WO2018097532A1 - Method for producing frame-integrated mask - Google Patents
Method for producing frame-integrated mask Download PDFInfo
- Publication number
- WO2018097532A1 WO2018097532A1 PCT/KR2017/012862 KR2017012862W WO2018097532A1 WO 2018097532 A1 WO2018097532 A1 WO 2018097532A1 KR 2017012862 W KR2017012862 W KR 2017012862W WO 2018097532 A1 WO2018097532 A1 WO 2018097532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- mask
- manufacturing
- integrated mask
- integrated
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000009413 insulation Methods 0.000 claims abstract description 7
- 238000005323 electroforming Methods 0.000 claims abstract description 6
- 238000007747 plating Methods 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 49
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 230000001154 acute effect Effects 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 description 32
- 230000008021 deposition Effects 0.000 description 30
- 230000008569 process Effects 0.000 description 27
- 239000000758 substrate Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 12
- 229910001374 Invar Inorganic materials 0.000 description 10
- 239000000243 solution Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910001111 Fine metal Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/10—Moulds; Masks; Masterforms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/20—Separation of the formed objects from the electrodes with no destruction of said electrodes
Definitions
- the present invention relates to a method of manufacturing a frame-integrated mask. More specifically, the present invention relates to a method for manufacturing a frame-integrated mask, in which the frame and the mask are integrated to prevent deformation of the mask and to align the alignment.
- the electroplating method is to immerse the positive electrode and the negative electrode in the electrolyte, and to apply the power to electrodeposit the metal thin plate on the surface of the negative electrode, it is possible to manufacture the ultra-thin plate, it is a method that can be expected to mass production.
- a fine metal mask (FMM) method of depositing an organic material at a desired position by closely attaching a thin metal mask to a substrate is mainly used.
- the mask is manufactured in a stick form, a plate form, and the like, and then the mask is welded and fixed to the OLED pixel deposition frame.
- the mask In order to manufacture a large area OLED, several masks may be fixed to the OLED pixel deposition frame, but there is a problem in that the masks are not well aligned.
- the thickness of the mask film is too thin and the large area in the process of welding fixed to the frame there is a problem that the mask is struck or warped by the load.
- an object of the present invention is to provide a method for manufacturing a frame-integrated mask in which the mask and the frame form an integrated structure, which are devised to solve the above-mentioned problems of the prior art.
- the present invention is a frame-integrated mask that can be formed at a time without separately configuring the mask and the frame, omitting the process of fixing / aligning the mask to the frame, and clearly aligning the mask to improve stability of pixel deposition. It is an object of the present invention to provide a method for producing the same.
- an object of this invention is to provide the manufacturing method of the frame integrated mask which can manufacture the mask which has a pattern only by a plating process.
- a method of manufacturing a frame-integrated mask formed integrally with the mask and the frame for supporting the mask comprising: (a) providing a mother plate formed with a patterned insulating portion on one surface; (b) connecting the frame to at least one side of the base plate; (c) using the base plate and the frame as a cathode body and forming a plating film on the base plate and the frame by electroforming; And (d) separating the mother plate from the plating film and the frame.
- the mother board and the frame may be a conductive material.
- the mother plate may be a single crystal silicon material.
- the insulating part may be any one of a photoresist, silicon oxide, and silicon nitride material.
- the insulating portion may have a tapered shape.
- the frame may have a shape surrounding the border of the mother plate.
- the frame may have a pair of straight shapes opposite and parallel to each other.
- step (c) the formation of the plated film on the insulating part may be prevented so that the plated film may have a pattern.
- the step of heat-treating the plated film may be further performed.
- Heat treatment may be performed at 300 °C to 800 °C.
- the surface where the base plate and the frame contact each other may be perpendicular or acute to the bottom surface of the base plate.
- the mother plate may be separated in the lower direction of the plating film and the frame.
- the process of fixing / aligning the mask to the frame is omitted, and the alignment of the mask is made clear, thereby improving the stability of pixel deposition.
- FIG. 1 is a schematic view showing an OLED pixel deposition apparatus using an FMM.
- FIG. 2 is a schematic diagram illustrating a mask.
- FIG. 3 is a schematic diagram illustrating a frame-integrated mask according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram illustrating a process of manufacturing the frame-integrated mask of FIG. 3 in accordance with an embodiment of the present invention.
- FIG. 5 is a schematic diagram illustrating a state in which a frame and a mother plate are connected according to an embodiment of the present invention.
- CTE coefficient of expansion
- FIG. 7 is a schematic diagram illustrating an OLED pixel deposition apparatus to which the frame-integrated mask of FIG. 3 is applied.
- FIG. 8 is a schematic diagram illustrating a state in which a frame-integrated mask according to another embodiment of the present invention is applied to an OLED pixel deposition apparatus.
- PP pixel pattern, mask pattern
- FIG. 1 is a schematic diagram illustrating an OLED pixel deposition apparatus 200 using an FMM 100.
- 2 is a schematic diagram illustrating a mask.
- an OLED pixel deposition apparatus 200 includes a magnet plate 300 in which a magnet 310 is accommodated and a coolant line 350 is disposed, and an organic material source from the bottom of the magnet plate 300. And a deposition source supply 500 for supplying 600.
- a target substrate 900 such as glass on which the organic source 600 is deposited may be interposed between the magnet plate 300 and the source deposition unit 500.
- the FMM 100 may be disposed on the target substrate 900 to be in close contact with or very close to the organic material 600.
- the magnet 310 generates a magnetic field and the FMM 100 may be in close contact with the target substrate 900 by the attraction force by the magnetic field.
- Stick-type masks see FIG. 2 (a)
- plate-type masks see FIG. 2 (b)
- One mask or a plurality of masks may be coupled to the frame 800.
- the frame 800 is fixedly installed in the OLED pixel deposition apparatus 200, and the mask may be coupled to the frame 800 through a separate attachment and welding process.
- the deposition source supply unit 500 may supply the organic source 600 while reciprocating the left and right paths, and the organic source 600 supplied from the deposition source supply unit 500 may pass through the pattern PP formed in the FMM mask 100. By doing so, it may be deposited on one side of the target substrate 900.
- the deposited organic source 600 that has passed through the pattern of the FMM mask 100 may act as the pixel 700 of the OLED.
- the pattern PP of the FMM mask 100 may be formed to be inclined S (or formed into a tapered shape S). . Since the organic sources 600 passing through the pattern PP in a diagonal direction along the inclined surface may also contribute to the formation of the pixel 700, the pixel 700 may be uniformly deposited in overall thickness.
- the mask 100a illustrated in FIG. 2A is a stick type mask, and both sides of the stick may be welded and fixed to the OLED pixel deposition frame 800.
- the mask 100b illustrated in FIG. 2B is a plate-type mask, and may be used in a large area pixel forming process, and the edge of the plate may be welded and fixed to the OLED pixel deposition frame 800.
- FIG. 2C is an enlarged side sectional view taken along line A-A 'of FIGS. 2A and 2B.
- a plurality of display patterns DP may be formed in the bodies of the masks 100a and 100b.
- the display pattern DP is a pattern corresponding to one display such as a smartphone.
- the plurality of pixel patterns PP corresponding to R, G, and B may be confirmed.
- the pixel patterns PP may have an inclined shape and a taper shape (see FIG. 2C).
- a large number of pixel patterns PP are clustered to form one display pattern DP, and a plurality of display patterns DP may be formed on the masks 100: 100a and 100b.
- the display pattern DP is not a concept representing one pattern, and should be understood as a concept in which a plurality of pixel patterns PP corresponding to one display are clustered.
- the pixel pattern PP is mixed with the mask pattern PP.
- the alignment error between the masks may occur, and if a certain mask is deformed or distorted, the mask 100 may be deformed. This may cause misalignment of the entire masks.
- the edge may not be supported correctly, which may cause the mask to be struck or warped by a load.
- the process of directly welding and fixing the mask to the frame 800 can be omitted, and the deformation of the mask can be prevented to clarify the alignment. It is done.
- FIG. 3 is a schematic diagram illustrating a frame-integrated mask 10 according to an embodiment of the present invention.
- FIG. 3A is a perspective view of the frame-integrated mask 10
- FIG. 3B is an enlarged side cross-sectional view of BB ′ of FIG. 3A.
- the frame-integrated mask 10 includes a mask 20a and a frame 30, and the supporting film 20b attached to a part of the surface of the frame 30 is made of the same material as the mask 20a. And may be integrally connected with the mask 20a.
- the mask 20a and the support film 20b are described with different names and symbols according to the formed positions, the parts of the plating films 20: 20a and 20b which are electrodeposited and plated in the actual electroforming process are electroplated. It is the structure formed at the same time in a process.
- the mask 20a and the support film 20b may be used in combination with the plating films 20: 20a and 20b.
- the mask pattern PP may be formed on the mask 10. It is preferable that the mask pattern PP has a substantially tapered shape having a shape that becomes wider or narrower from the top to the bottom, and the upper surface of the mask 10 is the target substrate 900 (see FIG. 5). It is more preferable that the mask pattern PP has a shape in which the width is gradually widened from the top to the bottom.
- the pattern width may be formed in a size of several to several tens of micrometers, preferably in a size smaller than 30 micrometers.
- the mask pattern PP may be formed as the generation of the plating film 20 is prevented by the insulating portion 25. A detailed forming process will be described later with reference to FIG. 4.
- the mask pattern PP has the same structure as the pixel pattern PP / display pattern DP described above with reference to FIG. 2.
- the frame 30 may be bonded to at least a portion (eg, an upper surface) of the plating film 20.
- the plating layer 20 may be bonded to the support layer 20b which is a region other than the region of the mask 20a which is a region where the mask pattern PP is formed.
- the frame 30 preferably has a shape that surrounds the edge of the mask 20a so that the mask 20a can be tightly supported without being knocked or twisted. 3, the rectangular frame 30 is shown, but a closed, circular, polygonal, or the like form is also possible. In addition to this, a pair of straight frames 30 which are opposed to each other in parallel and in contact with both sides of the mask 20a are also possible.
- the frame 30 may not be extended in the direction perpendicular to the forming surface of the mask 20a, but may be inclined to extend.
- the frame 30 may be extended while being inclined outward from the top to the bottom of the frame 30. That is, the frame 30 may have a shape that is wider from the top to the bottom. If the frame 30 has such a shape, there is an advantage that the mother plate 40 (see FIG. 4) can be easily separated in the downward direction after the process of forming the plating film 20.
- the plurality of mother plate 40 is coupled to the frame 30, there is an advantage that can be easily separated from the frame 30 to replace, repair only the defective mother plate 40.
- the area of the plating film 20 (or the supporting film 20b) bonded to the frame 30 is reduced. It becomes wider and there is an advantage that the mask 20a film can be supported more efficiently by reducing the stress acting on the interface which is integrally connected with the support film 20b and the mask 20a.
- the mask 20a is integrally connected with the supporting film 20b of the frame 30, only the frame 30 is moved to the OLED pixel deposition apparatus 200. Alignment of the mask 20a may be completed only by the installation process.
- FIG. 4 is a schematic diagram illustrating a process of manufacturing the frame-integrated mask 100 of FIG. 3 according to an embodiment of the present invention.
- 5 is a schematic view showing a state in which the frame 30 and the mother plate 40 are connected according to an embodiment of the present invention.
- a mother plate 40 may be provided.
- the base plate 40 may use one large area plate plate, or may be arranged by attaching several base plates 40a, 40b, .... When using multiple beds, defective ones can be replaced, repaired and placed in advance.
- the base 41 of the base plate 40 may be a conductive material.
- the base plate 40 may be used as a cathode electrode in electroplating.
- the conductive material in the case of metal, metal oxides may be generated on the surface, impurities may be introduced during the metal manufacturing process, and in the case of the polycrystalline silicon substrate, inclusions or grain boundaries may exist, and the conductive polymer may be present.
- a base material it is highly likely to contain an impurity, and strength. Acid resistance may be weak.
- Elements that interfere with the uniform formation of an electric field on the surface of the base plate 40 (or substrate 41), such as metal oxides, impurities, inclusions, grain boundaries, etc., are referred to as "defects. Due to a defect, a uniform electric field may not be applied to the cathode body of the material described above, and a part of the plating film 20 may be formed unevenly.
- non-uniformity of the plating film 20 and the plating film pattern PP may adversely affect the formation of the pixel.
- the pattern width of the FMM and the shadow mask can be formed in the size of several to several tens of micrometers, preferably smaller than 30 micrometers, even a defect of several micrometers is large enough to occupy a large proportion in the pattern size of the mask.
- an additional process for removing metal oxides, impurities, and the like may be performed to remove the defects in the cathode material of the material described above, and another defect such as etching of the anode material may be caused in this process. have.
- the present invention can use the base material 41 of a single crystal silicon material.
- the substrate 41 may be subjected to high concentration doping of 10 19 or more. Doping may be performed on the entirety of the substrate 41, or may be performed only on the surface portion of the substrate 41.
- the doped single crystal silicon is free from defects, there is an advantage in that a uniform plating film 20 (or mask 20a) can be generated due to the formation of a uniform electric field on the entire surface during electroplating.
- the FMM 100 manufactured through the uniform plating film 20 may further improve the image quality level of the OLED pixel.
- process costs are reduced and productivity is improved.
- the insulating portion 45 may be formed only by a process of oxidizing and nitriding the surface of the substrate 41 as needed.
- the insulating part 45 may serve to prevent electrodeposition of the plating film 20 to form a pattern PP of the plating film 20.
- Side 42 of the base 41 may have a shape corresponding to the inner side of the frame 30 to facilitate connection with the frame 30.
- FIG. 4A a substrate 41 having an inclined side surface 42 is shown.
- a patterned 46 insulating portion 45 may be formed on one surface of the substrate 41.
- the insulating part 45 is formed to protrude (embossed) on one surface of the base 41 and may have an insulating property to prevent generation of the plating film 20.
- the insulating part 45 may be formed of any one material of photoresist, silicon oxide, and silicon nitride.
- the insulating part 45 may form silicon oxide and silicon nitride on the substrate 41 by a deposition method or the like, and based on the substrate 41, thermal oxidation and thermal nitriding methods may be used. Can also be used.
- the photoresist may be formed using a printing method or the like.
- the insulating part 45 may have a thickness of about 5 ⁇ m to 20 ⁇ m to be thicker than the plating film 20 to be described later.
- the insulation part 45 has a taper shape.
- a multiple exposure method, a method of varying the exposure intensity for each region, and the like can be used.
- the plating film 20 is formed from the exposed surface of the substrate 41, and in the region where the insulating part 45 is to be disposed, generation of the plating film 20 is prevented to form the pattern PP. Can be. Since the mother plate 40 may be formed up to a pattern in the process of generating the plating film 20, the mother plate 40 may be used in parallel with the mold and the cathode body.
- the frame 30 may be connected to at least one side of the mother plate 40.
- the connection refers to a concept including a series of actions that are bonded between the frame 30 and the mother plate 40 through an adhesive, coupled through fastening means such as bolts, or arranged to be in close contact with each other.
- the frame 30 is also made of SUS, Ti, or the like having conductivity so that the plating film 20 (or the support film 20b) can be formed on the surface during the electroplating process, and the rigidity as the frame 30 can be secured at the same time. It is preferable to employ a metal material. In addition, in order to prevent deformation of the frame 30 due to heat in the OLED pixel deposition process, it is preferable to employ a material having a low thermal strain.
- the frame 30 may be arranged to surround at least a part of the border in which one or several mother boards are aligned.
- FIG. 4B although the rectangular frame 30 is disposed to surround the edge of the base plate 40, a pair of straight frames facing each other in parallel with each other and in contact with both sides of the base plate 40 are illustrated. (30) can also be used.
- the frame 30 may have a vertical shape with a constant width, and may have a shape in which the width is widened from the top to the bottom.
- the mother plate 40 is connected in a shape that fits snugly to the inner circumferential surface of the frame 30.
- the side surface 42 of the base plate 40 may also be formed to have a angle or vertical or inclined.
- the angle (a) formed between the surface 42 and the lower surface of the mother plate 40 which the base plate 40 and the frame 30 contact each other may form a right angle or an acute angle.
- the base plate 40 can be easily separated in the downward direction, there is an advantage that can be separated, replace the specific base plate 40 of the plurality of base plate (40).
- the plating films 20: 20a and 20b may be formed on the mother plate 40 and the frame 30.
- a combination of the mother plate 40 and the frame 30 is used as the cathode body, and an anode body (not shown) facing the substrate is prepared.
- the anode body (not shown) may be immersed in the plating liquid (not shown), and all or part of the mother plate 40 and the frame 30 may be immersed in the plating liquid (not shown).
- the plating liquid may be a material of the plating film 20 that will constitute the mask 20a and the supporting film 20b as an electrolyte solution.
- an Invar thin plate made of iron nickel alloy is manufactured as the plating film 20
- a mixed solution of a solution containing Ni ions and a solution containing Fe ions may be used as the plating solution.
- a super invar thin plate made of iron nickel cobalt alloy is used as the plating film 20. It can also be used as a plating solution.
- Inva thin plate can be used as a fine metal mask (FMM), a shadow mask (Shadow Mask) in the manufacture of OLED.
- the Invar sheet has a coefficient of thermal expansion of about 1.0 X 10 -6 / °C
- Super Invar thin plate has a coefficient of thermal expansion of about 1.0 X 10 -7 / °C Since it is so low, there is little possibility that the pattern shape of a mask is deformed by thermal energy, and it is mainly used in high-resolution OLED manufacturing.
- the plating solution for the target plating film 20 can be used without limitation, and in the present specification, the manufacturing of the Invar thin plate 20 will be described as a main example.
- the plating film 20 may be electrodeposited on the surfaces of the mother plate 40 and the frame 30.
- the plating film 20 electrodeposited from the exposed surface of the remaining substrate 40 (or the substrate 41) except for the region covered by the insulating portion 45 becomes the mask 20a, and the exposure of the frame 30 is performed.
- the plating film 20 electrodeposited from the surface may be the support film 20b.
- each of the patterned 46 insulating portions 45 may form a mask pattern PP corresponding to R, G, and B of the mask 20a.
- the shape of the side cross-section of the mask pattern PP may be formed to be inclined in a substantially tapered shape, and the inclined angle may be about 45 ° to 65 °.
- the mother plate 40 may be separated from the frame 30 covered with the mask 20a and the support film 20b.
- a process of dissolving and removing the adhesive may be further performed.
- the process of disassembling the fastening means may be further performed. Since the mask 20a is formed on the upper portion of the mother plate 40, the mother plate 40 can be separated from the frame 30 by moving downward.
- Heat treatment may be performed before the mother plate 40 is separated from the frame 30 covered with the mask 20a and the supporting film 20b. Heat treatment may be carried out at a temperature of 300 °C to 800 °C (see Figure 6).
- the Invar thin plate produced by electroplating has a higher coefficient of thermal expansion as compared to the Invar thin plate produced by rolling.
- the thermal expansion coefficient can be lowered by performing a heat treatment on the Invar thin plate, which may cause slight deformation in the Invar thin plate. If the mask 20a, the support layer 20b, and the mother plate 40 are separated and then heat-treated to the mask 20a having the mask pattern PP, some deformation may occur in the mask pattern PP. . Therefore, when the heat treatment is performed while the mother plate 40 and the mask 20a are bonded, the shape of the mask pattern PP formed in the space portion occupied by the insulating portion 45 of the mother plate 40 is kept constant. There is an advantage that can prevent the minute deformation due to the heat treatment.
- FIG. 6 is a graph illustrating a coefficient of expansion (CTE) of a mask after heat treatment according to an embodiment of the present invention.
- CTE coefficient of expansion
- the frame-integrated mask 10 in which the mask 20a and the frame 30 supporting the mask 20a are integrally completed is completed. do.
- FIG. 7 is a schematic diagram illustrating an OLED pixel deposition apparatus 200 to which the frame-integrated mask 10 of FIG. 3 is applied.
- the frame integrated mask 10 may be in close contact with the target substrate 900.
- Means for fixing the frame 30 such as the robot arm may be disposed inside the OLED pixel deposition apparatus 200 to support and fix the frame 30.
- the alignment of the mask 10 may be completed only by disposing only the frame 30 in the OLED pixel deposition apparatus 200. Since the mask 20a is integrally connected to the support film 20b and is tightly supported by the edge thereof, and the support film 20b is coupled to the frame 30, the mask 20a is struck or warped under load. The deformation of can be prevented. As a result, the alignment of the mask 10 required for pixel deposition can be made clear.
- FIG. 8 is a schematic diagram illustrating a state in which the frame-integrated mask 10 ′ according to another embodiment of the present invention is applied to an OLED pixel deposition apparatus.
- the frame-integrated mask 10 ′ includes a mask 20a and a frame 30, and the supporting film 20b attached to a portion of the surface of the frame 30 is a mask 20a. It may have the same material as) and may be integrally connected with the mask 20a. This point is the same as the frame-integrated mask 10 of FIG. The difference is that the frame 35 of the frame-integrated mask 10 'is not disposed directly inside the OLED pixel deposition apparatus 200 like the frame 30 [see FIGS. 3 and 7], and another frame 38. It is a configuration fitted to. Since the frame 35 is integrally connected with the mask 20, the frame 35 may also be referred to as a "stick frame".
- the frame 38 may also be referred to as a "mask frame" because at least one frame-integrated mask 10 '(stick frame) is fitted.
- the mask frame 38 has a depression 39, and a portion of the stick frame 35 of the frame-integrated mask 10 ′ may be fitted into the depression 39.
- the frame 35 may be of a smaller size than the frame 30.
- a plurality of frame-integrated masks 10 'having a small area mask 20a can be used in a stick size (see Fig. 2A).
- the frame-integrated mask 10 ' is advantageously manufactured with less area than the frame-integrated mask 10 in FIG.
- the depression 39 of the mask frame 38 which is disposed inside the OLED pixel deposition apparatus 200 in advance, serves as a guide rail, so that the unitary mask 10 ′ in the form of each unit is manufactured.
- the alignment of the mask can be completed only by inserting the [stick frame 35] into the depression 39.
- the frame 35 may further include a protrusion 37 that may be fitted to the recess 39.
- Means for fixing and fixing the mask frame 38 are disposed inside the OLED pixel deposition apparatus 200 to support and fix the mask frame 38, and to manufacture the frame-integrated mask 10 'manufactured by the OLED pixel. It may be fitted to the depression 39 of the mask frame 38 fixedly installed in the deposition apparatus 200.
- the depression 39 may be formed in a shape corresponding to the stick frame 35 or the protrusion 37 formed on the plurality of frame-integrated masks 10 ′.
- the rectangular stick frame 35 may be firmly fixed without being flown when fitted to the depression 39.
- the straight stick frame 35 may be fitted to the depression 39 in a sliding form, or may be arranged by sliding the plurality of frame-integrated masks 10 'in a sliding form.
- the frame-integrated mask 10, 10 ′ of the present invention forms the mask 20a and is integrally formed with the frames 30, 35, thereby preventing deformation of the mask 20a and providing alignment. There is an effect that can be clarified. Further, in the frame integrated masks 10 and 10 'of the present invention, since the mask 20a is integrally connected with the supporting film 20b of the frame 30, only the frames 30 and 35 are OLED pixel deposition apparatus 200. There is an effect that the alignment of the mask (20a) can be completed only by the process of moving to and installing). In addition, since the insulating portion 45 is formed on the mother plate 40 to prevent the formation of the plating film 20, the mask 20a having the pattern PP is formed only by forming the plating film 20 in the electroplating process. ) Can be produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The present invention relates to a method for producing a frame-integrated mask. The method for producing a frame-integrated mask (10) according to the present invention comprises the steps of: (a) providing a base plate (40) having, on one surface thereof, patterned (46) insulation parts (45); (b) connecting a frame (30) to at least one side (42) of the base plate (40); (c) using the base plate (40) and frame (30) as a cathode body, forming plated film (20: 20a, 20b) on the base plate (40) and frame (30) via electroforming; and (d) separating the base plate (40) from the plated film (20) and frame (30).
Description
본 발명은 프레임 일체형 마스크의 제조 방법에 관한 것이다. 보다 상세하게는, 프레임과 마스크가 일체를 이루어 마스크의 변형을 방지하고 얼라인(align)을 명확하게 할 수 있는 프레임 일체형 마스크의 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a frame-integrated mask. More specifically, the present invention relates to a method for manufacturing a frame-integrated mask, in which the frame and the mask are integrated to prevent deformation of the mask and to align the alignment.
최근에 박판 제조에 있어서 전주 도금(Electroforming) 방법에 대한 연구가 진행되고 있다. 전주 도금 방법은 전해액에 양극체, 음극체를 침지하고, 전원을 인가하여 음극체의 표면상에 금속박판을 전착시키므로, 극박판을 제조할 수 있으며, 대량 생산을 기대할 수 있는 방법이다.Recently, studies on electroforming methods have been underway in thin plate manufacturing. The electroplating method is to immerse the positive electrode and the negative electrode in the electrolyte, and to apply the power to electrodeposit the metal thin plate on the surface of the negative electrode, it is possible to manufacture the ultra-thin plate, it is a method that can be expected to mass production.
한편, OLED 제조 공정에서 화소를 형성하는 기술로, 박막의 금속 마스크(Shadow Mask)를 기판에 밀착시켜서 원하는 위치에 유기물을 증착하는 FMM(Fine Metal Mask) 법이 주로 사용된다.Meanwhile, as a technology of forming pixels in an OLED manufacturing process, a fine metal mask (FMM) method of depositing an organic material at a desired position by closely attaching a thin metal mask to a substrate is mainly used.
기존의 OLED 제조 공정에서는 마스크를 스틱 형태, 플레이트 형태 등으로 제조한 후, 마스크를 OLED 화소 증착 프레임에 용접 고정시켜 사용한다. 대면적 OLED 제조를 위해서 여러 개의 마스크를 OLED 화소 증착 프레임에 고정시킬 수 있는데, 마스크끼리의 정렬이 잘 되지 않는 문제점이 있었다. 또한, 프레임에 용접 고정하는 과정에서 마스크 막의 두께가 너무 얇고 대면적이기 때문에 하중에 의해 마스크가 쳐지거나 뒤틀어지는 문제점이 있었다.In the conventional OLED manufacturing process, the mask is manufactured in a stick form, a plate form, and the like, and then the mask is welded and fixed to the OLED pixel deposition frame. In order to manufacture a large area OLED, several masks may be fixed to the OLED pixel deposition frame, but there is a problem in that the masks are not well aligned. In addition, since the thickness of the mask film is too thin and the large area in the process of welding fixed to the frame there is a problem that the mask is struck or warped by the load.
초고화질의 OLED 제조 공정에서는 수 ㎛의 미세한 정렬의 오차도 화소 증착의 실패로 이어 질 수 있으므로, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고, 정렬을 명확하게 할 수 있는 기술, 마스크를 프레임에 고정하는 기술 등의 개발이 필요한 실정이다.In the ultra-high-definition OLED manufacturing process, even microscopic alignment errors of several micrometers can lead to failure of pixel deposition, so that masks are prevented from being deformed or warped, and the alignment can be clarified. Development of fixing technology is needed.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 마스크와 프레임이 일체형 구조를 이루는 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.Accordingly, an object of the present invention is to provide a method for manufacturing a frame-integrated mask in which the mask and the frame form an integrated structure, which are devised to solve the above-mentioned problems of the prior art.
또한, 본 발명은 마스크와 프레임을 별도 구성하는 과정없이 한번에 형성하여, 마스크를 프레임에 고정/정렬하는 과정을 생략하고, 마스크의 정렬을 명확하게 하여 화소 증착의 안정성을 향상시킬 수 있는 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.In addition, the present invention is a frame-integrated mask that can be formed at a time without separately configuring the mask and the frame, omitting the process of fixing / aligning the mask to the frame, and clearly aligning the mask to improve stability of pixel deposition. It is an object of the present invention to provide a method for producing the same.
또한, 본 발명은 도금 공정만으로 패턴을 가지는 마스크를 제조할 수 있는, 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.Moreover, an object of this invention is to provide the manufacturing method of the frame integrated mask which can manufacture the mask which has a pattern only by a plating process.
본 발명의 상기의 목적은, 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서, (a) 일면 상에 패턴화된 절연부가 형성된 모판을 제공하는 단계; (b) 모판의 적어도 일측에 프레임을 연결하는 단계; (c) 모판 및 프레임을 음극체(Cathode Body)로 사용하고, 전주 도금(Electroforming)으로 모판 및 프레임 상에 도금막을 형성하는 단계; 및 (d) 모판을 도금막 및 프레임과 분리하는 단계를 포함하는, 프레임 일체형 마스크의 제조 방법에 의해 달성된다.The above object of the present invention, a method of manufacturing a frame-integrated mask formed integrally with the mask and the frame for supporting the mask, comprising: (a) providing a mother plate formed with a patterned insulating portion on one surface; (b) connecting the frame to at least one side of the base plate; (c) using the base plate and the frame as a cathode body and forming a plating film on the base plate and the frame by electroforming; And (d) separating the mother plate from the plating film and the frame.
모판 및 프레임은 전도성 재질일 수 있다.The mother board and the frame may be a conductive material.
모판은 단결정 실리콘 재질일 수 있다.The mother plate may be a single crystal silicon material.
절연부는 포토레지스트, 실리콘 산화물, 실리콘 질화물 재질 중 어느 하나일 수 있다.The insulating part may be any one of a photoresist, silicon oxide, and silicon nitride material.
절연부는 테이퍼 형상을 가질 수 있다.The insulating portion may have a tapered shape.
프레임은 모판의 테두리를 둘러싸는 형상을 가질 수 있다.The frame may have a shape surrounding the border of the mother plate.
프레임은 상호 대향하고 평행한 한 쌍의 직선 형상을 가질 수 있다.The frame may have a pair of straight shapes opposite and parallel to each other.
(c) 단계에서, 절연부 상에서 도금막의 형성이 방지되어 도금막이 패턴을 가지게 될 수 있다.In step (c), the formation of the plated film on the insulating part may be prevented so that the plated film may have a pattern.
(c) 단계와 (d) 단계 사이에, 도금막을 열처리하는 단계를 더 수행할 수 있다.Between (c) and (d), the step of heat-treating the plated film may be further performed.
열처리는 300℃ 내지 800℃로 수행할 수 있다. Heat treatment may be performed at 300 ℃ to 800 ℃.
모판과 프레임이 접하는 면은 모판의 하부면과 직각 또는 예각을 이룰 수 있다.The surface where the base plate and the frame contact each other may be perpendicular or acute to the bottom surface of the base plate.
(d) 단계에서, 모판은 도금막 및 프레임의 하부 방향으로 분리할 수 있다.In step (d), the mother plate may be separated in the lower direction of the plating film and the frame.
상기와 같이 구성된 본 발명에 따르면, 마스크와 프레임이 일체형 구조를 이루는 효과가 있다.According to the present invention configured as described above, there is an effect that the mask and the frame form an integrated structure.
또한, 본 발명에 따르면, 마스크를 프레임에 고정/정렬하는 과정을 생략하고, 마스크의 정렬을 명확하게 하여 화소 증착의 안정성을 향상시킬 수 있는 효과가 있다.Further, according to the present invention, the process of fixing / aligning the mask to the frame is omitted, and the alignment of the mask is made clear, thereby improving the stability of pixel deposition.
또한, 본 발명에 따르면, 도금 공정만으로 패턴을 가지는 마스크를 제조할 수 있는 효과가 있다.In addition, according to the present invention, there is an effect that can produce a mask having a pattern only by the plating process.
도 1은 FMM을 이용한 OLED 화소 증착 장치를 나타내는 개략도이다.1 is a schematic view showing an OLED pixel deposition apparatus using an FMM.
도 2는 마스크를 나타내는 개략도이다.2 is a schematic diagram illustrating a mask.
도 3은 본 발명의 일 실시 예에 따른 프레임 일체형 마스크를 나타내는 개략도이다.3 is a schematic diagram illustrating a frame-integrated mask according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 도 3의 프레임 일체형 마스크를 제조하는 과정을 나타내는 개략도이다.4 is a schematic diagram illustrating a process of manufacturing the frame-integrated mask of FIG. 3 in accordance with an embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따른 프레임 및 모판이 연결된 상태를 나타내는 개략도이다.5 is a schematic diagram illustrating a state in which a frame and a mother plate are connected according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따른 열처리 후의 마스크의 열팽창계수(coefficient of expansion, CTE)을 나타내는 그래프이다.6 is a graph illustrating a coefficient of expansion (CTE) of a mask after heat treatment according to an embodiment of the present invention.
도 7은 도 3의 프레임 일체형 마스크를 적용한 OLED 화소 증착 장치를 나타내는 개략도이다.FIG. 7 is a schematic diagram illustrating an OLED pixel deposition apparatus to which the frame-integrated mask of FIG. 3 is applied.
도 8은 본 발명의 다른 실시 예에 따른 프레임 일체형 마스크를 OLED 화소 증착 장치에 적용한 상태를 나타내는 개략도이다.8 is a schematic diagram illustrating a state in which a frame-integrated mask according to another embodiment of the present invention is applied to an OLED pixel deposition apparatus.
<부호의 설명><Description of the code>
10, 10': 프레임 일체형 마스크10, 10 ': frame-integrated mask
20: 도금막20: plating film
20a: 마스크20a: mask
20b: 지지막20b: support film
30, 35: 프레임30, 35: frame
40: 모판40: bed
41: 기재41: description
45: 절연부45: insulation
46: 절연부 패턴46: insulation pattern
100: 마스크, 새도우 마스크, FMM(Fine Metal Mask)100: mask, shadow mask, fine metal mask (FMM)
200: OLED 화소 증착 장치200: OLED pixel deposition apparatus
DP: 디스플레이 패턴DP: display pattern
PP: 화소 패턴, 마스크 패턴PP: pixel pattern, mask pattern
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention, if properly described, is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. In the drawings, like reference numerals refer to the same or similar functions throughout the several aspects, and length, area, thickness, and the like may be exaggerated for convenience.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
도 1은 FMM(100)을 이용한 OLED 화소 증착 장치(200)를 나타내는 개략도이다. 도 2는 마스크를 나타내는 개략도이다.1 is a schematic diagram illustrating an OLED pixel deposition apparatus 200 using an FMM 100. 2 is a schematic diagram illustrating a mask.
도 1을 참조하면, 일반적으로 OLED 화소 증착 장치(200)는, 마그넷(310)이 수용되고, 냉각수 라인(350)이 배설된 마그넷 플레이트(300)와, 마그넷 플레이트(300)의 하부로부터 유기물 소스(600)를 공급하는 증착 소스 공급부(500)를 포함한다.Referring to FIG. 1, in general, an OLED pixel deposition apparatus 200 includes a magnet plate 300 in which a magnet 310 is accommodated and a coolant line 350 is disposed, and an organic material source from the bottom of the magnet plate 300. And a deposition source supply 500 for supplying 600.
마그넷 플레이트(300)와 소스 증착부(500) 사이에는 유기물 소스(600)가 증착되는 유리 등의 대상 기판(900)이 개재될 수 있다. 대상 기판(900)에는 유기물 소스(600)가 화소별로 증착되게 하는 FMM(100)이 밀착되거나 매우 근접하도록 배치될 수 있다. 마그넷(310)이 자기장을 발생시키고 자기장에 의한 인력으로 FMM(100)이 대상 기판(900)에 밀착될 수 있다.A target substrate 900 such as glass on which the organic source 600 is deposited may be interposed between the magnet plate 300 and the source deposition unit 500. The FMM 100 may be disposed on the target substrate 900 to be in close contact with or very close to the organic material 600. The magnet 310 generates a magnetic field and the FMM 100 may be in close contact with the target substrate 900 by the attraction force by the magnetic field.
스틱형(Stick-Type) 마스크[도 2의 (a) 참조], 플레이트형(Plate-Type) 마스크[도 2의 (b) 참조]는 대상 기판(900)에 밀착되기 전에 얼라인(align)이 필요하다. 하나의 마스크 또는 복수의 마스크는 프레임(800)에 결합될 수 있다. 프레임(800)은 OLED 화소 증착 장치(200) 내에 고정 설치되고, 마스크는 별도의 부착, 용접 공정을 거쳐 프레임(800)에 결합될 수 있다.Stick-type masks (see FIG. 2 (a)) and plate-type masks (see FIG. 2 (b)) are aligned before being in close contact with the target substrate 900. This is necessary. One mask or a plurality of masks may be coupled to the frame 800. The frame 800 is fixedly installed in the OLED pixel deposition apparatus 200, and the mask may be coupled to the frame 800 through a separate attachment and welding process.
증착 소스 공급부(500)는 좌우 경로를 왕복하며 유기물 소스(600)를 공급할 수 있고, 증착 소스 공급부(500)에서 공급되는 유기물 소스(600)들은 FMM 마스크(100)에 형성된 패턴(PP)을 통과하여 대상 기판(900)의 일측에 증착될 수 있다. FMM 마스크(100)의 패턴을 통과한 증착된 유기물 소스(600)는 OLED의 화소(700)로서 작용할 수 있다.The deposition source supply unit 500 may supply the organic source 600 while reciprocating the left and right paths, and the organic source 600 supplied from the deposition source supply unit 500 may pass through the pattern PP formed in the FMM mask 100. By doing so, it may be deposited on one side of the target substrate 900. The deposited organic source 600 that has passed through the pattern of the FMM mask 100 may act as the pixel 700 of the OLED.
새도우 이펙트(Shadow Effect)에 의한 화소(700)의 불균일 증착을 방지하기 위해, FMM 마스크(100)의 패턴(PP)은 경사지게 형성(S)[또는, 테이퍼 형상(S)으로 형성]될 수 있다. 경사진 면을 따라서 대각선 방향으로 패턴(PP)을 통과하는 유기물 소스(600)들도 화소(700)의 형성에 기여할 수 있으므로, 화소(700)는 전체적으로 두께가 균일하게 증착될 수 있다.In order to prevent uneven deposition of the pixel 700 by the shadow effect, the pattern PP of the FMM mask 100 may be formed to be inclined S (or formed into a tapered shape S). . Since the organic sources 600 passing through the pattern PP in a diagonal direction along the inclined surface may also contribute to the formation of the pixel 700, the pixel 700 may be uniformly deposited in overall thickness.
도 2의 (a)에 도시된 마스크(100a)는 스틱형 마스크로서, 스틱의 양측을 OLED 화소 증착 프레임(800)에 용접 고정시켜 사용할 수 있다. 도 2의 (b)에 도시된 마스크(100b)는 플레이트형 마스크로서, 넓은 면적의 화소 형성 공정에서 사용할 수 있고, 플레이트의 테두리를 OLED 화소 증착 프레임(800)에 용접 고정시켜 사용할 수 있다. 도 2의 (c)는 도 2의 (a) 및 (b)의 A-A' 확대 측단면도이다.The mask 100a illustrated in FIG. 2A is a stick type mask, and both sides of the stick may be welded and fixed to the OLED pixel deposition frame 800. The mask 100b illustrated in FIG. 2B is a plate-type mask, and may be used in a large area pixel forming process, and the edge of the plate may be welded and fixed to the OLED pixel deposition frame 800. FIG. 2C is an enlarged side sectional view taken along line A-A 'of FIGS. 2A and 2B.
마스크(100: 100a, 100b)의 바디(Body)에는 복수의 디스플레이 패턴(DP)이 형성될 수 있다. 디스플레이 패턴(DP)은 스마트폰 등의 디스플레이 하나에 대응하는 패턴이다. 디스플레이 패턴(DP)을 확대하면 R, G, B에 대응하는 복수의 화소 패턴(PP)을 확인할 수 있다. 화소 패턴(PP)들은 측부가 기울어진 형상, 테이퍼(Taper) 형상을 가질 수 있다[도 2의 (c) 참조]. 수많은 화소 패턴(PP)들은 군집을 이루어 디스플레이 패턴(DP) 하나를 구성하며, 복수의 디스플레이 패턴(DP)이 마스크(100: 100a, 100b)에 형성될 수 있다.A plurality of display patterns DP may be formed in the bodies of the masks 100a and 100b. The display pattern DP is a pattern corresponding to one display such as a smartphone. When the display pattern DP is enlarged, the plurality of pixel patterns PP corresponding to R, G, and B may be confirmed. The pixel patterns PP may have an inclined shape and a taper shape (see FIG. 2C). A large number of pixel patterns PP are clustered to form one display pattern DP, and a plurality of display patterns DP may be formed on the masks 100: 100a and 100b.
즉, 본 명세서에서 디스플레이 패턴(DP)은 패턴 하나를 나타내는 개념은 아니며, 하나의 디스플레이에 대응하는 복수의 화소 패턴(PP)들이 군집된 개념으로 이해되어야 한다. 이하에서는 화소 패턴(PP)을 마스크 패턴(PP)과 혼용한다.That is, in the present specification, the display pattern DP is not a concept representing one pattern, and should be understood as a concept in which a plurality of pixel patterns PP corresponding to one display are clustered. Hereinafter, the pixel pattern PP is mixed with the mask pattern PP.
도 1 및 도 2에 도시된 마스크(100)는 복수개의 마스크를 각각 프레임(800)에 용접 고정하는 과정에서 마스크들간의 정렬 오차가 발생할 수 있고, 특정 마스크가 쳐지거나 뒤틀리는 등의 변형이 발생하면 전체 마스크들의 정렬 오차를 유발할 수 있다. 또한, 대면적의 마스크 1개를 프레임(800)에 고정하는 경우는 테두리가 정확히 지지되지 못하여 마스크가 하중에 의해 쳐지거나 뒤틀리는 문제가 발생할 수 있다.1 and 2, in the process of welding and fixing a plurality of masks to the frame 800, the alignment error between the masks may occur, and if a certain mask is deformed or distorted, the mask 100 may be deformed. This may cause misalignment of the entire masks. In addition, in the case of fixing one large area mask to the frame 800, the edge may not be supported correctly, which may cause the mask to be struck or warped by a load.
따라서, 본 발명은 마스크를 형성함과 동시에 프레임에 일체형으로 구성함에 따라, 마스크를 직접 프레임(800)에 용접 고정하는 과정을 생략하고, 마스크의 변형을 방지하여 정렬을 명확하게 할 수 있는 것을 특징으로 한다.Therefore, according to the present invention, since the mask is formed and integrally formed on the frame, the process of directly welding and fixing the mask to the frame 800 can be omitted, and the deformation of the mask can be prevented to clarify the alignment. It is done.
도 3은 본 발명의 일 실시 예에 따른 프레임 일체형 마스크(10)를 나타내는 개략도이다. 도 3의 (a)는 프레임 일체형 마스크(10)의 사시도, 도 3의 (b)는 도 3의 (a)의 B-B' 확대 측단면도이다.3 is a schematic diagram illustrating a frame-integrated mask 10 according to an embodiment of the present invention. FIG. 3A is a perspective view of the frame-integrated mask 10, and FIG. 3B is an enlarged side cross-sectional view of BB ′ of FIG. 3A.
도 3을 참조하면, 프레임 일체형 마스크(10)는 마스크(20a) 및 프레임(30)을 포함하고, 프레임(30)의 일부 표면에 부착된 지지막(20b)은 마스크(20a)와 동일한 재질을 가지고 마스크(20a)와 일체로 연결될 수 있다. 마스크(20a)와 지지막(20b)은 형성된 위치에 따라 명칭과 부호를 달리 기재하였지만, 실제 전주 도금(Electroforming) 공정에서 전착 도금되는 도금막(20: 20a, 20b)의 각 부분으로, 전주 도금 공정에서 동시에 형성되는 구성이다. 이하의 설명에서 마스크(20a), 지지막(20b)은 도금막(20: 20a, 20b)과 혼용되어 사용될 수 있다.Referring to FIG. 3, the frame-integrated mask 10 includes a mask 20a and a frame 30, and the supporting film 20b attached to a part of the surface of the frame 30 is made of the same material as the mask 20a. And may be integrally connected with the mask 20a. Although the mask 20a and the support film 20b are described with different names and symbols according to the formed positions, the parts of the plating films 20: 20a and 20b which are electrodeposited and plated in the actual electroforming process are electroplated. It is the structure formed at the same time in a process. In the following description, the mask 20a and the support film 20b may be used in combination with the plating films 20: 20a and 20b.
마스크(10)에는 마스크 패턴(PP)이 형성될 수 있다. 마스크 패턴(PP)은 상부에서 하부로 갈수록 폭이 점점 넓어지거나, 점점 좁아지는 형상을 가지는, 대략 테이퍼 형상을 가지는 것이 바람직하며, 마스크(10)의 상부면이 대상 기판(900)[도 5참조]에 밀착되므로, 마스크 패턴(PP)은 상부에서 하부로 갈수록 폭이 점점 넓어지는 형상인 것이 더 바람직하다.The mask pattern PP may be formed on the mask 10. It is preferable that the mask pattern PP has a substantially tapered shape having a shape that becomes wider or narrower from the top to the bottom, and the upper surface of the mask 10 is the target substrate 900 (see FIG. 5). It is more preferable that the mask pattern PP has a shape in which the width is gradually widened from the top to the bottom.
패턴 폭은 수 내지 수십㎛의 크기, 바람직하게는 30㎛보다 작은 크기로 형성될 수 있다. 마스크 패턴(PP)은 절연부(25)에 의해 도금막(20)의 생성이 방지됨에 따라 형성될 수 있다. 구체적은 형성 과정은 도 4를 통해 후술한다. 마스크 패턴(PP)은 도 2에서 상술한 화소 패턴(PP)/디스플레이 패턴(DP)의 구성과 동일하다.The pattern width may be formed in a size of several to several tens of micrometers, preferably in a size smaller than 30 micrometers. The mask pattern PP may be formed as the generation of the plating film 20 is prevented by the insulating portion 25. A detailed forming process will be described later with reference to FIG. 4. The mask pattern PP has the same structure as the pixel pattern PP / display pattern DP described above with reference to FIG. 2.
프레임(30)은 도금막(20)의 적어도 일부[일 예로, 상부면]에 접합될 수 있다. 더 상세하게는, 도금막(20)에서 마스크 패턴(PP)이 형성된 영역인 마스크(20a)의 영역을 제외한 나머지 영역인 지지막(20b)에 접합될 수 있다.The frame 30 may be bonded to at least a portion (eg, an upper surface) of the plating film 20. In more detail, the plating layer 20 may be bonded to the support layer 20b which is a region other than the region of the mask 20a which is a region where the mask pattern PP is formed.
마스크(20a)를 쳐지거나 뒤틀리지 않게 팽팽하게 지지할 수 있도록, 프레임(30)은 마스크(20a)의 테두리를 둘러싸는 형상을 가지는 것이 바람직하다. 도 3에는 사각형의 프레임(30)이 도시되어 있으나, 폐쇄 형태인 원형, 다각형 등의 형태도 가능하다. 이 외에도, 상호 평행하게 대향하고 마스크(20a)의 양측에 접하는 한 쌍의 직선 형태의 프레임(30)도 가능하다.The frame 30 preferably has a shape that surrounds the edge of the mask 20a so that the mask 20a can be tightly supported without being knocked or twisted. 3, the rectangular frame 30 is shown, but a closed, circular, polygonal, or the like form is also possible. In addition to this, a pair of straight frames 30 which are opposed to each other in parallel and in contact with both sides of the mask 20a are also possible.
한편, 프레임(30)은 마스크(20a)의 형성면에 대하여 수직한 방향으로 연장 형성되지 않고, 기울어져 연장 형성될 수도 있다. 프레임(30)은 상부에서 하부로 갈수록 안쪽으로 기울어지면서 연장 형성되지 않고, 바깥쪽으로 기울어지면서 연장 형성될 수 있다. 즉, 프레임(30)은 상부에서 하부로 갈수록 폭이 넓어지는 형상을 가질 수 있다. 프레임(30)이 이러한 형상을 가지면, 도금막(20)을 형성하는 공정 후에 모판(40)[도 4 참조])이 하부 방향으로 쉽게 분리될 수 있는 이점이 있다. 또한, 복수의 모판(40)을 프레임(30)에 결합하였을 때, 불량인 모판(40)에 대해서만 프레임(30)으로부터 쉽게 분리하여 교체, 수리할 수 있는 이점이 있다. 또한, 도금막(20)이 프레임(30)의 상부면 뿐만 아니라 기울어진 측면에까지 전착 형성되는 경우, 프레임(30)에 접합되는 도금막(20)[또는, 지지막(20b)]의 면적이 넓어지고, 지지막(20b)과 마스크(20a)와의 일체로 연결되는 계면에 작용하는 스트레스를 감소시켜 마스크(20a) 막을 보다 효율적으로 지지할 수 있는 이점이 있다.On the other hand, the frame 30 may not be extended in the direction perpendicular to the forming surface of the mask 20a, but may be inclined to extend. The frame 30 may be extended while being inclined outward from the top to the bottom of the frame 30. That is, the frame 30 may have a shape that is wider from the top to the bottom. If the frame 30 has such a shape, there is an advantage that the mother plate 40 (see FIG. 4) can be easily separated in the downward direction after the process of forming the plating film 20. In addition, when the plurality of mother plate 40 is coupled to the frame 30, there is an advantage that can be easily separated from the frame 30 to replace, repair only the defective mother plate 40. In addition, when the plating film 20 is electrodeposited to not only the upper surface of the frame 30 but also to the inclined side surface, the area of the plating film 20 (or the supporting film 20b) bonded to the frame 30 is reduced. It becomes wider and there is an advantage that the mask 20a film can be supported more efficiently by reducing the stress acting on the interface which is integrally connected with the support film 20b and the mask 20a.
위와 같이, 본 발명의 프레임 일체형 마스크(10)는, 마스크(20a)가 프레임(30)의 지지막(20b)과 일체로 연결되므로, 프레임(30)만을 OLED 화소 증착 장치(200)로 이동하고 설치하는 과정만으로 마스크(20a)의 정렬이 완료될 수 있다.As described above, in the frame-integrated mask 10 of the present invention, since the mask 20a is integrally connected with the supporting film 20b of the frame 30, only the frame 30 is moved to the OLED pixel deposition apparatus 200. Alignment of the mask 20a may be completed only by the installation process.
도 4는 본 발명의 일 실시 예에 따른 도 3의 프레임 일체형 마스크(100)를 제조하는 과정을 나타내는 개략도이다. 도 5는 본 발명의 일 실시 예에 따른 프레임(30) 및 모판(40)이 연결된 상태를 나타내는 개략도이다.4 is a schematic diagram illustrating a process of manufacturing the frame-integrated mask 100 of FIG. 3 according to an embodiment of the present invention. 5 is a schematic view showing a state in which the frame 30 and the mother plate 40 are connected according to an embodiment of the present invention.
도 4의 (a) 및 도 5를 참조하면, 모판(mother plate; 40)을 제공할 수 있다. 모판(40)은 하나의 대면적 모판을 사용할 수도 있고, 여러 개의 모판(40a, 40b, ...)을 붙여서 배치할 수도 있다. 여러 개의 모판을 사용할 때, 불량이 있는 모판은 사전에 교체, 수리하여 배치할 수 있다.Referring to FIGS. 4A and 5, a mother plate 40 may be provided. The base plate 40 may use one large area plate plate, or may be arranged by attaching several base plates 40a, 40b, .... When using multiple beds, defective ones can be replaced, repaired and placed in advance.
전주 도금(electroforming)을 수행할 수 있도록, 모판(40)의 기재(41) 재질은 전도성 재질일 수 있다. 모판(40)은 전주 도금에서 음극체(cathode) 전극으로 사용될 수 있다.In order to perform electroforming, the base 41 of the base plate 40 may be a conductive material. The base plate 40 may be used as a cathode electrode in electroplating.
전도성 재질로서, 메탈의 경우에는 표면에 메탈 옥사이드들이 생성되어 있을 수 있고, 메탈 제조 과정에서 불순물이 유입될 수 있으며, 다결정 실리콘 기재의 경우에는 개재물 또는 결정립계(Grain Boundary)가 존재할 수 있으며, 전도성 고분자 기재의 경우에는 불순물이 함유될 가능성이 높고, 강도. 내산성 등이 취약할 수 있다. 메탈 옥사이드, 불순물, 개재물, 결정립계 등과 같이 모판(40)[또는, 기재(41)]의 표면에 전기장이 균일하게 형성되는 것을 방해하는 요소를 "결함"(Defect)으로 지칭한다. 결함(Defect)에 의해, 상술한 재질의 음극체에는 균일한 전기장이 인가되지 못하여 도금막(20)의 일부가 불균일하게 형성될 수 있다.As the conductive material, in the case of metal, metal oxides may be generated on the surface, impurities may be introduced during the metal manufacturing process, and in the case of the polycrystalline silicon substrate, inclusions or grain boundaries may exist, and the conductive polymer may be present. In the case of a base material, it is highly likely to contain an impurity, and strength. Acid resistance may be weak. Elements that interfere with the uniform formation of an electric field on the surface of the base plate 40 (or substrate 41), such as metal oxides, impurities, inclusions, grain boundaries, etc., are referred to as "defects. Due to a defect, a uniform electric field may not be applied to the cathode body of the material described above, and a part of the plating film 20 may be formed unevenly.
UHD 급 이상의 초고화질 화소를 구현하는데 있어서 도금막(20) 및 도금막 패턴(PP)의 불균일은 화소의 형성에 악영향을 미칠 수 있다. FMM, 새도우 마스크의 패턴 폭은 수 내지 수십㎛의 크기, 바람직하게는 30㎛보다 작은 크기로 형성될 수 있으므로, 수㎛ 크기의 결함조차 마스크의 패턴 사이즈에서 큰 비중을 차지할 정도의 크기이다.In the implementation of UHD-class or higher resolution pixels, non-uniformity of the plating film 20 and the plating film pattern PP may adversely affect the formation of the pixel. Since the pattern width of the FMM and the shadow mask can be formed in the size of several to several tens of micrometers, preferably smaller than 30 micrometers, even a defect of several micrometers is large enough to occupy a large proportion in the pattern size of the mask.
또한, 상술한 재질의 음극체에서의 결함을 제거하기 위해서는 메탈 옥사이드, 불순물 등을 제거하기 위한 추가적인 공정이 수행될 수 있으며, 이 과정에서 음극체 재료가 식각되는 등의 또 다른 결함이 유발될 수도 있다.In addition, an additional process for removing metal oxides, impurities, and the like may be performed to remove the defects in the cathode material of the material described above, and another defect such as etching of the anode material may be caused in this process. have.
따라서, 본 발명은 단결정 실리콘 재질의 기재(41)를 사용할 수 있다. 전도성을 가지도록, 기재(41)는 1019 이상의 고농도 도핑이 수행될 수 있다. 도핑은 기재(41)의 전체에 수행될 수도 있으며, 기재(41)의 표면 부분에만 수행될 수도 있다.Therefore, the present invention can use the base material 41 of a single crystal silicon material. In order to have conductivity, the substrate 41 may be subjected to high concentration doping of 10 19 or more. Doping may be performed on the entirety of the substrate 41, or may be performed only on the surface portion of the substrate 41.
도핑된 단결정 실리콘의 경우는 결함이 없기 때문에, 전주 도금 시에 표면 전부에서 균일한 전기장 형성으로 인한 균일한 도금막(20)[또는, 마스크(20a)]이 생성될 수 있는 이점이 있다. 균일한 도금막(20)을 통해 제조하는 FMM(100)은 OLED 화소의 화질 수준을 더욱 개선할 수 있다. 그리고, 결함을 제거, 해소하는 추가 공정이 수행될 필요가 없으므로, 공정비용이 감축되고, 생산성이 향상되는 이점이 있다.Since the doped single crystal silicon is free from defects, there is an advantage in that a uniform plating film 20 (or mask 20a) can be generated due to the formation of a uniform electric field on the entire surface during electroplating. The FMM 100 manufactured through the uniform plating film 20 may further improve the image quality level of the OLED pixel. In addition, since an additional process of eliminating and eliminating defects does not have to be performed, process costs are reduced and productivity is improved.
또한, 실리콘 재질의 기재(41)를 사용함에 따라서, 필요에 따라 기재(41)의 표면을 산화(Oxidation), 질화(Nitridation)하는 과정만으로 절연부(45)를 형성할 수 있는 이점이 있다. 절연부(45)는 도금막(20)의 전착을 방지하는 역할을 하여 도금막(20)의 패턴(PP)을 형성할 수 있다.In addition, as the silicon substrate 41 is used, there is an advantage in that the insulating portion 45 may be formed only by a process of oxidizing and nitriding the surface of the substrate 41 as needed. The insulating part 45 may serve to prevent electrodeposition of the plating film 20 to form a pattern PP of the plating film 20.
기재(41)의 측면(42)은 프레임(30)과 연결이 용이하도록 프레임(30)의 내측과 대응하는 형상을 가질 수 있다. 도 4의 (a)에는 기울어진 측면(42)을 가지는 기재(41)가 도시되어 있다. Side 42 of the base 41 may have a shape corresponding to the inner side of the frame 30 to facilitate connection with the frame 30. In FIG. 4A, a substrate 41 having an inclined side surface 42 is shown.
기재(41)의 일면 상에는 패턴화(46)된 절연부(45)가 형성될 수 있다. 절연부(45)는 기재(41)의 일면 상에 돌출되도록(양각으로) 형성한 부분으로서, 도금막(20)의 생성을 방지하도록, 절연 특성을 가질 수 있다. 이에 따라, 절연부(45)는 포토레지스트, 실리콘 산화물, 실리콘 질화물 중 어느 하나의 재질로 형성될 수 있다. 절연부(45)는 기재(41) 상에 증착 등의 방법으로 실리콘 산화물, 실리콘 질화물을 형성할 수 있고, 기재(41)를 베이스로 하여 산화(Thermal Oxidation), 열 질화(Thermal Nitiridation) 방법을 사용할 수도 있다. 프린팅 법 등을 이용하여 포토레지스트를 형성할 수도 있다. 절연부(45)는 후술할 도금막(20)보다는 두껍도록 약 5㎛ ~ 20㎛의 두께를 가질 수 있다.A patterned 46 insulating portion 45 may be formed on one surface of the substrate 41. The insulating part 45 is formed to protrude (embossed) on one surface of the base 41 and may have an insulating property to prevent generation of the plating film 20. Accordingly, the insulating part 45 may be formed of any one material of photoresist, silicon oxide, and silicon nitride. The insulating part 45 may form silicon oxide and silicon nitride on the substrate 41 by a deposition method or the like, and based on the substrate 41, thermal oxidation and thermal nitriding methods may be used. Can also be used. The photoresist may be formed using a printing method or the like. The insulating part 45 may have a thickness of about 5 μm to 20 μm to be thicker than the plating film 20 to be described later.
절연부(45)는 테이퍼 형상을 가지는 것이 바람직하다. 포토레지스트를 사용하여 테이퍼 형상의 패턴을 형성할 때에는 다중 노광 방법, 영역마다 노광 강도를 다르게 하는 방법 등을 사용할 수 있다.It is preferable that the insulation part 45 has a taper shape. When forming a tapered pattern using the photoresist, a multiple exposure method, a method of varying the exposure intensity for each region, and the like can be used.
후술할 전주 도금 과정에서 기재(41)의 노출된 표면으로부터 도금막(20)이 형성되고, 절연부(45)가 배치될 영역에서는 도금막(20)의 생성이 방지되어 패턴(PP)이 형성될 수 있다. 모판(40)은 도금막(20)의 생성 과정에서 패턴까지 형성할 수 있으므로, 몰드, 음극체와 병기하여 사용될 수 있다.In the electroplating process to be described later, the plating film 20 is formed from the exposed surface of the substrate 41, and in the region where the insulating part 45 is to be disposed, generation of the plating film 20 is prevented to form the pattern PP. Can be. Since the mother plate 40 may be formed up to a pattern in the process of generating the plating film 20, the mother plate 40 may be used in parallel with the mold and the cathode body.
다음으로, 도 4의 (b) 및 도 5를 참조하면, 모판(40)의 적어도 일측에 프레임(30)을 연결할 수 있다. 여기서 연결이라 함은 프레임(30)과 모판(40) 사이에 접착제를 개재하여 접착하거나, 볼트 등의 체결 수단을 통해 결합하거나, 상호 긴밀히 접하도록 배치하는 일련의 행위를 포함하는 개념임을 밝혀둔다.Next, referring to FIGS. 4B and 5, the frame 30 may be connected to at least one side of the mother plate 40. Here, the connection refers to a concept including a series of actions that are bonded between the frame 30 and the mother plate 40 through an adhesive, coupled through fastening means such as bolts, or arranged to be in close contact with each other.
프레임(30)도 전주 도금 과정에서 표면에 도금막(20)[또는, 지지막(20b)]을 생성하면서, 동시에 프레임(30)으로서의 강성을 확보할 수 있도록, 전도성을 가지는 SUS, Ti 등의 메탈 재질을 채용하는 것이 바람직하다. 또한, OLED 화소 증착 공정에서 열에 의한 프레임(30)의 변형을 막기 위해 열변형율이 적은 재질을 채용하는 것이 바람직하다.The frame 30 is also made of SUS, Ti, or the like having conductivity so that the plating film 20 (or the support film 20b) can be formed on the surface during the electroplating process, and the rigidity as the frame 30 can be secured at the same time. It is preferable to employ a metal material. In addition, in order to prevent deformation of the frame 30 due to heat in the OLED pixel deposition process, it is preferable to employ a material having a low thermal strain.
프레임(30)은 모판(40)의 하나, 또는 여러개의 모판이 정렬 배치된 테두리의 적어도 일부를 둘러싸도록 배치될 수 있다. 도 4의 (b)에는 사각형 프레임(30)이 모판(40) 측의 테두리를 둘러싸도록 배치된 것이 예시되어 있지만, 상호 평행하게 대향하고 모판(40)의 양측에 접하는 한 쌍의 직선 형태의 프레임(30)을 사용할 수도 있다.The frame 30 may be arranged to surround at least a part of the border in which one or several mother boards are aligned. In FIG. 4B, although the rectangular frame 30 is disposed to surround the edge of the base plate 40, a pair of straight frames facing each other in parallel with each other and in contact with both sides of the base plate 40 are illustrated. (30) can also be used.
프레임(30)은 폭이 일정한 수직 형상을 가질 수 있고, 또한, 상부에서 하부로 갈수록 폭이 넓어지는 형상을 가질 수 있음을 상술한 바 있다. 사각형 프레임(30)을 예로 들면, 모판(40)은 프레임(30)의 내주면에 딱 맞게 끼워지는 형태로 연결된다. 이를 위해, 모판(40)의 측면(42)도 a 각도를 가지며 수직하거나, 기울어지게 형성될 수 있다. 다시 말해, 모판(40)과 프레임(30)이 접하는 면(42)과 모판(40)의 하부면이 이루는 각도(a)는 직각 또는 예각을 이룰 수 있다. 그리하여 모판(40)을 하부 방향으로 쉽게 분리시킬 수 있고, 복수의 모판(40) 중 특정 모판(40)을 분리, 교체할 수 있는 이점이 있다.The frame 30 may have a vertical shape with a constant width, and may have a shape in which the width is widened from the top to the bottom. Taking the rectangular frame 30 as an example, the mother plate 40 is connected in a shape that fits snugly to the inner circumferential surface of the frame 30. To this end, the side surface 42 of the base plate 40 may also be formed to have a angle or vertical or inclined. In other words, the angle (a) formed between the surface 42 and the lower surface of the mother plate 40 which the base plate 40 and the frame 30 contact each other may form a right angle or an acute angle. Thus, the base plate 40 can be easily separated in the downward direction, there is an advantage that can be separated, replace the specific base plate 40 of the plurality of base plate (40).
다음으로, 도 4의 (c)를 참조하면, 모판(40)과 프레임(30) 상에 도금막(20: 20a, 20b)을 형성할 수 있다. 모판(40)과 프레임(30)의 결합체를 음극체로서 사용하고, 이에 대향하는 양극체(미도시)를 준비한다. 양극체(미도시)는 도금액(미도시)에 침지되어 있고, 모판(40) 및 프레임(30)은 전부 또는 일부가 도금액(미도시)에 침지되어 있을 수 있다.Next, referring to FIG. 4C, the plating films 20: 20a and 20b may be formed on the mother plate 40 and the frame 30. A combination of the mother plate 40 and the frame 30 is used as the cathode body, and an anode body (not shown) facing the substrate is prepared. The anode body (not shown) may be immersed in the plating liquid (not shown), and all or part of the mother plate 40 and the frame 30 may be immersed in the plating liquid (not shown).
도금액은 전해액으로서, 마스크(20a) 및 지지막(20b)을 구성할 도금막(20)의 재료가 될 수 있다. 일 실시 예로, 철니켈합금인 인바(Invar) 박판을 도금막(20)으로서 제조하는 경우, Ni 이온을 포함하는 용액 및 Fe 이온을 포함하는 용액의 혼합액을 도금액으로 사용할 수 있다. 다른 실시 예로, 철니켈코발트합금인 슈퍼 인바(Super Invar) 박판을 도금막(20)으로 제조하는 경우, Ni 이온을 포함하는 용액, Fe 이온을 포함하는 용액 및 Co 이온을 포함하는 용액의 혼합액을 도금액으로 사용할 수도 있다. 인바 박판, 슈퍼 인바 박판은 OLED의 제조에 있어서 FMM(Fine Metal Mask), 새도우 마스크(Shadow Mask)로 사용될 수 있다. 그리고, 인바 박판은 열팽창계수가 약 1.0 X 10-6/℃, 슈퍼 인바 박판은 열팽창계수가 약 1.0 X 10-7/℃ 정도로 매우 낮기 때문에 열에너지에 의해 마스크의 패턴 형상이 변형될 우려가 적어 고해상도 OLED 제조에서 주로 사용된다. 이 외에도 목적하는 도금막(20)에 대한 도금액을 제한없이 사용할 수 있으며, 본 명세서에서는 인바 박판(20)을 제조하는 것을 주된 예로 상정하여 설명한다.The plating liquid may be a material of the plating film 20 that will constitute the mask 20a and the supporting film 20b as an electrolyte solution. As an example, when an Invar thin plate made of iron nickel alloy is manufactured as the plating film 20, a mixed solution of a solution containing Ni ions and a solution containing Fe ions may be used as the plating solution. In another embodiment, when manufacturing a super invar thin plate made of iron nickel cobalt alloy as the plating film 20, a mixed solution of a solution containing Ni ions, a solution containing Fe ions, and a solution containing Co ions is used. It can also be used as a plating solution. Inva thin plate, super inva thin plate can be used as a fine metal mask (FMM), a shadow mask (Shadow Mask) in the manufacture of OLED. And the Invar sheet has a coefficient of thermal expansion of about 1.0 X 10-6/ ℃, Super Invar thin plate has a coefficient of thermal expansion of about 1.0 X 10-7/ ℃ Since it is so low, there is little possibility that the pattern shape of a mask is deformed by thermal energy, and it is mainly used in high-resolution OLED manufacturing. In addition to this, the plating solution for the target plating film 20 can be used without limitation, and in the present specification, the manufacturing of the Invar thin plate 20 will be described as a main example.
음극체(30, 40)와 대향하는 양극체 사이에 형성된 전기장으로 인해 도금막(20)이 모판(40) 및 프레임(30)의 표면에서 전착되어 생성될 수 있다. 절연부(45)에 의해 가려진 영역을 제외한 나머지 모판(40)[또는, 기재(41)]의 노출된 표면으로부터 전착된 도금막(20)은 마스크(20a)가 되고, 프레임(30)의 노출된 표면으로부터 전착된 도금막(20)은 지지막(20b)이 될 수 있다. Due to the electric field formed between the cathode bodies 30 and 40 and the opposite anode bodies, the plating film 20 may be electrodeposited on the surfaces of the mother plate 40 and the frame 30. The plating film 20 electrodeposited from the exposed surface of the remaining substrate 40 (or the substrate 41) except for the region covered by the insulating portion 45 becomes the mask 20a, and the exposure of the frame 30 is performed. The plating film 20 electrodeposited from the surface may be the support film 20b.
절연부(45)가 절연 특성을 가지므로, 절연부(45)와 양극체 사이에서는 전기장이 형성되지 않거나, 도금이 수행되기 어려운 정도의 미약한 전기장만이 형성된다. 따라서, 모판(40)에서 도금막(20)이 생성되지 않는, 절연부(45)에 대응하는 부분은 도금막(20)의 패턴, 홀(Hole) 등을 구성한다. 다시 말해, 패턴화(46)된 절연부(45) 각각은 마스크(20a)의 R, G, B에 대응하는 마스크 패턴(PP)을 형성할 수 있다. 마스크 패턴(PP)의 측단면의 형상은 대략 테이퍼 형상으로 기울어지게 형성될 수 있고, 기울어진 각도는 약 45° 내지 65°일 수 있다.Since the insulator 45 has an insulating property, an electric field is not formed between the insulator 45 and the positive electrode, or only a weak electric field of a degree to which plating is difficult to be formed is formed. Therefore, the part corresponding to the insulating part 45 in which the plating film 20 is not produced | generated in the mother board 40 comprises the pattern, hole, etc. of the plating film 20. FIG. In other words, each of the patterned 46 insulating portions 45 may form a mask pattern PP corresponding to R, G, and B of the mask 20a. The shape of the side cross-section of the mask pattern PP may be formed to be inclined in a substantially tapered shape, and the inclined angle may be about 45 ° to 65 °.
다음으로, 도 4의 (d)를 참조하면, 마스크(20a) 및 지지막(20b)으로 커버된 프레임(30)으로부터 모판(40)을 분리할 수 있다. 프레임(30)과 모판(40)이 접착제를 통해 연결된 경우에는 접착제를 용해시켜 제거하는 과정을 더 수행할 수 있고, 체결 수단을 통해 연결된 경우에는 체결 수단을 해체하는 과정을 더 수행할 수도 있다. 모판(40)의 상부에는 마스크(20a)가 형성되어 있으므로, 모판(40)을 하부 방향을 이동시켜 프레임(30)으로부터 분리할 수 있다.Next, referring to FIG. 4D, the mother plate 40 may be separated from the frame 30 covered with the mask 20a and the support film 20b. When the frame 30 and the mother plate 40 are connected through an adhesive, a process of dissolving and removing the adhesive may be further performed. If the frame 30 and the mother plate 40 are connected through an adhesive, the process of disassembling the fastening means may be further performed. Since the mask 20a is formed on the upper portion of the mother plate 40, the mother plate 40 can be separated from the frame 30 by moving downward.
한편, 마스크(20a) 및 지지막(20b)으로 커버된 프레임(30)으로부터 모판(40)을 분리하기 전에, 열처리를 수행할 수 있다. 열처리는 300℃ 내지 800℃의 온도로 수행할 수 있다[도 6 참조].Meanwhile, before the mother plate 40 is separated from the frame 30 covered with the mask 20a and the supporting film 20b, heat treatment may be performed. Heat treatment may be carried out at a temperature of 300 ℃ to 800 ℃ (see Figure 6).
일반적으로 압연으로 생성한 인바 박판에 비해, 전주 도금으로 생성한 인바 박판이 열팽창계수가 높다. 그리하여 인바 박판에 열처리를 수행함으로써 열팽창계수를 낮출 수 있는데, 열처리 과정에서 인바 박판에 약간의 변형이 생길 수 있다. 만약, 마스크(20a) 및 지지막(20b)과 모판(40)을 분리한 후, 마스크 패턴(PP)을 가지는 마스크(20a)에 열처리를 수행한다면 마스크 패턴(PP)에 일부 변형이 생길 수도 있다. 따라서, 모판(40)과 마스크(20a)가 접착된 상태에서 열처리를 수행하면, 모판(40)의 절연부(45)가 차지하는 공간 부분에 형성된 마스크 패턴(PP)의 형태가 일정하게 유지되고, 열처리로 인한 미세한 변형을 방지할 수 있는 이점이 있다.In general, the Invar thin plate produced by electroplating has a higher coefficient of thermal expansion as compared to the Invar thin plate produced by rolling. Thus, the thermal expansion coefficient can be lowered by performing a heat treatment on the Invar thin plate, which may cause slight deformation in the Invar thin plate. If the mask 20a, the support layer 20b, and the mother plate 40 are separated and then heat-treated to the mask 20a having the mask pattern PP, some deformation may occur in the mask pattern PP. . Therefore, when the heat treatment is performed while the mother plate 40 and the mask 20a are bonded, the shape of the mask pattern PP formed in the space portion occupied by the insulating portion 45 of the mother plate 40 is kept constant. There is an advantage that can prevent the minute deformation due to the heat treatment.
도 6은 본 발명의 일 실시 예에 따른 열처리 후의 마스크의 열팽창계수(coefficient of expansion, CTE)를 나타내는 그래프이다. 80 X 200mm의 샘플에 대해서, 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 800℃의 7가지의 온도 구간에서 열처리를 수행한 인바 박판의 열팽창계수를 측정하였다. 도 6의 (a)는 상온(25℃)에서 약 240℃까지 온도를 올리면서 각 샘플의 열팽창계수를 측정한 결과를 나타내고, 도 6의 (b)는 약 240℃에서 상온(25℃)까지 온도를 하강하면서 각 샘플의 열팽창계수를 측정한 결과를 나타낸다. 도 6의 (a) 및 도 6의 (b)를 참조하면, 열처리 온도에따라 열팽창계수가 변화하며, 특히, 800℃의 열처리에서 가장 열팽창계수가 낮게 나타남을 확인할 수 있다.6 is a graph illustrating a coefficient of expansion (CTE) of a mask after heat treatment according to an embodiment of the present invention. For the samples of 80 × 200 mm, the coefficient of thermal expansion of the Invar thin plate was heat-treated in seven temperature ranges of 300 ° C., 350 ° C., 400 ° C., 450 ° C., 500 ° C., 550 ° C. and 800 ° C. Figure 6 (a) shows the result of measuring the thermal expansion coefficient of each sample while raising the temperature from room temperature (25 ℃) to about 240 ℃, Figure 6 (b) is from about 240 ℃ to room temperature (25 ℃) The result of measuring the coefficient of thermal expansion of each sample is shown while decreasing temperature. 6 (a) and 6 (b), it can be seen that the coefficient of thermal expansion changes according to the heat treatment temperature, in particular, the lowest coefficient of thermal expansion appears in the heat treatment at 800 ℃.
다음으로, 도 4의 (e)를 참조하면, 모판(40)이 분리된 후, 마스크(20a)와 마스크(20a)를 지지하는 프레임(30)이 일체로 형성된 프레임 일체형 마스크(10)가 완성된다.Next, referring to FIG. 4E, after the mother plate 40 is separated, the frame-integrated mask 10 in which the mask 20a and the frame 30 supporting the mask 20a are integrally completed is completed. do.
도 7은 도 3의 프레임 일체형 마스크(10)를 적용한 OLED 화소 증착 장치(200)를 나타내는 개략도이다.FIG. 7 is a schematic diagram illustrating an OLED pixel deposition apparatus 200 to which the frame-integrated mask 10 of FIG. 3 is applied.
도 7을 참조하면, 프레임 일체형 마스크(10)를 대상 기판(900)과 밀착시킬 수 있다. 로봇암 등의 프레임(30)을 고정지지하는 수단이 OLED 화소 증착 장치(200)의 내부에 배치되어 프레임(30)을 지지하여 고정시킬 수 있다. 이렇게 프레임(30) 부분만을 OLED 화소 증착 장치(200)에 내부에 배치시키는 것만으로 마스크(10)의 정렬이 완료될 수 있다. 마스크(20a)는 지지막(20b)과 일체로 연결되어 그 테두리가 팽팽하게 지지되고, 프레임(30)에 지지막(20b)이 결합되어 있으므로, 마스크(20a)가 하중에 의해 쳐지거나 뒤틀리는 등의 변형이 방지될 수 있다. 이에 따라, 화소 증착에 필요한 마스크(10)의 정렬을 명확하게 할 수 있다.Referring to FIG. 7, the frame integrated mask 10 may be in close contact with the target substrate 900. Means for fixing the frame 30 such as the robot arm may be disposed inside the OLED pixel deposition apparatus 200 to support and fix the frame 30. The alignment of the mask 10 may be completed only by disposing only the frame 30 in the OLED pixel deposition apparatus 200. Since the mask 20a is integrally connected to the support film 20b and is tightly supported by the edge thereof, and the support film 20b is coupled to the frame 30, the mask 20a is struck or warped under load. The deformation of can be prevented. As a result, the alignment of the mask 10 required for pixel deposition can be made clear.
도 8은 본 발명의 다른 실시 예에 따른 프레임 일체형 마스크(10')를 OLED 화소 증착 장치에 적용한 상태를 나타내는 개략도이다.8 is a schematic diagram illustrating a state in which the frame-integrated mask 10 ′ according to another embodiment of the present invention is applied to an OLED pixel deposition apparatus.
도 8의 (a)를 참조하면, 프레임 일체형 마스크(10')는 마스크(20a) 및 프레임(30)을 포함하고, 프레임(30)의 일부 표면에 부착된 지지막(20b)은 마스크(20a)와 동일한 재질을 가지고 마스크(20a)와 일체로 연결될 수 있다. 이 점은 도 3의 프레임 일체형 마스크(10)와 동일하다. 차이점은 프레임 일체형 마스크(10')의 프레임(35)은 프레임(30)[도 3 및 도 7 참조]처럼 곧바로 OLED 화소 증착 장치(200) 내부에 배치되는 것이 아니며, 또 하나의 프레임(38)에 끼워지는 구성이다. 프레임(35)은 마스크(20)와 일체로 연결되므로, "스틱 프레임"(stick frame)이라고도 지칭할 수 있다. 또한, 프레임(38)은 적어도 하나의 프레임 일체형 마스크(10')[스틱 프레임]가 끼워지므로, "마스크 프레임"(mask frame)이라고도 지칭할 수 있다. 마스크 프레임(38)은 함몰부(39)를 구비하고, 함몰부(39)에 프레임 일체형 마스크(10')의 스틱 프레임(35) 부분이 끼워질 수 있다.Referring to FIG. 8A, the frame-integrated mask 10 ′ includes a mask 20a and a frame 30, and the supporting film 20b attached to a portion of the surface of the frame 30 is a mask 20a. It may have the same material as) and may be integrally connected with the mask 20a. This point is the same as the frame-integrated mask 10 of FIG. The difference is that the frame 35 of the frame-integrated mask 10 'is not disposed directly inside the OLED pixel deposition apparatus 200 like the frame 30 [see FIGS. 3 and 7], and another frame 38. It is a configuration fitted to. Since the frame 35 is integrally connected with the mask 20, the frame 35 may also be referred to as a "stick frame". The frame 38 may also be referred to as a "mask frame" because at least one frame-integrated mask 10 '(stick frame) is fitted. The mask frame 38 has a depression 39, and a portion of the stick frame 35 of the frame-integrated mask 10 ′ may be fitted into the depression 39.
이를 위해, 프레임(35)은 프레임(30)보다는 작은 크기로 구성될 수 있다. 예를 들어, 스틱형 크기[도 2의 (a) 참조]로 적은 면적의 마스크(20a)를 가지는 복수의 프레임 일체형 마스크(10')를 사용할 수 있다. 프레임 일체형 마스크(10')는 도 7의 프레임 일체형 마스크(10)보다 적은 면적으로 제조하여 각각을 유닛 형태로 마스크 프레임(38)에 삽입하고자 할 때 유리하다. 특히, 미리 OLED 화소 증착 장치(200)의 내부에 배치된 마스크 프레임(38)의 함몰부(39)가 가이드 레일(guide rail) 역할을 하여, 제조된 각각의 유닛 형태의 프레임 일체형 마스크(10')[스틱 프레임(35)]를 함몰부(39)에 끼우는 것만으로 마스크의 정렬을 완료할 수 있다.To this end, the frame 35 may be of a smaller size than the frame 30. For example, a plurality of frame-integrated masks 10 'having a small area mask 20a can be used in a stick size (see Fig. 2A). The frame-integrated mask 10 'is advantageously manufactured with less area than the frame-integrated mask 10 in FIG. In particular, the depression 39 of the mask frame 38, which is disposed inside the OLED pixel deposition apparatus 200 in advance, serves as a guide rail, so that the unitary mask 10 ′ in the form of each unit is manufactured. The alignment of the mask can be completed only by inserting the [stick frame 35] into the depression 39.
도 8의 (b)를 참조하면, 프레임(35)은 함몰부(39)에 끼워질 수 있는 돌출부(37)가 더 형성될 수 있다.Referring to FIG. 8B, the frame 35 may further include a protrusion 37 that may be fitted to the recess 39.
로봇암 등의 마스크 프레임(38)을 고정지지하는 수단이 OLED 화소 증착 장치(200)의 내부에 배치되어 마스크 프레임(38)을 지지하여 고정시키고, 제조된 프레임 일체형 마스크(10')를 OLED 화소 증착 장치(200) 내부에 고정 설치된 마스크 프레임(38)의 함몰부(39)에 끼울 수 있다. 함몰부(39)는 복수개의 프레임 일체형 마스크(10')에 형성된 스틱 프레임(35) 또는 돌출부(37)에 대응하는 형태로 형성될 수 있다. 사각형 형태의 스틱 프레(35)임은 함몰부(39)에 끼워지면 유동하지 않고 단단히 고정될 수 있다. 직선 형태의 스틱 프레임(35)은 슬라이딩 형태로 함몰부(39)에 끼워질 수도 있고, 복수개의 프레임 일체형 마스크(10')를 슬라이딩 형태로 밀어서 배치하는 것도 가능하다.Means for fixing and fixing the mask frame 38, such as a robot arm, are disposed inside the OLED pixel deposition apparatus 200 to support and fix the mask frame 38, and to manufacture the frame-integrated mask 10 'manufactured by the OLED pixel. It may be fitted to the depression 39 of the mask frame 38 fixedly installed in the deposition apparatus 200. The depression 39 may be formed in a shape corresponding to the stick frame 35 or the protrusion 37 formed on the plurality of frame-integrated masks 10 ′. The rectangular stick frame 35 may be firmly fixed without being flown when fitted to the depression 39. The straight stick frame 35 may be fitted to the depression 39 in a sliding form, or may be arranged by sliding the plurality of frame-integrated masks 10 'in a sliding form.
위와 같이, 본 발명의 프레임 일체형 마스크(10, 10')는 마스크(20a)를 형성함과 동시에 프레임(30, 35)에 일체형으로 구성함에 따라, 마스크(20a)의 변형을 방지하고, 정렬을 명확하게 할 수 있는 효과가 있다. 또한, 본 발명의 프레임 일체형 마스크(10, 10')는, 마스크(20a)가 프레임(30)의 지지막(20b)과 일체로 연결되므로, 프레임(30, 35)만을 OLED 화소 증착 장치(200)로 이동하고 설치하는 과정만으로 마스크(20a)의 정렬이 완료될 수 있는 효과가 있다. 또한, 모판(40)에 절연부(45)가 형성되어 있어 도금막(20)의 생성을 방지하므로, 전주 도금 공정에서 도금막(20)을 형성하는 공정만으로 패턴(PP)을 가지는 마스크(20a)를 제조할 수 있는 효과가 있다.As described above, the frame-integrated mask 10, 10 ′ of the present invention forms the mask 20a and is integrally formed with the frames 30, 35, thereby preventing deformation of the mask 20a and providing alignment. There is an effect that can be clarified. Further, in the frame integrated masks 10 and 10 'of the present invention, since the mask 20a is integrally connected with the supporting film 20b of the frame 30, only the frames 30 and 35 are OLED pixel deposition apparatus 200. There is an effect that the alignment of the mask (20a) can be completed only by the process of moving to and installing). In addition, since the insulating portion 45 is formed on the mother plate 40 to prevent the formation of the plating film 20, the mask 20a having the pattern PP is formed only by forming the plating film 20 in the electroplating process. ) Can be produced.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.Although the present invention has been shown and described with reference to preferred embodiments as described above, it is not limited to the above embodiments and various modifications made by those skilled in the art without departing from the spirit of the present invention. Modifications and variations are possible. Such modifications and variations are intended to fall within the scope of the invention and the appended claims.
Claims (12)
- 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서,A method of manufacturing a frame-integrated mask in which a mask and a frame supporting the mask are integrally formed,(a) 일면 상에 패턴화된 절연부가 형성된 모판을 제공하는 단계;(a) providing a mother plate having a patterned insulation formed on one surface;(b) 모판의 적어도 일측에 프레임을 연결하는 단계;(b) connecting the frame to at least one side of the base plate;(c) 모판 및 프레임을 음극체(Cathode Body)로 사용하고, 전주 도금(Electroforming)으로 모판 및 프레임 상에 도금막을 형성하는 단계; 및(c) using the base plate and the frame as a cathode body and forming a plating film on the base plate and the frame by electroforming; And(d) 모판을 도금막 및 프레임과 분리하는 단계(d) separating the base plate from the plating film and the frame;를 포함하는, 프레임 일체형 마스크의 제조 방법.Including, a frame-integrated mask manufacturing method.
- 제1항에 있어서,The method of claim 1,모판 및 프레임은 전도성 재질인, 프레임 일체형 마스크의 제조 방법.The mother plate and the frame are conductive materials, the manufacturing method of the frame-integrated mask.
- 제1항에 있어서,The method of claim 1,모판은 단결정 실리콘 재질인, 프레임 일체형 마스크의 제조 방법.The mother plate is a single crystal silicon material, the manufacturing method of the frame-integrated mask.
- 제1항에 있어서,The method of claim 1,절연부는 포토레지스트, 실리콘 산화물, 실리콘 질화물 재질 중 어느 하나인, 프레임 일체형 마스크의 제조 방법.The insulating portion is any one of a photoresist, silicon oxide, and silicon nitride material, the manufacturing method of the frame-integrated mask.
- 제1항에 있어서,The method of claim 1,절연부는 테이퍼 형상을 가지는, 프레임 일체형 마스크의 제조 방법.The insulation part has a tapered shape, The manufacturing method of the frame integrated mask.
- 제1항에 있어서,The method of claim 1,프레임은 모판의 테두리를 둘러싸는 형상을 가지는, 프레임 일체형 마스크의 제조 방법.The frame has a shape surrounding the edge of the mother board, the manufacturing method of the frame-integrated mask.
- 제1항에 있어서,The method of claim 1,프레임은 상호 대향하고 평행한 한 쌍의 직선 형상을 가지는, 프레임 일체형 마스크의 제조 방법.The frame has a pair of straight lines facing each other and parallel to each other, the manufacturing method of the frame-integrated mask.
- 제1항에 있어서,The method of claim 1,(c) 단계에서,in step (c),절연부 상에서 도금막의 형성이 방지되어 도금막이 패턴을 가지게 되는, 프레임 일체형 마스크의 제조 방법.The formation method of the frame integrated mask in which formation of a plating film on an insulation part is prevented and a plating film has a pattern.
- 제1항에 있어서,The method of claim 1,(c) 단계와 (d) 단계 사이에, 도금막을 열처리하는 단계를 더 수행하는, 프레임 일체형 마스크의 제조 방법.The method of manufacturing a frame-integrated mask further comprising the step of heat-treating the plated film between steps (c) and (d).
- 제9항에 있어서,The method of claim 9,열처리는 300℃ 내지 800℃로 수행하는, 프레임 일체형 마스크의 제조 방법.The heat treatment is carried out at 300 ℃ to 800 ℃, manufacturing method of a frame-integrated mask.
- 제1항에 있어서,The method of claim 1,모판과 프레임이 접하는 면은 모판의 하부면과 직각 또는 예각을 이루는, 프레임 일체형 마스크의 제조 방법.The surface where the mother plate and the frame abuts is perpendicular or acute to the lower surface of the mother plate, the manufacturing method of the frame-integrated mask.
- 제11항에 있어서,The method of claim 11,(d) 단계에서,in step (d),모판은 도금막 및 프레임의 하부 방향으로 분리하는, 프레임 일체형 마스크의 제조 방법.The mother plate is separated in the downward direction of the plated film and the frame, the manufacturing method of the frame-integrated mask.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160155991 | 2016-11-22 | ||
KR10-2016-0155991 | 2016-11-22 | ||
KR1020160168580A KR101870820B1 (en) | 2016-11-22 | 2016-12-12 | Producing method of mask integrated frame |
KR10-2016-0168580 | 2016-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018097532A1 true WO2018097532A1 (en) | 2018-05-31 |
Family
ID=62195273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/012862 WO2018097532A1 (en) | 2016-11-22 | 2017-11-14 | Method for producing frame-integrated mask |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018097532A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070002553A (en) * | 2005-06-30 | 2007-01-05 | 엘지.필립스 엘시디 주식회사 | Method of fabricating the shadow mask for fabricating the organic electroluminescent device |
KR20110021686A (en) * | 2009-08-25 | 2011-03-04 | 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. | Enhanced method of forming nickel silicides |
KR20140033736A (en) * | 2012-09-10 | 2014-03-19 | 김정식 | Metal mask |
KR20140136294A (en) * | 2013-05-20 | 2014-11-28 | 삼성디스플레이 주식회사 | Maskless exposure device |
KR20140140865A (en) * | 2013-05-30 | 2014-12-10 | 삼성디스플레이 주식회사 | Method of manufacturing mask |
-
2017
- 2017-11-14 WO PCT/KR2017/012862 patent/WO2018097532A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070002553A (en) * | 2005-06-30 | 2007-01-05 | 엘지.필립스 엘시디 주식회사 | Method of fabricating the shadow mask for fabricating the organic electroluminescent device |
KR20110021686A (en) * | 2009-08-25 | 2011-03-04 | 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. | Enhanced method of forming nickel silicides |
KR20140033736A (en) * | 2012-09-10 | 2014-03-19 | 김정식 | Metal mask |
KR20140136294A (en) * | 2013-05-20 | 2014-11-28 | 삼성디스플레이 주식회사 | Maskless exposure device |
KR20140140865A (en) * | 2013-05-30 | 2014-12-10 | 삼성디스플레이 주식회사 | Method of manufacturing mask |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018221852A1 (en) | Frame-integrated mask | |
KR101870820B1 (en) | Producing method of mask integrated frame | |
WO2018128304A1 (en) | Method for manufacturing mask and mother plate used therefor | |
WO2018084448A2 (en) | Mother plate, method for manufacturing mother plate, method for manufacturing mask, and oled pixel deposition method | |
WO2018097559A1 (en) | Mother plate, method for manufacturing mother plate, and method for manufacturing mask | |
WO2018097533A1 (en) | Frame-integrated mask and method for producing same | |
KR102280187B1 (en) | Producing method of mask integrated frame | |
KR101986525B1 (en) | Producing method of mask | |
KR102314854B1 (en) | Producing method of mask integrated frame | |
WO2019054718A2 (en) | Method for manufacturing frame-integrated mask | |
WO2019190121A1 (en) | Method for manufacturing mask, buffer substrate for supporting mask, and method for manufacturing same | |
WO2019009526A1 (en) | Mask and method for manufacturing mask, and mother plate | |
WO2019156348A1 (en) | Frame-integrated mask and method for manufacturing frame-integrated mask | |
WO2020045900A1 (en) | Method for making mask, mask, and frame-integrated mask | |
KR20200006349A (en) | Producing method of mask integrated frame | |
WO2019172557A1 (en) | Method for manufacturing frame-integrated mask | |
WO2018097532A1 (en) | Method for producing frame-integrated mask | |
WO2019054717A2 (en) | Frame-integrated mask | |
WO2021096115A1 (en) | Mask for manufacturing oled, and oled manufacturing method | |
WO2019212178A1 (en) | Mother plate and method for producing mask | |
WO2020022661A1 (en) | Frame-integrated mask manufacturing method | |
JP2020500263A (en) | Base plate, method of manufacturing base plate, method of manufacturing mask, and method of depositing OLED pixels | |
KR102342737B1 (en) | Producing method of mask | |
WO2019045240A1 (en) | Method for producing frame-integrated mask | |
KR20200044747A (en) | Producing method of mask and producing method of mask integrated frame |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17873093 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17873093 Country of ref document: EP Kind code of ref document: A1 |