Nothing Special   »   [go: up one dir, main page]

WO2018084529A1 - 검체 내 분석물을 검출하기 위한 디바이스 및 이를 이용한 검출방법 - Google Patents

검체 내 분석물을 검출하기 위한 디바이스 및 이를 이용한 검출방법 Download PDF

Info

Publication number
WO2018084529A1
WO2018084529A1 PCT/KR2017/012156 KR2017012156W WO2018084529A1 WO 2018084529 A1 WO2018084529 A1 WO 2018084529A1 KR 2017012156 W KR2017012156 W KR 2017012156W WO 2018084529 A1 WO2018084529 A1 WO 2018084529A1
Authority
WO
WIPO (PCT)
Prior art keywords
analyte
light
light source
sample
detecting
Prior art date
Application number
PCT/KR2017/012156
Other languages
English (en)
French (fr)
Inventor
유승범
김은경
이선희
박소영
박정연
손미진
Original Assignee
주식회사 수젠텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 수젠텍 filed Critical 주식회사 수젠텍
Publication of WO2018084529A1 publication Critical patent/WO2018084529A1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a device for measuring an analyte in a sample and an analysis method of an analyte using the same. More specifically, regression analysis parameter information is inputted from an electronic device to an analytical device by wireless communication. This concerns the analysis method using the inspection device with identification.
  • Methods for analyzing materials include gas chromatography, mass spectrometry, high-performance liquid chromatography, thin-layer chromatography, and electrophoresis (Electrophoresis), Electrochemistry, Infrared Spectroscopy, Raman Spectroscopy, X-ray Flourescene Ultraviolet / Visible Spectroscopy, etc. Analytical methods are widely used in natural sciences, engineering research and industries such as medicine, pharmaceuticals and the environment.
  • the optical detection method is similar to the electrochemical measurement method, and it is easy to use, accurate, inexpensive, compact and portable, and has the advantage of using a wide variety of reactions. Biochemistry, Immunology, Enzymatics, Molecular Biology, Food Science, etc.
  • Korean Patent Publication No. 10-0384795 discloses a spectrophotometer.
  • the analytical methods and systems described above use devices containing at least one light source, and react solid or liquid reactions on specific devices in the form of strips or tubes.
  • the test device is inserted in the late stage that caused the measurement, and the measurement is performed with the external light blocked.
  • Immunochromatography uses solid nanoporous or latex particles as the porous membrane and the label to develop reaction reactions, and then measures the reaction in such a way that the label is accumulated on the test line by the antigen-antibody reaction.
  • immunochromatography is easy to operate and can be easily observed with the naked eye depending on the label, it is widely used for self-measurement of pregnancy or ovulation, drug abuse test, glycated hemoglobin test, cardiovascular disease test, and infectious disease test. .
  • Immunochromatography also consists of a control zone that can verify that the reaction occurred correctly in addition to the antigen-antibody reaction test area. If the amount of the sample is small or if the reaction does not occur, there may be no signal in the control area. If the concentration of the analyte in the sample is high, the control zone signal may not be reduced or shown by the prozone phenomenon. Techniques related to immunochromatography are described in US Pat. Nos. 5,073,484, US 5,591,645, US 5,559,041, US 6,485,982 and other documents.
  • Microfluidics is a method that allows for simple analysis of samples in the field by micromachining to create a uniform structure to move the solution by capillary phenomena. Examples related to this are US 6,767,510, US 8,025,854. Described in the literature.
  • the reaction can be confirmed by the naked eye.
  • the inspection result may be different by the subject's supervision without obtaining quantitative results. Since it is difficult to detect abnormal reactions caused by the error of the inspector or to measure the exact test time, various technologies and products are being developed according to the requirements of the device capable of analyzing them.
  • Examples of such analytical devices and methods include capturing an image of an inspection device using an analytical device including an imaging device such as a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS).
  • an imaging device such as a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS).
  • CCD charge-coupled device
  • CMOS complementary metal-oxide-semiconductor
  • the light source and the light receiver are used to measure the reaction of the test device.
  • analytical devices and methods for moving and scanning or for measuring signals and noise in a fixed way are used.
  • the scanning unit scans the inspection device using the light source unit and the light receiving unit.
  • one light receiver can be used, it is possible to reduce the error caused by the light source or the deviation of the light receiver, but it is not easy to miniaturize because it requires a driving device to move the inspection device or the optical unit. Since the background noise has to be calculated, the process is complicated and difficult.
  • the method of fixing the light source, the light receiving unit and the inspection device has been applied to various products due to the advantages of miniaturization and simple measurement.
  • Examples of products using this method include the Jewelry Digital Pregnancy Test (Suzentech, South Korea), AlCNow (Siemens, Germany), Clearblue digital pregnancy test (Swiss Precision Diagnostics, Switzerland), FirstResponse digital pregnancy test (Church & Dwight, USA) And related technologies are registered in Korea
  • the analysis device distinguishes this by providing an optically distinguishable code.
  • Korean Patent No. 10-0949114 describes an analysis method using a biodrive, including the type of test strip (chromatography strip, electrode strip). It shows how to insert a barcode into the device to provide a strip ID to indicate the analyte type, etc.
  • a separate device such as a barcode reader to provide this information.
  • Korean Patent No. 10-606149 discloses a color coding sequence.
  • Reflectance spectrophotometers provide information that allows the software to retrieve information from measurement parameters, including specific analytical samples that the strip detects.
  • this method has the disadvantage that it is difficult to implement in a compact analysis device.
  • a method of providing a color identification part to a device and recognizing it through a tricolor light source part and a light receiving part as described in Korean Patent Registration No. 10-1323373 is known.
  • the light consists of blue, red, and green LEDs (light emitting diodes), which are more expensive than monochromatic LEDs. It is expensive and has a lot of relative power consumption. It is also provided to analyze the color pattern, barcode and QR code to automatically identify the type of diagnostic strip, but the photodiode holding the reference value of the light receiver is identified. Spatially separated from the indicator and strip measurement area
  • red color may be left unspecifically on the strip background.
  • the red stripe background can then be recognized to represent false positives.
  • the method of using the code chip is separate from the inspection device and the measuring device.
  • Such wireless communication can be utilized for analyzing and managing the results of the analysis device after transmitting the result value of the analysis device to the smart device, and the combination of the wireless communication device and the analysis device used is Korean Patent Registration No. 10-1323373, Korean Patent Registration No. 10- 1337340, US Patent US 8,435,738, US Patent Publication US 2010-0110439, US Patent Publication US 2012-0264232 and the like.
  • the purpose of the present invention is to provide a test that includes a semi-ung strip and device identification.
  • An apparatus for detecting an analyte including a device; and an analysis device including a light source unit, a light receiver, and a wireless communication module.
  • Another object of the present invention is to provide a device for detecting an analyte in a sample.
  • a parameter value for regression analysis is passed to a microanalysis device, and then a method of identifying a test device that interacts with specific information and providing a method for detecting an analyte in a sample.
  • the present inventors have made it possible to easily and efficiently identify various types of test devices by analyzing the reactions between the analyte generated in the test device and the light receiving part and the light receiving part in a fixed manner. Efforts have been made to develop methods for applying parameter values for analysis.
  • the present inventors transmit the parameter value and the lot recognition information inputted to the electronic device equipped with the radio communication module to the analysis device, and provide the device with the device identification part that can optically recognize the lot information.
  • the present invention has been completed by identifying the optical arrangement and analysis method of an analytical device capable of identifying the device.
  • An example of the present invention is an examination involving a semi-ung strip and a device identification.
  • the semi-ung strip is composed of a porous film such as nitro sal, cellulose paper,
  • It can be manufactured in various materials such as fiberglass, plastic and glass.
  • the reaction strip includes an inspection zone, a control zone and a background zone.
  • the test zone may contain reaction materials that react with the analyte present in the sample.
  • the reaction may be of an antigen-antibody reaction, an enzyme reaction, a ligand-receptor reaction, or a biochemical reaction, and may be, for example, but not limited to, an antigen-antibody reaction.
  • the reaction substance may be a capture agent that binds to the analyte, and may be, for example, a protein, gene, lipid, carbohydrate, vitamin or drug, or a substance conjugated thereto, but is not limited thereto.
  • the capture agent may be fixed in the inspection area
  • Immobilization may be by adsorption, hydrophobic interaction, hydrogen bonding, ionic bonding and / or covalent bonding.
  • the test device may additionally include a detection agent.
  • the detection agent is used in a rapid kit using immunochromatography. Is included in a conjugated pad.
  • the detection agent may be a detection antibody, DNA, aptamer, or streptavidin.
  • the detection agent is a detection antibody.
  • the detection agent may be a combination of a label capable of generating an indicating optical signal in the presence of an analyte in the sample.
  • the label includes a variety of labels known in the art, for example,
  • Enzymes eg alkaline phosphatase, ⁇ -galactosidase, horseradish
  • Peroxidase, ⁇ -glucosidase and cytochrome ⁇ 450 gold particles (e.g., gold nanoparticles), silver particles (e.g. silver nanoparticles), phosphors (e.g.,
  • Latex containing TAMRA (6-carboxy-tetramethyl-rhodamine), Cy-3, Cy-5, Texas Red, Alexa Fluor, DAPI (4,6-diamidino-2-phenylindole), Coumarin, etc.), fluorescent dyes or pigments Particles, chemiluminescent materials and pigments (eg, gardenia pigments, eosin, phenol red, bromophenol blue, m-cresol purple and bromocresol fur pool).
  • TAMRA 6-carboxy-tetramethyl-rhodamine
  • Cy-3 Cy-5
  • Texas Red Alexa Fluor
  • DAPI 4,6-diamidino-2-phenylindole
  • Coumarin etc.
  • fluorescent dyes or pigments Particles eg, gardenia pigments, eosin, phenol red, bromophenol blue, m-cresol purple and bromocresol fur pool.
  • the control zone is a zone to verify that the reaction is occurring properly and may include control substances.
  • reaction may occur regardless of whether an analyte is present in the sample, and if such reaction does not occur, Is determined to be an error.
  • Control zones can be constructed in a variety of ways, for example, sandwiching analytes.
  • control zones can be constructed with antibodies that have the ability to bind to label-detecting antibodies (eg, gold particle-detecting antibody complexes).
  • label-detecting antibodies eg, gold particle-detecting antibody complexes
  • the inspection device includes a detection agent
  • the test device is included in the control area.
  • the control agent may be a substance that binds to the detection agent.
  • the detection agent is a detection antibody
  • the control agent is an antibody having a binding ability to the detection antibody.
  • the above-mentioned background space shall be the background environment of the inspection area and the control area, ie
  • the background area may be composed of white Nitrocells on the Loss membrane, and may be used as is without further treatment, or the Nitrocells may be lost.
  • the entire membrane can be soaked in a specially formulated solution for non-specific reaction or solution development and then dried.
  • the background zone may be white.
  • the background zone is white, there is an effect of minimizing light absorption of the light source.
  • the device identifier may include at least one, at least two, or at least three, identification zones.
  • the device identifier may include one color bar like a bar code, and may form various patterns by using different thicknesses of black bars or by using different numbers of bars at regular intervals.
  • the identification zone is
  • the pattern of can be made (Fig. 6).
  • these patterns can be configured with the parameter values for the regression analysis of the electronic device, and when inserted into the analysis device, the inspection device can be coded to reflect the parameter values for the regression analysis.
  • the device identification unit may be located on the bottom plate or the top plate of the test device, and may use a portion without a pattern, such as a semi-circular half strip or a bottom plate of the test device, indicating a white color without a device pattern.
  • the device identification unit may directly print on the surface of the test device or use a printed sticker.
  • the color of the identifier may be a color selected from an achromatic color scale (grey sca l e ), or a color corresponding to a light source, and the same color in the HSV color space. You can change the saturation and brightness (value) of the value.
  • the device identifier may include three identification zones, and each identification zone may have a pattern divided into five zones, so that 125 codes may be generated by the combination of these patterns. have.
  • the device identification unit identifies three identification zones.
  • one identifier identifies the test type information and the other One identifier identifies the lot production year, another identifies the lot production number. For example, the first identifier identifies the type of test and the second identifier identifies the lot production year and the third identifier. The department may identify the lot production number, but the order is not limited to this.
  • An example of the present invention is an analysis involving light source, light receiver and wireless communication modules.
  • the analysis device may be driven at low power.
  • Power means the voltage that can be driven by the battery, for example, 9V or less, 8V or less, 7V or less, 6V or less, preferably 5V or less, and more preferably 3V or less.
  • the analytical device may be microminiature.
  • Examples of small sized analytical devices such as blood glucose meters and digital pregnancy tests, which have a size and weight that can be easily held by hand, are also used for the small size and weight commonly used in the art. It may be something to have.
  • the analysis device may have a length of 10 cm or less, 9 cm or less, and 8 cm or less, for example, 1 to 10 cm, 1 to 9 cm, 1 to 8 cm, 2 to 10 cm, 2 to 9 cm, and 2 to 8 cm. May be, but is not limited to.
  • an analytical device may have a length of 15 cm or less, 14 cm or less, 13 cm or less, 12 cm or less, 11 cm or less, or 10 cm or less, for example, 1 to 15 cm, 1 to 14 cm, 1 to 13 cm, 1 To 12 cm, 1 to 11 cm, 1 to 10 cm, but is not limited to such.
  • the analytical device may be less than 4.0 cm, less than 3.5 cm, less than 3.0 cm, less than 2.5 cm, for example, 1 to 4.0 cm, 1 to 3.5 cm, 1 to 3.0 cm, 1 May be up to 2.5 cm, but is not limited to such.
  • the weight of the analytical device may be less than 400g, less than 350g, less than 300g, less than 250g, less than 200g, for example, 100 to 400g, 100 to 350g, 100 to 300g, 100 to 250g, 100 to 200g However, it is not limited to this.
  • the light source portion of the analytical device of the present invention includes a light source for generating light.
  • the light source may be various light sources known in the art, for example, may be a light emitting diode (LED), a laser, a tungsten lamp, and preferably an LED. have.
  • LED light emitting diode
  • the light source may be various light sources known in the art, for example, may be a light emitting diode (LED), a laser, a tungsten lamp, and preferably an LED. have.
  • the light source may be monochromatic light, for example, red or green light.
  • the light source is a monochromatic light (Candda) for the analysis, and does not consume much power even after repeated measurements.
  • the red series monochromatic light has a wavelength of 600 nm to 670 nm, 600 nm to 665 nm, 600 nm to 660 nm, 600 nm to 655 nm, 600 nm to 650 nm, 605 nm to 670 nm, 605 nm to 665 nm, 605 nm to 660 nm, 605 nm to 655 nm, and 605 nm to 650 nm.
  • the green series monochromatic light has a wavelength of 500 nm to 580 nm, 500 nm to 570 nm, 500 nm to 560 nm, 500 nm to 550 nm, 510 nm to 580 nm, 510 nm to 570 nm, 510 nm to 560 nm, 510 nm to 550 nm, 520 nm to 580 nm, 520 nm and 570 nm. It may be from 520nm to 560nm, 520nm to 550nm, preferably 520nm to 550nm.
  • the analytical device may be equipped with at least two light sources.
  • At least one of the light sources included in the light source may be irradiated to the semi-reflective strip included in the inspection device, and at least one of the light sources may be to irradiate the device identification included in the inspection device.
  • the light source unit for irradiating light to the semi-ung strip of the analysis device and the light source unit for irradiating light to the device identification unit are different light source units.
  • the light source irradiated to one or more zones selected from the group consisting of the test zone, the control zone and the background zone included in the semi-ung strip may be a light source irradiated from the same or different light sources.
  • the light source unit may be at least one, for example, may have as many as the number of identification areas included in the device identification unit.
  • the light source unit for irradiating light to the inspection zone and the background zone is the same first light source unit
  • the light source unit for irradiating light to the control zone and the background zone is the same second light source unit
  • the first light source unit and the second light source unit May be different light sources.
  • the light source portions of the light irradiated to the inspection zone, the background zone and the control zone are the first light source portion, the second light source portion and the third light source portion, respectively.
  • the light source unit may additionally include a light splitter.
  • a single light source may irradiate the inspection area, the control area and the background area under the same conditions.
  • Sanji analysis devices have at least two receivers, and at least
  • the one or more light receivers may receive light reflected from the semi-finished strip, and the at least one light receiver may receive light reflected from the device identifier.
  • the light receiving unit receiving the light reflected from the semi-ung strip, which the analysis device includes, and the light receiving unit receiving the light reflected from the device identification unit are different light receiving units.
  • the at least one light receiving unit receiving the reflected light from the device identification unit, which the analysis device has, may be at least one, for example, the number of identification areas included in the device identification unit may be provided. have.
  • a specific example is the collection of light reflected from the inspection and background areas.
  • the light receiving unit is the same first light receiving unit, the light receiving unit receiving light reflected from the control area and the background area is the same second light receiving unit, and the first light receiving unit and the second light receiving unit may be different light receiving units.
  • the light receiving part receiving light reflected from the inspection area, the background area and the control area is the first light receiving part, the second light receiving part and the third light receiving part, respectively, which may be different light receiving parts.
  • the light-receiving light-receiving part reflected from at least one zone selected from the group consisting of the test zone, the control zone and the background zone included in the reaction strip may be the same or different light-receiving units.
  • the light receiving unit may include one or more selected from the group consisting of a photodiode, a phototransistor, and a photoresistor.
  • the measurement device includes a first light source part and a second light source part, and the light receiver part includes a first light receiver part, a second light receiver part, and a third light receiver part to measure a semi-ung strip of the test device. It may be.
  • the light from the first light source is examined for the inspection area and the background area, and
  • the light from the light source unit illuminates the background area and the control area, and the light emitted from the inspection area, the background area and the control area is respectively the first light receiver, the second light receiver and the third light receiver.
  • the analytical devices include microcontrollers, such as central processing units (CPUs), flash memories, analog-to-digital converters (ADCs) and comparators for measurement control and calculation. (includes a comparator), a voltage regulator and / or a display (e.g., an LCD).
  • CPUs central processing units
  • ADCs analog-to-digital converters
  • comparators for measurement control and calculation.
  • a comparator a voltage regulator
  • a display e.g., an LCD
  • the analysis device may further include a detector switch, a battery, and / or a serial programming connection.
  • An example of the present invention is an inspection device including a semi-ung strip and a device identification; And an analytical device comprising a light source unit, a light receiver and a wireless communication module.
  • test device is the same as described above.
  • the light source unit and the light receiving unit of the analysis device for measuring the semi-strip strip may be used (FIGS. 1 and 2). Also, if the device identification is located on the top of the analytical device, it is located above or below the analytical device other than the light source and the light receiver for the measurement of the semi-ung strip Measurements can be made using separate light sources and light receivers.
  • the third light source, the fourth light source and the fourth light receiver, the fifth light receiver, the sixth light receiver, and the sixth light receiver, the sixth light receiver and the sixth light receiver, the sixth light receiver and the sixth light receiver, the sixth light receiver and the sixth light receiver, The light receiving unit may be included (FIG. 3) or the fourth light source unit and a fourth light receiving unit, a fifth light receiving unit and a sixth light receiving unit corresponding thereto may be included (FIG. 4).
  • the optical array using less light receiving units than the light source unit is used to examine the first light source unit, the second light source unit, and the third light source unit inspection area, the background area, the control area, and the reflectance of each zone in the first light receiving unit and the second light receiving unit.
  • the device identification part may be recognized using the fourth light source part, the fifth light source part, the sixth light source part, and the third light receiving part (FIG. 5).
  • Another example of the present invention provides a method for detecting an analyte in a subject comprising the following steps:
  • the detection method may include measuring an inspection device including a reaction strip and a device identification unit in a reflectance method using an analysis device including a light source unit, a light receiver, and a wireless communication module.
  • the lot information is lot-specific information and parameter values for regression analysis.
  • the device for detecting an analyte in an object of the present invention comprises a light source part and a light receiving part
  • the detection method can input various lot information into the electronic device, but not all the lot information input to the electronic device is transmitted to the analysis device, and the parameter values for regression analysis and the corresponding lot recognition are recognized. Only the information is transmitted wirelessly, and the analysis device identifies the identification part including the lot recognition information of the analysis device.
  • the method may further include the step (a-1) of receiving the analysis device including the light source unit, the light receiving unit, and the wireless communication modules.
  • the method may further include the step (e-1) of receiving an analytical device including a light source unit, a light receiver unit, and a wireless communication module.
  • the lot recognition information and / or parameter values may be obtained by using wireless communication modules.
  • the detecting method of the intra-analyte may further include a step of pushing the lot recognition information to an electronic device having wireless communication modules before step (a-1).
  • the detecting method of the intra-analyte may further include the step of inputting the parameter value to an electronic device equipped with wireless communication modules before step (e-1).
  • the electronic device may use a smartphone, a tablet, a laptop, a computer, and the like.
  • wireless communication communication protocols such as Bluetooth, Wi-Fi, and NFC (Near Field Communication) may be used. If included, it is not limited.
  • a method for inputting parameter values and / or lot recognition information into an electronic device is provided.
  • the lot information is determined by measuring the reflectance of the test device and then checking the device identification part.
  • the reflectance measurement may be performed after the step of inserting an inspection device including a reaction strip and a device identification unit into an analysis device including a light source unit, a light receiver, and a wireless communication module.
  • the lot information is lot-specific information and a parameter value for regression analysis.
  • the processor of the analysis device is
  • the regression analysis used to obtain the above quantitative values can be determined according to the analysis reaction.
  • An analytical device using the light source and the light receiving part of the present invention is calculated through a comparison method that makes a relative comparison between the pre-reaction reflectance value (or the initial reflectance value) and the postreflection reflectance value.
  • the reason for using the comparison method depends on the part of the light source unit and / or the light receiving unit.
  • the reflected light is reflected in the background area before the reaction, the sample is applied, and the amount of light reflected in the test area that appears after the reaction is calculated. It is calculated by comparing the relative reflectance rates before and after.
  • the above method cannot distinguish the reflectance difference between before and after reflection because a specific pattern already exists, and according to the present invention, the reflectance value appears in the device identification after the device insertion after measuring the reflectance value of the part without the pattern. Calculate and identify the pattern corresponding to the lot information.
  • the detection method is performed by using the apparatus for detecting an analyte described above.
  • the sample may be blood, plasma, serum, urine, lymph, bone marrow, saliva, milk, ophthalmic fluid, sperm, brain extract, spinal fluid, joint fluid, thymus fluid, plural fluid, amniotic fluid, cell tissue fluid, buffer solution, scalp water It can be, but is not limited to: sewage, sewage, or groundwater.
  • the analyte may be a protein, peptide, nucleotide sequence, gene, lipid,
  • It can be, but is not limited to, carbohydrates, vitamins, drugs, organic compounds, inorganics, and liquefied gases.
  • the present invention can be used in various fields such as diagnosis and prediction of diseases, health care, paternity, constitution, fermentation engineering, biotechnology, food safety testing, environmental analysis, cosmetic analysis and compound analysis.
  • the present invention relates to a device for measuring an analyte in a sample, and an analyte measuring method using the same. More specifically, regression analysis parameter information is inputted from an electronic device to an analytical device by wireless communication. This concerns the analysis method using the inspection device with identification.
  • 1 is a schematic diagram of a device top plate for inspecting an inspection strip of the present invention and an optical arrangement thereof.
  • inspection zone 2: control zone, 3: background zone
  • 20 inspection device top plate
  • 21 sample dropping unit
  • FIG. 2 is a schematic diagram of a device underlayer for recognizing an identification part of the present invention and an optical arrangement thereof.
  • Figure 3 shows the device and the identification unit for the inspection of the test strip of the present invention
  • Figure 4 is a device and identification for the inspection of the test strip of the present invention.
  • FIG. 5 shows a device, an identification unit and a device for inspecting an inspection strip of the present invention.
  • FIG. 6 is a pattern using a bar code form of a device identification unit.
  • FIG. 7 is a flowchart of transmitting / receiving parameter values for regression analysis and analyzing a device identifier through a wireless connection between an electronic device and an analysis device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a printed circuit board (PCB) according to a specific embodiment of the analytical device of the present invention.
  • the upper part (A) shows a touch screen LCD, a start switch, a voltage regulator, a USB connector, a blue suit module, and a bottom ( In B), the microcontroller, light source and light receiver are located.
  • Blue tooth 206: light receiver, 207: light source, 208: microcontroller
  • FIG. 9 illustrates wireless communication modules according to a specific embodiment of the present invention.
  • FIG. 10 is a diagram showing wireless communication modules according to a specific embodiment of the present invention.
  • FIG. 11 illustrates an example of a code of a device identification unit configured in a bar code form according to a specific example of the present invention.
  • the first conjugate recognizes an epitope at a different site than the antibody used on the test line.
  • the mouse anti-PSA antibody (Arista Biologicals, USA) is used and the preparation method is as follows. Gold nanoparticles are obtained from Frens (Particle size and sol stability in metal colloids, Colloid & Polymer Science 1972, 250, 736-741). The method was referred to, and then dissolved in purified water to 0.01% of aric chloride (Sigma-Aldrich, USA), stirred and heated, and then added 1% sodium citrate aqueous solution to prepare gold nanoparticles. The prepared gold nanoparticles exhibit an absorbance of about 1 at 520 nm.
  • the strip contains about 0.2 / ig of antibodies).
  • the chlorine anti-chicken IgY antibody (Arista Biologicals) -gold nanoparticle conjugate of the second conjugate was prepared in the same manner as in the above-described method of preparing the conjugate 1, except for the antibody, and diluted with absorbance 2 at the conjugate pad. After drying.
  • Plastic backbone with adhesive (6 x 5 x 300 mm) Attach an intermediate nitrosalt film (25 x 300 mm, Millipore), downwards the adhesive pad (7 x 300 mm,
  • Millipore and sample pads are stacked in order, and the upper part is overlapped with absorbent pads (16 X 300 mm, Millipore) and attached to it, and then the immunity chromatography strip is shaped like 2 even though it is cut by a cutter so as to be 4 mm wide.
  • the inspection identification was printed with a laser printer and attached to the housing plate.
  • the analysis device including the Bluetooth module has a touch screen LCD 201, a voltage regulator 202, a start switch 203, a light receiving unit 206, a light source unit 207, and a microcontroller unit ( 208), and the optical array has a light source and a light receiver according to Korean Patent No. 10-1562946.
  • An application was created for input (Figs. 9 and 10) .
  • the configuration of the application is to first select the type of test and then press 'Connect' to set it up to automatically connect when the analysis device is powered on.
  • four parameter Logistic (4PL) nonlinear regression models are applied for regression analysis.
  • A, B, C, and D parameters are entered.
  • the PSA immunochromatography device prepared in Example 1 was inserted to measure the anti-reflective reflectance value, and then the housing plate was It is inserted upward into the inspection device so that the device identification can be recognized by the analysis device.
  • the device identification part is divided into five areas in the form of bar code in the inspection device housing plate at the position corresponding to the inspection area, the background area, and the control area so that the light source part and the light receiving part of the analysis device for strip measurement can be used as it is.
  • the patterns were coded from 0 to 4 in a similar fashion, and each of the five patterns in each of the three zones produced 125 codes consisting of three digits, 10 of which are shown in Figure 11.
  • Table 1 shows the device identification part recognition result of converting the code from the measured initial value and the value calculated using the measured value of the device identification part. As shown in Table 1, the device identification part can recognize the code according to the intended pattern. Confirmed.
  • T 0 ' To * (T t 000 / T 0 000), where X 0 000 and X t 000 are codes
  • the code conversion is 0 when the calculated value is less than 100, 1 when the value is less than 100 and less than 300, 2 and more than 500 is less than 300
  • the range calculated through several experiments was used as 3 when less than 650 and 4 when more than 650.
  • the first digit identifies the test type
  • the second The digit identifies the production year of the lot
  • the third digit identifies the lot's production number, matching the code recognized by the analysis device with the stored lot information transmitted from the electronic device to check the parameters for each lot.
  • PSA concentration test results are shown in Table 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 검체 내 분석물을 측정하기 위한 디바이스 및 분석 방법에 관한 것으로,더욱 상세하게는 회귀분석 파라미터 정보를 무선통신에 의해 전자기기로부터 분석 디바이스로 입력되고, 이에 상응하는 식별부가 표시된 검사 디바이스를 이용한 분석방법에 관한 것이다.

Description

명세서
발명의명칭:검체내분석물을검출하기위한디바이스및이를 이용한검출방법
기술분야
[1] 본발명은검체내분석물을측정하기위한디바이스및이를이용한검체내 분석물의분석방법에관한것으로,더욱상세하게는회귀분석파라미터정보를 무선통신에의해전자기기로부터분석디바이스로입력되고,이에상웅하는 식별부가표시된검사디바이스를이용한분석방법에관한것이다.
배경기술
[2] 물질을분석하기위한방법으로는가스크로마토그래피 (Gas Chromatography), 질량분석 (Mass Spectrometry),고속액체크로마토그래피 (High-Performance Liquid Chromatography),얇은막크로마토그래피 (Thin-Layer Chromatography), 전기영동 (Electrophoresis),전기화학 (Electrochemistry),적외선분광법 (Infrared Spectroscopy),라만분광법 (Raman Spectroscopy), X-선분광법 (X-ray Flourescene) 자외선 /가시광선분광법 (Ultraviolet/Visible Spectroscopy)등이있으며,이러한 분석방법들은자연과학이나공학연구및의료,제약,환경둥과같은산업 분야에널리이용되고있다.
[3] 상기의분석방법들은대부분고가의장비가필요하고사용방법이어려우며 소형화내지휴대용으로적용하기어려운단점을지니고있다.이에비해 전기화학적방법은저렴한가격에손쉽게측정하고휴대할수있다는장점이 있어이미혈당검사에적용되어상용화되었다.그러나전가화학적방법은 전자를생성시킬수있는반웅에만적용되기때문에그활용도가한정되어 있다는단점이있다.
[4] 한편,물체에투과,반사,굴절되는복사에너지를파장의함수로측정하는
광학적검출방법은전기화학적측정방법과마찬가지로사용이쉽고정확하며 , 저렴한가격과소형화내지휴대화가용이할뿐만아니라,매우다양한반웅을 이용할수있다는장점을가지고있다.이러한원리를이용하는분석방법은 화학,물리학,생화학,면역학,효소학,분자생물학,식품학등매우다양하게 적용되고있다.
[5] 예를들어,대한민국둥록특허공보제 10-0384795호에서는분광광도계를
이용하여키네틱타입으로발색반응을측정하는분석기술에대해개시하고 있으며,대한민국등록특허공보제 10-0251999호에서는스트립형태의 반웅물질을가시광선등의전자기방사를이용하여분석결과를판독하는 방법에대해개시하고있다.대한민국등록특허공보제 10-1092351호, 미국둥록특허 US 7,538,336,미국등록특허 US 7,803,322,미국등록특허 US 7,267,799및미국공개특허 US 2003-0049849에서는스트립형태의반웅 결과물을반사율로측정하는방법에대해개시하고있다.
[6] 상기의분석방법및시스템들은적어도하나이상의광원이포함된장치를 사용하며,고상또는액상의반웅을스트립이나튜브형태의특정디바이스에서 정색 (color reaction)이나표지체침착 (label deposition)반응을유발시킨후기기 내에검사디바이스를삽입하여외부빛이차단된상태에서측정하고있다.
[7] 면역크로마토그래피는고형상으로다공성막과표지체로금나노입자나 라텍스입자둥올사용하여반응올전개시킨후,표지체가항원 -항체반응에 의해검사선에축적되는방식으로반웅을측정한다.이러한
면역크로마토그래피는조작이용이하고,표지체에따라서는육안으로쉽게 관찰할수있기때문에,임신이나배란의자가측정,약물남용검사,당화혈색소 검사,심혈관질환검사,감염성질환검사등매우다양하게사용되고있다.
[8] 또한면역크로마토그래피는항원 -항체반응을검사하는검사구역이외에도 반응이올바르게일어났는지를검증할수있는대조구역으로구성되는데, 검체의양이적거나반응이제대로일어나지않으면대조구역에신호가 나타나지않을수있고,검체내의분석물질의농도가높은경우프로존 현상 (prozone phenomenon)에의해대조구역신호가감소하거나나타나지않을 수있다.면역크로마토그래피와관련된기술은미국등록특허 US 5,073,484, US 5,591,645, US 5,559,041, US 6,485,982등여러문헌에공지되어있다.
[9] 다공성막을사용하는면역크로마토그래피이외에플라스틱표면을
미세가공하여모세관현상에의해용액이이동할수있도록일정한구조를 만드는미세유체역학 (microfluidics)방식도현장에서간단하게검체를분석할수 있는방법이다.이와관련된예는미국등록특허 US 6,767,510, US 8,025,854등 여러문헌에기술되어있다.
[10] 한편,표지체로금나노입자나라텍스입자둥을사용하는경우육안으로도 반웅을확인할수있다.그러나,육안검사의경우정량적인결과를얻지못하고 측정자의주관에의해검사결과가달라질수있으며,검사자의오류에의한 이상반웅검출이나정확한검사시간측정등이어렵기때문에이를분석할수 있는장치에대한요구에따라여러기술및제품이개발되고있다.
[11] 이러한분석디바이스및분석방법의예로는 CCD(Charge-Coupled Device)나 CMOS(Complementary metal-oxide-semiconductor)와같은이미지소자가포함된 분석디바이스를이용하여검사디바이스의이미지를캡쳐한후신호와잡음을 분석하는분석디바이스및분석방법이있으며,이미많은제품들이상용화 되어있다.
[12] 그러나이러한분석디바이스및분석방법은양질의화질확보를위해검사 디바이스와촬상장치사이에일정한거리가필요하여초소형화가어렵고, 이미지소자및이미지분석을위해상대적으로전력소모가많고비싼부품을 사용해야한다는단점이있다.
[13] 다른예로는검사디바이스의반웅올측정하는데있어광원부와수광부가 이동하며스캐닝하거나,광원부와수광부가고정된방식으로신호와잡음을 측정하는분석디바이스및분석방법이있다.
[14] 광원부와수광부가검사디바이스를스캐닝하는방식은하나의광원부와
하나의수광부를사용할수있기때문에,광원부나수광부의편차에의한오차를 줄일수있다는장점이있으나,검사디바이스나광학부를이동시키기위한구동 장치가필요하여초소형화가쉽지않고,반웅의결과를스캐닝한그래프로부터 배경잡음을계산해야하기때문에,그과정이복잡하고어렵다는단점이있다.
[15] 이에반해광원부와수광부및검사디바이스가고정된방식은초소형화가 가능하고측정이간단하다는장점이있어여러가지제품에적용되어왔다. 이러한방식을이용한제품의예로는슈얼리디지털임신테스트 (수젠텍, 대한민국), AlCNow (Siemens,독일), Clearblue digital pregnancy test (Swiss Precision Diagnostics,스위스), FirstResponse digital pregnancy test (Church & Dwight,미국)이있으며,이와관련된기술들은대한민국등록특허
제 10-1562946호,미국등록특허 US 5,580,794, US 5,837,546, US 6,235,241, US 7,239,394, US 7,315,378, US 7,317,532, US 7,879,624, US 7,499,170, US 7,499,170 등에기재되어있다.
[16] 상기특허의경우초소형으로저렴한분석디바이스를제조할수있는장점이 있으나,검사디바이스의종류를구분할수있는방법이나,면역크로마토그래피 스트립의제조롯트와관련된정보,예컨대롯트편차를반영한계산식의 파라미터반영과같은정보를제공할수없기때문에,각분석디바이스는 하나의면역크로마토그래피스트립롯트에대해제조되거나하나의계산식 파라미터를적용할수밖에없는단점이있다.
[17] 검사디바이스의종류둥을구분하기위한코딩방밥으로는디바이스에
광학적으로구별할수있는코드를제공하여분석디바이스가이를구별하는 것이다.일예로대한민국등록특허제 10-0949114호에는바이오드라이브를 이용한분석방법에관한것으로,테스트스트립의종류 (발색법스트립,전극법 스트립)와분석물질종류등을표시하기위한스트립 ID를제공하기위해 바코드를디바이스에삽입하는방법을제시하고있다.그러나이러한정보를 제공하기위해서는바코드리더와같은별도의장치가필요하다는단점이있다.
[18] 다른예로대한민국등록특허제 10-606149호에서는컬러코딩시퀀스를
반사율분광광도계를이용하여스트립이감지하는특정분석시료를비롯한 측정파라미터의정보를소프트웨어가찾올수있게하는정보를제공하고있다. 그렇지만이러한방법은초소형의분석디바이스로는구현이어렵다는단점이 있다.
[19] 또다른예로대한민국등록특허제 10-1323373호에기재되어있는바와같이 디바이스에컬러식별부를제공하고,이를삼색광광원부와수광부를통해 인지하는방법이다.그렇지만,이방법에서사용하는삼색광은청색,적색, 녹색의 LED (light emitting diode)로구성되는데,단색광의 LED에비해가격이 비싸고,상대적인전력소모가많다는단점이있다.또한, Color패턴,바코드, QR 코드를분석하여진단스트립의종류를자동으로식별하도록제공된다고되어 있으나,수광부의보정 (reference)값을잡는포토다이오드가식별표시부및 스트립반웅측정부위와공간적으로떨어져있어부품편차나보정에
효과적으로대웅하는데있어용이하지않다.예를들어혈액올검체로하여 스트립에반응시키거나,금나노입자를표지체로사용하게되면,비특이적으로 스트립배경에붉은색상이남올수있는데,이경우상기특허의방식을 이용하게되면붉은색의스트립배경을인식하여위양성을나타낼수있다. 또한,분석에필요한보정식의회귀분석 (regression analysis)을위한파라미터값 등다양한정보를제공하기위한방법은제시되지못하고있다.
[20] 일반적으로검사디바이스의제조공정의특성으로인해매롯트 (lot)마다
편차를가질수밖에없고,이를극복하기위해보다정확하게측정할수있는 방법으로는롯트간편차나정보를분석디바이스가인식하도록반영시켜야 한다ᅳ이를구현하기위한기존에공지된방법으로는회귀분석을위한파라미터 값을코드칩 (code chip)에저장하여사용하는방법과회귀분석을위한파라미터 값을포함한바코드또는 QR코드와같은정형화된패턴을분석하는방법둥이 있다.이와관련한기술은대한민국등록특허제 10-1022837호,대한민국
등록특허제 10-0911927호,대한민국등록특허제 10-0949114호,대한민국
공개특허제 10-2012-0038223호,미국등록특허 US 7,927,812등에개시되어있다.
[21] 그러나코드칩을이용하는방법은검사디바이스나측정장치와는별도로
회귀분석을위한파라미터값을포함한코드칩을추가적으로제공해야하기 때문에추가적인코드칩제작에따른제조원가가상승하게되고,분석
디바이스에별도의코드칩인식모들을삽입해야하기때문에초소형의분석 디바이스에적용시키기어려운점이있다.
[22] 또한,바코드나 QR코드와같이특정패턴을이용하는방법은바코드스캐너 (barcode scanner)나카메라모들과같은이미지센서 (image sensor)를이용해야 하는데,추가적인인식장치와이에대한수신모들이분석디바이스에
포함되어야하기때문에원가가상승할수밖에없고,초소형의분석디바이스에 적용시키기어려운점이있다.
[23] 스마트폰,스마트패드,노트북과같은전자기기들은일반적으로양방향
무선통신이가능한블루투스 (Bluetooth)나와이파이 (Wi-Fi)와같은모들을
포함하고있어무선통신모들이포함된다른기기와데이터를주고받을수있다. 이러한무선통신은분석디바이스의결과값을스마트디바이스에전송한후 분석및관리하는용도로활용될수있으며,이용한무선통신과분석디바이스의 접목은대한민국등록특허제 10-1323373호,대한민국등록특허제 10-1337340호, 미국등록특허 US 8,435,738,미국공개특허 US 2010-0110439,미국공개특허 US 2012-0264232등에개시되어있다.
[24] 그러나상기특허는검사결과를전자기기로전송하는기능에대한언급을 주로하고있으며,롯트간편차를줄이기위한롯트정보입력등과
관련하여서는구체적으로기술하지않고있고,초소형광학분석디바이스에 적용시키지못하고있는실정이다.
[25] 본명세서전체에걸쳐다수의논문및특허문헌이참조되고그인용이
표시되어있다.인용된논문및특허문헌의개시내용은그전체로서본 명세서에참조로삽입되어본발명이속하는기술분야의수준및본발명의 내용이보다명확하게설명된다.
[26]
발명의상세한설명
기술적과제
[27] 이에본발명의목적은반웅스트립및디바이스식별부를포함하는검사
디바이스;및광원부,수광부및무선통신모듈을포함하는분석디바이스;를 포함하는검체내분석물검출용장치를제공하는것이다.
[28] 본발명의또다른목적은검체내분석물을검출하기위한디바이스를
분석하는데있어서,회귀분석을위한파라미터값이초소형분석디바이스에 전달된후특이적인정보와상웅하는검사디바이스를식별하고,검체내 분석물을검출하는방법을제공하는것이다.
[29] 본발명의다른목적및이점은하기의발명의상세한설명,청구범위및도면에 의해보다명확하게된다.
과제해결수단
[30] 본발명자들은검사디바이스에서일어난검체내분석물과의반응을광원부와 수광부가고정된방식의초소형분석디바이스로분석하는데있어서,여러 종류의검사디바이스를간편하고효율적으로식별하고,계산식의회귀분석을 위한파라미터값을적용시키는방법을개발하고자노력하였다.
[31] 그결과,본발명자들은무선통신모들을구비한전자장치에입력된파라미터 값및롯트인식정보를분석디바이스에송신하고,검사디바이스에는롯트 정보를광학적으로인지할수있는디바이스식별부를제공하며,디바이스를 식별할수있는분석디바이스의광학배열및분석방법올규명함으로써,본 발명올완성하게되었다.
[32] 이하본발명을더욱자세히설명하고자한다
[33] 본발명의일예는반웅스트립및디바이스식별부를포함하는검사
디바이스에관한것이다.
[34] 상기반웅스트립은니트로샐를로스와같은다공성막,셀를로스종이,
유리섬유,플라스틱및유리등다양한재질로제작할수있다.
[35] 상기반응스트립은검사구역,대조구역및배경구역을포함하고있다.
[36] 상기검사구역은검체내존재하는분석물과반웅하는반웅물질을포함하는 것일수있다. [37] 상기반웅은항원 -항체반웅,효소반웅,리간드-리셉터반웅,생화학반웅둥 다양한종류의반웅일수있으며,예를들어,항원 -항체반웅인것일수있으나 이에한정되는것은아니다.
[38] 상기반웅물질은분석물과결합하는포획제일수있으며,예를들어,단백질, 유전자,지질,탄수화물,비타민또는약물이거나이들을접합시킨물질일수 있으나,이에한정되는것은아니며,항체,수용체 (receptor),스트랩타비딘 (또는 아비딘),압타머 (aptamer),렉틴, DNA, RNA,리간드,조효소 (coenzyme),무기이온, 효소보조인자 (cofactor),당,지질또는기질 (substrate)일수있다.
[39] 또한,상기포획제는검사구역에고정화되어있는것일수있으며,상기
고정화는흡착,소수성상호작용,수소결합,이온결합및 /또는공유결합의 방법으로이루어진것일수있다.
[40] 상기검사구역에포함되는분석물과반응하는반웅물질이포획제인경우,상기 검사디바이스는검출제를추가적으로포함하는것일수있다.일구체예에 따르면,면역크로마토그래피를이용하는래피드키트에서상기검출제는 접합패드 (conjugated pad)에포함된다.
[41] 상기검출제는검출항체, DNA,압타머,스트렙타비딘인것일수있으며,예를 들어,상기포획제가포획항체인경우상기검출제는검출항체이다.
[42] 또한,상기검출제는검체내분석물이존재하는경우에이분석물의존재를 나타내는 (indicating)광학적시그널을발생시킬수있는표지체 (label)가결합된 것일수있다.
[43] 상기표지체는당업계에공지된다양한표지체를포함하며,예를들어,
효소 (예컨대,알칼린포스파타아제 , β-갈락토시다아제,호스래디쉬
퍼옥시다아제 , β-글루코시다아제및사이토크롬 Ρ450),금입자 (예컨대,금 나노입자),은입자 (예컨대,은나노입자),형광물질 (예컨대,
플루오레세인 (fluorescein), FITC(fluoresein Isothiocyanate),로다민
6G(rhodamine6G),로다민 B(rhodamine B),
TAMRA(6-carboxy-tetramethyl-rhodamine), Cy-3, Cy-5, Texas Red, Alexa Fluor, DAPI(4,6-diamidino-2-phenylindole), Coumarin등),형광염료또는색소를 포함하는라텍스입자,화학발광물질및색소 (예컨대,치자색소,에오신,페놀 레드,브로모페놀블루, m-크레졸퍼플및브로모크레졸퍼풀)를포함한다.
[44] 상기대조구역은반웅이제대로일어나는지를확인하는구역이며,대조물질을 포함하는것일수있다.대조구역에서는검체내분석물의존재유무를불문하고 반웅이일어나며,만일이러한반응이일어나지않으면검사구역에서의결과가 오류로판정된다.
[45] 대조구역은다양하게구축될수있으며,예를들어,분석물을샌드위치
면역분석방식으로검출하는경우,표지-검출항체 (예컨대,금입자-검출항체 복합체)에결합능을가지는항체로대조구역을구축할수있다.
[46] 상기검사디바이스가검출제를포함하는경우,상기대조구역에포함되는 대조물질은상기검출제에결합하는물질인것일수있으며,예를들어,상기 검출제가검출항체인경우상기대조물질은검출항체에결합능을갖는 항체이다.
[47] 상기배경구역은검사구역과대조구역의배경환경,즉,검사구역과
대조구역에서반웅에이용되는물질을제외한환경과동일한환경올갖는것 일수있다.
[48] 예를들어,검사구역과대조구역이백색의니트로셀를로스막상에구성된 경우,배경구역은백색의니트로셀를로스막상에구성되는것일수있으며, 별도의처리를하지않고그대로사용하거나,니트로셀를로스막전체를비특이 반웅이나용액전개를위해특별히고안된용액에적신후건조시켜사용할수 있다.
[49] 상기배경구역은백색인것일수있다.배경구역이백색인경우에는광원부의 광흡수를최소화할수있는효과가있다.
[50] 상기디바이스식별부는적어도 1개미상,적어도 2개이상또는적어도 3개 이상의식별구역을포함하고있는것일수있다.
[51] 상기디바이스식별부는바코드처럼한가지색상의바 (bar)를포함하는것일 수있으며,예컨대검정색바의두께를달리사용하거나일정간격의바의수를 달리사용하여다양한패턴을형성할수있다.예를들어,상기식별구역은도
6에나타낸바와같이바코드형태의 5영역으로구분되는패턴을가질수 있으며,각각의패턴은 0부터 4까지숫자로코드화한것일수있으며,이러한 형태로 3개를사용하면총 5 X 5 X 5 = 125의패턴을만들수있다 (도 6).
[52] 따라서,이러한패턴은전자기기의회귀분석을위한파라미터값과상웅하도^ 구성하여,분석디바이스에삽입할경우검사디바이스를코딩하여회귀분석을 위한파라미터값이반영되어분석할수있게된다.
[53] 상기디바이스식별부는검사디바이스의하판또는상판에위치할수있으며, 디바이스의패턴이없는백색의색상을나타내는반웅전반웅스트립이나검사 디바이스의하판등패턴이없는부위를이용할수있다.
[54] 또한상기디바이스식별부는검사디바이스표면에직접인쇄하거나인쇄된 스티커를활용할수있다.
[55] 상기디바이스식별부는단색광을사용한반사율을측정하기때문에식별부의 색상은무채색스케일 (grey scale)에서선택되는색상을사용하거나,광원에 상응되는색상으로 HSV색공간에서동일한색상 (hue)값에채도 (saturation)와 명도 (brightness, value)를변화시켜사용할수있다.
[56] 구체적인일예에서,상기디바이스식별부는 3개의식별구역을포함하는것일 수있으며,각각의식별구역은 5영역으로구분되는패턴을가질수있으므로, 이들패턴의조합에의해 125가지의코드가생성될수있다.
[57] 또다른구체적인일예에서,상기디바이스식별부가 3개의식별구역을
포함하는경우에,하나의식별부는테스트종류정보를식별하는것이고,다른 하나의식별부는롯트생산년도를식별하는것이며,또다른하나의식별부는 롯트생산번호를식별하는것일수있다.예를들어,제 1식별부는테스트종류 정보,제 2식별부는롯트생산년도및제 3식별부는롯트생산번호를식별하는 것일수있으나,순서는이에한정되는것은아니다.
[58] 본발명의일예는광원부,수광부및무선통신모들올포함하는분석
디바이스에관한것이다.
[59] 상기분석디바이스는저전력에서구동되는것일수있다.상기용어
전력'이라함은배터리로구동할수있는전압을의미하며,예를들어 , 9V 이하, 8V이하, 7V이하, 6V이하,바람직하게는 5V이하,더욱바람직하게는 3V 이하인것일수있다.
[60] 상기분석디바이스는초소형인것일수있다.상기 '초소형'이라함은한
손으로가볍게잡을수있는크기및무게를가지고있는수준을의미하며 , 초소형으로구동되는분석디바이스의예는혈당계와디지털임신테스트등이 있으며,상기분석디바이스도당업계에서통상적으로사용되는초소형의 크기와무게를가지는것일수있다.
[61] 상기분석디바이스는가로의길이가 10cm이하, 9cm이하, 8cm이하인것일수 있으며,예를들어, 1내지 10cm, 1내지 9cm, 1내지 8cm, 2내지 10cm, 2내지 9cm, 2내지 8cm인것일수있으나,이에한정되는것은아니다.
[62] 또한,분석디바이스는세로의길이가 15cm이하, 14cm이하, 13cm이하, 12cm 이하, 11cm이하, 10cm이하인것일수있으며,예를들어, 1내지 15cm, 1내지 14cm, 1내지 13cm, 1내지 12cm, 1내지 11cm, 1내지 10cm인것일수있으나, 이에한정되는것은아니다.
[63] 또한,분석디바이스는높이가 4.0cm이하, 3.5cm이하, 3.0cm이하, 2.5cm이하 인것일수있으며,예를들어, 1내지 4.0cm, 1내지 3.5cm, 1내지 3.0cm, 1내지 2.5cm인것일수있으나,이에한정되는것은아니다.
[64] 상기분석디바이스의무게는 400g이하, 350g이하, 300g이하, 250g이하, 200g 이하,예를들어 , 100내지 400g, 100내지 350g, 100내지 300g, 100내지 250g, 100 내지 200g인것일수있으나,이에한정되는것은아니다.
[65] 본발명의분석디바이스의광원부는광올발생시키는광원을포함한다.
[66] 상기광원은당업계에공지된다양한광원일수있으며,예를들어, LED(light emitting diode),레이저 (Laser),텅스텐램프 (tungsten lamp)인것일수있으며, 바람직하게는 LED인것일수있다.
[67] 상기광원은단색광일수있으며,예를돌어,적색계열또는녹색계열의
단색광인것일수있다.광원이단색광인경우분석에층분한광도 (Candda)를 제공하며,여러번반복측정을하여도전력소모가많지않기때문이다.
[68] 상기적색계열단색광은파장이 600nm내지 670nm, 600nm내지 665nm, 600nm 내지 660nm, 600nm내지 655nm, 600nm내지 650nm, 605nm내지 670nm, 605nm 내지 665nm, 605nm내지 660nm, 605nm내지 655nm, 605nm내지 650nm, 610nm 내지 670nm, 610nm내지 665nm, 610nm내지 660nm, 610nm내지 655nm, 610nm 내지 650nm, 615nm내지 670nm, 615nm내지 665nm, 615nm내지 660nm, 615nm 내지 655nm, 615nm내지 650nm, 620nm내지 670nm, 620nm내지 665nm, 620nm 내지 660nm, 620nm내지 655nm, 620nm내지 650nm인것일수있으며, 바람직하게는 620nm내지 650nm인것일수있다.
[69] 상기녹색계열단색광은파장이 500nm내지 580nm, 500nm내지 570nm, 500nm 내지 560nm, 500nm내지 550nm, 510nm내지 580nm, 510nm내지 570nm, 510nm 내지 560nm, 510nm내지 550nm, 520nm내지 580nm, 520nm내지 570nm, 520nm 내지 560nm, 520nm내지 550nm인것일수있으며,바람직하게는 520nm내지 550nm인것일수있다.
[70] 상기분석디바이스는적어도 2개이상의광원부를구비하고있는것일수 있다.
[71] 상기광원부가구비하고있는적어도 1개이상의광원부는검사디바이스에 포함된반웅스트립에광올조사하고,적어도 1개이상의광원부는검사 디바이스에포함된디바이스식별부에광올조사하는것일수있다.
[72] 상기분석디바이스가구비하고있는,반웅스트립에광을조사하는광원부와 디바이스식별부에광을조사하는광원부는상이한광원부인것이다.
[73] 상기반웅스트립에포함된검사구역,대조구역및배경구역으로이루어진 군에서선택된 1종이상의구역에조사되는광의광원은동일또는상이한 광원부로부터조사된광원인것일수있다.
[74] 상기분석디바이스가구비하고있는,디바이스식별부에광을조사하는
광원부는적어도 1개이상인것일수있으며,예를들어,디바이스식별부에 포함된식별영역의개수만큼구비하고있는것일수있다.
[75] 구체적인일예는검사구역및배경구역에광을조사하는광원부는동일한제 1 광원부이고,대조구역및배경구역에광을조사하는광원부는동일한제 2 광원부이며,상기제 1광원부와계 2광원부는상이한광원부인것일수있다.
[76] 또다른구체적인일예는검사구역,배경구역및대조구역에조사되는광의 광원부가각각제 1광원부,계 2광원부및제 3광원부인것으로상이한광원부인 것일수있다.
[77] 상기광원부는광분배기를추가적으로포함하는것일수있다.광분배기를 사용할경우하나의광원부가검사구역,대조구역및배경구역을동등한 조건에서조사할수있다.
[78] 상디분석디바이스는적어도 2개이상의수광부를구비하고있으며,적어도
1개이상의수광부는반웅스트립으로부터반사되는광을수광하고,적어도 1개 이상의수광부는디바이스식별부로부터반사되는광을수광하는것일수있다.
[79] 상기분석디바이스가구비하고있는,반웅스트립으로부터반사되는광을 수광하는수광부와디바이스식별부로부터반사되는광을수광하는수광부는 상이한수광부인것이다. [80] 상기분석디바이스가구비하고있는,디바이스식별부로부터반사된광을 수광하는수광부는적어도 1개이상인것일수있으며,예를들어,디바이스 식별부에포함된식별영역의개수만큼구비하고있는것일수있다.
[81] 구체적인일예는검사구역및배경구역으로부터반사되는광올수광하는
수광부는동일한제 1수광부이고,대조구역및배경구역으로부터반사되는광을 수광하는수광부는동일한제 2수광부이며,상기제 1수광부와계 2수광부는 상이한수광부인것일수있다.
[82] 또다른구체적인일예는검사구역,배경구역및대조구역으로부터반사되는 광을수광하는수광부가각각제 1수광부,제 2수광부및제 3수광부인것으로 상이한수광부인것일수있다.
[83] 상기반응스트립에포함된검사구역,대조구역및배경구역으로이루어진 군에서선택된 1종이상의구역으로부터반사되는광올수광하는수광부는동일 또는상이한수광부인것일수있다.
[84] 상기수광부는포토다이오드 (photodiode),포토트랜지스터 (phototransister)및 포토레지스터 (photoresistor)로이루어진군에서선택된 1종이상을포함하는 것일수있다.
[85] 상기분석디바이스는검사디바이스에포함된반웅스트립의측정을위해, 분석디바이스의광원부는제 1광원부및제 2광원부를포함하고,수광부는제 1 수광부,계 2수광부및제 3수광부를포함하는것일수있다.
[86] 또한,제 1광원부로부터의광은검사구역과배경구역을조사하고,제 2
광원부로부터의광은배경구역과대조구역을조사하며,검사구역,배경구역및 대조구역으로부터방사되는광은각각제 1수광부,제 2수광부및제 3
수광부에서검출되는것일수있다.
[87] 상기분석디바이스는상술한광원부,반응스트립및수광부이외에,측정제어 및계산을위한마이크로콘트롤러 (microcontroller,예컨대 CPU(central processing unit),플래쉬메모리, ADC(analog-to-digital converter)및비교기 (comparator) 포함),전압조절기및 /또는디스플레이 (예컨대, LCD)를추가적으로포함할수 있다.
[88] 또한,상기분석디바이스는디텍터스위치,배터리및 /또는직렬프로그래밍 연결부를추가적으로포함하는것일수있다.
[89] 본발명의일예는반웅스트립및디바이스식별부를포함하는검사디바이스; 및광원부,수광부및무선통신모들을포함하는분석디바이스;를포함하는 검체내분석물검출용장치에관한것이다.
[90] 상기검사디바이스는기상술한바와동일하다.
[91] 상기디바이스식별부가분석디바이스의하판에위치하는경우반웅스트립 측정을위한분석디바이스의광원부및수광부를사용할수있다 (도 1및도 2). 또한,디바이스식별부가분석디바이스의상판에위치하는경우반웅스트립의 측정을위한광원부및수광부이외의분석디바이스의상부또는하부에위치한 별도의광원부및수광부를사용하여측정할수있다.
[92] 이때반웅스트립의측정을위한제 1광원부및제 2광원부와계 1수광부,제 2 수광부및계 3수광부이외에제 3광원부,제 4광원부및상웅하는제 4수광부, 계 5수광부,제 6수광부가포함되거나 (도 3),계 4광원부와이에상응하는제 4 수광부,제 5수광부,제 6수광부가포함될수있다 (도 4).
[93] 또한,광원부보다수광부를적게사용하는광학배열로제 1광원부,계 2광원부, 제 3광원부가검사구역,배경구역,대조구역을조사하고,제 1수광부와제 2 수광부에서각구역의반사율을측정할때제 4광원부,제 5광원부,제 6광원부 및제 3수광부를이용하여디바이스식별부를인식할수도있다 (도 5).
[94] 본발명의또다른일예는하기의단계를포함하는검체내분석물 (analyte)의 검출방법을제공한다:
[95] (a)롯트인식정보와롯트정보를비교하는단계;
[96] (b)반웅전반응스트립의데이터를수득하는단계;
[97] (b)검체를적용하는단계;
[98] (c)반웅후반웅스트립의데이터를수득하는단계;및
[99] (e)파라미터값을적용하여검체내분석물의존재여부또는양을결정하는 단계:
[100] 상기검출방법은반응스트립및디바이스식별부가포함된검사디바이스를 광원부,수광부및무선통신모들을포함하는분석디바이스를이용하여반사율 방식으로측정하는것일수있다.
[101] 상기로트정보는롯트특이적인정보로회귀분석을위한파라미터값,
유효기간ᅳ롯트번호,제품종류,제조원,주소둥과같은정보일수있다.
[102] 본발명의검체내분석물검출용장치는단색광의광원부와수광부를
사용하는데,보정식의회귀분석을위한파라미터값을입력하기에는제공할수 있는정보가매우제한적이다.
[103] 따라서,상기검출방법은전자기기에다양한롯트정보를입력할수있지만, 분석디바이스에는전자기기에입력된모든롯트정보가전송되는것이아니고, 회귀분석을위한파라미터값이및이에상응하는롯트인식정보만이무선으로 전송되며,분석디바이스의롯트인식정보가포함된식별부를분석디바이스가 구분하게된다.
[104] 상기검체내분석물의검출방법은,상기 (a)단계이전에롯트인식정보를
광원부,수광부및무선통신모들을포함하는분석디바이스에수신하는 (a-1) 단계를추가로포함하는것일수있다.
[105] 상기검체내분석물의검출방법은,상기 (e)단계이전에파라미터값을
광원부,수광부및무선통신모들을포함하는분석디바이스에수신하는 (e-1) 단계를추가로포함하는것일수있다.
[106] 상기로트인식장보및 /또는파라미터값은무선통신모들을구비한
전자기기로부터수신하는것일수있다. [107] 상기검체내분석물의검출방법은상기 (a-1)단계이전에상기롯트인식 정보를무선통신모들을구비한전자기기에밉력하는단계를추가로수행하는 것일수있다.
[108] 또한,상기검체내분석물의검출방법은상기 (e-1)단계이전에상기파리미터 값을무선통신모들을구비한전자기기에입력하는단계를추가로수행하는 것일수있다.
[109] 상기전자기기는스마트폰,태블릿,노트북,컴퓨터등을사용할수있으며, 예를들어,블루투스 (Bluetooth),와이파이 (Wi-Fi), NFC(Near Field Communication) 등의무선통신통신프로토콜이포함된것이면제한되지않는다.
[110] 파라미터값및 /또는롯트인식정보를전자기기에입력하는방법은,
터치스크린키보드나키패드를통해직접입력시키거나,전자기기의바코드 리더기능올이용하는등다양한방법을통해수행할수있다.
[111] 또한,검체내분석물의검출방법은,상기 (a)단계이전에반웅스트립및
디바이스식별부를포함하는검사디바이스로부터롯트정보를수득하는 단계를추가로포함하는것일수있다.
[112] 상기로트정보는검사디바이스의반사율을측정한후디바이스식별부의
패턴의반사율을측정하는단계를통해수득하는것일수있다.
[113] 또한상기반사율측정은반응스트립및디바이스식별부를포함하는검사 디바이스를광원부,수광부및무선통신모들을포함하는분석디바이스에 삽입하는단계후에수행하는것일수있다.
[114] 상기로트정보는롯트특이적인정보로회귀분석을위한파라미터값,
유효기간,롯트번호,제품종류,제조원,주소둥과같은정보일수있다.
[115] 본발명의일구현예에따르면,상기분석디바이스의프로세서는상기
검사구역과대조구역에서반응이발생한후,상기검사구역,대조구역과 배경구역의반웅전측정값및반옹후측정값들을이용하여상기검사구역과 대조구역의보정값을얻는단계및상기보정값올이용하여정량값계산을 위한회귀분석을적용시키는단계를포함할수있다.
[116] 상기정량값을얻는데사용하는회귀분석은분석반웅에따라정할수있으며, 예를들어, 1차방정식 , 2차방정식, 3차방정식, semi-log방정식, logit방정식 ,
4-parameter방정식, 5-parameter방정식등을사용할수있으나,이에한정되는 것은아니다.
[117] 본발명의광원부와수광부를이용한분석디바이스는반응전반사율값 (또는, 초기반사율값)과반웅후반사율값의상대적인비교를하는비교방법을통해 계산된다.
[118] 상기비교방법을사용하는이유는광원부및 /또는수광부의부품에따라
측정되는값의편차가존재하는데,반응전반사율값을사용하지않을경우에는 제조과정중에이러한편차를일일이보정하는것이매우불편하고,시간이 오래걸리며,각반사율값을보정하는데있어서도이러한방식을이용하는것이 효과적이기때문이다.
[119] 구체적인일예는면역크로마토그래피반웅의경우검사디바이스를분석 디바이스에삽입하면,반웅전의배경구역에서반사되는광량을기억하고 있다가검체를적용시키고반웅후나타나는검사구역에반사되는광량을 계산하여반웅전후의상대적인반사율을비교하여계산하게된다.
[120] 이와유사한방법이대한민국등록특허제 10-1562946호를비롯한다수의
문헌에이미기재되어있으나,상기방법은특정패턴이이미존재하여반웅 전후의반사율차이로구분할수없기때문에,본발명에서는패턴이없는 부위의반사율값을측정한후디바이스삽입이후디바이스식별부에나타나는 반사율값을계산하여롯트정보와상응하는패턴을통해식별하게된다.
[121] 상기검출방법은기서술한상기검체내분석물검출용장치를이용하여
수행하는것일수있다.
[122] 상기검체는혈액,혈장,혈청,소변,림프액,골수액,타액,우유,안구액,정액, 뇌추출물,척수액,관절액,흉선액,복수,양막액,세포조직액,완충액,수듯물, 오수,하수,또는지하수일수있으나,이에한정되는것은아니다.
[123] 상기분석물은단백질,펩타이드,뉴클레오타이드서열,유전자,지질,
탄수화물,비타민,약물,유기화합물,무기물및액상화된기체일수있으나, 이에한정되는것은아니다.
[124] 본발명은질병의진단및예측,건강관리,친자확인,체질확인,발효공학, 생명공학,식품의안전성검사,환경분석,화장품분석및화합물분석등다양한 분야에이용될수있다.
발명의효과
[125] 본발명은검체내분석물을측정하기위한디바이스및이를이용한검체내 분석물측정방법에관한것으로,더욱상세하게는회귀분석파라미터정보를 무선통신에의해전자기기로부터분석디바이스로입력되고,이에상웅하는 식별부가표시된검사디바이스를이용한분석방법에관한것이다.
도면의간단한설명
[126] 도 1은본발명의검사스트립의검사를위한디바이스상판및이에상웅하는 광학배열에대한개략도이다. (1 :검사구역 , 2:대조구역 , 3:배경구역, 20:검사 디바이스상판 , 21:검체점적부 , 31:제 1광원부, 32:제 2광원부 , 51:제 1수광부, 52:제 2수광부, 53:제 3수광부, 101:검사선, 102:대조선)
[127] 도 2는본발명의식별부를인식하기위한디바이스하판및이에상웅하는 광학배열에대한개략도이다. (11, 12및 13:디바이스식별부, 22:디바이스하판, 31:제 1광원부, 32:제 2광원부 , 51:제 1수광부, 52:제 2수광부, 53:제 3수광부)
[128] 도 3은본발명의검사스트립의검사를위한디바이스와식별부및이에
상응하는광학배열에대한개략도이다. (1:검사구역, 2:대조구역, 3:배경구역, 11, 12및 13:디바이스식별부, 20:검사디바이스상판, 21:검체점적부, 31:제 1 광원부, 32:제 2광원부, 41:제 3광원부, 42:제 4광원부, 51:제 1수광부, 52:제 2 수광부, 53:계 3수광부, 61:제 4수광부, 62:제 5수광부, 63:제 6수광부)
[129] 도 4는본발명의검사스트립의검사를위한디바이스와식별부및이에
상응하는광학배열에대한개략도이다 . (1:검사구역, 2:대조구역, 3:배경구역, 11, 12및 13:디바이스식별부, 20:검사디바이스상판, 21:검체점적부 , 31:제 1 광원부, 32:제 2광원부, 41:제 3광원부, 51:제 1수광부, 52:제 2수광부, 53:제 3 수광부, 61:제 4수광부, 62:제 5수광부, 63:제 6수광부)
[130] 도 5는본발명의검사스트립의검사를위한디바이스와식별부및이에
상웅하는광학배열에대한개략도이다. (1:검사구역 , 2:대조구역, 3:배경구역, 11, 12및 13:디바이스식별부, 20:검사디바이스상판, 21:검체점적부, 33:제 1 광원부, 34:제 2광원부, 35:제 3광원부, 41:제 4광원부, 42:제 5광원부, 43:제 6 광원부, 54:제 1수광부, 55:제 2수광부, 61:제 3수광부)
[131] 도 6은디바이스식별부의바코드형태를이용한패턴으로 5영역으로
구분되어패턴을나타난예이다.
[132] 도 7은본발명의일실시예에따른전자기기와분석디바이스의무선연결을 통해회귀분석을위한파라미터값을송 /수신하고디바이스식별부를분석하는 순서도이다.
[133] 도 8은본발명의분석디바이스의구체적인구현예에따른 PCB(printed circuit board)의개략도로상부 (A)에는터치스크린 LCD,시작스위치,전압조절기, USB 커넥터,블루수트모들,하부 (B)에는마이크로콘트를러,광원부및수광부가 위치한다. 201:터치스크린 LCD(Liquid Crystal Display), 202:전압
조절기 (Regulator), 203:시작스위치 (Start Switch), 204: USB커넥터 , 205:
불루투스모들, 206:수광부, 207:광원부, 208:마이크로콘트를러
(Microcontroller)
[134] 도 9는본발명의구체적인구현예에따른무선통신모들이포함된
전자기기인스마트폰의파라미터값입력창을나타난예이다.
[135] 도 10은본발명의구체적인구현예에따른무선통신모들이포함된
전자기기인스마트폰과분석디바이스의블루투스연결올나타내는예이다.
[136] 도 11은본발명의구체적인구현예에따른바코드형태로구성된디바이스 식별부의코드를나타내는예이다.
[137]
발명의실시를위한최선의형태
[138] 이하,본발명을하기의실시예에의하여더욱상세히설명한다.그러나이들 실시예는본발명을예시하기위한것일뿐이며,본발명의범위가이들 실시예에의하여한정되는것은아니다.
[139] 실시예 1. PSA검사용면역크로마토그래피디바이스
[140] PSA를검사하기위한면역크로마토그래피스트립은니트로셀를로스 막 (Millipore)의검사선에마우스항 -PSA항체 (Arista Biologicals,미국)를 1.0 mg/mL의농도로,대조선에닭 IgY(Arista Biologicals,미국)를 1.0 mg/mL의 농도로고정하여제조하였다.
[141] 제 1접합체는검사선에사용한항체와다른부위의에피토프를인식하는
마우스항 -PSA항체 (Arista Biologicals,미국)를사용하며,제조방법은다음과 같다.금나노입자는 Frens(Particle size and sol stability in metal colloids, Colloid & Polymer Science 1972, 250, 736-741)의방법을참고하였으며 ,염화제이금 (auric chloride)(Sigma-Aldrich,미국)을 0.01%가되도록정제수에녹인후교반하며 가열하였고,여기에 1%구연산나트륨수용액을첨가하여금나노입자를 제조하였다.이렇게제조된금나노입자는 520 nm에서흡광도가 1정도를 나타낸다.금나노입자 100 mL당항체 1 mg을흡착시켜접합시켰으며, \% 카제인을첨가하여블로킹시킨후 12,000 rpm에서 30분간원심분리시켜 침전물을모았다.침전물을 520 nm에서흡광도가 2가되도록인산염완충액으로 희석한후접합체패드 (Millipore,미국)에가하여건조시켰다 (절단한
스트립에서는약 0.2 /ig의항체가포함됨 ).
[142] 제 2접합체의염소항-닭 IgY항체 (Arista Biologicals)-금나노입자접합체는 항체만제외하고상기의계 1접합체제조방법과동일한방법으로제조하였고, 접합체패드에흡광도 2가되도록희석한후건조시켰다.
[143] 접착제가포함된플라스틱백본 (6으5 X 300 mm)중간에니트로샐를로스막 (25 X 300 mm, Millipore)을붙이고,아래쪽으로접합체패드 (7 X 300 mm,
Millipore)와검체패드를순서대로증첩하여부착하며,위쪽으로는흡수패드 (16 X 300 mm, Millipore)를중첩하여부착한후폭 4 mm가되도록절단기로잘라도 2와같은모양의면역크로마토그래피스트립을제조하여조립하였고,검사 식별부를레이저프린터로프린트한후하우징하판에붙였다.
[144]
[145] 실시예 2.블루투스모들이포함된분석디바이스와전자기기의연결을통한 분석
[146] 블루투스모들이포함된분석디바이스는도 8에나와있는바와같이터치 스크린 LCD (201),전압조절기 (202),시작스위치 (203),수광부 (206),광원부 (207), Microcontroller unit (208)등으로구성되어있으며,광학배열은대한민국 등록특허제 10-1562946호에따라광원부및수광부를배치시켰다.
[147] 갤럭시 S4스마트폰 (삼성전자,대한민국)에블루투스연결및파라미터
입력을위한어플리케이션을제작하였다 (도 9및도 10).어플리케이션의구성은 먼저검사종류를선택하고,'연결하기 '을누르면분석디바이스의전원이켜졌을 경우자동적으로연결하게설정하였고,각롯트에맞는파라미터값과롯트값을 입력하고전송하도록구성되었다.본실시예에서는회귀분석을위해 4 Parameter Logistic (4PL) nonlinear regression model을적용하여 A, B, C, D의 4가지 파라미터를입력하도록하였다. [148] 분석디바이스와스마트폰이블루투스로연결되고,각파라미터값입력이 확인된후,실시예 1에서제작된 PSA면역크로마토그래피디바이스를삽입하여 반웅전반사율값을측정하도록하였고,그다음하우징하판이위쪽으로 향하게검사디바이스에삽입하여디바이스식별부를분석디바이스가 인식하도록하였다ᅳ
[149] 디바이스식별부는스트립측정을위한분석디바이스의광원부와수광부를 그대로사용할수있도록검사구역,배경구역,대조구역에해당하는위치의검사 디바이스하우징하판에도 6과같이바코드형태의 5영역으로구분되는패턴을 구성하였다.패턴은 0부터 4까지슷자로코드화하였고 3구역에각 5가지패턴이 조합됨으로써숫자세자리로이루어진 125가지의코드가생성되었고,그중 10가지의예시가도 11에나타나있다.상기측정된초기값및디바이스 식별부의측정값을이용하여계산된값으로부터코드를환산한디바이스 식별부인식결과를표 1에나타내었으며,표 1과같이디바이스식별부는 의도한패턴대로코드를인식할수있음을확인하였다.
[150] [표 1]
Figure imgf000018_0001
[ -5-1]
[152] 계산값 C, B, T는각다음의식을통해계산되었다.
[153] C = (Co'- Ct)/Co' B = (Β0'- Bt)/B0' Τ = (Τ0'- Τ,)/Τ0'
[154] 이때, C0'= Co * (Ct000/C0000), B0'= B0 * (Bt000/B0000)및
[155] T0'= To * (Tt000/T0000)로계산되었으며,여기에서 X0000및 Xt000은코드
000을갖는디바이스의초기값및측정값을의미하며 ,분석디바이스에 기억되어있는값이다.코드환산은계산값이 100미만일때 0, 100이상 300 미만일때 1, 300이상 500미만일때 2, 500이상 650미만일때 3, 650이상일때 4로여러실험을통해산출된범위를사용하였다.
[156] 디바이스식별부의세자리코드는첫째자리가테스트종류를구분하고,둘째 자리가롯트의생산년도를구분하며,셋째자리가롯트의생산번호를 구분하도록함으로써분석디바이스가인식한코드와전자기기로부터전송되어 기억된롯트정보와매칭시킴으로써각롯트에맞는파라미터를확인하여 검사가진행되었으며, PSA농도별검사결과를표 2에나타내었다.
[157]
[158] [표 2]
Figure imgf000019_0001
[159]
[160] 이상으로본발명의특정한부분을상세히기술하였는바,당업계의통상의 지식을가진자에게있어서이러한구체적인기술은단지바람직한
구현예일뿐이며,이에본발명의범위가제한되는것이아닌점은명백하다. 따라서,본발명의실질적인범위는첨부된청구항과그의등가물에의하여 정의된다고할것이다.
[161]

Claims

청구범위
[청구항 1] 반웅스트립및디바이스식별부를포함하는검사디바이스;및
광원부,수광부및무선통신모들을포함하는분석디바이스;
를포함하는검체내분석물검출용장치로써 ,
상기반웅스트립은검사구역,대조구역,및배경구역을포함하고, 상기검사구역은분석물과반웅하는반웅물질을포함하며, 상기대조구역은대조물질을포함하는것인,
검체내분석물검출용장치.
[청구항 2] 제 1항에 있어서,상기분석디바이스는적어도 2개이상의광원부를
구비하고있으며,적어도 1개이상의광원부는반웅스트립에광을 조사하고,적어도 1개이상의광원부는디바이스식별부에광을조사하는 것인,검체내분석물검출용장치ᅳ
[청구항 3] 게 2항에 있어서,상기장치에있어서,반웅스트립에광을조사하는
광원부와디바이스식별부에광을조사하는광원부는상이한광원인 것인,검체내분석물검출용장치ᅳ
[청구항 4] 제 1항에 있어서,상기광원부는단색광을발생시키는것인,검체내
분석물검출용장치 .
[청구항 5] 제 4항에 있어서,상기단색광은적색계열또는녹색계열인것인,검체내 분석물검출용장치.
[청구항 6] 계 1항에 있어서,상기디바이스식별부는적어도 1개이상의식별구역을 포함하는것인,검체내분석물검출용장치.
[청구항 7] 제 6항에 있어서,상기식별구역은테스트종류정보,롯트생산년도및 롯트생산번호로이루어진군에서선택된 1종이상의정보를식별하기 위한것인,검체내분석물검출용장치.
[청구항 8] (a)롯트인식정보와롯트정보를비교하는단계;
(b)반웅전반웅스트립의 데이터를수득하는단계;
(b)검체를적용하는단계;
(c)반웅후반웅스트립의 데이터를수득하는단계;및
(e)파라미터값을적용하여검체내분석물의존재여부또는양을 결정하는단계;
를포함하는검체내분석물의검출방법ᅳ
[청구항 9] 계 8항에 있어서,상기검체내분석물의검출방법은상기 (a)단계이전에,
(a-1)롯트인식정보를광원부,수광부및무선통신모들을포함하는 분석디바이스에수신하는단계;
를추가로포함하는것인,검체내분석물의검출방법 .
[청구항 10] 제 9항에 있어서,상기검체내분석물의검출방법은상기 (a-1)단계
이전에, 상기롯트인식정보를무선통신모들을구비한전자기기에 입력하는 단계;
를추가로수행하는것인,검체내분석물의검출방법.
[청구항 11] 계 8항에 있어서,상기검체내분석물의검출방법은상기 (e)단계이전에,
(e-1)파라미터값을광원부,수광부및무선통신모들을포함하는분석 디바이스에수신하는단계;
를추가로포함하는것인,검체내분석물의검출방법 .
[청구항 12] 제 11항에 있어서,상기검체내분석물의검출방법은상기 (e-1)단계
이전에,
상기파리미터값을무선통신모들을구비한전자기기에 입력하는단계 ; 를추가로수행하는것인,검체내분석물의검출방법.
[청구항 13] 계 8항에 있어서,상기롯트정보는,반웅스트립및디바이스식별부를 포함하는검사디바이스로부터수득하는것인,검체내분석물의 검출방법.
[청구항 14] 제 13항에 있어서,상기롯트정보는검사디바이스의반사율을측정한후 디바이스식별부의패턴의반사율을측정하여수득하는것인,검체내 분석물의검출방법.
PCT/KR2017/012156 2016-11-04 2017-10-31 검체 내 분석물을 검출하기 위한 디바이스 및 이를 이용한 검출방법 WO2018084529A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0146818 2016-11-04
KR20160146818 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018084529A1 true WO2018084529A1 (ko) 2018-05-11

Family

ID=62076922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012156 WO2018084529A1 (ko) 2016-11-04 2017-10-31 검체 내 분석물을 검출하기 위한 디바이스 및 이를 이용한 검출방법

Country Status (1)

Country Link
WO (1) WO2018084529A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579598A (zh) * 2018-06-07 2019-12-17 江苏达骏生物科技有限公司 光信号检测装置、系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090123395A (ko) * 2008-05-28 2009-12-02 주식회사 에스디 코드 정보를 포함하는 센서 스트립 및 이를 이용한 분석장치
KR20130012744A (ko) * 2011-07-26 2013-02-05 (주)에스에이치제약 뇨, 혈액, 타액, 생체분비물 등의 체액으로 질병을 진단할 수 있는 휴대용 디지털멀티리더기
KR20140137487A (ko) * 2013-05-22 2014-12-03 주식회사 수젠텍 검체 내 분석물을 검출하기 위한 디바이스 및 방법
JP2014532869A (ja) * 2011-11-01 2014-12-08 成都領御生物技術有限公司 テストストリップ検出システム
KR101562946B1 (ko) * 2013-04-23 2015-10-26 주식회사 수젠텍 검체 내 분석물을 검출하기 위한 디바이스 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090123395A (ko) * 2008-05-28 2009-12-02 주식회사 에스디 코드 정보를 포함하는 센서 스트립 및 이를 이용한 분석장치
KR20130012744A (ko) * 2011-07-26 2013-02-05 (주)에스에이치제약 뇨, 혈액, 타액, 생체분비물 등의 체액으로 질병을 진단할 수 있는 휴대용 디지털멀티리더기
JP2014532869A (ja) * 2011-11-01 2014-12-08 成都領御生物技術有限公司 テストストリップ検出システム
KR101562946B1 (ko) * 2013-04-23 2015-10-26 주식회사 수젠텍 검체 내 분석물을 검출하기 위한 디바이스 및 방법
KR20140137487A (ko) * 2013-05-22 2014-12-03 주식회사 수젠텍 검체 내 분석물을 검출하기 위한 디바이스 및 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579598A (zh) * 2018-06-07 2019-12-17 江苏达骏生物科技有限公司 光信号检测装置、系统及方法
CN110579598B (zh) * 2018-06-07 2023-12-05 昆明联恩生物技术有限责任公司 光信号检测装置、系统及方法

Similar Documents

Publication Publication Date Title
Rezazadeh et al. The modern role of smartphones in analytical chemistry
Xu et al. Automatic smartphone-based microfluidic biosensor system at the point of care
US10852299B2 (en) Optical assay device with pneumatic sample actuation
AU2010236424B2 (en) Diagnostic devices and related methods
JP6034466B2 (ja) ポイントオブケア・テストの結果を読み取るためのハンドヘルド・スキャナ・システム及び方法
Kwon et al. Medical diagnostics with mobile devices: Comparison of intrinsic and extrinsic sensing
US9488585B2 (en) Reader devices for optical and electrochemical test devices
EP2795328B1 (en) Integrated test device for optical and electrochemical assays
CN103091486B (zh) 一种试条检测系统
Han et al. Low-cost point-of-care biosensors using common electronic components as transducers
Sun et al. Development and application of mobile apps for molecular sensing: a review
US20220404354A1 (en) Real-time, point of care diagnostic and method of use thereof
EP2990779B1 (en) Device for detecting analyzed object in specimen and method therefor
US8428398B2 (en) Hand-held portable microarray reader for biodetection
WO2019131309A1 (ja) イムノクロマトアッセイ用検査カートリッジ及び検査装置
KR101514694B1 (ko) 검체 내 분석물을 검출하기 위한 디바이스 및 방법
WO2018084529A1 (ko) 검체 내 분석물을 검출하기 위한 디바이스 및 이를 이용한 검출방법
CN208984529U (zh) 一种多功能干式poct设备
Wong Smartphone-readable barcode assays for quantitative analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866406

Country of ref document: EP

Kind code of ref document: A1