WO2018000774A1 - 空冷散热器开闭可切换空冷凉水式机力冷却塔及运行方式 - Google Patents
空冷散热器开闭可切换空冷凉水式机力冷却塔及运行方式 Download PDFInfo
- Publication number
- WO2018000774A1 WO2018000774A1 PCT/CN2016/112222 CN2016112222W WO2018000774A1 WO 2018000774 A1 WO2018000774 A1 WO 2018000774A1 CN 2016112222 W CN2016112222 W CN 2016112222W WO 2018000774 A1 WO2018000774 A1 WO 2018000774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- cooling
- water
- radiator
- cooled
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C1/00—Direct-contact trickle coolers, e.g. cooling towers
- F28C1/14—Direct-contact trickle coolers, e.g. cooling towers comprising also a non-direct contact heat exchange
Definitions
- the present invention relates to a cooling tower and belongs to the field of application of a cooling device.
- the known cooling towers mainly include four main forms of cooling water type, air cooling type, air cooling and cold water composite type, and closed loop evaporation type. These four cooling towers have a natural convection ventilation cooling tower and a mechanical ventilation cooling tower. Since the cooling tower is mainly affected by the temperature of the air wet bulb, it is cooled by evaporation and conduction of water, so its consumption of water is very large.
- the air cooling tower uses heat to absorb heat from the air, which is mainly affected by the temperature of the air dry bulb. Due to the high temperature of the air dry bulb, the specific heat is small, the heat absorption capacity is limited, and the cooling efficiency is low. Therefore, the air-cooled radiator needs a large surface area, so that the air-cooled radiator is expensive.
- a dry and wet combined air cooler In order to compensate for the shortcomings of the dry air cooler, a dry and wet combined air cooler has appeared.
- the working mechanism of the dry and wet combined air cooler is to spray water at the air inlet to humidify and cool the inlet air, and humidify the low temperature air.
- the entrained water droplets are removed through the water barrier and then traversed by the heat exchange coil to increase the temperature difference between the air inlet temperature and the hot fluid outlet temperature to enhance the heat transfer outside the tube.
- the residue after evaporation of the wet and dry combined air cooler water will adhere to the root of the finned tube, causing fouling of the heat exchange coil.
- the use of a section of the crucible will affect the heat transfer effect of the bundle.
- Existing air coolers cannot be adjusted to ambient climatic conditions and the temperature of the fluid to be cooled. During the transitional or cold season, the air cooler is also fully loaded, wasting electrical energy and water.
- the existing closed cooling tower uses water sprayed outside the heat exchanger tube bundle to cool the fluid in the tube through the evaporation heat absorption of the water film on the outer surface of the tube, but the existing closed cooling tower cannot be based on external climatic conditions and the fluid to be cooled. The temperature is adjusted, and during the transition season, the cooler is also fully loaded, wasting electricity and water.
- the cooling tower Since the cooling tower is mainly affected by the temperature of the air wet bulb, it is dissipated by evaporation and conduction of water, so its consumption of water is very large.
- the air cooling tower uses heat to absorb heat from the air, which is mainly affected by the temperature of the air dry bulb. Because the air dry bulb temperature is higher, the specific heat is smaller, the heat absorption capacity is limited, and the cooling efficiency is low, therefore, the air-cooled radiator needs a large surface area, so that the air-cooled radiator has a high cost.
- the technical problem to be solved by the present invention is to provide an air-cooled radiator shut-off switchable air-cooled cold water type mechanical cooling tower, which is a technical improvement of the existing closed cooling tower, which can completely make up
- the shortcomings of the prior patent application "Air Cooling Cool Water Composite Cooling Tower” to optimize the entire system.
- the operation mode of the cooler can be changed according to the ambient temperature, the humidity, the initial temperature of the fluid to be cooled, and the final cooling temperature, so as to optimize the economical operation of the cooler, reduce the consumption of electric energy and the consumption of water resources.
- the cooling tower system is more water efficient, more efficient and energy efficient, and the system is more reliable, which greatly increases the return on investment.
- the object of the present invention is achieved as follows: air-cooled radiator closed switchable air-cooled cold water composite mechanical cooling tower and operation mode, including mechanical cooling tower shell, air cooling radiator, spray evaporation device, fan, Water collection tank, bypass spray circulating water pump, automatic control device, water distribution water distribution device, water distribution water distribution device, corrugated board water heat exchange honeycomb packing layer, circulating water pump, heat load heat exchanger, inlet and outlet pipes.
- the corrugated board water exchange heat exchange honeycomb packing layer in the mechanical cooling tower shell, and the downwind direction of the spray water distribution device, or the downwind direction above the floating water collecting device, is installed and fixed on the bracket,
- An air-cooled heat sink composed of a plurality of air cooling unit connections.
- the air cooling units of the air-cooling radiators are not short-circuited to each other between the air-cooling units of the air-cooling radiators and the wall of the mechanical cooling tower housing.
- the evenly distributed installation is fixed on the air-cooled radiator bracket connected to the load-bearing support of the mechanical cooling tower.
- a spray evaporation device connected to the bypass spray circulating water pump is provided.
- the spray circulating water pump draws the bypass humidification circulating water from the collecting pool, controls the valve assembly through the pipeline, and connects with the spray evaporation device, and controls the spray evaporation device to spray water through the automatic control device.
- bypass spray circulation pump extracts the bypass humidification circulating water from the special storage tank, and controls the valve assembly through the independent pipeline to connect with the special nozzle matrix, and the distribution of the nozzle matrix is specially set, and the setting of the original spray evaporation device The distribution is equivalent. Spraying the water-filled honeycomb filler layer from the corrugated board by means of a nozzle of another independent spray humidification system.
- the air-cooled radiator can be switched to switch the air-cooled and cool water composite mechanical cooling tower, and is divided into four operating modes: [0012]
- the first type a floating operation mode for a direct cooling cooling cycle of an air-cooled radiator, This mode is summer mode:
- the circulating water inlet pipe of the circulating water is connected to a water distribution device disposed in the casing of the mechanical cooling tower, and the water distribution device is connected to the upper end of the air cooling unit of the air cooling radiator, and the air cooling of the air cooling radiator
- the lower end of the unit is connected to the water distribution water distribution device, and the water distribution water distribution device is connected with the pipeline control valve assembly.
- the pipe control valve assembly is directly connected to the spray evaporation device. Or the pipe control valve assembly, which passes through the floating water collector and is connected to the spray evaporation device.
- the switching valve of the pipeline control valve assembly is in a state of being connected to the spray evaporation device.
- the pipe control valve assembly, and the circulating water pump closes the shut-off state.
- the bypass pipe of the bypass circulating water pump is placed in the collecting basin.
- the valve between the spray evaporation device and the bypass spray circulation pump is closed for shutoff.
- the switching valve of the pipeline control valve assembly is in a state of being connected to the spray evaporation device.
- the pipeline control valve assembly, and the circulating water pump, is also in the state of connecting the ground, and controlling the valve group through the regulating pipeline
- the piece realizes the control of the water temperature of the circulating water pump cooling cycle.
- the water pipe of the bypass spray circulating water pump is placed in the collecting basin. The valve between the spray evaporation device and the bypass spray circulation pump is used to close the shutoff state.
- the circulating water is cooled, and the water is sprayed by the spray evaporation device, and the cooling circulating water falls onto the corrugated board water heat exchange honeycomb filling layer, and the floating water formed by the shower evaporation device rises and directly contacts the air cooling radiator. Or the floating water formed by the spray evaporation device rises and collects the downstream flow through the floating water collector.
- the water falling on the corrugated board water exchange heat-filled honeycomb packing layer passes through the corrugated board water to heat the surface of the honeycomb packing layer, and exchanges heat with the ascending air stream.
- the sensible heat of the circulating water is cooled and converted into latent heat of vaporization by evaporation.
- the ascending airflow is increased by the humidity of the air, the temperature of the dry bulb is lowered, and the temperature of the wet bulb is increased to cool the evaporation of the cooling circulating water.
- the cooling circulating water is further exchanged with the incoming cooling air in the inlet air distribution chamber of the mechanical cooling tower casing, and then falls into the collecting tank to complete the cooling process of the cooling circulating water.
- the cooled cooling circulating water passes through the valve between the sump and the circulating water pump, passes the cooling circulating water through the water outlet pipe, and is pumped into the heat load heat exchanger, and the cooling circulating water absorbs heat in the heat load heat exchanger.
- the air-cooling radiator cools the circulating water.
- the cooling wind passes through the air inlet passage of the mechanical cooling tower casing, enters the air distribution distribution chamber, and initially contacts the cooling water of the lower shower cooling water, and then the cooling air enters the corrugated board water heat exchange honeycomb filler layer.
- the countercurrent heat exchange is performed with the cooling circulating water flowing down the wall of the corrugated board water exchange heat exchange honeycomb packing layer, so that the air humidity increases the port and cools the cooling circulating water.
- the entrainment blows the cooling circulating water drenched from the spray evaporation device.
- the saturated humid air with floating water cools the wind and rises through the floating water collector.
- the floating water collector collects the trapped part of the floating water, and the saturated humid air with some floating water continues to rise, and the air cooled radiator Contact, so that saturated humid air cools part of the air entrained in the wind, and absorbs heat and vaporizes with the surface of the air-cooled radiator to fully utilize the wind and water.
- Saturated wet air The cooling air is heated by the surface of the air-cooled radiator, the temperature of the dry bulb is increased, the humidity of the air is reduced to become unsaturated air, and the density of the air is decreased, which enhances the air convection inside and outside the shell of the cooling tower.
- the cooling circulating water entering the air-cooling radiator is pre-cooled in the air-cooling radiator, and the temperature of the cooling circulating water before entering the spray evaporation device is greatly decreased, and the cooling circulating water sprayed by the spray evaporation device is evaporated.
- the water consumption for cooling and cooling is greatly reduced, the cooling water concentration rate is greatly reduced, and the cooling cycle is reduced.
- the amount of water discharged is greatly reduced.
- the cooling effect of the cooling circulating water is better.
- the second type is an air-cooled radiator closed cooling cycle, and a cooling operation mode of the bypass spray air humidification cycle is a spring and autumn operation mode.
- the circulating water inlet pipe of the circulating water is connected to a water distribution device disposed in the casing of the mechanical cooling tower, and the water distribution device is connected to the upper end of the air cooling unit of the air cooling radiator, and the air cooling of the air cooling radiator
- the lower end of the unit is connected to the water distribution water distribution device, and the water distribution water distribution device is connected with the pipeline control valve assembly.
- the pipe control valve assembly is directly connected to the spray evaporation device.
- the pipe control valve assembly which passes through the floating water collector and is connected to the spray evaporation device. Wherein, the switching valve of the pipeline control valve assembly and the spray evaporation device are closed to the shutoff state.
- the circulating water pump and the circulating water pump it is connected to the state of communication.
- the water pipe of the bypass spray circulating water pump is placed in the collecting basin.
- the valve between the spray evaporation device and the bypass spray circulation pump is in the state of connection.
- the cooling water inlet pipe is passed through the cooling water inlet pipe to enter the water distribution water device and the air cooling radiator, and the air cooling radiator is cooled by air to enter the water distribution cloth.
- the circulating water cooled by the air-cooled radiator passes through the valve that is opened between the circulating water pump, passes the cooling circulating water through the water outlet pipe, and is pumped into the heat load heat exchanger to realize the closed type of the air-cooling radiator cooling circulating water. Cooling cycle.
- a water expansion tank is provided on the piping system of the closed cooling cycle.
- the bypass spray pump and the pipeline control valve assembly between the spray evaporation device and the spray evaporation device are arranged in the state of the Qiqitongtong, bypass the spray circulating water pump, and extract the bypass humidification circulating water from the collecting pool, bypass spraying
- the outlet pipe of the circulating water pump is sprayed with water through a spray evaporation device connected thereto.
- the cooling circulating water falls onto the corrugated board cloth water heat exchange honeycomb packing layer, and the floating water formed by the shower evaporation device rises directly, and is directly in contact with the air cooling radiator. Or the floating water formed by the spray evaporation device rises, and the downstream flow is collected by the floating water collector.
- the water falling on the corrugated board water heat exchange honeycomb filler layer passes through the corrugated board water to heat the surface of the honeycomb packing layer, and the updraft heat exchange humidifies.
- the sensible heat of the updraft is converted to latent heat of vaporization by evaporation humidification.
- the updraft is increased by the humidity of the air to reduce the temperature of the dry bulb of the cooling air.
- bypass humidification circulating water By bypassing the pool and the valve between the bypass spray pump, the bypass humidification circulating water is passed through the water outlet pipe, pumped into the spray evaporation device, and the bypass humidification circulating water is cooled and cooled by the cooling air. Pool, bypass The humidifying circulating water humidifies the cooling air by a humidifying and cooling cycle.
- a separate spray humidification pump connected to another independent spray humidification system.
- the nozzle distribution of the other independent spray humidification system is equivalent to the distribution of the original spray evaporation device.
- the nozzle of another independent spray humidification system sprays water to the cooling air to humidify the cooling air, lowers the dry bulb temperature, increases the heat absorption capacity of the cooling air, and passes the nozzle spray formed by the nozzle spray of another independent spray humidification system.
- the surface of the air-cooled radiator is exposed to evaporation, which improves the cooling effect of the air-cooled radiator, and realizes the air-cooling radiator to evaporate and conduct composite heat dissipation.
- the cooling wind passes through the air inlet passage of the mechanical cooling tower housing, enters the air distribution distribution chamber, and initially contacts the heat exchange with the bypass humidification circulating water, and then the cooling air enters the corrugated board water exchange heat exchange honeycomb
- the packing layer performs countercurrent heat exchange with the bypass humidification circulating water flowing down the wall of the corrugated board water exchange heat exchange honeycomb packing layer to increase the air humidity.
- the saturated humid air with floating water cools the wind and directly contacts the air-cooled radiator to make the saturated humid air cool part of the air entrained by the wind, and absorbs the heat and vaporizes with the surface of the air-cooled radiator to make full use of the wind and water. Or when the cooling wind rises out of the corrugated board water exchange heat exchange honeycomb packing layer, the entrainment blows the bypass humidification circulating water drenched from the spray evaporation device.
- the saturated humid air with floating water cools the wind, and passes through the floating water collector.
- the floating water collector collects the intercepted part of the floating water, and the saturated humid air with some floating water continues to rise, and the air cools.
- the contact of the device makes the saturated humid air cool part of the air entrained by the wind, and absorbs the heat and vaporizes with the surface of the air-cooled radiator to fully utilize the wind and water.
- the saturated humid air cools the wind
- the air is heated by the surface of the air-cooled radiator to increase the temperature of the dry bulb of the air, the humidity of the air is reduced, and the air becomes unsaturated, and the density of the air decreases, thereby enhancing the air convection inside and outside the shell of the cooling tower. .
- the cooling effect of the cooling circulating water is improved.
- the third type the air-cooled radiator closed-air ventilation and cooling operation mode for the wind turbine only, for the early spring and late autumn operation mode:
- the circulating water inlet pipe of the circulating water is connected to a water distribution device disposed in the casing of the mechanical cooling tower, and the water distribution device is connected to the upper end of the air cooling unit of the air cooling radiator, and the air cooling of the air cooling radiator The lower end of the unit is connected to the water distribution water distribution device, and the water distribution water distribution device is connected with the pipeline control valve assembly.
- the pipe control valve assembly is directly connected to the spray evaporation device. Or the pipe control valve assembly, through the floating water collector, connected to the spray evaporation device.
- the switching valve of the pipeline control valve assembly Between the spray evaporation devices, the shut-off state is closed. Between the circulating water pump and the circulating water pump, the shut-off state is closed.
- the water pipe of the bypass spray circulating water pump is placed in the collecting basin. The valve between the spray evaporation device and the bypass spray circulation pump is closed to shut off.
- the cooling water inlet pipe is passed through the cooling water inlet pipe to enter the water distribution water device and the air cooling radiator, and the air cooling radiator is cooled by air to enter the water distribution cloth.
- the circulating water cooled by the air-cooled radiator passes through the valve that is opened between the circulating water pump, passes the cooling circulating water through the water outlet pipe, and is pumped into the heat load heat exchanger to realize the closed type of the air-cooling radiator cooling circulating water. Cooling cycle.
- a water expansion tank is provided on the piping system of the closed cooling cycle.
- the fourth type air-cooled radiator closed air chilling operation mode for non-fans, for winter operation mode:
- the cooling water inlet pipe is passed through the cooling water inlet pipe to enter the water distribution water device and the air cooling radiator, and the air cooling radiator is cooled by air to enter the water distribution cloth.
- the circulating water cooled by the air-cooled radiator passes through the valve that is opened between the circulating water pump, passes the cooling circulating water through the water outlet pipe, and is pumped into the heat load heat exchanger to realize the closed type of the air-cooling radiator cooling circulating water. Cooling cycle.
- a water expansion tank is provided on the piping system of the closed cooling cycle.
- the above four cooling operation modes can be arbitrarily switched.
- the hot circulating water passes through the water distribution water distribution device, equal flow path, equal pressure, evenly distributed water distribution in the air-cooled radiator, and the circulating water precooled by the air-cooled radiator is also passed through the water source by equal flow path, equal pressure, and uniform requirements.
- the water distribution device collects the circulating water.
- the circulating water pre-cooled by the air-cooled radiator is controlled by the water-discharging control valve to control the spray evaporation device to control the amount of spray water, and the water is distributed on the corrugated board water-heat exchange honeycomb filler layer, and the circulating water is exchanged in the corrugated board water.
- Honeycomb packing layer with After the rising air heat exchange is cooled, it is drenched in the collecting basin.
- the pipeline control valve assembly controlling the cooling water of the air-cooled radiator, and the ratio of the water supply to the circulating water pump through the cooling device of the spray evaporation device, the temperature regulation of the water supply to the circulating water pump is realized for each season.
- the cooling air passes through the air inlet passage of the mechanical cooling tower housing, enters the air distribution distribution chamber, and then, the cooling air enters the corrugated board cloth water heat exchange honeycomb filler layer, and when the cooling wind rises out, the corrugated board cloth water heat exchange After the honeycomb packing layer, the cooling air rises and directly contacts the air-cooling radiator, or when the cooling air rises out of the corrugated board water-heat exchange honeycomb packing layer, passes through the floating water collector, and contacts the air-cooling radiator, and the cooling air is By heating and heating the surface of the air-cooled radiator, the dry bulb temperature of the air is raised, the humidity of the air is lowered, the density of the air is lowered, and the air convection inside and outside the casing of the cooling tower is enhanced. The cooling effect of the cooling circulating water is improved.
- the air-cooled radiator can be switched to switch between an air-cooled and cool water-type cooling tower and an operation mode, and the air-cooling radiator air cooling unit is a cooling tube, and the cooling tube is a light tube or a fin tube.
- the air cooling radiator air cooling unit is a cooling heat pipe, the cooling heat pipe is a light pipe, or a finned pipe. Cooling heat pipes include metal pipes, glass pipes, and plastic pipes.
- the air-cooled radiator can be switched to switch between an air-cooled and cool water-type cooling tower and an operation mode, and the air-cooling radiator bracket is made of metal, concrete or plastic steel and a polymer organic composite material, and the air-cooled radiator bracket is fixed to the cooling tower. On the support.
- the air-cooled radiator can be switched to switch between an air-cooled and cool water-type cooling tower and an operation mode, and the air-cooled radiator is suspended on the air-cooling radiator fixing bracket or placed on the air-cooling radiator bracket, and is also fastened by a key or a bolt. The components are fixed.
- the air-cooled radiator can be switched to switch between the air-cooled and cool water-type cooling tower and the operation mode, and the inlet pipe, the water pipe and the air-cooling gas inlet are connected through a pipe and an interface, and the inlet water pipe is arranged beside the water-cooling radiator inlet.
- the air-cooling radiator bracket is supported and fixed, and the water outlet pipe and the air-cooling radiator water outlet are connected by a pipe and a joint, and the water pipe is supported and fixed by the air-cooling radiator bracket.
- the air-cooled radiator can be switched to switch the air-cooled and cool water type mechanical cooling tower and the operation mode, and the floating water collector is fixed at the air inlet of the air-cooling radiator, and is combined with the air-cooling radiator or fixed to the air-cooling radiator. On the stand.
- the air-cooled radiator is closed to switch between an air-cooled and cool water-type mechanical cooling tower and an operation mode, and a valve for controlling water is installed on the spray water distribution device.
- the cold radiator can be switched to switch the air-cooled cold water composite cooling tower and the operation mode, and the air-cooling radiators are arranged in a herringbone, V-shaped or polyhedral shape in a matrix or a concentric fan shape, and are mounted and fixed on the air-cooled radiator bracket. .
- the air-cooled radiator can be switched to switch between an air-cooled and cool water-type cooling tower and an operation mode, and the valve on the water pipe is used for controlling the independent operation and the variable load operation of the air-cooling radiator.
- the air-cooled radiator can be switched to switch between an air-cooled cooling water type cooling tower and an operation mode, and the air-cooling radiator air cooling unit is a cooling tube, the cooling tube is a light pipe, or a finned tube; the cooling tube includes a metal tube, Plastic tube; or air cooling radiator air cooling unit is cooling heat pipe, cooling heat pipe is light pipe, or finned tube; cooling heat pipe includes metal pipe, glass pipe, plastic pipe; air cooling unit is made of single material pipe, or composite Material tube manufacturing.
- the air-cooled radiator can be switched to switch between an air-cooled cooling water type cooling tower and an operation mode, and the air-cooling radiator is composed of a plurality of air cooling units, the air cooling unit is a light pipe, or a tube with cooling fins;
- the cooling unit is made of a metal material or a material having good thermal conductivity by welding, riveting, expanding, casting, bonding, rolling, and extruding, and the cooling fin tube is processed by metal rolling and extrusion to form a profile.
- the fins on the processed profile are threaded; the air-cooled heat sink is sealed and connected to the plurality of air cooling unit segments through the pipeline; or the air-cooled heat sink is connected to the pipeline to seal the plurality of air cooling unit heat pipes;
- the hexahedral air cooler assembly; the inlet and outlet of the air cooler assembly are arranged with a flow path, and the air cooler assembly is provided between the tube piece and the tube piece;
- the air cooling radiator has a herringbone shape or a polyhedron shape, The matrix, or concentric fan-shaped arrangement, is mounted and fixed on the air-cooled radiator bracket.
- the air-cooled radiator can be switched to switch between an air-cooled and cool water-type cooling tower and an operation mode, and the air-cooled radiator bracket is made of metal, concrete, glass steel, or plastic steel and a polymer organic composite material, and the air-cooled radiator bracket is fixed to the cooling.
- the load-bearing support of the tower; or the air-cooled radiator is suspended on the air-cooling radiator fixing bracket, or placed on the air-cooling radiator bracket, and is fixed by including a key-insertion and a bolt fastening component.
- the air-cooled radiator can be switched to switch between the air-cooled and cool water-type cooling tower and the operation mode, and the inlet pipe and the water pipe are sealedly connected with the inlet and outlet of the air cooler, and the inlet water pipe is arranged beside the water inlet of the air-cooling radiator. It is supported and fixed by the air-cooled radiator bracket. The water outlet pipe and the air-cooling radiator outlet are connected by pipes and joints. The water pipes are supported and fixed by the air-cooled radiator bracket. [0045] The air-cooled radiator can be switched to switch between the air-cooled cooling water type cooling tower and the operation mode, and the floating water collector is fixed at the air inlet of the air-cooling radiator, combined with the air-cooling radiator or fixed to the air-cooling radiator. On the stand.
- the air-cooled radiator can be switched to switch between the air-cooled and cool water-type cooling tower and the operation mode, and the valve on the water pipe is used for controlling the independent operation and the variable load operation of the air-cooling radiator; Control the valve.
- the air-cooled radiator can be switched to switch between the air-cooled and cool water-type cooling tower and the operation mode, and the circulating water pump, the inlet of the bypass spray circulating water pump, or the water outlet is provided with an ultrasonic algae killer.
- the air-cooled radiator can be switched to switch between the air-cooled and cool water-type mechanical cooling tower and the operation mode, and the water of the bypass spray water is softened water.
- the present invention provides an air-cooled radiator closed switchable air-cooled cold water type mechanical cooling tower and operation mode.
- the invention combines the advantages of a cooling tower, a closed cooling tower and an air cooling tower, and fully utilizes water to cool through a cooling tower.
- the heat exchange with the air increases the humidity of the air, increases the heat absorption capacity (the steam is closer to twice the specific heat of the air), and the air dry bulb temperature decreases, and cools the air-cooled radiator.
- an air-cooled radiator that can automatically adjust the operating state according to the environmental climatic conditions and the temperature of the inlet and outlet of the fluid to be cooled is proposed.
- the invention controls the water flow rate and the air inlet amount of the atomizing nozzle and the spray nozzle respectively through the automatic control system, and automatically adjusts the operation mode of the air cooler, so that the air cooler is always in the most economical operation mode, compared with the present Some air-cooled radiators are more water-saving and economical, and have better economy.
- the various working modes of the present invention are respectively applicable to different outdoor ambient air temperature and humidity conditions.
- the air-cooling radiator is used to pre-cool the fluid in the pipe, and the cooling operation mode of the spray evaporation is suitable for meteorological conditions with high ambient temperature and humidity; the adiabatic humidification evaporative cooling operation mode is suitable for the transitional season with moderate temperature and humidity, effective By utilizing the environmental meteorological conditions during the transitional season, the water consumption is reduced compared to the spray evaporative cooling mode, and the heat transfer capacity requirement can be met.
- the dry cooling operation mode of the fan operation is suitable for the ambient temperature is low.
- the natural cooling operation mode is suitable for the winter when the ambient temperature is very low. In this mode, the fan is turned off, and only the ambient low temperature air and the high temperature heat flow in the pipe are used to cool the natural convection heat. Fluid inside the tube.
- the cooling hot water first enters the air-cooled radiator, it exchanges heat with the air of high humidity and low dry bulb temperature to cool the water in the air-cooled radiator.
- the air-cooled radiator heats the high-humidity air to reduce its density, reduces the pressure in the cooling tower air duct, increases the speed of air rise, and increases the cooling air intake of the cooling tower.
- the temperature of the water precooled by the air-cooled radiator is lowered, and then distributed to the cooling water exchange packing of the cooling tower through the water spray evaporation device, cooling and dissipating heat, reducing evaporation of water, and simultaneously reducing the dry ball of the air.
- the temperature makes the air-cooled radiator have a good cooling heat transfer effect.
- the air-cooled radiator can be switched to switch between the air-cooled and cool water-type cooling towers. When the temperature is low, the air-cooled radiator can be naturally operated to maximize water conservation.
- FIG. 1 is an air-cooled radiator closed switchable air-cooled cold water type mechanical cooling tower provided with a water collector bypass cycle, and the air-cooled heat sink is a rectangular polygonal matrix arrangement structure schematic diagram;
- FIG. 2 is a schematic diagram of an air-cooled radiator closed switchable air-cooled cold water type mechanical cooling tower without a water collector bypass cycle and a spray is added, and the air-cooled heat sink is a rectangular polygonal matrix arrangement system structure diagram;
- FIG. 3 is an air-cooled radiator closed switchable air-cooled cold water type mechanical cooling tower provided with a water collector bypass cycle, and the air-cooled heat sink is a herringbone arrangement structure schematic diagram;
- FIG. 4 is a schematic diagram showing the structure of the air-cooled radiator closed and switchable air-cooled cold water type mechanical cooling tower without a water collector bypass cycle and increased spray, and the air-cooled heat sink is a herringbone layout system.
- FIG. 5 is a schematic diagram of a V-shaped arrangement of an air-cooled radiator with a closed-end switchable air-cooled cooling water-type cooling tower with a water collector bypass cycle;
- FIG. 6 is an air-cooled radiator closed switchable air-cooled cold water type mechanical cooling tower is provided with a water collector bypass cycle and a spray is added, and the air-cooled heat sink is a V-shaped arrangement system structure diagram;
- FIG. 7 is an air-cooled radiator closed switchable air-cooled cold water type mechanical cooling tower provided with a water collector bypass cycle, and the air-cooled heat sink is a rectangular polygonal matrix arrangement structure schematic diagram;
- FIG. 8 is an air-cooled radiator closed switchable air-cooled cold water type mechanical cooling tower with a water collector bypass cycle and increased Adding a spray, the air-cooling heat sink is a schematic diagram of a rectangular polygonal matrix arrangement system structure.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种空冷散热器开闭可切换空冷凉水式机力冷却塔及运行方式,结合冷却塔、闭式冷却塔和空气冷却塔的优点,充分利用水经冷却塔冷却时与空气的热交换,使空气湿度增加,吸热能力提高,而空气干球温度降低的特点,用冷却塔对空冷散热器进行冷却。空冷散热器可以根据环境气候条件和待冷却流体进出口温度对运行状态进行自动调节,当外界环境温湿度或待冷却流体进出口温度发生变化时,通过自动控制系统,分别控制雾化喷头、喷淋喷头的水流量和进风量,自动调整空冷器的运行模式,使得空冷散热器始终处于经济的运行模式。
Description
空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方 式
技术领域
[0001] 本发明涉及冷却塔, 属于冷却装置应用领域。
背景技术
[0002] 目前, 公知的冷却塔主要包括凉水式、 空气冷却式、 空冷凉水复合式、 和闭环 蒸发式等四种主要形式。 这四种冷却塔又有自然对流通风冷却塔和机械通风冷 却塔。 由于冷却塔主要受空气湿球温度的影响, 是靠水的蒸发和传导来散热, 因此其对水的消耗量非常大。 而空气冷却塔是利用传导使空气吸热来实现散热 , 主要受空气干球温度的影响。 由于空气干球温度较高, 比热小, 吸热能力有 限, 且冷却效率低, 因此, 需要空冷散热器有很大的表面积, 使得空冷散热器 造价高。 为弥补干式空气冷却器的缺点, 出现了干湿联合空气冷却器, 干湿联 合空气冷却器的工作机理是在空气入口处喷雾化水, 使入口空气增湿降温, 增 湿后的低温空气经隔水板除去夹带的水滴, 再横掠换热盘管, 从而增大空气入 口温度与热流体出口温度之间的温差来强化管外传热。 干湿联合空气冷却器水 蒸发后的残留物会附着在翅片管根部, 导致换热盘管结垢, 使用一段吋间后会 影响管束的换热效果。 现有空气冷却器无法根据外界气候条件和待冷却流体的 温度进行调节, 在过渡季节或寒冷季节, 空气冷却器也全负荷运转, 浪费电能 和水资源。 现有的闭式冷却塔采用向换热器管束外喷淋水, 通过管外表面水膜 的蒸发吸热来冷却管内流体, 但现有闭式冷却塔无法根据外界气候条件和待冷 却流体的温度进行调节, 在过渡季节, 冷却器也全负荷运转, 浪费电能和水资 源。
[0003] 而在先发明专利 《空冷凉水复合式冷却塔》 申请号 CN02131789.5 授权公告号 CN100412490虽然解决了目前冷却塔的许多问题, 但是, 仍存在如下问题: 在春
、 秋季, 由于循环水系统为幵式系统, 因此, 存在循环水生藻、 结垢、 产生粘 泥, 严重影响冷却器换热效率, 而且存在循环水泵耗能严重的问题。 而如果采
用单纯的闭式空冷系统, 则不能满足对循环水冷却效果的要求。 这一缺陷, 使 得在先发明存在不能满足全年冷却工况对冷却效果的要求。
技术问题
[0004] 由于冷却塔主要受空气湿球温度的影响, 是靠水的蒸发和传导来散热, 因此其 对水的消耗量非常大。 而空气冷却塔是利用传导使空气吸热来实现散热, 主要 受空气干球温度的影响。 由于空气干球温度较高, 比热小, 吸热能力有限, 且 冷却效率低, 因此, 需要空冷散热器有很大的表面积, 使得空冷散热器造价高
问题的解决方案
技术解决方案
[0005] 本发明要解决的技术问题是要提供一种 《空冷散热器幵闭可切换空冷凉水式机 力冷却塔》 , 它是对现有的闭式冷却塔进行技术改进, 它可以完全弥补在先专 利申请 《空冷凉水复合式冷却塔》 的不足, 实现对整个系统的优化。 实现可根 据环境温度、 湿度、 待冷却流体的初始温度及终冷温度来改变冷却器的运行模 式, 以便达到冷却器运行经济性最优化, 降低电能的消耗和水资源的消耗。 使 冷却塔系统更加节水, 更加高效节能, 系统的可靠性更高, 使得投资回报率大 幅提升。
[0006] 本发明的目的是这样实现的: 空冷散热器幵闭可切换空冷凉水复合式机力冷却 塔及运行方式, 包括机力冷却塔壳体、 空冷散热器、 喷淋蒸发装置、 风机、 集 水池、 旁路喷淋循环水泵、 自动控制装置, 配水布水装置、 汇水布水装置、 波 纹板布水换热蜂窝填料层、 循环水泵、 热负荷换热器、 进、 出水管道。 在机力 冷却塔壳体中的波纹板布水换热蜂窝填料层, 及喷淋布水装置的下风向, 或飘 水收水器之上的下风向, 设有安装固定在支架上的, 由多个空气冷却单元连接 组成的空冷散热器。
[0007] 空冷散热器的空气冷却单元相互之间, 空冷散热器的空气冷却单元, 与机力冷 却塔壳体壁之间无冷却风短路漏风通道。 均匀分布安装固定于与机力冷却塔承 重支撑, 连接的空冷散热器支架上。
[0008] 在空冷散热器的上风向, 设有与旁路喷淋循环水泵连接的喷淋蒸发装置。 旁路
喷淋循环水泵从集水池抽取旁路加湿循环水, 通过管道控制阀门组件, 与喷淋 蒸发装置连接, 通过自动控制装置控制喷淋蒸发装置淋水。
[0009] 或在空冷散热器的上风向, 设有与旁路喷淋循环水泵连接的另一路独立喷雾加 湿系统。 旁路喷淋循环水泵从专设储水池抽取旁路加湿循环水, 通过独立的管 道控制阀门组件, 与专设喷嘴矩阵连接, 专设喷嘴矩阵的分布, 与原有的喷淋 蒸发装置的设置分布等同。 通过另一路独立喷雾加湿系统的喷嘴, 对从波纹板 布水换热蜂窝填料层喷雾。 形成在机力冷却塔壳体内部, 从排风口向进风口, 依次为风机、 配水布水装置、 空冷散热器、 汇水布水装置、 喷淋蒸发装置、 波 纹板布水换热蜂窝填料层、 波纹板布水换热蜂窝填料层支撑框架、 进风分配容 腔、 集水池的机力冷却塔架构。
[0010] 或形成在机力冷却塔壳体内, 从排风口向进风口, 依次为风机、 配水布水装置
、 空冷散热器、 汇水布水装置、 飘水收水器、 喷淋蒸发装置、 波纹板布水换热 蜂窝填料层、 波纹板布水换热蜂窝填料层支撑框架、 进风分配容腔、 集水池的 机力冷却塔架构。
[0011] 空冷散热器幵闭可切换空冷凉水复合式机力冷却塔, 分为四种运行模式: [0012] 第一种: 为空冷散热器直接喷淋式冷却循环的幵放式运行模式, 此模式为夏季 运行模式:
[0013] 冷却循环水进水管道母管, 与设置于机力冷却塔壳体内的配水布水装置连接, 配水布水装置, 与空冷散热器的空气冷却单元上端管道连接, 空冷散热器空气 冷却单元的下端, 与汇水布水装置连接, 汇水布水装置与管道控制阀门组件连 接。 管道控制阀门组件, 与喷淋蒸发装置直接连接。 或管道控制阀门组件, 穿 过飘水收水器, 与喷淋蒸发装置连接。
[0014] 其中, 管道控制阀门组件的切换阀, 与喷淋蒸发装置之间为幵启联通状态。 管 道控制阀门组件, 与循环水泵之间, 为关闭截流状态。 旁路喷淋循环水泵的取 水管, 置于集水池内。 喷淋蒸发装置与旁路喷淋循环水泵之间阀门, 为关闭截 流状态。
[0015] 或管道控制阀门组件的切换阀, 与喷淋蒸发装置之间为幵启联通状态。 管道控 制阀门组件, 与循环水泵之间, 也为幵启联通状态, 通过调控管道控制阀门组
件, 实现对进入循环水泵冷却循环水温的控制。 旁路喷淋循环水泵的取水管, 置于集水池内。 喷淋蒸发装置与旁路喷淋循环水泵之间阀门, 为关闭截流状态
[0016] 冷却循环水, 通过喷淋蒸发装置淋水, 冷却循环水落到波纹板布水换热蜂窝填 料层上, 喷淋蒸发装置淋水形成的飘水上升, 直接与空冷散热器接触。 或喷淋 蒸发装置淋水形成的飘水上升, 通过飘水收水器收集下流。 落到波纹板布水换 热蜂窝填料层上的淋水, 穿过波纹板布水换热蜂窝填料层的管腔表面, 和上升 气流换热。 将冷却循环水的显热, 通过蒸发转换为汽化潜热。 上升气流则通过 空气湿度增加, 使干球温度降低, 湿球温度升高实现对冷却循环水的蒸发传导 降温。 冷却循环水在机力冷却塔壳体的进风分配容腔内和进入的冷却风进一步 换热后, 落入集水池中完成冷却循环水的冷却过程。 经过冷却的冷却循环水, 通过幵启集水池与循环水泵之间的阀门, 将冷却循环水通过出水管道, 泵入热 负荷换热器, 冷却循环水在热负荷换热器内吸热后, 通过冷却循环水进水管道 母管, 进入配水布水装置、 空冷散热器, 实现空冷散热器冷却循环水的幵放式 循环。
[0017] 冷却风通过机力冷却塔壳体的进风通道, 进入进风分配容腔, 与下淋的冷却循 环水初步接触换热, 之后, 冷却风进入波纹板布水换热蜂窝填料层, 与沿波纹 板布水换热蜂窝填料层管壁下流的冷却循环水进行逆流热交换, 使空气湿度增 力口, 对冷却循环水降温。 当冷却风上升流出波纹板布水换热蜂窝填料层后, 夹 带吹起从喷淋蒸发装置下淋的冷却循环水。 夹带有飘水的饱和湿空气冷却风上 升, 穿过飘水收水器, 飘水收水器收集截留部分飘水, 仍夹带有部分飘水的饱 和湿空气冷却风继续上升, 与空冷散热器接触, 使饱和湿空气冷却风夹带的部 分飘水, 与空冷散热器表面触碰吸热蒸发, 将风吹飘水充分利用。 饱和湿空气 冷却风通过空冷散热器表面加热升温, 干球温度升高, 空气湿度降低变成不饱 和空气, 空气密度下降, 增强了机力冷却塔壳体内外空气对流。
[0018] 首先进入空冷散热器的冷却循环水, 在空冷散热器内得到预冷, 实现进入喷淋 蒸发装置前冷却循环水温度大幅下降, 经过喷淋蒸发装置喷淋的冷却循环水, 通过蒸发散热降温的耗水大幅下降, 冷却循环水浓缩速度大幅降低, 冷却循环
水的排污量大幅下降。 冷却循环水的冷却效果更为良好。
[0019] 第二种: 为空冷散热器封闭式冷却循环, 旁路喷淋空气加湿循环的冷却运行模 式, 为春秋运行模式。
[0020] 冷却循环水进水管道母管, 与设置于机力冷却塔壳体内的配水布水装置连接, 配水布水装置, 与空冷散热器的空气冷却单元上端管道连接, 空冷散热器空气 冷却单元的下端, 与汇水布水装置连接, 汇水布水装置与管道控制阀门组件连 接。 管道控制阀门组件, 与喷淋蒸发装置直接连接。 或管道控制阀门组件, 穿 过飘水收水器, 与喷淋蒸发装置连接。 其中, 管道控制阀门组件的切换阀, 与 喷淋蒸发装置之间, 为关闭截流状态。 与循环水泵之间, 为幵启联通状态。 旁 路喷淋循环水泵的取水管, 置于集水池内。 喷淋蒸发装置与旁路喷淋循环水泵 之间阀门, 为幵启联通状态。
[0021] 冷却循环水在热负荷换热器内吸热后, 通过冷却循环水进水管道母管, 进入配 水布水装置、 空冷散热器, 空冷散热器经过空气冷却后, 进入汇水布水装置, 之后, 经过空冷散热器冷却的循环水, 通过与循环水泵之间幵启的阀门, 将冷 却循环水通过出水管道, 泵入热负荷换热器, 实现空冷散热器冷却循环水的封 闭式冷却循环。 封闭式冷却循环的管路系统上, 设有水膨胀罐。
[0022] 旁路喷淋循环水泵, 与喷淋蒸发装置之间的管道控制阀门组件, 设于幵启联通 状态, 旁路喷淋循环水泵, 从集水池抽取旁路加湿循环水, 旁路喷淋循环水泵 的出水管道, 通过与之连接的喷淋蒸发装置淋水。 冷却循环水落到波纹板布水 换热蜂窝填料层上, 喷淋蒸发装置淋水形成的飘水上升, 直接与空冷散热器接 触。 或喷淋蒸发装置淋水形成的飘水上升, 通过飘水收水器收集下流。 落到波 纹板布水换热蜂窝填料层上的淋水, 穿过波纹板布水换热蜂窝填料层的管腔表 面, 和上升气流换热增湿。 将上升气流的显热, 通过蒸发增湿转换为汽化潜热 。 使上升气流通过空气湿度增加, 实现冷却空气干球温度的降低。 旁路加湿循 环水, 在机力冷却塔壳体的进风分配容腔内, 和进入的冷却风加湿换热后, 落 入集水池中, 完成旁路加湿循环水对冷却风的加湿冷却过程。 通过幵启集水池 , 与旁路喷淋循环水泵之间的阀门, 将旁路加湿循环水通过出水管道, 泵入喷 淋蒸发装置, 旁路加湿循环水在对冷却风加湿降温后, 落入集水池, 实现旁路
加湿循环水对冷却风的幵放式加湿降温循环。
[0023] 或独立喷雾加湿水泵, 连接另一路独立喷雾加湿系统。 另一路独立喷雾加湿系 统的喷嘴分布, 与原有的喷淋蒸发装置的设置分布等同。 通过另一路独立喷雾 加湿系统的喷嘴对冷却风喷雾化水, 对冷却风进行加湿, 降低干球温度, 提高 冷却风的吸热能力, 另一路独立喷雾加湿系统的喷嘴喷雾形成的飘水, 通过接 触空冷散热器表面蒸发, 提高了空冷散热器的冷却效果, 实现了空冷散热器蒸 发传导复合散热。
[0024] 冷却风通过机力冷却塔壳体的进风通道, 进入进风分配容腔, 与下淋的旁路加 湿循环水初步接触换热, 之后, 冷却风进入波纹板布水换热蜂窝填料层, 与沿 波纹板布水换热蜂窝填料层管壁下流的旁路加湿循环水进行逆流热交换, 使空 气湿度增加。 当冷却风上升流出波纹板布水换热蜂窝填料层后, 夹带吹起从喷 淋蒸发装置下淋的旁路加湿循环水。 夹带有飘水的饱和湿空气冷却风上升, 直 接与空冷散热器接触, 使饱和湿空气冷却风夹带的部分飘水, 与空冷散热器表 面触碰吸热蒸发, 将风吹飘水充分利用。 或当冷却风上升流出波纹板布水换热 蜂窝填料层后, 夹带吹起从喷淋蒸发装置下淋的旁路加湿循环水。 夹带有飘水 的饱和湿空气冷却风上升, 与穿过飘水收水器, 飘水收水器收集截留部分飘水 , 仍夹带有部分飘水的饱和湿空气冷却风继续上升, 与空冷散热器接触, 使饱 和湿空气冷却风夹带的部分飘水, 与空冷散热器表面触碰吸热蒸发, 将风吹飘 水充分利用。 而饱和湿空气冷却风, 则通过空冷散热器表面加热升温, 使空气 的干球温度升高, 空气湿度降低, 变成不饱和空气, 空气密度下降, 增强了机 力冷却塔壳体内外空气对流。 提高了冷却循环水的冷却效果。
[0025] 第三种: 为只幵风机的空冷散热器封闭式通风冷却运行模式, 为初春、 深秋运 行模式:
[0026] 冷却循环水进水管道母管, 与设置于机力冷却塔壳体内的配水布水装置连接, 配水布水装置, 与空冷散热器的空气冷却单元上端管道连接, 空冷散热器空气 冷却单元的下端, 与汇水布水装置连接, 汇水布水装置与管道控制阀门组件连 接。 管道控制阀门组件, 与喷淋蒸发装置直接连接。 或管道控制阀门组件, 穿 过飘水收水器, 与喷淋蒸发装置连接。 其中, 管道控制阀门组件的切换阀, 与
喷淋蒸发装置之间, 为关闭截流状态。 与循环水泵之间, 为关闭截流状态。 旁 路喷淋循环水泵的取水管, 置于集水池内。 喷淋蒸发装置与旁路喷淋循环水泵 之间阀门, 为关闭截流状态。
[0027] 冷却循环水在热负荷换热器内吸热后, 通过冷却循环水进水管道母管, 进入配 水布水装置、 空冷散热器, 空冷散热器经过空气冷却后, 进入汇水布水装置, 之后, 经过空冷散热器冷却的循环水, 通过与循环水泵之间幵启的阀门, 将冷 却循环水通过出水管道, 泵入热负荷换热器, 实现空冷散热器冷却循环水的封 闭式冷却循环。 封闭式冷却循环的管路系统上, 设有水膨胀罐。
[0028] 第四种: 为不幵风机的空冷散热器封闭式自然对流通风冷却运行模式, 为冬季 运行模式:
[0029] 冷却循环水进水管道母管, 与设置于机力冷却塔壳体内的配水布水装置连接, 配水布水装置, 与空冷散热器的空气冷却单元上端管道连接, 空冷散热器空气 冷却单元的下端, 与汇水布水装置连接, 汇水布水装置与管道控制阀门组件连 接。 管道控制阀门组件, 与喷淋蒸发装置直接连接。 或管道控制阀门组件, 穿 过飘水收水器, 与喷淋蒸发装置连接。 其中, 管道控制阀门组件的切换阀, 与 喷淋蒸发装置之间, 为关闭截流状态。 与循环水泵之间, 为关闭截流状态。 旁 路喷淋循环水泵的取水管, 置于集水池内。 喷淋蒸发装置与旁路喷淋循环水泵 之间阀门, 为关闭截流状态。
[0030] 冷却循环水在热负荷换热器内吸热后, 通过冷却循环水进水管道母管, 进入配 水布水装置、 空冷散热器, 空冷散热器经过空气冷却后, 进入汇水布水装置, 之后, 经过空冷散热器冷却的循环水, 通过与循环水泵之间幵启的阀门, 将冷 却循环水通过出水管道, 泵入热负荷换热器, 实现空冷散热器冷却循环水的封 闭式冷却循环。 封闭式冷却循环的管路系统上, 设有水膨胀罐。
[0031] 以上四种冷却运行模式可以任意切换。 热循环水通过配水布水装置, 等流径、 等压、 均匀分布配水于空冷散热器中, 通过空冷散热器预冷的循环水, 也以等 流径、 等压、 均匀要求, 通过汇水布水装置收集汇流循环水。 经空冷散热器预 冷却的循环水, 通过布水控制阀门, 控制喷淋蒸发装置控制喷淋水量, 将水布 于波纹板布水换热蜂窝填料层上, 循环水在波纹板布水换热蜂窝填料层内, 与
上升的空气热交换冷却后, 下淋于集水池。 通过调控管道控制阀门组件, 控制 空冷散热器冷却水, 与通过喷淋蒸发装置冷却水对循环水泵的供水比例, 实现 对各个季节对循环水泵的供水温度调控。
[0032] 冷却风通过机力冷却塔壳体的进风通道, 进入进风分配容腔, 之后, 冷却风进 入波纹板布水换热蜂窝填料层, 当冷却风上升流出波纹板布水换热蜂窝填料层 后, 冷却风上升, 直接与空冷散热器接触, 或当冷却风上升流出波纹板布水换 热蜂窝填料层后, 穿过飘水收水器, 与空冷散热器接触, 冷却风则通过空冷散 热器表面加热升温, 使空气的干球温度升高, 空气湿度降低, 使空气密度下降 , 增强了机力冷却塔壳体内外空气对流。 提高了冷却循环水的冷却效果。
[0033] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其空冷散热器空气 冷却单元为冷却管, 冷却管为光管, 或为翅片管。 或空冷散热器空气冷却单元 为冷却热管, 冷却热管为光管, 或为翅片管。 冷却热管包括金属管, 玻璃管, 塑胶管。
[0034] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其空冷散热器支架 用金属、 混凝土或塑钢及高分子有机复合材料制作, 空冷散热器支架固定于冷 却塔的承重支撑体上。
[0035] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其空冷散热器悬挂 于空冷散热器固定支架上或摆放于空冷散热器支架上, 也通过键、 栓紧固组件 加以固定。
[0036] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其进水管、 汇水管 与空气冷却气进水口通过管道及接口连接, 进水母管布置于空冷散热器进水口 旁边由空冷散热器支架支撑固定, 汇水管与空冷散热器出水口通过管及接头连 接, 汇水管通过空冷散热器支架支撑固定。
[0037] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其飘水收水器固定 于空冷散热器的进风口处, 与空冷散热器连接组合或固定于空冷散热器固定支 架上。
[0038] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其喷淋布水装置上 安装有控制水的阀门。
[0039] 冷散热器幵闭可切换空冷凉水复合式冷却塔及运行方式, 其空冷散热器以人字 形、 V形或多面体形按矩阵或同心扇形方式布置排列, 安装固定在空冷散热器支 架上。
[0040] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其汇水管上的阀门 用于控制空冷散热器的独立运行和变负荷运行。
[0041] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其空冷散热器空气 冷却单元为冷却管, 冷却管为光管, 或为翅片管; 冷却管包括金属管、 塑胶管 ; 或空冷散热器空气冷却单元为冷却热管, 冷却热管为光管, 或为翅片管; 冷 却热管包括金属管、 玻璃管、 塑胶管; 空气冷却单元为单一材料管制造, 或为 复合材料管制造。
[0042] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其空冷散热器由多 个空气冷却单元组成, 空气冷却单元为光管, 或为带冷却翅片的管; 空气冷却 单元由金属材料或导热性能良好的材料通过焊接、 铆接、 胀接、 铸造、 粘接、 轧制、 挤出工艺制作成型, 冷却翅片管通过金属轧制、 挤出制成型材加工制作 , 加工出的型材上面的翅片为螺纹状; 空冷散热器通过与管道, 将多个空气冷 却单元管片密封连接; 或空冷散热器通过与管道, 将多个空气冷却单元热管密 封连接; 构成平行六面体的空气冷却器组件; 空气冷却器组件的进水口与出水 口等流径布置, 管片与管片之间设有空气冷却器组件间隔支撑; 空冷散热器以 人字形, 或多面体形, 按矩阵, 或同心扇形方式布置排列, 安装固定在空冷散 热器支架上。
[0043] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其空冷散热器支架 用金属、 混凝土、 玻璃钢、 或塑钢及高分子有机复合材料制作, 空冷散热器支 架固定于冷却塔的承重支撑体上; 或空冷散热器悬挂于空冷散热器固定支架上 , 或摆放于空冷散热器支架上, 通过包括插键、 螺栓紧固组件加以固定。
[0044] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其进水管、 汇水管 与空气冷却器进、 出水口密封连接, 进水母管布置于空冷散热器进水口旁边, 由空冷散热器支架支撑固定, 汇水管与空冷散热器出水口, 通过管及接头连接 , 汇水管通过空冷散热器支架支撑固定。
[0045] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其飘水收水器固定 于空冷散热器的进风口处, 与空冷散热器连接组合或固定于空冷散热器固定支 架上。
[0046] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其汇水管上的阀门 用于控制空冷散热器的独立运行和变负荷运行; 喷淋布水装置上安装有自动控 制阀门。
[0047] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其循环水泵、 旁路 喷淋循环水泵的进水口, 或出水口上, 设有超声波灭藻器。
[0048] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 其旁路喷淋水的补 水, 为软化水。
发明的有益效果
有益效果
[0049] 本发明提供了空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 此发 明结合冷却塔、 闭式冷却塔和空气冷却塔的优点, 充分利用水经冷却塔冷却吋 与空气的热交换, 使空气湿度增加, 吸热能力提高 (水蒸汽比热接近空气比热的 2 倍)而空气干球温度降低的特点, 用其对空冷散热器进行冷却。 通过对现有空气 空冷散热器优缺点的分析, 提出了一种可以根据环境气候条件和待冷却流体进 出口温度来自动调节运行状态的空冷散热器, 当外界环境温湿度或待冷却流体 进出口温度发生变化吋, 本发明通过自动控制系统, 分别控制雾化喷头、 喷淋 喷头的水流量和进风量, 自动调整空冷器的运行模式, 使得空冷器始终处于最 经济的运行模式, 相较现有的空冷散热器更加节水节电, 经济性更好。 本发明 的多种工作模式, 分别适用于不同的室外环境空气温湿度情况。 利用空冷散热 器预冷却管内流体, 并幵放喷淋蒸发的冷却运行模式, 适用于环境空气温湿度 很高的气象条件; 绝热加湿蒸发冷却运行模式适用于环境温湿度适中的过渡季 节, 有效的利用过渡季节的环境气象条件, 相较喷淋蒸发冷却运行模式即减少 了水的消耗, 又能够满足换热量要求; 风机运转的干式冷却运行模式适用于环 境温度较低吋。 自然冷却运行模式适用于环境温度非常低的冬季, 此模式下风 机处于关闭状态, 只利用环境的低温空气和管内高温热流自然对流换热来冷却
管内流体。 由于设计冷却热水首先进入空冷散热器, 与高湿度、 低干球温度的 空气逆流换热, 冷却空冷散热器中的水。 同吋, 空冷散热器加热了高湿度的空 气, 使其密度减小, 降低了冷却塔风筒内的压力, 提高了空气升腾的速度, 增 加了冷却塔的冷却进风量。 经过空冷散热器预冷的水温度降低, 再经过布水喷 淋蒸发装置分布到冷却塔的布水冷却热交换填料上, 冷却散热, 减少了水的蒸 发, 同吋, 降低了空气的干球温度, 又使得空冷散热器有好的冷却换热效果。 由于喷淋蒸发装置分布到冷却塔布水冷却热交换填料上的水温度低, 因此, 可 减少水的大量蒸发, 从而减少了水的散失和排污, 形成了充分利用空气干、 湿 球温度。 空冷散热器幵闭可切换空冷凉水式机力冷却塔, 在气温低的吋候可以 实现空冷散热器地自然运行, 最大限度实现节约用水。
对附图的简要说明
附图说明
[0050] 下面结合附图和实施例对本发明作进一步说明:
[0051] 图 1为空冷散热器幵闭可切换空冷凉水式机力冷却塔设有收水器旁路循环, 其 空冷散热器为矩形多边形矩阵布置结构示意图;
[0052] 图 2为空冷散热器幵闭可切换空冷凉水式机力冷却塔无收水器旁路循环并增加 喷雾, 其空冷散热器为矩形多边形矩阵布置系统结构示意图;
[0053] 图 3为空冷散热器幵闭可切换空冷凉水式机力冷却塔设有收水器旁路循环, 其 空冷散热器为人字形布置结构示意图;
[0054] 图 4为空冷散热器幵闭可切换空冷凉水式机力冷却塔无收水器旁路循环并增加 喷雾, 其空冷散热器为人字形布置系统结构示意图。
[0055] 图 5为空冷散热器幵闭可切换空冷凉水式机力冷却塔设有收水器旁路循环, 其 空冷散热器为 V形布置结构示意图;
[0056] 图 6为空冷散热器幵闭可切换空冷凉水式机力冷却塔设有收水器旁路循环并增 加喷雾, 其空冷散热器为 V字形布置系统结构示意图;
[0057] 图 7为空冷散热器幵闭可切换空冷凉水式机力冷却塔设有收水器旁路循环, 其 空冷散热器为矩形多边形矩阵布置结构示意图;
[0058] 图 8为空冷散热器幵闭可切换空冷凉水式机力冷却塔设有收水器旁路循环并增
加喷雾, 其空冷散热器为矩形多边形矩阵布置系统结构示意图。
图中: 1发电机、 2汽轮机、 3汽轮机转子、 4冷凝器、 5冷凝水泵、 6热循环水输 水母管、 7循环水泵、 8循环水给水管、 9a空气幵闭循环切换阀、 10b空气幵闭循 环切换阀、 11空气冷却器闭路循环回水管、 12集水池、 13蜂窝波浪布水冷却层 、 14布水器、 15布水控制阀门、 16汇水管、 17排水槽、 18空气冷却器、 19冷却 塔筒体、 20膨胀水箱、 21循环水取水母管、 22排污控制阀、 23排污管、 24喷淋 母管控制阀 a、 25汇水母管控制阀、 26循环水补水管、 27循环水补水逆止阀、 28 旁路喷淋取水控制阀、 29旁路喷淋循环水泵、 30喷淋母管控制阀15、 31喷淋母管 、 32调风百页窗、 33收水器、 34风机、 35独立加湿给水母管控制阀、 36独立加 湿给水母管、 37独立加湿蓄水箱、 38进排气管、 39补水阀、 40补水管、 41喷头 、 42雾化喷头控制阀、 43独立加湿水泵、 44独立加湿进水控制阀
Claims
[权利要求 1] 空冷散热器幵闭可切换空冷凉水式机力冷却塔及运行方式, 包括机力 冷却塔壳体、 空冷散热器、 喷淋蒸发装置、 风机、 集水池、 旁路喷淋 循环水泵、 自动控制装置, 配水布水装置、 汇水布水装置、 波纹板布 水换热蜂窝填料层、 循环水泵、 热负荷换热器、 进、 出水管道, 其特 征是: 在机力冷却塔壳体中的波纹板布水换热蜂窝填料层, 及喷淋 布水装置的下风向, 或飘水收水器之上的下风向, 设有安装固定在支 架上的, 由多个空气冷却单元连接组成的空冷散热器;
空冷散热器的空气冷却单元相互之间, 空冷散热器的空气冷却单元, 与机力冷却塔壳体壁之间无冷却风短路漏风通道; 均匀分布安装固定 于与机力冷却塔承重支撑, 连接的空冷散热器支架上;
在空冷散热器的上风向, 设有与旁路喷淋循环水泵连接的喷淋蒸发装 置; 旁路喷淋循环水泵从集水池抽取旁路加湿循环水, 通过管道控制 阀门组件, 与喷淋蒸发装置连接, 通过自动控制装置控制喷淋蒸发装 置淋水;
或在空冷散热器的上风向, 设有与旁路喷淋循环水泵连接的另一路独 立喷雾加湿系统; 旁路喷淋循环水泵从专设储水池抽取旁路加湿循环 水, 通过独立的管道控制阀门组件, 与专设喷嘴矩阵连接, 专设喷嘴 矩阵的分布, 与原有的喷淋蒸发装置的设置分布等同; 通过另一路独 立喷雾加湿系统的喷嘴, 对从波纹板布水换热蜂窝填料层喷雾; 形成 在机力冷却塔壳体内部, 从排风口向进风口, 依次为风机、 配水布水 装置、 空冷散热器、 汇水布水装置、 喷淋蒸发装置、 波纹板布水换热 蜂窝填料层、 波纹板布水换热蜂窝填料层支撑框架、 进风分配容腔、 集水池的机力冷却塔架构;
或形成在机力冷却塔壳体内, 从排风口向进风口, 依次为风机、 配水 布水装置、 空冷散热器、 汇水布水装置、 飘水收水器、 喷淋蒸发装置 、 波纹板布水换热蜂窝填料层、 波纹板布水换热蜂窝填料层支撑框架 、 进风分配容腔、 集水池的机力冷却塔架构;
空冷散热器幵闭可切换空冷凉水复合式机力冷却塔, 分为四种运行模 式:
第一种: 为空冷散热器直接喷淋式冷却循环的幵放式运行模式, 此模 式为夏季运行模式:
冷却循环水进水管道母管, 与设置于机力冷却塔壳体内的配水布水装 置连接, 配水布水装置, 与空冷散热器的空气冷却单元上端管道连接 , 空冷散热器空气冷却单元的下端, 与汇水布水装置连接, 汇水布水 装置与管道控制阀门组件连接; 管道控制阀门组件, 与喷淋蒸发装置 直接连接; 或管道控制阀门组件, 穿过飘水收水器, 与喷淋蒸发装置 连接;
其中, 管道控制阀门组件的切换阀, 与喷淋蒸发装置之间为幵启联通 状态; 管道控制阀门组件, 与循环水泵之间, 为关闭截流状态; 旁路 喷淋循环水泵的取水管, 置于集水池内; 喷淋蒸发装置与旁路喷淋循 环水泵之间阀门, 为关闭截流状态;
或管道控制阀门组件的切换阀, 与喷淋蒸发装置之间为幵启联通状态 ; 管道控制阀门组件, 与循环水泵之间, 也为幵启联通状态, 通过调 控管道控制阀门组件, 实现对进入循环水泵冷却循环水温的控制; 旁 路喷淋循环水泵的取水管, 置于集水池内; 喷淋蒸发装置与旁路喷淋 循环水泵之间阀门, 为关闭截流状态;
冷却循环水, 通过喷淋蒸发装置淋水, 冷却循环水落到波纹板布水换 热蜂窝填料层上, 喷淋蒸发装置淋水形成的飘水上升, 直接与空冷散 热器接触; 或喷淋蒸发装置淋水形成的飘水上升, 通过飘水收水器收 集下流; 落到波纹板布水换热蜂窝填料层上的淋水, 穿过波纹板布水 换热蜂窝填料层的管腔表面, 和上升气流换热; 将冷却循环水的显热 , 通过蒸发转换为汽化潜热; 上升气流则通过空气湿度增加, 使干球 温度降低, 湿球温度升高实现对冷却循环水的蒸发传导降温; 冷却循 环水在机力冷却塔壳体的进风分配容腔内和进入的冷却风进一步换热 后, 落入集水池中完成冷却循环水的冷却过程; 经过冷却的冷却循环
水, 通过幵启集水池与循环水泵之间的阀门, 将冷却循环水通过出水 管道, 泵入热负荷换热器, 冷却循环水在热负荷换热器内吸热后, 通 过冷却循环水进水管道母管, 进入配水布水装置、 空冷散热器, 实现 空冷散热器冷却循环水的幵放式循环;
冷却风通过机力冷却塔壳体的进风通道, 进入进风分配容腔, 与下淋 的冷却循环水初步接触换热, 之后, 冷却风进入波纹板布水换热蜂窝 填料层, 与沿波纹板布水换热蜂窝填料层管壁下流的冷却循环水进行 逆流热交换, 使空气湿度增加, 对冷却循环水降温; 当冷却风上升流 出波纹板布水换热蜂窝填料层后, 夹带吹起从喷淋蒸发装置下淋的冷 却循环水; 夹带有飘水的饱和湿空气冷却风上升, 穿过飘水收水器, 飘水收水器收集截留部分飘水, 仍夹带有部分飘水的饱和湿空气冷却 风继续上升, 与空冷散热器接触, 使饱和湿空气冷却风夹带的部分飘 水, 与空冷散热器表面触碰吸热蒸发, 将风吹飘水充分利用; 饱和湿 空气冷却风通过空冷散热器表面加热升温, 干球温度升高, 空气湿度 降低变成不饱和空气, 空气密度下降, 增强了机力冷却塔壳体内外空 气对流;
第二种: 为空冷散热器封闭式冷却循环, 旁路喷淋空气加湿循环的冷 却运行模式, 为春秋运行模式;
冷却循环水进水管道母管, 与设置于机力冷却塔壳体内的配水布水装 置连接, 配水布水装置, 与空冷散热器的空气冷却单元上端管道连接 , 空冷散热器空气冷却单元的下端, 与汇水布水装置连接, 汇水布水 装置与管道控制阀门组件连接; 管道控制阀门组件, 与喷淋蒸发装置 直接连接; 或管道控制阀门组件, 穿过飘水收水器, 与喷淋蒸发装置 连接; 其中, 管道控制阀门组件的切换阀, 与喷淋蒸发装置之间, 为 关闭截流状态; 与循环水泵之间, 为幵启联通状态; 旁路喷淋循环水 泵的取水管, 置于集水池内; 喷淋蒸发装置与旁路喷淋循环水泵之间 阀门, 为幵启联通状态;
冷却循环水在热负荷换热器内吸热后, 通过冷却循环水进水管道母管
, 进入配水布水装置、 空冷散热器, 空冷散热器经过空气冷却后, 进 入汇水布水装置, 之后, 经过空冷散热器冷却的循环水, 通过与循环 水泵之间幵启的阀门, 将冷却循环水通过出水管道, 泵入热负荷换热 器, 实现空冷散热器冷却循环水的封闭式冷却循环; 封闭式冷却循环 的管路系统上, 设有水膨胀罐;
旁路喷淋循环水泵, 与喷淋蒸发装置之间的管道控制阀门组件, 设于 幵启联通状态, 旁路喷淋循环水泵, 从集水池抽取旁路加湿循环水, 旁路喷淋循环水泵的出水管道, 通过与之连接的喷淋蒸发装置淋水; 冷却循环水落到波纹板布水换热蜂窝填料层上, 喷淋蒸发装置淋水形 成的飘水上升, 直接与空冷散热器接触; 或喷淋蒸发装置淋水形成的 飘水上升, 通过飘水收水器收集下流; 落到波纹板布水换热蜂窝填料 层上的淋水, 穿过波纹板布水换热蜂窝填料层的管腔表面, 和上升气 流换热增湿; 将上升气流的显热, 通过蒸发增湿转换为汽化潜热; 使 上升气流通过空气湿度增加, 实现冷却空气干球温度的降低; 旁路加 湿循环水, 在机力冷却塔壳体的进风分配容腔内, 和进入的冷却风加 湿换热后, 落入集水池中, 完成旁路加湿循环水对冷却风的加湿冷却 过程; 通过幵启集水池, 与旁路喷淋循环水泵之间的阀门, 将旁路加 湿循环水通过出水管道, 泵入喷淋蒸发装置, 旁路加湿循环水在对冷 却风加湿降温后, 落入集水池, 实现旁路加湿循环水对冷却风的幵放 式加湿降温循环;
或独立喷雾加湿水泵, 连接另一路独立喷雾加湿系统; 另一路独立喷 雾加湿系统的喷嘴分布, 与原有的喷淋蒸发装置的设置分布等同; 通 过另一路独立喷雾加湿系统的喷嘴对冷却风喷雾化水, 对冷却风进行 加湿, 降低干球温度, 提高冷却风的吸热能力, 另一路独立喷雾加湿 系统的喷嘴喷雾形成的飘水, 通过接触空冷散热器表面蒸发, 提高了 空冷散热器的冷却效果, 实现了空冷散热器蒸发传导复合散热; 冷却风通过机力冷却塔壳体的进风通道, 进入进风分配容腔, 与下淋 的旁路加湿循环水初步接触换热, 之后, 冷却风进入波纹板布水换热
蜂窝填料层, 与沿波纹板布水换热蜂窝填料层管壁下流的旁路加湿循 环水进行逆流热交换, 使空气湿度增加; 当冷却风上升流出波纹板布 水换热蜂窝填料层后, 夹带吹起从喷淋蒸发装置下淋的旁路加湿循环 水; 夹带有飘水的饱和湿空气冷却风上升, 直接与空冷散热器接触, 使饱和湿空气冷却风夹带的部分飘水, 与空冷散热器表面触碰吸热蒸 发, 将风吹飘水充分利用; 或当冷却风上升流出波纹板布水换热蜂窝 填料层后, 夹带吹起从喷淋蒸发装置下淋的旁路加湿循环水; 夹带有 飘水的饱和湿空气冷却风上升, 与穿过飘水收水器, 飘水收水器收集 截留部分飘水, 仍夹带有部分飘水的饱和湿空气冷却风继续上升, 与 空冷散热器接触, 使饱和湿空气冷却风夹带的部分飘水, 与空冷散热 器表面触碰吸热蒸发, 将风吹飘水充分利用; 而饱和湿空气冷却风, 则通过空冷散热器表面加热升温, 使空气的干球温度升高, 空气湿度 降低, 变成不饱和空气, 空气密度下降, 增强了机力冷却塔壳体内外 空气对流;
第三种: 为只幵风机的空冷散热器封闭式通风冷却运行模式, 为初春 、 深秋运行模式:
冷却循环水进水管道母管, 与设置于机力冷却塔壳体内的配水布水装 置连接, 配水布水装置, 与空冷散热器的空气冷却单元上端管道连接 , 空冷散热器空气冷却单元的下端, 与汇水布水装置连接, 汇水布水 装置与管道控制阀门组件连接; 管道控制阀门组件, 与喷淋蒸发装置 直接连接; 或管道控制阀门组件, 穿过飘水收水器, 与喷淋蒸发装置 连接; 其中, 管道控制阀门组件的切换阀, 与喷淋蒸发装置之间, 为 关闭截流状态; 与循环水泵之间, 为关闭截流状态; 旁路喷淋循环水 泵的取水管, 置于集水池内; 喷淋蒸发装置与旁路喷淋循环水泵之间 阀门, 为关闭截流状态;
冷却循环水在热负荷换热器内吸热后, 通过冷却循环水进水管道母管 , 进入配水布水装置、 空冷散热器, 空冷散热器经过空气冷却后, 进 入汇水布水装置, 之后, 经过空冷散热器冷却的循环水, 通过与循环
水泵之间幵启的阀门, 将冷却循环水通过出水管道, 泵入热负荷换热 器, 实现空冷散热器冷却循环水的封闭式冷却循环; 封闭式冷却循环 的管路系统上, 设有水膨胀罐;
第四种: 为不幵风机的空冷散热器封闭式自然对流通风冷却运行模式 , 为冬季运行模式:
冷却循环水进水管道母管, 与设置于机力冷却塔壳体内的配水布水装 置连接, 配水布水装置, 与空冷散热器的空气冷却单元上端管道连接 , 空冷散热器空气冷却单元的下端, 与汇水布水装置连接, 汇水布水 装置与管道控制阀门组件连接; 管道控制阀门组件, 与喷淋蒸发装置 直接连接; 或管道控制阀门组件, 穿过飘水收水器, 与喷淋蒸发装置 连接; 其中, 管道控制阀门组件的切换阀, 与喷淋蒸发装置之间, 为 关闭截流状态; 与循环水泵之间, 为关闭截流状态; 旁路喷淋循环水 泵的取水管, 置于集水池内; 喷淋蒸发装置与旁路喷淋循环水泵之间 阀门, 为关闭截流状态;
冷却循环水在热负荷换热器内吸热后, 通过冷却循环水进水管道母管 , 进入配水布水装置、 空冷散热器, 空冷散热器经过空气冷却后, 进 入汇水布水装置, 之后, 经过空冷散热器冷却的循环水, 通过与循环 水泵之间幵启的阀门, 将冷却循环水通过出水管道, 泵入热负荷换热 器, 实现空冷散热器冷却循环水的封闭式冷却循环; 封闭式冷却循环 的管路系统上, 设有水膨胀罐;
以上四种冷却运行模式可以任意切换; 热循环水通过配水布水装置, 等流径、 等压、 均匀分布配水于空冷散热器中, 通过空冷散热器预冷 的循环水, 也以等流径、 等压、 均匀要求, 通过汇水布水装置收集汇 流循环水; 经空冷散热器预冷却的循环水, 通过布水控制阀门, 控制 喷淋蒸发装置控制喷淋水量, 将水布于波纹板布水换热蜂窝填料层上 , 循环水在波纹板布水换热蜂窝填料层内, 与上升的空气热交换冷却 后, 下淋于集水池; 通过调控管道控制阀门组件, 控制空冷散热器冷 却水, 与通过喷淋蒸发装置冷却水对循环水泵的供水比例, 实现对各
个季节对循环水泵的供水温度调控;
冷却风通过机力冷却塔壳体的进风通道, 进入进风分配容腔, 之后, 冷却风进入波纹板布水换热蜂窝填料层, 当冷却风上升流出波纹板布 水换热蜂窝填料层后, 冷却风上升, 直接与空冷散热器接触, 或当冷 却风上升流出波纹板布水换热蜂窝填料层后, 穿过飘水收水器, 与空 冷散热器接触, 冷却风则通过空冷散热器表面加热升温, 使空气的干 球温度升高, 空气湿度降低, 使空气密度下降, 增强了机力冷却塔壳 体内外空气对流。
[权利要求 2] 根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 空冷散热器空气冷却单元为冷却管, 冷却管 为光管, 或为翅片管; 冷却管包括金属管、 塑胶管; 或空冷散热器空 气冷却单元为冷却热管, 冷却热管为光管, 或为翅片管; 冷却热管包 括金属管、 玻璃管、 塑胶管; 空气冷却单元为单一材料管制造, 或为 复合材料管制造。
[权利要求 3] 根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 空冷散热器空气冷却单元为冷却热管, 冷却 热管为光管, 或为翅片管; 冷却热管包括金属管、 玻璃管、 塑胶管; 空气冷却单元为单一材料管制造, 或为复合材料管制造。
[权利要求 4] 根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 空冷散热器由多个空气冷却单元组成, 空气 冷却单元为光管, 或为带冷却翅片的管; 空气冷却单元由金属材料或 导热性能良好的材料通过焊接、 铆接、 胀接、 铸造、 粘接、 轧制、 挤 出工艺制作成型, 冷却翅片管通过金属轧制、 挤出制成型材加工制作 , 加工出的型材上面的翅片为螺纹状; 空冷散热器通过与管道, 将多 个空气冷却单元管片密封连接; 或空冷散热器通过与管道, 将多个空 气冷却单元热管密封连接; 构成平行六面体的空气冷却器组件; 空气 冷却器组件的进水口与出水口等流径布置, 管片与管片之间设有空气 冷却器组件间隔支撑; 空冷散热器以人字形, 或多面体形, 按矩阵,
或同心扇形方式布置排列, 安装固定在空冷散热器支架上。
根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 空冷散热器支架用金属、 混凝土、 玻璃钢、 或塑钢及高分子有机复合材料制作, 空冷散热器支架固定于冷却塔的 承重支撑体上; 或空冷散热器悬挂于空冷散热器固定支架上, 或摆放 于空冷散热器支架上, 通过包括插键、 螺栓紧固组件加以固定。 根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 进水管、 汇水管与空气冷却器进、 出水口密 封连接, 进水母管布置于空冷散热器进水口旁边, 由空冷散热器支架 支撑固定, 汇水管与空冷散热器出水口, 通过管及接头连接, 汇水管 通过空冷散热器支架支撑固定。
根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 飘水收水器固定于空冷散热器的进风口处, 与空冷散热器连接组合或固定于空冷散热器固定支架上。
根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 汇水管上的阀门用于控制空冷散热器的独立 运行和变负荷运行; 喷淋布水装置上安装有自动控制阀门。
根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 循环水泵、 旁路喷淋循环水泵的进水口, 或 出水口上, 设有超声波灭藻器。
根据权利要求 1所述的空冷散热器幵闭可切换空冷凉水式机力冷却塔 及运行方式, 其特征是: 旁路喷淋水的补水, 为软化水。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610490439 | 2016-06-29 | ||
CN201610490439.6 | 2016-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018000774A1 true WO2018000774A1 (zh) | 2018-01-04 |
Family
ID=60786557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/112222 WO2018000774A1 (zh) | 2016-06-29 | 2016-12-26 | 空冷散热器开闭可切换空冷凉水式机力冷却塔及运行方式 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018000774A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112456586A (zh) * | 2020-10-26 | 2021-03-09 | 中国电力工程顾问集团中南电力设计院有限公司 | 脱硫废水进间接空冷塔内强化蒸发减量的方法 |
WO2022100768A1 (en) | 2020-11-11 | 2022-05-19 | Futismo | Modular displays |
WO2023105288A1 (en) | 2021-12-09 | 2023-06-15 | Insightec, Ltd. | Systems and methods for effective delivery of monoclonal antibodies to neurological targets |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09257379A (ja) * | 1996-03-25 | 1997-10-03 | Takasago Thermal Eng Co Ltd | 空調設備およびその運転方法 |
CN203224148U (zh) * | 2013-02-04 | 2013-10-02 | 广州市华德工业有限公司 | 一种带填料耦合盘管的闭式冷却塔及空调系统 |
CN103353242A (zh) * | 2013-07-10 | 2013-10-16 | 天津大学 | 一种可控温的干湿-开闭集成式冷却塔系统 |
-
2016
- 2016-12-26 WO PCT/CN2016/112222 patent/WO2018000774A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09257379A (ja) * | 1996-03-25 | 1997-10-03 | Takasago Thermal Eng Co Ltd | 空調設備およびその運転方法 |
CN203224148U (zh) * | 2013-02-04 | 2013-10-02 | 广州市华德工业有限公司 | 一种带填料耦合盘管的闭式冷却塔及空调系统 |
CN103353242A (zh) * | 2013-07-10 | 2013-10-16 | 天津大学 | 一种可控温的干湿-开闭集成式冷却塔系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112456586A (zh) * | 2020-10-26 | 2021-03-09 | 中国电力工程顾问集团中南电力设计院有限公司 | 脱硫废水进间接空冷塔内强化蒸发减量的方法 |
WO2022100768A1 (en) | 2020-11-11 | 2022-05-19 | Futismo | Modular displays |
WO2023105288A1 (en) | 2021-12-09 | 2023-06-15 | Insightec, Ltd. | Systems and methods for effective delivery of monoclonal antibodies to neurological targets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018000773A1 (zh) | 空冷散热器开闭可切换空冷凉水复合式冷却塔及运行方式 | |
CN103542467B (zh) | 空调冷凝水利用装置 | |
CN105066734B (zh) | 一种复合式冷却塔 | |
CN103712477B (zh) | 热泵供热除雾节水型冷却塔 | |
CN203672184U (zh) | 一种热泵供热除雾节水型冷却塔 | |
CN101514829B (zh) | 带填料的板管蒸发式冷凝空调机组 | |
CN104197588A (zh) | 一种复合结构湿膜表冷器 | |
WO2020187010A1 (zh) | 一种冷热双蓄型房间空调装置 | |
WO2018000774A1 (zh) | 空冷散热器开闭可切换空冷凉水式机力冷却塔及运行方式 | |
CN105021058A (zh) | 节能节水环保型工艺绝热空气冷却器 | |
CN100412490C (zh) | 空冷凉水复合式冷却塔 | |
CN212566086U (zh) | 一种低温热超导强化蒸发冷却器 | |
CN209672864U (zh) | 换热器外置的干湿联合闭式冷却系统 | |
CN2658688Y (zh) | 具有翅片冷却管组的蒸发式冷凝器 | |
CN105157447B (zh) | 闭式绝热空气冷却器 | |
CN108050871A (zh) | 一种干湿组合型热管式间接空冷法 | |
CN2553290Y (zh) | 间接蒸发制冷式新风机组 | |
CN110186293A (zh) | 一种中央空调用太阳能冷却塔及冷却方法 | |
CN109899952A (zh) | 双蒸发节能空调机组 | |
CN108826539A (zh) | 管式露点间接蒸发冷却空调器 | |
CN105202941B (zh) | 闭式绝热蒸发冷却器 | |
CN204787919U (zh) | 节能节水环保型工艺绝热空气冷却器 | |
CN201569342U (zh) | 一种新型间接蒸发冷却器 | |
CN204678572U (zh) | 基于蒸发冷却与热管、热泵联合的空调机组 | |
CN209116473U (zh) | 一种采用毛细管网末端的室外场所辐射换热棚 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16907161 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16907161 Country of ref document: EP Kind code of ref document: A1 |