Nothing Special   »   [go: up one dir, main page]

WO2018090792A1 - 一种选择性布鲁顿酪氨酸激酶抑制剂及其应用 - Google Patents

一种选择性布鲁顿酪氨酸激酶抑制剂及其应用 Download PDF

Info

Publication number
WO2018090792A1
WO2018090792A1 PCT/CN2017/107416 CN2017107416W WO2018090792A1 WO 2018090792 A1 WO2018090792 A1 WO 2018090792A1 CN 2017107416 W CN2017107416 W CN 2017107416W WO 2018090792 A1 WO2018090792 A1 WO 2018090792A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
mmol
group
formula
Prior art date
Application number
PCT/CN2017/107416
Other languages
English (en)
French (fr)
Inventor
周星露
刘兴国
胡苗
Original Assignee
杭州和正医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州和正医药有限公司 filed Critical 杭州和正医药有限公司
Priority to JP2019546960A priority Critical patent/JP6782855B2/ja
Priority to EP17871671.8A priority patent/EP3543239B1/en
Priority to US16/346,448 priority patent/US10711006B2/en
Priority to CA3043376A priority patent/CA3043376A1/en
Publication of WO2018090792A1 publication Critical patent/WO2018090792A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection

Definitions

  • the invention belongs to the field of medicine, and in particular relates to a two-site irreversible Bruton tyrosine kinase inhibitory compound, a composition, a preparation and application thereof.
  • Covalent inhibitors also known as irreversible inhibitors, are a class of inhibitors that exert their biological functions by irreversible binding of covalent bonds to target protein residues.
  • Covalent inhibitor drugs have made important contributions to human health over the past few decades. Covalent inhibitors enhance affinity to the target by covalent bonding to the target protein relative to the non-covalent inhibitor, which is the underlying cause of the high bioactivity of the covalent inhibitor.
  • due to the non-covalent targeting of anti-tumor drugs, especially the production of a large number of tini-resistant drugs against kinases people have paid more attention to covalent inhibitor drugs.
  • many large pharmaceutical companies have developed covalent inhibitors for specific enzyme targets.
  • afatinib was officially approved by the US FDA on July 12, 2013 for the treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor (EGFR) gene mutation, becoming the first FDA-approved treatment of lung cancer.
  • EGFR epidermal growth factor receptor
  • New drug for irreversible inhibitors has also been a research hotspot in recent years, and great progress has been made.
  • the FDA approved two anti-hepatitis C virus covalent inhibitor drugs, namely, telaprevir. (Telaprevir) and Boceprevir (Boceprevir).
  • Btk Bruton's tyrosine kinase
  • BCR cell surface B-cell receptor
  • Btk is a key regulator of B cell development, activation, signaling, and survival.
  • Bkt plays a role in numerous other hematopoietic signaling pathways, such as Toll like receptor (TLR) and cytokine receptor-mediated TNF- ⁇ production in macrophages, in mast cells.
  • TLR Toll like receptor
  • TNF- ⁇ cytokine receptor-mediated TNF- ⁇ production in macrophages, in mast cells.
  • Immunoglobulin E receptor (Fc ⁇ R1) signaling signaling that inhibits apoptosis of Fas/APO-1 cells in B-lineage lymphoid cells, and collagen-stimulated platelet aggregation.
  • Fc ⁇ R1 Immunoglobulin E receptor
  • Small molecule Btk inhibitors inhibit Btk autophosphorylation by binding to Btk by acting on the BCR signaling pathway, preventing Btk activation, thereby blocking cell conduction and inducing apoptosis.
  • the listing of the Btk inhibitor, ibufenib has been designated as a “breakthrough” new drug by the FDA, and its research and development prospects are broad. However, this year's treatment has gradually found that hebitrinib has bleeding-related side effects, which may be related to the poor selectivity of ibu tyanibine in the literature, especially the activity of TEC kinase.
  • BTK irreversible inhibitors and their optical isomers or their pharmaceutically acceptable agents are reported in the applicant's prior patent documents. Accepted salts or solvates (Patent Application No.: 201510242552.8, 201610286399.3), and I and II in the following figures are representative compounds. Through further research, we found that a class of compounds with high kinase selectivity, low hERG inhibitory activity and good pharmacokinetic properties of BTK inhibitors are expected to further reduce the risk of bleeding, rash, heart toxic side effects and the like.
  • the object of the present invention is to provide a novel, unreported BTK inhibitory compound having high potency BTK inhibitory activity, high specificity (good kinase selectivity) and low HERG channel block activity, and optical isomers thereof or pharmaceutically thereof thereof.
  • An acceptable salt or solvate is to provide a novel, unreported BTK inhibitory compound having high potency BTK inhibitory activity, high specificity (good kinase selectivity) and low HERG channel block activity, and optical isomers thereof or pharmaceutically thereof.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the above compound and an optical isomer thereof, or a pharmaceutically acceptable salt or solvate thereof.
  • the present invention also provides a pharmaceutical preparation comprising the above compound and an optical isomer thereof or a pharmaceutically acceptable salt or solvate thereof.
  • the present invention also provides a compound, an optical isomer thereof, or a pharmaceutically acceptable salt or solvate thereof, for use in the manufacture of a disease, disorder or treatment for benefiting from inhibition of Bruton's tyrosine kinase activity or The application of disease drugs.
  • the Bruton tyrosine kinase inhibitor provided by the present invention has the structure of Formula I or Formula I':
  • n is selected from 0, 1, 2;
  • Rd is selected from Re is selected from the group consisting of H, CH 3 , C 2 -C 6 alkyl, C 1 -C 6 azaalkyl, C 1 -C 6 oxaalkyl, wherein CH 3 , C 2 -C 6 alkyl, C 1 -C 6 nitrogen a heteroalkyl, C1-C6 oxaalkyl group may be further substituted with an amino group, a hydroxyl group, a C1-C3 alkyl group;
  • Y 1 , Y 2 , Y 3 , Y 4 are independently selected from C(Rf), N, and at least one is N, wherein Rf is selected from H, halogen, C1-C3 alkyl, -CF 3 , -CF 2 H.
  • preferred compounds of the invention have the formula II or formula II':
  • each Rg is independently H, halogen, -CF 2 H, -CF 3 , -CN, C1-C3 alkyl, C1-C3 alkoxy;
  • n is selected from 0, 1, 2;
  • Rd is selected from Re is selected from the group consisting of H, CH 3 , C 2 -C 6 alkyl, C 1 -C 6 azaalkyl, C 1 -C 6 oxaalkyl, wherein CH 3 , C 2 -C 6 alkyl, C 1 -C 6 nitrogen a heteroalkyl, C1-C6 oxaalkyl group may be further substituted with an amino group, a hydroxyl group, a C1-C3 alkyl group;
  • Y 1 , Y 2 , Y 3 ,, Y 4 are independently selected from C(Rf), N, and at least one is N, wherein Rf is selected from H, halogen, C1-C3 alkyl, -CF 3 , -CF 2 H.
  • preferred compounds of the invention have the formula III or III' or III" structure:
  • each Rg is independently H, halogen, -CF 2 H, -CF 3 , C1-C3 alkyl, C1-C3 alkoxy;
  • n is selected from 0, 1, 2;
  • Rd is selected from Re is selected from the group consisting of H, CH 3 , C 2 -C 6 alkyl, C 1 -C 6 azaalkyl, C 1 -C 6 oxaalkyl, wherein CH 3 , C 2 -C 6 alkyl, C 1 -C 6 nitrogen a heteroalkyl, C1-C6 oxaalkyl group may be further substituted with an amino group, a hydroxyl group, a C1-C3 alkyl group;
  • Y 1, Y 2 is independently selected from C (Rf), N, wherein Rf is selected from H, halo, C1-C3 alkyl, -CF 3, -CF 2 H.
  • Preferred compounds of the invention have the formula IV or IV' or IV" structure:
  • each Rg is independently H, halogen, -CF 2 H, -CF 3 , C1-C3 alkyl, C1-C3 alkoxy;
  • n is selected from 0, 1, 2;
  • Rd is selected from Re is selected from the group consisting of H, CH 3 , C 2 -C 6 alkyl, C 1 -C 6 azaalkyl, C 1 -C 6 oxaalkyl, wherein CH 3 , C 2 -C 6 alkyl, C 1 -C 6 nitrogen a heteroalkyl, C1-C6 oxaalkyl group may be further substituted with an amino group, a hydroxyl group, a C1-C3 alkyl group;
  • Rh is selected from H, halo, C1-C3 alkyl, -CF 3, -CF 2 H; Rh represents a substituent group on the benzene ring took a position.
  • preferred compounds of the invention have the general formula V or V' or V" structure:
  • each Rg is independently H, halogen, -CF 2 H, -CF 3 , C1-C3 alkyl, C1-C3 alkoxy;
  • n is selected from 0, 1, 2;
  • Re is selected from the group consisting of H, CH 3 , C 2 -C 6 alkyl, C 1 -C 6 azaalkyl, C 1 -C 6 oxaalkyl, wherein CH 3 , C 2 -C 6 alkyl, C 1 -C 6 nitrogen a heteroalkyl, C1-C6 oxaalkyl group may be further substituted with an amino group, a hydroxyl group, a C1-C3 alkyl group;
  • Rh is selected from H, halo, C1-C3 alkyl, -CF 3, -CF 2 H.
  • preferred compounds of the invention have the formula VI or VI' or VI" structure:
  • each Rg is independently H, halogen, -CF 2 H, -CF 3 , C1-C3 alkyl, C1-C3 alkoxy;
  • n is selected from 0, 1, 2;
  • Rh is selected from H, halo, C1-C3 alkyl, -CF 3, -CF 2 H.
  • Still further preferred compounds have the structure of formula VI-a or VI-a' or VI-a":
  • each Rg is independently H, halogen, CF 2 H, -CF 3 , C1-C3 alkyl, C1-C3 alkoxy;
  • Rh is selected from H, halo, C1-C3 alkyl, -CF 3, -CF 2 H.
  • the Bruton tyrosine kinase inhibitor has the following formula:
  • each Rg is independently H, halo, -CF 2 H, -CF 3, C1-C3 alkyl, C1-C3 alkoxy, preferably H, F, Cl, methyl, methoxy;
  • Ri is independently selected from H, halo, C1-C3 alkyl, -CF 3, -CF 2 H, preferably H or F.
  • the preferred compounds of the invention have the formula VII or VII' or VII":
  • each Rg is independently H, halogen, -CF 2 H, -CF 3 , C1-C3 alkyl, C1-C3 alkoxy;
  • n is selected from 0, 1, 2;
  • Re is selected from the group consisting of H, CH 3 , C 2 -C 6 alkyl, C 1 -C 6 azaalkyl, C 1 -C 6 oxaalkyl, wherein CH 3 , C 2 -C 6 alkyl, C 1 -C 6 nitrogen a heteroalkyl, C1-C6 oxaalkyl group may be further substituted with an amino group, a hydroxyl group, a C1-C3 alkyl group;
  • Rh is selected from H, halo, C1-C3 alkyl, -CF 3, -CF 2 H.
  • preferred compounds of the invention have the formula VIII or VIII' or VIII":
  • each Rg is independently H, halogen, -CF 2 H, -CF 3 , C1-C3 alkyl, C1-C3 alkoxy;
  • n is selected from 0, 1, 2;
  • Rh is selected from H, halo, C1-C3 alkyl, -CF 3, -CF 2 H.
  • the Bruton's tyrosine kinase inhibitor is preferably the following specific compound:
  • an optical isomer of the compound of the above formula or a pharmaceutically acceptable salt or solvate thereof is as follows:
  • aryl refers to an all-carbon monocyclic or fused polycyclic group of 5 to 12 carbon atoms having a fully conjugated pi-electron system.
  • aromatic rings are: benzene rings, naphthalene rings, and anthracene rings. The aromatic ring may be unsubstituted or substituted.
  • the substituent of the aromatic ring is selected from the group consisting of halogen (preferably fluorine, chlorine, bromine, iodine), nitro, amino, C 1 -C 6 alkyl (preferably methyl, ethyl, propyl, isopropyl, butyl) , isobutyl, sec-butyl, tert-butyl, etc.), C 1 -C 6 alkoxy (preferably methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyl) Alkoxy, sec-butyloxy, tert-butyloxy, etc.), halogenated C 1 -C 6 alkyl (preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, Sec-butyl, tert-butyl, etc.), halogenated C 1 -C 6 alkoxy (preferably methoxy, ethoxy, propoxy, isopropy
  • heteroaryl refers to an unsaturated cyclic group of 5 to 12 ring atoms, having a fully conjugated ⁇ -electron system corresponding to one or more carbons in the above "aryl” being heteroatoms such as Replacement of oxygen, nitrogen, sulfur, etc.
  • the heteroaryl ring may be a single ring or a double ring, that is, fused by two rings.
  • the specific heterocyclic aryl (heteroaryl) group may be a pyridyl group, a pyrimidinyl group, a pyrazinyl group, an isoxazolyl group, an isothiazolyl group, a pyrazolyl group, a thiazolyl group, an oxazolyl group, an imidazolyl group or the like.
  • the heterocyclic aryl group can be unsubstituted or substituted.
  • the substituent of the heterocyclic aryl group is selected from the group consisting of halogen, nitro, amino, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, halogenated C 1 -C 6 alkyl, halogenated C 1 -C 6 Alkoxy, C 3 -C 6 cycloalkyl, halogenated C 3 -C 6 cycloalkyl;
  • halogen as used in the present invention means fluoro, chloro, bromo, iodo, preferably fluoro, chloro or bromo;
  • alkyl group of C1-C3 is preferably a methyl group, an ethyl group or the like;
  • C2-C6 alkyl group as used in the present invention is preferably an ethyl group, a propyl group, an isopropyl group or the like;
  • n is preferably 1, 2;
  • azaalkyl as used in the present invention means that one or more carbon atoms of the C1-C6 alkyl group are substituted by a nitrogen atom, preferably Wait.
  • oxaalkyl as used in the present invention means that one or more carbon atoms of the C1-C6 alkyl group are substituted by an oxygen atom, preferably Wait.
  • alkoxy refers to an -O-alkyl group, wherein alkyl is as defined above.
  • alkoxy as used herein include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and tert-butoxy.
  • Alkoxy also includes substituted alkoxy groups. The alkoxy group can be optionally substituted one or more times with a halogen.
  • solvate refers to a variable stoichiometric complex formed from a solute (e.g., a compound of Formula I to Formula VIII of the present invention and a compound of Formula IV' to Formula VIII') and a solvent. Things.
  • the solvent does not interfere with the biological activity of the solute.
  • suitable solvents include, but are not limited to, water, methanol, ethanol, and acetic acid.
  • the solvent preferably used is a pharmaceutically acceptable solvent.
  • Suitable pharmaceutically acceptable solvents include, but are not limited to, water, ethanol, and acetic acid. More preferably, the solvent used is water.
  • Salts of the compounds of the invention can be prepared by the present invention using methods well known to those skilled in the art.
  • the salt may be an organic acid salt, a mineral acid salt or the like, and the organic acid salt includes a decanoate, a fumarate, an oxalate, a malate, a lactate, a camphor sulfonate, and a pair.
  • Tosylate, mesylate, etc.; the inorganic acid salt includes a hydrohalide, a sulfate, a phosphate, a nitrate, and the like.
  • a lower alkylsulfonic acid such as methanesulfonic acid, trifluoromethanesulfonic acid or the like may form a mesylate salt, a triflate salt; and an arylsulfonic acid such as benzenesulfonic acid or p-toluenesulfonic acid.
  • organic carboxylic acid such as acetic acid, fumaric acid, tartaric acid, oxalic acid, maleic acid, malic acid, succinic acid or citric acid can form the corresponding salt; with amino acids, such as glutamic acid or aspartic acid can form glutamate or day Aspartate.
  • Corresponding salts may also be formed with inorganic acids such as hydrohalic acids (e.g., hydrofluoric acid, hydrobromic acid, hydroiodic acid, hydrochloric acid), nitric acid, carbonic acid, sulfuric acid or phosphoric acid.
  • a second object of the present invention is to provide a pharmaceutical composition comprising one or more of the compounds described in any one of the above aspects.
  • the pharmaceutical composition of the present invention may be one or more of the compounds described in any one of the above aspects, or one or more of the compounds described in any one of the above aspects. composition.
  • the present invention provides a pharmaceutical preparation comprising at least one active ingredient, the active ingredient being one or more of the compounds according to any one of the above aspects.
  • the pharmaceutical preparation comprises at least one active ingredient together with one or more pharmaceutically acceptable carriers or excipients, which may be a BTK inhibitor compound of the invention, an optical difference of the compound
  • the construct, the compound or an optical isomer thereof is any one or any of a pharmaceutically acceptable salt, a solvate of the compound or an optical isomer thereof.
  • the carrier includes conventional diluents, excipients, fillers, binders, wetting agents, disintegrating agents, absorption enhancers, surfactants, adsorption carriers, lubricants, etc. in the pharmaceutical field, and may also be added if necessary. Agent, sweetener, etc.
  • the medicament of the present invention can be prepared into various forms such as tablets, powders, granules, capsules, oral liquids and injectable preparations, and the medicaments of the above respective dosage forms can be prepared according to a conventional method in the pharmaceutical field.
  • the invention provides the use of Formula I to Formula VIII, Formula I' to Formula VIII', Formula III" to Formula VIII", and Formula VI-a, Formula VI disclosed herein. a compound of the formula -a', VI-a" and an optical isomer thereof, or a pharmaceutically acceptable salt or solvate thereof thereof, for inhibiting Bruton's tyrosine kinase (Btk) activity or treatment from Bruton's cheese A disease, disorder or condition in which inhibition of the activity of the lytic kinase (Btk) is beneficial.
  • Btk Bruton's tyrosine kinase
  • the invention provides a composition comprising a therapeutically effective amount of at least one compound by administering to a subject in need thereof, thereby inhibiting Bruton's tyrosine kinase activity in said subject
  • a composition comprising a therapeutically effective amount of at least one compound by administering to a subject in need thereof, thereby inhibiting Bruton's tyrosine kinase activity in said subject
  • the compound has the formula of Formula I to Formula III and Formula I' to Formula VIII, Formula III" to Formula VIII", and Formula VI-a, Formula VI-a', Formula VI-a".
  • a subject in need thereof is suffering from an autoimmune disease, such as inflammatory bowel disease, arthritis, lupus, rheumatoid arthritis, psoriatic arthritis, bone Arthritis, Still's disease, juvenile arthritis, diabetes, myasthenia gravis, Hashimoto's thyroiditis, Ord's thyroiditis, Graves'disease ), rheumatoid arthritis syndrome ( Syndrome), multiple sclerosis, infective neuronitis (Guillain-Barrésyndrome), acute disseminated encephalomyelitis, Addison's disease, visual ocular palsy-myoclonus syndrome, mandatory Spondylitis, antiphospholipid antibody syndrome, aplastic anemia, autoimmune hepatitis, coeliac disease, Goodpasture's syndrome, idiopathic thrombocytopenic purpura, optic neuritis, hard Skin disease, primary biliary cirrhosis, Reiter's syndrome, Ta
  • a subject in need thereof has cancer.
  • the cancer is a B cell proliferative disorder, such as diffuse large B-cell lymphoma, follicular lymphoma, chronic lymphocytic lymphoma, chronic lymphocytic leukemia, B-cell pro-lymphocytic leukemia, Lymphocyte plasma lymphoma/Waldenstrom macroglobulinemia Macroglobulinemia), spleen marginal lymphoma, plasma cell myeloma, plasmacytoma, extranodal marginal zone B-cell lymphoma, lymph node marginal zone B-cell lymphoma, mantle cell lymphoma, mediastinum (thymus) large B-cell lymph Tumor, intravascular large B-cell lymphoma, primary exudative lymphoma, Burkitt lymphoma / leukemia or lymphomatoid granulomatosis.
  • B cell proliferative disorder such as diffuse large B-cell lymphoma, follicular lympho
  • the invention also provides the use of a compound of the invention or a pharmaceutically acceptable salt thereof for the preparation of a BTK inhibitor, in particular for the preparation of a medicament for the treatment of a cell proliferative disorder.
  • the cell proliferative diseases include cancer.
  • the present invention also provides the general formula I to formula VIII, the formula I' to the formula VIII', the formula III" to the formula VIII" and the formula VI-a, the formula VI-a', VI -a" a compound, and an optical isomer thereof, or a pharmaceutically acceptable salt or solvate thereof, alone or in combination with other drugs, for use in the treatment of a proliferative disease, such as cancer.
  • the antitumor agents used in combination with the provided compounds or pharmaceutically acceptable salts thereof include, but are not limited to, at least one of the following classes: mitotic inhibitors (such as vinblastine, vindesine and vinorelbine); tubulin degradation inhibitors ( Such as Taxol)); alkylating agents (such as cisplatin, carboplatin and cyclophosphamide); antimetabolites (such as 5-fluorouracil, tegafur, methotrexate, cytarabine and hydroxyurea); Insertable antibiotics (such as arrhenone, mitomycin and bleomycin); enzymes (such as aspartate); topoisomerase inhibitors (such as etoricin and camptothecin); biological response modifiers ( Such as interferon).
  • mitotic inhibitors such as vinblastine, vindesine and vinorelbine
  • tubulin degradation inhibitors Such as Taxol
  • alkylating agents such as cisplatin, carboplatin and cycl
  • the inventors of the present invention confirmed by experiments that the compound of the present invention has an anti-proliferative inhibitory effect on tumor cell lines such as A549, MINO, OCI-LY10, and TMD-8, and exhibits good antitumor activity in a tumor model such as Mino subcutaneous xenograft. It can be used in the treatment of solid tumors or blood cancer related to human or animal cell proliferation.
  • the inventors of the present invention confirmed by experiments that the compounds of the present invention have excellent kinase selectivity.
  • the inventors of the present invention confirmed by experiments that the compound of the present invention has low hERG channel blocking activity.
  • the inventors of the present invention have confirmed by experiments that the compound of the present invention has good pharmacokinetic properties and can be applied to orally treating solid tumors or blood cancers associated with cell proliferation of human or animal cells or suffering from autoimmune diseases.
  • the first step the corresponding compounds 3a to 3k were dissolved in dry tetrahydrofuran, cooled to -78 °C under Ar protection, and n-butyllithium was gradually added dropwise. The reaction system was further stirred at this temperature for 1 hour, and then triisopropyl borate was added. After the addition, the reaction was carried out at -78 ° C for 1 hour, then allowed to slowly warm to room temperature, and the reaction was quenched with aqueous ammonium chloride. The mixture was extracted with EtOAc EtOAc. Ethyl acetate and petroleum ether were recrystallized to give a white solid boric acid product which was used directly in the next step.
  • Second step The boric acid product of the previous step was added to 70 mL of DMF which had just been bubbled with Ar.
  • Compound 1a tetrakistriphenylphosphorus palladium was stirred under Ar protection, and then 2N aq. K 2 CO 3 aqueous solution was added.
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through Celite, and washed with ethyl acetate several times. The mixture was washed with water, washed with EtOAc EtOAc.
  • the first step the corresponding compounds 4a to 4d were dissolved in 15 mL of dry tetrahydrofuran, cooled to -78 °C under Ar protection, and n-butyllithium was gradually added dropwise. The reaction system was further stirred at this temperature for 1 hour, and then triisopropyl borate was added. After the addition, the reaction was carried out at -78 ° C for 1 hour, then allowed to slowly warm to room temperature, and the reaction was quenched with aqueous ammonium chloride. The mixture was extracted with EtOAc EtOAc. Ethyl acetate and petroleum ether were recrystallized to give a white solid boric acid product which was used directly in the next step.
  • Second step The boric acid product of the previous step, compound 1a, tetrakistriphenylphosphine palladium, was stirred under Ar protection, and then 2N aq. K 2 CO 3 aqueous solution was added to 7 mL of DMF which had just been bubbled with Ar.
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through celite, and washed with EA several times. Then, it was extracted with ethyl acetate, washed with EtOAc (EtOAc) EtOAc.
  • Second step The boric acid product of the previous step was added to 70 mL of DMF which had just been bubbled with Ar.
  • Compound 1a tetrakistriphenylphosphorus palladium was stirred under Ar protection, and then 2N aq. K 2 CO 3 aqueous solution was added.
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through Celite, and washed with ethyl acetate several times. The mixture was washed with water (3 ⁇
  • the first step Compound 5a (3 mmol) was dissolved in dry tetrahydrofuran, cooled to -78 ° C under ar. and then n-butyl lithium (3.33 mmol) was gradually added dropwise. The reaction system was further stirred at this temperature for 1 hour, and then triisopropyl borate (3.94 mmol) was added. After the addition, the reaction was carried out at -78 ° C for 1 hour, then allowed to slowly warm to room temperature, and then extracted with an aqueous solution of ammonium chloride. reaction. The mixture was extracted with EtOAc EtOAc. Ethyl acetate and petroleum ether were recrystallized to give a white solid boric acid product which was used directly in the next step.
  • the second step the boronic acid product of the previous step was added to 70 mL of DMF which had just been bubbled with Ar.
  • Compound 1b (1.73 mmol), tetratriphenylphosphine palladium (0.078 mmol) was stirred under Ar protection, and then 2N aq was added.
  • K 2 CO 3 aqueous solution (2.6 mL).
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through Celite, and washed with ethyl acetate several times. The mixture was washed with water ( 3 ⁇ (Two steps), LC-ESI-MS: 506 [M+H].
  • the first step Compound 6 (3 mmol) was dissolved in 15 mL of dry tetrahydrofuran, cooled to -78 ° C under ar., and n-butyl lithium (1.3 mL, 3.3 mmol, 2.5 M in THF). The reaction system was further stirred at this temperature for 1 hour, then triisopropyl borate (0.74 g, 3.94 mmol) was added, and after the addition was completed, the reaction was carried out at -78 ° C for 1 hour, and then allowed to slowly warm to room temperature with ammonium chloride. The aqueous solution is extracted. The mixture was extracted with EtOAc EtOAc. Recrystallization of ethyl acetate and petroleum ether gave white solid boric acid The product was used directly in the next reaction.
  • Step 2 Add the boric acid product (2.3 mmol) from the previous step, 7 g (1.73 mmol) tetratriphenylphosphine palladium (0.078 mmol) in 7 mL of DMF that had just been bubbled with Ar, stir under Ar protection, then 2.6 mL of 2N aq. K 2 CO 3 aqueous solution was added.
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through celite, and washed with EA several times. Then, it is extracted with ethyl acetate, washed with water, and washed with EtOAc EtOAc EtOAc EtOAc.
  • the first step Compound 7 (3 mmol) was dissolved in 15 mL of dry tetrahydrofuran, cooled to -78 °C under ar., and n-butyllithium (1.3 mL, 3.3 mmol, 2.5 M in THF) was gradually added dropwise. The reaction system was further stirred at this temperature for 1 hour, then triisopropyl borate (0.74 g, 3.94 mmol) was added, and after the addition was completed, the reaction was carried out at -78 ° C for 1 hour, and then allowed to slowly warm to room temperature with ammonium chloride. The aqueous solution is extracted. The mixture was extracted with EtOAc EtOAc. Ethyl acetate and petroleum ether were recrystallized to give a white solid boric acid product which was used directly in the next step.
  • Step 2 Add the boric acid product (1.5 mmol) of the previous step, Compound 1a (1.1 mmol) tetrakistriphenylphosphine palladium (0.06 mmol), to the 5 mL DMF that had just been bubbled with Ar, stir under Ar protection, then 1.5 mL of 2N aq. K 2 CO 3 aqueous solution was added.
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through celite, and washed with EA several times. Then, it is extracted with ethyl acetate, washed with water, and washed with EtOAc. EtOAc EtOAc.
  • LC-ESI-MS 488 [M+H].
  • Step 2 Add the boric acid product (4.2 mmol) from the previous step to 15 mL of DMF that had just been bubbled with Ar, compound 2a (3 mmol) tetratriphenylphosphine palladium (0.15 mmol), stir under Ar protection, then add 4.5 mL 2N aq. K 2 CO 3 aqueous solution.
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through celite, and washed with EA several times. The mixture was extracted with EtOAc (EtOAc)EtOAc.
  • the first step Compound 3a (3 mmol) was dissolved in 15 mL of dry tetrahydrofuran, cooled to -78 °C under ar., and n-butyl lithium (1.3 mL, 3.3 mmol, 2.5 M in THF). The reaction system was further stirred at this temperature for 1 hour, then triisopropyl borate (0.74 g, 3.94 mmol) was added, and after the addition was completed, the reaction was carried out at -78 ° C for 1 hour, and then allowed to slowly warm to room temperature with ammonium chloride. The aqueous solution is extracted. The mixture was extracted with EtOAc EtOAc. Ethyl acetate and petroleum ether were recrystallized to give a white solid boric acid product which was used directly in the next step.
  • Step 2 Add the boric acid product (4.2 mmol) of the previous step, 15b (3mmol) tetratriphenylphosphine palladium (0.15mmol) in 15mL DMF which has just been bubbled with Ar, stir under Ar protection, then add 4.5 mL 2N aq. K 2 CO 3 aqueous solution.
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through celite, and washed with EA several times.
  • Second step The boric acid product of the previous step was added to 70 mL of DMF which had just been bubbled with Ar.
  • Compound 2a tetrakistriphenylphosphorus palladium was stirred under Ar protection, and then 2N aq. K 2 CO 3 aqueous solution was added.
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through Celite, and washed with ethyl acetate several times. The mixture was washed with water (3 ⁇
  • the first step Compound 5a (3 mmol) was dissolved in dry tetrahydrofuran, cooled to -78 ° C under ar. and then n-butyl lithium (3.33 mmol) was gradually added dropwise. The reaction system was further stirred at this temperature for 1 hour, and then triisopropyl borate (3.94 mmol) was added. After the addition, the reaction was carried out at -78 ° C for 1 hour, then allowed to slowly warm to room temperature, and then extracted with an aqueous solution of ammonium chloride. reaction. The mixture was extracted with EtOAc EtOAc. Ethyl acetate and petroleum ether were recrystallized to give a white solid boric acid product which was used directly in the next step.
  • Step 2 Add the boric acid product of the previous step to 70 mL of DMF that has just been bubbled with Ar.
  • Compound 2b (3 mmol), tetratriphenylphosphine palladium (0.15 mmol) is stirred under Ar protection, then 2N aq.K is added. 2 CO 3 aqueous solution (4.5 mL).
  • the reaction system was heated to 85 °C under Ar protection and allowed to react overnight, and the reaction was complete by TLC. It was cooled to room temperature, filtered through Celite, and washed with ethyl acetate several times. Washed 3 times, washed with saturated brine, dried, filtered, EtOAcjjjjjjjjj - ESI-MS: 492 [M+H].
  • Example 34 In vitro Btk kinase inhibitory activity and in vitro antitumor activity assay
  • the drug was dissolved in DMSO to make a 10 mM (mmol/L) stock solution, and diluted to a 50 ⁇ test concentration solution.
  • the test concentration was diluted in a 3-fold gradient of 25 nM (nmol/L) and 8.33 nM, respectively. 2.78 nM, 0.93 nM, 0.31 nM, 0.10 nM.
  • 10 ⁇ L of 50 ⁇ drug stock solution was added to a 96-well plate, and 90 ⁇ L of 1 ⁇ kinase buffer was added thereto, and shaken on a shaker for 10 minutes. Transfer 5 ⁇ L from each well of a 96-well plate to a 384-well plate, and set 2 duplicate wells in a 384-well plate.
  • the antitumor activity of the synthesized compounds was determined by using different solid tumors and leukemia cell lines:
  • Cell lines human lung cancer cells (A549), human mantle cell lymphoma (MINO), diffuse giant B-cell lymphoma (OCI-LY10), and diffuse large B lymphoma (TMD-8).
  • MINO RPMI 1640 + fetal bovine serum
  • OCI-LY10 IMDM+ fetal calf serum
  • TMD-8 MEM + fetal bovine serum
  • Drug preparation method Dissolve the drug in DMSO to make a 10 mM stock solution, and dilute it to a certain ratio to obtain 5 different concentrations (test concentration 100 ⁇ ).
  • Tumor cell culture in vitro Dissolve the drug in DMSO to make a 10 mM stock solution, and dilute it to a certain ratio to obtain 5 different concentrations (test concentration 100 ⁇ ).
  • the selected four tumor cells A549, MINO, OCI-LY10, and TMD-8 were incubated in a 37 ° C, 5% CO 2 cell incubator, and passaged when the cell density was 70-90% (for adherent cells). Duck's EDTA is post-digested) for later testing.
  • Tumor cells A549, MINO, OCI-LY10, TMD-8 were seeded in a 96-well plate at 4000 cells/200 ⁇ L/well and incubated overnight at 37 ° C in a 5% CO 2 cell incubator.
  • 2 ⁇ L of compound was added to each well to a final concentration of 50 ⁇ M, 10 ⁇ M, 2 ⁇ M, 0.4 ⁇ M, and 0.08 ⁇ M for 72 hours at 37 ° C in a 5% CO 2 cell incubator with DMSO (2%) as a control.
  • 20 ⁇ L of CCK-8 solution was added and placed in a 37 ° C, 5% CO 2 cell incubator for 4 hours.
  • cell inhibition rate % [(control group OD value - blank group OD value) - (medical group OD value - blank group OD value)] / (control cell OD value - blank group OD value) ⁇ 100%, the half-inhibitory concentration (IC 50 ) was calculated by CalcuSyn software.
  • Table 1 shows the inhibitory activity of some compounds on BTK kinase
  • Compound BTK (IC 50, nM) Compound BTK (IC 50, nM) Ibbutinib 2.1 16b 8.6 I 2.2 16c 6.6 II 14 16d 7.2 15a 3.2 17a 1.2 15b 9.5 17i 1.2 15c 8.6 18 10.3 15d 7.5 19 5.3 15e 10.5 20a 18.6 15f 25.3 23a 4.4 15g 7.8 23b 9.6 15h 3.2 23c 9.7 15i 6.5 23d 7.4 15j 32.5 24a 2.5 15k 18.2 24e 1.8 16a 8.9 25a 25.1
  • Table 1 shows that all the compounds obtained by the present invention have significant inhibitory activity against BTK, and the activity of compound 17a is superior to that of the positive control ibupotinib, compound I (patent application number: 201510242552.8), indicating that it is introduced in the aromatic ring.
  • the nitrogen atom did not affect the inhibitory activity against BTK, and further, the BTK inhibitory activity of the compound 17a was 11.7 times stronger than that of the compound II (201610286399.3).
  • Other derivatives also exhibit potent BTK inhibitory activity with IC 50 between 1.2 and 32.5, which has further application prospects.
  • the cells used in this assay were CHO cell lines transfected with HergCdna and stably expressing Herg channels (supplied by Sophion Bioscience, Denmark). The cells were cultured in medium containing the following components (all from Invitrogen): Ham's F12 medium, 10% (v/v) inactivated fetal bovine serum, 100 ⁇ g/ml hygromycin B, 100 ⁇ g/ml Geneticin. 2.1.2CHO Herg plates containing cells were grown in the above culture liquid, and at 37 o C, cultured incubator containing 5% CO 2 in. CHO Herg cells were transferred to circular glass slides placed in petri dishes 24 to 48 hours prior to electrophysiological experiments and grown under the same culture and culture conditions as above. The density of CHO Herg cells on each circular slide requires that most cells be independent, individual requirements.
  • the concentrations (30, 10, 3, 1, 0.3 and 0.1 ⁇ m) for testing Prior to the test, the stock solutions of 10, 3, 1, 0.3 and 0.1 Mm were first diluted with DMSO in a gradient dilution and diluted with extracellular fluid to a final ⁇ m test concentration. The final concentration of DMSO in each of the other compound solutions was 0.1% except that the DMSO concentration in the 30 ⁇ m compound test solution was 0.3%.
  • the positive control Cisapride ( ⁇ ) was tested at a concentration of 0.1 ⁇ m. All compound solutions were sonicated and shaken for 5 to 10 minutes to ensure complete dissolution of the compound.
  • This experiment used a manual patch clamp system (HEKA EPC-10 signal amplifier and digital conversion system, purchased from HEKA Electronics, Germany) for the recording of whole cell currents.
  • a circular slide with CHO Herg cells grown on it was placed in an electrophysiological recording cell under an inverted microscope.
  • the extracellular fluid was continuously perfused in the recording tank (about 1 ml per minute).
  • the experimental procedure uses conventional whole-cell patch clamp current recording techniques. Unless otherwise stated, the experiments were carried out at regular room temperature ( ⁇ 25 ° C).
  • the cells were clamped at a voltage of -80 Mv.
  • the cell clamp voltage was depolarized to +20 Mv to activate the Herg potassium channel, and after 5 seconds it was clamped to -50 Mv to eliminate inactivation and generate tail current.
  • the tail current peak is used as the value of the Herg current magnitude.
  • Cisapride (cisapride, purchased from Sigma) was used in the experiment as a positive control to ensure that the cells used were of normal quality.
  • the test data was analyzed by HEKA Patchmaster, Microsoft Excel and data analysis software provided by Graphpad Prism. The test results are shown in Table 3.
  • the test results of Table 3 indicate that the effect of the hERG channel block effect of the compound of the present invention is significantly weak.
  • the compound 50a has an IC 50 of 15.48 ⁇ M and an IC 50 of 4.41 times that of ibufenib.
  • its IC 50 is 2.98 times that of II. Since hERG channel blockade is associated with the risk of cardiotoxicity of the drug. Therefore, the low hERG potassium channel block activity of this class of compounds is beneficial to reduce the risk of side effects and improve its drug-forming properties.
  • the 1X kinase base buffer and reaction stop buffer for the respective kinases in the assay were prepared as required.
  • DMSO is configured with 50 ⁇ compound stock solution (stock solution and stock solution in Example 20) for use;
  • the board to be tested is prepared:
  • the Caliper program reads the plate and uses the data to obtain the IC 50 value of the corresponding compound inhibition kinase.
  • the test results are shown in Table 4.
  • the compound I is a representative compound reported in the published patent (Patent Application No.: 201510242552.8) of the present inventors (for the specific structure of the compound I, see the background art of the present invention).
  • test results of Table 4 show that the compounds designed by the present invention have obvious selectivity advantages for kinases, and the compound 15a is exemplified, and its inhibitory activity against kinases such as ITK, CSK, FGR, HCK, JAK3, and FLT3 is weak, and most of the kinases are weak.
  • the activity is greater than 1000 nM, therefore, its kinase selectivity for BTK is significantly better than that of Ibutinib and Compound I, and thus, such compounds will have significant advantages in side effects due to poor selectivity.
  • SD rats were used as experimental animals, and 10 mg/kg was administered by intragastric administration, and 2 mg/kg was administered intravenously to the tail vein.
  • the time of blood collection from the tail vein of the intragastric administration was 0.17, 0.33, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24 hours; the time of blood collection by intravenous administration was 0.05, 0.1, 0.17, 0.5. 1,2,4,6,8,12,24 hours.
  • 0.3 ml of whole blood was taken, and 0.1 ml of plasma was taken after centrifugation and analyzed by LC-MS.
  • Example 38 In vivo pharmacodynamic study of compounds 15a, 17a, 24a and 24e on Mino subcutaneous xenograft tumor models
  • CB17SCID mice 0.2 mL of cell suspension containing 5 x 10 ⁇ 6 Mino cells was subcutaneously inoculated into the right back of each mouse, and the average tumor volume reached approximately 139.94 mm 3 (day 26 after inoculation). Grouped (administered by gavage twice a day for 14 days). Animals were monitored daily for health and mortality, and tumor diameters were measured twice a week using vernier calipers to see if tumor growth could be inhibited, delayed, or cured.
  • TGI tumor volume of the treatment group.
  • TGI tumor weight inhibition rate
  • TGI tumor weight inhibition rate
  • TGI* calculated as tumor volume
  • TGI** calculated as tumor weight
  • mice showed good body weight.
  • tumors were taken, weighed, and the tumor weight TGI evaluation showed that the TGI was greater than 58% (see Table 6), showing a good tumor suppressing effect.
  • the in vivo tumor activity of the compounds of the present invention has certain advantages compared with the compound II.
  • Example 39 Treatment of rheumatoid arthritis using compounds 15a, 17a, 24a and 24e
  • the specific method was as follows: On day 0, female Balb/c mice were intravenously injected with 100 mg/kg of anti-type II collagen Chemico mAb mixture, and on day 1, 1.25 mg/kg lipopolysaccharide was intraperitoneally injected. On days 2 to 12, 10 mg/kg of the compounds 15a, 17a, 24a and 24e were orally administered once a day. On the 13th day after abdominal anesthesia, the femoral artery was taken from blood 4ml, centrifuged at 3000r/min for 20min, serum was taken to detect IL-1 ⁇ , and related tissue samples were observed. The IL-1 ⁇ test results are shown in Table 7.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Transplantation (AREA)
  • Rheumatology (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Dermatology (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Neurology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了了一种选择性的布鲁顿酪氨酸激酶(BTK)抑制剂化合物、药物组合物、制剂及其在制备治疗从布鲁顿酪氨酸激酶活性的抑制中获益的疾病、障碍或病症药物中的应用。本发明化合物对A549、MINO、OCI-LY10、TMD-8等肿瘤细胞株具有抗增殖抑制作用,并在Mino皮下异种移植等肿瘤模型中表现出良好的抗肿瘤活性,可应用于治疗人或动物细胞增殖性相关的实体瘤或血癌的药物中;本发明化合物具有较好的药代动力学性质,可应用于口服治疗人或动物细胞增殖性相关的实体瘤或血癌或者罹患自身免疫性疾病;本发明化合物低hERG通道阻滞的特性。

Description

一种选择性布鲁顿酪氨酸激酶抑制剂及其应用 技术领域
本发明属于医药领域,具体是涉及一种双位点不可逆布鲁顿酪氨酸激酶抑制化合物、组合物、制剂及其应用。
背景技术
小分子共价抑制剂(covalent inhibitors),也称不可逆抑制剂(irreversible inhibitors),是通过共价键与靶蛋白残基发生不可逆结合,从而发挥其生物学功能的一类抑制剂。共价抑制剂药物在过去的几十年里对人类健康做出了重要贡献。相对于非共价抑制剂,共价抑制剂通过与靶蛋白以共价键结合增强了与靶标的亲和性,这是共价抑制剂表现其高生物活性的根本原因。近年来,由于非共价靶向抗肿瘤药物特别是大量针对激酶的替尼类药物耐药的产生,使人们又更多地关注共价抑制剂药物。近年来,许多大型制药公司均开展了针对特定酶靶点的共价抑制剂的研发,目前已有部分共价抑制剂进入临床试验,包括阿法替尼、卡那替尼、来那替尼等。其中,阿法替尼已于2013年7月12日被美国FDA正式批准用于治疗表皮生长因子受体(EGFR)基因突变的转移性非小细胞肺癌,成为首个被FDA批准的治疗肺癌的不可逆抑制剂新药。此外,抗病毒的共价药物也是近年来的研究热点,并且已取得了很大的进展,例如,2011年FDA已批准了两个抗丙型肝炎病毒共价抑制剂药物,即特拉匹韦(Telaprevir)和波普瑞韦(Boceprevir)。这些研究证明了不可逆抑制剂可有效用于疾病的治疗。
布鲁顿酪氨酸激酶(Bruton's tyrosine kinase,Btk),一种非受体酪氨酸激酶Tec家族的成员,是在除了T淋巴细胞和自然杀伤细胞之外的所有造血细胞类型中表达的关键信号酶。Btk在连接细胞表面B细胞受体(B-cell receptor,BCR)刺激至下游细胞内应答的B细胞信号传导途径中扮演至关重要的角色。Btk是B细胞发育、激活、信号传导和存活的关键调节物。另外,Bkt在众多其他造血细胞信号传导途径中起作用,例如在巨噬细胞中的Toll样受体(Toll like receptor,TLR)和细胞因子受体介导的TNF-α产生、在肥大细胞中的免疫球蛋白E受体(FcεR1)信号传导、在B-谱系淋巴样细胞中抑制Fas/APO-1细胞凋亡的信号传导以及胶原刺激的血小板聚集。参见例如C.A.Jeffries等,J.Bio.Chem.(2003)278:26258-26264、N.J.Horwood等,J.Exp.Med.(2003)197:1603-1611。近年来研究显示,Btk信号通路是目前非霍奇金淋巴瘤(NHL),特别是慢性淋巴细胞白血病(CLL)、B细胞淋巴瘤及自身免疫疾病临床治疗研究中的新热点。小分子Btk抑制剂通过作用于BCR信号通路,与Btk结合而抑制Btk自身磷酸化,阻止Btk的激活,从而阻断细胞传导并诱导细胞凋亡。Btk抑制剂伊布替尼的上市,被FDA定为“突破性”新药,其研究开发前景广阔。但今年来的治疗中逐步发现伊布替尼具有出血相关的副作用,文献研究认为其可能与伊布替尼的激酶选择性不佳有关,特别是TEC激酶的相关活性。此外,伊布替尼的FDA申报资料中,有审评专家提出,其hERG通道阻滞活性的IC50较低(IC50=1μM)左右,存在心脏毒副作用的风险。因此,亟需发展发展一类更为高效的选择性BTK抑制剂用于相关疾病的治疗。
本申请人前期专利文献中报道了一类BTK不可逆抑制剂及其光学异构体或其药学上可 接受的盐或溶剂合物(专利申请号:201510242552.8,201610286399.3),以下图中的I和II为代表化合物。通过对其进一步的研究,我们发现了一类具有高激酶选择性、低hERG抑制活性的化合物以及良好药动学性质的BTK抑制剂,有望进一步降低其出血风险、皮疹、心脏毒副作用等。
Figure PCTCN2017107416-appb-000001
发明内容
本发明的目的在于提供新颖的、未见文献报道的具有高效BTK抑制活性,特异性高(激酶选择性佳)及低HERG通道阻滞活性的BTK抑制化合物及其光学异构体或其药学上可接受的盐或溶剂合物。
本发明还提供了一种包括上述化合物及其光学异构体或其药学上可接受的盐或溶剂合物的药物组合物。
本发明还提供了一种包括上述化合物及其光学异构体或其药学上可接受的盐或溶剂合物的药物制剂。
本发明同时提供了一种上述化合物及其光学异构体或其药学上可接受的盐或溶剂合物用于制备治疗从布鲁顿酪氨酸激酶活性的抑制中获益的疾病、障碍或病症药物中的应用。
本发明采用如下的技术方案:
本发明所提供的布鲁顿酪氨酸激酶抑制剂,其具有通式I或通式I’的结构:
Figure PCTCN2017107416-appb-000002
或其光学异构体或其药学上可接受的盐或溶剂合物;
其中:Ra,Rb,Rc独立选自H、卤素、-CF2H、-CF3、-CN、C1-C3的烷基、-L-取代或非取代的C5-C12杂芳基、或-L-取代或非取代的C5-C12芳基,其中L是键、O、S、-S(=O)、-S(=O)2、NH、C(O)、CH2、-NHC(O)O、-NHC(O)或-C(O)NH;
n选自0、1、2;
Rd选自
Figure PCTCN2017107416-appb-000003
Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基,C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
Y1,Y2,Y3,Y4独立选自C(Rf)、N,且至少有一个为N,其中Rf选自H、卤素、C1-C3的烷基,-CF3、-CF2H。
更进一步地,本发明优选的化合物具有通式II或通式II’结构:
Figure PCTCN2017107416-appb-000004
或其光学异构体或其药学上可接受的盐或溶剂合物;
其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、-CN、C1-C3的烷基、C1-C3的烷氧基;
n选自0、1、2;
Rd选自
Figure PCTCN2017107416-appb-000005
Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
Y1,Y2,Y3,,Y4独立选自C(Rf)、N,且至少有一个为N,其中Rf选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
更进一步地,本发明优选的化合物具有通式III或III’或III”结构:
Figure PCTCN2017107416-appb-000006
及其光学异构体或其药学上可接受的盐或溶剂合物;
其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
n选自0、1、2;
Rd选自
Figure PCTCN2017107416-appb-000007
Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
Y1,Y2独立选自C(Rf)、N,其中Rf选自H、卤素、C1-C3的烷基,-CF3、-CF2H。
本发明优选的化合物具有通式IV或者IV’或者IV”结构:
Figure PCTCN2017107416-appb-000008
及其光学异构体或其药学上可接受的盐或溶剂合物;
其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
n选自0、1、2;
Rd选自
Figure PCTCN2017107416-appb-000009
Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
Rh选自H、卤素、C1-C3的烷基、-CF3、-CF2H;Rh表示苯环上任一位置上的取代基。
更进一步地,本发明优选的化合物具有通式V或者V’或者V”结构:
Figure PCTCN2017107416-appb-000010
及其光学异构体或其药学上可接受的盐或溶剂合物;
其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
n选自0、1、2;
Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
Rh选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
更进一步地,本发明优选的化合物具有通式VI或者VI’或者VI”结构:
Figure PCTCN2017107416-appb-000011
及其光学异构体或其药学上可接受的盐或溶剂合物;
其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
n选自0、1、2;
Rh选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
更进一步优选的化合物具有通式VI-a或VI-a’的或VI-a”结构:
Figure PCTCN2017107416-appb-000012
及其光学异构体或其药学上可接受的盐或溶剂合物;
其中:每一个Rg独立地是H、卤素、CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
Rh选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
作为进一步优选,所述布鲁顿酪氨酸激酶抑制剂具有如下通式:
Figure PCTCN2017107416-appb-000013
其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基,优选H、F、Cl、甲基、甲氧基;Ri独立选自H、卤素、C1-C3的烷基、-CF3、-CF2H,优选H或F。
根据通式IV或者IV’或者IV”结构,更进一步地,本发明优选的化合物具有通式VII或者VII’或者VII”结构:
Figure PCTCN2017107416-appb-000014
及其光学异构体或其药学上可接受的盐或溶剂合物;
其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
n选自0、1、2;
Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
Rh选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
更进一步地,本发明优选的化合物具有通式VIII或者VIII’或者VIII”结构:
Figure PCTCN2017107416-appb-000015
及其光学异构体或其药学上可接受的盐或溶剂合物;
其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
n选自0、1、2;
Rh选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
作为优选,所述布鲁顿酪氨酸激酶抑制剂优选为以下具体化合物:
Figure PCTCN2017107416-appb-000016
Figure PCTCN2017107416-appb-000017
Figure PCTCN2017107416-appb-000018
Figure PCTCN2017107416-appb-000019
Figure PCTCN2017107416-appb-000020
Figure PCTCN2017107416-appb-000021
及上式化合物的光学异构体或其药学上可接受的盐或溶剂合物。作为优选,所述化合物为如下化合物:
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15a
(R)-1-(3-(4-氨基-3-(6-(4-氟苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15b
(R)-1-(3-(4-氨基-3-(6-(3-氟苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15c
(R)-1-(3-(4-氨基-3-(6-(2-氟苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15d
(R)-1-(3-(4-氨基-3-(6-(4-氯苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15e
(R)-1-(3-(4-氨基-3-(6-(3,4-二氟苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15f
(R)-1-(3-(4-氨基-3-(6-(2,6-二氟苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15g
(R)-1-(3-(4-氨基-3-(6-(2,3-二氟苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15h
(R)-1-(3-(4-氨基-3-(6-(4-甲基苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15i
(R)-1-(3-(4-氨基-3-(6-(4-甲氧基苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15j
(R)-1-(3-(4-氨基-3-(6-(4-三氟甲基苯氧吡啶)-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮15k
(R)-1-(3-(4-氨基-3-(4-氟-6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮16a
(R)-1-(3-(4-氨基-3-(5-氟-6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮16b
(R)-1-(3-(4-氨基-3-(4-甲基-6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮16c
(R)-1-(3-(4-氨基-3-(2-甲基-6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮16d
(R)-1-(3-(4-氨基-3-(2-氟-6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17a
(S)-1-(3-(4-氨基-3-(2-氟-6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17b
(R)-1-(3-(4-氨基-3-(2-氟-6-(2-氟苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17c
(R)-1-(3-(4-氨基-3-(2-氟-6-(3-氟苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17d
(R)-1-(3-(4-氨基-3-(2-氟-6-(4-氯苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17e
(R)-1-(3-(4-氨基-3-(2-氟-6-(4-甲基苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17f
(R)-1-(3-(4-氨基-3-(2-氟-6-(4-甲氧基苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17g
(R)-1-(3-(4-氨基-3-(6-(2,6-二氟苯氧)-2-氟吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17h
(R)-1-(3-(4-氨基-3-(6-(2,3-二氟苯氧)-2-氟吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮17i
(R)-1-(3-(4-氨基-3-(2-苯氧嘧啶-5-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮18
(R)-1-(3-(4-氨基-3-(5-苯氧吡啶-2-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丙-2-烯-1-酮19
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)戊-2-烯-1-酮20a
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)-4-(二甲氨基)丁-2-烯-1-酮20b
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)-5-羟戊-2-烯-1-酮20c
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)-丁-2-炔-1-酮21a
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)-4-(二甲氨基)丁-2-炔-1-酮21b
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)-5-羟戊-2-炔-1-酮21c
(R)-1-(3-(4-氨基-3-(2-氟-6-苯氧吡啶-3-yl)-1H-吡唑[3,4-d]嘧啶-1-基)哌啶-1-基)丁-2-炔-1-酮22
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮23a
(R)-1-(3-(4-氨基-3-(6-(2-氟苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮23b
(R)-1-(3-(4-氨基-3-(6-(2,6-二氟苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮23c
(R)-1-(3-(4-氨基-3-(6-(2,3-二氟苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮23d
(R)-1-(3-(4-氨基-3-(2-氟-6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮24a
(S)-1-(3-(4-氨基-3-(2-氟-6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮24b
(R)-1-(3-(4-氨基-3-(2-氟-6-(2-氟苯氧)吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮24c
(R)-1-(3-(4-氨基-3-(6-(2,6-二氟苯氧)-2-氟吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮24d
(R)-1-(3-(4-氨基-3-(6-(2,3-二氟苯氧)-2-氟吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丙-2-烯-1-酮24e
(R)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丁-2-炔-1-酮25a
(S)-1-(3-(4-氨基-3-(6-苯氧吡啶-3-基)-1H-吡唑[3,4-d]嘧啶-1-基)吡咯-1-基)丁-2-炔-1-酮25b
及上式化合物的光学异构体或其药学上可接受的盐或溶剂合物。
术语说明:
本发明所用术语“芳基”是指5到12个碳原子的全碳单环或稠合多环基团,具有完全共轭的π电子系统。芳环的非限制性实例有:苯环、萘环和蒽环。芳环可以是无取代或取代的。芳环的取代基选自卤素(优选为氟、氯、溴、碘)、硝基、氨基、C1-C6烷基(优选为甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基等)、C1-C6烷氧基(优选为甲氧基、乙氧基、丙氧基、异丙基氧基、丁氧基、异丁基氧基、仲丁基氧基、叔丁基氧基等)、卤代C1-C6烷基(优选为甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基等)、卤代C1-C6烷氧(优选为甲氧基、乙氧基、丙氧基、异丙基氧基、丁氧基、异丁基氧基、仲丁基氧基、叔丁基氧基等)基、C3-C6环烷基(优选为环丙基、环戊基、环己基等)、卤代C3-C6环烷基(优选为环丙基、环戊基、环己基等);芳环的取代,可以是单取代(比如邻位、间位、对位取代),也可以是双取代或者三取代等。
本发明所用术语“杂芳基”指5到12个环原子的不饱和的环基团,具有完全共轭的π电子系统,相当于上述“芳基”中一个或多个碳被杂原子例如氧、氮、硫等置换。杂芳环可以是单环,也可以是双环,即通过两个环稠合而成。具体的杂环芳基(杂芳基)可以是:吡啶基、嘧啶基、吡嗪基、异恶唑基、异噻唑基、吡唑基、噻唑基、恶唑基和咪唑基等。杂环芳基可以是无取代或取代的。杂环芳基的取代基选自卤素、硝基、氨基、C1-C6烷基、C1-C6烷氧基、卤代C1-C6烷基、卤代C1-C6烷氧基、C3-C6环烷基、卤代C3-C6环烷基;
本发明所用术语“卤素”指氟、氯、溴、碘,优选氟、氯或溴;
本发明所用术语“C1-C3的烷基”优选为甲基、乙基等;
本发明所用术语“C2-C6的烷基”优选为乙基、丙基、异丙基等;
本发明所用术语“n”优选1、2;
本发明所用术语“氮杂烷基”是指C1-C6的烷基上1个或多个碳原子被氮原子取代,优选为
Figure PCTCN2017107416-appb-000022
等。
本发明所用术语“氧杂烷基”是指C1-C6的烷基上1个或多个碳原子被氧原子取代,优选为
Figure PCTCN2017107416-appb-000023
等。
本发明所用术语“烷氧基”是指-O-烷基基团,其中烷基如上所定义。本发明所用“烷氧基”的实例包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基和叔丁氧基。“烷氧基”还包括取代烷氧基。烷氧基可任选被卤素取代一次或多次。
本发明所用术语“溶剂合物”是指由溶质(例如:本发明的通式I~通式VIII化合物以及通式IV’~通式VIII’化合物))和溶剂形成的可变化学计量的复合物。为了本发明的目的,所述溶剂不能干扰溶质的生物学活性。合适的溶剂的实例包括但不限于水、甲醇、乙醇和乙酸。优选使用的溶剂为药学可接受溶剂。合适的药学可接受溶剂包括但不限于水、乙醇和乙酸。更优选地,所用溶剂为水。
本发明采用本领域技术人员所熟知的方法可以制备本发明所述化合物的盐。所述的盐可以是有机酸盐、无机酸盐等,所述的有机酸盐包括枸橼酸盐、富马酸盐、草酸盐、苹果酸盐、乳酸盐、樟脑磺酸盐、对甲苯磺酸盐、甲磺酸盐等;所述的无机酸盐包括氢卤酸盐、硫酸盐、磷酸盐、硝酸盐等。例如,与低级烷基磺酸,如甲磺酸,三氟甲磺酸等可形成甲磺酸盐、三氟甲磺酸盐;与芳基磺酸,如苯磺酸或对甲苯磺酸等可形成对甲苯磺酸盐、苯磺酸盐;与有机羧酸, 如乙酸,富马酸,酒石酸,草酸,马来酸,苹果酸,琥珀酸或柠檬酸等可形成相应的盐;与氨基酸,如谷氨酸或天冬氨酸可形成谷氨酸盐或天冬氨酸盐。与无机酸,如氢卤酸(如氢氟酸、氢溴酸、氢碘酸、氢氯酸),硝酸,碳酸,硫酸或磷酸等也可形成相应的盐。
本发明的第二个目的是提供一种药物组合物,包括上述任意一项技术方案所述的化合物中的一种或多种。本发明所述的药物组合物可以是上述任意一项技术方案所述的化合物中的一种或多种与其他化合物组成,或者上述任意一项技术方案所述的化合物中的一种或多种组成。
本发明提供了一种药物制剂,包含至少一种活性组分,所述活性组分是如上述任意一项技术方案所述的化合物中的一种或多种。所述药物制剂包含至少一种活性组分以及一种或多种药学上可接受的载体或赋形剂,所述的活性组分可以是本发明的BTK抑制剂化合物、所述化合物的光学异构体、所述化合物或其光学异构体在药学上可接受的盐、所述化合物或其光学异构体的溶剂合物中的任意一种或任意多种。
所述载体包括药学领域的常规稀释剂,赋形剂,填充剂,粘合剂,湿润剂,崩解剂,吸收促进剂,表面活性剂,吸附载体,润滑剂等,必要时还可以加入香味剂,甜味剂等。
本发明药物可以制成片剂,粉剂,粒剂,胶囊,口服液及注射用药等多种形式,上述各剂型的药物均可以按照药学领域的常规方法制备。
另一方面,本发明提供的是使用本文公开的通式I~通式VIII、通式I’~通式VIII’、通式III”~通式VIII”以及通式VI-a、通式VI-a’、VI-a”所述的化合物及其光学异构体或其药学上可接受的盐或溶剂合物来抑制布鲁顿酪氨酸激酶(Btk)活性或者治疗从布鲁顿酪氨酸激酶(Btk)活性的抑制中获益的疾病、障碍或病症。
在进一步优选的方案中,本发明提供的是通过给予有需要的治疗者一种含有治疗有效量的至少一种化合物的组合物、从而抑制所述受治疗者的布鲁顿酪氨酸激酶活性的方法,其中所述化合物的结构式为通式I~通式III以及通式I’~通式VIII、通式III”~通式VIII”以及通式VI-a、通式VI-a’、通式VI-a”。在一些实施方式中,有需要的受治疗者罹患自身免疫性疾病,例如炎性肠病、关节炎、狼疮、类风湿性关节炎、银屑病性关节炎、骨关节炎、斯蒂尔病(Still’s disease)、青少年关节炎、糖尿病、重症肌无力症、桥本甲状腺炎(Hashimoto’s thyroiditis)、奥德甲状腺炎(Ord’s thyroiditis)、格雷夫斯氏病(Graves’disease)、类风湿性关节炎综合征(
Figure PCTCN2017107416-appb-000024
syndrome)、多发性硬化症、传染性神经元炎(Guillain-Barrésyndrome)、急性播散性脑脊髓炎、阿狄森病(Addison’s disease)、视性眼阵挛-肌阵挛综合征、强制性脊椎炎、抗磷脂抗体综合征、再生障碍性贫血、自身免疫性肝炎、乳糜泻(coeliac disease)、古德帕斯彻综合征(Goodpasture’s syndrome)、特发性血小板减少性紫癜、视神经炎、硬皮病、原发性胆汁性肝硬化、莱特尔综合征(Reiter’s syndrome)、高安动脉炎(Takayasu’s arteritis)、颞动脉炎、温型自身免疫性溶血性贫血、韦格纳肉芽肿病(Wegener’s granulomatosis)、银屑病、全身脱毛、贝赫切特病(Behet’s disease)、慢性疲劳、家族性自主神经功能异常、子宫内膜异位、间质性膀胱炎、神经肌强直、硬皮病或外阴痛和慢性移植物抗宿主病。
在进一步的实施方式中,有需要的受治疗者罹患癌症。在一个实施方式中,所述癌症是B细胞增生性疾病,例如弥漫性大B细胞淋巴瘤、滤泡性淋巴瘤、慢性淋巴细胞淋巴瘤、慢性淋巴细胞白血病、B细胞前淋巴细胞性白血病、淋巴浆细胞淋巴瘤/瓦尔登斯特伦巨球蛋白血症(
Figure PCTCN2017107416-appb-000025
macroglobulinemia)、脾边缘区淋巴瘤、浆细胞性骨髓瘤、浆细胞瘤、结外边缘区B细胞淋巴瘤、淋巴结边缘区B细胞淋巴瘤、外套细胞淋巴瘤、纵膈(胸腺)大B细胞淋巴瘤、血管内大B细胞淋巴瘤、原发性渗出性淋巴瘤、伯基特淋巴瘤(Burkitt lymphoma)/ 白血病或淋巴瘤样肉芽肿病。
本发明还提供本发明所述的化合物或其可药用盐在制备BTK抑制剂中的应用,特别是在制备治疗细胞增生疾病中的应用。所述的细胞增生疾病包括癌症。换言之,本发明还提供通式通式I~通式VIII、通式I’~通式VIII’、通式III”~通式VIII”以及通式VI-a、通式VI-a’、VI-a”所述的化合物、及其光学异构体或其药学上可接受的盐或溶剂合物单独或和其他药物联合使用在治疗增生类疾病(如癌症)中的应用。能和本发明所提供的化合物或其可药用盐联合使用的抗肿瘤药包括但并非限定至少一种以下种类:有丝分裂抑制剂(如长春碱、长春地辛和长春瑞宾);微管蛋白分解抑制剂(如泰素));烷基化试剂(如顺铂、卡铂和环磷酰胺);抗代谢物(如5-氟尿嘧啶、替加氟、甲氨蝶呤、阿糖胞苷和羟基脲);可插入抗生素(如阿雷素、丝裂霉素和争光霉素));酶(如天门冬氨酶);拓朴异构酶抑制剂(如依托伯苷和喜树碱);生物反应调节剂(如干扰素)。
本发明发明人通过实验证实,本发明化合物对A549、MINO、OCI-LY10、TMD-8等肿瘤细胞株具有抗增殖抑制作用,并在Mino皮下异种移植等肿瘤模型中表现出良好的抗肿瘤活性,可应用于治疗人或动物细胞增殖性相关的实体瘤或血癌的药物中。
本发明发明人通过实验证实,本发明化合物优异的激酶选择性。
本发明发明人通过实验证实,本发明化合物具有低hERG通道阻滞活性。
本发明发明人通过实验证实,本发明化合物具有较好的药代动力学性质,可应用于口服治疗人或动物细胞增殖性相关的实体瘤或血癌或者罹患自身免疫性疾病。
具体实施方式
下面通过实施例来说明本发明的可实施性,本领域的技术人员应当理解,根据现有技术的教导,对相应的技术特征进行修改或替换,仍然属于本发明要求保护的范围。
实施例1.中间体1a的制备
Figure PCTCN2017107416-appb-000026
操作步骤:3-碘-4-氨基-1H-吡唑并[3,4-d]嘧啶(6.45g,24.7mmol),(S)-1-Boc-3-羟基哌啶(9.93g,49.4mmol),三苯基磷PPh3(9.73g,37.1mmol)置于250mL圆底烧瓶中,放入磁子,加入130mL THF,在氮气保护下在室温下搅拌;取偶氮二甲酸二异丙酯DIAD(7.5g,37.1mmol)溶于约30mLTHF,并缓慢滴加至反应体系中,滴加完成后继续反应约12小时,根据TLC(薄层色谱法)结果,停止反应,减压浓缩,采用硅胶柱层析,以石油醚-乙酸乙酯为洗脱剂进行纯化得白色固体1a,收率70%,1H NMR(δ,CDCl3):1.45(s,9H),1.54~1.76(m,1H),181~1.97(m,1H),2.05~2.26(m,1H),2.75~2.96(m,1H),3.48~3.61(m,1H),4.13(q,J=7.0Hz,2H),4.65~4.88(m,1H),6.45(brs,2H),8.31(s,1H).LC-ESI-MS:445[M+H].Chiral HPLC:99%ee。
实施例2.中间体1b的制备
Figure PCTCN2017107416-appb-000027
操作步骤:3-碘-4-氨基-1H-吡唑并[3,4-d]嘧啶(6.45g,24.7mmol),(R)-1-Boc-3-羟基哌啶(9.93g,49.4mmol),三苯基磷PPh3(9.73g,37.1mmol)置于250mL圆底烧瓶中,放入磁子,加入130mL THF,在氮气保护下在室温下搅拌;取偶氮二甲酸二异丙酯DIAD(7.5g,37.1mmol)溶于约30mLTHF,并缓慢滴加至反应体系中,滴加完成后继续反应约12小时,根据TLC(薄层色谱法)结果,停止反应,减压浓缩,采用硅胶柱层析,以石油醚-乙酸乙酯为洗脱剂进行纯化得白色固体1b,收率68%。LC-ESI-MS:445[M+H].Chiral HPLC:99%ee。
实施例3.中间体2a的制备
Figure PCTCN2017107416-appb-000028
操作步骤:3-碘-4-氨基-1H-吡唑并[3,4-d]嘧啶(5.1g,19.5mmol),(S)-1-Boc-3-羟基四氢吡咯(7.3g,39mmol),三苯基磷PPh3(7.7g,29.3mmol)置于250mL圆底烧瓶中,放入磁子,加入100mL THF,在氮气保护下在室温下搅拌;取偶氮二甲酸二异丙酯DIAD(5.9g,29.3mmol)溶于约25mL THF,并缓慢滴加至反应体系中,滴加完成后继续反应约12小时,根据TLC结果,停止反应,减压浓缩,采用硅胶柱层析,以石油醚-乙酸乙酯为洗脱剂进行纯化得白色固体,2a,收率35%,LC-ESI-MS:431[M+H].Chiral HPLC:98%ee。
实施例4.中间体2b的制备
Figure PCTCN2017107416-appb-000029
操作步骤:3-碘-4-氨基-1H-吡唑并[3,4-d]嘧啶(5.1g,19.5mmol),(R)-1-Boc-3-羟基四氢吡咯(7.3g,39mmol),三苯基磷PPh3(7.7g,29.3mmol)置于250mL圆底烧瓶中,放入磁子,加入100mL THF,在氮气保护下在室温下搅拌;取偶氮二甲酸二异丙酯DIAD(5.9g,29.3mmol)溶于约25mL THF,并缓慢滴加至反应体系中,滴加完成后继续反应约12小时,根据TLC结果,停止反应,减压浓缩,采用硅胶柱层析,以石油醚-乙酸乙酯为洗脱剂进行纯化得白色固体2b,收率32%,LC-ESI-MS:431[M+H].Chiral HPLC:98%ee。
实施例5.关键中间体3a~3k的制备
Figure PCTCN2017107416-appb-000030
操作步骤(以中间体3a为例):2,5-二溴吡啶(61.5mmol),苯酚(64.6mmol),碘化亚铜(6.15mmol),Cs2CO3(92mmol)置于250mL干燥过的烧瓶中,加入150mL DMSO,然后在加入TMEDA(6.15mmol),在Ar保护下加热至110度(在没有特殊说明的情况下,本发明中温度的单位均为摄氏度℃),反应约20小时,TLC转化完全。降至室温,加入大量乙酸乙酯,水洗4次,乙酸乙酯萃取2次,合并EA(乙酸乙酯)相用饱和食盐水洗,干燥有机相,过滤,旋蒸干,得到棕色油状产物。
中间体5-溴-2-苯氧基吡啶3a(R1=H),收率92%,1H NMR(400MHz,CDCl3):δ8.22(d,J=2.4Hz,1H),7.76(dd,J=8.7,2.5Hz,1H),7.41(t,J=7.9Hz,2H),7.22(t,J=7.4Hz,1H),7.12(d,J=7.7Hz,2H),6.83(d,J=8.7Hz,1H).LC-ESI-MS:250[M+H]。
中间体3b(5-溴-2-(4-氟-苯氧基)吡啶,R1=4-氟):试剂:2,5-二溴吡啶(6.15mmol),4-氟苯酚(6.46mmol),碘化亚铜(0.62mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率82%,LC-ESI-MS:268[M+H]。
中间体3c(5-溴-2-(3-氟-苯氧基)吡啶,R1=3-氟):试剂:2,5-二溴吡啶(6.15mmol),3-氟苯酚(6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率70%,LC-ESI-MS:268[M+H]。
中间体3d(5-溴-2-(2-氟-苯氧基)吡啶,R1=2-氟):试剂:2,5-二溴吡啶(6.15mmol),2-氟苯酚(6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率65%,LC-ESI-MS:268[M+H]。
中间体3e(5-溴-(4-氯-苯氧基)吡啶,R1=4-氯):试剂:2,5-二溴吡啶(6.15mmol),4-氯苯酚(6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率72%.1H NMR(400MHz,CDCl3):δ8.25(d,J=2.5Hz,1H),7.79(dd,J=8.7,2.5Hz,1H),7.35(d,J=9.2Hz,2H),7.08(d,J=9.2Hz,2H),6.85(d,J=8.5Hz,1H).LC-ESI-MS:284[M+H]。
中间体3f(5-溴-2-(3,4-二氟-苯氧基)吡啶,R1=3,4-二氟):试剂:2,5-二溴吡啶(6.15mmol),3,4-二氟苯酚(6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率82%,LC-ESI-MS:286[M+H]。
中间体3g(5-溴-(2,6-二氟-苯氧基)吡啶,R1=2,6-二氟):试剂:2,5-二溴吡啶(6.15mmol),2,6-二氟苯酚(6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率82%,LC-ESI-MS:286[M+H]。
中间体3h(5-溴-(2,3-二氟-苯氧基)吡啶,R1=2,3-二氟):试剂:2,5-二溴吡啶(6.15mmol),2,3-二氟苯酚(6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率88%,LC-ESI-MS:286[M+H]。
中间体3i(5-溴-(4-甲基-苯氧基)吡啶,R1=4-甲基):试剂:2,5-二溴吡啶(6.15mmol),4-甲基苯酚(6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率61%,LC-ESI-MS:264[M+H]。
中间体3j(5-溴-(4-甲氧基-苯氧基)吡啶,R1=4-甲氧基):试剂:2,5-二溴吡啶(6.15mmol),4-甲氧基苯酚(6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol), 收率59%,1H NMR(400MHz,CDCl3):δ8.22(d,J=2.4Hz,1H),7.76(dd,J=8.4,2.4Hz,1H),6.93(d,J=8.4Hz,1H),6.75(m,4H),3.68(s,3H).LC-ESI-MS:280[M+H]。
中间体3k(5-溴-(4-三氟甲基-苯氧基)吡啶,R1=4-三氟甲基):试剂:2,5-二溴吡啶(6.15mmol),4-三氟甲基苯酚((6.46mmol),碘化亚铜(0.61mmol),Cs2CO3(9.2mmol),TMEDA(0.62mmol),收率66%,LC-ESI-MS:318[M+H]。
实施例6.中间体4a~4d的制备
Figure PCTCN2017107416-appb-000031
操作步骤:取代的2,5-二溴吡啶(6.15mmol),苯酚(6.46mmol),碘化亚铜CuI(0.62mmol),Cs2CO3(9.2mmol)置于25mL干燥过的烧瓶中,加入15mL DMSO,然后在加入TMEDA(0.62mmol),在Ar保护下加热至110度,反应约20小时,TLC转化完全。降至室温,加入大量乙酸乙酯,水洗4次,乙酸乙酯萃取2次,合并EA相用饱和食盐水洗,干燥有机相,过滤,旋蒸干,得到棕色油状产物。
中间体5-溴-4-氟-2-苯氧基吡啶4a(R2=4-氟),试剂:2,5-二溴-4-氟吡啶(6.15mmol),苯酚(6.46mmol),其余试剂和用量同上,收率78%,LC-ESI-MS:268[M+H]。
中间体5-溴-3-氟-2-苯氧基吡啶4b(R2=3-氟),试剂:2,5-二溴-3-氟吡啶(6.15mmol),苯酚(6.46mmol),其余试剂和用量同上,收率80%,LC-ESI-MS:268[M+H]。
中间体5-溴-4-甲基-2-苯氧基吡啶4c(R2=4-甲基),试剂:2,5-二溴-4-甲基吡啶(6.15mmol),苯酚(6.46mmol),其余试剂和用量同上,收率85%,LC-ESI-MS:264[M+H]。
中间体5-溴-6-甲基-2-苯氧基吡啶4d(R2=6-甲基),试剂:2,5-二溴-6-甲基吡啶(6.15mmol),苯酚(6.46mmol),其余试剂和用量同上,收率51%,LC-ESI-MS:264[M+H]。
实施例7.中间体5a~5h的制备
Figure PCTCN2017107416-appb-000032
操作步骤:2,6-二氟吡啶(6.15mmol),取代的苯酚(6.46mmol)置于25mL干燥过的烧瓶中,加入15mL DMSO,然后加入NaH(6.77mmol),在Ar保护下加热至30度,反应约20小时,TLC转化完全。降至室温,加入大量乙酸乙酯,水洗4次,乙酸乙酯萃取2次,合并EA相用饱和食盐水洗,干燥有机相,过滤,旋蒸干,得到棕色油状产物。
中间体2-氟-6-苯氧吡啶5a(R1=H),试剂:2,6-二氟-吡啶(6.15mmol),苯酚(6.46mmol),其余试剂和用量同上,收率65%,LC-ESI-MS:190[M+H]。
中间体2-氟-6-(2-氟苯氧吡啶)5b(R1=2-氟),试剂:2,6-二氟-吡啶(6.15mmol),2-氟苯酚(6.46mmol),其余试剂和用量同上,收率55%,LC-ESI-MS:208[M+H]。
中间体2-氟-6-(3-氟苯氧吡啶)5c(R1=3-氟),试剂:2,6-二氟-吡啶(6.15mmol),3-氟苯酚(6.46mmol),其余试剂和用量同上,收率58%,LC-ESI-MS:208[M+H]。
中间体2-氟-6-(4-氯苯氧吡啶)5d(R1=4-氯),试剂:2,6-二氟-吡啶(6.15mmol),4-氯苯 酚(6.46mmol),其余试剂和用量同上,收率62%,LC-ESI-MS:224[M+H]。
中间体2-氟-6-(4-甲基苯氧吡啶)5e(R1=4-甲基),试剂:2,6-二氟-吡啶(6.15mmol),4-甲基苯酚(6.46mmol),其余试剂和用量同上,收率59%,LC-ESI-MS:204[M+H]。
中间体2-氟-6-(4-甲氧基苯氧吡啶)5f(R1=4-甲氧基),试剂:2,6-二氟-吡啶(6.15mmol),4-甲氧基苯酚(6.46mmol),其余试剂和用量同上,收率59%,LC-ESI-MS:220[M+H]。
中间体2-(2,6-二氟苯氧)-6-氟吡啶5g(R1=2,6-二氟),试剂:2,6-二氟-吡啶(6.15mmol),2,6-二氟基苯酚(6.46mmol),其余试剂和用量同上,收率50%,LC-ESI-MS:226[M+H]。
中间体2-(2,3-二氟苯氧)-6-氟吡啶5h(R1=2,3-二氟),试剂:2,6-二氟-吡啶(6.15mmol),2,3-二氟基苯酚(6.46mmol),其余试剂和用量同上,收率52%,LC-ESI-MS:226[M+H]。
实施例8.中间体6的制备
Figure PCTCN2017107416-appb-000033
操作步骤:5-溴-2-碘嘧啶(3mmol),苯酚(3.2mmol),2-吡啶甲酸(0.3mmol),碘化亚铜CuI(0.3mmol),磷酸钾(4.5mmol)置于25mL干燥过的烧瓶中,加入15mL DMSO,在Ar保护下加热至100度,反应约20小时,TLC转化完全。降至室温,加入大量乙酸乙酯,水洗4次,乙酸乙酯萃取2次,合并EA相,用饱和食盐水洗,干燥有机相,过滤,旋蒸干,硅胶柱层析纯化得白色产品1.1g,收率87%。1H NMR(400MHz,CDCl3):δ8.56(s,2H),7.48–7.39(m,2H),7.31–7.25(m,1H),7.22–7.14(m,2H).LC-ESI-MS:251[M+H]。
实施例9.中间体7的制备
Figure PCTCN2017107416-appb-000034
操作步骤:在Ar保护下,15mL DMF溶液中放置于冰水浴中,小心加入氢化钠(5.1mmol),苯酚(4.6mmol)。加完之后在室温下搅拌约1小时,然后加入2-溴-5-氟吡啶(4.6mmol),继续在室温下反应过夜。TLC检测反应完成之后用饱和氯化铵水溶液萃灭反应,乙酸乙酯萃取3次。合并有机相无水硫酸钠干燥,过滤,减压浓缩得油状产物,直接用于下一步。LC-ESI-MS:250[M+H]。
实施例10.关键中间体8的制备
Figure PCTCN2017107416-appb-000035
操作步骤:
第一步:相应的化合物3a~3k溶于干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯,加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的70mL DMF中加入上一步的硼酸产物,化合物1a、四三苯基磷钯在Ar保护下搅拌,然后加入2N aq.K2CO3水溶液。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,乙酸乙酯洗涤几次。水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化。
化学试剂以及数据表征:
中间体8a(R1=H),试剂:化合物3a(30mmol),正丁基锂(33.3mmol),硼酸三异丙酯(39.4mmol),化合物1a(17.3mmol),四三苯基磷钯(0.78mmol),2N aq.K2CO3(26mL),产物为白色固体,收率60%(两步),1H NMR(400MHz,CDCl3):δ8.51(d,J=2.1Hz,1H),8.37(s,1H),8.04(dd,J=8.5,2.4Hz,1H),7.44(t,J=7.9Hz,2H),7.29–7.22(m,1H),7.19(d,J=7.7Hz,2H),7.08(d,J=8.5Hz,1H),5.75(brs,2H),4.91–4.82(m,1H),4.25(brs,1H),4.12(dd,J=14.2,7.0Hz,1H),3.43(brs,1H),2.87(dd,J=13.0,10.0Hz,1H),2.33–2.10(m,2H),1.90(brs,1H),1.76–1.66(m,1H),1.44(s,9H).LC-ESI-MS:488[M+H]。
中间体8b(R1=4-氟),试剂:化合物3b(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,收率45%(两步),LC-ESI-MS:506[M+H]。
中间体8c(R1=3-氟),试剂:化合物3c(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,收率42%(两步),LC-ESI-MS:506[M+H]。
中间体8d(R1=2-氟),试剂:化合物3d(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,收率52%(两步),LC-ESI-MS:506[M+H]。
中间体8e(R1=4-氯),试剂:化合物3e(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,收率41%(两步),LC-ESI-MS:522[M+H]。
中间体8f(R1=3,4-二氟),试剂:化合物3f(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,收率26%(两步),LC-ESI-MS:524[M+H]。
中间体8g(R1=2,6-二氟),试剂:第一步,化合物3g(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,36%(两步),LC-ESI-MS:524[M+H]。
中间体8h(2,3-二氟),试剂:第一步,化合物3h(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,24%(两步),LC-ESI-MS:524[M+H]。
中间体8i(R1=4-甲基),试剂:化合物3i(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,收率57%(两步),1H NMR(400MHz,CDCl3):δ8.48(d,J=2.3Hz,1H),8.33 (s,1H),8.02(dd,J=8.5,2.3Hz,1H),7.15–7.03(m,3H),6.96–6.90(m,2H),5.71(brs,2H),4.92–4.80(m,1H),4.19(brs,1H),4.08(dd,J=13.9,6.9Hz,1H),3.41(brs,1H),2.90–2.81(m,1H),2.32–2.11(m,2H),2.27(s,3H),1.88(brs,1H),1.77–1.65(m,1H),1.45(s,9H).LC-ESI-MS:502[M+H]。
中间体8j(R1=4-甲氧基),试剂:化合物3j(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,38%(两步),LC-ESI-MS:518[M+H]。
中间体8k(R1=4-三氟甲基),试剂:第一步,化合物3k(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,35%(两步),LC-ESI-MS:556[M+H]。
实施例11.中间体9的制备
Figure PCTCN2017107416-appb-000036
操作步骤:
第一步:相应的化合物4a~4d溶于15mL干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯,加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的7mL DMF中加入上一步的硼酸产物,化合物1a,四三苯基磷钯,在Ar保护下搅拌,然后加入2N aq.K2CO3水溶液。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,EA洗涤几次。然后用乙酸乙酯萃取,水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化。
化学试剂以及数据表征:
中间体9a(R2=4-氟),试剂:化合物4a(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL),产物为白色固体,产率33%(两步),LC-ESI-MS:506[M+H]。
中间体9b(R2=3-氟),试剂:化合物4b(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率52%(两步),LC-ESI-MS:506[M+H]。
中间体9c(R2=4-甲基),试剂:化合物4c(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率45%(两步),LC-ESI-MS:502[M+H]。
中间体9d(R2=6-甲基),试剂:化合物4d(3mmol),正丁基锂(3.33mmol),硼酸三异丙 酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率66%(两步),LC-ESI-MS:502[M+H]。
实施例12.中间体10a、10c-i的制备
Figure PCTCN2017107416-appb-000037
操作步骤:
第一步:化合物5a~5h中对应的化合物溶于干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯,加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的70mL DMF中加入上一步的硼酸产物,化合物1a、四三苯基磷钯在Ar保护下搅拌,然后加入2N aq.K2CO3水溶液。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,乙酸乙酯洗涤几次。水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化,得到白色固体。
中间体10a(R1=H),试剂:化合物5a(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率30%(两步),LC-ESI-MS:506[M+H]。
中间体10c(R1=2-氟),试剂:化合物5b(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率25%(两步),LC-ESI-MS:524[M+H]。
中间体10d(R1=3-氟),试剂:化合物5c(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率28%(两步),LC-ESI-MS:524[M+H]。
中间体10e(R1=4-氯),试剂:化合物5d(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率21%(两步),LC-ESI-MS:541[M+H]。
中间体10f(R1=4-甲基),试剂:化合物5e(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率20%(两步),LC-ESI-MS:520[M+H]。
中间体10g(R1=4-甲氧基),试剂:化合物5f(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率18%(两步),LC-ESI-MS:536[M+H]。
中间体10h(R1=2,6-二氟),试剂:化合物5g(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率20%(两步),LC-ESI-MS:542[M+H]。
中间体10i(R1=2,3-二氟),试剂:化合物5h(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物1a(1.73mmol),四三苯基磷钯(0.078mmol),2N aq.K2CO3(2.6mL)产物为白色固体,产率21%(两步),LC-ESI-MS:542[M+H]。
实施例13.中间体10b的制备
Figure PCTCN2017107416-appb-000038
操作步骤:
第一步:化合物5a(3mmol)溶于干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂(3.33mmol)。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯(3.94mmol),加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的70mL DMF中加入上一步的硼酸产物,化合物1b(1.73mmol)、四三苯基磷钯(0.078mmol)在Ar保护下搅拌,然后加入2N aq.K2CO3水溶液(2.6mL)。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,乙酸乙酯洗涤几次。水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化,得到白色固体10b(R1=H),产率28%(两步),LC-ESI-MS:506[M+H]。
实施例14.中间体11的制备
Figure PCTCN2017107416-appb-000039
操作步骤:
第一步:化合物6(3mmol)溶于15mL干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂(1.3mL,3.3mmol,2.5M in THF)。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯(0.74g,3.94mmol),加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸 产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的7mL DMF中加入上一步的硼酸产物(2.3mmol),化合物1a(1.73mmol)四三苯基磷钯(0.078mmol),在Ar保护下搅拌,然后加入2.6mL 2N aq.K2CO3水溶液。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,EA洗涤几次。然后用乙酸乙酯萃取,水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化得白色固体11,收率25%,1H NMR(400MHz,CDCl3):δ8.90(s,2H),8.38(s,1H),7.46(dd,J=10.8,5.1Hz,2H),7.29(dd,J=10.1,4.7Hz,1H),7.26–7.18(m,2H),5.91(brs,2H),4.94–4.77(m,1H),4.29(brs,1H),4.18–4.04(m,1H),3.53–3.22(m,1H),2.88(t,J=11.7Hz,1H),2.33–2.13(m,2H),1.97–1.84(m,1H),1.77–1.64(m,1H),1.44(s,9H).LC-ESI-MS:489[M+H]。
实施例15.中间体12的制备
Figure PCTCN2017107416-appb-000040
操作步骤:
第一步:化合物7(3mmol)溶于15mL干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂(1.3mL,3.3mmol,2.5M in THF)。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯(0.74g,3.94mmol),加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的5mL DMF中加入上一步的硼酸产物(1.5mmol),化合物1a(1.1mmol)四三苯基磷钯(0.06mmol),在Ar保护下搅拌,然后加入1.5mL 2N aq.K2CO3水溶液。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,EA洗涤几次。然后用乙酸乙酯萃取,水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化得白色固体12,收率15%,LC-ESI-MS:488[M+H]。
实施例16.中间体13a~13d的制备
Figure PCTCN2017107416-appb-000041
操作步骤:
第一步:化合物3a、化合物3d、化合物3g或化合物3h(3mmol)溶于15mL干燥过的 四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂(1.3mL,3.3mmol,2.5M in THF)。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯(0.74g,3.94mmol),加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的15mL DMF中加入上一步的硼酸产物(4.2mmol),化合物2a(3mmol)四三苯基磷钯(0.15mmol),在Ar保护下搅拌,然后加入4.5mL 2N aq.K2CO3水溶液。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,EA洗涤几次。然后用乙酸乙酯萃取,水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化得白色固体。
化学试剂以及数据表征:
中间体13a(R1=H),试剂:化合物3a(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物2a(3mmol),四三苯基磷钯(0.15mmol),2N aq.K2CO3(4.5mL),产物为白色固体,产率40%(两步),LC-ESI-MS:474[M+H]。
中间体13b(R1=2-氟),试剂:化合物3d(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物2a(3mmol),四三苯基磷钯(0.15mmol),2N aq.K2CO3(4.5mL),产物为白色固体,产率52%(两步),LC-ESI-MS:492[M+H]。
中间体13c(R1=2,6-二氟),试剂:化合物3g(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物2a(3mmol),四三苯基磷钯(0.15mmol),2N aq.K2CO3(4.5mL),产物为白色固体,产率43%(两步),LC-ESI-MS:510[M+H]。
中间体13d(R1=2,3-二氟),试剂:化合物3h(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物2a(3mmol),四三苯基磷钯(0.15mmol),2N aq.K2CO3(4.5mL),产物为白色固体,产率48%(两步),LC-ESI-MS:510[M+H]。
实施例17.中间体13e的制备
Figure PCTCN2017107416-appb-000042
操作步骤:
第一步:化合物3a(3mmol)溶于15mL干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂(1.3mL,3.3mmol,2.5M in THF)。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯(0.74g,3.94mmol),加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的15mL DMF中加入上一步的硼酸产物(4.2mmol),化合物2b(3mmol)四三苯基磷钯(0.15mmol),在Ar保护下搅拌,然后加入4.5mL 2N aq.K2CO3 水溶液。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,EA洗涤几次。然后用乙酸乙酯萃取,水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化得白色固体13e,产率39%(两步),LC-ESI-MS:474[M+H]。
实施例18.中间体14a、14c~14e的制备
Figure PCTCN2017107416-appb-000043
操作步骤:
第一步:化合物5a、化合物5b、化合物5g或者化合物5h溶于干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯,加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的70mL DMF中加入上一步的硼酸产物,化合物2a、四三苯基磷钯在Ar保护下搅拌,然后加入2N aq.K2CO3水溶液。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,乙酸乙酯洗涤几次。水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化,得到白色固体。
化学试剂以及数据表征:
中间体14a(R1=H):试剂:化合物5a(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物2a(3mmol),四三苯基磷钯(0.15mmol),2N aq.K2CO3(4.5mL),产物为白色固体,产率24%(两步),LC-ESI-MS:492[M+H]。
中间体14c(R1=2-氟):试剂:化合物5b(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物2a(3mmol),四三苯基磷钯(0.15mmol),2N aq.K2CO3(4.5mL),产物为白色固体,产率21%(两步),LC-ESI-MS:510[M+H]。
中间体14d(R1=2,6-二氟):试剂:化合物5g(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物2a(3mmol),四三苯基磷钯(0.15mmol),2N aq.K2CO3(4.5mL),产物为白色固体,产率19%(两步),LC-ESI-MS:528[M+H]。
中间体14e(R1=2,3-二氟):试剂:化合物5h(3mmol),正丁基锂(3.33mmol),硼酸三异丙酯(3.94mmol),化合物2a(3mmol),四三苯基磷钯(0.15mmol),2N aq.K2CO3(4.5mL),产物为白色固体,产率19%(两步),LC-ESI-MS:528[M+H]。
实施例19.中间体14b的制备
Figure PCTCN2017107416-appb-000044
操作步骤:
第一步:化合物5a(3mmol)溶于干燥过的四氢呋喃中,在Ar保护下冷却至-78度,逐步滴加正丁基锂(3.33mmol)。反应体系在此温度下继续搅拌反应1小时,然后加入硼酸三异丙酯(3.94mmol),加完之后在-78度反应1小时,然后让其缓慢升温至室温,用氯化铵水溶液萃灭反应。用乙酸乙酯萃取三次,合并有机相用水洗和饱和食盐水洗,无水硫酸钠干燥,过滤之后减压浓缩。乙酸乙酯和石油醚重结晶得到白色固体硼酸产物,直接用于下一步反应。
第二步:在刚刚用Ar鼓泡过的70mL DMF中加入上一步的硼酸产物,化合物2b(3mmol)、四三苯基磷钯(0.15mmol)在Ar保护下搅拌,然后加入2N aq.K2CO3水溶液(4.5mL)。反应体系在Ar保护下加热到85度,反应过夜,TLC跟踪反应完全。降至室温,用硅藻土过滤,乙酸乙酯洗涤几次。水洗3次,饱和食盐水洗,干燥,过滤,减压浓缩,以石油醚-乙酸乙酯为洗脱剂,进行硅胶柱层析纯化,得到白色固体14b,产率22%(两步),LC-ESI-MS:492[M+H]。
实施例20.目标化合物15a~15k的制备
Figure PCTCN2017107416-appb-000045
操作步骤:
1)取化合物8a~8k(1.3mmol)中对应的化合物溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得目标化合物。
化学试剂以及数据表征:
目标化合物15a(R1=H),试剂:化合物8a(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率60%(两步)。1H NMR(500MHz,CDCl3):δ8.50(d,J=2.3Hz,1H),8.36(d,J=11.2Hz,1H),8.03(dd,J=8.5,2.2Hz,1H),7.44(t,J=7.9Hz,2H),7.24(d,J=7.4Hz,1H),7.21–7.15(m,2H),7.08(d,J=8.4Hz,1H),6.68–6.48(m,1H),6.28(t,J=15.9Hz,1H),5.90–5.70(brs,2H),5.68(dd,J=36.6,10.3Hz,1H),4.93–4.82(m,1.5H),4.56(d,J=12.7Hz,0.5H),4.18(d,J=12.4Hz,0.5H),4.03(d,J=13.4Hz,0.5H),3.75(t,J=11.6Hz, 0.5H),3.38(t,J=11.3Hz,0.5H),3.20(t,J=12.2Hz,0.5H),2.93(t,J=11.6Hz,0.5H),2.45–2.28(m,1H),2.27–2.22(m,1H),2.04–1.96(m,1H),1.78–1.66(m,1H).LC-ESI-MS:442[M+H]。
目标化合物15b(R1=4-氟),试剂:化合物8b(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率52%(两步)。LC-ESI-MS:460[M+H]。
目标化合物15c(R1=3-氟),试剂:化合物8c(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率63%(两步)。LC-ESI-MS:460[M+H]。
目标化合物15d(R1=2-氟),试剂:试剂:化合物8d(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率49%(两步)。1H NMR(500MHz,CDCl3)δ8.44(d,J=2.2Hz,1H),8.37(s,1H),8.05(d,J=8.4Hz,1H),7.37–7.12(m,5H),6.64–6.51(m,1H),6.35–6.23(m,1H),6.03–5.79(brs,2H),5.75–5.63(m,1H),4.94–4.78(m,1H,0.5H),4.59–4.50(m,0.5H),4.23–4.14(m,0.5H),4.08–3.98(m,0.5H),3.78–3.68(m,0.5H),3.43–3.34(m,0.5H),3.27–3.15(m,0.5H),2.97–2.88(m,0.5H),2.43–2.22(m,2H),2.05–1.97(m,1H),1.79–1.68(m,1H).LC-ESI-MS:460[M+H]。
目标化合物15e(R1=4-氯),试剂:化合物8e(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率41%(两步)。LC-ESI-MS:476[M+H]。
目标化合物15f(R1=3,4-二氟),试剂:化合物8f(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率60%(两步)。LC-ESI-MS:478[M+H]。
目标化合物15g(R1=2,6-二氟),试剂:化合物8g(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率39%(两步)。1H NMR(500MHz,CDCl3)δ8.42(d,J=1.5Hz,1H),8.33(d,J=13.2Hz,1H),8.08(d,J=8.2Hz,1H),7.32–7.24(m,1H),7.20(dd,J=13.0,7.0Hz,1H),7.04(t,J=8.0Hz,2H),6.67–6.48(m,1H),6.35–6.22(m,1H),6.16–5.87(m,3H),4.98–4.71(m,1H,0.5H),4.62–4.51(m,0.5H),4.22–4.13(m,0.5H),4.08–3.96(m,0.5H),3.78–3.64(m,0.5H),3.39–3.31(m,0.5H),3.23–3.13(m,0.5H),2.96–2.86(m,0.5H),2.42–2.19(m,2H),2.05–1.96(m,1H),1.80–1.65(m,1H).LC-ESI-MS:478[M+H]。
目标化合物15h(R1=2,3-二氟),试剂:化合物8h(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率40%(两步)。1H NMR(500MHz,CDCl3)δ8.36(d,J=2.0Hz,1H),8.29(s,1H),8.01(d,J=8.5Hz,1H),7.14(d,J=8.5Hz,1H),7.11–7.02(m,2H),7.02–6.96(m,1H),6.58–6.43(m,1H),6.27–6.17(m,1H),6.05–5.75(brs,2H),5.66–5.53(m,1H),4.88–4.71(m,1H,0.5H),4.55–4.48(m,0.5H),4.17–4.06(m,0.5H),4.00–3.91(m,0.5H),3.72–3.61(m,0.5H),3.37–3.28(m,0.5H),3.20–3.08(m,0.5H),2.91–2.83(m,0.5H),2.37–2.12(m,2H),1.98–1.89(m,1H),1.74–1.60(m,1H).LC-ESI-MS:478[M+H]。
目标化合物15i(R1=4-甲基),试剂:化合物8i(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率59%(两步)。LC-ESI-MS:456[M+H]。
目标化合物15j(R1=4-甲氧基),试剂:化合物8j(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率65%(两步)。1H NMR(400MHz,CDCl3):δ8.51(d,J=2.2Hz,1H),8.35(d,J=11.2Hz,1H),8.02(dd,J=8.5,2.2Hz,1H),7.12–7.05(m,3H),6.95-6.80(m,2H),6.66–6.47(m,1H),6.26(t,J=15.8Hz,1H),5.92–5.75(brs,1H),5.66(dd,J=36.3,10.3Hz,1H),4.95–4.86(m,1H),4.85–4.80(m,0.5H),4.58–4.51(m,0.5H),4.20–4.16(m,0.5H),4.04–3.99(m,0.5H),3.82(s,3H),3.76(t,J=11.5Hz,0.5H),3.38(t,J=11.3Hz,0.5H),3.22–3.17(m,0.5H),2.93–2.88(m,0.5H),2.45–2.28(m,1H),2.27–2.22(m,1H),2.04–1.96(m,1H),1.78–1.66(m,1H).LC-ESI-MS:472[M+H]。
目标化合物15k(R1=4-三氟甲基),试剂:化合物8k(1.3mmol),丙烯酸(1.3mmol), DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率58%(两步)。LC-ESI-MS:509[M+H]。
实施例21.目标化合物16a~16d的制备
Figure PCTCN2017107416-appb-000046
操作步骤:
1)取化合物9a~化合物9d(1.3mmol)中的对应的化合物溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得目标化合物。
化学试剂以及数据表征:
目标化合物16a(R2=4-氟),试剂:化合物9a(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率39%(两步)。LC-ESI-MS:460[M+H]。
目标化合物16b(R2=3-氟),试剂:化合物9b(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率48%(两步)。LC-ESI-MS:460[M+H]。
目标化合物16c(R2=4-甲基),试剂:化合物9c(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率51%(两步)。LC-ESI-MS:456[M+H]。
目标化合物16d(R2=6-甲基),试剂:化合物9d(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率46%(两步)。1H NMR(400MHz,CDCl3):δ8.51(d,J=2.2Hz,1H),8.35(d,J=10.9Hz,1H),7.45(t,J=7.7Hz,2H),7.23(d,J=7.4Hz,1H),7.22–7.15(m,2H),7.09–7.03(d,J=8.4Hz,1H),6.68–6.46(m,1H),6.25(t,J=15.8Hz,1H),5.95–5.79(brs,2H),5.68(dd,J=36.1,10.3Hz,1H),4.97–4.89(m,1H),4.85–4.81(m,0.5H),4.60–4.51(m,0.5H),4.21–4.16(m,0.5H),4.07–3.99(m,0.5H),3.80–3.74(t,J=11.5Hz,0.5H),3.36–3.30(t,J=11.3Hz,0.5H),3.21–3.16(m,0.5H),2.93–2.88(m,0.5H),2.55(s,3H),2.47–2.30(m,1H),2.27–2.22(m,1H),2.04–1.93(m,1H),1.80–1.65(m,1H).LC-ESI-MS:456[M+H]。
实施例22.目标化合物17a、17c~17i的制备
Figure PCTCN2017107416-appb-000047
操作步骤:
1)取化合物10a、10c~10i(1.3mmol)中对应的化合物溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mL CH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体。
目标化合物17a(R1=H),试剂:化合物10a(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率48%,1H NMR(400MHz,CDCl3)δ8.35(s,1H),8.03(t,J=8.8Hz,1H),7.45(t,J=7.8Hz,2H),7.35–7.24(m,1H),7.24–7.14(m,2H),6.93(d,J=7.8Hz,1H),6.70–6.44(m,1H),6.28(t,J=15.8Hz,1H),5.78–5.45(m,3H),4.96–4.77(m,1H,0.5H),4.58–4.43(m,0.5H),4.25–4.10(m,0.5H),4.08–3.96(m,0.5H),3.77–3.68(m,0.5H),3.45–3.33(m,0.5H),3.24–3.13(m,0.5H),3.02–2.92(m,0.5H),2.42–2.19(m,2H),2.04–1.96(m,1H),1.78–1.66(m,1H).LC-ESI-MS:460[M+H]。
目标化合物17c(R1=2-氟),试剂:化合物10c(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率42%,LC-ESI-MS:478[M+H]。
目标化合物17d(R1=3-氟),试剂:化合物10d(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率47%,LC-ESI-MS:478[M+H]。
目标化合物17e(R1=4-氯),试剂:化合物10e(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率39%,LC-ESI-MS:494[M+H]。
目标化合物17f(R1=4-甲基),试剂:化合物10f(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率35%,LC-ESI-MS:474[M+H]。
目标化合物17g(R1=4-甲氧基),试剂:化合物10g(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率32%,LC-ESI-MS:490[M+H]。
目标化合物17h(R1=2,6-二氟),试剂:化合物10h(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率20%,LC-ESI-MS:496[M+H]。
目标化合物17i(R1=2,3-二氟),试剂:化合物10i(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率26%,1H NMR(400MHz,CDCl3)δ8.38(s,1H),7.86(q,J=7.9Hz,1H),7.38(t,J=7.0Hz,1H),7.20(t,J=7.2Hz,1H),6.96(d,J=7.8Hz,1H),6.70(d,J=7.5Hz,1H),6.67–6.48(m,1H),6.37–6.23(m,1H),5.90–5.58(m,3H),4.98–4.82(m,1H,0.5H),4.63–4.59(m,0.5H),4.24–4.17(m,0.5H),4.06–3.99(m,0.5H),3.80–3.68(m,0.5H),3.43–3.33(m,0.5H),3.25–3.13(m,0.5H),2.93–2.84(m,0.5H),2.46–2.21(m,2H),2.05–1.98(m,1H),1.81–1.67(m,1H).LC-ESI-MS:496[M+H]。
实施例23.目标化合物17b的制备
Figure PCTCN2017107416-appb-000048
操作步骤:
1)取化合物10b(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mL CH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体17b,收率45%,LC-ESI-MS:460[M+H]。
实施例24.目标化合物18的制备
Figure PCTCN2017107416-appb-000049
操作步骤:
1)取化合物11(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体,收率26%,1H NMR(400MHz,CDCl3):δ8.89(s,2H),8.39(d,J=6.8Hz,1H),7.50–7.42(m,2H),7.33–7.29(m,1H),7.24(d,J=7.6Hz,2H),6.55–6.05(m,2H),5.89–5.77(m,1H),5.71–5.58(brs,2H),4.93–4.48(m,2H),4.32–4.15(m,1H),3.78–3.56(m,1H),3.33–3.08(m,1H),2.83–2.65(m,1H),2.37–2.22(m,1H),2.08–1.69(m,2H)。LC-ESI-MS:443[M+H]。
实施例25.目标化合物19的制备
Figure PCTCN2017107416-appb-000050
操作步骤:
1)取化合物12(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体,收率38%,LC-ESI-MS:442[M+H]。
实施例26.目标化合物20a~20c的制备
Figure PCTCN2017107416-appb-000051
操作步骤:
1)取化合物8a(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入取代的丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体。
化学试剂以及数据表征:
目标化合物20a(R3=CH2CH3),化合物8a(1.3mmol),(E)-戊-2-烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率53%(两步)。LC-ESI-MS:470[M+H]。
目标化合物20b(R3=CH2N(CH3)2),化合8a(1.3mmol),(E)-4-(二甲氨基)-丁-2-烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率42%(两步)。LC-ESI-MS:499[M+H]。
目标化合物20c(R3=CH2CH2OH),化合物8a(1.3mmol),(E)-5-羟戊-2-烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率21%(两步)。1H NMR(400MHz,CDCl3):δ8.51(d,J=2.2Hz,1H),8.36(d,J=11.1Hz,1H),8.04(dd,J=8.5,2.2Hz,1H),7.44(t,J=7.7Hz,2H),7.24(d,J=7.5Hz,1H),7.22–7.15(m,2H),7.07(d,J=8.4Hz,1H),6.71–6.50 (m,1H),6.21–6.10(m,1H),5.92–5.78(brs,2H),4.91–4.85(m,1H),4.77–4.72(m,0.5H),4.55–4.42(m,0.5H),4.19–4.12(m,0.5H),4.04–3.97(m,0.5H),3.78–3.50(m,3H),3.42–3.19(m,2H),3.17–3.09(m,0.5H),2.94–2.85(m,0.5H),2.43–2.27(m,2H),2.25–2.15(m,1H),2.02–1.91(m,1H),1.80–1.71(m,1H)。LC-ESI-MS:486[M+H]。
实施例27.目标化合物21a~21c的制备
Figure PCTCN2017107416-appb-000052
操作步骤:
1)取化合物8a(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入取代的丙炔酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体。
目标化合物21a(R3=CH3),化合物8a(1.3mmol),丁-2-炔酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率53%(两步)。1H NMR(400MHz,CDCl3):δ8.51(dd,J=8.7,2.2Hz,1H),8.32(d,J=22.4Hz,1H),8.08–8.02(m,1H),7.46–7.37(m,2H),7.24–7.20(m,1H),7.20–7.14(m,2H),7.08(t,J=8.0Hz,1H),6.16(brs,2H),4.91–4.73(m,1H),4.73(dd,J=12.8,4.2Hz,0.5H),4.53(dd,J=13.0,4.0Hz,0.5H),4.41(t,J=14.3Hz,1H),3.86–3.80(m,0.5H),3.41(dd,J=12.6,10.8Hz,0.5H),3.30–3.17(m,0.5H),3.01–2.90(m,0.5H),2.46–2.40(d,J=11.3Hz,0.5H),2.36–2.17(m,2H),2.06–1.97(m,3H),1.81–1.60(m,1H).LC-ESI-MS:454[M+H]。
目标化合物21b(R3=CH2N(CH3)2),试剂:化合物8a(1.3mmol),4-二甲氨基-丁-2-炔酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率62%(两步)。LC-ESI-MS:497[M+H]。
目标化合物21c(R3=CH2CH2OH),试剂:化合物8a(1.3mmol),5-羟基-戊-2-炔酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),得白色固体,收率29%(两步)。LC-ESI-MS:484[M+H]。
实施例28.目标化合物22的制备
Figure PCTCN2017107416-appb-000053
操作步骤:
1)取化合物10a(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丁-2-炔酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体,收率55%,LC-ESI-MS:472[M+H]。
实施例29.目标化合物23a~23d的制备
Figure PCTCN2017107416-appb-000054
操作步骤:
1)取化合物13a~13d(1.3mmol)中对应的化合物溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体。
化学试剂以及数据表征:
目标化合物23a(R1=H),试剂:化合物13a(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),产物为白色固体,产率49%(两步)。1H NMR(400MHz,CDCl3)δ8.49(s,1H),8.38(d,J=1.8Hz,1H),8.02(td,J=8.4,2.4Hz,1H),7.44(t,J=7.9Hz,2H),7.24(d,J=7.4Hz,1H),7.19(d,J=7.6Hz,2H),7.08(dd,J=8.5,4.6Hz,1H),6.55–6.34(m,2H),5.74–5.53(m,4H),4.17–3.95(m,3H),3.83–3.72(m,1H),2.72–2.61(m,1H),2.60–2.39(m,1H).LC-ESI-MS:428[M+H]。
目标化合物23b(R1=2-氟),试剂:化合物13b(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),产物为白色固体,产率45%(两步)。1H NMR(500MHz,CDCl3)δ8.43(s,1H),8.37(d,J=3.3Hz,1H),8.04(t,J=9.0Hz,1H),7.31–7.13(m,5H),6.53–6.35(m,2H),5.83–5.66(m,3H),5.63–5.52(m,1H),4.18–3.92(m,3H),3.86–3.65(m,1H),2.78–2.61(m,1H),2.60–2.41(m,1H).LC-ESI-MS:446[M+H]。
目标化合物23c(R1=2,6-二氟),试剂:化合物13c(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),产物为白色固体,产率42%(两步)。1H NMR(500MHz,CDCl3)δ8.40(d,J=2.8Hz,1H),8.38(d,J=3.9Hz,1H),8.06(t,J=9.0Hz,1H),7.33–7.24(m,1H),7.21(t,J=6.9Hz,1H),7.04(t,J=8.0Hz,2H),6.54–6.35(m,2H),5.87–5.66(m,3H),5.60–5.53(m,1H),4.16–3.91(m,3H),3.84–3.64(m,1H),2.73–2.60(m,1H),2.59–2.41(m,1H).LC-ESI-MS:464[M+H]。
目标化合物23d(R1=2,3-二氟),试剂:化合物13d(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),产物为白色固体,产率43%(两步)。1H NMR(500MHz,CDCl3)δ8.35(d,J=1.9Hz,1H),8.30(s,1H),8.02(d,J=8.4Hz,1H),7.16(d,J=8.3Hz,1H),7.13–7.02(m,2H),7.01–6.93(m,1H),6.55–6.28(m,2H),5.90–5.71(m,3H),5.66–5.53(m,1H),4.20–3.97(m,3H),3.87–3.69(m,1H),2.78–2.63(m,1H),2.61–2.42(m,1H).LC-ESI-MS:464[M+H]。
实施例30.目标化合物24a、24c~24e的制备
Figure PCTCN2017107416-appb-000055
1)取化合物14a、14c~14e(1.3mmol)中对应的化合物溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体。
化学试剂以及数据表征:
目标化合物24a(R1=H),试剂:化合物14a(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),产物为白色固体,产率35%(两步)。1H NMR(500MHz,CDCl3)δ8.31(d,J=2.4Hz,1H),8.05–7.93(m,1H),7.45(t,J=7.9Hz,2H),7.31–7.24(m,1H),7.19(d,J=8.2Hz,2H),6.92(dd,J=12.4,4.8Hz,1H),6.52–6.34(m,2H),5.90–5.67(m,3H),5.65–5.53(m,1H),4.19–3.94(m,3H),3.83–3.68(m,1H),2.76–2.62(m,1H),2.60–2.42(m,1H).LC-ESI-MS:446[M+H]。
目标化合物24c(R1=2-氟),试剂:化合物14c(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),产物为白色固体,产率30%(两步),LC-ESI-MS:464[M+H]。
目标化合物24d(R1=2,6-二氟),试剂:化合物14d(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),产物为白色固体,产率25%(两步),LC-ESI-MS:482[M+H]。
目标化合物24e(R1=2,3-二氟),试剂:化合物14b(1.3mmol),丙烯酸(1.3mmol),DCC(1.3mmol),DMAP(0.065mmol),产物为白色固体,产率28%(两步)。1H NMR(400MHz,CDCl3)δ8.39(d,J=2.2Hz,1H),7.86(q,J=7.8Hz,1H),7.43–7.31(m,1H),7.24–7.16(m,1H),6.96(d,J=7.9Hz,1H),6.70(dd,J=7.9,2.3Hz,1H),6.57–6.33(m,2H),5.88–5.66(m,3H),5.65–5.55(m,1H),4.19–3.94(m,3H),3.88–3.69(m,1H),2.77–2.61(m,1H),2.60–2.43(m,1H).LC-ESI-MS:482[M+H]。
实施例31.目标化合物24b的制备
Figure PCTCN2017107416-appb-000056
1)取化合物14b(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丙烯酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体24b,产率32%(两步),LC-ESI-MS:446[M+H]。
实施例32.目标化合物25a的制备
Figure PCTCN2017107416-appb-000057
操作步骤:
1)取化合物13a(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丁-2-炔酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体25a,收率52%。LC-ESI-MS:440[M+H]。
实施例33.目标化合物25b的制备
Figure PCTCN2017107416-appb-000058
操作步骤:
1)取化合物13e(1.3mmol)溶解于15mL1,4-二氧六环,于冰浴条件下,滴加5mL 2N HCl,室温搅拌过夜。减压回收溶剂得到的粗品,用甲醇重结晶,得到类白色固体,直接用于下一步反应。
2)将所得固体溶于10mLCH2Cl2,加入丁-2-炔酸(1.3mmol)、二环己基碳二亚胺(DCC,1.3mmol)、DMAP(0.065mmol),反应12小时。TLC检测反应完全后,抽滤,滤液浓缩后,以石油醚-乙酸乙酯为洗脱剂,采用柱层析分离得白色固体25b,收率49%。LC-ESI-MS:440[M+H]。
实施例34.体外Btk激酶抑制活性和体外抗肿瘤活性测试
本发明化合物的体外Btk激酶抑制活性测定方法:
将药物溶于DMSO中制成10mM(mmol/L)的储备液,并稀释至50×的测试浓度药液备用,测试浓度以3倍梯度稀释,分别为25nM(nmol/L),8.33nM,2.78nM,0.93nM,0.31nM,0.10nM。在96孔板里加入10μL 50×药物备用液,再加入90μL 1×激酶缓冲液,在振荡器上震荡10分钟。从96孔板各孔取5μL转移至384孔板,384孔板里设2复孔。
激酶反应:
准备2.5×激酶缓冲液:将酶加入1×激酶基础缓冲液中。
准备2.5×短肽溶液:将FAM标记的短肽和ATP加入1×激酶基础缓冲液中。
在加有5μL药液384孔板中,加入10μL 2.5×激酶缓冲液,室温孵育10分钟。在384孔板中加入10μL 2.5×短肽溶液,28℃孵育1小时。加入25μL终止液停止反应。读数,并计算化合物对酶的抑制率,拟合计算出BTK激酶的IC50,测试结果见表1。
选用不同的实体瘤和白血病细胞株对所合成的化合物进行了体外抗肿瘤活性的测定:
细胞株:人肺癌细胞(A549)、人套细胞淋巴瘤(MINO)、弥漫性巨型B细胞淋巴瘤(OCI-LY10)、人弥漫大B淋巴瘤(TMD-8)。
培养基:A549:RPMI 1640+胎牛血清
MINO:RPMI 1640+胎牛血清
OCI-LY10:IMDM+胎牛血清
TMD-8:MEM+胎牛血清
药物配制方法:将药物溶于DMSO中制成10mM的储备液,并按一定比例稀释得到5个不同浓度(测试浓度100×)。肿瘤细胞体外培养:
将所选取的四株肿瘤细胞A549、MINO、OCI-LY10、TMD-8,于37℃、5%CO2细胞培养箱中孵育,待细胞密度长到70~90%时传代(贴壁细胞用Duck’s EDTA消化后传代),用于以后实验所需。
肿瘤细胞A549、MINO、OCI-LY10、TMD-8,在96孔板上种入4000个/200μL/孔,于37℃、5%CO2细胞培养箱中孵育过夜。每孔加入化合物2μL,终浓度为50μM,10μM,2μM,0.4μM,0.08μM共同于37℃、5%CO2细胞培养箱中孵育72小时,以DMSO(2%)为对照组。72小时后,加入20μL CCK-8溶液,置于37℃、5%CO2细胞培养箱中4小时。用加了相应量细胞培养液和CCK-8溶液但没有加入细胞的孔作为空白对照。用酶标仪在450nm测定吸光度(OD值),所得数据用于计算IC50,测试结果见表2。
细胞抑制率的计算公式为:细胞抑制率%=[(对照组OD值-空白组OD值)-(用药组OD值-空白组OD值)]/(对照细胞OD值-空白组OD值)×100%,用CalcuSyn软件计算求得半数 抑制浓度(IC50)。
表1部分化合物对BTK激酶抑制活性
化合物 BTK(IC50,nM) 化合物 BTK(IC50,nM)
伊布替尼 2.1 16b 8.6
I 2.2 16c 6.6
II 14 16d 7.2
15a 3.2 17a 1.2
15b 9.5 17i 1.2
15c 8.6 18 10.3
15d 7.5 19 5.3
15e 10.5 20a 18.6
15f 25.3 23a 4.4
15g 7.8 23b 9.6
15h 3.2 23c 9.7
15i 6.5 23d 7.4
15j 32.5 24a 2.5
15k 18.2 24e 1.8
16a 8.9 25a 25.1
化合物I和II为本发明人前期研究已公开专利(专利申请号:201510242552.8,201610286399.3)中报道的代表化合物(化合物I和II的具体结构请参见本发明背景技术部分)。
表1中数据表明,本发明得到的所有的化合物对BTK具有明显的抑制活性,化合物17a活性优于阳性对照伊布替尼、化合物I(专利申请号:201510242552.8)活性相当,说明在芳香环引入氮原子不影响对BTK的抑制活性,此外,化合物17a的BTK抑制活性比化合物II(201610286399.3)强11.7倍。其他衍生物同样表现出强效的BTK抑制活性,IC50介于1.2至32.5之间,具有进一步的应用前景。
表2部分化合物体外肿瘤细胞增殖抑制活性
Figure PCTCN2017107416-appb-000059
Figure PCTCN2017107416-appb-000060
结果表明,在细胞水平上,所测试的大部分化合物表现出明显的肿瘤细胞增殖抑制活性,包括血液瘤和实体瘤。因此,本发明所涉及的可用作BTK抑制剂具有广阔的抗肿瘤应用前景。
实施例35.hERG钾离子通道抑制活性实验
1.细胞培养
本试验所用的细胞为转染有HergCdna与稳定表达Herg通道的CHO细胞系(由丹麦Sophion Bioscience公司提供)。细胞培养在含有下列成分的培养基中(皆来源于Invitrogen):Ham’s F12培养基,10%(v/v)灭活的胎牛血清,100μg/ml潮霉素B,100μg/ml Geneticin。2.1.2CHO Herg细胞生长于含上述培养液的培养皿中,并在37o C、含5%CO2的培养箱中进行培养。电生理实验之前24到48小时,CHO Herg细胞被转移到放置于培养皿中的圆形玻璃片上,并在以上相同的培养液及培养条件下生长。每个圆形玻片上CHO Herg细胞的密度需要达到绝大多数细胞是独立、单个的要求。
2.化合物处理和稀释
为了取得化合物的IC50,我们选择了下列浓度(30,10,3,1,0.3和0.1Μm)来作测试。在试验之前,首先用DMSO以梯度稀释的方式稀释成10,3,1,0.3和0.1Mm的贮备液,再用细胞外液稀释成最终的Μm测试浓度。除了30Μm的化合物测试溶液中的DMSO浓度为0.3%以外,其它各浓度化合物溶液中DMSO的最终浓度都为0.1%。阳性对照Cisapride(西沙比利)的测试浓度为0.1Μm。所有的化合物溶液都经过常规的5到10分钟超声和振荡以保证化合物完全溶解。
3.电生理记录系统和数据分析
本实验采用手动膜片钳系统(HEKA EPC-10信号放大器及数字转换系统,购自德国HEKA Electronics)作全细胞电流的记录。表面生长有CHO Herg细胞的圆形玻片被放置于倒置显微镜下的电生理记录槽中。记录槽内以细胞外液作持续灌流(大约每分钟1毫升)。实验过程采用常规全细胞膜片钳电流记录技术。如无特殊说明,实验都是在常规室温下进行(~25℃)。细胞钳制在-80Mv的电压下。细胞钳制电压去极化到+20Mv以激活Herg钾通道,5秒后再钳制到-50Mv以消除失活并产生尾电流。尾电流峰值用作Herg电流大小的数值。上述步骤所记录的hERG钾电流在记录槽内持续的细胞外液灌流下达到稳定后则可以叠加灌流待测试的药物,直到药物对hERG电流的抑制作用达到稳定状态。一般以最近的连续3个电流记录线重合作为判断是否稳定状态的标准。达到稳定态势以后以细胞外液灌流冲洗直到hERG电流回复到加药物之前的大小。一个细胞上可以测试一个或多个药物,或者同一种药物的多个浓度,但是在不同药物之间需要以细胞外液冲洗。Cisapride(西沙必利,购自Sigma)被用于实验中作为阳性对照以保证所使用的细胞质量正常。试验数据由HEKA Patchmaster,Microsoft Excel以及Graphpad Prism提供的数据分析软件进行分析,测试结果见表3。
表3部分化合物对hERG钾离子通道阻滞活性
化合物名称 hERG IC50(μM)
伊布替尼 3.51
I 0.91
II 5.19
15a 15.48
15b 11.6
15i 13.5
15j 17.5
16a 6.9
17a 7.8
19 10.6
20a 14.8
21c 25.2
23a 18.2
24a 7.66
25a 13.6
化合物I和II为本发明人前期研究已公开专利(专利申请号:201510242552.8,201610286399.3)中报道的代表化合物(化合物I和II的具体结构请参见本发明背景技术部分)。
表3的测试结果表明,本发明涉及的化合物的hERG通道阻滞作用方面的效应明显偏弱,例如,化合物15a的IC50为15.48μM,其IC50是伊布替尼的4.41倍,与我们公开的BTK专利文献(专利申请号:201610286399.3)上的化合物II相比,其IC50是II的2.98倍。由于hERG通道阻滞作用与药物的心脏毒性风险相关。因此,该类化合物的低hERG钾离子通道阻滞活性有利于降低毒副作用风险,提高其成药性。
实施例36.激酶选择性实验
按要求准备实验中检测各自激酶的1×激酶基础缓冲液和反应停止缓冲液。
待测化合物配置:
1)DMSO配置50×化合物储备液(储备液同实施例20中储备液)待用;
2)在96孔板中按5倍浓度梯度稀释的方法每个化合物,至6到7个浓度保证每孔中药物体积为10μl,同时加入100μlDMSO作为空白对照组,以及不加酶底物的阴性对照组;
3)再另外准备一块96孔板,取10μl上述化合物加入90μl 1×激酶基础缓冲液,混匀10min。
待测板准备:
1)取上述配置的96孔板中混合液5μl至384孔板,每个化合物两个复孔。
激酶反应:
1)配置2.5×激酶溶液,加入相应1×激酶基础缓冲液;
2)配置2.5×多肽溶液,在1×激酶基础缓冲液中加入FAM标记的多肽和ATP;
3)在待测384孔板中加入10μl的2.5×激酶溶液,室温放置10min,继而加入10μl的2.5×多肽溶液,28℃下反应1h后加入25μl反应停止缓冲液。
Caliper程序读板,并利用数据获得相应化合物抑制激酶的IC50值,测试结果见表4。
表4部分化合物对多种激酶的抑制活性(IC50,nM)
激酶 伊布替尼 I 15a 17a 24a
ITK 186 428 >1000 >1000 >1000
BLK 0.58 1.6 30 11 5.4
CSK 37 180 >1000 >1000 >1000
FGR 8.0 27 >1000 >1000 >1000
HCK 179 >1000 >1000 >1000 >1000
JAK3 105 901 >1000 >1000 >1000
FLT3 231 350 >1000 >1000 >1000
化合物I为本发明人前期研究已公开专利(专利申请号:201510242552.8)中报道的代表化合物(化合物I的具体结构请参见本发明背景技术部分)。
表4的测试结果表明,本发明设计的化合物对激酶的选择性优势明显,以化合物15a为例,其对ITK、CSK、FGR、HCK、JAK3、FLT3等激酶的抑制活性很弱,大多数激酶的活性均大于1000nM,因此,其对BTK的激酶选择性明显优于伊布替尼和化合物I,因而,该类化合物在因选择性不佳引起的副作用方面将具有明显的优势。
实施例37.药物口服药代动力学实验
实验方法:
以SD大鼠为实验动物,灌胃给药10mg/kg,尾静脉静注给药2mg/kg。灌胃给药的尾静脉取血时间点为0.17,0.33,0.5,1,1.5,2,4,6,8,12,24小时;静脉给药取血时间点为0.05,0.1,0.17,0.5,1,2,4,6,8,12,24小时。取全血0.3ml,离心后取血浆0.1ml采用LC-MS进行分析。
表5 SD大鼠口服给药后主要药动学参数汇总
Figure PCTCN2017107416-appb-000061
以伊布替尼为参比,分别考察了化合物15a、24a和24e在大鼠体内的药代动力学性质,表5和6测试结果表明,化合物15a、24a和24b的口服生物利用度有明显改善,与伊布替尼相比,分别是它的1.67、4.62和3.69倍,因此,本发明涉及的化合物可通过口服吸收给药用于疾病的治疗。
实施例38:化合物15a、17a、24a和24e对Mino皮下异种移植肿瘤模型的体内药效学研究
实验方法:
在CB17SCID小鼠中,将含5x 10^6个Mino细胞的0.2mL细胞悬液皮下接种于每只小鼠的右后背,肿瘤平均体积达到约139.94mm3(接种后第26天)时开始分组给药(灌胃给药,一天两次,共14天)。每天监测动物的健康状况及死亡情况,每周两次用游标卡尺测量肿瘤直径,考察肿瘤生长是否可以被抑制、延缓或治愈。肿瘤体积的疗效用TGI评价,TGI(%)=(1-(TVControl-Dn-TVControl-D0)/(TVtreatment-Dn-TVtreatment-D0)/×100%,TVControl为对照组瘤体积,TVTreatment为治疗组瘤体积。TGI≥58%,认为此药有效。肿瘤重量的疗效用TGI%评价,瘤重抑制率(TGI)%=(TWc-TWT)/TWc×100%,TWc:对照组瘤重,TWT:治疗组瘤重。根据NIH指导原则TGI≥58%,认为此药有效。
表6 Mino皮下异种移植肿瘤模型的体内药效学治疗结果
组别 TGI*(14天)(%) TGI**(14天)(%)
空白组 - -
II 59.14 58.29
15a 65.01 61.00
17a 82.54 74.05
24a 73.80 65.19
24e 68.04 62.16
注:TGI*:以肿瘤体积计算;TGI**:以肿瘤重量计算。化合物II为本发明人前期研究已公开专利(专利申请号:201610286399.3)中报道的代表化合物(化合物II的具体结构请参见本发明背景技术部分)。
试验结果:给药期间,小鼠体重均表现良好。最后一次给药结束,取瘤,称重,瘤重TGI评价显示,TGI均大于58%(见表6),表现出很好的抑瘤效果。本发明涉及的化合物体内肿瘤活性与化合物II相比,具有一定的优势。
实施例39:使用化合物15a、17a、24a和24e治疗类风湿性关节炎
在Balb/c小鼠中,通过给予抗胶原蛋白抗体和脂多糖诱导关节炎(Nandakumar等,Am.J.Pathol.2003,163:1827-1837)。
具体方法如下:在第0天,在雌性Balb/c小鼠静脉内注射100mg/kg抗II型胶原蛋白的Chemico mAb合剂,在第1天,腹膜内注射1.25mg/kg脂多糖。在第2天至12天,按10mg/kg的化合物15a、17a、24a和24e,每天口服给药1次。第13天腹腔麻醉后,股动脉取血4ml左右,3000r/min离心20min,取血清使用试剂盒检测IL-1β,同时观测相关组织样本,IL-1β测试结果见表7。
表7 IL-1β检测结果
组别 IL-1β(ng/L)
空白组 15.32±5.6
模型组 35.55±9.2
15a 18.72±6.6
17a 17.25±3.9
24a 19.32±4.2
24e 20.45±5.1
结果表明,化合物15a、17a、24a和24e均具能明显减少血清中IL-1β的含量,具有体内抗类风湿性关节炎的作用。同时,模型组中出现的炎性细胞浸润、滑膜增生、炎性肉芽组织形成,坏死组织出现等现象在化合物15a、17a、24a和24e治疗后得到明显改善。

Claims (19)

  1. 一种化合物,其特征在于,其具有通式I或通式I’的结构:
    Figure PCTCN2017107416-appb-100001
    或其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:Ra,Rb,Rc独立选自H、卤素、-CF2H、-CF3、-CN、C1-C3的烷基、-L-取代或非取代的C5-C12杂芳基、-L-取代或非取代的C5-C12芳基,其中L是键、O、S、-S(=O)、-S(=O)2、NH、C(O)、CH2、-NHC(O)O、-NHC(O)或-C(O)NH;
    n选自0、1、2;
    Rd选自
    Figure PCTCN2017107416-appb-100002
    Re选自H、CH3、C2-C6的烷基,C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
    Y1,Y2,Y3,Y4独立选自C(Rf)、N,且至少有一个为N,Rf选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
  2. 一种化合物,其特征在于,其具有通式II或II’的结构:
    Figure PCTCN2017107416-appb-100003
    或其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、-CN、C1-C3的烷基、C1-C3的烷氧 基;
    n选自0、1、2;
    Rd选自
    Figure PCTCN2017107416-appb-100004
    Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
    Y1,Y2,Y3,Y4独立选自C(Rf)、N,且至少有一个为N,Rf选自H、卤素、C1-C3的烷基,-CF3、-CF2H。
  3. 一种化合物,其特征在于,其具有通式III或III’或III”的结构:
    Figure PCTCN2017107416-appb-100005
    及其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
    n选自0、1、2;
    Rd选自
    Figure PCTCN2017107416-appb-100006
    Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
    Y1,Y2独立选自C(Rf)、N,Rf选自H、卤素、C1-C3的烷基,-CF3、-CF2H。
  4. 一种化合物,其特征在于,其具有通式IV或IV’或IV”的结构:
    Figure PCTCN2017107416-appb-100007
    及其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
    n选自0、1、2;
    Rd选自
    Figure PCTCN2017107416-appb-100008
    Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
    Rh独立选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
  5. 一种化合物,其特征在于,其具有通式V或通式V’或通式V”的结构:
    Figure PCTCN2017107416-appb-100009
    及其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
    n选自0、1、2;
    Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基,C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
    Rh独立选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
  6. 一种化合物,其特征在于,其具有通式VI或VI’或VI”的结构:
    Figure PCTCN2017107416-appb-100010
    及其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
    n选自0、1、2;
    Rh独立选自H、卤素、C1-C3的烷基,-CF3、-CF2H。
  7. 一种化合物,其特征在于,其具有通式VI-a或者VI-a’或VI-a”的结构:
    Figure PCTCN2017107416-appb-100011
    及其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
    Rh独立选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
  8. 一种化合物,其特征在于,其具有通式VI-a-1或VI-a-2的结构:
    Figure PCTCN2017107416-appb-100012
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
    Ri独立选自H、卤素、C1-C3的烷基、-CF3、-CF2H。
  9. 一种化合物,其特征在于,其具有通式VII或VII’或VII”的结构:
    Figure PCTCN2017107416-appb-100013
    及其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
    n选自0、1、2;
    Re选自H、CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基,其中的CH3、C2-C6的烷基、C1-C6的氮杂烷基、C1-C6的氧杂烷基可进一步被氨基、羟基、C1-C3的烷基所取代;
    Rh独立选自H、卤素、C1-C3的烷基,-CF3、-CF2H。
  10. 一种化合物,其特征在于,其具有通式VIII或VIII’或VIII”的结构:
    Figure PCTCN2017107416-appb-100014
    及其光学异构体或其药学上可接受的盐或溶剂合物;
    其中:每一个Rg独立地是H、卤素、-CF2H、-CF3、C1-C3的烷基、C1-C3的烷氧基;
    n选自0、1、2;
    Rh独立选自H、卤素、C1-C3的烷基,-CF3、-CF2H。
  11. 一种化合物,其特征在于,具有如下结构之一:
    Figure PCTCN2017107416-appb-100015
    Figure PCTCN2017107416-appb-100016
    Figure PCTCN2017107416-appb-100017
    及其光学异构体或其药学上可接受的盐或溶剂合物。
  12. 一种如权利要求1、2、3、4、5、9中任一项所述的化合物,其所述氮杂烷基是指C1-C6的烷基上1个或多个碳原子被氮原子取代;所述氧杂烷基是指C1-C6的烷基上1个或多个碳原子被氧原子取代。
  13. 一种药物组合物,其特征在于,包括如权利要求1至12中任意一项所述的化合物中的一种或多种。
  14. 一种药物制剂,其特征在于,包含至少一种活性组分,所述活性组分是如权利要求1至12中任意一项所述的化合物中的一种或多种。
  15. 一种如权利要求1至12中任意一项所述的化合物在制备治疗从布鲁顿酪氨酸激酶活性的抑制中获益的疾病、障碍或病症药物中的应用。
  16. 一种如权利要求1至12中任意一项所述的化合物在制备单独或和其他药物联合使用治疗细胞增生疾病药物中的应用。
  17. 一种如权利要求1至12中任意一项所述的化合物在制备单独或和其他药物联合使用治疗癌症药物中的应用。
  18. 一种如权利要求1至12中任意一项所述的化合物在制备单独或和其他药物联合使用治疗自身免疫性疾病药物中的应用。
  19. 一种如权利要求1至12中任意一项所述的化合物在制备单独或和其他药物联合使用治疗类风湿性关节炎和红斑狼疮药物中的应用。
PCT/CN2017/107416 2016-11-15 2017-10-24 一种选择性布鲁顿酪氨酸激酶抑制剂及其应用 WO2018090792A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019546960A JP6782855B2 (ja) 2016-11-15 2017-10-24 選択性ブルトン型チロシンキナーゼ阻害剤及びその使用
EP17871671.8A EP3543239B1 (en) 2017-10-24 Selective bruton's tyrosine kinase inhibitor and use thereof
US16/346,448 US10711006B2 (en) 2016-11-15 2017-10-24 Selective Bruton's tyrosine kinase inhibitor and use thereof
CA3043376A CA3043376A1 (en) 2016-11-15 2017-10-24 L-h-pyrazolo[3,4-d]pyrimidinyl derivatives and pharmaceutical compositions thereof useful as selective bruton's tyrosine kinase inhibitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611014370 2016-11-15
CN201611014370.6 2016-11-15
CN201710789936.0 2017-09-05
CN201710789936 2017-09-05

Publications (1)

Publication Number Publication Date
WO2018090792A1 true WO2018090792A1 (zh) 2018-05-24

Family

ID=62145232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107416 WO2018090792A1 (zh) 2016-11-15 2017-10-24 一种选择性布鲁顿酪氨酸激酶抑制剂及其应用

Country Status (5)

Country Link
US (1) US10711006B2 (zh)
JP (1) JP6782855B2 (zh)
CN (1) CN108069974B (zh)
CA (1) CA3043376A1 (zh)
WO (1) WO2018090792A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369654A (zh) * 2018-11-20 2019-02-22 山东大学 1,3-二取代-4-氨基吡唑并嘧啶类化合物及其制备方法和应用
WO2020188015A1 (en) 2019-03-21 2020-09-24 Onxeo A dbait molecule in combination with kinase inhibitor for the treatment of cancer
WO2021089791A1 (en) 2019-11-08 2021-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of cancers that have acquired resistance to kinase inhibitors
WO2021148581A1 (en) 2020-01-22 2021-07-29 Onxeo Novel dbait molecule and its use
WO2022140246A1 (en) 2020-12-21 2022-06-30 Hangzhou Jijing Pharmaceutical Technology Limited Methods and compounds for targeted autophagy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483520B (zh) * 2018-05-14 2021-04-16 杭州和正医药有限公司 布鲁顿酪氨酸激酶抑制剂的晶型、制备方法及其应用
CN112538082B (zh) * 2019-09-20 2023-05-09 鲁南制药集团股份有限公司 作为btk抑制剂的吡唑并氧代二氮杂类化合物
CN113527300B (zh) * 2020-06-04 2023-02-03 广州百霆医药科技有限公司 布鲁顿酪氨酸蛋白激酶抑制剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188173A1 (en) * 2013-05-20 2014-11-27 Redx Pharma Limited Pyrazolopyrimidine derivatives useful as inhibitors of bruton's tyrosine kinase
CN105777759A (zh) * 2016-04-29 2016-07-20 杭州和正医药有限公司 一种布鲁顿酪氨酸激酶抑制剂
WO2016145935A1 (zh) * 2015-03-19 2016-09-22 浙江导明医药科技有限公司 优化的联合用药及其治疗癌症和自身免疫疾病的用途
CN106146518A (zh) * 2016-06-30 2016-11-23 苏州爱玛特生物科技有限公司 一种布鲁顿酪氨酸激酶抑制剂中间体及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219373A (ja) * 2003-06-13 2006-08-24 Daiichi Asubio Pharma Co Ltd Pde7阻害作用を有するピリジニルピラゾロピリミジノン誘導体
US7851468B2 (en) * 2006-05-15 2010-12-14 Cephalon, Inc. Substituted pyrazolo[3,4-d]pyrimidines
EP2529621B1 (en) * 2006-09-22 2016-10-05 Pharmacyclics LLC Inhibitors of bruton's tyrosine kinase
CA3001152A1 (en) * 2007-03-28 2008-10-09 Pharmacyclics Llc Inhibitors of bruton's tyrosine kinase
CA2841080A1 (en) * 2011-07-13 2013-01-17 Pharmacyclics, Inc. Inhibitors of bruton's tyrosine kinase
AU2012325804B2 (en) * 2011-10-19 2017-09-07 Pharmacyclics Llc Use of inhibitors of Bruton's tyrosine kinase (Btk)
CN105017256A (zh) * 2014-04-29 2015-11-04 浙江导明医药科技有限公司 多氟化合物作为布鲁顿酪氨酸激酶抑制剂
CN105461720B (zh) * 2014-08-08 2019-08-06 南京圣和药业股份有限公司 吗啉类酪氨酸激酶抑制剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188173A1 (en) * 2013-05-20 2014-11-27 Redx Pharma Limited Pyrazolopyrimidine derivatives useful as inhibitors of bruton's tyrosine kinase
WO2016145935A1 (zh) * 2015-03-19 2016-09-22 浙江导明医药科技有限公司 优化的联合用药及其治疗癌症和自身免疫疾病的用途
CN105777759A (zh) * 2016-04-29 2016-07-20 杭州和正医药有限公司 一种布鲁顿酪氨酸激酶抑制剂
CN106146518A (zh) * 2016-06-30 2016-11-23 苏州爱玛特生物科技有限公司 一种布鲁顿酪氨酸激酶抑制剂中间体及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C.A. JEFFRIES ET AL., J. BIO. CHEM., vol. 278, 2003, pages 26258 - 26264
N. J. HORWOOD ET AL., J. EXP. MED., vol. 197, 2003, pages 1603 - 1611
NANDAKUMAR ET AL., AM. J. PATHOL., vol. 163, 2003, pages 1827 - 1837
ZAPF, C.W. ET AL.: "Covalent Inhibitors of Interleukin-2 Inducible T Cell Kinase (Itk) with Nanomolar Potency in a Whole-Blood Assay", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 22, 25 October 2012 (2012-10-25), pages 10047 - 10063, XP055082084 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369654A (zh) * 2018-11-20 2019-02-22 山东大学 1,3-二取代-4-氨基吡唑并嘧啶类化合物及其制备方法和应用
WO2020188015A1 (en) 2019-03-21 2020-09-24 Onxeo A dbait molecule in combination with kinase inhibitor for the treatment of cancer
WO2021089791A1 (en) 2019-11-08 2021-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of cancers that have acquired resistance to kinase inhibitors
WO2021148581A1 (en) 2020-01-22 2021-07-29 Onxeo Novel dbait molecule and its use
WO2022140246A1 (en) 2020-12-21 2022-06-30 Hangzhou Jijing Pharmaceutical Technology Limited Methods and compounds for targeted autophagy

Also Published As

Publication number Publication date
EP3543239A1 (en) 2019-09-25
US20190276461A1 (en) 2019-09-12
JP2019535820A (ja) 2019-12-12
CA3043376A1 (en) 2018-05-24
JP6782855B2 (ja) 2020-11-11
CN108069974B (zh) 2019-12-10
CN108069974A (zh) 2018-05-25
US10711006B2 (en) 2020-07-14
EP3543239A4 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2018090792A1 (zh) 一种选择性布鲁顿酪氨酸激酶抑制剂及其应用
CN107849034B (zh) Egfr抑制剂及其使用方法
JP7347853B2 (ja) 置換ピラゾロ[1,5-a]ピリジン化合物、該化合物を含む組成物およびその使用
JP5795630B2 (ja) 抗癌及び抗増殖活性を示すシクロプロピルジカルボキサミド及び類似体
KR102317334B1 (ko) NIK 억제제로서의 신규 1-(4-피리미디닐)-1H-피롤로[3,2-c]피리딘 유도체들
JP7397452B2 (ja) ヘテロアリールカルボキシアミド化合物
JP2021191770A (ja) 抗癌活性及び抗増殖活性を呈する2−アミノピリミジン−6−オン及び類似体
JP6106899B2 (ja) 抗がん剤としての高選択性c−Met阻害剤
CN104302292A (zh) 表现出抗癌和抗增殖活性的吡啶酮酰胺以及类似物
JP6301374B2 (ja) キナーゼ阻害剤としてのキナゾリン類
CN109651359B (zh) 取代的烟酰胺类化合物及药物组合物及其用途
CN110546145B (zh) 一种氮杂芳基衍生物、其制备方法和在药学上的应用
KR20150068484A (ko) Syk 억제제
JP2021514399A (ja) Egfrの阻害剤およびその使用法
WO2023030335A1 (zh) 作为tyk2/jak1假激酶结构域抑制剂的化合物及合成和使用方法
JP6913955B2 (ja) PI3K/mTOR阻害剤としての溶融キノリン化合物
WO2020238179A1 (zh) 作为选择性jak2抑制剂的吡咯并嘧啶类化合物、其合成方法及用途
WO2019057112A1 (zh) 2-取代吡唑氨基-4-取代氨基-5-嘧啶甲酰胺类化合物、组合物及其应用
CN108947974A (zh) 一种氨基嘧啶类化合物及包含该化合物的组合物及其用途
WO2021129841A1 (zh) 用作ret激酶抑制剂的化合物及其应用
WO2016180334A1 (zh) 双位点不可逆布鲁顿酪氨酸激酶抑制剂、组合物及其应用
TW201504239A (zh) 蛋白酪氨酸激酶抑制劑及其應用
EP3543239B1 (en) Selective bruton's tyrosine kinase inhibitor and use thereof
JP2021514397A (ja) Egfr阻害剤の組合せ医薬製剤およびその使用法
JP2021501749A (ja) Btk阻害剤化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3043376

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019546960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017871671

Country of ref document: EP

Effective date: 20190617