Nothing Special   »   [go: up one dir, main page]

WO2018003660A1 - Position detection method, position detection device, and position detection program - Google Patents

Position detection method, position detection device, and position detection program Download PDF

Info

Publication number
WO2018003660A1
WO2018003660A1 PCT/JP2017/023058 JP2017023058W WO2018003660A1 WO 2018003660 A1 WO2018003660 A1 WO 2018003660A1 JP 2017023058 W JP2017023058 W JP 2017023058W WO 2018003660 A1 WO2018003660 A1 WO 2018003660A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
position detection
electrode
detection method
conductive layer
Prior art date
Application number
PCT/JP2017/023058
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 寛治
橋本 薫
秋山 豊
佐藤 陽一
西尾 佳高
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to JP2018525119A priority Critical patent/JP6649484B2/en
Publication of WO2018003660A1 publication Critical patent/WO2018003660A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a position detection method, a position detection program, and a capacitance type position detection apparatus that detect the position of an object that approaches a base portion having a conductive layer.
  • Patent Document 1 discloses an example of a conventional capacitive touch panel.
  • the touch panel described in Patent Document 1 includes a plurality of first electrodes arranged side by side on an insulating substrate, a plurality of second electrodes arranged side by side across the first electrode, and an insulation interposed between the two electrodes.
  • the pad portion of the first electrode and the pad portion of the second electrode are arranged without overlapping (see FIG. 2 of Patent Document 1).
  • a capacitive touch panel (hereinafter also referred to as a two-layer touch panel) using a patterned two-layer electrode pad, a relatively high touch detection accuracy can be realized, but the structure is complicated. There is a demerit that the cost becomes high. In particular, when an ultra-large screen or white board is made into a touch panel, the manufacturing yield may be deteriorated, and the cost increase becomes more remarkable.
  • Patent Document 2 and Patent Document 3 disclose a patternless touch panel in which electrodes are provided at four corners of a transparent conductive film and an AC voltage for position detection having the same phase and the same potential is supplied. Specifically, in Patent Document 2, four waveform detection circuits are provided corresponding to the electrodes at the four corners of the conductive film, and the coordinate position is calculated based on the output voltage of the detection circuit. In Patent Document 3, pulse signals having the same phase and voltage are applied to the four corner electrodes of the rectangular conductive film, and the touch position of the user is detected using a logarithmic signal ratio.
  • the patternless touch panel using such a single conductive film has a simple structure and can be realized at a low price, but generally has a lower resolution than a two-layer touch panel.
  • an object of the present invention is to provide a position detection device having a simple structure and high resolution.
  • a measurement signal is given to a target electrode selected from the plurality of electrodes and A position estimation process including a signal acquisition step of acquiring an output signal and a position estimation step of estimating a candidate position of the object based on the output signal, with the target electrode being different; and the position A specific calculation step of determining the position of the object based on the result of the estimation step.
  • a conductive film is formed on a base member formed of an insulator, for example, a transparent insulating substrate, a resin casing of an electronic device, or the like.
  • a part or the whole of the substrate as the base portion includes a conductive layer. That is, the case where the base portion is composed of only one conductive layer is also included.
  • the conductive layer includes all conductive layers in which a layer is formed.
  • a conductive film, a conductive sheet, and a conductive plate are also included.
  • the position estimation step a plurality of position estimation processes are executed with different target electrodes, and the position of the object approaching the base portion is detected based on the result.
  • the position detection of an object can be performed based on the output signal from a different object electrode, the precision which concerns on a position detection can be raised. That is, position detection with high resolution can be realized in position recognition related to contact or approach of an object.
  • the position detection method according to the present invention can realize position detection with high resolution in a patternless touch panel.
  • FIG. 4 It is a block diagram which shows the structural example of a position detection apparatus. It is sectional drawing which shows the structural example of the touchscreen which concerns on 1st Embodiment. It is a top view which shows the structural example of the touchscreen which concerns on 1st Embodiment. It is a schematic diagram for demonstrating the output signal and voltage difference information from two electrodes to which the pulse signal was given. It is the figure which showed an example of the signal waveform when the point TP1 of FIG. 4 is touched. It is a top view which shows the other example of electrode arrangement
  • FIG. 1 is a block diagram illustrating a configuration example of a position detection device 1 according to the present embodiment.
  • the position detection device 1 includes a patternless touch panel 2 (hereinafter simply referred to as a touch panel 2) as a base unit, a signal source 3 for giving a pulse signal as a measurement signal to the touch panel 2, a position An information acquisition unit 4 and a calculation unit 5 are provided.
  • a patternless touch panel 2 hereinafter simply referred to as a touch panel 2
  • a signal source 3 for giving a pulse signal as a measurement signal to the touch panel 2
  • a position An information acquisition unit 4 and a calculation unit 5 are provided.
  • FIG. 2 is a cross-sectional view showing the configuration of the touch panel 2, and FIG. 3 is a plan view thereof.
  • the touch panel 2 is formed of a rigid substrate or a flexible sheet having electromagnetic permeability (including light and a touch electric field), and includes a rectangular substrate 21 in plan view. In the present disclosure, the rectangle is a concept including a square and a rectangle.
  • an electromagnetically transmissive conductive layer 22 is formed over substantially the entire surface, and a transparent insulating protective layer 23 is formed thereon.
  • the conductive layer 22 is an ITO (Indium Tin Oxide) film, for example, and has a resistance value of 1 k ⁇ / ⁇ to 10 M ⁇ / ⁇ .
  • the insulating protective layer 23 is, for example, a polyester sheet, and the thickness thereof is, for example, 1 ⁇ m to 100 ⁇ m.
  • the touch panel 2 is provided with four electrodes E, E,... Along the side of the conductive layer 22. Specifically, one electrode is provided asymmetrically at an intermediate position of each side of the conductive layer 22.
  • providing electrodes symmetrically means that, for example, when the conductive layer is rectangular, when the bisector passing through the center of the conductive layer is drawn, the positions of the electrodes on the opposite sides are the same. It is assumed that an electrode is provided so that For example, when the conductive layer is circular, the electrode is provided at a point-symmetrical position with respect to the center of the conductive layer 22. Therefore, the asymmetric position refers to disposing the electrode by shifting from the symmetric position.
  • the electrode provided along the side extending in the vertical direction at the left end of the conductive layer 22 is referred to as a first electrode E1 and is counterclockwise from the first electrode E1.
  • the electrodes provided on each side may be referred to as second, third, and fourth electrodes E2, E3, E4, respectively.
  • an electrode group is constituted by four electrodes E1, E2, E3, and E4.
  • the signal source 3 includes a pulse generator 31 (denoted as PG in FIG. 1) and an analog switch 32 (denoted as AS in FIG. 1).
  • the pulse generator 31 generates a rectangular pulse signal (voltage: Vcc) that varies periodically.
  • the analog switch 32 is provided between the pulse generator 31 and each electrode E of the touch panel 2, and among the first to fourth electrodes E1, E2,..., E4, an electrode selection signal SC1 output from the arithmetic unit 5 described later.
  • a pulse signal is given to the electrode E indicated by.
  • the electrode selection signal SC1 is a signal indicating two electrodes E, E or four electrodes E, E,.
  • the position information acquisition unit 4 includes two analog switches 41 and 41 (denoted as AS in FIG. 1) having the same configuration, a differential amplifier 42, a noise filter 43, a peak hold unit 44, and an analog-to-digital conversion circuit 45. (Referred to as ADC in FIG. 1).
  • Each analog switch 41 receives an output signal from the first to fourth electrodes E1, E2,..., E4 and becomes a pair of measurement objects selected based on an electrode selection signal SC2 output from the arithmetic unit 8 described later.
  • the output signals of the electrodes E and E (hereinafter also simply referred to as measurement electrodes E and E) are passed and output to the input terminals of the differential amplifier 42.
  • one analog switch 41 passes an output signal from one measurement electrode E
  • the other analog switch 41 passes an output signal from the other measurement electrode E.
  • the differential amplifier 42 has a signal amount of the output signal from the pair of measurement electrodes E and E as a pair electrode selected by the electrode selection signal SC2 among the first to fourth electrodes E1, E2,.
  • a differential signal indicating the difference is output.
  • the noise filter 43 removes the noise component of the differential signal output from the differential amplifier 42.
  • the peak hold unit 44 holds the peak voltage of the differential signal from which noise has been removed as an analog signal.
  • the analog-digital conversion circuit 45 converts the peak voltage value and the sign information of the peak voltage into a digital value based on the peak voltage (analog signal).
  • the peak hold circuit 44 is not necessarily required, and the output signal of the noise filter 43 may be directly input to the analog-digital conversion circuit 45.
  • the analog-digital conversion circuit 45 may be operated in a time division process. Specifically, the analog-digital conversion circuit 45 performs a digital conversion process on the analog signal input from the noise filter 43 every predetermined unit time that is time-divided by an appropriate number of samplings. Then, the maximum value is extracted from the digital signal after the digital conversion process, and the peak voltage value and the peak voltage code information based on the maximum value may be recorded.
  • the calculation unit 5 controls the operation of each block of the position detection device 1. Moreover, the calculating part 5 is comprised so that the position detection method concerning this embodiment may be used and the position detection program concerning this embodiment may be performed.
  • the computing unit 5 selects an electrode that provides a pulse signal from the first to fourth electrodes E1, E2,..., E4, and outputs an electrode selection signal SC1 indicating the electrode to the analog switch 32 of the signal source 3. To do. Further, a pair of measurement electrodes to be measured is selected, and an electrode selection signal SC2 indicating the measurement electrode is transmitted to the two analog switches 41 and 41. The operation of both switches is controlled by these electrode selection signals SC1 and SC2.
  • the electrode selection signal SC1 is a signal indicating two electrodes E, E or four electrodes E, E,.
  • a differential signal can be collected by the differential amplifier 42 based on output signals from any two electrodes. At this time, it is preferable to collect the output signal from the electrode to which the input signal is applied.
  • Two combinations are differential, that is, six combinations can be selected, but it is preferable to select one electrode from each side.
  • virtual lines orthogonal to each other on the conductive layer 22 may be drawn, electrodes may be provided at positions (four places) where the virtual lines and the sides of the conductive layer 22 overlap, and signals may be given to these electrodes.
  • the electrode selection signal SC2 is a signal indicating a pair of measurement electrodes arbitrarily selected from the electrodes selected by the electrode selection signal SC1. Therefore, when the electrode selection signal SC1 is a signal indicating two electrodes, the electrode selection signal SC1 and the electrode selection signal SC2 are signals indicating the same electrode.
  • the calculation unit 5 determines the object (for example, a user's finger) that has approached or contacted the insulating protective layer 23 based on the difference information included in the differential signal (digital value) output from the analog-digital conversion circuit 45.
  • the position is obtained by calculation.
  • the difference information refers to all information obtained based on the differential signal.
  • the difference information includes sign information indicating whether the differential signal is a positive voltage signal or a negative voltage signal, voltage difference information indicating the magnitude of the differential signal, and until the differential signal reaches a predetermined voltage. Time information etc. are included.
  • the calculation unit includes a ROM 51 that stores a program for performing the above control, and a storage unit 52 that stores a database in which a correction table TB1 and a lookup table TB2 described later are registered.
  • FIG. 4 is a diagram showing in detail the connection relationship between the third and fourth electrodes E3 and E4 of the touch panel 2 and the peripheral blocks in the position detection device 1.
  • the pulse signal from the pulse generator 31 is applied to the third and fourth electrodes E3 and E4 as a pair of measurement electrodes, and the third and fourth electrodes E3 and E3 are supplied from the differential amplifier 42.
  • an E4 differential signal is output. That is, the case where the electrode selection signals SC1 and SC2 indicate the third and fourth electrodes E3 and E4 will be described as an example.
  • the conductive layer 22 will be described as having a uniform sheet resistance. However, although details will be described later, the present invention can be applied even when the sheet resistance of the conductive layer 22 is partially different.
  • the analog switch 32 and the analog switch 41 are not shown.
  • the pulse generator 31 and the input terminals IN3 and IN4 of the third and fourth electrodes E3 and E4 are connected to each other by an input signal line NI via a reference resistor R0.
  • the input signal wiring NI is a pair wiring with the first ground wiring NG1 that runs along the wiring NI. One end of the first ground wiring NG1 is connected to the ground of the pulse generator 31.
  • the output terminals OUT3 and OUT4 of the third and fourth electrodes E3 and E4 are connected to the input terminals of the differential amplifier 42 by the output signal wiring NT, respectively.
  • the output signal wiring NT is a pair wiring with a ground wiring (hereinafter referred to as a second ground wiring NG2).
  • Two loads Z1, Z1 having the same impedance are connected in series between both input terminals of the differential amplifier 42, and an intermediate node between the loads Z1, Z1 is connected to the ground.
  • One end of the second ground wiring NG2 is connected to this ground.
  • the other ends (end portions on the touch panel side) of the first and second ground wirings NG1, NG2 are open ends.
  • FIG. 5 is a diagram illustrating an example of output signals of the third and fourth electrodes E3 and E4 and a differential signal output from the differential amplifier 42 when the touch position TP is touched by the user.
  • the vertical axis represents voltage values
  • the horizontal axis represents time.
  • FIG. 5A shows signal waveforms of V 3 and V 4 obtained by equations (1) and (2) described later
  • FIG. 5B shows the V df obtained by equation (3). The signal waveform is shown.
  • the touch position TP is closer to the third electrode E3 than the fourth electrode E4. That is, the resistance of the conductive layer 22 between the third electrode E and the touch position TP (hereinafter, referred to as a third resistor R3, the resistance value is referred to as R 3) and, between the fourth electrode and the touch position TP It is assumed that a relationship of R 3 ⁇ R 4 is established with the resistance of the conductive layer 22 (hereinafter referred to as a fourth resistor R 4 and the resistance value is described as R 4 ).
  • the pulse signal to the third electrode is inputted, in the capacity C T and the voltage corresponding to the time constant of the third resistor R3 between the finger and the conductive layer 22 is touched
  • the touch position TP is charged up.
  • This charge-up state is reflected by the third electrode E3, and a reflected signal represented by the following formula (1) is input to one input terminal of the differential amplifier 42.
  • V 3 V dd (1-exp ( ⁇ t / R 3 C T )) (1)
  • the capacitance C T, the material of the insulating protective layer is a value determined depending on the thickness and the like.
  • a load Z2 having a specific value that differs for each touching user is generated between the capacitor CT and the ground.
  • the influence is omitted in this equation.
  • the load Z2 that is different for each user can be corrected using a correction marker described in a second embodiment to be described later.
  • V 4 V dd (1-exp ( ⁇ t / R 4 C T )) (2)
  • the differential amplifier 42 outputs the differential signal (the difference signal between the formulas (1) and (2)) shown in the following formula (3).
  • the peak hold unit 44 holds the maximum voltage value of Expression (3) as a peak voltage when the differential signal is positive, and holds the minimum voltage value of Expression (3) as the peak voltage when the differential signal is negative. To do.
  • the calculation unit 5 calculates the touch position TP by calculation based on the peak voltage value and the sign information of the peak voltage.
  • the calculation for obtaining the touch position TP based on the sign information of the peak voltage which is the simplest method, will be described.
  • a vertical bisector BP34 (see the alternate long and short dash line in FIG. 4) of a virtual straight line IE34 (see the alternate long and two short dashes line in FIG. 4) connecting the third electrode E3 and the fourth electrode E4 is drawn, and the vertical bisector BP34 is drawn.
  • a region closer to the third electrode E3 is referred to as a first region R1
  • a region closer to the fourth electrode than the vertical bisector is referred to as a second region R2.
  • the resistance values of the third and fourth resistors R3 and R4 are determined based on the distance between the touch position and the electrode. For example, in the configuration of FIG. 4 described above, the sign of the peak voltage (see the point X in FIG. 5) is “+”, so the calculation unit can determine that the touch position TP is in the first region R1.
  • the calculation unit 5 selects the second electrode E2 and the third electrode E3 as a pair of electrodes to be measured.
  • a vertical bisector BP23 of a virtual straight line IE23 connecting the second electrode E2 and the third electrode E3 is drawn, and a region closer to the second electrode E2 than the vertical bisector BP23 is defined as a third region R3.
  • a region closer to the third electrode E3 than the vertical bisector BP23 is defined as a fourth region R4.
  • the calculation unit 5 can determine that the touch position TP becomes the fourth region R4 based on the sign of the peak voltage.
  • the calculation unit 5 can determine that the touch position TP is in an overlapping portion (region indicated by hatching in FIG. 3) between the first region R1 and the fourth region R4.
  • electrodes E9, E9,... are provided at four corners of the touch panel 91 (see, for example, Patent Documents 2 and 3).
  • the touch position is detected by the following procedure. First, in-phase and same-voltage voltages are applied to the electrodes E9, E9,. Next, the calculation unit 93 calculates the touch position based on the differential signal output from the differential amplifier 92 that has received the output signal of the pair of electrodes E9 and E9 among the electrodes at the four corners.
  • the resistance values R91, R9 between the paired electrodes E9 and the touch position TP9 are all combinations of the pairs of electrodes E, E. Since R92 has the same resistance value, the differential signal becomes 0V. That is, when the center position of the touch panel 91 is touched, there is a problem that the differential amplifier 92 can only obtain the same differential signal as in the non-touched state.
  • the present inventors have found that the above problem can be solved by providing the electrodes E1, E2,... At asymmetric positions along the sides of the conductive layer 22, as shown in FIG.
  • the inventors of the present application draw the vertical bisector BP of the virtual straight line IE that connects the pair of electrodes with different combinations when providing the electrodes along the sides of the conductive layer 22.
  • the above problem can be solved by arranging the electrodes E so that at least two virtual intersections where the perpendicular bisectors BP intersect each other can be formed (at least two can be formed).
  • the touch position TP when the touch position TP is detected using the differential signal, the touch position TP corresponds to a difference in distance between the touch position TP and the measurement electrodes E and E.
  • a differential signal is output. Accordingly, when a vertical bisector of a virtual straight line connecting the paired measurement electrodes E and E is drawn, the vertical bisector is a position where the distance between the touch position and the measurement target electrode is equal to each other, That is, it shows a position where the differential signal based on the output signals from the two target electrodes becomes 0 V when touched.
  • the vertical bisector BP of the imaginary straight line IE connecting the two arbitrarily selected measurement electrodes E and E is electrically conductive in all combinations of a pair of measurement electrodes. Since they intersect at the center of the layer 22, the differential signal becomes 0 V when the touch position TP is at the center of the conductive layer 22.
  • the electrodes E, E,... Of the electrode group are arranged so that at least two virtual intersections can be made, so that pairs of electrodes having different combinations are selected as measurement targets. Accordingly, it is possible to reliably detect the touch position while avoiding the differential signal being 0 V regardless of the touch position.
  • the electrodes E, E,... are arranged such that at least one of the virtual intersection points IP (see, for example, IP5 in FIG. 3) is located outside the conductive layer 22.
  • the virtual intersection point IP indicates a point at which the differential signal becomes 0 V in a plurality of combinations in the measurement using the paired measurement electrodes E and E.
  • FIG. 15 shows the fluctuation of the differential voltage (see the broken line in FIG. 15) between two predetermined measurement electrodes when a voltage (see the solid line in FIG. 15) is simultaneously applied to the four electrodes in the no-touch state.
  • A is the waveform data in the normal state
  • (b) is the waveform data when the above-described fluctuation occurs.
  • the inventors of the present application have made extensive studies and found that this phenomenon is caused by a pulse signal input from another electrode. Furthermore, it was found that the fluctuation phenomenon as shown in FIG. 15B does not occur by giving a pulse signal only to the two measurement electrodes E and E, and the present invention has been completed. Therefore, as described above, in this embodiment, the analog switch 32 is provided between the pulse generator 31 and the first to fourth electrodes E1, E2,..., E4, and based on the electrode selection signal SC1 from the arithmetic unit 5. A pulse signal is applied to the pair of measurement electrodes E and E. This makes it possible to detect a stable touch position regardless of the arrangement of the electrodes E and E and the combination of the pair of measurement electrodes E and E.
  • the vertical bisector BP connecting the measurement electrodes E, E is one point on the conductive layer 22. You can avoid concentrating on.
  • the differential signal is 0 V on the vertical bisector BP, and it is difficult to obtain a change in the differential signal near the vertical bisector BP. Therefore, by avoiding the concentration of one point of the perpendicular bisector BP, the positions where the amplitude of the differential signal is difficult to obtain can be reduced by changing the combination of the measurement electrodes E and E. That is, the difference in detection sensitivity due to the touch position TP can be reduced, and the resolution can be improved.
  • the inventors of the present application provide pulse signals to the pair of measurement electrodes E and E even when the positions of the electrodes E, E... Conventionally provided at the four corners are separated from both ends of the side of the conductive layer 22. It was found that the differential signal fluctuation phenomenon does not occur by using the configuration to give. Thereby, an electrode can be arrange
  • the amplitude of the differential signal is defined by the divided voltage of the reference resistor R0 and the first to fourth resistors R1 to R4. A large amplitude can be obtained. Therefore, the touch panel according to this aspect has an advantage that the resolution can be increased. Such a configuration provides a more remarkable effect when the touch panel 2 is enlarged.
  • the sheet resistance value needs to be in the range of 1 k ⁇ / ⁇ to 5 k ⁇ / ⁇ due to its characteristics.
  • the sheet resistance value of the conductive layer is higher by two digits or more.
  • the good point it is suitable for an ultra-large touch panel such as an ultra-large display, an ultra-large screen using a wall surface, and a large plate surface such as a white board.
  • a sheet having a high sheet resistance value such as an organic conductive sheet or a metal thin film sheet can be applied to the conductive layer, it is also suitable for use on a curved surface.
  • the conductive layer 22 has been described as having a rectangular shape, but the shape of the conductive layer may be other than a rectangular shape.
  • FIG. 6 shows a configuration of the touch panel when the conductive layer 22 is elliptical (circular). 6 also shows an example in which four electrodes E71, E72, E73, and E74 are arranged asymmetrically along the sides of the elliptical conductive layer 22 as in the case of FIG.
  • the vertical bisector BP of the virtual straight line IE connecting the paired electrodes is drawn in a different combination. At least two virtual intersections IP where the bisectors BP intersect each other are formed (can be formed in at least two places). As a result, the touch position can be reliably detected while avoiding the differential signal from becoming 0 V regardless of the touch position.
  • FIG. 7 is a plan view showing a configuration example of the touch panel according to the second embodiment.
  • the plan view of the touch panel 2 is the same as that shown in FIG. 2 shown in the first embodiment.
  • the position detection device 1 is the same as that shown in FIG. 1 shown in the first embodiment.
  • symbol is attached
  • the touch panel 2 is provided with three first to fourth electrodes E11, E12,..., E43, each along the side of the conductive layer 22.
  • FIG. 7 shows an example in which the first to fourth electrodes E11, E12,..., E43 are provided asymmetrically. Specifically, the distance from the first corner C1 (upper left of FIG. 7) to each of the first electrodes E11, E12, E13 and the third electrode E31 from the fourth corner C4 (upper right of FIG. 7) of the conductive layer. , E32, and E33 are arranged so that the distances from each other are different from each other. For example, in FIG. 7, D11 ⁇ D31.
  • the electrodes are arranged so that their distances are different from each other. For example, in FIG. 7, D21 ⁇ D41.
  • FIG. 8 shows an overall flow
  • FIG. 9 shows a detailed flow of an operation related to touch position detection when the user touches the touch panel. Similar to the above description, the electrode selection signal SC1 and the electrode selection signal SC2 will be described as signals indicating the same two electrodes E.
  • FIG. 11A shows an example of a lookup table.
  • the look-up table includes a combination of the pair electrodes E and E to be measured and standard peak voltages as standard output information of each detection region Q1, Q2,. Listed in the associated state.
  • the standard peak voltage means that when a standard person touches each detection region in a standard measurement environment, each pair electrode E, E when a pulse signal is applied to each pair electrode Is the peak value of the voltage difference of the output voltage output from.
  • 11 and 12 show combinations of pair electrodes E and E that are different for each column.
  • pair electrode numbers P00 to P00 P99 is attached.
  • the electrodes arranged along the opposite sides are selected as the pair electrodes
  • the electrodes arranged along the sides orthogonal to each other are selected. It is selected as a pair electrode.
  • two electrodes on the same side may be paired electrodes.
  • a virtual line showing the same peak value is determined by the above-described calculation, and a calculation value according to this is obtained on the entire touch surface (for example, the conductive layer 22). It is verified by actually touching that the calculated value is correct, and if an error is recognized, it is corrected.
  • a table in which the correct touch point peak value of the entire touch surface is captured in the storage unit 52 in correspondence with the touch point is a lookup table, and the number of touch point values on the horizontal and vertical axes of the lookup table according to the touch point resolution. (Number of pixel values) is determined.
  • the touch panel 2 displays correction markers MK1 and MK2 for correcting the standard difference information registered in the lookup table based on the touch operation by the user.
  • the standard difference information is information including list information of standard peak voltages of the detection areas Q1, Q2,.
  • FIG. 7 shows an example in which the correction markers MK1 and MK2 are displayed on the upper right and lower left of the touch panel 2, respectively. Note that the display positions and the display numbers of the correction markers MK1 and MK2 are not limited to the above. For example, the positions of the correction markers MK1 and MK2 may be different from those in FIG. 7, and the correction markers MK1 and MK2 may be displayed at one place or three or more places.
  • the calculation unit 5 acquires no-touch correction data for correcting each standard peak voltage in the no-touch state before the user touches the touch panel 2.
  • FIG. 9 is a flowchart showing an example of an operation for acquiring no-touch correction data.
  • the calculation unit 5 selects a pair of electrodes to be measured according to a predetermined electrode selection rule (S21).
  • the electrode selection rule is registered in advance in a database stored in the storage unit 52 of the calculation unit 5, for example.
  • the table shown in FIG. 11 shows an example of the electrode selection rule. Specifically, the combination of the pair electrodes is described in the second row of the table so as to correspond to the pair electrode numbers P00, P01,..., P99 described in the first row of the table.
  • the calculation unit 5 selects two electrodes constituting the pair electrode in the order of pair electrode numbers P00, P01,..., P99 in the table of FIG. Therefore, in the example of FIG. 11, the calculation unit first selects the first electrode E11 and the third electrode E31 as the pair electrodes.
  • the arithmetic unit 5 gives an electrode selection signal SC1 to the pulse generator 31 and the analog switch 32, gives a predetermined pulse signal to the pair electrodes E11 and E31, and gives an electrode selection signal SC2 to the analog switches 41 and 41. give.
  • the output signal output from the pair electrodes E11 and E31 to which the pulse signal is applied is input to the differential amplifier 42, and the peak voltage is output from the peak hold unit 44.
  • the calculating part 5 acquires the peak voltage in a no-touch state from the peak hold part 44, and registers it in correction table TB1. Thereafter, the calculation unit 5 discharges the pair electrodes E11 and E31 to which the pulse signal is given (S24).
  • the pair electrodes E11 and E31 are discharged by, for example, short-circuiting the pair electrodes E11 and E31 to the ground.
  • S25 it is determined whether or not the number of peak voltage acquisitions (combination of pair electrodes) has reached a specified number (for example, 100). If not reached (NO in S25), the process returns to S21 to return to the pair electrode. The combination of E11 and E31 is changed to the pair electrodes E12 and E32 related to the next pair electrode number P02, and the peak voltage in the no-touch state is acquired. Thereafter, the flow of S21 to S25 is repeated until the specified number of peak voltage acquisition times is reached. In this way, when the acquisition of the no-touch correction data is completed, the flow returns to S3 in FIG.
  • a specified number for example, 100
  • the arithmetic unit 5 refers to the correction table TB1 and corrects the standard difference information in the lookup table TB2.
  • the standard difference information for example, no-touch correction data related to the same electrode combination is subtracted from each standard peak voltage of the lookup table TB2 of FIG.
  • the no-touch correction data Vn11 related to the pair electrode number P00 is subtracted from the standard peak voltage Vp11 in the column “P00-Q01”, and the calculation result is the standard peak voltage in the column “P00-Q1”.
  • the operation of replacing the standard peak voltage Vp21 in the column "P00-Q02" with the value "Vp21-Vn11” is performed for each standard peak voltage Vp11, Vp12,... Related to the pair electrode number P00. Further, the above replacement operation is performed for each standard peak voltage Vp21, Vp22,... Of each pair electrode number P00, P01,.
  • the correction of the standard difference information is not limited to the subtraction process, and other methods may be used. For example, arithmetic processing different from subtraction may be performed, or correction may be performed using no-touch correction data multiplied by different multiples for each of the detection regions Q1, Q2,.
  • the correction for each detection region Q1, Q2,..., Q80 can be applied even when the sheet resistance of the conductive layer 22 is partially different (shifted). That is, even when the location where the sheet resistance of the conductive layer 22 is partially different varies for each position detection device, by performing correction using such no-touch correction data Vn11, 12,. Regardless of the variation among the position detection devices, correction can be made so as to cancel the influence of the sheet resistance deviation.
  • the flow proceeds to the marker correction process in S4.
  • the calculation unit 5 acquires marker correction data (S42).
  • S42 processing similar to the processing related to acquisition of no-touch correction data in FIG. 9 is performed, marker touch correction data is acquired, and registered in the correction table TB1.
  • FIG. 11B shows an example in which marker touch correction data for the markers MK1 and MK2 is acquired.
  • the calculation unit 5 corrects the standard difference information using the marker touch correction data (S43). As illustrated in FIG.
  • the load Z2 specific value that is different for each person who touches between the capacitance C T and the ground of the touch position occurs.
  • the marker touch correction data it is possible to correct a calculation error caused by the load Z2.
  • the correction markers MK1 and MK2 are deleted from the touch panel 2.
  • the calculation unit 5 performs a touch position detection calculation using the corrected lookup table TB2 (S6).
  • the touch position detection calculation by the calculation unit 5 will be described in detail with reference to FIG.
  • a pair electrode is selected in accordance with the electrode selection rule as in the case of obtaining no-touch correction data (S61).
  • the computing unit 5 gives the electrode selection signal SC1 to the pulse generator 31 and the analog switch 32, gives a predetermined pulse signal to the paired electrodes (S62), and acquires the peak voltage from the peak hold unit 44 (S63). .
  • the calculation unit 5 When the peak voltage is acquired, the calculation unit 5 performs an estimation calculation for estimating the position of the touch operation by the user (S64). Specifically, in the estimation calculation, (1) First, the calculation unit 5 calculates the acquired peak voltage and the standard peak voltage in each detection region Q1, Q2,..., Q80 of the corrected lookup table TB2. Compare. (2) Then, as shown in FIG. 12, when the error of both voltages described in (1) is within a predetermined range, “1” is set. When the error of both voltages exceeds a predetermined range, “0” is set. Register in the calculation result table TB3. For example, “1” is output when the error between the acquired peak voltage and the standard peak voltage is within ⁇ 10%.
  • the candidate position in the present embodiment is a position where the above-described error between both voltages is within a predetermined range, that is, a position where “1” is registered in the calculation result table TB3.
  • the calculation unit 5 repeats the processes of S61 to S65 until the specified number of acquisitions (for example, 100) is reached, and the pair electrodes (for example, P00, P00) related to all combinations specified by the electrode selection rule are repeated. P01,..., P99) estimation calculation (calculations (1) and (2) above) is performed.
  • the calculation unit 5 performs a specific calculation for determining the position of the touch operation by the user based on the result of the estimation calculation after performing the estimation calculation a predetermined number of times (YES in S66) (S67). Specifically, the estimation calculation result is added for each detection region, and the position of the touch operation is determined based on the size, the protrusion degree, the approximation degree, and the like of the addition result. For example, in the example of FIG. 12, since the addition result of the detection area Q7 is 95, that is, the calculation unit 5 has the largest number of extractions as candidate positions, the detection area Q7 is the touch position of the user. Judge that there is.
  • the method for determining the touch position in the specific calculation is not particularly limited. For example, determination may be made based only on the magnitude of the addition value of the estimation calculation result for each detection area, or when there is a detection area where the magnitude of the addition result is equal to or greater than a predetermined size and has a predetermined degree of protrusion
  • the detection area may be determined as the position of the touch operation.
  • the calculation unit determines that a plurality of touch operations have been performed by the user.
  • Another evaluation axis based on a plurality of estimation calculation results and a plurality of peak voltage values is set, and the touch position is determined based on the result of the other evaluation axis or with the result of another evaluation axis. You may do it.
  • the present embodiment it is possible to obtain multifaceted data by performing measurement with different combinations of electrodes constituting the pair electrode, and the position of the touch operation can be obtained by combining them. Therefore, it is possible to improve the accuracy of determining the touch position.
  • a patternless touch panel there may be a difference in measurement accuracy depending on the distance between the position of the electrode and the touch operation position, but the combination of the electrodes constituting the pair electrode is different as in this embodiment.
  • the marker correction process S4 using the correction markers MK1 and MK2 is performed in S4 of FIG. 8, but the present invention is not limited to this.
  • a plurality of lookup tables TB2, TB2 based on a correction touch at an arbitrary position
  • the correction may be completed by selecting a lookup table TB2 (hereinafter referred to as the first lookup table TB21) having a high degree of coincidence from the lookup table set TBS storing TB2,.
  • the determination method of the degree of coincidence is a step of calculating the same score as the method at the time of position detection and a LUT (lookup table) selection determination method with a high maximum score.
  • the calculation unit 5 refers to the correction table TB1 and corrects the standard difference information for the plurality of lookup tables TB2, TB2,... Related to the lookup table set TBS.
  • the lookup table set TBS In FIG. 13, no-touch correction data relating to the same electrode combination is subtracted from each standard peak voltage for all lookup tables TB2, TB2,.
  • the flow proceeds to the correction process of S7.
  • the correction process S7 when a touch operation is performed at an arbitrary position on the touch panel 2 (YES in S71), the calculation unit 5 performs pulse signal application and measurement on a plurality of pair electrodes related to a preset combination. carry out. Then, the plurality of measurement results are compared with the standard peak voltages of the detection regions Q1, Q2,..., Q80 of the plurality of lookup tables TB2, TB2,..., And the first lookup table TB21 is selected (S72). .
  • the first lookup table TB21 selected by this method can be said to be an optimal lookup table that takes into account individual differences among users.
  • the following flow is the same as that in FIG. 8, and detailed description thereof is omitted here. Thereby, even when there are individual differences among users, position detection with high resolution can be realized.
  • each user's touch area is partitioned as a user area, and an optimal lookup table is selected for each user area, You may make it apply. Thereby, position detection with high resolution can be realized in each user area.
  • the number of electrodes on each side is three, but the number of electrodes is not limited to this.
  • the number of electrodes provided on each side may be at least one, and the number of electrodes on each side may be different.
  • the electrodes provided on each side of the conductive layer 22 are asymmetrical positions, but the electrodes on each side may be provided at symmetrical positions.
  • the electrodes on each side are provided symmetrically, when selecting a pair electrode from the electrodes on each side, it is necessary to prevent the vertical bisector of the virtual straight line connecting the pair electrodes from being concentrated too much. preferable.
  • a pulse signal is given to the pair electrode, and the touch position is detected based on the peak voltage of the differential signal obtained from the pair electrode.
  • the present invention is not limited to this.
  • a pair of electrodes a single electrode is selected, information on the time and voltage related to the RC time constant is acquired from the single electrode, and the touch position of the touch position shown in FIG.
  • the detection calculation S6 may be performed.
  • the calculation unit 5 compares the acquired peak voltage with the standard peak voltages in the detection regions Q1, Q2,..., Q80 of the corrected lookup table TB2, and the error of both voltages is Although “1” is registered in the calculation result table TB3 when “1” is within a predetermined range and “0” when the error between both voltages exceeds the predetermined range, the touch position estimation calculation is not limited to this. .
  • the calculation unit 5 may rank each of the detection regions Q1, Q2,..., Q80 with three or more ranks (score derivation) so as to increase as the error between the two voltages decreases.
  • the calculation unit 5 performs the derivation (estimation calculation) of the score by changing the combination of each pair electrode, and the specific calculation that determines the position of the touch operation by the user based on the result of the estimation calculation I do.
  • the method for determining the touch position in the specific calculation is the same as that in the second embodiment and the modifications thereof, and detailed description thereof is omitted here.
  • the score is not limited to a score that becomes higher as the error between the two voltages is smaller, and shows the certainty that each of the detection areas Q1, Q2,..., Q80 is a touch position based on the output signal. Anything is acceptable.
  • the reference value of the output signal related to the score, the level of the value, the calculation method for derivation of the score, and the like can be arbitrarily set.
  • the electrode selection signal SC1 and the electrode selection signal SC2 have been described as signals indicating the same two electrodes.
  • the present invention is not limited to this, and the electrode selection signal SC1 and the electrode selection signal are not limited thereto.
  • the signal SC2 may indicate a different electrode.
  • the electrode selection signal SC1 is a signal indicating four electrodes (for example, the first to fourth electrodes E1 to E4), and the electrode selection signal SC2 is two electrodes E (for example, the first electrode).
  • the touch position TP can be obtained by the same procedure as the “touch position detection operation (1)” and the “touch position detection operation (2)”.
  • the first region R1 and the second region R2 are defined.
  • the first to fourth electrodes E1 to E4 are selected as the electrodes for applying the pulse signal
  • the third electrode E3 and the fourth electrode E4 are selected as the measurement electrodes E.
  • the pulse signal output from the pulse generator 31 is given to the first to fourth electrodes E1 to E4 via the analog switch 32.
  • the same pulse signal is applied to the measurement electrode E (for example, the third and fourth electrodes E3 and E4), and another pulse is applied to the other electrode E, for example, the first and second electrodes E1 and E2).
  • the phenomenon shown in FIG. 15B does not occur.
  • the resistance values of the third and fourth resistors R3 and R4 are determined based on the distance between the touch position and the electrode, so the sign of the peak voltage is “+”, and the calculation unit 5 Can determine that the touch position TP is in the first region R1.
  • the second electrode E2 and the third electrode E3 are selected as measurement electrodes without changing the electrodes to which the pulse signal is applied, and the third region R3 and the fourth region R4 are defined.
  • the calculation unit 5 can determine that the touch position TP becomes the fourth region R4 based on the sign of the peak voltage. Thereafter, based on the above two measurements, the calculation unit 5 can determine that the touch position TP is in an overlapping portion (a region indicated by hatching in FIG. 3) between the first region R1 and the fourth region R4.
  • the electrode selection signal SC1 is a signal indicating two electrodes in a pair or four electrodes, but is not limited thereto.
  • the shape of the conductive layer 22 is a polygonal shape other than a rectangular shape or a circular shape, the same effect as in the present embodiment can be obtained even if the number of electrodes selected by the calculation unit 5 is other than two or four. May be obtained.
  • a measurement electrode to be measured is selected from electrodes to which a measurement signal (pulse signal) is given is shown.
  • the measurement electrode may not be included in the electrode that provides the measurement signal.
  • a signal supply electrode for supplying a measurement signal and a signal reception electrode for receiving a measurement signal are separated, and the corresponding signal supply electrode and signal reception electrode are paired, and the counter electrodes are arranged close to each other.
  • they may be arranged slightly apart from each other, and the same effects as those of the above embodiments can be obtained.
  • the electrodes are provided along the sides of the conductive layer. However, some of the electrodes may be provided at positions spaced inward from the sides of the conductive layer. .
  • each electrode may be provided along a frame that partitions the effective touch area of the touch panel 2.
  • the example in which the electrode is provided at the intermediate position of the rectangular conductive layer 22 has been described.
  • some of the plurality of electrodes are first to fourth conductive layers. It may be provided at the corners C1 to C4.
  • electrodes E51 to E54 may be provided. In this case, for example, a combination of E51 and E21 or E22 or a combination of E52 and E41 or E42 may be selected as a pair electrode.
  • pulse signal application and measurement are performed once for each pair of pair electrodes, but the pair electrodes are configured every 5 to 50 ms.
  • the combination of electrodes to be changed may be changed, and pulse signal application and measurement may be performed a plurality of times during the period of 5 to 50 ms. In this case, for example, a plurality of measurement results may be averaged and used for each calculation.
  • the conductive layer is provided on the surface of the touch panel.
  • the conductive layer is provided at a position spaced apart from the screen of the touch panel, such as the back side of the mobile phone. Even in a state where hovering is detected, the present invention can be applied and the same effect can be obtained.
  • the present invention can realize a position detection device having a simple structure and high resolution, and is extremely useful for realizing a super large touch panel in applications such as a super large screen and a white board.
  • Position detection device Touch panel (base part) 22 conductive layer 3 signal source 5 arithmetic unit E electrode Q1, Q2,..., Q80 detection area

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

In this position detection method for detecting a position at which touch operation is performed on a touch panel (2) having a conductive layer (22) to which multiple electrodes (E) are connected, a measurement signal is given to electrodes (E) selected from among the multiple electrodes (E), and an estimation calculation for estimating a position, at which touch operation is performed, is executed on the basis of an output signal obtained from said pair of electrodes (E). Another estimation calculation is executed with use of a combination of a different pair of electrodes (E), and a specification calculation for determining the position of an object is executed on the basis of the results of these estimation calculations.

Description

位置検出方法、位置検出装置及び位置検出プログラムPosition detection method, position detection apparatus, and position detection program
 本発明は、導電層を有するベース部に接近した物体の位置を検出する位置検出方法、位置検出プログラム及び静電容量型の位置検出装置に関する。 The present invention relates to a position detection method, a position detection program, and a capacitance type position detection apparatus that detect the position of an object that approaches a base portion having a conductive layer.
 特許文献1には、従来の静電容量方式のタッチパネルの一例が開示されている。特許文献1記載のタッチパネルは、絶縁基板上に並設される複数の第1電極と、第1の電極と交差して並設される複数の第2電極と、両電極間に介在される絶縁膜とを備え、平面的に観た場合、第1の電極のパッド部と第2の電極のパッド部は重畳することなく配置されている(特許文献1の図2参照)。 Patent Document 1 discloses an example of a conventional capacitive touch panel. The touch panel described in Patent Document 1 includes a plurality of first electrodes arranged side by side on an insulating substrate, a plurality of second electrodes arranged side by side across the first electrode, and an insulation interposed between the two electrodes. When viewed in plan, the pad portion of the first electrode and the pad portion of the second electrode are arranged without overlapping (see FIG. 2 of Patent Document 1).
特開2010-146785号公報JP 2010-146785 A 特開2008-134522号公報JP 2008-134522 A 特開2013-250642号公報JP 2013-250642 A
 このようなパターニングされた2層構造の電極パッドを使用した静電容量方式のタッチパネル(以下、2層構造タッチパネルともいう)では、比較的高いタッチ検出精度を実現できる一方で、構造が複雑であり、コストが高くなるというデメリットがある。特に、超大型のスクリーンやホワイトボードをタッチパネル化するような場合には、製造の歩留まりが悪くなる場合があり、またコスト増がより顕著になる。 In such a capacitive touch panel (hereinafter also referred to as a two-layer touch panel) using a patterned two-layer electrode pad, a relatively high touch detection accuracy can be realized, but the structure is complicated. There is a demerit that the cost becomes high. In particular, when an ultra-large screen or white board is made into a touch panel, the manufacturing yield may be deteriorated, and the cost increase becomes more remarkable.
 これに対し、特許文献2及び特許文献3には、透明導電膜の4隅に電極を設け、同相かつ同電位の位置検出用の交流電圧を供給するパターンレスのタッチパネルが開示されている。具体的には、特許文献2では、導電膜の4隅の電極に対応して4個の波形検出回路を設け、その検出回路の出力電圧に基づいて座標位置を演算している。また、特許文献3では、矩形状の導電膜の4隅の電極に同相、同電圧のパルス信号を与え、対数信号比を用いてユーザーのタッチ位置を検出している。 On the other hand, Patent Document 2 and Patent Document 3 disclose a patternless touch panel in which electrodes are provided at four corners of a transparent conductive film and an AC voltage for position detection having the same phase and the same potential is supplied. Specifically, in Patent Document 2, four waveform detection circuits are provided corresponding to the electrodes at the four corners of the conductive film, and the coordinate position is calculated based on the output voltage of the detection circuit. In Patent Document 3, pulse signals having the same phase and voltage are applied to the four corner electrodes of the rectangular conductive film, and the touch position of the user is detected using a logarithmic signal ratio.
 このような単一導電膜を使用するパターンレスタッチパネルは構造が単純であり、低価格で実現できるメリットがある一方で、一般的に2層構造タッチパネルと比較して解像度が低い。解像度を高めるためには、例えば特許文献3に開示された技術ように、非線形のデータを用いた複雑な演算手法を用いる必要がある。すなわち、演算回路の高度化、高性能化が必要でありかつ演算回路のコストが高くなるという問題がある。 The patternless touch panel using such a single conductive film has a simple structure and can be realized at a low price, but generally has a lower resolution than a two-layer touch panel. In order to increase the resolution, it is necessary to use a complicated calculation method using non-linear data as in the technique disclosed in Patent Document 3, for example. That is, there is a problem that the arithmetic circuit needs to be advanced and high performance and the cost of the arithmetic circuit becomes high.
 上記の点に鑑み、本発明は、単純な構造でありかつ解像度の高い位置検出装置を提供することを目的とする。 In view of the above points, an object of the present invention is to provide a position detection device having a simple structure and high resolution.
 複数の電極が接続された導電層を有するベース部に接近した物体の位置を検出する位置検出方法において、前記複数の電極の中から選択された対象電極に計測信号を与えかつ当該対象電極からの出力信号を取得する信号取得ステップと、前記出力信号に基づいて前記物体の候補位置を推定する位置推定ステップとを含む位置推定処理を、前記対象電極を異ならせて行う位置推定工程と、前記位置推定工程の結果に基づいて、前記物体の位置を判断する特定演算工程とを備えている。 In the position detection method for detecting the position of an object approaching a base portion having a conductive layer to which a plurality of electrodes are connected, a measurement signal is given to a target electrode selected from the plurality of electrodes and A position estimation process including a signal acquisition step of acquiring an output signal and a position estimation step of estimating a candidate position of the object based on the output signal, with the target electrode being different; and the position A specific calculation step of determining the position of the object based on the result of the estimation step.
 ここで、「導電層を有するベース部」には、例えば絶縁体で形成されたベースとなる部材、例えば透過性のある絶縁基板や電子機器等の樹脂製の筐体等に導電膜が形成されているものを含む。また、例えばベース部としての基板の一部又は全部が導電層で構成されているものを含む。すなわち、ベース部が導電層1層のみで構成されている場合も含まれる。この場合の導電層には、導電性を有するもので層が形成されているもの全般が含まれ、導電膜に加えて、例えば、導電性フィルム、導電性シート及び導電性プレートも含まれる。 Here, in the “base portion having a conductive layer”, a conductive film is formed on a base member formed of an insulator, for example, a transparent insulating substrate, a resin casing of an electronic device, or the like. Including Further, for example, a part or the whole of the substrate as the base portion includes a conductive layer. That is, the case where the base portion is composed of only one conductive layer is also included. In this case, the conductive layer includes all conductive layers in which a layer is formed. In addition to the conductive film, for example, a conductive film, a conductive sheet, and a conductive plate are also included.
 本態様によると、位置推定工程において、対象電極を異ならせて複数の位置推定処理を実行し、その結果に基づいてベース部に接近した物体の位置を検出している。これにより、異なる対象電極からの出力信号に基づいて物体の位置検出を行うことができるため、位置検出に係る精度を高めることができる。すなわち、物体の接触又は接近に係る位置認識において、解像度の高い位置検出を実現することができる。 According to this aspect, in the position estimation step, a plurality of position estimation processes are executed with different target electrodes, and the position of the object approaching the base portion is detected based on the result. Thereby, since the position detection of an object can be performed based on the output signal from a different object electrode, the precision which concerns on a position detection can be raised. That is, position detection with high resolution can be realized in position recognition related to contact or approach of an object.
 本発明に係る位置検出方法によれば、パターンレスのタッチパネルにおいて、解像度の高い位置検出を実現することができる。 The position detection method according to the present invention can realize position detection with high resolution in a patternless touch panel.
位置検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a position detection apparatus. 第1実施形態に係るタッチパネルの構成例を示す断面図である。It is sectional drawing which shows the structural example of the touchscreen which concerns on 1st Embodiment. 第1実施形態に係るタッチパネルの構成例を示す平面図である。It is a top view which shows the structural example of the touchscreen which concerns on 1st Embodiment. パルス信号が与えられた2つの電極からの出力信号及び電圧差情報について説明するための模式図である。It is a schematic diagram for demonstrating the output signal and voltage difference information from two electrodes to which the pulse signal was given. 図4の点TP1がタッチされた場合における信号波形の一例を示した図である。It is the figure which showed an example of the signal waveform when the point TP1 of FIG. 4 is touched. 電極配置の他の例を示す平面図である。It is a top view which shows the other example of electrode arrangement | positioning. 第2実施形態に係るタッチパネルの構成例を示す平面図である。It is a top view which shows the structural example of the touchscreen which concerns on 2nd Embodiment. 位置検出装置を用いた位置検出方法の一例を示すフロー図である。It is a flowchart which shows an example of the position detection method using a position detection apparatus. ノータッチ補正データの取得動作の一例を示すフロー図である。It is a flowchart which shows an example of the acquisition operation of no-touch correction data. タッチ位置の検出演算の一例を示すフロー図である。It is a flowchart which shows an example of the detection calculation of a touch position. ルックアップテーブル及び補正テーブルの一例を示す図である。It is a figure which shows an example of a look-up table and a correction table. 演算結果テーブルの一例を示す図である。It is a figure which shows an example of a calculation result table. 位置検出装置を用いた位置検出方法の他の例を示すフロー図である。It is a flowchart which shows the other example of the position detection method using a position detection apparatus. 従来の位置検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the conventional position detection apparatus. ノータッチ状態における測定電極間の差動電圧の変動について説明するための図である。It is a figure for demonstrating the fluctuation | variation of the differential voltage between the measurement electrodes in a no-touch state.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用範囲あるいはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature and is not intended to limit the present invention, its scope of application, or its use.
 <第1実施形態>
 図1は本実施形態にかかる位置検出装置1の構成例を示すブロック図である。図1に示すように、位置検出装置1は、ベース部としてのパターンレスタッチパネル2(以下、単にタッチパネル2という)と、タッチパネル2に計測信号としてのパルス信号を与えるための信号源3と、位置情報取得部4と、演算部5とを備えている。
<First Embodiment>
FIG. 1 is a block diagram illustrating a configuration example of a position detection device 1 according to the present embodiment. As shown in FIG. 1, the position detection device 1 includes a patternless touch panel 2 (hereinafter simply referred to as a touch panel 2) as a base unit, a signal source 3 for giving a pulse signal as a measurement signal to the touch panel 2, a position An information acquisition unit 4 and a calculation unit 5 are provided.
 図2はタッチパネル2の構成を示す断面図であり、図3は同平面図である。タッチパネル2は、電磁透過性(光とタッチ電界を含む)を有するリジット基板又はフレキシブルシート等からなり、平面視において矩形状の基板21を備えている。本開示において、矩形とは、正方形及び長方形を含む概念である。基板21の表面には、略全面にわたって電磁透過性の導電層22が形成されており、その上に透明の絶縁保護層23が形成されている。導電層22は、例えばITO(Indium Tin Oxide)膜であり、その抵抗値は、1kΩ/□から10MΩ/□である。また、絶縁保護層23は、例えばポリエステルシートであり、その厚さは、例えば1μmから100μmである。 FIG. 2 is a cross-sectional view showing the configuration of the touch panel 2, and FIG. 3 is a plan view thereof. The touch panel 2 is formed of a rigid substrate or a flexible sheet having electromagnetic permeability (including light and a touch electric field), and includes a rectangular substrate 21 in plan view. In the present disclosure, the rectangle is a concept including a square and a rectangle. On the surface of the substrate 21, an electromagnetically transmissive conductive layer 22 is formed over substantially the entire surface, and a transparent insulating protective layer 23 is formed thereon. The conductive layer 22 is an ITO (Indium Tin Oxide) film, for example, and has a resistance value of 1 kΩ / □ to 10 MΩ / □. The insulating protective layer 23 is, for example, a polyester sheet, and the thickness thereof is, for example, 1 μm to 100 μm.
 図3に示すように、タッチパネル2には、導電層22の辺に沿って4つの電極E,E,…が設けられている。具体的には、導電層22の各辺の中間位置に各1つの電極が非対称に設けられている。なお、本開示において、対称に電極を設けるとは、例えば、導電層が矩形状の場合において、導電層の中心を通る二等分線を引いたときに、対向する辺の電極の位置が同一になるように電極を設けることを指すものとする。また、例えば、導電層が円形状の場合に、導電層22の中心に対して点対称の位置に電極を設けることを指すものとする。したがって、非対称の位置とは、上記対称な位置からずらして電極を配置することを指すものとする。 3, the touch panel 2 is provided with four electrodes E, E,... Along the side of the conductive layer 22. Specifically, one electrode is provided asymmetrically at an intermediate position of each side of the conductive layer 22. In the present disclosure, providing electrodes symmetrically means that, for example, when the conductive layer is rectangular, when the bisector passing through the center of the conductive layer is drawn, the positions of the electrodes on the opposite sides are the same. It is assumed that an electrode is provided so that For example, when the conductive layer is circular, the electrode is provided at a point-symmetrical position with respect to the center of the conductive layer 22. Therefore, the asymmetric position refers to disposing the electrode by shifting from the symmetric position.
 以下、説明の便宜上、図3において電極Eのうち、導電層22の左端で上下方向に延びる辺に沿って設けられた電極を第1電極E1と称し、第1電極E1から反時計回りの順番で各辺に設けられた電極をそれぞれ第2、第3及び第4電極E2,E3,E4と称する場合がある。また、図3では、4つの電極E1,E2,E3,E4により電極群を構成している。 Hereinafter, for the convenience of explanation, among the electrodes E in FIG. 3, the electrode provided along the side extending in the vertical direction at the left end of the conductive layer 22 is referred to as a first electrode E1 and is counterclockwise from the first electrode E1. The electrodes provided on each side may be referred to as second, third, and fourth electrodes E2, E3, E4, respectively. In FIG. 3, an electrode group is constituted by four electrodes E1, E2, E3, and E4.
 図1に戻り、信号源3は、パルスジェネレータ31(図1ではPGと表記する)と、アナログスイッチ32(図1ではASと表記する)とを有する。パルスジェネレータ31は、周期的に変動する矩形状のパルス信号(電圧:Vcc)を発生する。アナログスイッチ32は、パルスジェネレータ31とタッチパネル2の各電極Eとの間に設けられ、第1から第4電極E1,E2,…,E4のうち後述する演算部5から出力される電極選択信号SC1が示す電極Eにパルス信号を与える。電極選択信号SC1は、対をなす2つの電極E,E、又は、4つの電極E,E,…を示す信号である。 Returning to FIG. 1, the signal source 3 includes a pulse generator 31 (denoted as PG in FIG. 1) and an analog switch 32 (denoted as AS in FIG. 1). The pulse generator 31 generates a rectangular pulse signal (voltage: Vcc) that varies periodically. The analog switch 32 is provided between the pulse generator 31 and each electrode E of the touch panel 2, and among the first to fourth electrodes E1, E2,..., E4, an electrode selection signal SC1 output from the arithmetic unit 5 described later. A pulse signal is given to the electrode E indicated by. The electrode selection signal SC1 is a signal indicating two electrodes E, E or four electrodes E, E,.
 位置情報取得部4は、同一構成の2つのアナログスイッチ41,41(図1ではASと表記する)と、差動アンプ42と、ノイズフィルタ43と、ピークホールド部44と、アナログデジタル変換回路45(図1ではADCと表記する)とを備えている。 The position information acquisition unit 4 includes two analog switches 41 and 41 (denoted as AS in FIG. 1) having the same configuration, a differential amplifier 42, a noise filter 43, a peak hold unit 44, and an analog-to-digital conversion circuit 45. (Referred to as ADC in FIG. 1).
 各アナログスイッチ41は、第1から第4電極E1,E2,…,E4の出力信号を受け、後述する演算部8から出力される電極選択信号SC2に基づいて選択された一対の測定対象となる電極E,E(以下単に測定電極E,Eともいう)の出力信号を通過させ、差動アンプ42の入力端子に出力する。具体的には、一方のアナログスイッチ41が一方の測定電極Eからの出力信号を通過させ、他方のアナログスイッチ41が他方の測定電極Eからの出力信号を通過させる。これにより、差動アンプ42は、第1から第4電極E1,E2,…,E4のうち電極選択信号SC2によって選択されたペア電極としての一対の測定電極E,Eからの出力信号の信号量差を示す差動信号を出力する。ノイズフィルタ43は、差動アンプ42から出力された差動信号のノイズ成分を除去する。ピークホールド部44は、ノイズが除去された差動信号のピーク電圧をアナログ信号として保持する。アナログデジタル変換回路45は、前記ピーク電圧(アナログ信号)に基づいて、ピーク電圧値及びピーク電圧の符号情報をデジタル値に変換する。なお、ピークホールド回路44は、必ずしも必要ではなく、ノイズフィルタ43の出力信号を直接アナログデジタル変換回路45に入力するようにしてもよい。この場合、アナログデジタル変換回路45には、時分割処理の動作をさせるようにすればよい。具体的には、アナログデジタル変換回路45は、ノイズフィルタ43から入力されたアナログ信号に対して、適当なサンプリング数で時分割された所定の単位時間毎にデジタル変換処理を施す。そして、デジタル変換処理後のデジタル信号の中から最大値を抽出し、その最大値に基づいたピーク電圧値及びピーク電圧の符号情報を記録するようにするとよい。 Each analog switch 41 receives an output signal from the first to fourth electrodes E1, E2,..., E4 and becomes a pair of measurement objects selected based on an electrode selection signal SC2 output from the arithmetic unit 8 described later. The output signals of the electrodes E and E (hereinafter also simply referred to as measurement electrodes E and E) are passed and output to the input terminals of the differential amplifier 42. Specifically, one analog switch 41 passes an output signal from one measurement electrode E, and the other analog switch 41 passes an output signal from the other measurement electrode E. Thereby, the differential amplifier 42 has a signal amount of the output signal from the pair of measurement electrodes E and E as a pair electrode selected by the electrode selection signal SC2 among the first to fourth electrodes E1, E2,. A differential signal indicating the difference is output. The noise filter 43 removes the noise component of the differential signal output from the differential amplifier 42. The peak hold unit 44 holds the peak voltage of the differential signal from which noise has been removed as an analog signal. The analog-digital conversion circuit 45 converts the peak voltage value and the sign information of the peak voltage into a digital value based on the peak voltage (analog signal). The peak hold circuit 44 is not necessarily required, and the output signal of the noise filter 43 may be directly input to the analog-digital conversion circuit 45. In this case, the analog-digital conversion circuit 45 may be operated in a time division process. Specifically, the analog-digital conversion circuit 45 performs a digital conversion process on the analog signal input from the noise filter 43 every predetermined unit time that is time-divided by an appropriate number of samplings. Then, the maximum value is extracted from the digital signal after the digital conversion process, and the peak voltage value and the peak voltage code information based on the maximum value may be recorded.
 演算部5は、位置検出装置1の各ブロックの動作を制御する。また、演算部5は、本実施形態に係る位置検出方法を使用するように、および、本実施形態に係る位置検出プログラムを実行するように、構成されている。 The calculation unit 5 controls the operation of each block of the position detection device 1. Moreover, the calculating part 5 is comprised so that the position detection method concerning this embodiment may be used and the position detection program concerning this embodiment may be performed.
 例えば、演算部5は、第1から第4電極E1,E2,…,E4の中からパルス信号を与える電極を選択し、その電極を示す電極選択信号SC1を信号源3のアナログスイッチ32に出力する。また、測定対象となる対をなす測定電極を選択し、その測定電極を示す電極選択信号SC2を2つのアナログスイッチ41,41に送信する。そして、これらの電極選択信号SC1,SC2により両スイッチの動作が制御される。 For example, the computing unit 5 selects an electrode that provides a pulse signal from the first to fourth electrodes E1, E2,..., E4, and outputs an electrode selection signal SC1 indicating the electrode to the analog switch 32 of the signal source 3. To do. Further, a pair of measurement electrodes to be measured is selected, and an electrode selection signal SC2 indicating the measurement electrode is transmitted to the two analog switches 41 and 41. The operation of both switches is controlled by these electrode selection signals SC1 and SC2.
 電極選択信号SC1は、演算部5が任意に選択した対をなす2つの電極E,E、又は、4つの電極E,E,…を示す信号である。ここで、演算部5が、パルス信号を与える電極として、どの電極をどのような順番で選択するかは特に限定されない。また、2つの電極E,Eを選択する場合において、任意の2箇所の電極からの出力信号に基づいて差動アンプ42により差動信号が採取できる。このとき、好ましくは入力信号を与えた電極から出力信号を採取することが有効である。4つの電極E,E,…を選択する場合に、2つの組み合わせの差動をとる、すなわち6つの組み合わせを選択できるが、各辺から1つずつの電極を選択するのが好ましい。また、導電層22上で直交する仮想線を引き、この仮想線と導電層22の辺とが重なる位置(4箇所)に電極を設けて、それらの電極に信号を与えてもよい。 The electrode selection signal SC1 is a signal indicating two electrodes E, E or four electrodes E, E,. Here, there is no particular limitation as to which electrode the calculation unit 5 selects as an electrode to which a pulse signal is applied and in what order. Further, in the case of selecting two electrodes E, E, a differential signal can be collected by the differential amplifier 42 based on output signals from any two electrodes. At this time, it is preferable to collect the output signal from the electrode to which the input signal is applied. When selecting the four electrodes E, E,..., Two combinations are differential, that is, six combinations can be selected, but it is preferable to select one electrode from each side. Alternatively, virtual lines orthogonal to each other on the conductive layer 22 may be drawn, electrodes may be provided at positions (four places) where the virtual lines and the sides of the conductive layer 22 overlap, and signals may be given to these electrodes.
 また、電極選択信号SC2は、電極選択信号SC1で選択された電極の中から任意に選択された対をなす測定電極を示す信号である。したがって、電極選択信号SC1が2つの電極を示す信号である場合、電極選択信号SC1と電極選択信号SC2とは、同じ電極を示す信号となる。 The electrode selection signal SC2 is a signal indicating a pair of measurement electrodes arbitrarily selected from the electrodes selected by the electrode selection signal SC1. Therefore, when the electrode selection signal SC1 is a signal indicating two electrodes, the electrode selection signal SC1 and the electrode selection signal SC2 are signals indicating the same electrode.
 さらに、演算部5は、アナログデジタル変換回路45から出力された差動信号(デジタル値)に含まれる差分情報に基づいて、絶縁保護層23に接近又は接触した物体(例えば、ユーザーの指)の位置を演算により求める。ここで、差分情報とは、差動信号に基づいて得られる情報全般を指すものとする。例えば、差分情報には、差動信号が正の電圧信号か負の電圧信号かを示す符号情報、差動信号の大きさを示す電圧差情報、差動信号が所定の電圧に到達するまでの時間情報等が含まれる。また、演算部は、上記制御を行うためのプログラムが格納されたROM51及び後述する補正テーブルTB1やルックアップテーブルTB2等が登録されるデータベースが格納された格納部52を備えている。 Further, the calculation unit 5 determines the object (for example, a user's finger) that has approached or contacted the insulating protective layer 23 based on the difference information included in the differential signal (digital value) output from the analog-digital conversion circuit 45. The position is obtained by calculation. Here, the difference information refers to all information obtained based on the differential signal. For example, the difference information includes sign information indicating whether the differential signal is a positive voltage signal or a negative voltage signal, voltage difference information indicating the magnitude of the differential signal, and until the differential signal reaches a predetermined voltage. Time information etc. are included. Further, the calculation unit includes a ROM 51 that stores a program for performing the above control, and a storage unit 52 that stores a database in which a correction table TB1 and a lookup table TB2 described later are registered.
 -タッチ位置の検出原理-
 図4は位置検出装置1において、タッチパネル2の第3及び第4電極E3,E4と周辺ブロックとの接続関係を詳細に示した図である。以下の位置検出原理の説明では、パルスジェネレータ31からのパルス信号が一対の測定電極としての第3及び第4電極E3,E4に与えられ、差動アンプ42からは第3及び第4電極E3,E4の差動信号が出力されるものとする。すなわち、電極選択信号SC1,SC2が第3及び第4電極E3,E4を示している場合を例に説明する。なお、以下の説明に際して、理解を容易にするために、(1)導電層22は、一様なシート抵抗を有するものとして説明する。ただし、詳細は後述するが、導電層22のシート抵抗が部分的に異なる場合においても、本発明は適用が可能である。(2)図4ではアナログスイッチ32及びアナログスイッチ41の図示を省略する。
-Touch position detection principle-
FIG. 4 is a diagram showing in detail the connection relationship between the third and fourth electrodes E3 and E4 of the touch panel 2 and the peripheral blocks in the position detection device 1. In the following description of the position detection principle, the pulse signal from the pulse generator 31 is applied to the third and fourth electrodes E3 and E4 as a pair of measurement electrodes, and the third and fourth electrodes E3 and E3 are supplied from the differential amplifier 42. Assume that an E4 differential signal is output. That is, the case where the electrode selection signals SC1 and SC2 indicate the third and fourth electrodes E3 and E4 will be described as an example. In the following description, in order to facilitate understanding, (1) the conductive layer 22 will be described as having a uniform sheet resistance. However, although details will be described later, the present invention can be applied even when the sheet resistance of the conductive layer 22 is partially different. (2) In FIG. 4, the analog switch 32 and the analog switch 41 are not shown.
 図4に示すように、パルスジェネレータ31と第3及び第4電極E3,E4の入力端子IN3,IN4とは、それぞれ基準抵抗R0を介して入力信号配線NIにより接続されている。入力信号配線NIは、当該配線NIに沿って併走する第1グランド配線NG1とのペア配線となっている。第1グランド配線NG1の一端は、パルスジェネレータ31のグランドと接続されている。 As shown in FIG. 4, the pulse generator 31 and the input terminals IN3 and IN4 of the third and fourth electrodes E3 and E4 are connected to each other by an input signal line NI via a reference resistor R0. The input signal wiring NI is a pair wiring with the first ground wiring NG1 that runs along the wiring NI. One end of the first ground wiring NG1 is connected to the ground of the pulse generator 31.
 第3及び第4電極E3,E4の出力端子OUT3,OUT4は、差動アンプ42の入力端子にそれぞれ出力信号配線NTにより接続されている。出力信号配線NTは、入力信号配線NIと同様にグランド配線(以下、第2グランド配線NG2と称する)とのペア配線となっている。差動アンプ42の両入力端子間には、同一インピーダンスを有する2つの負荷Z1,Z1が直列接続されており、両負荷Z1,Z1の間の中間ノードがグランドに接続されている。このグランドに第2グランド配線NG2の一端が接続されている。第1及び第2グランド配線NG1,NG2の他端(タッチパネル側の端部)は解放端となっている。このような非対称電極構成とすることにより、パルスジェネレータ31から第3及び第4電極E3,E4の入力端子IN3,IN4に印加されるパルス信号、並びに第3及び第4電極の出力端子OUT3,OUT4から差動アンプ42に出力される出力信号の感度の向上とノイズをより効果的に低減することができる。 The output terminals OUT3 and OUT4 of the third and fourth electrodes E3 and E4 are connected to the input terminals of the differential amplifier 42 by the output signal wiring NT, respectively. Similarly to the input signal wiring NI, the output signal wiring NT is a pair wiring with a ground wiring (hereinafter referred to as a second ground wiring NG2). Two loads Z1, Z1 having the same impedance are connected in series between both input terminals of the differential amplifier 42, and an intermediate node between the loads Z1, Z1 is connected to the ground. One end of the second ground wiring NG2 is connected to this ground. The other ends (end portions on the touch panel side) of the first and second ground wirings NG1, NG2 are open ends. With such an asymmetric electrode configuration, the pulse signal applied from the pulse generator 31 to the input terminals IN3 and IN4 of the third and fourth electrodes E3 and E4, and the output terminals OUT3 and OUT4 of the third and fourth electrodes. Therefore, it is possible to improve the sensitivity of the output signal output to the differential amplifier 42 and to reduce noise more effectively.
 図5はユーザーによりタッチ位置TPがタッチされた場合における第3及び第4電極E3,E4の出力信号及び差動アンプ42から出力される差動信号の一例を示した図である。図5において、縦軸は電圧値であり、横軸は時間である。また、図5(a)は後述する式(1),(2)で求められるV,Vの信号波形を示しており、図5(b)は式(3)で求められるVdfの信号波形を示している。 FIG. 5 is a diagram illustrating an example of output signals of the third and fourth electrodes E3 and E4 and a differential signal output from the differential amplifier 42 when the touch position TP is touched by the user. In FIG. 5, the vertical axis represents voltage values, and the horizontal axis represents time. FIG. 5A shows signal waveforms of V 3 and V 4 obtained by equations (1) and (2) described later, and FIG. 5B shows the V df obtained by equation (3). The signal waveform is shown.
 ここで、図4において、タッチ位置TPは、第4電極E4よりも第3電極E3の方に近いものとする。すなわち、第3電極Eとタッチ位置TPとの間の導電層22の抵抗(以下、第3抵抗R3と称し、抵抗値はRと記載する)と、第4電極とタッチ位置TPとの間の導電層22の抵抗(以下、第4抵抗R4と称し、抵抗値はRと記載する)との間には、R<Rの関係が成立するものとする。 Here, in FIG. 4, the touch position TP is closer to the third electrode E3 than the fourth electrode E4. That is, the resistance of the conductive layer 22 between the third electrode E and the touch position TP (hereinafter, referred to as a third resistor R3, the resistance value is referred to as R 3) and, between the fourth electrode and the touch position TP It is assumed that a relationship of R 3 <R 4 is established with the resistance of the conductive layer 22 (hereinafter referred to as a fourth resistor R 4 and the resistance value is described as R 4 ).
 タッチ位置TPがタッチされた状態において、第3電極にパルス信号が入力されると、タッチした指と導電層22との間の容量Cと第3抵抗R3との時定数に応じた電圧でタッチ位置TPがチャージアップされる。このチャージアップ状態が第3電極E3に反射され、差動アンプ42の一方の入力端子に下記式(1)で示される反射信号が入力される。 In a state where the touch position TP is touched, the pulse signal to the third electrode is inputted, in the capacity C T and the voltage corresponding to the time constant of the third resistor R3 between the finger and the conductive layer 22 is touched The touch position TP is charged up. This charge-up state is reflected by the third electrode E3, and a reflected signal represented by the following formula (1) is input to one input terminal of the differential amplifier 42.
 V=Vdd(1-exp(-t/R)) ‥(1) V 3 = V dd (1-exp (−t / R 3 C T )) (1)
 ここで、容量Cは、絶縁保護層の材質、厚さ等に応じて一義的に決まる値である。なお、図4に示すように、容量Cとグランドとの間には、タッチするユーザー毎に異なる特定の値の負荷Z2が生じる。発明の理解を容易にするため、本式ではその影響を省略している。以下の式でも同様とする。なお、本開示では、このユーザー毎に異なる負荷Z2について、後述する実施形態2において説明する補正マーカーを用いて補正することができるように構成されている。 Here, the capacitance C T, the material of the insulating protective layer is a value determined depending on the thickness and the like. As shown in FIG. 4, a load Z2 having a specific value that differs for each touching user is generated between the capacitor CT and the ground. In order to facilitate understanding of the invention, the influence is omitted in this equation. The same applies to the following equations. In the present disclosure, the load Z2 that is different for each user can be corrected using a correction marker described in a second embodiment to be described later.
 同様に、位置TPがタッチされた状態において、第4電極E4にパルス信号が入力されると、容量Cと第4抵抗R4との時定数に応じて、差動アンプ42の他方の入力端子に下記式(2)で示される反射信号が入力される。 Similarly, when a pulse signal is input to the fourth electrode E4 in a state where the position TP is touched, the other input terminal of the differential amplifier 42 according to the time constant between the capacitor CT and the fourth resistor R4. A reflection signal represented by the following formula (2) is input to
 V=Vdd(1-exp(-t/R)) ‥(2) V 4 = V dd (1-exp (−t / R 4 C T )) (2)
 したがって、差動アンプ42からは、上記式下記式(3)に示す差動信号(式(1),(2)の差分の信号)が出力される。 Therefore, the differential amplifier 42 outputs the differential signal (the difference signal between the formulas (1) and (2)) shown in the following formula (3).
 Vdf=V-V
    =Vdd(-exp(-t/R)+exp(-t/R))‥(3)
V df = V 3 -V 4
     = V dd (−exp (−t / R 3 C T ) + exp (−t / R 4 C T )) (3)
 ピークホールド部44は、差動信号が正の場合、式(3)の最大電圧値をピーク電圧としてホールドし、差動信号が負の場合、式(3)の最小電圧値をピーク電圧としてホールドする。 The peak hold unit 44 holds the maximum voltage value of Expression (3) as a peak voltage when the differential signal is positive, and holds the minimum voltage value of Expression (3) as the peak voltage when the differential signal is negative. To do.
 -タッチ位置の検出動作(1)-
 演算部5では、ピーク電圧値及びピーク電圧の符号情報に基づいてタッチ位置TPを演算により求める。ここでは、もっとも単純な方法であるピーク電圧の符号情報に基づいてタッチ位置TPを求める演算について説明する。
-Touch position detection operation (1)-
The calculation unit 5 calculates the touch position TP by calculation based on the peak voltage value and the sign information of the peak voltage. Here, the calculation for obtaining the touch position TP based on the sign information of the peak voltage, which is the simplest method, will be described.
 まず、第3電極E3と第4電極E4とを結ぶ仮想直線IE34(図4の二点鎖線参照)の垂直二等分線BP34(図4の一点鎖線参照)を引き、垂直二等分線BP34よりも第3電極E3寄りの領域を第1領域R1とし、垂直二等分線よりも第4電極寄りの領域を第2領域R2とする。本実施形態において、導電層22は一様なシート抵抗であるため、第3及び第4抵抗R3,R4の抵抗値は、タッチ位置と電極との間の距離に基づいて定まる。例えば、上記図4の構成の場合、ピーク電圧(図5の点X参照)の符号は「+」であるため、演算部はタッチ位置TPが第1領域R1にあることを求めることができる。 First, a vertical bisector BP34 (see the alternate long and short dash line in FIG. 4) of a virtual straight line IE34 (see the alternate long and two short dashes line in FIG. 4) connecting the third electrode E3 and the fourth electrode E4 is drawn, and the vertical bisector BP34 is drawn. A region closer to the third electrode E3 is referred to as a first region R1, and a region closer to the fourth electrode than the vertical bisector is referred to as a second region R2. In the present embodiment, since the conductive layer 22 has a uniform sheet resistance, the resistance values of the third and fourth resistors R3 and R4 are determined based on the distance between the touch position and the electrode. For example, in the configuration of FIG. 4 described above, the sign of the peak voltage (see the point X in FIG. 5) is “+”, so the calculation unit can determine that the touch position TP is in the first region R1.
 次に、図3に戻り、演算部5は、第2電極E2と第3電極E3を測定対象となる一対の電極として選択する。この場合、第2電極E2と第3電極E3とを結ぶ仮想直線IE23の垂直二等分線BP23を引き、垂直二等分線BP23よりも第2電極E2寄りの領域を第3領域R3とし、垂直二等分線BP23よりも第3電極E3寄りの領域を第4領域R4とする。先ほどと同様に、演算部5は、ピーク電圧の符号に基づいてタッチ位置TPが第4領域R4になることを求めることができる。 Next, returning to FIG. 3, the calculation unit 5 selects the second electrode E2 and the third electrode E3 as a pair of electrodes to be measured. In this case, a vertical bisector BP23 of a virtual straight line IE23 connecting the second electrode E2 and the third electrode E3 is drawn, and a region closer to the second electrode E2 than the vertical bisector BP23 is defined as a third region R3. A region closer to the third electrode E3 than the vertical bisector BP23 is defined as a fourth region R4. As before, the calculation unit 5 can determine that the touch position TP becomes the fourth region R4 based on the sign of the peak voltage.
 演算部5は、上記2つの測定に基づいて、タッチ位置TPが第1領域R1と第4領域R4との重複部分(図3の斜線で示す領域)にあることを求めることができる。 Based on the above two measurements, the calculation unit 5 can determine that the touch position TP is in an overlapping portion (region indicated by hatching in FIG. 3) between the first region R1 and the fourth region R4.
 -従来技術との比較-
 ところで、図14に示すように、従来のパターンレスタッチパネルでは、タッチパネル91の4隅に電極E9,E9,…が設けられている(例えば、特許文献2,3参照)。このような従来の電極配置において、タッチ位置の検出は次の手順で行われる。まず、タッチパネル91の4隅の電極E9,E9,…に対して同相、同電圧の電圧が与えられる。次に、4隅の電極のうちの一対の電極E9,E9の出力信号を受けた差動アンプ92から出力された差動信号に基づいて、演算部93でタッチ位置を演算する。ここで、従来技術では、タッチ位置TP9がタッチパネル91の中心にあるとき、すべての対をなす電極E,Eの組み合わせにおいて、対をなす各電極E9とタッチ位置TP9との間の抵抗値R91,R92が互いに等しい抵抗値となるため、差動信号が0Vになる。すなわち、タッチパネル91の中心位置がタッチされた場合、差動アンプ92からは、タッチされていない状態と同じ差動信号しか得られないという問題がある。
-Comparison with conventional technology-
Incidentally, as shown in FIG. 14, in the conventional patternless touch panel, electrodes E9, E9,... Are provided at four corners of the touch panel 91 (see, for example, Patent Documents 2 and 3). In such a conventional electrode arrangement, the touch position is detected by the following procedure. First, in-phase and same-voltage voltages are applied to the electrodes E9, E9,. Next, the calculation unit 93 calculates the touch position based on the differential signal output from the differential amplifier 92 that has received the output signal of the pair of electrodes E9 and E9 among the electrodes at the four corners. Here, in the prior art, when the touch position TP9 is at the center of the touch panel 91, the resistance values R91, R9 between the paired electrodes E9 and the touch position TP9 are all combinations of the pairs of electrodes E, E. Since R92 has the same resistance value, the differential signal becomes 0V. That is, when the center position of the touch panel 91 is touched, there is a problem that the differential amplifier 92 can only obtain the same differential signal as in the non-touched state.
 そこで、本願発明者らは、図3に示すように、導電層22の辺に沿って電極E1,E2,…を非対称な位置に設けることにより上記問題を解決できることを見いだした。換言すると、本願発明者らは、導電層22の辺に沿って電極を設ける際に、対をなす電極間を結ぶ仮想直線IEの垂直二等分線BPを、互いの組み合わせを異ならせて引いた場合に、垂直二等分線BP同士が互いに交わる仮想交点が少なくとも2つできる(少なくとも2箇所にできる)ように電極Eを配置することにより上記問題を解決できることを見いだした。 Therefore, the present inventors have found that the above problem can be solved by providing the electrodes E1, E2,... At asymmetric positions along the sides of the conductive layer 22, as shown in FIG. In other words, the inventors of the present application draw the vertical bisector BP of the virtual straight line IE that connects the pair of electrodes with different combinations when providing the electrodes along the sides of the conductive layer 22. In this case, it has been found that the above problem can be solved by arranging the electrodes E so that at least two virtual intersections where the perpendicular bisectors BP intersect each other can be formed (at least two can be formed).
 より具体的には、本願発明のようにパターンレスタッチパネルにおいて、差動信号を用いてタッチ位置TPの検出を行う場合、タッチ位置TPと測定電極E,Eとの間の距離の差に応じた差動信号が出力される。したがって、対をなす測定電極E,E間を結ぶ仮想直線の垂直二等分線を引いた場合に、垂直二等分線は、タッチ位置と測定対象電極と間の距離が互いに等しくなる位置、すなわち、タッチされた場合に2つの対象電極からの出力信号に基づく差動信号が0Vになる位置を示している。したがって、タッチパネルの4隅に電極を設けた場合、すべての一対の測定電極の組み合わせにおいて、任意に選択した2つの測定電極E,E間を結ぶ仮想直線IEの垂直二等分線BPがすべて導電層22の中心で交わるため、タッチ位置TPが導電層22の中心にあるときに差動信号が0Vになる。 More specifically, in the patternless touch panel as in the present invention, when the touch position TP is detected using the differential signal, the touch position TP corresponds to a difference in distance between the touch position TP and the measurement electrodes E and E. A differential signal is output. Accordingly, when a vertical bisector of a virtual straight line connecting the paired measurement electrodes E and E is drawn, the vertical bisector is a position where the distance between the touch position and the measurement target electrode is equal to each other, That is, it shows a position where the differential signal based on the output signals from the two target electrodes becomes 0 V when touched. Therefore, when electrodes are provided at the four corners of the touch panel, the vertical bisector BP of the imaginary straight line IE connecting the two arbitrarily selected measurement electrodes E and E is electrically conductive in all combinations of a pair of measurement electrodes. Since they intersect at the center of the layer 22, the differential signal becomes 0 V when the touch position TP is at the center of the conductive layer 22.
 一方で、本開示に係るパターンレスタッチパネルでは、仮想交点が少なくとも2つできるように電極群の電極E,E,…を配置するため、互いに組み合わせが異なる対をなす電極を測定対象として選択することにより、タッチ位置に拘わらず差動信号が0Vになることを避けて確実にタッチ位置を検出できるようすることができる。 On the other hand, in the patternless touch panel according to the present disclosure, the electrodes E, E,... Of the electrode group are arranged so that at least two virtual intersections can be made, so that pairs of electrodes having different combinations are selected as measurement targets. Accordingly, it is possible to reliably detect the touch position while avoiding the differential signal being 0 V regardless of the touch position.
 さらに、図3に示す電極配置では、仮想交点IPのうちの少なくとも1つ(例えば、図3のIP5参照)が導電層22の外側に位置するような電極E,E,…の配置にしている。仮想交点IPは、対をなす測定電極E,Eを用いた測定について、複数の組み合わせにおいて差動信号が0Vになる点を示している。このような仮想交点IPを導電層22の外に出すことで、複数対の測定電極を用いて測定することにより、差動信号が0Vになる点をなくすことができ、ひいては、位置検出装置1の解像度を向上させることができるようになる。換言すると、垂直二等分線BP12とBP34との仮想交点をIP6として定義した場合、導電層22(タッチパネル2)のサイズは、仮想交点IP5,IP6の内側まで広くすることが可能といえる。すなわち、電極E,E…が導電層22の辺に沿ってではなく、その内側に配置されている場合においても、本発明は適用可能であるといえる。 Further, in the electrode arrangement shown in FIG. 3, the electrodes E, E,... Are arranged such that at least one of the virtual intersection points IP (see, for example, IP5 in FIG. 3) is located outside the conductive layer 22. . The virtual intersection point IP indicates a point at which the differential signal becomes 0 V in a plurality of combinations in the measurement using the paired measurement electrodes E and E. By providing such a virtual intersection point IP out of the conductive layer 22, it is possible to eliminate the point where the differential signal becomes 0 V by measuring using a plurality of pairs of measurement electrodes. The resolution can be improved. In other words, when the virtual intersection of the perpendicular bisectors BP12 and BP34 is defined as IP6, it can be said that the size of the conductive layer 22 (touch panel 2) can be increased to the inside of the virtual intersections IP5 and IP6. That is, it can be said that the present invention is applicable even when the electrodes E, E... Are arranged not inside the side of the conductive layer 22 but inside thereof.
 さらに、本願発明者らは、図3のような電極配置において、従来技術と同様に4つの電極に対して同時に電圧を印加する場合に、一対の測定電極E,Eの位置によっては、差動信号が正の電圧値と負の電圧値の間で変動する現象が起こる場合があることを発見した。図15は、ノータッチ状態において4つの電極に対して同時に電圧(図15の実線参照)を印加した場合における所定の2つの測定電極間の差動電圧(図15の破線参照)の変動を示しており、(a)は正常状態における波形データであり、(b)は上記変動が発生する場合の波形データである。この点に関し、本願発明者らは、鋭意検討を重ねた結果、本現象は、他の電極から入力されたパルス信号に起因するものだと見いだした。さらに、2つの測定電極E,Eにのみパルス信号を与えることにより、図15(b)のような変動現象が発生しないことを見いだし、本発明を完成するに至った。したがって、前述のとおり、本実施形態では、パルスジェネレータ31と第1から第4電極E1,E2,…,E4との間にアナログスイッチ32を設け、演算部5からの電極選択信号SC1に基づいて、一対の測定電極E,Eにパルス信号が印加されるようにしている。これにより、電極E,Eの配置や一対の測定電極E,Eの組み合わせに拘わらず安定したタッチ位置の検出が可能となっている。 Furthermore, in the electrode arrangement as shown in FIG. 3, the inventors of the present application, when applying voltages to the four electrodes at the same time as in the prior art, depending on the positions of the pair of measurement electrodes E and E, It has been discovered that a phenomenon can occur in which the signal fluctuates between positive and negative voltage values. FIG. 15 shows the fluctuation of the differential voltage (see the broken line in FIG. 15) between two predetermined measurement electrodes when a voltage (see the solid line in FIG. 15) is simultaneously applied to the four electrodes in the no-touch state. (A) is the waveform data in the normal state, and (b) is the waveform data when the above-described fluctuation occurs. In this regard, the inventors of the present application have made extensive studies and found that this phenomenon is caused by a pulse signal input from another electrode. Furthermore, it was found that the fluctuation phenomenon as shown in FIG. 15B does not occur by giving a pulse signal only to the two measurement electrodes E and E, and the present invention has been completed. Therefore, as described above, in this embodiment, the analog switch 32 is provided between the pulse generator 31 and the first to fourth electrodes E1, E2,..., E4, and based on the electrode selection signal SC1 from the arithmetic unit 5. A pulse signal is applied to the pair of measurement electrodes E and E. This makes it possible to detect a stable touch position regardless of the arrangement of the electrodes E and E and the combination of the pair of measurement electrodes E and E.
 以上のように、本実施形態によると、タッチパネル2の電極E,E,…を非対称に配置したことにより、測定電極E,E間を結ぶ垂直二等分線BPが導電層22上の1点に集中しないようにすることができる。前述のとおり、垂直二等分線BP上は差動信号が0Vになり、垂直二等分線BP近傍も差動信号の変化が得られにくい。したがって、垂直二等分線BPの1点集中を避けることにより、測定電極E,Eの組み合わせを異ならせることによって、上記差動信号の振幅が得られにくい位置を削減することができる。すなわち、タッチ位置TPによる検出感度の差異を少なくすることができ、解像度を向上させることができるようになる。 As described above, according to the present embodiment, since the electrodes E, E,... Of the touch panel 2 are arranged asymmetrically, the vertical bisector BP connecting the measurement electrodes E, E is one point on the conductive layer 22. You can avoid concentrating on. As described above, the differential signal is 0 V on the vertical bisector BP, and it is difficult to obtain a change in the differential signal near the vertical bisector BP. Therefore, by avoiding the concentration of one point of the perpendicular bisector BP, the positions where the amplitude of the differential signal is difficult to obtain can be reduced by changing the combination of the measurement electrodes E and E. That is, the difference in detection sensitivity due to the touch position TP can be reduced, and the resolution can be improved.
 また、本願発明者らは、従来4隅に設けられていた電極E,E…の位置を導電層22の辺の両端から離間させた場合においても、一対の測定電極E,Eにパルス信号を与える構成にすることにより、差動信号の変動現象が発生しないことを見いだした。これにより、電極を導電層の辺の任意の位置に配置することができる。すなわち、タッチ位置に近い電極E,Eを測定電極E,Eにすることができるようになる。本実施形態のようなパターンレスタッチパネルでは、基準抵抗R0と第1から第4抵抗R1~R4の分圧により差動信号の振幅が規定されるため、タッチ位置TPが近い方が差動信号の振幅を大きく得ることができる。したがって、本態様に係るタッチパネルは、解像度を高めることができるようになるメリットがある。このような構成は、タッチパネル2が大型化する際により顕著な効果が得られる。 In addition, the inventors of the present application provide pulse signals to the pair of measurement electrodes E and E even when the positions of the electrodes E, E... Conventionally provided at the four corners are separated from both ends of the side of the conductive layer 22. It was found that the differential signal fluctuation phenomenon does not occur by using the configuration to give. Thereby, an electrode can be arrange | positioned in the arbitrary positions of the edge | side of a conductive layer. That is, the electrodes E and E close to the touch position can be used as the measurement electrodes E and E. In the patternless touch panel as in the present embodiment, the amplitude of the differential signal is defined by the divided voltage of the reference resistor R0 and the first to fourth resistors R1 to R4. A large amplitude can be obtained. Therefore, the touch panel according to this aspect has an advantage that the resolution can be increased. Such a configuration provides a more remarkable effect when the touch panel 2 is enlarged.
 さらに、2層構造タッチパネルでは、その特性上、シート抵抗値が1kΩ/□から5kΩ/□の範囲にすることが必要であるが、本発明では、導電層のシート抵抗値が2桁以上高くてもよい点に特徴がある。すなわち、超大型ディスプレイ、壁面等を使用した超大型スクリーン、ホワイトボード等の大型板面等の超大型のタッチパネルに適している。さらに、有機導電シート、金属薄膜シート等のシート抵抗値が高いシートを導電層に適用することが可能になるため、曲面での使用にも適している。 Furthermore, in the two-layer structure touch panel, the sheet resistance value needs to be in the range of 1 kΩ / □ to 5 kΩ / □ due to its characteristics. However, in the present invention, the sheet resistance value of the conductive layer is higher by two digits or more. There is also a feature in the good point. That is, it is suitable for an ultra-large touch panel such as an ultra-large display, an ultra-large screen using a wall surface, and a large plate surface such as a white board. Furthermore, since a sheet having a high sheet resistance value such as an organic conductive sheet or a metal thin film sheet can be applied to the conductive layer, it is also suitable for use on a curved surface.
 なお、上記実施形態では、導電層22が矩形状であるものとして説明したが、導電層の形状は、矩形状以外の形状であってもよい。例えば、図6には、導電層22が楕円(円形状)の場合におけるタッチパネルの構成を示している。図6においても、図3の場合と同様に、4つの電極E71,E72,E73,E74が楕円形状の導電層22の辺に沿って非対称に配置されている例を示している。図6に示すように、矩形状の導電層の場合と同様に、対をなす電極間を結ぶ仮想直線IEの垂直二等分線BPを、互いの組み合わせを異ならせて引いた場合に、垂直二等分線BP同士が互いに交わる仮想交点IPが少なくとも2つできる(少なくとも2箇所にできる)ように構成されている。これにより、タッチ位置に拘わらず差動信号が0Vになることを避けて確実にタッチ位置を検出できるようすることができる。 In the above embodiment, the conductive layer 22 has been described as having a rectangular shape, but the shape of the conductive layer may be other than a rectangular shape. For example, FIG. 6 shows a configuration of the touch panel when the conductive layer 22 is elliptical (circular). 6 also shows an example in which four electrodes E71, E72, E73, and E74 are arranged asymmetrically along the sides of the elliptical conductive layer 22 as in the case of FIG. As shown in FIG. 6, as in the case of the rectangular conductive layer, the vertical bisector BP of the virtual straight line IE connecting the paired electrodes is drawn in a different combination. At least two virtual intersections IP where the bisectors BP intersect each other are formed (can be formed in at least two places). As a result, the touch position can be reliably detected while avoiding the differential signal from becoming 0 V regardless of the touch position.
 <第2実施形態>
 図7は第2実施形態に係るタッチパネルの構成例を示す平面図である。なお、タッチパネル2の平面図は、第1実施形態で示した図2記載のものと同様である。また、位置検出装置1は、第1実施形態で示した図1記載のものと同様である。以下の実施形態において、第1実施形態と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する場合がある。
Second Embodiment
FIG. 7 is a plan view showing a configuration example of the touch panel according to the second embodiment. The plan view of the touch panel 2 is the same as that shown in FIG. 2 shown in the first embodiment. The position detection device 1 is the same as that shown in FIG. 1 shown in the first embodiment. In the following embodiment, the same code | symbol is attached | subjected to the same component as 1st Embodiment, and the detailed description may be abbreviate | omitted here.
 図7に示すように、第2実施形態に係るタッチパネル2には、導電層22の辺に沿って、第1から第4電極E11,E12,…,E43が各3個ずつ設けられている。図7では、第1から第4電極E11,E12,…,E43が非対称に設けられている例を示している。具体的には、導電層の第1コーナーC1(図7左上)から各第1電極E11,E12,E13までの距離と、導電層の第4コーナーC4(図7右上)から各第3電極E31,E32,E33までの距離とが、それぞれ互いに異なるように各電極が配置されている。例えば、図7において、D11≠D31である。同様に、導電層22の第1コーナーC1から各第4電極E41,E42,E43までの距離と、導電層22の第2コーナーC2(図7左下)から各第2電極E21,E22,E23までの距離とが、それぞれ互いに異なるように各電極が配置されている。例えば、図7において、D21≠D41である。 As shown in FIG. 7, the touch panel 2 according to the second embodiment is provided with three first to fourth electrodes E11, E12,..., E43, each along the side of the conductive layer 22. FIG. 7 shows an example in which the first to fourth electrodes E11, E12,..., E43 are provided asymmetrically. Specifically, the distance from the first corner C1 (upper left of FIG. 7) to each of the first electrodes E11, E12, E13 and the third electrode E31 from the fourth corner C4 (upper right of FIG. 7) of the conductive layer. , E32, and E33 are arranged so that the distances from each other are different from each other. For example, in FIG. 7, D11 ≠ D31. Similarly, the distance from the first corner C1 of the conductive layer 22 to each of the fourth electrodes E41, E42, E43 and the second corner C2 of the conductive layer 22 (lower left in FIG. 7) to each of the second electrodes E21, E22, E23. The electrodes are arranged so that their distances are different from each other. For example, in FIG. 7, D21 ≠ D41.
 -タッチ位置の検出動作(2)-
 以下において、図8から図12を参照しながら、ルックアップテーブルを用いたタッチ位置の検出、すなわち、本実施形態に係る位置検出方法および位置検出プログラムを用いた処理について詳細に説明する。図8は全体フローを示しており、図9はユーザーがタッチパネルにタッチ操作した際のタッチ位置検出に係る動作の詳細フローを示している。なお、これまでの説明と同様に、電極選択信号SC1と電極選択信号SC2とが同じ2つの電極Eを示す信号であるものとして説明する。
-Touch position detection operation (2)-
Hereinafter, the detection of the touch position using the lookup table, that is, the process using the position detection method and the position detection program according to the present embodiment will be described in detail with reference to FIGS. FIG. 8 shows an overall flow, and FIG. 9 shows a detailed flow of an operation related to touch position detection when the user touches the touch panel. Similar to the above description, the electrode selection signal SC1 and the electrode selection signal SC2 will be described as signals indicating the same two electrodes E.
 ルックアップテーブルの作成に際し、図7のタッチパネルを複数の検出領域に分割する。本実施形態では、タッチパネルが80個の検出領域Q1,Q2,…,Q80に分割された例を示している。図11(a)にルックアップテーブルの一例を示している。図11(a)に示すように、ルックアップテーブルには、測定対象となるペア電極E,Eの組み合わせと、各検出領域Q1,Q2,…,Q80の標準出力情報としての標準ピーク電圧とが対応付けされた状態でリスト化されている。標準ピーク電圧とは、標準的な測定環境において、標準的な人が各検出領域をタッチした場合を想定した場合において、各ペア電極E,Eにパルス信号を印加したときに、当該各ペア電極から出力される出力電圧の電圧差のピーク値のである。なお、本開示では、測定対象となるペア電極E,Eの組み合わせを互いに異ならせて100通りの組み合わせに対してパルス信号印加及び測定を行うものとする。なお、図11及び図12の表では、列毎に異なるペア電極E,Eの組み合わせを記載しており、説明の便宜上、それぞれのペア電極E,Eの組み合わせに対して、ペア電極番号P00~P99を付している。ペア電極番号P00~P05までは、対向する辺に沿って配置された電極をペア電極として選択しており、ペア電極番号P06~P09及びP99は、互いに直交する辺に沿って配置された電極をペア電極として選択している。なお、図11では記載していないが同一辺にある2つの電極をペア電極としてもかまわない。 When creating the lookup table, the touch panel in FIG. 7 is divided into a plurality of detection areas. In the present embodiment, an example in which the touch panel is divided into 80 detection areas Q1, Q2,. FIG. 11A shows an example of a lookup table. As shown in FIG. 11A, the look-up table includes a combination of the pair electrodes E and E to be measured and standard peak voltages as standard output information of each detection region Q1, Q2,. Listed in the associated state. The standard peak voltage means that when a standard person touches each detection region in a standard measurement environment, each pair electrode E, E when a pulse signal is applied to each pair electrode Is the peak value of the voltage difference of the output voltage output from. In the present disclosure, it is assumed that pulse signal application and measurement are performed on 100 combinations with different combinations of the pair electrodes E and E to be measured. 11 and 12 show combinations of pair electrodes E and E that are different for each column. For convenience of explanation, for each combination of pair electrodes E and E, pair electrode numbers P00 to P00 P99 is attached. For the pair electrode numbers P00 to P05, the electrodes arranged along the opposite sides are selected as the pair electrodes, and for the pair electrode numbers P06 to P09 and P99, the electrodes arranged along the sides orthogonal to each other are selected. It is selected as a pair electrode. Although not shown in FIG. 11, two electrodes on the same side may be paired electrodes.
 ここでルックアップテーブルの生成方法を説明する。あるペア電極E,Eを選んだとき、前述の演算で同じピーク値を示す仮想線が決定されるが、これに従った演算値がタッチ面(例えば、導電層22)の全体で得られる。この演算値が正しいことを実際にタッチすることで検証し、もし誤差が認められればそれを補正する。タッチ面全面の正しいタッチ点ピーク値をタッチ点対応で格納部52に取り込んだ表がルックアップテーブルであり、タッチ点解像度に応じてルックアップテーブルの横軸と縦軸のタッチ点の値の数(ピクセル値数)が決定される。全電極Eの組み合わせの数だけルックアップテーブルの数があり、ホバリングなどでパネルから離れたタッチ点に対して、非線形ピーク出力となることが多いため、この個別ルックアップテーブルも必要な場合がある。 Here, how to create a lookup table is explained. When a certain pair of electrodes E, E is selected, a virtual line showing the same peak value is determined by the above-described calculation, and a calculation value according to this is obtained on the entire touch surface (for example, the conductive layer 22). It is verified by actually touching that the calculated value is correct, and if an error is recognized, it is corrected. A table in which the correct touch point peak value of the entire touch surface is captured in the storage unit 52 in correspondence with the touch point is a lookup table, and the number of touch point values on the horizontal and vertical axes of the lookup table according to the touch point resolution. (Number of pixel values) is determined. There are as many look-up tables as the number of combinations of all the electrodes E, and this individual look-up table may be necessary because a non-linear peak output often occurs at a touch point away from the panel due to hovering or the like. .
 図7に示すように、S1において、タッチパネル2には、ユーザーによるタッチ操作に基づいてルックアップテーブルに登録された標準差分情報を補正するための補正マーカーMK1,MK2が表示される。標準差分情報は、上記リスト化された各検出領域Q1,Q2,…,Q80の標準ピーク電圧のリスト情報を含む情報である。図7では、補正マーカーMK1,MK2がそれぞれタッチパネル2の右上及び左下に表示されている例を示している。なお、補正マーカーMK1,MK2の表示位置及び表示数は上記に限定されない。例えば、補正マーカーMK1,MK2の位置が図7と異なっていてもよいし、補正マーカーMK1,MK2が1箇所又は3箇所以上に表示されてもよい。 As shown in FIG. 7, in S1, the touch panel 2 displays correction markers MK1 and MK2 for correcting the standard difference information registered in the lookup table based on the touch operation by the user. The standard difference information is information including list information of standard peak voltages of the detection areas Q1, Q2,. FIG. 7 shows an example in which the correction markers MK1 and MK2 are displayed on the upper right and lower left of the touch panel 2, respectively. Note that the display positions and the display numbers of the correction markers MK1 and MK2 are not limited to the above. For example, the positions of the correction markers MK1 and MK2 may be different from those in FIG. 7, and the correction markers MK1 and MK2 may be displayed at one place or three or more places.
 S2において、演算部5は、ユーザーによるタッチパネル2へのタッチ操作が行われる前に、ノータッチ状態における各標準ピーク電圧を補正するためのノータッチ補正データの取得を行う。 In S2, the calculation unit 5 acquires no-touch correction data for correcting each standard peak voltage in the no-touch state before the user touches the touch panel 2.
 図9はノータッチ補正データの取得動作の一例を示すフロー図である。図9に示すように、まず、演算部5は、あらかじめ定められた電極選択ルールに従って、測定対象となる対をなすペア電極を選択する(S21)。電極選択ルールは、例えば、演算部5の格納部52に格納されたデータベースにあらかじめ登録されている。図11に示す表では、電極選択ルールの一例を示している。具体的には、表の1行目に記載されたペア電極番号P00,P01,…,P99に対応するようにペア電極の組み合わせが表の2行目に記載されている。演算部5は、例えば、図11の表のペア電極番号P00,P01,…,P99の順にペア電極を構成する2つの電極を選択する。したがって、図11の例では、演算部は、まずペア電極として第1電極E11及び第3電極E31を選択する。 FIG. 9 is a flowchart showing an example of an operation for acquiring no-touch correction data. As shown in FIG. 9, first, the calculation unit 5 selects a pair of electrodes to be measured according to a predetermined electrode selection rule (S21). The electrode selection rule is registered in advance in a database stored in the storage unit 52 of the calculation unit 5, for example. The table shown in FIG. 11 shows an example of the electrode selection rule. Specifically, the combination of the pair electrodes is described in the second row of the table so as to correspond to the pair electrode numbers P00, P01,..., P99 described in the first row of the table. For example, the calculation unit 5 selects two electrodes constituting the pair electrode in the order of pair electrode numbers P00, P01,..., P99 in the table of FIG. Therefore, in the example of FIG. 11, the calculation unit first selects the first electrode E11 and the third electrode E31 as the pair electrodes.
 S22及びS23では、演算部5は、パルスジェネレータ31及びアナログスイッチ32に電極選択信号SC1を与え、ペア電極E11,E31に所定のパルス信号を与えるとともに、アナログスイッチ41,41に電極選択信号SC2を与える。これにより、パルス信号が与えられたペア電極E11,E31から出力された出力信号が差動アンプ42に入力され、ピークホールド部44からピーク電圧が出力される。これにより演算部5は、ピークホールド部44からノータッチ状態におけるピーク電圧を取得し、補正テーブルTB1に登録する。その後、演算部5は、上記パルス信号が与えられたペア電極E11,E31をディスチャージする(S24)。ペア電極E11,E31のディスチャージは、例えば、ペア電極E11,E31をグランドに短絡させることにより実施する。 In S22 and S23, the arithmetic unit 5 gives an electrode selection signal SC1 to the pulse generator 31 and the analog switch 32, gives a predetermined pulse signal to the pair electrodes E11 and E31, and gives an electrode selection signal SC2 to the analog switches 41 and 41. give. As a result, the output signal output from the pair electrodes E11 and E31 to which the pulse signal is applied is input to the differential amplifier 42, and the peak voltage is output from the peak hold unit 44. Thereby, the calculating part 5 acquires the peak voltage in a no-touch state from the peak hold part 44, and registers it in correction table TB1. Thereafter, the calculation unit 5 discharges the pair electrodes E11 and E31 to which the pulse signal is given (S24). The pair electrodes E11 and E31 are discharged by, for example, short-circuiting the pair electrodes E11 and E31 to the ground.
 S25では、ピーク電圧の取得回数(ペア電極の組み合わせ)が規定された数(例えば100)に到達したか否かを判定し、到達していなければ(S25でNO)、S21に戻り、ペア電極E11,E31の組み合わせを、次のペア電極番号P02に係るペア電極E12,E32に変えてノータッチ状態におけるピーク電圧を取得する。以後、規定のピーク電圧の取得回数に到達するまで、S21~S25のフローを繰り返す。このようにして、ノータッチ補正データの取得が完了すると、フローは図8のS3に戻る。 In S25, it is determined whether or not the number of peak voltage acquisitions (combination of pair electrodes) has reached a specified number (for example, 100). If not reached (NO in S25), the process returns to S21 to return to the pair electrode. The combination of E11 and E31 is changed to the pair electrodes E12 and E32 related to the next pair electrode number P02, and the peak voltage in the no-touch state is acquired. Thereafter, the flow of S21 to S25 is repeated until the specified number of peak voltage acquisition times is reached. In this way, when the acquisition of the no-touch correction data is completed, the flow returns to S3 in FIG.
 S3において、演算部5は、補正テーブルTB1を参照してルックアップテーブルTB2の標準差分情報の補正を行う。標準差分情報の補正は、例えば、図11(a)のルックアップテーブルTB2の各標準ピーク電圧から同じ電極の組み合わせに係るノータッチ補正データを差し引く。具体的には、図10において、“P00-Q01”の欄における標準ピーク電圧Vp11からペア電極番号P00に係るノータッチ補正データVn11を差し引き、その演算結果を“P00-Q1”の欄の標準ピーク電圧と置き換える。同様にして、“P00-Q02”の欄の標準ピーク電圧Vp21を“Vp21-Vn11”の値に置き換えるという作業を、ペア電極番号P00に係る各標準ピーク電圧Vp11,Vp12,…に対して行う。さらに、上記置き換え作業を、各ペア電極番号P00,P01,…,P99の各標準ピーク電圧Vp21,Vp22,…に対してそれぞれに実施する。なお、標準差分情報の補正は、上記減算処理に限定されず、他の方法を用いてもよい。例えば、減算とは異なる演算処理を行ってもよいし、検出領域Q1,Q2,…,Q80毎に異なる倍数をかけたノータッチ補正データを用いて補正を実施してもよい。また、各検出領域Q1,Q2,…,Q80毎での補正は、導電層22のシート抵抗が部分的に異なる(ずれる)場合でも適用可能となる。すなわち、仮に、導電層22のシート抵抗が部分的に異なる場所が、位置検出装置毎にばらつくような場合においても、このようなノータッチ補正データVn11,12,…を用いた補正を行うことにより、位置検出装置毎のばらつきに拘わらず、シート抵抗のずれによる影響を打ち消すように補正をすることができる。 In S3, the arithmetic unit 5 refers to the correction table TB1 and corrects the standard difference information in the lookup table TB2. For correction of the standard difference information, for example, no-touch correction data related to the same electrode combination is subtracted from each standard peak voltage of the lookup table TB2 of FIG. Specifically, in FIG. 10, the no-touch correction data Vn11 related to the pair electrode number P00 is subtracted from the standard peak voltage Vp11 in the column “P00-Q01”, and the calculation result is the standard peak voltage in the column “P00-Q1”. Replace with Similarly, the operation of replacing the standard peak voltage Vp21 in the column "P00-Q02" with the value "Vp21-Vn11" is performed for each standard peak voltage Vp11, Vp12,... Related to the pair electrode number P00. Further, the above replacement operation is performed for each standard peak voltage Vp21, Vp22,... Of each pair electrode number P00, P01,. The correction of the standard difference information is not limited to the subtraction process, and other methods may be used. For example, arithmetic processing different from subtraction may be performed, or correction may be performed using no-touch correction data multiplied by different multiples for each of the detection regions Q1, Q2,. Further, the correction for each detection region Q1, Q2,..., Q80 can be applied even when the sheet resistance of the conductive layer 22 is partially different (shifted). That is, even when the location where the sheet resistance of the conductive layer 22 is partially different varies for each position detection device, by performing correction using such no-touch correction data Vn11, 12,. Regardless of the variation among the position detection devices, correction can be made so as to cancel the influence of the sheet resistance deviation.
 標準差分情報の補正が終わると、フローはS4のマーカー補正処理に進む。マーカー補正処理S4において、補正マーカーMK1,MK2のうちのいずれか一方がタッチされると(S41でYES)、演算部5はマーカー補正データを取得する(S42)。S42では、図9のノータッチ補正データの取得に係る処理と同様の処理を行い、マーカータッチ補正データを取得して、補正テーブルTB1に登録する。図11(b)には、マーカーMK1及びMK2のマーカータッチ補正データを取得した例を示している。マーカータッチ補正データを取得した後、演算部5は、マーカータッチ補正データを用いて標準差分情報の補正を行う(S43)。前述の図4で例示したとおり、タッチ位置の容量Cとグランドとの間にタッチするユーザー毎に異なる特定の値の負荷Z2が生じる。マーカータッチ補正データを用いることで、この負荷Z2に起因する演算誤差を補正することができるようになる。S43の補正が完了すると、タッチパネル2から補正マーカーMK1,MK2が消去される。そして、タッチパネル2に対してユーザーによるタッチ操作を受けると(S5でYES)、演算部5は補正されたルックアップテーブルTB2を用いてタッチ位置の検出演算を行う(S6)。 When the correction of the standard difference information is finished, the flow proceeds to the marker correction process in S4. In the marker correction process S4, when any one of the correction markers MK1 and MK2 is touched (YES in S41), the calculation unit 5 acquires marker correction data (S42). In S42, processing similar to the processing related to acquisition of no-touch correction data in FIG. 9 is performed, marker touch correction data is acquired, and registered in the correction table TB1. FIG. 11B shows an example in which marker touch correction data for the markers MK1 and MK2 is acquired. After acquiring the marker touch correction data, the calculation unit 5 corrects the standard difference information using the marker touch correction data (S43). As illustrated in FIG. 4 above, the load Z2 specific value that is different for each person who touches between the capacitance C T and the ground of the touch position occurs. By using the marker touch correction data, it is possible to correct a calculation error caused by the load Z2. When the correction of S43 is completed, the correction markers MK1 and MK2 are deleted from the touch panel 2. When the touch operation by the user is received on the touch panel 2 (YES in S5), the calculation unit 5 performs a touch position detection calculation using the corrected lookup table TB2 (S6).
 次に、図10を用いて、演算部5によるタッチ位置の検出演算について詳細に説明する。タッチ位置の検出演算では、ノータッチ補正データの取得の場合と同様に、電極選択ルールに従って、ペア電極を選択する(S61)。次に、演算部5は、パルスジェネレータ31及びアナログスイッチ32に電極選択信号SC1を与え、ペア電極に所定のパルス信号を与えるとともに(S62)、ピークホールド部44からピーク電圧を取得する(S63)。 Next, the touch position detection calculation by the calculation unit 5 will be described in detail with reference to FIG. In the touch position detection calculation, a pair electrode is selected in accordance with the electrode selection rule as in the case of obtaining no-touch correction data (S61). Next, the computing unit 5 gives the electrode selection signal SC1 to the pulse generator 31 and the analog switch 32, gives a predetermined pulse signal to the paired electrodes (S62), and acquires the peak voltage from the peak hold unit 44 (S63). .
 ピーク電圧が取得されると、演算部5はユーザーによるタッチ操作の位置を推定する推定演算を行う(S64)。具体的には、推定演算では、(1)まず、演算部5は、取得されたピーク電圧と、補正後のルックアップテーブルTB2の各検出領域Q1,Q2,…,Q80における標準ピーク電圧とを比較する。(2)そして、図12に示すように、(1)記載の両電圧の誤差が所定の範囲内の場合に“1”を、両電圧の誤差が所定の範囲を超える場合に“0”を演算結果テーブルTB3に登録する。例えば、取得されたピーク電圧と標準ピーク電圧との誤差が±10%以内の場合に“1”を出力する。推定演算が終了すると、パルス信号が与えられたペア電極がディスチャージされる(S65)。なお、本実施形態における候補位置とは、前述の両電圧の誤差が所定の範囲内の位置、すなわち、演算結果テーブルTB3に“1”が登録された位置である。 When the peak voltage is acquired, the calculation unit 5 performs an estimation calculation for estimating the position of the touch operation by the user (S64). Specifically, in the estimation calculation, (1) First, the calculation unit 5 calculates the acquired peak voltage and the standard peak voltage in each detection region Q1, Q2,..., Q80 of the corrected lookup table TB2. Compare. (2) Then, as shown in FIG. 12, when the error of both voltages described in (1) is within a predetermined range, “1” is set. When the error of both voltages exceeds a predetermined range, “0” is set. Register in the calculation result table TB3. For example, “1” is output when the error between the acquired peak voltage and the standard peak voltage is within ± 10%. When the estimation calculation is completed, the pair electrode to which the pulse signal is given is discharged (S65). The candidate position in the present embodiment is a position where the above-described error between both voltages is within a predetermined range, that is, a position where “1” is registered in the calculation result table TB3.
 そして、演算部5は、規定された取得回数(例えば、100)に到達するまで、上記S61~S65の処理を繰り返し、電極選択ルールで規定されたすべての組み合わせに係るペア電極(例えば、P00,P01,…,P99)の推定演算(上記(1)及び(2)の演算)を実施する。 Then, the calculation unit 5 repeats the processes of S61 to S65 until the specified number of acquisitions (for example, 100) is reached, and the pair electrodes (for example, P00, P00) related to all combinations specified by the electrode selection rule are repeated. P01,..., P99) estimation calculation (calculations (1) and (2) above) is performed.
 演算部5は、推定演算をあらかじめ規定された回数実施した後(S66でYES)、推定演算の結果に基づいて、ユーザーによるタッチ操作の位置を判断する特定演算を行う(S67)。具体的には、検出領域毎に推定演算結果を加算し、加算結果の大きさ、突出度、近似度等に基づいてタッチ操作の位置を判断する。例えば、図12の例では、検出領域Q7の加算結果が95になっているため、すなわち、演算部5は、候補位置として抽出された回数が最も大きいため、検出領域Q7がユーザーのタッチ位置であると判断する。 The calculation unit 5 performs a specific calculation for determining the position of the touch operation by the user based on the result of the estimation calculation after performing the estimation calculation a predetermined number of times (YES in S66) (S67). Specifically, the estimation calculation result is added for each detection region, and the position of the touch operation is determined based on the size, the protrusion degree, the approximation degree, and the like of the addition result. For example, in the example of FIG. 12, since the addition result of the detection area Q7 is 95, that is, the calculation unit 5 has the largest number of extractions as candidate positions, the detection area Q7 is the touch position of the user. Judge that there is.
 なお、特定演算におけるタッチ位置の判断方法は、特に限定されるものではない。例えば、検出領域毎の推定演算結果の加算値の大きさのみに基づいて判断してもよいし、加算結果の大きさが所定の大きさ以上でかつ所定の突出度を有する検出領域がある場合に、その検出領域をタッチ操作の位置と判断するようにしてもよい。また、例えば、複数点の検知領域における加算結果の大きさが他の検知領域の加算結果よりも突出して大きく、かつ、互いの加算結果が近似している場合がある。このような場合には、演算部はユーザーによって複数点のタッチ操作が行われたと判断する。また、複数の推定演算結果や複数のピーク電圧値に基づく別の評価軸を設定し、その別の評価軸の結果に基づいて、又は別の評価軸の結果を加味してタッチ位置を判断するようにしてもよい。 Note that the method for determining the touch position in the specific calculation is not particularly limited. For example, determination may be made based only on the magnitude of the addition value of the estimation calculation result for each detection area, or when there is a detection area where the magnitude of the addition result is equal to or greater than a predetermined size and has a predetermined degree of protrusion In addition, the detection area may be determined as the position of the touch operation. In addition, for example, there are cases where the magnitude of the addition result in the detection areas at a plurality of points is prominently larger than the addition result in the other detection areas, and the addition results are close to each other. In such a case, the calculation unit determines that a plurality of touch operations have been performed by the user. Further, another evaluation axis based on a plurality of estimation calculation results and a plurality of peak voltage values is set, and the touch position is determined based on the result of the other evaluation axis or with the result of another evaluation axis. You may do it.
 以上のように、本実施形態によると、ペア電極を構成する電極の組み合わせを異ならせた測定を実施することにより、多面的なデータ取得が可能となるとともに、それらを総合してタッチ操作の位置を判断するため、タッチ位置の判断精度を向上させることができるようになる。また、パターンレスタッチパネルの場合、電極の位置とタッチ操作位置との間の距離によって測定精度に差異が生じる場合があるが、本実施形態のようにペア電極を構成する電極の組み合わせを異ならせてタッチ操作位置の判断を行うことで、タッチ位置による測定精度のばらつきをなくすことができる。 As described above, according to the present embodiment, it is possible to obtain multifaceted data by performing measurement with different combinations of electrodes constituting the pair electrode, and the position of the touch operation can be obtained by combining them. Therefore, it is possible to improve the accuracy of determining the touch position. In the case of a patternless touch panel, there may be a difference in measurement accuracy depending on the distance between the position of the electrode and the touch operation position, but the combination of the electrodes constituting the pair electrode is different as in this embodiment. By determining the touch operation position, variations in measurement accuracy due to the touch position can be eliminated.
 <変形例>
 上記実施形態では、図8のS4において、補正マーカーMK1,MK2を用いたマーカー補正処理S4を行うものとしたが、これに限定されない。例えば、一つのタッチ位置に対してペア電極E,E間の差動データ(出力信号)はすべて演算部5に取り込まれるため、任意の位置の補正タッチに基づいて、複数のルックアップテーブルTB2,TB2,…が格納されたルックアップテーブルセットTBSのうちから一致度の高いルックアップテーブルTB2(以下、第1ルックアップテーブルTB21と称する)を選び出すことにより、補正を完了させてもよい。一致度の判定方法は、位置検出時の方法と同じスコア算出によるステップと最大スコアの高いLUT(ルックアップテーブル)選別判断法である。
<Modification>
In the above embodiment, the marker correction process S4 using the correction markers MK1 and MK2 is performed in S4 of FIG. 8, but the present invention is not limited to this. For example, since the differential data (output signal) between the pair electrodes E and E with respect to one touch position is all taken into the calculation unit 5, a plurality of lookup tables TB2, TB2, based on a correction touch at an arbitrary position The correction may be completed by selecting a lookup table TB2 (hereinafter referred to as the first lookup table TB21) having a high degree of coincidence from the lookup table set TBS storing TB2,. The determination method of the degree of coincidence is a step of calculating the same score as the method at the time of position detection and a LUT (lookup table) selection determination method with a high maximum score.
 以下、図13を用いて、マーカー補正処理S4に代えて、補正タッチに係る補正処理S7を行う場合のフローについて詳細に説明する。なお、図8と共通のフローに関しては同一の符号を付してその説明を省略する場合がある。 Hereinafter, the flow in the case of performing the correction process S7 related to the correction touch instead of the marker correction process S4 will be described in detail with reference to FIG. In addition, the same code | symbol may be attached | subjected about the flow common to FIG. 8, and the description may be abbreviate | omitted.
 図13では、補正マーカーMK1,MK2を使用しないため、図8のS1に係る「補正マーカー表示」は実施しない。 In FIG. 13, since the correction markers MK1 and MK2 are not used, the “correction marker display” according to S1 in FIG. 8 is not performed.
 S3において、演算部5は、補正テーブルTB1を参照してルックアップテーブルセットTBSに係る複数のルックアップテーブルTB2,TB2,…について標準差分情報の補正を行う。図13では、すべてのルックアップテーブルTB2,TB2,…に対して、各標準ピーク電圧から同じ電極の組み合わせに係るノータッチ補正データを差し引く。 In S3, the calculation unit 5 refers to the correction table TB1 and corrects the standard difference information for the plurality of lookup tables TB2, TB2,... Related to the lookup table set TBS. In FIG. 13, no-touch correction data relating to the same electrode combination is subtracted from each standard peak voltage for all lookup tables TB2, TB2,.
 標準差分情報の補正が終わると、フローはS7の補正処理に進む。以下、補正処理S7の一例を記載する。例えば、補正処理S7において、タッチパネル2の任意の位置においてタッチ操作がされると(S71でYES)、演算部5はあらかじめ設定された組み合わせに係る複数のペア電極に対してパルス信号印加及び測定を実施する。そして、複数の測定結果と、複数のルックアップテーブルTB2,TB2,…の各検出領域Q1,Q2,…,Q80の標準ピーク電圧とを比較し、第1ルックアップテーブルTB21を選択する(S72)。前述のとおり、ユーザー毎に異なるタッチ操作に係る負荷Z2が異なるが、本方法によって選択された第1ルックアップテーブルTB21は、ユーザーの個人差を加味した最適なルックアップテーブルであるといえる。以下のフローは、図8と同様であり、ここではその詳細な説明を省略する。これにより、ユーザーの個人差があるような場合においても、解像度の高い位置検出を実現することができる。 When the correction of the standard difference information is finished, the flow proceeds to the correction process of S7. Hereinafter, an example of the correction process S7 will be described. For example, in the correction process S7, when a touch operation is performed at an arbitrary position on the touch panel 2 (YES in S71), the calculation unit 5 performs pulse signal application and measurement on a plurality of pair electrodes related to a preset combination. carry out. Then, the plurality of measurement results are compared with the standard peak voltages of the detection regions Q1, Q2,..., Q80 of the plurality of lookup tables TB2, TB2,..., And the first lookup table TB21 is selected (S72). . As described above, although the load Z2 related to different touch operations differs for each user, the first lookup table TB21 selected by this method can be said to be an optimal lookup table that takes into account individual differences among users. The following flow is the same as that in FIG. 8, and detailed description thereof is omitted here. Thereby, even when there are individual differences among users, position detection with high resolution can be realized.
 なお、大型のタッチパネル等において、複数のユーザーによるタッチ操作があるような場合に、各ユーザーのタッチ領域の周辺領域をユーザー領域として区画し、ユーザー領域毎に最適なルックアップテーブルを選択して、適用するようにしてもよい。これにより、各ユーザー領域において、解像度の高い位置検出を実現することができるようになる。具体的な用途として、大型教育パネル等において、複数の生徒がランダムにタッチするような用途が考えられ、本変形例に係るユーザー領域毎の最適なルックアップテーブルの選択が特に有用である。 In addition, when there are touch operations by multiple users on a large touch panel, etc., the peripheral area of each user's touch area is partitioned as a user area, and an optimal lookup table is selected for each user area, You may make it apply. Thereby, position detection with high resolution can be realized in each user area. As a specific application, there may be an application in which a large number of students touch at random in a large education panel or the like, and selection of an optimal lookup table for each user area according to this modification is particularly useful.
 第2実施形態において、以下の改変も可能である。 In the second embodiment, the following modifications are possible.
 例えば、上記第2実施形態において、各辺の電極の数は、それぞれ3個であるものとしたが、電極の数はこれに限定されない。各辺に設ける電極の数は、それぞれ少なくとも1個であればよく、また各辺で電極数が異なっていてもかまわない。 For example, in the second embodiment, the number of electrodes on each side is three, but the number of electrodes is not limited to this. The number of electrodes provided on each side may be at least one, and the number of electrodes on each side may be different.
 また、第2実施形態において、導電層22の各辺に設けられた電極は、非対称な位置であるものとしたが、各辺の電極が対称な位置に設けられていてもよい。ただし、各辺の電極を対称に設ける場合には、各辺の電極からペア電極を選択する際に、ペア電極間を結ぶ仮想直線の垂直二等分線が集中しすぎないようにするのが好ましい。 In the second embodiment, the electrodes provided on each side of the conductive layer 22 are asymmetrical positions, but the electrodes on each side may be provided at symmetrical positions. However, when the electrodes on each side are provided symmetrically, when selecting a pair electrode from the electrodes on each side, it is necessary to prevent the vertical bisector of the virtual straight line connecting the pair electrodes from being concentrated too much. preferable.
 また、第2実施形態において、ペア電極にパルス信号を与えて、ペア電極から得られる差動信号のピーク電圧に基づいてタッチ位置の検出を行うものとしたが、これに限定されない。例えば、ペア電極に代えて、単電極を選択し、単電極からRC時定数に係る時間と電圧とに係る情報を取得して、当該情報に基づいて、図10に係るタッチ位置のタッチ位置の検出演算S6を行ってもよい。 In the second embodiment, a pulse signal is given to the pair electrode, and the touch position is detected based on the peak voltage of the differential signal obtained from the pair electrode. However, the present invention is not limited to this. For example, instead of a pair of electrodes, a single electrode is selected, information on the time and voltage related to the RC time constant is acquired from the single electrode, and the touch position of the touch position shown in FIG. The detection calculation S6 may be performed.
 また、図12において、演算部5は、取得されたピーク電圧と、補正後のルックアップテーブルTB2の各検出領域Q1,Q2,…,Q80における標準ピーク電圧とを比較し、両電圧の誤差が所定の範囲内の場合に“1”を、両電圧の誤差が所定の範囲を超える場合に“0”を演算結果テーブルTB3に登録するものとしたが、タッチ位置の推定演算はこれに限定されない。例えば、演算部5は、検出領域Q1,Q2,…,Q80毎に、上記両電圧の誤差が少ないほど高くなるような3段階以上のランク付け(スコア導出)をしてもよく、所定の数値(例えば、確率、割合等)を用いてタッチ位置であることの確からしさを示すスコアを導出するようにしてもよい。この場合、例えば、演算部5は、各ペア電極の組み合わせを変えて、上記スコアの導出(推定演算)を行い、その推定演算の結果に基づいて、ユーザーによるタッチ操作の位置を判断する特定演算を行う。特定演算におけるタッチ位置の判断方法は、前述の第2実施形態及びその変形例と同様であり、ここではその詳細な説明は省略する。また、スコアは、上記両電圧の誤差が少ないほど高くなるようなスコアに限定されず、出力信号に基づいて各検出領域Q1,Q2,…,Q80がタッチ位置であることの確からしさを示すようなものであればよい。例えば、そのスコアに係る出力信号の基準値、値の高低、スコア導出のための演算方式等は任意に設定することができる。 In FIG. 12, the calculation unit 5 compares the acquired peak voltage with the standard peak voltages in the detection regions Q1, Q2,..., Q80 of the corrected lookup table TB2, and the error of both voltages is Although “1” is registered in the calculation result table TB3 when “1” is within a predetermined range and “0” when the error between both voltages exceeds the predetermined range, the touch position estimation calculation is not limited to this. . For example, the calculation unit 5 may rank each of the detection regions Q1, Q2,..., Q80 with three or more ranks (score derivation) so as to increase as the error between the two voltages decreases. You may make it derive | lead-out the score which shows the probability that it is a touch position using (for example, a probability, a ratio, etc.). In this case, for example, the calculation unit 5 performs the derivation (estimation calculation) of the score by changing the combination of each pair electrode, and the specific calculation that determines the position of the touch operation by the user based on the result of the estimation calculation I do. The method for determining the touch position in the specific calculation is the same as that in the second embodiment and the modifications thereof, and detailed description thereof is omitted here. Further, the score is not limited to a score that becomes higher as the error between the two voltages is smaller, and shows the certainty that each of the detection areas Q1, Q2,..., Q80 is a touch position based on the output signal. Anything is acceptable. For example, the reference value of the output signal related to the score, the level of the value, the calculation method for derivation of the score, and the like can be arbitrarily set.
 <その他の実施形態>
 以上、本発明の実施形態について説明したが種々の改変が可能である。
<Other embodiments>
While the embodiments of the present invention have been described above, various modifications can be made.
 例えば、第1及び第2実施形態において、電極選択信号SC1と電極選択信号SC2とが同じ2つの電極を示す信号であるものとして説明したが、これに限定されず、電極選択信号SC1と電極選択信号SC2とが異なる電極を示してもよい。 For example, in the first and second embodiments, the electrode selection signal SC1 and the electrode selection signal SC2 have been described as signals indicating the same two electrodes. However, the present invention is not limited to this, and the electrode selection signal SC1 and the electrode selection signal are not limited thereto. The signal SC2 may indicate a different electrode.
 以下では、例えば図3の構成において、電極選択信号SC1が4つの電極(例えば、第1~第4電極E1~E4)を示す信号であり、電極選択信号SC2が2つの電極E(例えば、第3,第4電極E3,E4)を示す信号である場合におけるタッチ位置の検出動作について説明する。この場合においても、「タッチ位置の検出動作(1)」及び「タッチ位置の検出動作(2)」と同様の手順でタッチ位置TPを求めることができる。 In the following, for example, in the configuration of FIG. 3, the electrode selection signal SC1 is a signal indicating four electrodes (for example, the first to fourth electrodes E1 to E4), and the electrode selection signal SC2 is two electrodes E (for example, the first electrode). 3, a touch position detection operation in the case of a signal indicating the fourth electrode E3, E4) will be described. Also in this case, the touch position TP can be obtained by the same procedure as the “touch position detection operation (1)” and the “touch position detection operation (2)”.
 具体的には、「タッチ位置の検出動作(1)」で説明したように、第1領域R1及び第2領域R2を定義する。そして、パルス信号を与える電極として第1~第4電極E1~E4を選択するとともに、第3電極E3及び第4電極E4を測定電極Eとして選択する。そうすると、パルスジェネレータ31から出力されたパルス信号が、アナログスイッチ32を介して第1~第4電極E1~E4に与えられる。このとき、測定電極E(例えば、第3,第4電極E3,E4)には同じパルス信号を与えるとともに、他の電極E例えば、第1,第2電極E1,E2)には、別のパルス信号を与えるようにする。そうすることで、検出位置特異性が増大し、感度向上という効果が得られる。また、そうすることで、図15(b)に示したような現象も起こらない。 Specifically, as described in “Touch position detection operation (1)”, the first region R1 and the second region R2 are defined. Then, the first to fourth electrodes E1 to E4 are selected as the electrodes for applying the pulse signal, and the third electrode E3 and the fourth electrode E4 are selected as the measurement electrodes E. Then, the pulse signal output from the pulse generator 31 is given to the first to fourth electrodes E1 to E4 via the analog switch 32. At this time, the same pulse signal is applied to the measurement electrode E (for example, the third and fourth electrodes E3 and E4), and another pulse is applied to the other electrode E, for example, the first and second electrodes E1 and E2). Give a signal. By doing so, detection position specificity increases and the effect of a sensitivity improvement is acquired. In addition, by doing so, the phenomenon shown in FIG. 15B does not occur.
 ここで上記説明と同様に、第3及び第4抵抗R3,R4の抵抗値は、タッチ位置と電極との間の距離に基づいて定まるため、ピーク電圧の符号が「+」となり、演算部5はタッチ位置TPが第1領域R1にあることを求めることができる。次に、パルス信号を与える電極は変えずに、第2電極E2及び第3電極E3を測定電極として選択するとともに、第3領域R3及び第4領域R4を定義する。そして、上記説明と同様にして、演算部5は、ピーク電圧の符号に基づいてタッチ位置TPが第4領域R4になることを求めることができる。その後、演算部5は、上記2つの測定に基づいて、タッチ位置TPが第1領域R1と第4領域R4との重複部分(図3の斜線で示す領域)にあることを求めることができる。 Here, similarly to the above description, the resistance values of the third and fourth resistors R3 and R4 are determined based on the distance between the touch position and the electrode, so the sign of the peak voltage is “+”, and the calculation unit 5 Can determine that the touch position TP is in the first region R1. Next, the second electrode E2 and the third electrode E3 are selected as measurement electrodes without changing the electrodes to which the pulse signal is applied, and the third region R3 and the fourth region R4 are defined. In the same manner as described above, the calculation unit 5 can determine that the touch position TP becomes the fourth region R4 based on the sign of the peak voltage. Thereafter, based on the above two measurements, the calculation unit 5 can determine that the touch position TP is in an overlapping portion (a region indicated by hatching in FIG. 3) between the first region R1 and the fourth region R4.
 なお、上記「タッチ位置の検出動作(1)~(3)」において、電極選択信号SC1は、対をなす2つの電極、又は、4つの電極を示す信号であるものとしたが、これに限定されない。例えば、導電層22の形状が矩形状以外の多角形状や円形状である場合に、演算部5によって選択される電極数が2つ又は4つ以外であっても本実施形態と同様の効果が得られる場合がある。同様に、上記「タッチ位置の検出動作(1)~(3)」において、計測信号(パルス信号)が与えられた電極の中から測定対象となる測定電極が選択されている例を示しているが、測定電極が計測信号を与える電極に含まれていなくてもよい。例えば、計測信号を与えるための信号供給電極と、測定信号を受信する信号受信電極とを分け、対応する信号供給電極及び信号受信電極を対にし、この対電極同士を互いに近づけて配置するようにしてもよいし、互いに少し離間させて配置するようにしてもよく、上記各実施形態と同様の効果が得られる。 In the above “touch position detection operations (1) to (3)”, the electrode selection signal SC1 is a signal indicating two electrodes in a pair or four electrodes, but is not limited thereto. Not. For example, when the shape of the conductive layer 22 is a polygonal shape other than a rectangular shape or a circular shape, the same effect as in the present embodiment can be obtained even if the number of electrodes selected by the calculation unit 5 is other than two or four. May be obtained. Similarly, in the “touch position detection operations (1) to (3)”, an example in which a measurement electrode to be measured is selected from electrodes to which a measurement signal (pulse signal) is given is shown. However, the measurement electrode may not be included in the electrode that provides the measurement signal. For example, a signal supply electrode for supplying a measurement signal and a signal reception electrode for receiving a measurement signal are separated, and the corresponding signal supply electrode and signal reception electrode are paired, and the counter electrodes are arranged close to each other. Alternatively, they may be arranged slightly apart from each other, and the same effects as those of the above embodiments can be obtained.
 また、第1及び第2実施形態において、電極は導電層の辺に沿って設けられるものとしたが、一部の電極が導電層の辺から内側に離間した位置に設けられていてもかまわない。例えば、導電層22の面積に対してタッチパネル2の開口面積(有効タッチ面積)が狭い場合に、各電極がタッチパネル2の有効タッチ領域を区画する枠に沿って設けられていてもよい。一方で、同じ面積の導電層内において、タッチ検出可能な領域を広く確保するためには、導電層22の辺に沿って電極が設けられているのが好ましい。 In the first and second embodiments, the electrodes are provided along the sides of the conductive layer. However, some of the electrodes may be provided at positions spaced inward from the sides of the conductive layer. . For example, when the opening area (effective touch area) of the touch panel 2 is smaller than the area of the conductive layer 22, each electrode may be provided along a frame that partitions the effective touch area of the touch panel 2. On the other hand, it is preferable that electrodes be provided along the sides of the conductive layer 22 in order to ensure a wide area where touch detection is possible in the conductive layer having the same area.
 また、第1及び第2実施形態では、電極が矩形状の導電層22の中間位置に設けられている例について説明したが、複数の電極のうちの一部が導電層の第1から第4コーナーC1~C4に設けられていてもかまわない。例えば、図7の破線で示すように、電極E51~E54が設けられていてもよい。この場合、例えば、ペア電極としてE51とE21又はE22との組み合わせ、E52とE41又はE42との組み合わせのように選択すればよい。 In the first and second embodiments, the example in which the electrode is provided at the intermediate position of the rectangular conductive layer 22 has been described. However, some of the plurality of electrodes are first to fourth conductive layers. It may be provided at the corners C1 to C4. For example, as indicated by broken lines in FIG. 7, electrodes E51 to E54 may be provided. In this case, for example, a combination of E51 and E21 or E22 or a combination of E52 and E41 or E42 may be selected as a pair electrode.
 また、第1及び第2実施形態では、ペア電極に対するパルス信号印加及び測定を各ペア電極の組み合わせに対して1回行う例を示しているが、5~50msの期間毎に前記ペア電極を構成する電極の組み合わせを変えるものとし、この5~50msの期間中に複数回のパルス信号印加及び測定を実施するようにしてもよい。この場合、例えば、複数回の測定結果を平均してその値を各演算に用いるようにすればよい。 Further, in the first and second embodiments, an example is shown in which pulse signal application and measurement are performed once for each pair of pair electrodes, but the pair electrodes are configured every 5 to 50 ms. The combination of electrodes to be changed may be changed, and pulse signal application and measurement may be performed a plurality of times during the period of 5 to 50 ms. In this case, for example, a plurality of measurement results may be averaged and used for each calculation.
 また、上記実施形態では、導電層はタッチパネル表面に設けられているものとしたが、例えば、携帯電話の裏側のように、タッチパネルの画面から所定の間隔を空けた位置に導電層が設けられている、すなわち、ホバリング検出されるような状態においても、本発明は適用可能であり、同様の効果が得られる。 In the above embodiment, the conductive layer is provided on the surface of the touch panel. For example, the conductive layer is provided at a position spaced apart from the screen of the touch panel, such as the back side of the mobile phone. Even in a state where hovering is detected, the present invention can be applied and the same effect can be obtained.
 本発明は、単純な構造でありかつ解像度の高い位置検出装置を実現することが可能であり、超大型のスクリーンやホワイトボード等の用途において、超大型タッチパネルを実現するのに際して極めて有用である。 The present invention can realize a position detection device having a simple structure and high resolution, and is extremely useful for realizing a super large touch panel in applications such as a super large screen and a white board.
 1 位置検出装置
 2 タッチパネル(ベース部)
 22 導電層
 3 信号源
 5 演算部
 E 電極
 Q1,Q2,…,Q80 検出領域
1 Position detection device 2 Touch panel (base part)
22 conductive layer 3 signal source 5 arithmetic unit E electrode Q1, Q2,..., Q80 detection area

Claims (20)

  1.  複数の電極が接続された導電層を有するベース部に接近した物体の位置を検出する位置検出方法であって、
     前記複数の電極の中から選択された対象電極に計測信号を与えかつ当該対象電極からの出力信号を取得する信号取得ステップと、前記出力信号に基づいて前記物体の候補位置を推定する位置推定ステップとを含む位置推定処理を、前記対象電極を異ならせて行う位置推定工程と、
     前記位置推定工程の結果に基づいて、前記物体の位置を判断する特定演算工程とを備えている
    ことを特徴とする位置検出方法。
    A position detection method for detecting the position of an object approaching a base portion having a conductive layer to which a plurality of electrodes are connected,
    A signal acquisition step of applying a measurement signal to a target electrode selected from the plurality of electrodes and acquiring an output signal from the target electrode; and a position estimation step of estimating a candidate position of the object based on the output signal A position estimation process that includes a position estimation process including different target electrodes, and
    And a specific calculation step of determining the position of the object based on the result of the position estimation step.
  2.  請求項1記載の位置検出方法において、
     前記位置推定処理では、前記対象電極に計測信号を与えたときに得られる前記出力信号が所定の基準を満たす位置を前記候補位置として抽出し、
     前記特定演算工程では、前記位置推定工程において前記候補位置として抽出された回数の大きさに基づいて前記物体の位置を判断する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 1,
    In the position estimation process, a position where the output signal obtained when a measurement signal is given to the target electrode satisfies a predetermined standard is extracted as the candidate position,
    In the specific calculation step, the position of the object is determined based on the number of times extracted as the candidate position in the position estimation step.
  3.  請求項2記載の位置検出方法において、
     前記特定演算工程では、前記候補位置として、抽出回数が最大である第1候補位置と、当該第1候補位置との抽出回数の差が所定値以下の第2候補位置とがある場合に、当該第1及び第2候補位置を前記物体の位置と判断する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 2,
    In the specific calculation step, when the candidate position includes a first candidate position where the number of extractions is the maximum and a second candidate position where the difference in the number of extractions between the first candidate positions is a predetermined value or less, A position detection method characterized in that first and second candidate positions are determined as positions of the object.
  4.  請求項2記載の位置検出方法において、
     前記特定演算工程では、前記候補位置として抽出された回数が所定の基準値を超える位置を前記物体の位置と判断する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 2,
    In the specific calculation step, a position detection method is characterized in that a position where the number of times extracted as the candidate position exceeds a predetermined reference value is determined as the position of the object.
  5.  請求項1記載の位置検出方法において、
     前記対象電極の各々について前記物体の位置に応じてあらかじめ設定された前記出力信号に対する標準出力情報が登録されたテーブルを用意し、
     前記位置推定ステップでは、前記対象電極から得られた出力信号と、前記テーブルの標準出力情報との比較結果に基づいて前記物体の候補位置を推定する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 1,
    Prepare a table in which standard output information for the output signal set in advance according to the position of the object is registered for each of the target electrodes,
    In the position estimation step, a candidate position of the object is estimated based on a comparison result between an output signal obtained from the target electrode and standard output information of the table.
  6.  請求項5に記載の位置検出方法において、
     前記ベース部に物体が接近していないときに、前記信号取得ステップを実行し、当該信号取得ステップで取得された出力信号を用いて前記テーブルの標準出力情報を補正する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 5,
    Position detection characterized in that when the object is not approaching the base portion, the signal acquisition step is executed, and the standard output information of the table is corrected using the output signal acquired in the signal acquisition step. Method.
  7.  請求項5記載の位置検出方法において、
     前記位置推定ステップは、
     前記導電層の中心を通過する十字線により当該導電層を4つの領域に分割し、前記信号取得ステップで取得された出力信号に基づいて、前記4つの領域のうちから前記物体の位置に対応する推定領域を特定する領域特定ステップと、
    前記対象電極から得られた出力信号と、前記推定領域に対応したテーブルとの比較結果に基づく前記物体の候補位置の推定を行う候補位置推定ステップとを含む
    ことを特徴とする位置検出方法。
    The position detection method according to claim 5, wherein
    The position estimating step includes:
    The conductive layer is divided into four regions by a cross line passing through the center of the conductive layer, and the position of the object is selected from the four regions based on the output signal acquired in the signal acquisition step. An area specifying step for specifying an estimated area;
    A position detection method comprising: a candidate position estimation step of estimating a candidate position of the object based on a comparison result between an output signal obtained from the target electrode and a table corresponding to the estimation region.
  8.  請求項7記載の位置検出方法において、
     前記信号取得ステップで選択される前記対象電極のうちの少なくとも1つは、前記推定領域に含まれる又は近接する電極である
    ことを特徴とする位置検出方法。
    The position detection method according to claim 7,
    At least one of the target electrodes selected in the signal acquisition step is an electrode included in or close to the estimation region.
  9.  請求項1に記載の位置検出方法において、
     前記導電層は矩形状であり、
     前記導電層の各辺に沿って少なくとも1つの電極が設けられている
    ことを特徴とする位置検出方法。
    The position detection method according to claim 1,
    The conductive layer is rectangular,
    A position detection method, wherein at least one electrode is provided along each side of the conductive layer.
  10.  請求項9記載の位置検出方法において、
     前記信号取得ステップでは、前記対象電極として、前記導電層の互いに直交する辺から各1つずつ選択された対をなすペア電極に計測信号を与え、当該ペア電極から出力信号を取得し、
     前記位置推定ステップは、前記ペア電極から取得された出力信号に基づいて前記物体の候補位置を推定する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 9.
    In the signal acquisition step, as the target electrode, a measurement signal is given to a pair of electrodes selected one by one from sides orthogonal to each other of the conductive layer, and an output signal is acquired from the pair of electrodes,
    The position estimation method, wherein the position estimation step estimates a candidate position of the object based on an output signal acquired from the pair electrode.
  11.  複数の電極が接続されかつ区画された複数の検出領域を有する導電層を有するベース部に接近した物体の位置を検出する位置検出方法であって、
     前記複数の電極の中から選択された対象電極に計測信号を与えかつ前記対象電極からの出力信号を取得する信号取得ステップと、前記出力信号に基づいて前記検出領域が前記物体の位置であることの確からしさを示すスコアを各検出領域に対して導出するスコア導出ステップとを含む位置推定処理を、前記対象電極を異ならせて行う位置推定工程と、
     前記位置推定工程の結果に基づいて、前記物体の位置を判断する特定演算工程とを備えている
    ことを特徴とする位置検出方法。
    A position detection method for detecting a position of an object approaching a base portion having a conductive layer having a plurality of detection regions to which a plurality of electrodes are connected and partitioned,
    A signal acquisition step of applying a measurement signal to a target electrode selected from the plurality of electrodes and acquiring an output signal from the target electrode; and the detection region is a position of the object based on the output signal A position estimation process including a score derivation step for deriving a score indicating the certainty for each detection region, with the target electrode being different, and
    And a specific calculation step of determining the position of the object based on the result of the position estimation step.
  12.  請求項11記載の位置検出方法において、
     前記特定演算工程では、前記位置推定工程で導出されたスコアが最大である第1検出領域を前記物体の位置を判断する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 11, wherein
    In the specific calculation step, the position of the object is determined in the first detection region having the maximum score derived in the position estimation step.
  13.  請求項12記載の位置検出方法において、
     前記特定演算工程では、前記第1検出領域とのスコアの差が所定の基準値以内の第2検出領域がある場合に、前記第1検出領域に加えて、当該第2検出領域を前記物体の位置と判断する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 12, wherein
    In the specific calculation step, when there is a second detection area whose score difference with the first detection area is within a predetermined reference value, in addition to the first detection area, the second detection area is A position detection method characterized by determining a position.
  14.  請求項11記載の位置検出方法において、
     前記対象電極の各々について前記物体の位置に応じてあらかじめ設定された前記出力信号に対する標準出力情報が登録されたテーブルを用意し、
     前記スコア導出ステップでは、前記対象電極から得られた出力信号と、前記テーブルの標準出力情報との比較結果に基づいて前記各検出領域におけるスコアを導出する
    ことを特徴とする位置検出方法。
    The position detection method according to claim 11, wherein
    Prepare a table in which standard output information for the output signal set in advance according to the position of the object is registered for each of the target electrodes,
    In the score deriving step, a score in each detection region is derived based on a comparison result between an output signal obtained from the target electrode and standard output information of the table.
  15.  請求項5又は14に記載の位置検出方法において、
     前記テーブルを複数準備し、
     前記導電層の任意の位置への物体の接近に基づいて、前記複数のテーブルの中から最適なテーブルを選択し、当該テーブルを用いて前記位置推定処理を行う
    ことを特徴とする位置検出方法。
    The position detection method according to claim 5 or 14,
    Preparing a plurality of the tables,
    A position detection method comprising: selecting an optimum table from the plurality of tables based on an approach of an object to an arbitrary position of the conductive layer, and performing the position estimation process using the table.
  16.  請求項1から15のうちのいずれか1項に記載の位置検出方法において、
     前記各位置推定処理は、5~50msの期間毎に前記対象電極を変えて行う
    ことを特徴とする位置検出方法。
    The position detection method according to any one of claims 1 to 15,
    Each position estimation process is performed by changing the target electrode every period of 5 to 50 ms.
  17.  請求項1記載の位置検出方法において、
     前記ベース部は、前記導電層を覆う絶縁層を有し、
     当該位置検出方法は、前記絶縁層に接近又は接触した物体の位置を検出するものである
    ことを特徴する位置検出方法。
    The position detection method according to claim 1,
    The base portion has an insulating layer covering the conductive layer,
    The position detection method is a method for detecting a position of an object approaching or contacting the insulating layer.
  18.  請求項1又は11に記載の位置検出方法において、
     前記対象電極は、対をなすペア電極であり、
     前記位置推定工程では、前記ペア電極から取得された出力信号に基づいて前記物体の候補位置を推定する位置推定ステップを含む位置推定処理を、当該ペア電極を構成する電極の組み合わせを異ならせて行う
    ことを特徴とする位置検出方法。
    The position detection method according to claim 1 or 11,
    The target electrode is a pair of electrodes that form a pair,
    In the position estimation step, a position estimation process including a position estimation step of estimating a candidate position of the object based on an output signal acquired from the pair electrode is performed with different combinations of electrodes constituting the pair electrode. A position detection method characterized by the above.
  19.  複数の電極が接続された導電層を有するベース部に接近した物体の位置を検出するための位置検出装置の位置検出プログラムであって、
     前記位置検出装置に、
     前記複数の電極の中から選択された対象電極に計測信号を与えかつ当該対象電極から得られた出力信号に基づいて前記物体の候補位置を推定する位置推定処理を、前記対象電極を異ならせて実行する推定演算処理と、
     前記推定演算処理の結果に基づいて、前記物体の位置を判断する特定演算を実行する特定演算処理と、
    を実行させることを特徴とする位置検出プログラム。
    A position detection program for a position detection device for detecting the position of an object approaching a base having a conductive layer to which a plurality of electrodes are connected,
    In the position detection device,
    A position estimation process for applying a measurement signal to a target electrode selected from the plurality of electrodes and estimating a candidate position of the object based on an output signal obtained from the target electrode is performed by changing the target electrode. Estimation processing to be executed;
    A specific calculation process for executing a specific calculation for determining the position of the object based on a result of the estimation calculation process;
    The position detection program characterized by performing.
  20.  複数の電極が接続された導電層を有するベース部に接近した物体の位置を検出する位置検出装置であって、
     前記複数の電極の中から選択された対象電極に計測信号を与える信号源と、
     前記計測信号が与えられた対象電極からの出力信号に基づいて前記物体の候補位置を推定する推定演算を対象電極を異ならせて実行するとともに、互いに異なる複数の前記対象電極に係る推定演算の結果に基づいて前記物体の位置を判断する演算部とを備えている
    ことを特徴とする位置検出装置。
    A position detection device for detecting a position of an object approaching a base portion having a conductive layer to which a plurality of electrodes are connected,
    A signal source for providing a measurement signal to a target electrode selected from the plurality of electrodes;
    The estimation calculation for estimating the candidate position of the object based on the output signal from the target electrode to which the measurement signal is given is executed with different target electrodes, and the result of the estimation calculation for a plurality of different target electrodes And a calculation unit that determines the position of the object based on the position detection device.
PCT/JP2017/023058 2016-06-29 2017-06-22 Position detection method, position detection device, and position detection program WO2018003660A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018525119A JP6649484B2 (en) 2016-06-29 2017-06-22 Position detecting method, position detecting device and position detecting program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-128330 2016-06-29
JP2016128330 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018003660A1 true WO2018003660A1 (en) 2018-01-04

Family

ID=60785421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023058 WO2018003660A1 (en) 2016-06-29 2017-06-22 Position detection method, position detection device, and position detection program

Country Status (2)

Country Link
JP (1) JP6649484B2 (en)
WO (1) WO2018003660A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019159447A (en) * 2018-03-08 2019-09-19 東洋アルミニウム株式会社 Patternless touch panel
JP2019159446A (en) * 2018-03-08 2019-09-19 東洋アルミニウム株式会社 Position detection device
JP2019215772A (en) * 2018-06-14 2019-12-19 東洋アルミニウム株式会社 Position detection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130744A1 (en) * 2008-04-25 2009-10-29 パイオニア株式会社 Resistive film type touch panel device, program, and method for detecting contact in resistive film type touch panel device
JP2012003554A (en) * 2010-06-17 2012-01-05 Alps Electric Co Ltd Capacitance type proximity sensor device and input device using the same
JP2012238304A (en) * 2011-04-21 2012-12-06 Trw Automotive Electronics & Components Gmbh Input device and position determination method
JP2015201223A (en) * 2015-06-11 2015-11-12 株式会社Mirai Location detection device, control method of the same and system thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130744A1 (en) * 2008-04-25 2009-10-29 パイオニア株式会社 Resistive film type touch panel device, program, and method for detecting contact in resistive film type touch panel device
JP2012003554A (en) * 2010-06-17 2012-01-05 Alps Electric Co Ltd Capacitance type proximity sensor device and input device using the same
JP2012238304A (en) * 2011-04-21 2012-12-06 Trw Automotive Electronics & Components Gmbh Input device and position determination method
JP2015201223A (en) * 2015-06-11 2015-11-12 株式会社Mirai Location detection device, control method of the same and system thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019159447A (en) * 2018-03-08 2019-09-19 東洋アルミニウム株式会社 Patternless touch panel
JP2019159446A (en) * 2018-03-08 2019-09-19 東洋アルミニウム株式会社 Position detection device
JP6995313B2 (en) 2018-03-08 2022-01-14 東洋アルミニウム株式会社 Patternless touch panel
JP7017205B2 (en) 2018-03-08 2022-02-08 東洋アルミニウム株式会社 Position detector
JP2019215772A (en) * 2018-06-14 2019-12-19 東洋アルミニウム株式会社 Position detection system

Also Published As

Publication number Publication date
JP6649484B2 (en) 2020-02-19
JPWO2018003660A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US9280245B2 (en) Touch panel sensor having dual-mode capacitive sensing for detecting an object
US8144132B2 (en) Multipoint sensing method for capacitive touch panel
JP5427648B2 (en) Coordinate input device and display device including the same
US9733769B2 (en) Touch display device with transparent electrodes and method for manufacturing the same
WO2015196712A1 (en) Touch display panel and display device
TW201543297A (en) Capacitive touch systems and methods using differential signal techniques
CN104238848A (en) System and method to drive touch panel to measure hover
KR20130136357A (en) Device for detecting touch
US20160005352A1 (en) Touch sensing device
JP2012242989A (en) Touch panel device and instruction object determination method
WO2018003660A1 (en) Position detection method, position detection device, and position detection program
JP5426429B2 (en) Input device and display device including the same
US20120274582A1 (en) Touch spot detecting method of touch panel
JP6612983B2 (en) Position detection device
KR20140010788A (en) Touch detecting apparatus for minimizing deadzone and method
US20120287078A1 (en) Multi-touch detection method and device thereof
US11182011B2 (en) Touch surface with hybrid touch detection
US9626050B2 (en) Touch panel and touch-sensitive display device
EP3200055B1 (en) Touch-control panel, determination method for touch point and display apparatus
JP7017205B2 (en) Position detector
US20140191769A1 (en) Multitouch tactile device with multi frequency and barycentric capacitive detection
US20130241866A1 (en) Resistive multi-touch controller
JP7221501B1 (en) Coordinate calculation device, touch panel, and coordinate calculation method
US9830016B2 (en) Touch display panel, touch display device and touch detection method
KR20140011154A (en) Touch detecting apparatus and method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525119

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820017

Country of ref document: EP

Kind code of ref document: A1