
51,52…コネクタ
61,62…レセプタクル
71…回路基板
81,82,83…導体
84…導体(金属体)
91,92…樹脂筐体
100,101,101A,101B,102,103,104,105…インダクタブリッジ
201,202,203…実装基板
301,302,303…電子機器 AP1 ... opening AX ... winding axis DE of conical coil ... general shape CP1 of conical coil ... first coil part CP2 ... second coil part CP3 ... third coil part CP4 ... fourth coil part BR ... opening OP1 ... opening PS1... Main surface V1, V2, V3 of mounting substrate. Interlayer connection conductor VS1. First main surface VS2. Second main surface W1. Insulating
5 ...
91, 92 ...
Claims (5)
- インダクタブリッジと、第1回路と、第2回路と、金属体と、を備え、
前記第1回路と前記第2回路とが前記インダクタブリッジを介して接続され、
前記インダクタブリッジは、
第1主面を有し、可撓性を有する絶縁基材と、
前記絶縁基材に形成され、前記第1主面に直交する巻回軸を有するコニカルコイルと、
を有し、
前記コニカルコイルは、前記コニカルコイルの巻回軸方向に沿って配置される複数のループ状導体を含んで構成され、
前記複数のループ状導体の内外径の、前記巻回軸方向に沿った変化は一方向であり、
前記複数のループ状導体は、前記巻回軸方向から視て、互いにに重ならず、
前記複数のループ状導体のうち内外径の最も小さな小径ループ状導体は、他のループ状導体よりも前記金属体に近接して配置される、電子機器。
る、インダクタブリッジ。 An inductor bridge, a first circuit, a second circuit, and a metal body;
The first circuit and the second circuit are connected via the inductor bridge;
The inductor bridge is
An insulating base material having a first main surface and having flexibility;
A conical coil formed on the insulating substrate and having a winding axis perpendicular to the first main surface;
Have
The conical coil is configured to include a plurality of loop-shaped conductors arranged along the winding axis direction of the conical coil,
The change along the winding axis direction of the inner and outer diameters of the plurality of loop-shaped conductors is one direction,
The plurality of loop-shaped conductors do not overlap each other when viewed from the winding axis direction,
An electronic apparatus in which a small-diameter loop-shaped conductor having the smallest inner and outer diameters among the plurality of loop-shaped conductors is disposed closer to the metal body than other loop-shaped conductors.
Inductor bridge. - 前記絶縁基材は、熱可塑性樹脂からなる複数の基材層を積層して形成される積層体である、請求項1に記載の電子機器。 The electronic device according to claim 1, wherein the insulating base material is a laminate formed by laminating a plurality of base material layers made of a thermoplastic resin.
- 前記インダクタブリッジは、一部に屈曲部を備える、請求項1または2に記載の電子機器。 The electronic device according to claim 1, wherein the inductor bridge includes a bent portion in part.
- 前記コニカルコイルは、2ターンより多く巻回し、
前記巻回軸方向から視て、前記コニカルコイルにおいて最も内周を巻回する部分を第1コイル部と定義し、前記第1コイル部に対して外周側に向かってn-1(nは2以上の整数)番目に位置する部分を第nコイル部と定義し、
前記第1コイル部の線幅は、その他のコイル部の線幅よりも細い、請求項1から3のいずれかに記載の電子機器。 The conical coil is wound more than 2 turns,
As viewed from the winding axis direction, the portion of the conical coil that winds most on the inner periphery is defined as a first coil portion, and n−1 (n is 2) toward the outer periphery with respect to the first coil portion. (The integer above) define the part located at the nth coil part,
The electronic device according to claim 1, wherein a line width of the first coil portion is narrower than a line width of other coil portions. - 前記第nコイル部の線幅は、前記第n+1コイル部の線幅よりも細い、請求項4に記載の電子機器。 The electronic device according to claim 4, wherein a line width of the n-th coil part is narrower than a line width of the n + 1-th coil part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201790000899.4U CN209249234U (en) | 2016-07-06 | 2017-07-04 | Electronic equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016134156 | 2016-07-06 | ||
JP2016-134156 | 2016-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018008615A1 true WO2018008615A1 (en) | 2018-01-11 |
Family
ID=60912724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/024415 WO2018008615A1 (en) | 2016-07-06 | 2017-07-04 | Electronic device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN209249234U (en) |
WO (1) | WO2018008615A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10144543A (en) * | 1996-11-06 | 1998-05-29 | Matsushita Electric Ind Co Ltd | Coil component |
JP2003309011A (en) * | 2002-04-18 | 2003-10-31 | Okaya Electric Ind Co Ltd | Laminated inductor |
JP2006294927A (en) * | 2005-04-12 | 2006-10-26 | Murata Mfg Co Ltd | Laminated coil |
WO2014129279A1 (en) * | 2013-02-19 | 2014-08-28 | 株式会社村田製作所 | Inductor bridge and electronic device |
-
2017
- 2017-07-04 WO PCT/JP2017/024415 patent/WO2018008615A1/en active Application Filing
- 2017-07-04 CN CN201790000899.4U patent/CN209249234U/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10144543A (en) * | 1996-11-06 | 1998-05-29 | Matsushita Electric Ind Co Ltd | Coil component |
JP2003309011A (en) * | 2002-04-18 | 2003-10-31 | Okaya Electric Ind Co Ltd | Laminated inductor |
JP2006294927A (en) * | 2005-04-12 | 2006-10-26 | Murata Mfg Co Ltd | Laminated coil |
WO2014129279A1 (en) * | 2013-02-19 | 2014-08-28 | 株式会社村田製作所 | Inductor bridge and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN209249234U (en) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6260641B2 (en) | Inductor bridge and electronics | |
JP3957000B1 (en) | Antenna coil for board mounting and antenna device | |
JP5975152B2 (en) | Communication terminal device | |
JP5743034B2 (en) | Inductor bridge and electronics | |
JP6635116B2 (en) | Multilayer substrates and electronic equipment | |
US9979087B2 (en) | Coil device and antenna device | |
US11380474B2 (en) | Electronic device | |
JP5720863B2 (en) | Inductor elements, inductor bridges and high frequency filters | |
US9837195B2 (en) | Mounting structure of flexible inductor and electronic device | |
JP6544488B2 (en) | Inductor bridge and electronic equipment | |
WO2018008615A1 (en) | Electronic device | |
JP6610769B2 (en) | Electronic component module, DC-DC converter, and electronic device | |
JP6638825B2 (en) | Multilayer board | |
JP6376308B2 (en) | Wireless IC device and method of manufacturing wireless IC device | |
WO2018030363A1 (en) | Antenna device and electronic instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17824218 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17824218 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |