Nothing Special   »   [go: up one dir, main page]

WO2018092343A1 - Raw water flow path spacer and spiral membrane element provided with same - Google Patents

Raw water flow path spacer and spiral membrane element provided with same Download PDF

Info

Publication number
WO2018092343A1
WO2018092343A1 PCT/JP2017/022819 JP2017022819W WO2018092343A1 WO 2018092343 A1 WO2018092343 A1 WO 2018092343A1 JP 2017022819 W JP2017022819 W JP 2017022819W WO 2018092343 A1 WO2018092343 A1 WO 2018092343A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
mesh
flow path
water flow
mesh structure
Prior art date
Application number
PCT/JP2017/022819
Other languages
French (fr)
Japanese (ja)
Inventor
友葉 岡▲崎▼
康弘 宇田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017101262A external-priority patent/JP6353957B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187021199A priority Critical patent/KR101916648B1/en
Priority to US16/349,831 priority patent/US11484840B2/en
Priority to RU2019117779A priority patent/RU2703622C1/en
Priority to CN201780007655.3A priority patent/CN108495701B/en
Priority to EP17871925.8A priority patent/EP3542890B1/en
Publication of WO2018092343A1 publication Critical patent/WO2018092343A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes

Definitions

  • the present invention relates to a spiral membrane element that separates components dissolved in a liquid, and more particularly to a raw water channel spacer of a spiral membrane element.
  • This spiral membrane element includes a water collecting pipe and a plurality of separation membranes wound around the water collecting pipe.
  • Each separation membrane is formed in a bag shape with the separation membranes overlapped on both sides of a sheet-like permeated water spacer, and in this state, three sides are sealed by means such as adhesion, and the other one side is an open end. . And it is comprised so that the permeated water which flows along a permeated water spacer may flow into a water collection pipe
  • a mesh-shaped raw water flow path spacer that forms a flow path of raw water such as tap water is sandwiched between each separation membrane formed in a bag shape.
  • the raw water supplied to the spiral membrane element flows along the raw water flow path spacer, and a part of the raw water permeates the separation membrane to become permeated water and is sent out through the water collecting pipe.
  • the warp yarn is arranged along the flow direction of the raw water, the weft yarn is arranged in a direction intersecting the flow direction of the raw water, and the weft yarn is formed narrower than the warp yarn, thereby forming a pressure in the raw water flow path.
  • a spiral membrane element having a raw water channel spacer that can reduce loss is disclosed.
  • a concentration layer (hereinafter referred to as a concentration polarization layer as appropriate) having a higher concentration of ions and salts than other regions of the raw water channel is formed.
  • an object of the present invention is to provide a raw water flow path spacer capable of suppressing the formation of a concentration polarization layer in a region near the separation membrane, and a spiral membrane element provided with the same.
  • the raw water flow path spacer according to the present invention is sandwiched between a first separation membrane and a second separation membrane wound around a water collection pipe of a spiral type membrane element, and is opposite to a direction parallel to the water collection pipe.
  • a two-layer raw water flow path spacer composed of a first yarn row and a second yarn row that are inclined to each other, and is configured to be continuous in the extending direction of the second yarn row by the first yarn row and the second yarn row.
  • the first mesh structure, the first thread row and the second thread row are connected in the extending direction of the second yarn row, and the second yarn row is larger than the interval between the second yarn rows constituting the first mesh structure.
  • a second mesh structure configured so that the interval is narrow.
  • the inclination with respect to the direction parallel to the water collecting pipe of the first yarn row constituting the second mesh structure is parallel to the water collecting pipe of the first yarn row constituting the first mesh structure. It may be configured to be larger than the inclination with respect to.
  • the first mesh structure is configured by alternately arranging the first mesh and the intermediate mesh having a finer mesh than the first mesh
  • the second mesh structure includes the intermediate mesh and The second mesh having finer mesh than the intermediate mesh may be alternately arranged.
  • the spiral element according to the present invention has a water collecting pipe through which permeate flows, a sheet-like permeate spacer, and three sides sealed in a state of being overlapped on both sides of the permeate spacer, and the other side is an open end.
  • a certain bag shape is formed, and includes a first separation membrane and a second separation membrane wound around the water collection pipe in a state where the open end is connected to the water collection pipe, and a raw water flow path spacer according to any of the above inventions. Is.
  • the first mesh structure and the second mesh structure are alternately arranged and extend in the inclined direction with respect to the direction parallel to the water collecting pipe.
  • the second mesh structure is formed such that the interval between the second yarn rows is narrower than that of the first mesh structure.
  • the second mesh structure since the second mesh structure has a narrower interval between the second yarn rows than the first mesh structure, the same water flow as the first mesh structure can be maintained even if the raw water flow rate is small. As a result, ions and salts remaining in the vicinity of both separation membranes around the first mesh structure and the second mesh structure can be pushed downstream to suppress the formation of the concentration polarization layer.
  • the second mesh structure in the raw water flow path spacer, is formed so that the interval between the second yarn rows is narrower than the first mesh structure.
  • the first mesh structure and the second mesh structure extend in a direction inclined with respect to a direction parallel to the water collecting pipe and are alternately arranged. For this reason, when raw water flows along the parallel direction, the first mesh structure adjacent to the downstream side from the second mesh structure rather than the flow rate of the raw water flowing into the second mesh structure adjacent to the downstream side from the first mesh structure. The flow rate of raw water flowing into the river becomes larger.
  • the flow rate of the raw water flowing through the first mesh structure increases, and the flow rate of the raw water flow flowing downstream while meandering toward the first separation membrane or the second separation membrane around the mesh structure can be increased.
  • the second mesh structure since the second mesh structure has a narrow interval between the second yarn rows, it is possible to maintain the same level of water force as the first mesh structure even if the raw water flow rate is small. As a result, ions and salts remaining in the vicinity of both separation membranes around the first mesh structure and the second mesh structure can be pushed downstream to suppress the formation of the concentration polarization layer.
  • FIG. 1 is a schematic configuration diagram of a filtration apparatus to which a spiral membrane element according to an embodiment of the present invention is applied.
  • FIG. 2 is a perspective view including a part of the spiral membrane element shown in FIG. 1 in a developed state and a partially enlarged view showing the configuration of the raw water flow path spacer included in the part.
  • FIG. 3 is a perspective view showing the configuration of the raw water flow path spacer sandwiched between the first and second separation membranes shown in FIG. 2 and partially including a cross-sectional view thereof.
  • FIG. 4 is a perspective view showing the raw water flow formed by the raw water flow path spacer sandwiched between the first and second separation membranes shown in FIG. 2 and the target region of the fluid analysis simulation.
  • FIG. 1 is a schematic configuration diagram of a filtration apparatus to which a spiral membrane element according to an embodiment of the present invention is applied.
  • FIG. 2 is a perspective view including a part of the spiral membrane element shown in FIG. 1 in a developed state and a partially enlarged
  • FIG. 5A is an isoline diagram showing a distribution state of shear stress acting on the first separation membrane shown in FIG.
  • FIG. 5B is an isoline diagram showing a distribution state of shear stress acting on the second separation membrane shown in FIG.
  • Fig.6 (a) is a figure which shows the structure of the raw
  • FIG. 6B is an isoline diagram showing the result of calculating the shear stress that the raw water flowing in the X direction shown in FIG. 6A acts on the first separation membrane by the fluid analysis simulation.
  • FIG. 6C is an isoline diagram showing the result of calculating the shear stress acting on the second separation membrane shown in FIG. 6A by fluid analysis simulation, as in FIG. 6B.
  • FIG. 6A is an isoline diagram showing a distribution state of shear stress acting on the first separation membrane shown in FIG.
  • FIG. 6B is an isoline diagram showing a distribution state of shear stress acting on the second separation membrane shown in FIG. 6
  • FIG. 7 is a diagram showing the results of determining the area ratio of the easily polarized regions in both separation membranes in the raw water flow path spacers of Modifications 1 to 4 by fluid analysis simulation.
  • FIG. 8A is a diagram showing a configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the first modification.
  • FIG. 8B is a diagram showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the second modification.
  • FIG. 8C is a view showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the third modification.
  • FIG. 8D is a view showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 4.
  • FIG. 8A is a diagram showing a configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the first modification.
  • FIG. 8B is a diagram showing the configuration of the first mesh structure and the second mesh structure in
  • FIG. 10A is a diagram showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the fifth modification.
  • FIG. 10B is a view showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 6.
  • FIG. 10C is a view showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 7.
  • FIG. 10 (d) is a diagram showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 8.
  • FIG. 10 (e) is a diagram showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 9.
  • FIG. 11 is a diagram illustrating a configuration of the raw water flow path spacer according to the tenth modification.
  • FIG. 12 is a perspective view showing a configuration of a raw water flow path spacer sandwiched between the first separation membrane and the second separation membrane shown in FIG.
  • FIG. 13 is a diagram illustrating the configuration of the raw water flow path spacer of the eleventh modification.
  • FIG. 14 is a diagram illustrating a configuration of a raw water flow path spacer according to Modification 12.
  • FIG. 15A is a perspective view showing an internal configuration with a part of the configuration of an evaluation cell used for evaluation of concentration polarization omitted.
  • FIG. 15A is a perspective view showing an internal configuration with a part of the configuration of an evaluation cell used for evaluation of concentration polarization omitted.
  • FIG. 15A is a perspective view showing an internal configuration with a
  • FIG. 15B is a diagram showing the configuration of the test specimen of the raw water flow path spacer installed inside the evaluation cell.
  • FIG. 15C is a diagram in which the outer shape is indicated by a virtual line and the flow path component is a solid line to show the flow path configuration formed inside the evaluation cell.
  • FIG. 16A is a graph showing a relationship between a concentration ratio in an evaluation test using a specimen of each separation membrane and a measured value of pure water volume flux when the concentration ratio is measured.
  • FIG.16 (b) is a table
  • the “X” direction indicates a direction parallel to the axial direction of the water collecting pipe
  • the “Y” direction and the “Z” direction indicate the radial direction of the water collecting pipe orthogonal to each other.
  • the filtration device 10 includes a raw water tank 12 that stores raw water such as tap water, and a spiral membrane element 20 that performs a filtering process on the raw water.
  • raw water is supplied to the raw water tank 12 via a supply pipe L1.
  • the raw water tank 12 is connected to a water supply pipe L ⁇ b> 2 that sends raw water to the spiral membrane element 20.
  • a pump 14 for pumping raw water from the raw water tank 12 and a pretreatment unit 16 for removing turbid components contained in the raw water are installed in the water supply pipe L2.
  • the raw water treated by the pretreatment unit 16 is sent out to the spiral membrane element 20 through the water supply pipe L2.
  • a bypass pipe L2-B is connected to the downstream side of the pump 14 in the water supply pipe L2.
  • the bypass pipe L2-B has a role of adjusting the raw water flow rate sent to the pretreatment unit 16 by returning a part of the raw water flowing through the water supply pipe L2 to the raw water tank 12.
  • the spiral membrane element 20 has a function of generating permeated water from which ions and salts are removed from raw water and concentrated water containing the removed ions and salts.
  • the permeated water generated by the spiral membrane element 20 is stored in the permeated water tank 18 via the permeated water pipe L3, and the concentrated water is discharged to the outside via the concentrated water pipe L4.
  • FIG. 2 is a perspective view showing a part of the spiral membrane element 20 in a developed state, and a diagram showing the configuration of the raw water flow path spacer sandwiched between the first separation membrane and the second separation membrane included in the element. .
  • the spiral membrane element 20 includes a water collecting pipe 22 through which permeated water flows, a first separation membrane 24 and a second separation membrane 28 that are wound around the water collecting pipe 22 in a superposed manner. Is provided.
  • the spiral membrane element 20 includes a raw water passage spacer 40 that is sandwiched between the separation membranes 24 and 28 and forms a raw water passage between the separation membranes 24 and 28. Since the first separation membrane 24 and the second separation membrane 28 have the same configuration, only the configuration of the first separation membrane 24 will be described below.
  • the first separation membrane 24 is formed into a bag shape by superposing separation membranes 24a and 24b made of, for example, a reverse osmosis membrane, an ultrafiltration membrane, or a microfiltration membrane on both sides with a permeated water spacer 26 therebetween.
  • the open end is connected to the water collecting pipe 22.
  • the permeated water spacer 26 forms a flow path communicating with the water collecting pipe 22, and permeated water that has passed through the separation membranes 24 a and 24 b flows into the water collecting pipe 22 along the flow path.
  • the water collecting pipe 22 is provided with a plurality of communication holes 22a, 22b, and 22c at a predetermined pitch along the axial direction, and the permeated water that has permeated through the separation membranes 24 and 28 passes through the water collecting pipes 22a to 22c. 22 flows in.
  • the other three sides of the first separation membrane 24 except for the open end are sealed with an adhesive or the like to prevent mixing of permeated water and concentrated water.
  • a part of the raw water flowing through the raw water flow path becomes permeated water from which turbid components such as ions and salts have been removed by passing through either one of the separation membranes 24 and 28, and the permeated water.
  • the water is guided to the water collecting pipe 22 along the water spacer 26. Further, the remaining raw water becomes concentrated water containing a large amount of turbid components removed from the permeated water as it flows along the raw water flow path, and is discharged to the downstream concentrated water pipe L4 (see FIG. 1).
  • the spiral membrane element 20 may be provided with an upstream cap material 32 and a downstream cap material 34 attached to both end surfaces in the axial direction.
  • the upstream cap member 32 is provided with a gap for the raw water to flow into the spiral membrane element 20.
  • the downstream cap member 34 is provided with two flow paths so that the permeate flowing through the water collecting pipe 22 and the concentrated water discharged from the raw water flow path do not mix.
  • FIG. 3 is a perspective view showing the configuration of the raw water flow path spacer 40 sandwiched between the first separation membrane 24 and the second separation membrane 28.
  • the raw water passage spacer 40 is a raw water passage spacer having a two-layer structure in which the first yarn row M and the second yarn row N are overlapped with each other. Are fixed in a laminated state.
  • the raw water flow path spacer may be in a state in which the yarn rows M and N are knitted together.
  • the raw water flow path spacer 40 includes first mesh structures 51, 52, and 53 and second mesh structures 61, 62, and 63 alternately. Since the first mesh structures 51 to 53 have the same configuration, only the first mesh structure 52 will be described in the following description.
  • the first mesh structure 52 is formed by connecting the first square meshes 52a, 52b, 52c in the extending direction of the second yarns N2, N3. Since the first quadrangular meshes 52a to 52c have the same configuration, only the first quadrangular mesh 52a will be described below.
  • the first side part 52a-1 and the second side part 52a-2 in the first square mesh 52a are formed by the first yarns M1 and M2, respectively, and the third side part 52a-3 and the fourth side part 52a-. 4 is formed by the second yarns N2 and N3.
  • the first quadrangular mesh 52a has a square external shape configured such that the dimensions of the side portions 52a-1 to 52a-4 are 3 mm.
  • Each of the yarn rows M and N is arranged so as to be inclined in the opposite direction, for example, 45 ° with respect to the X direction.
  • Each yarn row M, N is formed of a resin material such as polyester, polyethylene, or polypropylene, for example, in a cylindrical shape having a diameter D of 0.4 mm.
  • column M and N is not restricted to a column shape, For example, you may form in flat form.
  • the second mesh structure 61 is formed by connecting second rectangular meshes 61a, 61b, 61c having the same configuration in the extending direction of the second yarns N1, N2.
  • the first side 61a-1 and the second side 61a-2 of the second quadrangular mesh 61a are formed by the first yarns M1 and M2, respectively, and the third side 61a-3 of the second quadrangular mesh 61a. Is formed by the second thread N1.
  • the fourth side portion of the second quadrangular mesh 61a is constituted by the third side portion 52a-3 in the first quadrangular mesh 52a described above.
  • the second quadrangular mesh 61a may be formed in a parallelogram shape with the dimensions of the side portions 61a-1, 61a-2, 61a-3 being 3 mm.
  • the inclination angle ⁇ 1 of the first side portion 61a-1 and the second side portion 61a-2 with respect to the X direction is the first side portion 52a-1 and the second side portion 52a-2 of the first square mesh 52a.
  • the first yarns M1, M2 are bent so as to be larger than the inclination angle ⁇ 2 with respect to the X direction.
  • the inclination angle ⁇ 1 may be 90 ° and the inclination angle ⁇ 2 may be 45 °.
  • the distance R1 between the two side portions 61a-1 and 61a-2 in the second square mesh 61a is equal to the distance between the two side portions 52a-1 and 52a-2 in the first square mesh 52a (that is, the third side portion). 52a-3)).
  • the interval R2 between both sides 52a-3 and 61a-3 in the second quadrangular mesh 61a is equal to the interval between both sides 52a-3 and 52a-4 in the first quadrilateral mesh 52a (ie, the first side It is formed so as to be narrower than the length of the portion 52a-1.
  • the second quadrangular mesh 61a is configured to have finer eyes than the first quadrangular mesh 52a (i.e., the surrounding area is small), and the resistance that the raw water flowing in the X direction receives from the flow path (hereinafter referred to as the following) (Denoted as channel resistance).
  • the second mesh structure 61 configured by connecting the meshes having the same configuration as the second quadrangular mesh 61a is the first mesh configured by connecting the meshes having the same configuration as the first quadrangular mesh 52a.
  • the channel resistance is larger than that of the structure 52.
  • FIG. 4 is a view showing the raw water flow formed by the raw water flow path spacer 40 and the simulation region T as in FIG.
  • the simulation region T is a region surrounded by virtual lines T1 to T4, and the virtual line T1 connects the center point of the second quadrangular mesh 61a and the center point of the second quadrangular mesh 61b. This is an intermediate line between the second yarn N1 and the second yarn N2.
  • the imaginary line T3 is an intermediate line between the second thread N3 and the second thread N4 that connects the center point of the second square mesh 62a and the center point of the second square mesh 62b.
  • the virtual line T2 is an intermediate line between the first yarn M2 and the first yarn M3 that connects the center point of the second quadrangular mesh 61b and the center point of the second quadrangular mesh 62b.
  • the virtual line T4 is an intermediate line between the first yarn M1 and the first yarn M2 that connects the center point of the second square mesh 61a and the center point of the second square mesh 62a.
  • each mesh structure 52, 61, 62 is inclined with respect to the X direction as shown in FIG. Therefore, the raw water flows downstream while passing through the second mesh structure 61, the first mesh structure 52, and the second mesh structure 62 in this order. This point will be described with reference to an example of raw water flow in each of the quadrilateral meshes 52a, 61a, and 62a constituting a part of each mesh structure 52, 61, and 62.
  • the quadrangular meshes 52a, 61a, and 62a are adjacently arranged in the order of the second quadrangular mesh 61a, the first quadrangular mesh 52a, and the second quadrangular mesh 62a from the upstream side in the X direction.
  • the second quadrangular mesh 61a part of the raw water flows into the first quadrangular mesh 52a while meandering toward the second separation membrane 28 along the flow C1. Thereby, the flow rate of the raw water in the region close to the second separation membrane 28 can be increased, and residual ions and salts staying in the region close to the second separation membrane 28 can be pushed downstream.
  • the second quadrangular meshes 61a and 62a that respectively constitute part of the second mesh structures 61 and 62 are the first quadrangular mesh that constitute part of the first mesh structure 52.
  • the channel resistance is larger than 52a. Therefore, as shown in FIG. 4, the flow rate Q1 flowing from the second quadrangular mesh 61a along the flow C1 into the first quadrangular mesh 52a is changed from the first quadrangular mesh 52a to the flow C2.
  • the flow rate Q2 is larger than the flow rate Q2 flowing out to the second quadrangular mesh 62a.
  • the flow rate of the raw water flowing from the first square mesh 52a to the downstream first square mesh 52b is increased by the flow rate Q3 which is the difference between the flow rate Q1 and the flow rate Q2. In this way, the raw water flow rate in the first mesh structure 52 increases, and the raw water flow rate in the second mesh structures 61 and 62 decreases.
  • the first separation membrane 24 flows along the flow S1, S2, S3 around the sides 52a-2, 61a-2, 62a-2 (see FIG. 3) of the respective square meshes 52a, 61a, 62a.
  • the flow rate of the raw water flow S1 in the first mesh structure 52 can be increased.
  • the flow rate of the raw water in the vicinity region of the first separation membrane 24 surrounded by the first mesh structure 52 can be increased, and residual ions and salts staying in the region can be pushed downstream.
  • the flow rates of the raw water flows S2 and S3 in the second square meshes 61a and 62a are smaller than the flow rate of the flow S1, respectively.
  • the interval R1 (see FIG. 3) between the first yarns M1 and M2 in the second quadrilateral meshes 61a and 62a is the interval between the first yarns M1 and M2 in the first quadrilateral mesh 52a, that is, the third side.
  • the portion 52a-3 is configured to be narrower than the length (see FIG. 3).
  • FIG. 5 (a) is an isoline diagram showing the results of the fluid analysis simulation for the magnitude of the shear stress that the raw water acts on the first separation membrane 24 in the region T shown in FIG.
  • FIG. 5B is an isoline diagram showing the result of obtaining the magnitude of the shear stress acting on the second separation membrane 28 in the region T by the fluid analysis simulation as in FIG.
  • the smaller the shear stress acting on each separation membrane 24, 28, the smaller the action of the raw water to push residual ions and salts from the area close to each separation membrane 24, 28.
  • the flow rate of the raw water flowing into the region T along the X direction is 0.162 m / s.
  • a region where the above-described shear stress magnitude is 0.75 Pa or less is referred to as an easily polarized region.
  • the average value of the shear stress acting on both separation membranes 24 and 28 shown in FIGS. 5A and 5B is 3.3 Pa.
  • FIG. 6A is a diagram showing a configuration of a raw water flow path spacer 300 which is a comparative example.
  • FIG. 6B is an isoline diagram showing the result of obtaining the magnitude of the shear stress acting on the first separation membrane 24 in the region U shown in FIG.
  • FIG. 6C is an isoline diagram showing a distribution state of shear stress acting on the second separation membrane 28 in the region U shown in FIG.
  • the flow rate of the raw water flowing into the region U along the X direction is set to 0.162 m / s.
  • the raw water flow path spacer 300 is formed by laminating a yarn row V including yarns V1, V2, and V3 and a yarn row W including yarns W1, W2, and W3 so as to be orthogonal to each other.
  • the mesh structure 310 is formed.
  • the mesh structure 310 includes quadrilateral meshes 310a, 310b, 310c, and 310d having the same configuration as the first quadrilateral mesh 52a.
  • the region U is a region surrounded by an imaginary line connecting the center points of the square meshes 310a to 310d.
  • the shear stress acting on the region surrounded by the region U of both separation membranes 24 and 28 is about 8 Pa at the maximum. Further, the ratio of the area of the easily polarized regions formed in both separation membranes 24 and 28 to the surfaces of both separation membranes 24 and 28 is 20%.
  • the large shear stress does not act on both separation membranes 24 and 28 unlike the raw water flow passage spacer 40 of this embodiment, and both separation membranes 24,
  • the area ratio of the easily polarized region formed in the layer 28 is also relatively high at 20%. For this reason, ions and salts remaining in the region adjacent to both separation membranes 24 and 28 cannot be sufficiently washed away.
  • the raw water flowing in the X direction is more difficult to pass than the first mesh structures 51-53.
  • 62 and 63 are alternately arranged. Therefore, for example, the flow rate of raw water flowing from the second quadrangular mesh 61a in the second mesh structure 61 into the first quadrangular mesh 52a in the first mesh structure 52 can be increased. As a result, shear stress equivalent to that of both separation membranes 24 and 28 in the region surrounded by the second quadrangular mesh 61a is applied to both separation membranes 24 and 28 in the region surrounded by the first quadrangular mesh 52a. be able to.
  • the raw water flow path spacer 40 it is possible to suppress the formation of the concentration polarization layer by washing away ions and salts remaining in the vicinity of both separation membranes 24 and 28 while preventing an increase in pressure loss.
  • a large shear stress can be applied to both the separation membranes 24 and 28, so that both the separation membranes 24 and 28 are clogged with a substance derived from a bacterial body such as a biofilm. It is also possible to suppress the occurrence of biofouling that becomes a state.
  • FIGS. 8A to 8D show the first rectangular mesh in the first mesh structure and the second rectangular shape in the second mesh structure in each of the raw water flow path spacers of Modifications 1 to 4. It is a figure which shows the shape of a mesh typically.
  • the flow rate of the raw water flowing into the region T (see FIG. 3) along the X direction is set to 0.162 m / s.
  • Each of the raw water flow path spacers 70, 80, 90, 100 shown in FIGS. 8A to 8D is different from the raw water flow path spacer 40 of the above embodiment in the configuration of the second square mesh. Except for the same configuration.
  • the raw water flow path spacer 70 of Modification 1 is provided such that the inclination angle ⁇ 1 of the second quadrangular mesh 71a constituting the second mesh structure 71 is 50 °. This is different from the configuration of the raw water flow path spacer 40 in the above embodiment. As shown in FIG. 7, according to the raw water flow path spacer 70, the area ratio of the easily polarized region to the surfaces of both separation membranes 24 and 28 is 19%.
  • the raw water flow path spacer 80 of Modification 2 is provided so that the inclination angle ⁇ 1 of the second square mesh 81a constituting the second mesh structure 81 is 85 °. This is different from the configuration of the raw water flow path spacer 40 in the above embodiment. Further, as shown in FIG. 7, according to the raw water flow path spacer 80, the area ratio of the easily polarized region to the surfaces of both separation membranes 24 and 28 is 17%.
  • the raw water flow path spacer 90 of Modification 3 is provided such that the inclination angle ⁇ 1 of the second quadrangular mesh 91a constituting the second mesh structure 91 is 95 °. This is different from the configuration of the raw water flow path spacer 40. Further, as shown in FIG. 7, according to the raw water flow path spacer 90, the area ratio of the easily polarized region to the surfaces of both separation membranes 24 and 28 is 15%.
  • the raw water channel spacer 100 of the fourth modification is provided so that the inclination angle ⁇ 1 of the second quadrangular mesh 101a constituting the second mesh structure 101 is 120 °. It differs from the structure of the said raw
  • the inclination angle ⁇ 1 is preferably set to a size of 120 ° or less.
  • the formation of the concentration polarization layer can be suppressed as in the raw water flow path spacer 40 in the above embodiment.
  • Table 2 shown in FIG. 9 shows easy polarization that occupies the surfaces of both separation membranes 24 and 28 in the raw water flow path spacers of Modifications 5 to 9 in which the composition ratios of the first mesh structure 51 and the second mesh structure 61 are changed.
  • natural water flow path spacer 40 of the said embodiment is shown.
  • the flow rate of the raw water flowing along the X direction is set to 0.162 m / s.
  • FIGS. 10 (a) to 10 (e) are diagrams schematically showing the configuration of the raw water flow path spacer in the case of modifications 5 to 9.
  • FIG. 10 (a) to 10 (e) are diagrams schematically showing the configuration of the raw water flow path spacer in the case of modifications 5 to 9.
  • the raw water flow path spacer 110 of Modification 5 includes first mesh structures 112 and second mesh structures 114 shown in FIG.
  • the first mesh structure 112 is configured by arranging two first quadrangular meshes 112a and 112b in the extending direction of the first yarns M11 and M12 constituting the first yarn row M10.
  • the first quadrangular meshes 112a and 112b have the same configuration as the first quadrangular mesh 52a.
  • the second mesh structure 114 has the same configuration as the second mesh structure 61.
  • the area ratio of the easily polarized region occupying the surfaces of both separation membranes 24 and 28 is 18%.
  • the raw water flow path spacer 120 of the modified example 6 includes first mesh structures 122 and second mesh structures 124 shown in FIG.
  • the first mesh structure 122 is configured by arranging three first rectangular meshes 122a, 122b, 122c in the extending direction of the first yarns M21, M22 constituting the first yarn row M20.
  • the first quadrangular meshes 122a to 122c have the same configuration as the first quadrangular mesh 52a.
  • the second mesh structure 124 has the same configuration as the second mesh structure 61. As shown in FIG. 9, in the raw water channel spacer 120, the area ratio of the easily polarized region occupying the surfaces of both separation membranes 24 and 28 is 19%.
  • the raw water flow path spacer 130 of the modified example 7 is alternately provided with the first mesh structure 132 and the second mesh structure 134 shown in FIG.
  • the first mesh structure 132 is configured by arranging two first square meshes 132a and 132b in the extending direction of the yarns M31 and M32 constituting the first yarn row M30.
  • the first quadrangular meshes 132a and 132b have the same configuration as the first quadrangular mesh 52a.
  • the second mesh structure 134 is configured by arranging two second rectangular meshes 134a and 134b in the extending direction of the first yarns M31 and M32 constituting the first yarn row M30.
  • the area ratio of the easily polarized region in the surfaces of both separation membranes 24 and 28 is 16%.
  • the raw water flow path spacer 140 of the modified example 8 is alternately provided with the first mesh structure 142 and the second mesh structure 144 shown in FIG.
  • the first mesh structure 142 has the same configuration as the first mesh structure 51.
  • the second mesh structure 144 is configured by arranging two second square meshes 144a and 144b in the extending direction of the first yarns M41 and M42 constituting the first yarn row M40.
  • the configuration of the second quadrangular meshes 144a and 144b is the same as that of the second quadrangular mesh 61a.
  • the area ratio of the easily polarized region occupying the surfaces of both separation membranes 24 and 28 is 15%.
  • the raw water flow path spacer 150 of the modification 9 is alternately provided with a first mesh structure 152 and a second mesh structure 154 shown in FIG.
  • the first mesh structure 152 has the same configuration as the first mesh structure 51.
  • the second mesh structure 154 is configured by arranging three second square meshes 154a, 154b, and 154c in the extending direction of the first yarns M51 and M52 constituting the first yarn row M50.
  • the area ratio of the easily polarized region occupying the surfaces of both separation membranes 24 and 28 is 14%.
  • the formation of the concentration polarization layer can be suppressed similarly to the raw water flow path spacer 40 in the above embodiment.
  • FIG. 11 is a diagram showing a configuration of the raw water flow path spacer 160 of the tenth modification.
  • FIG. 12 is an enlarged view showing the configuration of the first mesh structure and the second mesh structure included in the raw water flow path spacer 160 shown in FIG.
  • the raw water passage spacer 160 is a two-layer raw water passage spacer in which the first yarn row A and the second yarn row B are overlapped with each other. Are fixed in a laminated state.
  • Each of the yarn rows A and B is inclined by 45 °, for example, in opposite directions with respect to the X direction, like the yarn rows M and N in the above embodiment.
  • the interval between the first yarns A1 and A2 constituting the first yarn row A and the interval between the first yarns A2 and A3 are provided to be the same size, and is set to 4 mm as an example.
  • the interval between the first yarns A3 and A4 and the interval between the first yarns A4 and A5 are set to be half the interval between the first yarns A1 and A2.
  • the interval between the second yarns B1 and B2 and the interval between the second yarns B2 and B3 constituting the second yarn row B are set to be the same size, and is set to 4 mm as an example.
  • the interval between the second yarns B3 and B4 and the interval between the second yarns B4 and B5 are each set to be half the size of the interval between the second yarns B1 and B2.
  • Each of the yarns A1 to A5 and B1 to B5 is formed in a columnar shape, for example, and has a diameter of 0.4 mm.
  • the raw water flow path spacer 160 includes first mesh structures 171 and 172 configured to be connected in the extending direction of the second yarn row B by the first yarn row A and the second yarn row B described above. , 173 and second mesh structures 181, 182 and 183 are alternately provided. Since the first mesh structures 171 to 173 have the same configuration and the second mesh structures 181 to 183 also have the same configuration, in the following description, the first mesh structure 172 and the second mesh structure 182 are taken as an example. Give an explanation.
  • the first mesh structure 172 is formed of the first mesh 172a-1 formed by the first yarns A1 to A3 and the second yarns B1 to B3, and the first yarns A3 to A5 and the second yarns B3 to B5.
  • Intermediate meshes 172a-2 are alternately arranged along the extending direction of the second yarn row B.
  • the first mesh 172a-1 has, for example, a square appearance.
  • the intermediate mesh 172a-2 has, for example, a rectangular appearance, and is configured to have finer eyes than the first mesh 172a-1. For this reason, when the first mesh 172a-1 and the intermediate mesh 172a-2 are compared, the flow resistance of the first mesh 172a-1 is smaller than that of the intermediate mesh 172a-2.
  • the second mesh structure 182 includes an intermediate mesh 182a-1 formed by the first yarns A1 to A3 and the second yarns B3 to B5, and a second mesh formed by the first yarns A3 to A5 and the second yarns B3 to B5.
  • the meshes 182a-2 are alternately arranged along the extending direction of the second yarn row B. Similar to the intermediate mesh 172a-2, the intermediate mesh 182a-1 has, for example, a rectangular external shape, and is configured to have the same roughness as the mesh 172a-2. Further, the second mesh 182a-2 has, for example, a square-shaped appearance shape, and has finer eyes than the intermediate mesh 182a-1. For this reason, when the second mesh 182a-2 and the intermediate mesh 182a-1 are compared, the flow resistance of the second mesh 182a-2 is larger than that of the intermediate mesh 182a-1.
  • part of the raw water flows along the flows C11 and C12 from the intermediate mesh 182a-1 to the first mesh 172a-1 in the first mesh structure 172 on the downstream side. To do.
  • a part of the raw water flows from the first mesh 172a-1 to the intermediate mesh 183a-1 of the second mesh structure 183 on the downstream side along the flows C21 and C22.
  • the second mesh 182a-2 and the first mesh 172a-1 are adjacent to the downstream side in the raw water flow of the intermediate mesh 182a-1. Since the second mesh 182a-2 has higher flow resistance than the first mesh 172a-1, the raw water flowing from the intermediate mesh 182a-1 along the flows C11 and C12 into the first mesh 172a-1 The flow rate Q11 is larger than the flow rate Q12 of raw water flowing into the second mesh 182a-2.
  • intermediate meshes 172a-2 and 183a-1 are adjacent to the downstream side of the first mesh 172a-1. Since both meshes 172a-2 and 183a-1 have the same coarseness of the eyes, the magnitude of the channel resistance is also comparable. For this reason, the flow rate Q12 of raw water flowing out to the intermediate mesh 183a-1 along the flows C21 and C22 and the flow rate Q13 of raw water flowing out to the intermediate mesh 172a-2 along the flows S11, 12 are comparable. Become.
  • the flow rate Q13 increases.
  • the water flow of the raw water flowing through the first mesh structure 172 can be increased, and the same effect as the raw water flow path spacer 40 in the above embodiment can be obtained.
  • the area ratio of the easily polarized region in the surfaces of both separation membranes 24 and 28 is 17%.
  • the average value of the shear stress that the raw water flow acts on both separation membranes 24 and 28 is 2.6 Pa, whereas the above-described raw water channel is used.
  • the average value of the shear stress of the spacer 40 was 3.3 Pa.
  • the average shear stress acting on both separation membranes 24 and 28 is about 20% lower than that of the raw water channel spacer 40 described above. For this reason, the effect that a pressure loss can be suppressed compared with the raw
  • FIG. 13 is a view showing a configuration of the raw water flow path spacer 200 of the eleventh modification.
  • the raw water flow path spacer 200 is a modification of the raw water flow path spacer 160 described above.
  • only portions different in configuration from the raw water flow path spacer 160 will be described, and description of portions common in configuration will be omitted as appropriate.
  • the raw water passage spacer 200 is a two-layer raw water passage spacer in which the first yarn row A10 and the second yarn row B10 are overlapped with each other, and each yarn row A10, B10 is laminated. It is formed by fixing with.
  • the configuration differs from the configuration of the raw water flow path spacer 160 in that the yarns A11, A12, A13 constituting the first yarn row A10 are arranged at equal intervals.
  • the configurations of the second yarns B11 to B15 constituting the second yarn row B10 are the same as the second yarns B1 to B5 in the raw water flow path spacer 160 described above.
  • the raw water channel spacer 200 includes first mesh structures 201, 202, and 203 configured along the second yarn row B10 by the first yarn row A10 and the second yarn row B10 described above.
  • the second mesh structures 211, 212, and 213 are alternately provided.
  • the first mesh structures 201 to 203 have the same configuration, and the second mesh structures 211 to 213 also have the same configuration. For this reason, in the following description, the first mesh structure 202 and the second mesh structure 212 will be described as an example.
  • the first mesh structure 202 includes a first mesh 202a formed by the first yarns A11 and A12 and the second yarns B11 to B13, and a number of meshes having the same configuration as the first mesh 202a are the second yarns. A large number are arranged in the extending direction of the row B10.
  • the second mesh structure 212 includes a second mesh 212a formed by the first yarns A11, A12 and the second yarns B13 to B15, and a number of meshes having the same configuration as the second mesh 212a are the second yarns. A large number are arranged in the extending direction of the row B10.
  • the second mesh 212a is formed with finer eyes than the first mesh 202a. For this reason, channel resistance becomes larger than the 1st mesh 202a.
  • the area ratio of the easily polarized regions occupying the surfaces of the separation membranes 24 and 28 was 17%. Also in the raw water flow path spacer 200 of this modified example 11, the same effect as the raw water flow path spacer 160 described above can be obtained.
  • FIG. 14 is a view showing the configuration of the raw water flow path spacer 230 of the twelfth modification.
  • the raw water flow path spacer 230 includes first mesh structures 231, 232, 233 and second mesh structures 241, 242, 243 that are formed by superimposing the yarn rows M, N alternately.
  • first mesh structures 231, 232, and 233 have the same configuration
  • the second mesh structures 241, 242, and 243 also have the same configuration, in the following description, the first mesh structure 232 and the second mesh structure 232
  • the raw water flow path spacer 230 will be described by taking the mesh structure 241 as an example.
  • the raw water flow path spacer 230 is different from the configuration of the raw water flow path spacer 40 described above in that the intervals of the yarn rows N are equal.
  • the interval R4 between the yarns M1 and M2 constituting the second mesh structure 241 is narrower than the interval R3 between the yarns M1 and M2 constituting the first mesh structure 232.
  • the yarn mesh M may be configured such that the interval in the second mesh structure 241 is narrower than that in the first mesh structure 231.
  • the yarn row M corresponds to the second yarn row
  • the yarn row N corresponds to the first yarn row.
  • FIG. 15A is a perspective view showing the evaluation cell 400 with a part of the cell omitted, and a partial cross-sectional view.
  • FIG. 15B is a diagram illustrating a configuration of a test body of the raw water flow path spacer 40 installed in the evaluation cell 400.
  • FIG. 15C is a diagram showing the outline of the flow path in the evaluation cell 400 and the solid line of the flow path component.
  • the cross section of the test body 40-T in the raw water channel spacer 40 is indicated by hatching with “x” mark for convenience.
  • the evaluation cell 400 is a substantially rectangular parallelepiped concentration measuring unit formed by fitting a male die 410 and a female die 420 together.
  • the evaluation cell 400 is used by replacing the spiral membrane element 20 included in the filtration device 10 shown in FIG.
  • the male mold 410 is a metal or resin member having a convex portion 412 provided at the center.
  • the protrusion surface 412a is formed in a rounded rectangle shape.
  • a rounded rectangle means a shape that forms an outer shape of a short side and a long side constituting a rectangle, the outer side being replaced with a curve that protrudes outward in a semicircular shape.
  • the chamfering process is given to the peripheral part of the protrusion surface 412a, and the inclined surface 412b is formed.
  • the female mold 420 is a metal or resin member in which a concave portion 422 that fits into the convex portion 412 of the male die 410 is provided in the central portion.
  • the evaluation flow path 430 is formed between the convex portion 412 and the concave portion 422 by fitting both the molds 410 and 420 together.
  • the evaluation channel 430 has a rounded rectangular outer shape.
  • the total length D1 is 167 mm
  • the diameter of the semicircular portion formed at both ends, that is, the width D2 is 35 mm
  • the thickness of the flow path is about 1 mm.
  • the male mold 410 is provided with a pipe end 414 constituting the raw water inlet and a pipe end 416 constituting the concentrated water outlet.
  • the pipe end 414 constituting the raw water inlet is connected to a water supply pipe L2 (see FIG. 1) for supplying raw water
  • the pipe end 416 constituting the concentrated water outlet is connected to a concentrated water pipe L4 (see FIG. 1).
  • the Both pipe ends 414 and 416 communicate with the evaluation flow path 430 through connecting flow paths 414a and 416a provided inside the male mold 410, respectively.
  • the female mold 420 is also provided with pipe ends 424 and 426 that respectively constitute permeate outlets at positions facing the pipe ends 414 and 416 of the male mold 410.
  • the pipe ends 424 and 426 and the evaluation flow path 430 are communicated with each other through connecting flow paths 424a and 426a formed in the female mold 420. Moreover, the pipe ends 424 and 426 constituting the permeate outlet are each connected to the permeate pipe L3 (see FIG. 1).
  • the evaluation channel 430 formed inside the evaluation cell 400 includes a test body 26-T of the permeated water spacer 26, a test body 24-T of the separation membrane 24a, and a test body 40 of the raw water channel spacer 40.
  • -T is stored in a stacked state.
  • Each test body 26-T, 24-T, 40-T is processed in advance into a rounded rectangular shape so as to fit in the recess 422 of the female mold 420 without a gap.
  • FIG. 15 (a) the permeated water spacer test body 26-T, the separation membrane test body 24-T, and the raw water channel spacer test body 40- viewed from the female mold 420 side.
  • the permeated water that has passed through the test body 24-T which is a separation membrane, passes through the inside of the test body 26-T and communicates therewith. It will flow out of either of the flow paths 424a and 426a to the permeate pipe L3 (see FIG. 1).
  • the raw water that has not permeated through the specimen 24-T as the separation membrane is discharged as concentrated water to the concentrated water pipe L4 (see FIG. 1) via the communication channel 416a.
  • the O-ring 432 is an annular member whose outer periphery has a rounded rectangular shape, and is a rubber packing having a circular cross section.
  • the O-ring 432 is pressed against an inclined surface 412 b formed on the convex portion 412 of the male die 410, thereby closing the gap between the convex portion 412 of the male die 410 and the concave portion 422 of the female die 420. It has a function as a sealing material that prevents water leakage.
  • the raw water flow channel spacer 160 of the modified example and the raw water flow channel spacer 300 of the comparative example are also tested in the same manner as the test sample 40-T of the raw water flow channel spacer 40. T is made and evaluated.
  • the specimen 300-T was manufactured such that the interval between the yarn rows V (see FIG. 6A) and the interval between the yarn rows W (see FIG. 6B) were 2 mm.
  • the diameters of the yarns V1 to V3 and W1 to W3 constituting the yarn rows V and W are 0.2 mm.
  • test body 40-T was manufactured such that the interval between the first yarn rows M (see FIG. 3) and the interval between the second yarn rows N (see FIG. 3) were 2 mm.
  • the first square mesh 52a described above has a square appearance with a side of 2 mm
  • the second square mesh 61a has a rhombus with a side of 2 mm.
  • the diameter D of each of the yarns M1 to M3 and N1 to N4 constituting each yarn row M and N (which has a shape) is 0.2 mm.
  • the interval between the first yarns A1 and A2 and the interval between the first yarns A2 and A3 constituting the first yarn row A is 3 mm, respectively.
  • the distance between the first yarns A4 and A5 was 1.5 mm.
  • the interval between the second yarns B1 and B2 and the interval between the second yarns B2 and B3 are each 3 mm, and the interval between the second yarns B3 and B4 and the second yarn B4 , B5 were each made to be 1.5 mm apart.
  • the diameters of the yarns A1 to A5 and B1 to B5 constituting the yarn rows A and B are 0.2 mm.
  • This “pure water” permeability coefficient is a permeability coefficient obtained from the relationship of the following formula (1) when the raw water supplied from the pipe end 414 to the evaluation cell 400 is pure water not containing impurities such as salt. is there.
  • J W A ⁇ P out (1)
  • J W is a pure water volume flux [m 3 / (m 2 s)]
  • P out is a measured value of a water pressure gauge (not shown) installed in the concentrated water pipe L4.
  • the pure water volume flux J W1 is obtained by dividing the permeated water flow rate Q L3 by the area of the test body 24-T of the separation membrane 24a.
  • the water flow rate Q L4 is set to 14.5 ⁇ 0.5 [cc / min], and the flow rate Q L3 [m 3 / s] of the permeated water in this case is measured.
  • the solution volume flux J V is calculated by dividing the permeated water flow rate Q L3 by the area of the specimen 24-T, and the calculated solution volume flux J V is substituted into the following equation (2).
  • the membrane surface concentration C m which means the salt concentration of the raw water in the vicinity of the membrane surface of the specimen 24-T as a separation membrane is calculated by the following equation (3).
  • C in is the salt concentration of the raw water flowing through the water supply pipe L2
  • C out is the salt concentration of the concentrated water flowing through the concentrated water pipe L4.
  • the salt concentration of sodium chloride contained in the raw water is adjusted in advance to around 250 ppm as described above, only the salt concentration C out of the concentrated water flowing through the concentrated water pipe L4 may be measured.
  • what is necessary is just to perform the measurement of the salt concentration in concentrated water or raw
  • FIG. 16A is a graph showing the measurement results of each separation membrane with the concentration ratio Cr described above on the vertical axis and the measured value of the pure water volume flux J W on the horizontal axis.
  • the “ ⁇ ” mark indicates the measured value of the test specimen 300-T of the raw water flow path spacer 300 as a comparative example, and “ ⁇ ” indicates the measurement of the test specimen 40-T of the raw water flow path spacer 40.
  • “10” indicates the measured value of the test body 160 -T of the raw water flow path spacer 160 of the tenth modification.
  • FIG. 16 (b) the table shown with pure water volume flux J w at the time of measurement the measured value of the concentration ratio C r of each specimen 40-T, 160-T, 300-T shown in the diagram (a) It is.
  • natural water flow path spacer 40 are comprised asymmetrically. For this reason, the raw water flows in the vicinity of the membrane surface of the separation membrane 24a and the separation membrane 28a facing each other with the raw water flow path spacer 40 interposed therebetween are greatly different. For this reason, the distribution state of the salt concentration in the vicinity of both separation membranes 24a and 28a is also greatly different.
  • test body 40-T of the raw water channel spacer 40 in the installation state “A” is referred to as a test body 40-TA, and the test body 40 in the case where the installation state “B” is shown. -T is appropriately described as test body 40-TB.
  • the measured pressure loss P L at which the concentrated water flow rate Q L4 in concentrated water pipe L4 was 14.5cc / min..
  • the pressure loss P L is hydraulically P in the water supplied to the evaluation channel 430 of the evaluation cell 400 from the tube end 414, a differential pressure between P out as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

[Problem] To provide a raw water flow path spacer and a spiral membrane element provided with the same wherein the formation of a concentration polarization layer can be suppressed in a region in the vicinity of a separation membrane in a raw water flow path. [Solution] A raw water flow path spacer 40 is formed by first thread rows M and second thread rows N overlaying each other and is provided alternatingly with a first mesh structure 52 constituted by connecting first square shaped meshes 52a – 52c constituted by the thread rows M, N in the direction of extension of the second thread rows N and a second mesh structure 61 constituted by connecting in the direction of extension of the second thread rows N such that the space between the second thread rows N is smaller than the space between the second thread rows N constituting the first mesh structure 52.

Description

原水流路スペーサ、および、これを備えたスパイラル型膜エレメントRaw water channel spacer and spiral membrane element provided with the same
 本発明は、液体に溶存する成分を分離するスパイラル型膜エレメントに関し、特に、スパイラル型膜エレメントの原水流路スペーサに関する。 The present invention relates to a spiral membrane element that separates components dissolved in a liquid, and more particularly to a raw water channel spacer of a spiral membrane element.
 近年、水道水等に含まれるイオンや塩類等を、例えば、スパイラル型膜エレメント等の分離膜を用いて濾過処理し、飲料により適した水を製造する試みが行われている。 In recent years, attempts have been made to produce ions that are more suitable for beverages by filtering ions, salts, and the like contained in tap water using a separation membrane such as a spiral membrane element.
 このスパイラル型膜エレメントは、集水管と、集水管の周りに巻回された複数の分離膜とを含む。各分離膜は、シート状の透過水スペーサの両面に分離膜を重ね合わせ、この状態で3辺を接着等の手段によって封止し、他の1辺を開口端とした袋状に形成される。そして、この開口端が集水管に接続されることで透過水スペーサに沿って流れる透過水が集水管に流れ込むように構成されている。 This spiral membrane element includes a water collecting pipe and a plurality of separation membranes wound around the water collecting pipe. Each separation membrane is formed in a bag shape with the separation membranes overlapped on both sides of a sheet-like permeated water spacer, and in this state, three sides are sealed by means such as adhesion, and the other one side is an open end. . And it is comprised so that the permeated water which flows along a permeated water spacer may flow into a water collection pipe | tube by connecting this open end to a water collection pipe | tube.
 また、袋状に形成された各分離膜の間には、水道水等の原水の流路を形成するメッシュ状の原水流路スペーサが挟み込まれる。そして、スパイラル型膜エレメントに供給される原水は、上記原水流路スペーサに沿って流れつつ、その一部が分離膜を透過して透過水となり集水管を経て外部へ送り出される。 Further, a mesh-shaped raw water flow path spacer that forms a flow path of raw water such as tap water is sandwiched between each separation membrane formed in a bag shape. The raw water supplied to the spiral membrane element flows along the raw water flow path spacer, and a part of the raw water permeates the separation membrane to become permeated water and is sent out through the water collecting pipe.
 特許文献1には、縦糸を原水の流れ方向に沿って配置し、横糸を原水の流れ方向に対して交差する方向に配置するとともに、横糸を縦糸よりも細く形成することによって原水流路における圧力損失を低減できる原水流路スペーサを備えたスパイラル型膜エレメントが開示されている。 In Patent Document 1, the warp yarn is arranged along the flow direction of the raw water, the weft yarn is arranged in a direction intersecting the flow direction of the raw water, and the weft yarn is formed narrower than the warp yarn, thereby forming a pressure in the raw water flow path. A spiral membrane element having a raw water channel spacer that can reduce loss is disclosed.
特開2005‐305422号公報JP 2005-305422 A
 ところで、分離膜を原水が透過するのに伴い、分離膜を透過できないイオンや塩類は原水流路側における分離膜の近傍領域に残留する。この残留したイオンや塩類が分離膜近傍に蓄積されることによって原水流路の他の領域よりもイオンや塩類の濃度の高い濃度層(以下、濃度分極層と適宜表現する)が形成される。これにより、分離膜の膜面近傍における浸透圧が上昇するため分離膜を透過する透過水の量が減少し原水から透過水を効率良く得ることができないという問題が生じる。 By the way, as raw water permeates through the separation membrane, ions and salts that cannot permeate the separation membrane remain in the vicinity of the separation membrane on the raw water flow path side. By accumulating the remaining ions and salts in the vicinity of the separation membrane, a concentration layer (hereinafter referred to as a concentration polarization layer as appropriate) having a higher concentration of ions and salts than other regions of the raw water channel is formed. Thereby, since the osmotic pressure in the vicinity of the membrane surface of the separation membrane increases, the amount of permeated water that permeates through the separation membrane decreases, resulting in a problem that permeated water cannot be obtained efficiently from raw water.
 そこで、本発明では、分離膜近傍領域における濃度分極層の形成を抑制できる原水流路スペーサ、および、これを備えたスパイラル型膜エレメントを提供することを目的とする。 Therefore, an object of the present invention is to provide a raw water flow path spacer capable of suppressing the formation of a concentration polarization layer in a region near the separation membrane, and a spiral membrane element provided with the same.
 本発明に係る原水流路スペーサは、スパイラ型膜エレメントの集水管に巻回された第1分離膜と第2分離膜との間に挟み込まれ、集水管と平行な方向に対して互いに反対方向に傾斜する第1糸列および第2糸列からなる2層構造の原水流路スペーサであって、第1糸列および第2糸列により第2糸列の延在方向に連なって構成された第1メッシュ構造と、第1糸列および第2糸列により第2糸列の延在方向に連なって構成され、第1メッシュ構造を構成する第2糸列の間隔よりも第2糸列の間隔が狭くなるよう構成された第2メッシュ構造と、を交互に備えることを特徴とする。 The raw water flow path spacer according to the present invention is sandwiched between a first separation membrane and a second separation membrane wound around a water collection pipe of a spiral type membrane element, and is opposite to a direction parallel to the water collection pipe. A two-layer raw water flow path spacer composed of a first yarn row and a second yarn row that are inclined to each other, and is configured to be continuous in the extending direction of the second yarn row by the first yarn row and the second yarn row. The first mesh structure, the first thread row and the second thread row are connected in the extending direction of the second yarn row, and the second yarn row is larger than the interval between the second yarn rows constituting the first mesh structure. And a second mesh structure configured so that the interval is narrow.
 本発明に係る原水流路スペーサにおいて、第2メッシュ構造を構成する第1糸列の集水管と平行な方向に対する傾斜は、第1メッシュ構造を構成する第1糸列の集水管と平行な方向に対する傾斜よりも大きくなるよう構成されてもよい。 In the raw water flow path spacer according to the present invention, the inclination with respect to the direction parallel to the water collecting pipe of the first yarn row constituting the second mesh structure is parallel to the water collecting pipe of the first yarn row constituting the first mesh structure. It may be configured to be larger than the inclination with respect to.
 本発明に係る原水流路スペーサにおいて、第1メッシュ構造は、第1のメッシュと、第1のメッシュよりも目が細かい中間メッシュとを交互に並べて構成され、第2メッシュ構造は、中間メッシュと、中間メッシュよりも目が細かい第2のメッシュとを交互に並べて構成されてもよい。 In the raw water channel spacer according to the present invention, the first mesh structure is configured by alternately arranging the first mesh and the intermediate mesh having a finer mesh than the first mesh, and the second mesh structure includes the intermediate mesh and The second mesh having finer mesh than the intermediate mesh may be alternately arranged.
 本発明に係るスパイラル型エレメントは、透過水が流れる集水管と、シート状の透過水スペーサと、透過水スペーサの両面に重ね合わせた状態で三辺が封止され、他の一辺が開口端である袋状をなし、この開口端が集水管に接続された状態で集水管に巻回された第1分離膜および第2分離膜と、上記発明のいずれかに係る原水流路スペーサとを備えるものである。 The spiral element according to the present invention has a water collecting pipe through which permeate flows, a sheet-like permeate spacer, and three sides sealed in a state of being overlapped on both sides of the permeate spacer, and the other side is an open end. A certain bag shape is formed, and includes a first separation membrane and a second separation membrane wound around the water collection pipe in a state where the open end is connected to the water collection pipe, and a raw water flow path spacer according to any of the above inventions. Is.
 本発明の原水流路スペーサによれば、第1メッシュ構造および第2メッシュ構造は交互に配置され、集水管と平行な方向に対する傾斜方向に各々延在する。ここで、第2メッシュ構造は、第1メッシュ構造よりも第2糸列の間隔が狭くなるように形成される。このため、上記平行方向に沿って原水が流れる際、第1メッシュ構造から下流側に隣接する第2メッシュ構造に流入する原水流量よりも、第2メッシュ構造から下流側に隣接する第1メッシュ構造に流入する原水流量の方が多くなる。これにより、第1メッシュ構造を流れる原水流量が増加し、同メッシュ構造周辺において第1分離膜または第2分離膜の方へ蛇行しつつ下流側へ流れる原水流れの勢いを強めることができる。一方、第2メッシュ構造は第1メッシュ構造よりも第2糸列の間隔が狭いため原水流量が少なくても第1メッシュ構造と同程度の水勢を維持することができる。この結果、第1メッシュ構造および第2メッシュ構造周辺の両分離膜近傍に残留するイオンや塩類を下流側へ押し流して濃度分極層の形成を抑制できる。 According to the raw water flow path spacer of the present invention, the first mesh structure and the second mesh structure are alternately arranged and extend in the inclined direction with respect to the direction parallel to the water collecting pipe. Here, the second mesh structure is formed such that the interval between the second yarn rows is narrower than that of the first mesh structure. For this reason, when raw water flows along the parallel direction, the first mesh structure adjacent to the downstream side from the second mesh structure rather than the flow rate of the raw water flowing into the second mesh structure adjacent to the downstream side from the first mesh structure. The flow rate of raw water flowing into the river becomes larger. As a result, the flow rate of the raw water flowing through the first mesh structure increases, and the momentum of the raw water flow flowing downstream while meandering toward the first separation membrane or the second separation membrane around the mesh structure can be increased. On the other hand, since the second mesh structure has a narrower interval between the second yarn rows than the first mesh structure, the same water flow as the first mesh structure can be maintained even if the raw water flow rate is small. As a result, ions and salts remaining in the vicinity of both separation membranes around the first mesh structure and the second mesh structure can be pushed downstream to suppress the formation of the concentration polarization layer.
 本発明のスパイラル型膜エレメントによれば、原水流路スペーサにおいて第2メッシュ構造は第1メッシュ構造よりも第2糸列の間隔が狭くなるように形成されている。そして、第1メッシュ構造および第2メッシュ構造は、集水管と平行な方向に対して傾斜する方向に延在するとともに交互配置されている。このため、上記平行方向に沿って原水が流れる際、第1メッシュ構造から下流側に隣接する第2メッシュ構造に流入する原水流量よりも、第2メッシュ構造から下流側に隣接する第1メッシュ構造に流入する原水流量の方が多くなる。これにより、第1メッシュ構造を流れる原水流量が増加し、同メッシュ構造周辺において第1分離膜または第2分離膜の方へ蛇行しつつ下流側へ流れる原水流れの流速を速めることができる。一方、第2メッシュ構造は第2糸列の間隔が狭いため原水流量が少なくても第1メッシュ構造と同程度の水勢を維持することができる。この結果、第1メッシュ構造および第2メッシュ構造周辺の両分離膜近傍に残留するイオンや塩類を下流側へ押し流して濃度分極層の形成を抑制できる。 According to the spiral membrane element of the present invention, in the raw water flow path spacer, the second mesh structure is formed so that the interval between the second yarn rows is narrower than the first mesh structure. The first mesh structure and the second mesh structure extend in a direction inclined with respect to a direction parallel to the water collecting pipe and are alternately arranged. For this reason, when raw water flows along the parallel direction, the first mesh structure adjacent to the downstream side from the second mesh structure rather than the flow rate of the raw water flowing into the second mesh structure adjacent to the downstream side from the first mesh structure. The flow rate of raw water flowing into the river becomes larger. Thereby, the flow rate of the raw water flowing through the first mesh structure increases, and the flow rate of the raw water flow flowing downstream while meandering toward the first separation membrane or the second separation membrane around the mesh structure can be increased. On the other hand, since the second mesh structure has a narrow interval between the second yarn rows, it is possible to maintain the same level of water force as the first mesh structure even if the raw water flow rate is small. As a result, ions and salts remaining in the vicinity of both separation membranes around the first mesh structure and the second mesh structure can be pushed downstream to suppress the formation of the concentration polarization layer.
図1は本発明の一実施形態であるスパイラル型膜エレメントが適用される濾過装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a filtration apparatus to which a spiral membrane element according to an embodiment of the present invention is applied. 図2は図1に示すスパイラル型膜エレメントの一部を展開状態で示すとともに、当該一部に含まれる原水流路スペーサの構成を示す部分拡大図を含む斜視図である。FIG. 2 is a perspective view including a part of the spiral membrane element shown in FIG. 1 in a developed state and a partially enlarged view showing the configuration of the raw water flow path spacer included in the part. 図3は、図2に示す第1および第2分離膜の間に挟み込まれた原水流路スペーサの構成を示すとともに、一部にその断面図を含む斜視図である。FIG. 3 is a perspective view showing the configuration of the raw water flow path spacer sandwiched between the first and second separation membranes shown in FIG. 2 and partially including a cross-sectional view thereof. 図4は、図2に示す第1および第2分離膜の間に挟み込まれた原水流路スペーサによって形成される原水流れと、流体解析シミュレーションの対象領域とを示す斜視図である。FIG. 4 is a perspective view showing the raw water flow formed by the raw water flow path spacer sandwiched between the first and second separation membranes shown in FIG. 2 and the target region of the fluid analysis simulation. 図5(a)は、図3に示す第1分離膜に作用するせん断応力の分布状態を示す等値線図である。図5(b)は、図3に示す第2分離膜に作用するせん断応力の分布状態を示す等値線図である。FIG. 5A is an isoline diagram showing a distribution state of shear stress acting on the first separation membrane shown in FIG. FIG. 5B is an isoline diagram showing a distribution state of shear stress acting on the second separation membrane shown in FIG. 図6(a)は、比較例である原水流路スペーサの構成を示す図である。図6(b)は、図6(a)に示すX方向に流れる原水が第1分離膜に作用させるせん断応力を流体解析シミュレーションによって算出した結果を示す等値線図である。図6(c)は、図6(b)と同様に、図6(a)に示す第2分離膜に作用するせん断応力を流体解析シミュレーションによって算出した結果を示す等値線図である。Fig.6 (a) is a figure which shows the structure of the raw | natural water flow path spacer which is a comparative example. FIG. 6B is an isoline diagram showing the result of calculating the shear stress that the raw water flowing in the X direction shown in FIG. 6A acts on the first separation membrane by the fluid analysis simulation. FIG. 6C is an isoline diagram showing the result of calculating the shear stress acting on the second separation membrane shown in FIG. 6A by fluid analysis simulation, as in FIG. 6B. 図7は、変形例1~変形例4の原水流路スペーサにおいて、易分極領域が両分離膜に占める面積割合を流体解析シミュレーションによって求めた結果を示す図である。FIG. 7 is a diagram showing the results of determining the area ratio of the easily polarized regions in both separation membranes in the raw water flow path spacers of Modifications 1 to 4 by fluid analysis simulation. 図8(a)は変形例1の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。図8(b)は変形例2の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。図8(c)は変形例3の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。図8(d)は変形例4の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。FIG. 8A is a diagram showing a configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the first modification. FIG. 8B is a diagram showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the second modification. FIG. 8C is a view showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the third modification. FIG. 8D is a view showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 4. 図9は、変形例5~変形例9の原水流路スペーサにおいて、易分極領域が両分離膜に占める面積割合を流体解析シミュレーションによって求めた結果を示す図である。FIG. 9 is a diagram showing the results of obtaining the area ratio of the easily polarized regions in both separation membranes in the raw water flow path spacers of Modifications 5 to 9 by fluid analysis simulation. 図10(a)は変形例5の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。図10(b)は変形例6の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。図10(c)は変形例7の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。図10(d)は変形例8の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。図10(e)は変形例9の原水流路スペーサにおける第1メッシュ構造および第2メッシュ構造の構成を示す図である。FIG. 10A is a diagram showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of the fifth modification. FIG. 10B is a view showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 6. FIG. 10C is a view showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 7. FIG. 10 (d) is a diagram showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 8. FIG. 10 (e) is a diagram showing the configuration of the first mesh structure and the second mesh structure in the raw water flow path spacer of Modification 9. 図11は、変形例10の原水流路スペーサの構成を示す図である。FIG. 11 is a diagram illustrating a configuration of the raw water flow path spacer according to the tenth modification. 図12は、図11に示す第1分離膜および第2分離膜の間に挟み込まれた原水流路スペーサの構成を示す斜視図である。FIG. 12 is a perspective view showing a configuration of a raw water flow path spacer sandwiched between the first separation membrane and the second separation membrane shown in FIG. 図13は、変形例11の原水流路スペーサの構成を示す図である。FIG. 13 is a diagram illustrating the configuration of the raw water flow path spacer of the eleventh modification. 図14は、変形例12の原水流路スペーサの構成を示す図である。FIG. 14 is a diagram illustrating a configuration of a raw water flow path spacer according to Modification 12. 図15(a)は、濃度分極の評価に用いる評価用セルの一部の構成を省略して内部構成を示す斜視図である。図15(b)は、評価用セル内部に設置される原水流路スペーサの試験体の構成を示す図である。図15(c)は、評価用セル内部に形成される流路構成を示すため外形を仮想線で示すとともに流路構成部分を実線でした図である。FIG. 15A is a perspective view showing an internal configuration with a part of the configuration of an evaluation cell used for evaluation of concentration polarization omitted. FIG. 15B is a diagram showing the configuration of the test specimen of the raw water flow path spacer installed inside the evaluation cell. FIG. 15C is a diagram in which the outer shape is indicated by a virtual line and the flow path component is a solid line to show the flow path configuration formed inside the evaluation cell. 図16(a)は、各分離膜の試験体を用いた評価試験における濃度比と、当該濃度比を測定したときの純水体積流束の測定値との関係を示すグラフである。図16(b)は、同図(a)に示す各分離膜の試験体を用いた評価試験における濃度比および純水体積流束の測定値を示す表である。FIG. 16A is a graph showing a relationship between a concentration ratio in an evaluation test using a specimen of each separation membrane and a measured value of pure water volume flux when the concentration ratio is measured. FIG.16 (b) is a table | surface which shows the measured value of the concentration ratio and the pure water volume flux in the evaluation test using the test body of each separation membrane shown to the same figure (a).
 以下、本発明の一実施形態であるスパイラル型膜エレメントを備える濾過装置について、図面を参照しながら説明する。以下の説明において、「X」方向は集水管の軸方向に平行な方向を示し、「Y」方向および「Z」方向は互いに直交する集水管の径方向を示すものとする。 Hereinafter, a filtration apparatus including a spiral membrane element according to an embodiment of the present invention will be described with reference to the drawings. In the following description, the “X” direction indicates a direction parallel to the axial direction of the water collecting pipe, and the “Y” direction and the “Z” direction indicate the radial direction of the water collecting pipe orthogonal to each other.
 図1に示すように、濾過装置10は、水道水等の原水を貯留する原水タンク12と、原水に対して濾過処理を行うスパイラル型膜エレメント20とを備える。原水タンク12には、例えば、供給管L1を介して原水が供給される。そして、原水タンク12には、スパイラル型膜エレメント20へ原水を送り出す送水管L2が接続されている。この送水管L2には、原水タンク12から原水を汲み上げるためのポンプ14と、原水に含まれる濁質成分を除去する前処理ユニット16とが設置されている。前処理ユニット16で処理された原水は、送水管L2を経由してスパイラル型膜エレメント20へ送り出される。また、送水管L2におけるポンプ14の下流側にバイパス配管L2‐Bが接続されている。このバイパス配管L2‐Bは送水管L2を流れる原水の一部を原水タンク12に戻すことにより前処理ユニット16に送り出される原水流量を調整する役割を有する。 As shown in FIG. 1, the filtration device 10 includes a raw water tank 12 that stores raw water such as tap water, and a spiral membrane element 20 that performs a filtering process on the raw water. For example, raw water is supplied to the raw water tank 12 via a supply pipe L1. The raw water tank 12 is connected to a water supply pipe L <b> 2 that sends raw water to the spiral membrane element 20. A pump 14 for pumping raw water from the raw water tank 12 and a pretreatment unit 16 for removing turbid components contained in the raw water are installed in the water supply pipe L2. The raw water treated by the pretreatment unit 16 is sent out to the spiral membrane element 20 through the water supply pipe L2. Further, a bypass pipe L2-B is connected to the downstream side of the pump 14 in the water supply pipe L2. The bypass pipe L2-B has a role of adjusting the raw water flow rate sent to the pretreatment unit 16 by returning a part of the raw water flowing through the water supply pipe L2 to the raw water tank 12.
 このスパイラル型膜エレメント20は、イオンや塩類を原水から除去した透過水と、除去されたイオンや塩類を含む濃縮水とを生成する機能を有する。スパイラル型膜エレメント20によって生成された透過水は透過水配管L3を経由して透過水タンク18に貯留され、濃縮水は濃縮水配管L4を経由して外部に排出される。 The spiral membrane element 20 has a function of generating permeated water from which ions and salts are removed from raw water and concentrated water containing the removed ions and salts. The permeated water generated by the spiral membrane element 20 is stored in the permeated water tank 18 via the permeated water pipe L3, and the concentrated water is discharged to the outside via the concentrated water pipe L4.
 図2は、スパイラル型膜エレメント20の一部を展開状態で示す斜視図と、同エレメントに含まれる第1分離膜および第2分離膜に挟み込まれた原水流路スペーサの構成を示す図である。 FIG. 2 is a perspective view showing a part of the spiral membrane element 20 in a developed state, and a diagram showing the configuration of the raw water flow path spacer sandwiched between the first separation membrane and the second separation membrane included in the element. .
 図2に示すように、スパイラル型膜エレメント20は、透過水が流れる集水管22と、集水管22の周囲に重ね合わせた状態で巻回される第1分離膜24および第2分離膜28とを備える。また、スパイラル型膜エレメント20は、両分離膜24,28の間に挟み込まれ、両分離膜24,28の間に原水流路を形成する原水流路スペーサ40を備える。第1分離膜24および第2分離膜28は同一の構成を備えるため、第1分離膜24の構成についてのみ以下において説明する。 As shown in FIG. 2, the spiral membrane element 20 includes a water collecting pipe 22 through which permeated water flows, a first separation membrane 24 and a second separation membrane 28 that are wound around the water collecting pipe 22 in a superposed manner. Is provided. The spiral membrane element 20 includes a raw water passage spacer 40 that is sandwiched between the separation membranes 24 and 28 and forms a raw water passage between the separation membranes 24 and 28. Since the first separation membrane 24 and the second separation membrane 28 have the same configuration, only the configuration of the first separation membrane 24 will be described below.
 第1分離膜24は、透過水スペーサ26を間に挟んで両面に、例えば、逆浸透膜、限外ろ過膜、または、精密ろ過膜からなる分離膜24a,24bを各々重ね合わせて袋状に構成され、開口端が集水管22に接続される。この透過水スペーサ26は、集水管22に連通する流路を形成しており、この流路に沿って分離膜24a,24bを透過した透過水が集水管22へ流れ込む。 The first separation membrane 24 is formed into a bag shape by superposing separation membranes 24a and 24b made of, for example, a reverse osmosis membrane, an ultrafiltration membrane, or a microfiltration membrane on both sides with a permeated water spacer 26 therebetween. The open end is connected to the water collecting pipe 22. The permeated water spacer 26 forms a flow path communicating with the water collecting pipe 22, and permeated water that has passed through the separation membranes 24 a and 24 b flows into the water collecting pipe 22 along the flow path.
 この集水管22には、複数の連通孔22a,22b,22cが軸方向に沿って所定ピッチで設けられており、両分離膜24,28を透過した透過水は連通孔22a~22cから集水管22へ流入する。また、第1分離膜24の開口端を除く他の3辺は、透過水と濃縮水の混合を防止するため接着剤等により封止されている。 The water collecting pipe 22 is provided with a plurality of communication holes 22a, 22b, and 22c at a predetermined pitch along the axial direction, and the permeated water that has permeated through the separation membranes 24 and 28 passes through the water collecting pipes 22a to 22c. 22 flows in. The other three sides of the first separation membrane 24 except for the open end are sealed with an adhesive or the like to prevent mixing of permeated water and concentrated water.
 図2に示すように、原水流路を流れる原水の一部は、両分離膜24,28のいずれか一方を透過することによってイオンや塩類等の濁質成分が除去された透過水となり、透過水スペーサ26に沿って集水管22へと導かれる。また、残余の原水は、原水流路に沿って流れるのに伴い透過水から除去された濁質成分を多く含む濃縮水となり、下流側の濃縮水配管L4(図1参照)へ排出される。 As shown in FIG. 2, a part of the raw water flowing through the raw water flow path becomes permeated water from which turbid components such as ions and salts have been removed by passing through either one of the separation membranes 24 and 28, and the permeated water. The water is guided to the water collecting pipe 22 along the water spacer 26. Further, the remaining raw water becomes concentrated water containing a large amount of turbid components removed from the permeated water as it flows along the raw water flow path, and is discharged to the downstream concentrated water pipe L4 (see FIG. 1).
 スパイラル型膜エレメント20は、上流側キャップ材32と、下流側キャップ材34とを軸方向両端面に各々取り付けるようにしてもよい。上流側キャップ材32には、原水がスパイラル型膜エレメント20内部へ流れ込むための隙間が設けられている。また、下流側キャップ材34には、集水管22を流れる透過水と、原水流路から排出される濃縮水が混ざり合わないように2つの流路が設けられている。 The spiral membrane element 20 may be provided with an upstream cap material 32 and a downstream cap material 34 attached to both end surfaces in the axial direction. The upstream cap member 32 is provided with a gap for the raw water to flow into the spiral membrane element 20. Further, the downstream cap member 34 is provided with two flow paths so that the permeate flowing through the water collecting pipe 22 and the concentrated water discharged from the raw water flow path do not mix.
 続いて、図2および図3を用いて、原水流路スペーサ40の構成について説明する。図3は、第1分離膜24および第2分離膜28の間に挟み込まれた原水流路スペーサ40の構成を示す斜視図である。 Subsequently, the configuration of the raw water flow path spacer 40 will be described with reference to FIGS. 2 and 3. FIG. 3 is a perspective view showing the configuration of the raw water flow path spacer 40 sandwiched between the first separation membrane 24 and the second separation membrane 28.
 図2および図3に示すように、原水流路スペーサ40は、第1糸列Mおよび第2糸列Nを互いに重ね合わせた2層構造の原水流路スペーサであり、各糸列M,Nを積層状態で固着して形成されている。なお、原水流路スペーサは、各糸列M,Nを互いに編み込んだ状態としてもよい。原水流路スペーサ40は、第1メッシュ構造51,52,53および第2メッシュ構造61,62,63を交互に備える。第1メッシュ構造51~53は同一の構成を備えるため、以下の説明では第1メッシュ構造52についてのみ説明する。 As shown in FIGS. 2 and 3, the raw water passage spacer 40 is a raw water passage spacer having a two-layer structure in which the first yarn row M and the second yarn row N are overlapped with each other. Are fixed in a laminated state. The raw water flow path spacer may be in a state in which the yarn rows M and N are knitted together. The raw water flow path spacer 40 includes first mesh structures 51, 52, and 53 and second mesh structures 61, 62, and 63 alternately. Since the first mesh structures 51 to 53 have the same configuration, only the first mesh structure 52 will be described in the following description.
 図3に示すように、第1メッシュ構造52は、第1の四角形状メッシュ52a,52b,52cが第2糸N2,N3の延在方向に連なって形成される。第1の四角形状メッシュ52a~52cの構成は同一であるため、第1の四角形状メッシュ52aについてのみ以下において説明する。 As shown in FIG. 3, the first mesh structure 52 is formed by connecting the first square meshes 52a, 52b, 52c in the extending direction of the second yarns N2, N3. Since the first quadrangular meshes 52a to 52c have the same configuration, only the first quadrangular mesh 52a will be described below.
 第1の四角形状メッシュ52aにおける第1辺部52a‐1および第2辺部52a‐2は、第1糸M1,M2によって各々形成され、第3辺部52a‐3および第4辺部52a‐4は第2糸N2,N3によって形成される。第1の四角形状メッシュ52aは、一例として各辺部52a‐1~52a‐4の寸法が3mmとなるように構成された正方形状の外観形状を有する。各糸列M,Nは、X方向に対して、例えば、45°それぞれ反対方向に傾斜するよう配置される。また、各糸列M,Nは、ポリエステル、ポリエチレン、または、ポリプロピレン等の樹脂材によって、例えば、直径Dが0.4mmである円柱状に形成される。そして、原水流路スペーサ40によって形成される原水流路の幅Eは、一例として0.8mmである。また、各糸列M,Nの形状は円柱状に限らず、例えば、平板状等に形成してもよい。 The first side part 52a-1 and the second side part 52a-2 in the first square mesh 52a are formed by the first yarns M1 and M2, respectively, and the third side part 52a-3 and the fourth side part 52a-. 4 is formed by the second yarns N2 and N3. As an example, the first quadrangular mesh 52a has a square external shape configured such that the dimensions of the side portions 52a-1 to 52a-4 are 3 mm. Each of the yarn rows M and N is arranged so as to be inclined in the opposite direction, for example, 45 ° with respect to the X direction. Each yarn row M, N is formed of a resin material such as polyester, polyethylene, or polypropylene, for example, in a cylindrical shape having a diameter D of 0.4 mm. And the width E of the raw | natural water flow path formed of the raw | natural water flow path spacer 40 is 0.8 mm as an example. Moreover, the shape of each thread row | line | column M and N is not restricted to a column shape, For example, you may form in flat form.
 第2メッシュ構造61~63は同一の構成を備えるため、第2メッシュ構造61についてのみ説明を行い、第2メッシュ構造62,63については適宜説明を省略する。第2メッシュ構造61は、同一の構成を有する第2の四角形状メッシュ61a,61b,61cが第2糸N1,N2の延在方向に連なって形成される。 Since the second mesh structures 61 to 63 have the same configuration, only the second mesh structure 61 will be described, and description of the second mesh structures 62 and 63 will be omitted as appropriate. The second mesh structure 61 is formed by connecting second rectangular meshes 61a, 61b, 61c having the same configuration in the extending direction of the second yarns N1, N2.
 第2の四角形状メッシュ61aの第1辺部61a‐1および第2辺部61a‐2は第1糸M1、M2によって各々形成され、第2の四角形状メッシュ61aにおける第3辺部61a‐3は第2糸N1によって形成される。また、第2の四角形状メッシュ61aの第4辺部は、上述した第1の四角形状メッシュ52aにおける第3辺部52a‐3によって構成される。第2の四角形状メッシュ61aは、例えば、各辺部61a‐1,61a‐2,61a‐3の寸法を3mmとし、平行四辺形状に形成してもよい。 The first side 61a-1 and the second side 61a-2 of the second quadrangular mesh 61a are formed by the first yarns M1 and M2, respectively, and the third side 61a-3 of the second quadrangular mesh 61a. Is formed by the second thread N1. The fourth side portion of the second quadrangular mesh 61a is constituted by the third side portion 52a-3 in the first quadrangular mesh 52a described above. For example, the second quadrangular mesh 61a may be formed in a parallelogram shape with the dimensions of the side portions 61a-1, 61a-2, 61a-3 being 3 mm.
 ここで、第1辺部61a‐1および第2辺部61a‐2のX方向に対する傾斜角α1は、第1の四角形状メッシュ52aの第1辺部52a‐1および第2辺部52a‐2のX方向に対する傾斜角α2よりも大きくなるよう第1糸M1,M2を屈曲させて構成される。一例として、傾斜角α1は90°とし、傾斜角α2を45°とすればよい。そして、第2の四角形状メッシュ61aにおける両辺部61a‐1,61a‐2の間隔R1は、第1の四角形状メッシュ52aにおける両辺部52a‐1,52a‐2の間隔(すなわち、第3辺部52a‐3の長さ)よりも狭くなるよう形成される。 Here, the inclination angle α1 of the first side portion 61a-1 and the second side portion 61a-2 with respect to the X direction is the first side portion 52a-1 and the second side portion 52a-2 of the first square mesh 52a. The first yarns M1, M2 are bent so as to be larger than the inclination angle α2 with respect to the X direction. As an example, the inclination angle α1 may be 90 ° and the inclination angle α2 may be 45 °. The distance R1 between the two side portions 61a-1 and 61a-2 in the second square mesh 61a is equal to the distance between the two side portions 52a-1 and 52a-2 in the first square mesh 52a (that is, the third side portion). 52a-3)).
 同様に、第2の四角形状メッシュ61aにおける両辺部52a‐3,61a‐3の間隔R2は、第1の四角形状メッシュ52aにおける両辺部52a‐3,52a‐4の間隔(すなわち、第1辺部52a‐1の長さ)よりも狭くなるように形成される。 Similarly, the interval R2 between both sides 52a-3 and 61a-3 in the second quadrangular mesh 61a is equal to the interval between both sides 52a-3 and 52a-4 in the first quadrilateral mesh 52a (ie, the first side It is formed so as to be narrower than the length of the portion 52a-1.
 これにより、第2の四角形状メッシュ61aの方が第1の四角形状メッシュ52aよりも目が細かく(すなわち、囲繞面積が小さく)構成され、X方向に流れる原水が流路から受ける抵抗(以下、流路抵抗と表記)が大きくなるよう設けられる。従って、第2の四角形状メッシュ61aと同一構成のメッシュが連なって構成される第2メッシュ構造61の方が、第1の四角形状メッシュ52aと同一構成のメッシュが連なって構成される第1メッシュ構造52よりも流路抵抗が大きくなる。 Thereby, the second quadrangular mesh 61a is configured to have finer eyes than the first quadrangular mesh 52a (i.e., the surrounding area is small), and the resistance that the raw water flowing in the X direction receives from the flow path (hereinafter referred to as the following) (Denoted as channel resistance). Accordingly, the second mesh structure 61 configured by connecting the meshes having the same configuration as the second quadrangular mesh 61a is the first mesh configured by connecting the meshes having the same configuration as the first quadrangular mesh 52a. The channel resistance is larger than that of the structure 52.
 ここで、各メッシュ構造52,61,62における原水流れについて図4を用いて説明する。図4は原水流路スペーサ40によって形成される原水流れ、および、シミュレーション領域Tを図3と同様に示す図である。このシミュレーション領域Tは、仮想線T1~T4によって囲まれた領域であり、仮想線T1は第2の四角形状メッシュ61aの中心点と、第2の四角形状メッシュ61bの中心点との間を結ぶ第2糸N1及び第2糸N2の中間線である。仮想線T3は、第2の四角形状メッシュ62aの中心点と、第2の四角形状メッシュ62bの中心点との間を結ぶ第2糸N3および第2糸N4の中間線である。また、仮想線T2は、第2の四角形状メッシュ61bの中心点と、第2の四角形状メッシュ62bの中心点とを結ぶ第1糸M2および第1糸M3の中間線である。仮想線T4は、第2の四角形状メッシュ61aの中心点と、第2の四角形状メッシュ62aの中心点とを結ぶ第1糸M1および第1糸M2の中間線である。 Here, the raw water flow in each of the mesh structures 52, 61, 62 will be described with reference to FIG. FIG. 4 is a view showing the raw water flow formed by the raw water flow path spacer 40 and the simulation region T as in FIG. The simulation region T is a region surrounded by virtual lines T1 to T4, and the virtual line T1 connects the center point of the second quadrangular mesh 61a and the center point of the second quadrangular mesh 61b. This is an intermediate line between the second yarn N1 and the second yarn N2. The imaginary line T3 is an intermediate line between the second thread N3 and the second thread N4 that connects the center point of the second square mesh 62a and the center point of the second square mesh 62b. The virtual line T2 is an intermediate line between the first yarn M2 and the first yarn M3 that connects the center point of the second quadrangular mesh 61b and the center point of the second quadrangular mesh 62b. The virtual line T4 is an intermediate line between the first yarn M1 and the first yarn M2 that connects the center point of the second square mesh 61a and the center point of the second square mesh 62a.
 各メッシュ構造52,61,62の延在方向は、図4に示すようにX方向に対して傾斜している。このため、第2メッシュ構造61、第1メッシュ構造52、第2メッシュ構造62をこの順に通過しながら原水は下流側へ流れることとなる。この点について、各メッシュ構造52,61,62の一部を構成する各四角形状メッシュ52a,61a,62aにおける原水流れを例に挙げて説明する。 The extending direction of each mesh structure 52, 61, 62 is inclined with respect to the X direction as shown in FIG. Therefore, the raw water flows downstream while passing through the second mesh structure 61, the first mesh structure 52, and the second mesh structure 62 in this order. This point will be described with reference to an example of raw water flow in each of the quadrilateral meshes 52a, 61a, and 62a constituting a part of each mesh structure 52, 61, and 62.
 各四角形状メッシュ52a,61a,62aは、X方向における上流側から第2の四角形状メッシュ61a、第1の四角形状メッシュ52a、第2の四角形状メッシュ62aの順に隣接配置される。この第2の四角形状メッシュ61aにおいて、原水の一部は流れC1に沿って第2分離膜28の方へ蛇行しつつ第1の四角形状メッシュ52aに流入する。これにより、第2分離膜28に近接した領域における原水の流速を高め、第2分離膜28に近接した領域に滞留する残留イオンや塩類を下流側へ押し流すことができる。 The quadrangular meshes 52a, 61a, and 62a are adjacently arranged in the order of the second quadrangular mesh 61a, the first quadrangular mesh 52a, and the second quadrangular mesh 62a from the upstream side in the X direction. In the second quadrangular mesh 61a, part of the raw water flows into the first quadrangular mesh 52a while meandering toward the second separation membrane 28 along the flow C1. Thereby, the flow rate of the raw water in the region close to the second separation membrane 28 can be increased, and residual ions and salts staying in the region close to the second separation membrane 28 can be pushed downstream.
 また、同様に、第1の四角形状メッシュ52aにおいて、原水の一部は流れC2に沿って第2分離膜28の方へ蛇行しつつ第2の四角形状メッシュ62aに流入する。これにより、第2分離膜28に近接した領域に滞留する残留イオンや塩類を下流側へ押し流すことができる。 Similarly, in the first square mesh 52a, a part of the raw water flows into the second square mesh 62a while meandering along the flow C2 toward the second separation membrane 28. Thereby, residual ions and salts staying in a region close to the second separation membrane 28 can be pushed downstream.
 また、上述したように第2メッシュ構造61,62の一部をそれぞれ構成する第2の四角形状メッシュ61a,62aの方が、第1メッシュ構造52の一部を構成する第1の四角形状メッシュ52aよりも流路抵抗が大きい。このため、図4に示すように、第2の四角形状メッシュ61aから流れC1に沿って第1の四角形状メッシュ52aに流入する流量Q1の方が、第1の四角形状メッシュ52aから流れC2に沿って第2の四角形状メッシュ62aへ流出する流量Q2よりも多くなる。そして、流量Q1と流量Q2との差分である流量Q3だけ第1の四角形状メッシュ52aから下流側の第1の四角形状メッシュ52bへ流れる原水の流量が増加することとなる。このようにして第1メッシュ構造52における原水流量が増加するとともに、第2メッシュ構造61,62における原水流量が減少する。 Further, as described above, the second quadrangular meshes 61a and 62a that respectively constitute part of the second mesh structures 61 and 62 are the first quadrangular mesh that constitute part of the first mesh structure 52. The channel resistance is larger than 52a. Therefore, as shown in FIG. 4, the flow rate Q1 flowing from the second quadrangular mesh 61a along the flow C1 into the first quadrangular mesh 52a is changed from the first quadrangular mesh 52a to the flow C2. The flow rate Q2 is larger than the flow rate Q2 flowing out to the second quadrangular mesh 62a. Then, the flow rate of the raw water flowing from the first square mesh 52a to the downstream first square mesh 52b is increased by the flow rate Q3 which is the difference between the flow rate Q1 and the flow rate Q2. In this way, the raw water flow rate in the first mesh structure 52 increases, and the raw water flow rate in the second mesh structures 61 and 62 decreases.
 このため、各四角形状メッシュ52a,61a,62aの各辺部52a‐2,61a‐2,62a‐2(図3参照)周辺で流れS1,S2,S3に沿って第1分離膜24の方へ各々蛇行しながら流れる原水流れのうち第1メッシュ構造52における原水の流れS1の水勢を増大させることができる。これにより、第1メッシュ構造52により囲繞された第1分離膜24の近接領域における原水の流速を高め、同領域に滞留する残留イオンや塩類を下流側へ押し流すことが可能となる。 For this reason, the first separation membrane 24 flows along the flow S1, S2, S3 around the sides 52a-2, 61a-2, 62a-2 (see FIG. 3) of the respective square meshes 52a, 61a, 62a. Of the raw water flow that flows while meandering, the flow rate of the raw water flow S1 in the first mesh structure 52 can be increased. As a result, the flow rate of the raw water in the vicinity region of the first separation membrane 24 surrounded by the first mesh structure 52 can be increased, and residual ions and salts staying in the region can be pushed downstream.
 一方、第2の四角形状メッシュ61a,62aにおける原水の流れS2,S3の流量は流れS1の流量よりもそれぞれ減少する。しかしながら、第2の四角形状メッシュ61a,62aにおける第1糸M1,M2の間隔R1(図3参照)は、第1の四角形状メッシュ52aにおける第1糸M1,M2の間隔、すなわち、第3辺部52a‐3の長さ(図3参照)よりも狭く構成される。このため、上述したように原水の流れS2,S3における原水流量が原水の流れS1より各々減少しても同流れS2,S3は流速の速い状態に維持され、第1の四角形状メッシュ52aと同程度の水勢が保たれる。このため、第2メッシュ構造61,62により囲繞された第1分離膜24の近接領域における原水の流速を高め、同領域に滞留する残留イオンや塩類を下流側へ押し流すことができる。 On the other hand, the flow rates of the raw water flows S2 and S3 in the second square meshes 61a and 62a are smaller than the flow rate of the flow S1, respectively. However, the interval R1 (see FIG. 3) between the first yarns M1 and M2 in the second quadrilateral meshes 61a and 62a is the interval between the first yarns M1 and M2 in the first quadrilateral mesh 52a, that is, the third side. The portion 52a-3 is configured to be narrower than the length (see FIG. 3). For this reason, as described above, even if the raw water flow rate in the raw water flows S2 and S3 decreases from the raw water flow S1, the same flows S2 and S3 are maintained at a high flow velocity, and the same as the first square mesh 52a. The degree of water is maintained. For this reason, the flow rate of the raw water in the vicinity region of the first separation membrane 24 surrounded by the second mesh structures 61 and 62 can be increased, and residual ions and salts staying in the region can be pushed downstream.
 図5(a)は、図3に示す領域Tにおいて原水が第1分離膜24に作用させるせん断応力の大きさを流体解析シミュレーションによって求めた結果を示す等値線図である。図5(b)は、図5(a)と同様に領域Tにおいて第2分離膜28に作用するせん断応力の大きさを流体解析シミュレーションによって求めた結果を示す等値線図である。ここで、各分離膜24,28に作用するせん断応力の大きさが大きいほど、各分離膜24,28に近接する領域から原水が残留イオンや塩類を押し流す作用が大きいことを意味する。また、反対に、各分離膜24,28に作用するせん断応力が小さいほど、各分離膜24,28に近接する領域から原水が残留イオンや塩類を押し流す作用が小さいことを意味する。上記流体解析シミュレーションでは、X方向に沿って領域Tに流入する原水の流速は0.162m/sとしている。 FIG. 5 (a) is an isoline diagram showing the results of the fluid analysis simulation for the magnitude of the shear stress that the raw water acts on the first separation membrane 24 in the region T shown in FIG. FIG. 5B is an isoline diagram showing the result of obtaining the magnitude of the shear stress acting on the second separation membrane 28 in the region T by the fluid analysis simulation as in FIG. Here, it means that the larger the magnitude of the shear stress acting on each separation membrane 24, 28, the larger the action of the raw water that pushes residual ions and salts from the region close to each separation membrane 24, 28. On the other hand, the smaller the shear stress acting on each separation membrane 24, 28, the smaller the action of the raw water to push residual ions and salts from the area close to each separation membrane 24, 28. In the fluid analysis simulation, the flow rate of the raw water flowing into the region T along the X direction is 0.162 m / s.
 図5(a)に示すように第1の四角形状メッシュ52a,52bで囲まれた第1分離膜24の領域において、第2辺部52a‐2(図3参照)の周辺で蛇行した原水により第2の四角形状メッシュ61a,61b,62a,62bで囲まれた第1分離膜24の領域と同程度の強いせん断応力が広範囲に作用していることが分かる。 As shown in FIG. 5A, in the region of the first separation membrane 24 surrounded by the first square meshes 52a and 52b, the raw water meandering around the second side 52a-2 (see FIG. 3). It can be seen that a strong shear stress similar to that in the region of the first separation membrane 24 surrounded by the second quadrangular meshes 61a, 61b, 62a, 62b acts in a wide range.
 また、各分離膜24,28に作用するせん断応力の大きさが0.75Pa以下となる領域、すなわち各分離膜24,28の近接領域における原水の流れが緩やかで残留イオンや塩類を原水が押し流す作用が小さい領域が両分離膜24,28の表面に占める面積の割合は16%であった。以下の説明において、上述したせん断応力の大きさが0.75Pa以下となる領域を易分極領域と呼称する。さらに、図5(a)および図5(b)に示す両分離膜24,28に作用するせん断応力の平均値は3.3Paである。 Further, the flow of raw water in the region where the magnitude of the shear stress acting on each separation membrane 24, 28 is 0.75 Pa or less, that is, the region adjacent to each separation membrane 24, 28 is gentle, and the raw water pushes away residual ions and salts. The ratio of the area occupied by the region having a small effect on the surfaces of the separation membranes 24 and 28 was 16%. In the following description, a region where the above-described shear stress magnitude is 0.75 Pa or less is referred to as an easily polarized region. Furthermore, the average value of the shear stress acting on both separation membranes 24 and 28 shown in FIGS. 5A and 5B is 3.3 Pa.
 図6(a)は比較例である原水流路スペーサ300の構成を示す図である。図6(b)は同図(a)に示す領域Uにおいて第1分離膜24に作用するせん断応力の大きさを流体解析シミュレーションによって求めた結果を示す等値線図である。図6(c)は同図(a)に示す領域Uにおける第2分離膜28に作用するせん断応力の分布状態を示す等値線図である。図6(b)及び図6(c)では、X方向に沿って領域Uに流入する原水の流速は0.162m/sとしている。 FIG. 6A is a diagram showing a configuration of a raw water flow path spacer 300 which is a comparative example. FIG. 6B is an isoline diagram showing the result of obtaining the magnitude of the shear stress acting on the first separation membrane 24 in the region U shown in FIG. FIG. 6C is an isoline diagram showing a distribution state of shear stress acting on the second separation membrane 28 in the region U shown in FIG. In FIG. 6B and FIG. 6C, the flow rate of the raw water flowing into the region U along the X direction is set to 0.162 m / s.
 図6(a)に示すように、原水流路スペーサ300は、糸V1,V2,V3を含む糸列Vと、糸W1,W2,W3を含む糸列Wとを互いに直交するように積層させてなるメッシュ構造310を有する。このメッシュ構造310は、第1の四角形状メッシュ52aと同一の構成を有する四角形状メッシュ310a,310b,310c,310dを含む。なお、領域Uは、四角形状メッシュ310a~310dにおける中心点を結ぶ仮想線によって囲まれた領域である。 As shown in FIG. 6A, the raw water flow path spacer 300 is formed by laminating a yarn row V including yarns V1, V2, and V3 and a yarn row W including yarns W1, W2, and W3 so as to be orthogonal to each other. The mesh structure 310 is formed. The mesh structure 310 includes quadrilateral meshes 310a, 310b, 310c, and 310d having the same configuration as the first quadrilateral mesh 52a. Note that the region U is a region surrounded by an imaginary line connecting the center points of the square meshes 310a to 310d.
 図6(b)および図6(c)に示すように、両分離膜24,28の領域Uで囲まれた領域に作用するせん断応力は最大で約8Pa程度である。また、両分離膜24,28に形成される易分極領域が両分離膜24,28の表面に占める面積の割合は20%である。 As shown in FIGS. 6B and 6C, the shear stress acting on the region surrounded by the region U of both separation membranes 24 and 28 is about 8 Pa at the maximum. Further, the ratio of the area of the easily polarized regions formed in both separation membranes 24 and 28 to the surfaces of both separation membranes 24 and 28 is 20%.
 このように、比較例の原水流路スぺーサ300では、本実施形態の原水流路スペーサ40のように両分離膜24,28に大きなせん断応力が作用しておらず、両分離膜24,28に形成される易分極領域の面積割合も20%と比較的高くなる。このため、両分離膜24,28に近接した領域に残留するイオンや塩類を充分に押し流すことができない。 Thus, in the raw water flow path spacer 300 of the comparative example, the large shear stress does not act on both separation membranes 24 and 28 unlike the raw water flow passage spacer 40 of this embodiment, and both separation membranes 24, The area ratio of the easily polarized region formed in the layer 28 is also relatively high at 20%. For this reason, ions and salts remaining in the region adjacent to both separation membranes 24 and 28 cannot be sufficiently washed away.
 また、第2メッシュ構造61,62,63のみで構成された原水流路スペーサを用いることも考えられるが、この場合には、原水流路スぺーサによって生じる圧力損失が過大となる。このため、原水流路スペーサが下流側に押し流されてしまいテレスコープ現象が生じるという問題もある。 Moreover, although it is conceivable to use a raw water flow path spacer composed only of the second mesh structures 61, 62, 63, in this case, a pressure loss caused by the raw water flow path spacer becomes excessive. For this reason, there is also a problem that the raw water flow path spacer is pushed downstream and a telescope phenomenon occurs.
 これに対し、本実施形態の原水流路スペーサ40では、第1メッシュ構造51,52,53と、第1メッシュ構造51~53よりもX方向に流れる原水が通過し難い第2メッシュ構造61,62,63とを交互に配置している。このため、例えば、第2メッシュ構造61における第2の四角形状メッシュ61aから第1メッシュ構造52における第1の四角形状メッシュ52aへ流れ込む原水の流量を増加させることができる。これにより、第1の四角形状メッシュ52aで囲まれた領域の両分離膜24,28に第2の四角形状メッシュ61aで囲まれた領域の両分離膜24,28と同等のせん断応力を作用させることができる。 On the other hand, in the raw water flow path spacer 40 of the present embodiment, the first mesh structures 51, 52, 53 and the second mesh structure 61, the raw water flowing in the X direction is more difficult to pass than the first mesh structures 51-53. 62 and 63 are alternately arranged. Therefore, for example, the flow rate of raw water flowing from the second quadrangular mesh 61a in the second mesh structure 61 into the first quadrangular mesh 52a in the first mesh structure 52 can be increased. As a result, shear stress equivalent to that of both separation membranes 24 and 28 in the region surrounded by the second quadrangular mesh 61a is applied to both separation membranes 24 and 28 in the region surrounded by the first quadrangular mesh 52a. be able to.
 この結果、原水流路スペーサ40によれば、圧力損失の増大を防ぎつつ、両分離膜24,28の近傍領域に残留するイオンや塩類を押し流して濃度分極層の形成を抑制できる。 As a result, according to the raw water flow path spacer 40, it is possible to suppress the formation of the concentration polarization layer by washing away ions and salts remaining in the vicinity of both separation membranes 24 and 28 while preventing an increase in pressure loss.
 また、原水流路スペーサ40によれば、大きなせん断応力を両分離膜24,28に作用させることができるため、バイオフィルム等の菌体に由来する物質によって両分離膜24,28が目詰まりした状態となるバイオファウリングの発生を抑制することもできる。 In addition, according to the raw water flow path spacer 40, a large shear stress can be applied to both the separation membranes 24 and 28, so that both the separation membranes 24 and 28 are clogged with a substance derived from a bacterial body such as a biofilm. It is also possible to suppress the occurrence of biofouling that becomes a state.
 続いて、図7~図14を用いて、本実施形態における原水流路スペーサの変形例について説明する。以下の説明において、上記実施形態における原水流路スペーサ40と構成が共通する部分については上記実施形態と同一の符号を付して適宜説明を省略し、構成の異なる部分についてのみ説明を行うものとする。 Subsequently, modified examples of the raw water flow path spacer in the present embodiment will be described with reference to FIGS. In the following description, parts that have the same configuration as the raw water flow path spacer 40 in the above embodiment are denoted by the same reference numerals as those in the above embodiment, description thereof is omitted as appropriate, and only parts having different configurations are described. To do.
 図7に示す表1では、第1メッシュ構造における傾斜角α1の大きさを変化させた変形例1~4の原水流路スペーサにおいて、易分極領域が両分離膜24,28に占める面積の割合を流体解析シミュレーションによって求めた結果を示している。図8(a)~図8(d)は、変形例1~変形例4の各原水流路スペーサにおいて、第1メッシュ構造における第1の四角形状メッシュおよび第2メッシュ構造における第2の四角形状メッシュの形状を模式的に示す図である。なお、図8(a)~図8(d)においてX方向に沿って領域T(図3参照)に流入する原水の流速は0.162m/sに設定している。図8(a)~図8(d)に示す各原水流路スペーサ70,80,90,100は、上記実施形態の原水流路スペーサ40と第2の四角形状メッシュの構成が相違する点を除いて同一の構成を備える。 In Table 1 shown in FIG. 7, in the raw water flow path spacers of Modifications 1 to 4 in which the magnitude of the inclination angle α1 in the first mesh structure is changed, the ratio of the area that the easily polarized region occupies in both separation membranes 24 and 28 Shows the results obtained by fluid analysis simulation. FIGS. 8A to 8D show the first rectangular mesh in the first mesh structure and the second rectangular shape in the second mesh structure in each of the raw water flow path spacers of Modifications 1 to 4. It is a figure which shows the shape of a mesh typically. In FIGS. 8A to 8D, the flow rate of the raw water flowing into the region T (see FIG. 3) along the X direction is set to 0.162 m / s. Each of the raw water flow path spacers 70, 80, 90, 100 shown in FIGS. 8A to 8D is different from the raw water flow path spacer 40 of the above embodiment in the configuration of the second square mesh. Except for the same configuration.
 図8(a)に示すように、変形例1の原水流路スペーサ70は、第2メッシュ構造71を構成する第2の四角形状メッシュ71aの傾斜角α1が50°となるよう設けられている点で、上記実施形態における原水流路スペーサ40の構成と相違する。また、図7に示すように原水流路スペーサ70によれば易分極領域が両分離膜24,28表面に占める面積割合は19%である。 As shown in FIG. 8A, the raw water flow path spacer 70 of Modification 1 is provided such that the inclination angle α1 of the second quadrangular mesh 71a constituting the second mesh structure 71 is 50 °. This is different from the configuration of the raw water flow path spacer 40 in the above embodiment. As shown in FIG. 7, according to the raw water flow path spacer 70, the area ratio of the easily polarized region to the surfaces of both separation membranes 24 and 28 is 19%.
 図8(b)に示すように、変形例2の原水流路スペーサ80は、第2メッシュ構造81を構成する第2の四角形状メッシュ81aの傾斜角α1が85°となるよう設けられている点で、上記実施形態における原水流路スペーサ40の構成と相違する。また、図7に示すように原水流路スペーサ80によれば易分極領域が両分離膜24,28表面に占める面積割合は17%である。 As shown in FIG. 8B, the raw water flow path spacer 80 of Modification 2 is provided so that the inclination angle α1 of the second square mesh 81a constituting the second mesh structure 81 is 85 °. This is different from the configuration of the raw water flow path spacer 40 in the above embodiment. Further, as shown in FIG. 7, according to the raw water flow path spacer 80, the area ratio of the easily polarized region to the surfaces of both separation membranes 24 and 28 is 17%.
 図8(c)に示すように、変形例3の原水流路スペーサ90は、第2メッシュ構造91を構成する第2の四角形状メッシュ91aの傾斜角α1が95°となるよう設けられている点で、上記原水流路スペーサ40の構成と相違する。また、図7に示すように原水流路スペーサ90によれば易分極領域が両分離膜24,28表面に占める面積割合は15%である。 As shown in FIG. 8C, the raw water flow path spacer 90 of Modification 3 is provided such that the inclination angle α1 of the second quadrangular mesh 91a constituting the second mesh structure 91 is 95 °. This is different from the configuration of the raw water flow path spacer 40. Further, as shown in FIG. 7, according to the raw water flow path spacer 90, the area ratio of the easily polarized region to the surfaces of both separation membranes 24 and 28 is 15%.
 図8(d)に示すように、変形例4の原水流路スぺーサ100は、第2メッシュ構造101を構成する第2の四角形状メッシュ101aの傾斜角α1が120°となるよう設けられている点で、上記原水流路スペーサ40の構成と相違する。また、図7に示すように原水流路スペーサ100によれば易分極領域が両分離膜24,28表面に占める面積割合は10%である。 As shown in FIG. 8D, the raw water channel spacer 100 of the fourth modification is provided so that the inclination angle α1 of the second quadrangular mesh 101a constituting the second mesh structure 101 is 120 °. It differs from the structure of the said raw | natural water flow path spacer 40 by the point. Further, as shown in FIG. 7, according to the raw water flow path spacer 100, the area ratio of the easily polarized region to the surfaces of both separation membranes 24 and 28 is 10%.
 また、変形例4に示す原水流路スペーサの傾斜角α1よりも傾斜角を大きくすると、第1メッシュ構造と第2メッシュ構造とが互いに干渉するため製作が困難となる。このため、傾斜角α1は120°以下の大きさに設定することが好適である。 Further, if the inclination angle is made larger than the inclination angle α1 of the raw water flow path spacer shown in the modified example 4, the first mesh structure and the second mesh structure interfere with each other, making it difficult to manufacture. For this reason, the inclination angle α1 is preferably set to a size of 120 ° or less.
 上記のように、変形例1~4の構成においても、上記実施形態における原水流路スペーサ40と同様に濃度分極層の形成を抑制することができる。 As described above, also in the configurations of the first to fourth modifications, the formation of the concentration polarization layer can be suppressed as in the raw water flow path spacer 40 in the above embodiment.
 図9に示す表2は、第1メッシュ構造51および第2メッシュ構造61の構成比率を変更した変形例5~変形例9の原水流路スペーサにおいて、両分離膜24,28表面に占める易分極領域の面積割合を上記実施形態の原水流路スペーサ40と同様に流体解析シミュレーションによって求めた結果を示している。同図に示す流体解析シミュレーションにおいて、X方向に沿って流れる原水の流速は0.162m/sに設定している。図10(a)~図10(e)は、変形例5~9の場合における原水流路スペーサの構成を模式的に示す図である。 Table 2 shown in FIG. 9 shows easy polarization that occupies the surfaces of both separation membranes 24 and 28 in the raw water flow path spacers of Modifications 5 to 9 in which the composition ratios of the first mesh structure 51 and the second mesh structure 61 are changed. The result of having obtained the area ratio of the area | region by the fluid analysis simulation similarly to the raw | natural water flow path spacer 40 of the said embodiment is shown. In the fluid analysis simulation shown in the figure, the flow rate of the raw water flowing along the X direction is set to 0.162 m / s. FIGS. 10 (a) to 10 (e) are diagrams schematically showing the configuration of the raw water flow path spacer in the case of modifications 5 to 9. FIG.
 変形例5の原水流路スペーサ110は、図10(a)に示す第1メッシュ構造112および第2メッシュ構造114を交互に備える。第1メッシュ構造112は、第1糸列M10を構成する第1糸M11,M12の延在方向に第1の四角形状のメッシュ112a,112bを2つ並べて構成される。第1の四角形状のメッシュ112a,112bは、第1の四角形状メッシュ52aと同一の構成を有する。また、第2メッシュ構造114は、第2メッシュ構造61と同一の構成を有する。図9に示すように、原水流路スペーサ110において、両分離膜24,28表面に占める易分極領域の面積割合は18%である。 The raw water flow path spacer 110 of Modification 5 includes first mesh structures 112 and second mesh structures 114 shown in FIG. The first mesh structure 112 is configured by arranging two first quadrangular meshes 112a and 112b in the extending direction of the first yarns M11 and M12 constituting the first yarn row M10. The first quadrangular meshes 112a and 112b have the same configuration as the first quadrangular mesh 52a. The second mesh structure 114 has the same configuration as the second mesh structure 61. As shown in FIG. 9, in the raw water flow path spacer 110, the area ratio of the easily polarized region occupying the surfaces of both separation membranes 24 and 28 is 18%.
 変形例6の原水流路スペーサ120は、図10(b)に示す第1メッシュ構造122および第2メッシュ構造124を交互に備える。第1メッシュ構造122は第1糸列M20を構成する第1糸M21,M22の延在方向に第1の四角形状のメッシュ122a,122b,122cを3つ並べて構成される。第1の四角形状のメッシュ122a~122cは、第1の四角形状メッシュ52aと同一の構成を有する。第2メッシュ構造124は、第2メッシュ構造61と同一の構成を有する。図9に示すように、原水流路スペーサ120において、両分離膜24,28表面に占める易分極領域の面積割合は19%である。 The raw water flow path spacer 120 of the modified example 6 includes first mesh structures 122 and second mesh structures 124 shown in FIG. The first mesh structure 122 is configured by arranging three first rectangular meshes 122a, 122b, 122c in the extending direction of the first yarns M21, M22 constituting the first yarn row M20. The first quadrangular meshes 122a to 122c have the same configuration as the first quadrangular mesh 52a. The second mesh structure 124 has the same configuration as the second mesh structure 61. As shown in FIG. 9, in the raw water channel spacer 120, the area ratio of the easily polarized region occupying the surfaces of both separation membranes 24 and 28 is 19%.
 変形例7の原水流路スペーサ130は、図10(c)に示す第1メッシュ構造132および第2メッシュ構造134を交互に備える。第1メッシュ構造132は、第1糸列M30を構成する糸M31,M32の延在方向に第1の四角形状のメッシュ132a,132bを2つ並べて構成される。第1の四角形状のメッシュ132a,132bは、第1の四角形状メッシュ52aと同一の構成を有する。そして、第2メッシュ構造134は、第1糸列M30を構成する第1糸M31,M32の延在方向に2つの第2の四角形状メッシュ134a,134bを並べて構成される。図9に示すように、原水流路スペーサ130において、両分離膜24,28表面に占める易分極領域の面積割合は16%である。 The raw water flow path spacer 130 of the modified example 7 is alternately provided with the first mesh structure 132 and the second mesh structure 134 shown in FIG. The first mesh structure 132 is configured by arranging two first square meshes 132a and 132b in the extending direction of the yarns M31 and M32 constituting the first yarn row M30. The first quadrangular meshes 132a and 132b have the same configuration as the first quadrangular mesh 52a. The second mesh structure 134 is configured by arranging two second rectangular meshes 134a and 134b in the extending direction of the first yarns M31 and M32 constituting the first yarn row M30. As shown in FIG. 9, in the raw water channel spacer 130, the area ratio of the easily polarized region in the surfaces of both separation membranes 24 and 28 is 16%.
 変形例8の原水流路スペーサ140は、図10(d)に示す第1メッシュ構造142および第2メッシュ構造144を交互に備える。第1メッシュ構造142は、第1メッシュ構造51と同一の構成を有する。第2メッシュ構造144は、第1糸列M40を構成する第1糸M41,M42の延在方向に第2の四角形状メッシュ144a,144bを2つ並べて構成される。第2の四角形状メッシュ144a,144bの構成は、第2の四角形状メッシュ61aと同一の構成を有する。図9に示すように、原水流路スペーサ140において、両分離膜24,28表面に占める易分極領域の面積割合は15%である。 The raw water flow path spacer 140 of the modified example 8 is alternately provided with the first mesh structure 142 and the second mesh structure 144 shown in FIG. The first mesh structure 142 has the same configuration as the first mesh structure 51. The second mesh structure 144 is configured by arranging two second square meshes 144a and 144b in the extending direction of the first yarns M41 and M42 constituting the first yarn row M40. The configuration of the second quadrangular meshes 144a and 144b is the same as that of the second quadrangular mesh 61a. As shown in FIG. 9, in the raw water flow path spacer 140, the area ratio of the easily polarized region occupying the surfaces of both separation membranes 24 and 28 is 15%.
 変形例9の原水流路スペーサ150は、図10(e)に示す第1メッシュ構造152および第2メッシュ構造154を交互に備える。第1メッシュ構造152は、第1メッシュ構造51と同一の構成を有する。第2メッシュ構造154は、第1糸列M50を構成する第1糸M51,M52の延在方向に第2の四角形状メッシュ154a,154b,154cを3つ並べて構成される。この原水流路スペーサ150において、両分離膜24,28表面に占める易分極領域の面積割合は14%である。 The raw water flow path spacer 150 of the modification 9 is alternately provided with a first mesh structure 152 and a second mesh structure 154 shown in FIG. The first mesh structure 152 has the same configuration as the first mesh structure 51. The second mesh structure 154 is configured by arranging three second square meshes 154a, 154b, and 154c in the extending direction of the first yarns M51 and M52 constituting the first yarn row M50. In this raw water flow path spacer 150, the area ratio of the easily polarized region occupying the surfaces of both separation membranes 24 and 28 is 14%.
 上記のように、変形例5~9の構成においても、上記実施形態における原水流路スペーサ40と同様に濃度分極層の形成を抑制することができる。 As described above, also in the configurations of the modified examples 5 to 9, the formation of the concentration polarization layer can be suppressed similarly to the raw water flow path spacer 40 in the above embodiment.
 図11は、変形例10の原水流路スペーサ160の構成を示す図である。図12は、図11に示す原水流路スペーサ160に含まれる第1メッシュ構造および第2メッシュ構造の構成を示す拡大図である。 FIG. 11 is a diagram showing a configuration of the raw water flow path spacer 160 of the tenth modification. FIG. 12 is an enlarged view showing the configuration of the first mesh structure and the second mesh structure included in the raw water flow path spacer 160 shown in FIG.
 図11および図12に示すように、原水流路スペーサ160は、第1糸列Aおよび第2糸列Bを互いに重ね合わせた2層構造の原水流路スペーサであり、各糸列A,Bを積層状態で固着して形成される。各糸列A,Bは、上記実施形態における各糸列M,Nと同様に、X方向に対して互いに反対方向に例えば45°それぞれ傾斜している。また、第1糸列Aを構成する第1糸A1,A2の間隔と第1糸A2,A3の間隔は同じ大きさとなるよう設けられており、一例として4mmに設定される。そして、第1糸A3,A4の間隔および第1糸A4,A5の間隔は、それぞれ第1糸A1,A2の間隔の半分の大きさとなるよう設けられている。同様に、第2糸列Bを構成する第2糸B1,B2の間隔および第2糸B2,B3の間隔は、同じ大きさとなるように設けられており、一例として4mmに設定される。そして、第2糸B3,B4の間隔と第2糸B4,B5の間隔は各々第2糸B1,B2の間隔の半分の大きさとなるよう設けられている。各糸A1~A5,B1~B5は、例えば、円柱状に形成されており、その直径は0.4mmである。 As shown in FIGS. 11 and 12, the raw water passage spacer 160 is a two-layer raw water passage spacer in which the first yarn row A and the second yarn row B are overlapped with each other. Are fixed in a laminated state. Each of the yarn rows A and B is inclined by 45 °, for example, in opposite directions with respect to the X direction, like the yarn rows M and N in the above embodiment. The interval between the first yarns A1 and A2 constituting the first yarn row A and the interval between the first yarns A2 and A3 are provided to be the same size, and is set to 4 mm as an example. The interval between the first yarns A3 and A4 and the interval between the first yarns A4 and A5 are set to be half the interval between the first yarns A1 and A2. Similarly, the interval between the second yarns B1 and B2 and the interval between the second yarns B2 and B3 constituting the second yarn row B are set to be the same size, and is set to 4 mm as an example. The interval between the second yarns B3 and B4 and the interval between the second yarns B4 and B5 are each set to be half the size of the interval between the second yarns B1 and B2. Each of the yarns A1 to A5 and B1 to B5 is formed in a columnar shape, for example, and has a diameter of 0.4 mm.
 図11に示すように、原水流路スペーサ160は、上述した第1糸列Aおよび第2糸列Bにより第2糸列Bの延在方向に連なって構成された第1メッシュ構造171,172,173と、第2メッシュ構造181,182,183とを交互に備える。第1メッシュ構造171~173は同一の構成を備え、第2メッシュ構造181~183も同一の構成を備えるため、以下の説明では、第1メッシュ構造172、第2メッシュ構造182を例に挙げて説明を行う。 As shown in FIG. 11, the raw water flow path spacer 160 includes first mesh structures 171 and 172 configured to be connected in the extending direction of the second yarn row B by the first yarn row A and the second yarn row B described above. , 173 and second mesh structures 181, 182 and 183 are alternately provided. Since the first mesh structures 171 to 173 have the same configuration and the second mesh structures 181 to 183 also have the same configuration, in the following description, the first mesh structure 172 and the second mesh structure 182 are taken as an example. Give an explanation.
 第1メッシュ構造172は、第1糸A1~A3および第2糸B1~B3により形成される第1のメッシュ172a‐1と、第1糸A3~A5および第2糸B3~B5により形成される中間メッシュ172a‐2とを第2糸列Bの延在方向に沿って交互に配置して構成される。この第1のメッシュ172a‐1は、例えば、正方形状の外観形状を有する。一方、中間メッシュ172a‐2は、例えば、長方形状の外観形状を有し、第1のメッシュ172a‐1よりも目が細かくなるように構成される。このため、第1のメッシュ172a‐1と中間メッシュ172a‐2とを比較すると、第1のメッシュ172a‐1の方が中間メッシュ172a‐2よりも流路抵抗が小さくなる。 The first mesh structure 172 is formed of the first mesh 172a-1 formed by the first yarns A1 to A3 and the second yarns B1 to B3, and the first yarns A3 to A5 and the second yarns B3 to B5. Intermediate meshes 172a-2 are alternately arranged along the extending direction of the second yarn row B. The first mesh 172a-1 has, for example, a square appearance. On the other hand, the intermediate mesh 172a-2 has, for example, a rectangular appearance, and is configured to have finer eyes than the first mesh 172a-1. For this reason, when the first mesh 172a-1 and the intermediate mesh 172a-2 are compared, the flow resistance of the first mesh 172a-1 is smaller than that of the intermediate mesh 172a-2.
 第2メッシュ構造182は、第1糸A1~A3および第2糸B3~B5により形成される中間メッシュ182a‐1と、第1糸A3~A5および第2糸B3~B5により形成される第2のメッシュ182a‐2とを第2糸列Bの延在方向に沿って交互に配置して構成される。中間メッシュ182a‐1は、中間メッシュ172a‐2と同様に、例えば、長方形状の外観形状を有し、同メッシュ172a‐2と同じ目の粗さとなるよう構成される。また、第2のメッシュ182a‐2は、例えば、正方形状の外観形状を有し、中間メッシュ182a‐1よりも目が細かく形成される。このため、第2のメッシュ182a‐2と中間メッシュ182a‐1とを比較すると、第2のメッシュ182a‐2の方が中間メッシュ182a‐1よりも流路抵抗が大きくなる。 The second mesh structure 182 includes an intermediate mesh 182a-1 formed by the first yarns A1 to A3 and the second yarns B3 to B5, and a second mesh formed by the first yarns A3 to A5 and the second yarns B3 to B5. The meshes 182a-2 are alternately arranged along the extending direction of the second yarn row B. Similar to the intermediate mesh 172a-2, the intermediate mesh 182a-1 has, for example, a rectangular external shape, and is configured to have the same roughness as the mesh 172a-2. Further, the second mesh 182a-2 has, for example, a square-shaped appearance shape, and has finer eyes than the intermediate mesh 182a-1. For this reason, when the second mesh 182a-2 and the intermediate mesh 182a-1 are compared, the flow resistance of the second mesh 182a-2 is larger than that of the intermediate mesh 182a-1.
 図12に示すように、第2メッシュ構造182において、原水の一部は流れC11,C12に沿って中間メッシュ182a‐1から下流側の第1メッシュ構造172における第1のメッシュ172a‐1に流入する。そして、第1のメッシュ172a‐1において、原水の一部は流れC21,C22に沿って第1のメッシュ172a‐1から下流側の第2メッシュ構造183の中間メッシュ183a‐1に流入する。 As shown in FIG. 12, in the second mesh structure 182, part of the raw water flows along the flows C11 and C12 from the intermediate mesh 182a-1 to the first mesh 172a-1 in the first mesh structure 172 on the downstream side. To do. In the first mesh 172a-1, a part of the raw water flows from the first mesh 172a-1 to the intermediate mesh 183a-1 of the second mesh structure 183 on the downstream side along the flows C21 and C22.
 ここで、中間メッシュ182a‐1の原水流れにおける下流側には第2のメッシュ182a‐2および第1のメッシュ172a‐1が隣接している。そして、第2のメッシュ182a‐2は第1のメッシュ172a‐1よりも流路抵抗が大きいため、中間メッシュ182a‐1から流れC11,C12に沿って第1のメッシュ172a‐1に流れ込む原水の流量Q11の方が第2のメッシュ182a‐2に流れ込む原水の流量Q12よりも多くなる。 Here, the second mesh 182a-2 and the first mesh 172a-1 are adjacent to the downstream side in the raw water flow of the intermediate mesh 182a-1. Since the second mesh 182a-2 has higher flow resistance than the first mesh 172a-1, the raw water flowing from the intermediate mesh 182a-1 along the flows C11 and C12 into the first mesh 172a-1 The flow rate Q11 is larger than the flow rate Q12 of raw water flowing into the second mesh 182a-2.
 一方、第1のメッシュ172a‐1の下流側には、中間メッシュ172a‐2,183a‐1がそれぞれ隣接している。両メッシュ172a‐2,183a‐1は、目の粗さが同等であるため流路抵抗の大きさも同等程度の大きさとなる。このため、流れC21,C22に沿って中間メッシュ183a‐1に流出する原水の流量Q12と、流れS11,12に沿って中間メッシュ172a‐2に流出する原水の流量Q13とは同程度の流量となる。 On the other hand, intermediate meshes 172a-2 and 183a-1 are adjacent to the downstream side of the first mesh 172a-1. Since both meshes 172a-2 and 183a-1 have the same coarseness of the eyes, the magnitude of the channel resistance is also comparable. For this reason, the flow rate Q12 of raw water flowing out to the intermediate mesh 183a-1 along the flows C21 and C22 and the flow rate Q13 of raw water flowing out to the intermediate mesh 172a-2 along the flows S11, 12 are comparable. Become.
 従って、流れC11,C12に沿って第2メッシュ構造182から第1メッシュ構造172における第1のメッシュ172a‐1に流入する流量Q11と、同メッシュ172a‐1から流れC21,22に沿って第2メッシュ構造183に流出する流量Q12との差分流量ΔQ11-12だけ第1メッシュ構造172における第1のメッシュ172a‐1から流れS11,12に沿って下流側の中間メッシュ172a‐2に流れ込む原水の流量Q13が増大する。このように原水流路スペーサ160においても、第1メッシュ構造172を流れる原水の水勢を増すことができ、上記実施形態における原水流路スペーサ40と同様の効果を得ることができる。 Accordingly, the flow rate Q11 flowing from the second mesh structure 182 along the flows C11 and C12 into the first mesh 172a-1 in the first mesh structure 172, and the second flow along the flows C21 and 22 from the mesh 172a-1. Raw water flowing from the first mesh 172a-1 in the first mesh structure 172 into the downstream intermediate mesh 172a-2 along the flows S11 and S12 by a difference flow rate ΔQ 11-12 from the flow rate Q12 flowing out to the mesh structure 183 The flow rate Q13 increases. As described above, also in the raw water flow path spacer 160, the water flow of the raw water flowing through the first mesh structure 172 can be increased, and the same effect as the raw water flow path spacer 40 in the above embodiment can be obtained.
 また、原水流路スペーサ160について、上述した原水流路スペーサ40と同条件で流体解析シミュレーションを実行した場合に、両分離膜24,28表面に占める易分極領域の面積割合は17%である。 In addition, when the fluid analysis simulation is performed on the raw water flow path spacer 160 under the same conditions as the above-described raw water flow path spacer 40, the area ratio of the easily polarized region in the surfaces of both separation membranes 24 and 28 is 17%.
 また、上記流体解析シミュレーションにおいて、原水流路スペーサ160を用いた場合に両分離膜24,28に原水流れが作用させるせん断応力の平均値は2.6Paであるのに対し、上述した原水流路スぺーサ40のせん断応力の平均値は3.3Paであった。 In the fluid analysis simulation, when the raw water channel spacer 160 is used, the average value of the shear stress that the raw water flow acts on both separation membranes 24 and 28 is 2.6 Pa, whereas the above-described raw water channel is used. The average value of the shear stress of the spacer 40 was 3.3 Pa.
 従って、原水流路スペーサ160を用いた場合、両分離膜24,28に作用する平均せん断応力が上述した原水流路スペーサ40よりも約20%低下する。このため、原水流路スペーサ40と比較して圧力損失を抑制できるという効果も得ることができる。 Therefore, when the raw water channel spacer 160 is used, the average shear stress acting on both separation membranes 24 and 28 is about 20% lower than that of the raw water channel spacer 40 described above. For this reason, the effect that a pressure loss can be suppressed compared with the raw | natural water flow path spacer 40 can also be acquired.
 図13は、変形例11の原水流路スペーサ200の構成を示す図である。図13に示すように、原水流路スペーサ200は、上述した原水流路スペーサ160の変形例である。以下の説明では、原水流路スペーサ160と構成の異なる部分についてのみ説明を行い、構成の共通する部分については適宜説明を省略する。 FIG. 13 is a view showing a configuration of the raw water flow path spacer 200 of the eleventh modification. As shown in FIG. 13, the raw water flow path spacer 200 is a modification of the raw water flow path spacer 160 described above. In the following description, only portions different in configuration from the raw water flow path spacer 160 will be described, and description of portions common in configuration will be omitted as appropriate.
 図13に示すように、原水流路スペーサ200は、第1糸列A10および第2糸列B10を互いに重ね合わせた2層構造の原水流路スペーサであり、各糸列A10,B10を積層状態で固着して形成される。第1糸列A10を構成する各糸A11,A12,A13が等間隔に配置される点で上記原水流路スペーサ160の構成と相違する。一方、第2糸列B10を構成する第2糸B11~B15の構成は、上述した原水流路スペーサ160における第2糸B1~B5と同一である。 As shown in FIG. 13, the raw water passage spacer 200 is a two-layer raw water passage spacer in which the first yarn row A10 and the second yarn row B10 are overlapped with each other, and each yarn row A10, B10 is laminated. It is formed by fixing with. The configuration differs from the configuration of the raw water flow path spacer 160 in that the yarns A11, A12, A13 constituting the first yarn row A10 are arranged at equal intervals. On the other hand, the configurations of the second yarns B11 to B15 constituting the second yarn row B10 are the same as the second yarns B1 to B5 in the raw water flow path spacer 160 described above.
 図13に示すように、原水流路スペーサ200は、上述した第1糸列A10および第2糸列B10により第2糸列B10に沿って構成された第1メッシュ構造201,202,203と、第2メッシュ構造211,212,213とを交互に備える。第1メッシュ構造201~203は同一の構成を備え、第2メッシュ構造211~213も同一の構成を備える。このため、以下の説明では、第1メッシュ構造202および第2メッシュ構造212を例に挙げて説明する。 As shown in FIG. 13, the raw water channel spacer 200 includes first mesh structures 201, 202, and 203 configured along the second yarn row B10 by the first yarn row A10 and the second yarn row B10 described above. The second mesh structures 211, 212, and 213 are alternately provided. The first mesh structures 201 to 203 have the same configuration, and the second mesh structures 211 to 213 also have the same configuration. For this reason, in the following description, the first mesh structure 202 and the second mesh structure 212 will be described as an example.
 第1メッシュ構造202は、第1糸A11,A12および第2糸B11~B13により形成される第1のメッシュ202aを含み、この第1のメッシュ202aと同一構成からなる多数のメッシュが第2糸列B10の延在方向に多数連なって構成される。 The first mesh structure 202 includes a first mesh 202a formed by the first yarns A11 and A12 and the second yarns B11 to B13, and a number of meshes having the same configuration as the first mesh 202a are the second yarns. A large number are arranged in the extending direction of the row B10.
 第2メッシュ構造212は、第1糸A11,A12および第2糸B13~B15により形成される第2のメッシュ212aを含み、この第2のメッシュ212aと同一構成からなる多数のメッシュが第2糸列B10の延在方向に多数連なって構成される。この第2のメッシュ212aは、第1のメッシュ202aよりも目が細かく形成される。このため、第1のメッシュ202aよりも流路抵抗が大きくなる。 The second mesh structure 212 includes a second mesh 212a formed by the first yarns A11, A12 and the second yarns B13 to B15, and a number of meshes having the same configuration as the second mesh 212a are the second yarns. A large number are arranged in the extending direction of the row B10. The second mesh 212a is formed with finer eyes than the first mesh 202a. For this reason, channel resistance becomes larger than the 1st mesh 202a.
 原水流路スペーサ200について、上記実施形態における原水流路スペーサ40と同条件で流体解析シミュレーションを行ったところ、各分離膜24,28表面に占める易分極領域の面積割合は17%であった。この変形例11の原水流路スペーサ200においても上述した原水流路スペーサ160と同様の効果を得ることができる。 When the fluid analysis simulation was performed on the raw water flow path spacer 200 under the same conditions as the raw water flow path spacer 40 in the above embodiment, the area ratio of the easily polarized regions occupying the surfaces of the separation membranes 24 and 28 was 17%. Also in the raw water flow path spacer 200 of this modified example 11, the same effect as the raw water flow path spacer 160 described above can be obtained.
 図14は、変形例12の原水流路スペーサ230の構成を示す図である。原水流路スペーサ230は、糸列M,Nを重ね合わせて形成された第1メッシュ構造231,232,233と第2メッシュ構造241,242,243とを交互に備える。ここで、第1メッシュ構造231,232,233は同一構成をそれぞれ有し、第2メッシュ構造241,242,243も同一構成をそれぞれ有するため、以下の説明では、第1メッシュ構造232および第2メッシュ構造241を例に挙げて原水流路スペーサ230の説明を行う。 FIG. 14 is a view showing the configuration of the raw water flow path spacer 230 of the twelfth modification. The raw water flow path spacer 230 includes first mesh structures 231, 232, 233 and second mesh structures 241, 242, 243 that are formed by superimposing the yarn rows M, N alternately. Here, since the first mesh structures 231, 232, and 233 have the same configuration, and the second mesh structures 241, 242, and 243 also have the same configuration, in the following description, the first mesh structure 232 and the second mesh structure 232 The raw water flow path spacer 230 will be described by taking the mesh structure 241 as an example.
 原水流路スペーサ230は、糸列Nの間隔が等間隔となる点で上述した原水流路スペーサ40の構成と相違する。一方、糸列Mの間隔は、第1メッシュ構造232を構成する糸M1,M2の間隔R3よりも第2メッシュ構造241を構成する糸M1,M2の間隔R4の方が狭く設けられている。このように糸列Mだけ第1メッシュ構造231よりも第2メッシュ構造241における間隔が狭くなるように構成してもよい。但し、この場合には、糸列Mが第2糸列に相当し、糸列Nが第1糸列に相当する。 The raw water flow path spacer 230 is different from the configuration of the raw water flow path spacer 40 described above in that the intervals of the yarn rows N are equal. On the other hand, the interval R4 between the yarns M1 and M2 constituting the second mesh structure 241 is narrower than the interval R3 between the yarns M1 and M2 constituting the first mesh structure 232. In this way, the yarn mesh M may be configured such that the interval in the second mesh structure 241 is narrower than that in the first mesh structure 231. However, in this case, the yarn row M corresponds to the second yarn row, and the yarn row N corresponds to the first yarn row.
 続いて、上述した原水流路スペーサ40による濃度分極抑制効果の評価試験に用いる評価用セル400の使用方法、および、当該セル400を用いた評価試験について図15(a)~図15(c)を用いて説明を行う。図15(a)は、評価用セル400を当該セルの一部構成を省略して示すとともに、一部に断面図を含む斜視図である。図15(b)は、評価用セル400の内部に設置される原水流路スペーサ40の試験体の構成を示す図である。図15(c)は、評価用セル400内部の流路構成を示すため外形を仮想線で示すとともに流路構成部分を実線で示す図である。図15(a)において、原水流路スペーサ40における試験体40‐Tの断面は、便宜上「×」マークのハッチングを付して示している。 Subsequently, the method of using the evaluation cell 400 used for the evaluation test of the concentration polarization suppression effect by the raw water flow path spacer 40 and the evaluation test using the cell 400 will be described with reference to FIGS. A description will be given using. FIG. 15A is a perspective view showing the evaluation cell 400 with a part of the cell omitted, and a partial cross-sectional view. FIG. 15B is a diagram illustrating a configuration of a test body of the raw water flow path spacer 40 installed in the evaluation cell 400. FIG. 15C is a diagram showing the outline of the flow path in the evaluation cell 400 and the solid line of the flow path component. In FIG. 15A, the cross section of the test body 40-T in the raw water channel spacer 40 is indicated by hatching with “x” mark for convenience.
 図15(a)~図15(c)に示すように、評価用セル400は、雄型410および雌型420を嵌め合わせてなる略直方体状の濃度測定ユニットである。この評価用セル400は、図1に示す濾過装置10に含まれるスパイラル型膜エレメント20を置き換えて用いられる。図15(a)に示すように、雄型410は中央部に凸部412が設けられた金属または樹脂製部材である。この凸部412は、突き出し面412aが角丸長方形状に形成される。角丸長方形とは、長方形を構成する短辺と長辺のうち、短辺が半円状に外側に向かって突き出す曲線に置換された外形をなす形状を意味する。また、突き出し面412aの周縁部は面取り加工が施されており、傾斜面412bが形成されている。 As shown in FIGS. 15 (a) to 15 (c), the evaluation cell 400 is a substantially rectangular parallelepiped concentration measuring unit formed by fitting a male die 410 and a female die 420 together. The evaluation cell 400 is used by replacing the spiral membrane element 20 included in the filtration device 10 shown in FIG. As shown in FIG. 15A, the male mold 410 is a metal or resin member having a convex portion 412 provided at the center. As for this convex part 412, the protrusion surface 412a is formed in a rounded rectangle shape. A rounded rectangle means a shape that forms an outer shape of a short side and a long side constituting a rectangle, the outer side being replaced with a curve that protrudes outward in a semicircular shape. Moreover, the chamfering process is given to the peripheral part of the protrusion surface 412a, and the inclined surface 412b is formed.
 雌型420は、上記雄型410の凸部412に嵌合する凹部422が中央部に設けられた金属または樹脂製部材である。そして、評価用セル400は、両型410,420を嵌合させることにより、凸部412および凹部422の間に評価用流路430が形成される。この評価用流路430は、図15(c)に示すように角丸長方形状の外形を有し、一例として、全長D1が167mmであり、両端に形成される半円部の直径、すなわち幅D2が35mmであり、流路の厚みは約1mmである。 The female mold 420 is a metal or resin member in which a concave portion 422 that fits into the convex portion 412 of the male die 410 is provided in the central portion. In the evaluation cell 400, the evaluation flow path 430 is formed between the convex portion 412 and the concave portion 422 by fitting both the molds 410 and 420 together. As shown in FIG. 15C, the evaluation channel 430 has a rounded rectangular outer shape. As an example, the total length D1 is 167 mm, and the diameter of the semicircular portion formed at both ends, that is, the width D2 is 35 mm, and the thickness of the flow path is about 1 mm.
 また、図15(a)および図15(c)に示すように、雄型410には、原水入口を構成する管端414と、濃縮水出口を構成する管端416とが設けられる。この原水入口を構成する管端414には原水を供給する送水管L2(図1参照)が接続され、濃縮水出口を構成する管端416には濃縮水配管L4(図1参照)が接続される。そして、両管端414,416は、雄型410内部に設けられた連絡流路414a,416aにより評価用流路430とそれぞれ連通している。雌型420にも、雄型410の管端414,416と対向する位置に各々透過水出口を構成する管端424,426が取り付けられている。そして、両管端424,426と評価用流路430は、雌型420内部に形成された連絡流路424a,426aにより連通している。また、透過水出口を構成する管端424,426は、各々透過水配管L3(図1参照)に接続される。 Further, as shown in FIGS. 15A and 15C, the male mold 410 is provided with a pipe end 414 constituting the raw water inlet and a pipe end 416 constituting the concentrated water outlet. The pipe end 414 constituting the raw water inlet is connected to a water supply pipe L2 (see FIG. 1) for supplying raw water, and the pipe end 416 constituting the concentrated water outlet is connected to a concentrated water pipe L4 (see FIG. 1). The Both pipe ends 414 and 416 communicate with the evaluation flow path 430 through connecting flow paths 414a and 416a provided inside the male mold 410, respectively. The female mold 420 is also provided with pipe ends 424 and 426 that respectively constitute permeate outlets at positions facing the pipe ends 414 and 416 of the male mold 410. The pipe ends 424 and 426 and the evaluation flow path 430 are communicated with each other through connecting flow paths 424a and 426a formed in the female mold 420. Moreover, the pipe ends 424 and 426 constituting the permeate outlet are each connected to the permeate pipe L3 (see FIG. 1).
 次に、評価用セル400の使用方法について説明する。評価用セル400の内部に形成される評価用流路430には、透過水スペーサ26の試験体26‐T、分離膜24aの試験体24‐T、および、原水流路スペーサ40の試験体40‐Tが積層状態で格納される。各試験体26‐T,24‐T,40‐Tは、雌型420の凹部422に隙間なく収まるように角丸長方形状に予め加工されている。この際、図15(a)に示すように、雌型420の方から見て、透過水スペーサの試験体26‐T、分離膜の試験体24‐T、原水流路スペーサの試験体40‐Tの順に凹部422に設置される。このように各試験体26‐T,24‐T,40‐Tを設置することで、分離膜である試験体24‐Tを透過した透過水が試験体26‐Tの内部を通過して連絡流路424a,426aのいずれかから透過水配管L3(図1参照)へ流出することとなる。一方で、分離膜である試験体24‐Tを透過しなかった原水は濃縮水として連絡流路416aを経由して濃縮水配管L4(図1参照)へ排出される。 Next, a method for using the evaluation cell 400 will be described. The evaluation channel 430 formed inside the evaluation cell 400 includes a test body 26-T of the permeated water spacer 26, a test body 24-T of the separation membrane 24a, and a test body 40 of the raw water channel spacer 40. -T is stored in a stacked state. Each test body 26-T, 24-T, 40-T is processed in advance into a rounded rectangular shape so as to fit in the recess 422 of the female mold 420 without a gap. At this time, as shown in FIG. 15 (a), the permeated water spacer test body 26-T, the separation membrane test body 24-T, and the raw water channel spacer test body 40- viewed from the female mold 420 side. It installs in the recessed part 422 in order of T. By installing each of the test bodies 26-T, 24-T, and 40-T in this way, the permeated water that has passed through the test body 24-T, which is a separation membrane, passes through the inside of the test body 26-T and communicates therewith. It will flow out of either of the flow paths 424a and 426a to the permeate pipe L3 (see FIG. 1). On the other hand, the raw water that has not permeated through the specimen 24-T as the separation membrane is discharged as concentrated water to the concentrated water pipe L4 (see FIG. 1) via the communication channel 416a.
 そして、図15(a)に示すように、試験体40‐Tを凹部422に設置してから凹部422の側壁422aに沿わせるようにOリング432を取り付ける。このOリング432は、外周が角丸長方形状をなす環状部材であり、その断面が円状に構成されたゴム製パッキンである。このOリング432は雄型410の凸部412に形成された傾斜面412bに押圧されることにより、雄型410の凸部412と雌型420の凹部422との隙間を塞ぎ評価用流路430からの漏水を防止するシール材としての機能を有する。また、変形例の原水流路スぺーサ160、および、比較例の原水流路スペーサ300についても、上記原水流路スペーサ40の試験体40‐Tと同様に、試験体160‐T,300‐Tを製作し評価を行う。 And as shown to Fig.15 (a), after installing the test body 40-T in the recessed part 422, the O-ring 432 is attached so that the side wall 422a of the recessed part 422 may be followed. The O-ring 432 is an annular member whose outer periphery has a rounded rectangular shape, and is a rubber packing having a circular cross section. The O-ring 432 is pressed against an inclined surface 412 b formed on the convex portion 412 of the male die 410, thereby closing the gap between the convex portion 412 of the male die 410 and the concave portion 422 of the female die 420. It has a function as a sealing material that prevents water leakage. Further, the raw water flow channel spacer 160 of the modified example and the raw water flow channel spacer 300 of the comparative example are also tested in the same manner as the test sample 40-T of the raw water flow channel spacer 40. T is made and evaluated.
 上記のように、各試験体24‐T,26‐T,40‐Tと、Oリング432を雌型420の凹部422に設置した上で、雄型410の凸部412を凹部422に嵌め込み、複数のボルトBL1~BL4(図15(a)参照)等により両型410,420を固定する。この際、雄型410の凸部412とOリング432との間に隙間が残る場合には、透過水スペーサ26‐Tを複数枚重ねることにより、Oリング432が凸部412の傾斜面412bと凹部422の側壁との間で圧接されるよう調整する。これにより、原水流路スペーサ40の試験体40‐Tの評価用セル400への取り付け作業が完了する。 As described above, after each test body 24-T, 26-T, 40-T and the O-ring 432 are installed in the concave portion 422 of the female mold 420, the convex portion 412 of the male mold 410 is fitted into the concave portion 422. Both molds 410 and 420 are fixed by a plurality of bolts BL1 to BL4 (see FIG. 15A). At this time, if a gap remains between the convex portion 412 of the male mold 410 and the O-ring 432, a plurality of permeated water spacers 26-T are stacked so that the O-ring 432 and the inclined surface 412b of the convex portion 412 are overlapped. It adjusts so that it may press-contact between the side walls of the recessed part 422. FIG. Thereby, the attachment operation | work to the cell 400 for evaluation of the test body 40-T of the raw | natural water flow path spacer 40 is completed.
 本評価試験において、試験体300‐Tは、糸列V(図6(a)参照)の間隔および糸列W(図6(b)参照)の間隔が各々2mmとなるように製作した。各糸列V,Wを構成する各糸V1~V3,W1~W3の直径は0.2mmである。 In this evaluation test, the specimen 300-T was manufactured such that the interval between the yarn rows V (see FIG. 6A) and the interval between the yarn rows W (see FIG. 6B) were 2 mm. The diameters of the yarns V1 to V3 and W1 to W3 constituting the yarn rows V and W are 0.2 mm.
 また、試験体40‐Tは、第1糸列M(図3参照)の間隔および第2糸列N(図3参照)の間隔が各々2mmとなるように製作した。(従って、試験体40-Tにおいて、上述した第1の四角形状メッシュ52aは1辺が2mmの正方形状の外観形状をなし、第2の四角形状メッシュ61aは1辺が2mmの菱形状の外観形状を呈する)各糸列M,Nを構成する各糸M1~M3,N1~N4の直径Dは0.2mmである。 Further, the test body 40-T was manufactured such that the interval between the first yarn rows M (see FIG. 3) and the interval between the second yarn rows N (see FIG. 3) were 2 mm. (Accordingly, in the test body 40-T, the first square mesh 52a described above has a square appearance with a side of 2 mm, and the second square mesh 61a has a rhombus with a side of 2 mm. The diameter D of each of the yarns M1 to M3 and N1 to N4 constituting each yarn row M and N (which has a shape) is 0.2 mm.
 試験体160‐Tは、第1糸列A(図11参照)を構成する第1糸A1,A2の間隔と第1糸A2,A3の間隔が各々3mmであり、第1糸A3,A4の間隔と第1糸A4,A5の間隔が各々1.5mmとなるように製作した。また、第2糸列B(図11参照)は、第2糸B1,B2の間隔と第2糸B2,B3の間隔が各々3mmであり、第2糸B3,B4の間隔と第2糸B4,B5の間隔が各々1.5mmとなるように製作した。各糸列A,Bを構成する各糸A1~A5,B1~B5の直径は0.2mmである。 In the test body 160-T, the interval between the first yarns A1 and A2 and the interval between the first yarns A2 and A3 constituting the first yarn row A (see FIG. 11) is 3 mm, respectively. The distance between the first yarns A4 and A5 was 1.5 mm. In the second yarn row B (see FIG. 11), the interval between the second yarns B1 and B2 and the interval between the second yarns B2 and B3 are each 3 mm, and the interval between the second yarns B3 and B4 and the second yarn B4 , B5 were each made to be 1.5 mm apart. The diameters of the yarns A1 to A5 and B1 to B5 constituting the yarn rows A and B are 0.2 mm.
 続いて、上記評価用セル400を用いた原水流路スペーサの評価試験について説明する。なお、この評価試験は気温25℃の条件下で実施している。 Subsequently, an evaluation test of the raw water flow path spacer using the evaluation cell 400 will be described. In addition, this evaluation test is implemented on the conditions of 25 degreeC temperature.
 最初に、純水透過係数Aを算出する。この「純水」透過係数は、評価用セル400に管端414より供給される原水が塩等の不純物を含まない純水である場合において以下の式(1)の関係より求められる透過係数である。 First, the pure water permeability coefficient A is calculated. This “pure water” permeability coefficient is a permeability coefficient obtained from the relationship of the following formula (1) when the raw water supplied from the pipe end 414 to the evaluation cell 400 is pure water not containing impurities such as salt. is there.
  JW=A×Pout・・・・・・・・・・・・・・・・・・(1)
上記式(1)において、JWは純水体積流束[m/(ms)]であり、Poutは濃縮水配管L4に設置された水圧計(不図示)の測定値である。純水透過係数Aの算出方法としては、濃縮水配管L4の流量調整バルブ(不図示)およびバイパス配管L2‐Bの流量調整弁を調整することにより、Pout=0.5MPa、濃縮水配管L4における濃縮水流量QL4を14.5cc/min.とした場合における透過水配管L3の透過水流量QL3[m/s]を測定する。そして、この透過水流量QL3を分離膜24aの試験体24‐Tの面積で除算することにより純水体積流束JW1を求める。
J W = A × P out (1)
In the above formula (1), J W is a pure water volume flux [m 3 / (m 2 s)], and P out is a measured value of a water pressure gauge (not shown) installed in the concentrated water pipe L4. . The pure water permeability coefficient A is calculated by adjusting the flow rate adjustment valve (not shown) of the concentrated water pipe L4 and the flow rate control valve of the bypass pipe L2-B, so that P out = 0.5 MPa, the concentrated water pipe L4. The permeate flow rate Q L3 [m 3 / s] of the permeate pipe L3 when the concentrated water flow rate Q L4 at 14.5 cc / min. Is measured. Then, the pure water volume flux J W1 is obtained by dividing the permeated water flow rate Q L3 by the area of the test body 24-T of the separation membrane 24a.
 同様に、Pout=2.0MPa,濃縮水流量QL4を14.5cc/min.とした場合において、透過水流量QL3[m/s]を測定し、当該測定値を上記試験体24‐Tの面積で除算することにより純水体積流束JW2を測定する。 Similarly, when P out = 2.0 MPa and the concentrated water flow rate Q L4 is 14.5 cc / min., The permeated water flow rate Q L3 [m 3 / s] is measured, and the measured value is used as the test body 24. Measure the pure water volume flux J W2 by dividing by the area of T.
 そして、Pout=0.5MPa,純水体積流束JW1と、Pout=2.0MPa,純水体積流束JW2とを用いて、最小二乗法による直線近似により上記式(1)における純水透過係数Aを求める。 Then, using P out = 0.5 MPa, pure water volume flux J W1 and P out = 2.0 MPa, pure water volume flux J W2 , the above equation (1) is obtained by linear approximation using the least square method. The pure water permeability coefficient A is obtained.
 次に、評価用セル400に管端414より供給する原水を、例えば、塩濃度が250ppm前後となるように調整された塩化ナトリウム(NaCl)溶液に変更して、Pout=0.5MPa、濃縮水流量QL4を14.5±0.5[cc/min]とし、この場合における透過水の流量QL3[m/s]を測定する。そして、透過水の流量QL3を試験体24‐Tの面積で除算することにより溶液体積流束JVを算出し、算出された溶液体積流束JVを以下の式(2)に代入して試験体24‐Tの膜面における浸透圧Pを算出する。以下の式(2)において、Pout=0.5MPaである。 Next, the raw water supplied from the pipe end 414 to the evaluation cell 400 is changed to, for example, a sodium chloride (NaCl) solution adjusted to have a salt concentration of about 250 ppm, and P out = 0.5 MPa, concentrated. The water flow rate Q L4 is set to 14.5 ± 0.5 [cc / min], and the flow rate Q L3 [m 3 / s] of the permeated water in this case is measured. Then, the solution volume flux J V is calculated by dividing the permeated water flow rate Q L3 by the area of the specimen 24-T, and the calculated solution volume flux J V is substituted into the following equation (2). Then, the osmotic pressure P f on the membrane surface of the test body 24-T is calculated. In the following formula (2), P out = 0.5 MPa.
 P=Pout‐(JV/A)・・・・・・・・・・・・・・・・・(2)
そして、以下に示す式(3)により分離膜である試験体24‐Tの膜面近傍における原水の塩濃度を意味する膜面濃度Cを算出する。
P f = P out- (J V / A) (2)
Then, the membrane surface concentration C m which means the salt concentration of the raw water in the vicinity of the membrane surface of the specimen 24-T as a separation membrane is calculated by the following equation (3).
 C=B×P・・・・・・・・・・・・・・・・・・・・・(3)
上記式(3)において換算係数Bは、原水に含有されるNaCl,MgSO4,CaCl2等の塩濃度と浸透圧の関係により定まる定数であり、本実施形態のように原水に含まれる塩が塩化ナトリウムである場合には換算係数B=1.2294となる。
C m = B × P f (3)
In the above formula (3), the conversion coefficient B is a constant determined by the relationship between the salt concentration of NaCl, MgSO 4 , CaCl 2 and the like contained in the raw water and the osmotic pressure, and the salt contained in the raw water as in this embodiment. In the case of sodium chloride, the conversion coefficient B = 1.2294.
 次に、式(4)の関係から、バルク(bulk)濃度Cbを算出する。 Next, the bulk concentration Cb is calculated from the relationship of the equation (4).
 C=(Cin+Cout)/2・・・・・・・・・・・・・・・・(4)
上記式(4)におけるCinは送水管L2を流れる原水の塩濃度、Coutは濃縮水配管L4を流れる濃縮水の塩濃度である。本実施形態では、原水に含まれる塩化ナトリウムの塩濃度は上述のように250ppm前後に予め調整されているので、濃縮水配管L4を流れる濃縮水の塩濃度Coutのみ測定すればよい。また、濃縮水や原水における塩濃度の測定は、一例として、電気伝導度(率)を測定することにより行えばよい。
C b = (C in + C out ) / 2 (4)
In the above formula (4), C in is the salt concentration of the raw water flowing through the water supply pipe L2, and C out is the salt concentration of the concentrated water flowing through the concentrated water pipe L4. In the present embodiment, since the salt concentration of sodium chloride contained in the raw water is adjusted in advance to around 250 ppm as described above, only the salt concentration C out of the concentrated water flowing through the concentrated water pipe L4 may be measured. Moreover, what is necessary is just to perform the measurement of the salt concentration in concentrated water or raw | natural water by measuring an electrical conductivity (rate) as an example.
 そして、式(4)で算出されたCと、式(3)で算出されたCの比である式(5)に示す濃度比Cを算出する。 Then, it calculates the C b calculated by the equation (4), the concentration ratio C r shown in equation (5) is the ratio of C m calculated by the equation (3).
 C=C/C・・・・・・・・・・・・・・・・・・・・(5)
ここで、図16(a)は上述した濃度比Crを縦軸に、純水体積流束JWの測定値を横軸として各分離膜の測定結果を示すグラフである。同図(a)において、「△」マークは比較例である原水流路スペーサ300の試験体300‐Tの測定値を示し、「◇」は原水流路スペーサ40の試験体40‐Tの測定値を示し、「十」は変形例10の原水流路スペーサ160の試験体160‐Tの測定値を示す。図16(b)は、同図(a)に示す各試験体40-T,160-T,300-Tの濃度比Cの測定値を測定時の純水体積流束Jとともに示す表である。
C r = C m / C b (5)
Here, FIG. 16A is a graph showing the measurement results of each separation membrane with the concentration ratio Cr described above on the vertical axis and the measured value of the pure water volume flux J W on the horizontal axis. In FIG. 6A, the “Δ” mark indicates the measured value of the test specimen 300-T of the raw water flow path spacer 300 as a comparative example, and “◇” indicates the measurement of the test specimen 40-T of the raw water flow path spacer 40. “10” indicates the measured value of the test body 160 -T of the raw water flow path spacer 160 of the tenth modification. FIG. 16 (b), the table shown with pure water volume flux J w at the time of measurement the measured value of the concentration ratio C r of each specimen 40-T, 160-T, 300-T shown in the diagram (a) It is.
 また、図3に示すように、原水流路スペーサ40の第1糸列Mおよび第2糸列Nは非対称に構成されている。このため、原水流路スペーサ40を間に挟んで対向する分離膜24aと分離膜28aとにおける膜面近傍の原水流れは大きく異なる。このため、両分離膜24a,28a近傍における塩濃度の分布状態も大きく異なる。従って、原水流路スペーサ40の試験体40‐Tを用いた評価試験では、分離膜24の試験体24‐Tに第1糸列Mが接するように設置する場合と、同試験体24‐Tに第2糸列Nが接するように設置する場合とにおける濃度比Cをそれぞれ測定し、その平均値に基づいて濃度分極の大きさを評価する必要がある。 Moreover, as shown in FIG. 3, the 1st thread line M and the 2nd thread line N of the raw | natural water flow path spacer 40 are comprised asymmetrically. For this reason, the raw water flows in the vicinity of the membrane surface of the separation membrane 24a and the separation membrane 28a facing each other with the raw water flow path spacer 40 interposed therebetween are greatly different. For this reason, the distribution state of the salt concentration in the vicinity of both separation membranes 24a and 28a is also greatly different. Therefore, in the evaluation test using the test body 40-T of the raw water flow path spacer 40, the case where the first thread row M is placed in contact with the test body 24-T of the separation membrane 24, and the test body 24-T It is necessary to measure the concentration ratio Cr in the case where the second yarn row N is placed in contact with each other and to evaluate the magnitude of the concentration polarization based on the average value.
 そのため、図16(b)では、試験体24‐Tに第1糸列Mが接するように設置した場合を「B」とし、試験体24‐Tに第2糸列Nが接するように設置した場合を「A」としてそれぞれ示している。 Therefore, in FIG. 16B, the case where the first yarn row M is in contact with the test body 24-T is “B”, and the second yarn row N is in contact with the test body 24-T. Each case is indicated as “A”.
 また、以下の説明では、上記「A」の設置状態における原水流路スペーサ40の試験体40‐Tを試験体40‐TAと表記し、上記「B」の設置状態を示す場合の試験体40‐Tを試験体40‐TBと適宜表記する。 In the following description, the test body 40-T of the raw water channel spacer 40 in the installation state “A” is referred to as a test body 40-TA, and the test body 40 in the case where the installation state “B” is shown. -T is appropriately described as test body 40-TB.
 図16(a)に示すように、試験体40‐TAを用いた評価試験では、純水体積流束J=0.91×10-5[m/(ms)]において、濃度比C=2.1である。また、試験体40‐TBを用いた評価試験では、純水体積流束J=1.13×10-5[m/(ms)]において、濃度比C=3.1である。従って、試験体40‐TA,40‐TBにおける濃度比Crの平均値は2.6となり、比較例である試験体300‐Tの濃度比Crの最小値2.7よりも低い値となる。従って、原水流路スペーサ40によれば、従来の原水流路スペーサ300よりも濃度分極を低減できることが確認できた。 As shown in FIG. 16 (a), in the evaluation test using the specimen 40-TA, the concentration of pure water volume flux J w = 0.91 × 10 −5 [m 3 / (m 2 s)] The ratio C r = 2.1. Further, in the evaluation test using the specimen 40-TB, the concentration ratio C r = 3.1 in the pure water volume flux J w = 1.13 × 10 −5 [m 3 / (m 2 s)]. is there. Therefore, the average value of the concentration ratio Cr in the test bodies 40-TA and 40-TB is 2.6, which is lower than the minimum value 2.7 of the concentration ratio Cr of the test body 300-T which is a comparative example. Therefore, according to the raw | natural water flow path spacer 40, it has confirmed that concentration polarization could be reduced rather than the conventional raw | natural water flow path spacer 300. FIG.
 図16(a)に示すように、原水流路スペーサ160の試験体160‐Tを用いた評価試験では、純水体積流束J=1.03×10-5[m/(ms)]の場合の濃度比Cが1.6であり、純水体積流束J=1.51×10-5[m/(ms)]の場合の濃度比Cが2.4である。このように試験体160‐Tを用いた評価試験では、いずれの場合においても比較例である試験体300‐Tにおける濃度比Cの最小値である2.7を大きく下回っていることが分かる。従って、原水流路スペーサ160によれば、従来の原水流路スぺーサ300よりも濃度分極を低減できることが確認できた。 As shown in FIG. 16 (a), in the evaluation test using the test body 160-T of the raw water flow path spacer 160, the pure water volume flux J w = 1.03 × 10 −5 [m 3 / (m 2 concentration ratio C r in the case of s)] is 1.6, pure volumetric flux J w = 1.51 × 10 -5 [ m 3 / (m 2 s)] concentration ratio C r in the case of the 2.4. In the evaluation test using thus specimen 160-T, it can be seen that far below 2.7 is the minimum value of the concentration ratio C r in specimen 300-T is a comparative example in either case . Therefore, according to the raw water flow path spacer 160, it was confirmed that the concentration polarization could be reduced as compared with the conventional raw water flow path spacer 300.
 また、試験体160-Tを用いた上記評価試験において、濃縮水配管L4における濃縮水流量QL4を14.5cc/min.としたときの圧力損失PLを測定したところ6.4kPaであった。この圧力損失Pは、管端414より評価用セル400の評価用流路430に供給される原水の水圧Pinと、上述したPoutとの差圧である。 In the above evaluation test using a specimen 160-T, it was 6.4kPa The measured pressure loss P L at which the concentrated water flow rate Q L4 in concentrated water pipe L4 was 14.5cc / min.. The pressure loss P L is hydraulically P in the water supplied to the evaluation channel 430 of the evaluation cell 400 from the tube end 414, a differential pressure between P out as described above.
 同様に、試験体300-Tを用いた上記評価試験において、上述した濃縮水流量QL4を14.5cc/min.としたときの圧力損失PLを測定したところ測定値は8.6kPaであった。 Similarly, in the above evaluation test using the specimen 300-T, when the pressure loss P L was measured when the concentrated water flow rate Q L4 was 14.5 cc / min., The measured value was 8.6 kPa. .
 上記のように、試験体160‐Tを用いた場合には、従来の試験体300‐Tよりも圧力損失を低減できることが確認できた。このため、原水流路スペーサ160によれば、濃度分極および圧力損失双方の低減を図ることが可能である。 As described above, it was confirmed that when the specimen 160-T was used, the pressure loss could be reduced as compared with the conventional specimen 300-T. For this reason, according to the raw | natural water flow path spacer 160, it is possible to aim at reduction of both concentration polarization and pressure loss.
 本発明は、その趣旨を逸脱しない範囲で当業者の知識に基づいて種々なる改良、修正、又は変形を加えた態様でも実施できる。また、同一の作用又は効果が生じる範囲内で、何れかの発明特定事項を他の技術に置換した形態で実施しても良い。 The present invention can be carried out in a mode in which various improvements, modifications, or variations are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention. Moreover, you may implement with the form which substituted any invention specific matter to the other technique within the range which the same effect | action or effect produces.

Claims (4)

  1.  スパイラル型膜エレメントの集水管に巻回された第1分離膜と第2分離膜との間に挟み込まれ、前記集水管と平行な方向に対して互いに反対方向に傾斜する第1糸列および第2糸列からなる2層構造の原水流路スペーサであって、
     前記第1糸列および前記第2糸列により前記第2糸列の延在方向に連なって構成された第1メッシュ構造と、
     前記第1糸列および前記第2糸列により前記第2糸列の延在方向に連なって構成され、前記第1メッシュ構造を構成する前記第2糸列の間隔よりも前記第2糸列の間隔が狭くなるよう構成された第2メッシュ構造と、
     を交互に備えることを特徴とする、
     原水流路スペーサ。
    A first yarn array sandwiched between a first separation membrane and a second separation membrane wound around a water collecting pipe of a spiral membrane element, and inclined in opposite directions with respect to a direction parallel to the water collecting pipe; A raw water flow path spacer having a two-layer structure composed of two yarn rows,
    A first mesh structure configured by the first yarn row and the second yarn row being connected in the extending direction of the second yarn row;
    The first yarn row and the second yarn row are configured to be continuous in the extending direction of the second yarn row, and the second yarn row is more than the interval between the second yarn rows constituting the first mesh structure. A second mesh structure configured to have a narrow spacing;
    Characterized by comprising alternately,
    Raw water channel spacer.
  2.  前記第2メッシュ構造を構成する前記第1糸列の前記集水管と平行な方向に対する傾斜は、前記第1メッシュ構造を構成する前記第1糸列の前記集水管と平行な方向に対する傾斜よりも大きくなるよう構成されている、
     請求項1に記載の原水流路スペーサ。
    The inclination of the first yarn row constituting the second mesh structure with respect to the direction parallel to the water collecting pipe is greater than the inclination of the first yarn row constituting the first mesh structure with respect to the direction parallel to the water collecting pipe. Configured to grow,
    The raw water flow path spacer according to claim 1.
  3.  前記第1メッシュ構造は、第1のメッシュと、前記第1のメッシュよりも目が細かい中間メッシュとを交互に並べて構成され、
     前記第2メッシュ構造は、前記中間メッシュと、前記中間メッシュよりも目が細かい第2のメッシュとを交互に並べて構成されている、
     請求項1または2に記載の原水流路スペーサ。
    The first mesh structure is configured by alternately arranging a first mesh and an intermediate mesh that is finer than the first mesh,
    The second mesh structure is configured by alternately arranging the intermediate mesh and the second mesh having finer mesh than the intermediate mesh.
    The raw water flow path spacer according to claim 1 or 2.
  4.  透過水が流れる集水管と、
     シート状の透過水スペーサと、
     前記透過水スペーサの両面に重ね合わせた状態で三辺が封止され、他の一辺が開口端である袋状をなし、当該開口端が前記集水管に接続された状態で前記集水管に巻回された第1分離膜および第2分離膜と、
     請求項1から3のいずれか1項に記載の原水流路スペーサと、
     を備えるスパイラル型膜エレメント。
    A water collecting pipe through which permeate flows,
    A sheet-like permeate spacer,
    Three sides are sealed in a state of being overlapped on both surfaces of the permeate spacer, and the other side is formed into a bag shape having an open end, and the open end is connected to the water collection pipe and wound around the water collection pipe. A rotated first separation membrane and second separation membrane;
    Raw water channel spacer according to any one of claims 1 to 3,
    Spiral type membrane element.
PCT/JP2017/022819 2016-11-18 2017-06-21 Raw water flow path spacer and spiral membrane element provided with same WO2018092343A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187021199A KR101916648B1 (en) 2016-11-18 2017-06-21 A raw water channel spacer, and a spiral membrane element having the same
US16/349,831 US11484840B2 (en) 2016-11-18 2017-06-21 Raw water channel spacer and spiral wound membrane element including the same
RU2019117779A RU2703622C1 (en) 2016-11-18 2017-06-21 Untreated water flow path separator and roll-type membrane element equipped with it
CN201780007655.3A CN108495701B (en) 2016-11-18 2017-06-21 Raw water flow path spacer and the spiral membrane element for having it
EP17871925.8A EP3542890B1 (en) 2016-11-18 2017-06-21 Raw water flow path spacer and spiral membrane element provided with same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-225396 2016-11-18
JP2016225396 2016-11-18
JP2017-101262 2017-05-22
JP2017101262A JP6353957B2 (en) 2016-11-18 2017-05-22 Raw water channel spacer and spiral membrane element provided with the same

Publications (1)

Publication Number Publication Date
WO2018092343A1 true WO2018092343A1 (en) 2018-05-24

Family

ID=62145145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022819 WO2018092343A1 (en) 2016-11-18 2017-06-21 Raw water flow path spacer and spiral membrane element provided with same

Country Status (1)

Country Link
WO (1) WO2018092343A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168869A (en) * 1991-12-18 1993-07-02 Nitto Denko Corp Spiral separation membrane module
JP2000153270A (en) * 1998-11-19 2000-06-06 Nitto Denko Corp Spiral type separation membrane element and its operation
JP2000237554A (en) * 1999-02-18 2000-09-05 Nitto Denko Corp Spiral type membrane element
JP2004089763A (en) * 2002-08-29 2004-03-25 Japan Organo Co Ltd Spiral membrane element, separation membrane module, separation membrane apparatus, and water treatment method using the same
JP2005305422A (en) 2004-03-26 2005-11-04 Nitto Denko Corp Spiral type separation membrane element
JP2009195870A (en) * 2008-02-25 2009-09-03 Nitto Denko Corp Spiral membrane element
JP2015066488A (en) * 2013-09-27 2015-04-13 富士フイルム株式会社 Acid gas separation spiral module
JP2015205269A (en) * 2014-04-08 2015-11-19 東レ株式会社 Separation membrane structure and separation membrane element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168869A (en) * 1991-12-18 1993-07-02 Nitto Denko Corp Spiral separation membrane module
JP2000153270A (en) * 1998-11-19 2000-06-06 Nitto Denko Corp Spiral type separation membrane element and its operation
JP2000237554A (en) * 1999-02-18 2000-09-05 Nitto Denko Corp Spiral type membrane element
JP2004089763A (en) * 2002-08-29 2004-03-25 Japan Organo Co Ltd Spiral membrane element, separation membrane module, separation membrane apparatus, and water treatment method using the same
JP2005305422A (en) 2004-03-26 2005-11-04 Nitto Denko Corp Spiral type separation membrane element
JP2009195870A (en) * 2008-02-25 2009-09-03 Nitto Denko Corp Spiral membrane element
JP2015066488A (en) * 2013-09-27 2015-04-13 富士フイルム株式会社 Acid gas separation spiral module
JP2015205269A (en) * 2014-04-08 2015-11-19 東レ株式会社 Separation membrane structure and separation membrane element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3542890A4

Similar Documents

Publication Publication Date Title
JP6353957B2 (en) Raw water channel spacer and spiral membrane element provided with the same
CA1318863C (en) Spiral wound membrane module and method of manufacture and use
CN104941448B (en) reverse osmosis membrane element
KR101397296B1 (en) Perforated flux pipe for forward osmosis or pressure retarded osmosis module comprising the same
JPH03504820A (en) Spiral-wound reverse osmosis membrane cell
CN107530631B (en) Filtration assembly comprising a spiral wound bioreactor and membrane module positioned in separate pressure vessels
CN107531526B (en) Filtration assembly comprising a spiral wound bioreactor and an ultrafiltration membrane module
JP7172987B2 (en) MEMBRANE SEPARATION SYSTEM AND METHOD OF OPERATING MEMBRANE SEPARATION SYSTEM
WO2015063975A1 (en) Flow path member, forward osmosis membrane element
JP2015120101A (en) Reverse osmosis membrane filter
US11000808B2 (en) Sheet-shaped hollow fiber membrane module and membrane separation unit
KR20120139583A (en) Spiral-type filtration module, and liquid treatment method and device employing the same
WO2018092343A1 (en) Raw water flow path spacer and spiral membrane element provided with same
JP7443761B2 (en) Hollow fiber membrane module
KR20140087416A (en) Hollow fiber membrane module
KR101618455B1 (en) Perforated flux pipe and forward osmosis or pressure retarded osmosis module comprising the same
JP5389885B2 (en) Water purifier
JP2008221108A (en) Liquid separation membrane module
KR20170112597A (en) Perforated flux pipe and forward osmosis apparatus including the same
RU2320402C2 (en) Diaphragm ultra-micro-filtering roll member and method of its making
JP2019147072A (en) Method of operating water treatment system
JP2008221107A (en) Liquid separation membrane module
JP2015192941A (en) separation membrane element
Verhuelsdonk et al. Modeling the impact of using multi-port RO pressure vessels in seawater reverse osmosis desalination plants using special simulation software
KR20040072018A (en) Pleated filter with high flow rate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187021199

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021199

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017871925

Country of ref document: EP

Effective date: 20190618