이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 변성 공액디엔계 중합체의 변성에 유용한 변성제를 제공한다.
본 발명의 일 실시예에 다른 상기 변성제는 하기 화학식 1로 표시되는 것인 것을 특징으로 한다.
[화학식 1]
상기 화학식 1에서,
R1은 탄소수 1 내지 20의 1가 탄화수소기; 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 1가 탄화수소기이고,
R2는 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기; 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 2가 탄화수소기이며,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이거나, 또는 상기 R3 및 R4는 서로 연결되어 탄소수 5 내지 20의 지방족 또는 방향족 고리를 형성하는 것이다.
구체적으로, 상기 화학식 1에 있어서 R1은 탄소수 1 내지 20의 1가 탄화수소기, 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 1가 탄화수소기 일 수 있다.
상기 R1이 탄소수 1 내지 20의 1가 탄화수소기인 경우, 상기 R1은 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되는 것일 수 있으며, 구체적으로는 R1은 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 및 탄소수 7 내지 12의 아릴알킬기로 이루어진 군에서 선택되는 것일 수 있다.
또한, 상기 R1이 헤테로원자를 포함하는 탄소수 1 내지 20의 1가 탄화수소기일 경우, 상기 R1은 탄화수소기내 1 이상의 탄소원자 대신에 헤테로원자를 포함하는 것이나; 또는 탄화수소기내 탄소원자에 결합된 1 이상의 수소원자가 헤테로원자, 또는 헤테로원자 포함 작용기로 치환된 것일 수 있으며, 이때 상기 헤테로원자는 N, O 및 S로 이루어진 군에서 선택되는 것일 수 있다. 구체적으로는 상기 R1이 헤테로원자를 포함하는 탄소수 1 내지 20의 1가 탄화수소기일 경우, 알콕시기; 페녹시기; 카르복시기; 산무수물기; 아미노기; 아미드기; 에폭시기; 머캅토기; -[R11O]xR12 (이때 R11은 탄소수 2 내지 20의 알킬렌기이고, R12는 수소원자, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되며, x는 2 내지 10의 정수임); 히드록시기, 알콕시기, 페녹시, 카르복시기, 에스테르기, 산무수물기, 아미노기, 아미드기, 에폭시기 및 머캅토기로 이루어진 군에서 선택되는 1 이상의 작용기를 포함하는 탄소수 1 내지 20의 1가 탄화수소기(예를 들면, 히드록시알킬기, 알콕시알킬기, 페녹시알킬기, 아미노알킬기 또는 티올알킬기 등)일 수 있다. 더 구체적으로, 상기 R1이 헤테로원자를 포함하는 탄소수 1 내지 20의 알킬기일 경우, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 7 내지 20의 페녹시알킬기, 탄소수 1 내지 20의 아미노알킬기 및 -[R11O]xR12 (이때 R11은 탄소수 2 내지 10의 알킬렌기이고, R12는 수소원자, 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 18의 아릴기 및 탄소수 7 내지 18의 아릴알킬기로 이루어진 군에서 선택되며, x는 2 내지 10의 정수임)로 이루어진 군에서 선택되는 것일 수 있다.
또한, 상기 화학식 1에서, R2는 탄소수 1 내지 20의 2가 탄화수소기 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 2가 탄화수소기일 수 있다.
상기 R2가 탄소수 1 내지 20의 2가 탄화수소기인 경우, 상기 R2는 메틸렌기, 에틸렌기 또는 프로필렌기 등과 같은 탄소수 1 내지 10의 알킬렌기; 페닐렌기 등과 같은 탄소수 6 내지 20의 아릴렌기; 또는 이들의 조합기로서 탄소수 7 내지 20의 아릴알킬렌기일 수 있다. 보다 구체적으로, R2는 탄소수 1 내지 6의 알킬렌기일 수 있다. 또한, 상기 R2는 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환된 것일 수 있다.
또한, 상기 R2가 헤테로 원자를 포함하는 탄소수 1 내지 20의 2가 탄화수소기인 경우, 상기 R2는 탄화수소기내 1 이상의 탄소원자 대신에 헤테로원자를 포함하는 것이거나; 또는 탄화수소기내 탄소원자에 결합된 1 이상의 수소원자가 헤테로원자, 또는 헤테로원자 포함 작용기로 치환된 것일 수 있으며, 이때 상기 헤테로원자는 N, O 및 S로 이루어진 군에서 선택되는 것일 수 있다.
구체적으로는 상기 R2가 헤테로원자를 포함하는 탄소수 1 내지 20의 2가 탄화수소기인 경우에는, 알콕시기; 페녹시기; 카르복시기; 산무수물기; 아미노기; 아미드기; 에폭시기; 머캅토기; 히드록시기, 알콕시기, 페녹시, 카르복시기, 에스테르기, 산무수물기, 아미노기, 아미드기, 에폭시기 및 머캅토기로 이루어진 군에서 선택되는 1 이상의 작용기를 포함하는 탄소수 1 내지 20의 2가 탄화수소기인 것일 수 있다.
또한, 상기 화학식 1에서, R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 1가 탄화수소이거나, 서로 연결되어 탄소수 5 내지 20의 지방족 또는 방향족 고리를 형성하는 것일 수 있고, 구체적으로는 서로 독립적으로 탄소수 1 내지 10의 알킬기로 치환되거나 비치환된 탄소수 1 내지 10의 알킬기인 것일 수 있다. 보다 구체적으로는, R3 및 R4는 서로 독립적으로 탄소수 1 내지 5의 알킬기로 치환되거나 비치환된 탄소수 1 내지 6의 알킬기인 것일 수 있다.
구체적으로, 상기 변성제는 화학식 1에서, R1은 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 7 내지 12의 아릴알킬기, 탄소수 2 내지 10의 알콕시알킬기, 탄소수 7 내지 12의 페녹시알킬기 및 탄소수 1 내지 10의 아미노알킬기로 이루어진 군에서 선택되는 어느 하나이고, R2는 탄소수 1 내지 10의 알킬렌기이고, R3 및 R4는 서로 독립적으로 탄소수 1 내지 10의 알킬기로 치환되거나 비치환된 탄소수 1 내지 10의 알킬기인 것일 수 있다. 더 구체적으로는, 상기 화학식 1에서 R1은 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알콕시알킬기 및 탄소수 7 내지 12의 페녹시알킬기로 이루어진 군에서 선택되는 어느 하나이고, R2는 탄소수 1 내지 6의 알킬렌기이며, R3 및 R4는 서로 독립적으로 탄소수 1 내지 5의 알킬기로치환되거나 비치환된 탄소수 1 내지 6의 알킬기인 것일 수 있다.
보다 더 구체적으로는, 상기 화학식 1로 표시되는 변성제는 하기 화학식 2 또는 화학식 3으로 표시되는 것일 수 있다.
[화학식 1-1]
[화학식 1-2]
[화학식 1-3]
[화학식 1-4]
또한, 상기 변성제는 25℃, 1기압에서 비극성 용매, 예컨대 헥산 100 g에 대한 용해도(solubility)가 10 g 이상인 것일 수 있다. 여기에서, 변성제의 용해도는 육안에 의한 관찰시 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것이다. 이와 같이 높은 용해도를 나타냄으로써 중합체에 대한 우수한 변성율을 나타낼 수 있다.
본 발명에 따른 상기 화학식 1로 표시되는 변성제는 공액디엔계 중합체에 대한 반응성 작용기, 충진제 친화성 작용기 및 용매 친화성 작용기를 포함함으로써 공액디엔계 중합체를 고 변성율로 용이하게 변성시킬 수 있으며, 이를 포함하는 고무 조성물 및 이로부터 제조된 타이어 등의 성형품의 내마모성, 저연비특성 및 가공성을 개선시킬 수 있다. 구체적으로, 상기 화학식 1의 변성제는 전술한 바와 같이 분자 내에 이민기와 지방족 탄화수소기를 포함하는 것일 수 있으며, 상기 이민기는 공액디엔계 중합체의 활성 부위에 대해 높은 반응성을 나타냄으로써 공액디엔계 중합체를 높은 변성율로 변성시킬 수 있어 결과적으로 변성제에 치환된 관능성 작용기를 공액디엔계 중합체 내로 높은 수율로 도입시킬 수 있다. 또한, 상기 이민기는 공액디엔계 중합체 말단과 반응하여 2급 아미노기로 전환되면서 충진제, 특히 카본블랙과의 친화성을 더욱 향상시킬 수 있다. 또한, 상기 지방족 탄화수소기, 특히 선형의 지방족 탄화수소기는 중합용매에 대한 친화도를 높여 변성제의 용해도를 증가시키킬 수 있으며, 이에 공액디엔 중합체에 대한 변성율을 향상시킬 수 있다. 아울러, 상기 변성제에 있어서, 헤테로원자를 포함하는 탄화수소기, 구체적으로 3급 아미노기는 고무 조성물 내 변성 공액디엔계 중합체와 충진제와의 친화성을 향상시킬 수 있다. 예컨대, 3급 아미노기는 충진제 표면에 존재하는 수산화기 간의 수소결합을 방해함으로써 충진제 간의 응집을 방지하여 고무 조성물 내 충진제의 분산성을 향상시킬 수 있다.
또한, 본 발명은 하기 화학식 1로 표시되는 변성제의 제조방법은 제공한다.
본 발명의 일 실시예에 따른 상기 변성제의 제조방법은 하기 화학식 2로 표시되는 화합물에 할로겐 화합물을 제1 반응시켜 하기 화학식 3으로 표시되는 염 형태의 화합물을 제조하는 단계(단계 a); 상기 화학식 3으로 표시되는 염 형태의 화합물에 알킬아민을 제2 반응시켜 하기 화학식 4로 표시되는 화합물을 제조하는 단계(단계 b); 및 상기 화학식 4로 표시되는 화합물에 알킬케톤 화합물을 제3 반응시키는 단계(단계 c)를 포함하는 것을 특징으로 한다.
[화학식 2]
[화학식 3]
[화학식 4]
[화학식 1]
상기 화학식 1 내지 화학식 4에서,
R1은 탄소수 1 내지 20의 1가 탄화수소기; 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 1가 탄화수소기이고,
R2는 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기; 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 2가 탄화수소기이며,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이거나, 또는 상기 R3 및 R4는 서로 연결되어 탄소수 5 내지 20의 지방족 또는 방향족 고리를 형성하는 것이다.
상기 단계 a의 제1 반응은 화학식 3으로 표시되는 염 형태의 화합물을 제조하기 위한 단계로, 상기 화학식 2로 표시되는 화합물에 할로겐 화합물을 반응시켜 수행할 수 있다.
또한, 상기 단계 b의 제2 반응은 하기 화학식 4로 표시되는 화합물을 제조하기 위한 단계로, 상기 제1 반응에 의하여 제조된 상기 화학식 3으로 표시되는 염 형태의 화합물에 알킬아민을 반응시켜 수행할 수 있다. 이때, 상기 단계 a의 제1 반응과 단계 b의 제2 반응은 하나의 반응기에서 연속적으로 수행하거나, 두개의 반응기에서 단계적으로 수행하는 것일 수 있다.
상기 제1 반응 및 제2 반응은 각각 저온에서 극성용매 존재 하에서 수행하는 것일 수 있다. 이때, 상기 제1 반응에서, 상기 화학식 2로 표시되는 화합물과 할로겐 화합물은 화학양론적 비율로 사용하는 것일 수 있으며, 구체적으로는 상기 화학식 2로 표시되는 화합물과 할로겐 화합물은 1:0.9 내지 1의 몰비로 사용하는 것일 수 있다. 또한, 상기 제2 반응에서, 상기 화학식 3으로 표시되는 염 형태의 화합물과 알킬아민은 화학양론적 비율로 사용하는 것일 수 있으며, 구체적으로는 상기 화학식 3으로 표시되는 염 형태의 화합물과 알킬아민은 1:1.5 내지 3의 몰비로 사용하는 것일 수 있다.
여기에서, 상기 제1 반응 및 제2 반응에서의 저온은 서로 독립적으로 -10℃ 내지 25℃의 온도범위일 수 있고, 상기 제1 반응과 제2 반응은 동일한 온도에서 수행하는 것이거나, 상이한 온도에서 수행하는 것일 수 있다.
또한, 상기 제1 반응 및 제2 반응에서 사용되는 극성용매는 서로 독립적으로 메탄올, 에탄올, 부탄올, 헥산올 및 디클로로메탄 중에선 선택된 1종 이상인 것일 수 있다.
구체적으로는, 상기 제1 반응에서 사용되는 극성용매는 제2 반응에 사용되는 극성용매 대비 상대적으로 극성이 강한 것일 수 있으며, 더 구체적으로는 상기 제1 반응에서 사용되는 극성용매는 메탄올, 에탄올, 부탄올 및 헥산올 중에서 선택된 1종 이상인 것, 보다 더 구체적으로는 에탄올인 것일 수 있고, 상기 제2 반응에서 사용되는 극성용매는 디클로로메탄인 것일 수 있다.
또한, 상기 할로겐 화합물은 특별히 제한하는 것은 아니나, 예컨대 염화티오닐인 것일 수 있다.
또한, 상기 알킬아민은 특별히 제한하는 것은 아니나, 예컨대 트리에틸아민인 것일 수 있다.
상기 단계 c의 제3 반응은 화학식 1로 표시되는 변성제를 제조하기 위한 단계로, 상기 화학식 4로 표시되는 화합물에 알킬케톤 화합물을 반응시켜 수행할 수 있다. 이때, 상기 제3 반응은 고온에서 수행하는 것일 수 있으며, 상기 화학식 4로 표시되는 화합물과 알킬케톤 화합물은 화학양론적 비율로 사용하는 것일 수 있다.
구체적으로는, 상기 제3 반응은 100℃ 내지 150℃의 온도범위 조건에서 수행하는 것일 수 있고, 상기 화학식 4로 표시되는 화합물과 알킬케톤 화합물은 1:1 내지 5의 몰비로 사용하는 것일 수 있다.
또한, 상기 알킬케톤 화합물은 특별히 제한하는 것은 아니나, 예컨대 메틸이소프로필케톤, 메틸이소부틸케톤, 사이클로헥사논, 메틸에틸케톤, 디이소프로필케톤, 에틸부틸케톤, 메틸부틸케톤 및 디프로필케톤으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
아울러, 본 발명은 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 변성 공액디엔계 중합체를 제공한다.
[화학식 1]
상기 화학식 1에서,
R1은 탄소수 1 내지 20의 1가 탄화수소기; 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 1가 탄화수소기이고,
R2는 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기; 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 2가 탄화수소기이며,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이거나, 또는 상기 R3 및 R4는 서로 연결되어 탄소수 5 내지 20의 지방족 또는 방향족 고리를 형성하는 것이다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 후술하는 제조방법을 통해 유기 금속이 결합된 활성 중합체와 상기 화학식 1로 표시되는 변성제를 반응시킴으로써 제조되는 것일 수 있으며, 상기 변성 공액디엔계 중합체는 상기 화학식 1로 표시되는 변성제 유래 작용기를 포함함으로써 물성적 특성이 개선될 수 있다.
구체적인, 상기 화학식 1로 표시되는 변성제는 전술한 바와 같을 수 있다.
구체적으로, 상기 변성 공액디엔계 중합체는 상기 화학식 1로 표시되는 변성제 유래 작용기를 포함함으로써 충진제 친화성 작용기 및 용매 친화성 작용기를 포함할 수 있으며, 이에 이를 포함하는 고무 조성물 및 이로부터 제조된 타이어 등의 성형품의 내마모성, 저연비특성 및 가공성이 개선될 수 있다.
상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 100,000 g/mol 내지 700,000 g/mol, 구체적으로는 120,000 g/mol 내지 500,000 g/mol일 수 있다.
또한, 상기 변성 공액디엔계 중합체는 중량평균 분자량(Mw)이 300,000 g/mol 내지 1,200,000 g/mol, 구체적으로는 400,000 g/mol 내지 1,000,000 g/mol일 수 있다.
또한, 상기 변성 공액디엔계 중합체는 분자량 분포(Mw/Mn)가 1.05 내지 5인 것일 수 있다.
아울러, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 고무 조성물에 적용시 고무 조성물의 기계적 물성, 탄성률 및 가공성의 발란스 좋은 개선 효과를 고려할 때, 상기와 같은 분자량 분포 범위를 가지면서 중량평균 분자량 및 수평균 분자량을 동시에 전술한 범위의 조건에 충족되는 것일 수 있다.
구체적으로는, 상기 변상 공액디엔계 중합체는 분자량 분포가 3.4 이하이고, 중량평균 분자량이 300,000 g/mol 내지 1,200,000 g/mol이고, 수평균 분자량이 100,000 g/mol 내지 700,000 g/mol인 것일 수 있고, 더 구체적으로는 다분산도가 3.2 이하이고, 중량평균 분자량이 400,000 g/mol 내지 1,000,000 g/mol이고, 수평균 분자량이 120,000 g/mol 내지 500,000 g/mol인 것일 수 있다.
여기에서, 상기 중량평균 분자량 및 수평균 분자량은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량이며, 분자량 분포(Mw/Mn)는 다분산성(polydispersity)이라고도 불리며, 중량평균 분자량(Mw)과 수평균 분자량(Mn)과의 비(Mw/Mn)로 계산하였다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 100℃에서의 -S/R(stress/relaxation)의 값이 0.7 이상인 높은 선형성을 갖는 중합체인 것일 수 있다. 이때, 상기 -S/R은 물질내 발생된 동일 양의 변형(strain)에 대한 반응으로 나타나는 스트레스(stress)의 변화를 나타내는 것으로, 중합체의 선형성을 나타내는 지수이다. 통상 -S/R 값이 낮을수록 중합체의 선형성이 낮음을 의미하며, 선형성이 낮을수록 고무 조성물에 적용시 구름 저항 또는 회전 저항이 증가하게 된다. 또한, 상기 -S/R 값으로부터 중합체의 분지화도 및 분자량 분포를 예측할 수 있으며, -S/R 값이 낮을수록 분지화도가 높고, 분자량 분포가 넓으며, 그 결과로서 중합체의 가공성은 우수한 반면 기계적 특성은 낮다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 전술한 바와 같이 100℃에서 0.7 이상의 높은 -S/R 값을 가짐으로써, 고무 조성물에 적용시 저항 특성 및 연비 특성이 우수할 수 있다. 구체적으로는, 상기 변성 공액디엔계 중합체의 -S/R 값은 0.7 내지 1.0일 수 있다.
여기에서, 상기 -S/R 값은 무니점도계, 예를 들어, Monsanto사 MV2000E의 Large Rotor를 사용하여 100℃ 및 Rotor Speed 2±0.02rpm의 조건에서 측정하였다. 구체적으로는 중합체를 실온(23±5℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정한 이후, 추가로 1분 동안 토크가 풀리면서 나타나는 무니점도 변화의 기울기 값을 측정함으로써 -S/R값을 얻었다.
또한, 구체적으로, 상기 변성 공액디엔계 중합체는 푸리에 변환 적외 분광법(FT-IR)으로 측정한 공액디엔부의 시스-1,4 결합 함량이 95% 이상, 보다 구체적으로는 98% 이상인 것일 수 있다. 이에, 고무 조성물에 적용시 고무 조성물의 내마모성, 내균열성 및 내오존성이 향상될 수 있다.
또한, 상기 변성 공액디엔계 중합체는 푸리에 변환 적외 분광법으로 측정한 공액디엔부의 비닐 함량이 5% 이하, 보다 구체적으로는 2% 이하일 수 있다. 중합체내 비닐 함량이 5%를 초과할 경우, 이를 포함하는 고무 조성물의 내마모성, 내균열성, 내오존성이 열화될 우려가 있다.
여기에서, 상기 푸리에 변환 적외 분광법(FT-IR)에 의한 중합체 내 시스-1,4 결합 함량 및 비닐 함량은, 동일 셀의 이황화탄소를 블랭크로 하여 5 mg/mL의 농도로 조제한 공액디엔계 중합체의 이황화 탄소 용액의 FT-IR 투과율 스펙트럼을 측정한 후, 측정 스펙트럼의 1130 cm-1부근의 최대 피크값(a, 베이스라인), 트랜스-1,4 결합을 나타내는 967 cm-1 부근의 최소 피크값(b), 비닐결합을 나타내는 911 cm-1 부근의 최소 피크값(c), 그리고 시스-1,4 결합을 나타내는 736 cm-1 부근의 최소 피크값(d)을 이용하여 각각의 함량을 구한 것이다.
아울러, 본 발명은 상기 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 제조방법은 탄화수소 용매 중에서, 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매 조성물 존재 하에서 공액디엔계 단량체를 중합하여 유기 금속이 결합된 활성 중합체를 제조하는 단계(단계 1); 및 상기 활성 중합체를 하기 화학식 1로 표시되는 변성제와 반응시키는 단계(단계 2)를 포함하는 것을 특징으로 한다.
[화학식 1]
상기 화학식 1에서, R1은 탄소수 1 내지 20의 1가 탄화수소기; 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 1가 탄화수소기이고, R2는 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기; 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 2가 탄화수소기이며, R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이거나, 또는 상기 R3 및 R4는 서로 연결되어 탄소수 5 내지 20의 지방족 또는 방향족 고리를 형성하는 것이다.
구체적인, 화학식 1로 표시되는 변성제는 전술한 바와 같을 수 있다.
상기 단계 1은 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매 조성물을 이용하여 유기 금속이 결합된 활성 중합체를 제조하기 위한 단계로, 탄화수소 용매 중에서 상기 촉매 조성물의 존재 하 공액디엔계 단량체를 중합함으로써 수행할 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 촉매 조성물은 공액디엔계 단량체 총 100 g을 기준으로 란탄 계열 희토류 원소 함유 화합물이 0.1 mmnol 내지 0.5 mmol이 되게 하는 양으로 사용하는 것일 수 있으며, 구체적으로는 란탄 계열 희토류 원소 함유 화합물이 공액디엔계 단량체 총 100 g을 기준으로 0.1 mmol 내지 0.4 mmol, 더욱 구체적으로는 0.1 mmol 내지 0.25 mmol이 되게 하는 양으로 사용하는 것일 수 있다. 본 발명의 일 실시예에 따른 제조방법은 상기 촉매 조성물을 상기의 범위 내로 사용함으로써 촉매 활성이 높고, 적정 촉매 농도를 가져, 별도의 탈회 공정을 거치지 않아도 되는 효과가 있다.
상기 란탄 계열 희토류 원소 함유 화합물은 특별히 제한되는 것은 아니나, 예컨대 란탄, 네오디뮴, 세륨, 가돌리늄 또는 프라세오디뮴 등과 같은 원자번호 57 내지 71의 희토류 금속 중 어느 하나 또는 둘 이상의 화합물일 수 있으며, 더 구체적으로는 네오디뮴, 란탄 및 가돌리늄으로 이루어진 군에서 선택된 1 이상을 포함하는 화합물일 수 있다.
또한, 상기 란탄 계열 희토류 원소 함유 화합물은 상기한 희토류 원소 함유 카르복실산염(예를 들면, 네오디뮴 초산염, 네오디뮴 아크릴산염, 네오디뮴 메타크릴산염, 네오디뮴 초산염, 네오디뮴 글루콘산염, 네오디뮴 구연산염, 네오디뮴 푸마르산염, 네오디뮴 유산염, 네오디뮴 말레산염, 네오디뮴 옥살산염, 네오디뮴 2-에틸헥사노에이트, 네오디뮴 네오 데카노에이트 등); 유기인산염(예를 들면, 네오디뮴 디부틸 인산염, 네오디뮴 디펜틸 인산염, 네오디뮴 디헥실 인산염, 네오디뮴 디헵틸 인산염, 네오디뮴 디옥틸 인산염, 네오디뮴 비스(1-메틸 헵틸) 인산염, 네오디뮴 비스(2-에틸헥실) 인산염, 또는 네오디뮴 디데실 인산염 등); 유기 포스폰산염(예를 들면, 네오디뮴 부틸 포스폰산염, 네오디뮴 펜틸 포스폰산염, 네오디뮴 헥실 포스폰산염, 네오디뮴 헵틸 포스폰산염, 네오디뮴 옥틸 포스폰산염, 네오디뮴(1-메틸 헵틸) 포스폰산염, 네오디뮴(2-에틸헥실) 포스폰산염, 네오디뮴 디실 포스폰산염, 네오디뮴 도데실 포스폰산염 또는 네오디뮴 옥타데실 포스폰산염 등); 유기 포스핀산염(예를 들면, 네오디뮴 부틸포스핀산염, 네오디뮴 펜틸포스핀산염, 네오디뮴 헥실 포스핀산염, 네오디뮴 헵틸 포스핀산염, 네오디뮴 옥틸 포스핀산염, 네오디뮴(1-메틸 헵틸) 포스핀산염 또는 네오디뮴(2-에틸헥실) 포스핀산염 등); 카르밤산염(예를 들면, 네오디뮴 디메틸 카르밤산염, 네오디뮴 디에틸 카르밤산염, 네오디뮴 디이소프로필 카르밤산염, 네오디뮴 디부틸 카르밤산염 또는 네오디뮴 디벤질 카르밤산염 등); 디티오 카르밤산염(예를 들면, 네오디뮴 디메틸디티오카르바민산염, 네오디뮴 디에틸디티오카르바민산염, 네오디뮴 디이소프로필 디티오 카르밤산염 또는 네오디뮴 디부틸디티오카르바민산염 등); 크산토겐산염(예를 들면, 네오디뮴 메틸 크산토겐산염, 네오디뮴 에틸 크산토겐산염, 네오디뮴 이소프로필 크산토겐산염, 네오디뮴 부틸 크산토겐산염, 또는 네오디뮴 벤질 크산토겐산염 등); ?-디케토네이트(예를 들면, 네오디뮴 아세틸아세토네이트, 네오디뮴 트리플루오로아세틸 아세토네이트, 네오디뮴 헥사플루오로아세틸 아세토네이트 또는 네오디뮴 벤조일 아세토네이트 등); 알콕시드 또는 알릴옥시드(예를 들면, 네오디뮴 메톡사이드, 네오디뮴 에톡시드, 네오디뮴 이소프로폭사이드, 네오디뮴 페녹사이드 또는 네오디뮴 노닐 페녹사이드 등); 할로겐화물 또는 의사 할로겐화물(네오디뮴 불화물, 네오디뮴 염화물, 네오디뮴 브롬화물, 네오디뮴 요오드화물, 네오디뮴 시안화물, 네오디뮴 시안산염, 네오디뮴 티오시안산염, 또는 네오디뮴 아지드 등); 옥시할라이드(예를 들면, 네오디뮴 옥시플루오라이드, 네오디뮴 옥시 클로라이드, 또는 네오디뮴 옥시 브로마이드 등); 또는 1 이상의 희토류 원소-탄소 결합을 포함하는 유기 란탄 계열 희토류 원소 함유 화합물(예를 들면, Cp3Ln, Cp2LnR, Cp2LnCl, CpLnCl2, CpLn(사이클로옥타테트라엔), (C5Me5)2LnR, LnR3, Ln(알릴)3, 또는 Ln(알릴)2Cl 등, 상기 식중 Ln은 희토류 금속 원소이고, R은 하이드로카르빌기이다) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.
구체적으로는, 상기 란탄 계열 희토류 원소 함유 화합물은 하기 화학식 5로 표시되는 네오디뮴계 화합물을 포함하는 것일 수 있다.
[화학식 5]
상기 화학식 5에서, Ra 내지 Rc는 서로 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기일 수 있고, 단, Ra 내지 Rc가 모두 동시에 수소는 아니다.
구체적인 예로, 상기 네오디뮴계 화합물은 Nd(네오데카노에이트)3, Nd(2-에틸헥사노에이트)3, Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2-t-부틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또 다른 예로, 올리고머화에 대한 우려 없이 중합 용매에 대한 우수한 용해도, 촉매 활성종으로의 전환율 및 이에 따른 촉매 활성 개선 효과의 우수함을 고려할 때, 상기 란탄 계열 희토류 원소 함유 화합물은 보다 구체적으로 상기 화학식 5에서 Ra가 탄소수 4 내지 12의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 서로 독립적으로 수소 또는 탄소수 2 내지 8의 알킬기이되, 단 Rb 및 Rc이 동시에 수소가 아닌 네오디뮴계 화합물일 수 있다.
보다 구체적인 예로, 상기 화학식 5에서 상기 Ra는 탄소수 6 내지 8의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소, 또는 탄소수 2 내지 6의 알킬기일 수 있으며, 이때 상기 Rb 및 Rc는 동시에 수소가 아닐 수 있고, 그 구체적인 예로는 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2-t-부틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 중에서도 상기 네오디뮴계 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, 및 Nd(2,2-디옥틸 데카노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
보다 더 구체적으로, 상기 화학식 5에서, 상기 Ra는 탄소수 6 내지 8의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 각각 독립적으로 탄소수 2 내지 6의 알킬기일 수 있다.
이와 같이, 상기 화학식 5로 표시되는 네오디뮴계 화합물은 α(알파) 위치에 탄소수 2 이상의 다양한 길이의 알킬기를 치환기로 포함하는 카르복실레이트 리간드를 포함함으로써, 네오디뮴 중심 금속 주위에 입체적인 변화를 유도하여 화합물 간의 엉김 현상을 차단할 수 있고, 이에 따라, 올리고머화를 억제할 수 있는 효과가 있다. 또한, 이와 같은 네오디뮴계 화합물은 중합 용매에 대한 용해도가 높고, 촉매 활성종으로의 전환에 어려움이 있는 중심 부분에 위치하는 네오디뮴 비율이 감소되어 촉매 활성종으로의 전환율이 높은 효과가 있다.
또한, 본 발명의 일 실시예에 따른 상기 란탄 계열 희토류 원소 함유 화합물의 용해도는 상온(25℃)에서 비극성 용매 6 g 당 약 4 g 이상일 수 있다.
본 발명에 있어서, 네오디뮴계 화합물의 용해도는 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것으로, 이와 같이 높은 용해도를 나타냄으로써 우수한 촉매 활성을 나타낼 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 란탄 계열 희토류 원소 함유 화합물은 루이스 염기와의 반응물의 형태로 사용될 수도 있다. 이 반응물은 루이스 염기에 의해, 란탄 계열 희토류 원소 함유 화합물의 용매에 대한 용해성을 향상시키고, 장기간 안정한 상태로 저장할 수 있는 효과가 있다. 상기 루이스 염기는 일례로 희토류 원소 1 몰 당 30 몰 이하, 또는 1 내지 10 몰의 비율로 사용될 수 있다. 상기 루이스 염기는 일례로 아세틸아세톤, 테트라히드로푸란, 피리딘, N,N-디메틸포름아미드, 티오펜, 디페닐에테르, 트리에틸아민, 유기인 화합물 또는 1가 또는 2가의 알코올 등일 수 있다.
한편, 상기 촉매 조성물은 란탄 계열 희토류 원소 함유 화합물과 함께 (a) 알킬화제, (b) 할로겐화물 및 (c) 공액디엔계 단량체 중 적어도 하나를 더 포함하는 것일 수 있다.
이하, 상기 (a) 알킬화제, (b) 할로겐화물 및 (c) 공액디엔계 단량체를 나누어 구체적으로 설명한다.
(a) 알킬화제
상기 알킬화제는 히드로카르빌기를 다른 금속으로 전달할 수 있는 유기금속 화합물로서 조촉매 조성물의 역할을 하는 것일 수 있다. 상기 알킬화제는 통상 디엔계 중합체의 제조시 알킬화제로서 사용되는 것이라면 특별한 제한하지 않고 사용할 수 있으며, 예컨대 유기 알루미늄 화합물, 유기 마그네슘 화합물, 또는 유기 리튬 화합물 등과 같이, 중합 용매에 가용성이며, 금속-탄소 결합을 함유하는 유기금속 화합물일 수 있다.
구체적으로는, 상기 유기 알루미늄 화합물로는 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리시클로헥실알루미늄, 트리옥틸알루미늄 등의 알킬알루미늄; 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드(DIBAH), 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드라이드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 또는 벤질-n-옥틸알루미늄 하이드라이드 등의 디히드로카르빌알루미늄 하이드라이드; 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드 또는 n-옥틸알루미늄 디하이드라이드 등과 같은 히드로카르빌알루미늄 디하이드라이드 등을 들 수 있다. 상기 유기 마그네슘 화합물로는 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘, 디부틸마그네슘, 디헥실마그네슘, 디페닐마그네슘, 또는 디벤질마그네슘과 같은 알킬마그네슘 화합물 등을 들 수 있고, 또 상기 유기 리튬 화합물로는 n-부틸리튬 등과 같은 알킬 리튬 화합물 등을 들 수 있다.
또한, 상기 유기 알루미늄 화합물은 알루미녹산일 수 있다.
상기 알루미녹산은 트리히드로카르빌 알루미늄계 화합물에 물을 반응시킴으로써 제조된 것일 수 있으며, 구체적으로는 하기 화학식 6a의 직쇄 알루미녹산 또는 하기 화학식 6b의 환형 알루미녹산일 수 있다.
[화학식 6a]
[화학식 6b]
상기 화학식 6a 및 6b에서, R은 탄소 원자를 통해 알루미늄 원자에 결합하는 1가의 유기기로서, 하이드로카르빌기일 수 일 수 있으며, x 및 y는 서로 독립적으로 1 이상의 정수, 구체적으로는 1 내지 100, 더 구체적으로는 2 내지 50의 정수일 수 있다.
보다 더 구체적으로는, 상기 알루미녹산은 메틸알루미녹산(MAO), 변성 메틸알루미녹산(MMAO), 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 또는 2,6-디메틸페닐 알루미녹산 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기를 수식기(R), 구체적으로는 탄소수 2 내지 20의 탄화수소기로 치환한 것으로, 구체적으로는 하기 화학식 7로 표시되는 화합물일 수 있다.
[화학식 7]
상기 화학식 7에서, R은 앞서 정의한 바와 같으며, m 및 n은 서로 독립적으로 2 이상의 정수일 수 있다. 또한, 상기 화학식 7에서, Me는 메틸기(methyl group)을 나타내는 것이다.
구체적으로, 상기 화학식 7에서 상기 R은 탄소수 2 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 7 내지 20의 알킬아릴기, 알릴기 또는 탄소수 2 내지 20의 알키닐기일 수 있으며, 보다 구체적으로는 에틸기, 이소부틸기, 헥실기 또는 옥틸기 등과 같은 탄소수 2 내지 10의 알킬기이고, 보다 더 구체적으로는 이소부틸기일 수 있다.
더 구체적으로, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기의 약 50 몰% 내지 90 몰%를 상기한 탄화수소기로 치환한 것일 수 있다. 변성 메틸알루미녹산 내 치환된 탄화수소기의 함량이 상기 범위 내일 때, 알킬화를 촉진시켜 촉매활성을 증가시킬 수 있다.
이와 같은 변성 메틸알루미녹산은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 트리메틸알루미늄과 트리메틸알루미늄 이외의 알킬알루미늄을 이용하여 제조될 수 있다. 이때 상기 알킬알루미늄은 트리이소부틸알루미늄, 트리에틸알루미늄, 트리헥실알루미늄 또는 트리옥틸알루미늄 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 촉매 조성물은 상기 알킬화제를 상기 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 1 내지 200 몰비, 구체적으로는 1 내지 100 몰비, 더욱 구체적으로는 3 내지 20 몰비로 포함하는 것일 수 있다. 만약, 상기 알킬화제를 200 몰비를 초과하여 포함하는 경우에는 중합체 제조 시 촉매 반응 제어가 용이하지 않고, 과량의 알킬화제가 부반응을 일으킬 우려가 있다.
(b) 할로겐화물
상기 할로겐화물은 특별히 제한하는 것은 아니나, 예컨대 할로겐 단체(單體), 할로겐간 화합물(interhalogen compound), 할로겐화수소, 유기 할라이드, 비금속 할라이드, 금속 할라이드 또는 유기금속 할라이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 촉매 활성 향상 및 이에 따른 반응성 개선 효과의 우수함을 고려할 때 상기 할로겐화물로는 유기 할라이드, 금속 할라이드 및 유기금속 할라이드로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 할로겐 단체로는 불소, 염소, 브롬 또는 요오드를 들 수 있다.
또한, 상기 할로겐간 화합물로는 요오드 모노클로라이드, 요오드 모노브로마이드, 요오드 트리클로라이드, 요오드 펜타플루오라이드, 요오드 모노플루오라이드 또는 요오드 트리플루오라이드 등을 들 수 있다.
또한, 상기 할로겐화수소로는 불화수소, 염화수소, 브롬화수소 또는 요오드화수소를 들 수 있다.
또한, 상기 유기 할라이드로는 t-부틸 클로라이드(t-BuCl), t-부틸 브로마이드, 알릴 클로라이드, 알릴 브로마이드, 벤질 클로라이드, 벤질 브로마이드, 클로로-디-페닐메탄, 브로모-디-페닐메탄, 트리페닐메틸 클로라이드, 트리페닐메틸 브로마이드, 벤질리덴 클로라이드, 벤질리덴 브로마이드, 메틸트리클로로실란, 페닐트리클로로실란, 디메틸디클로로실란, 디페닐디클로로실란, 트리메틸클로로실란(TMSCl), 벤조일 클로라이드, 벤조일 브로마이드, 프로피오닐 클로라이드, 프로피오닐 브로마이드, 메틸 클로로포르메이트, 메틸 브로모포르메이트, 요오도메탄, 디요오도메탄, 트리요오도메탄 ('요오도포름'으로도 불리움), 테트라요오도메탄, 1-요오도프로판, 2-요오도프로판, 1,3-디요오도프로판, t-부틸 요오다이드, 2,2-디메틸-1-요오도프로판 ('네오펜틸 요오다이드'로도 불리움), 알릴 요오다이드, 요오도벤젠, 벤질 요오다이드, 디페닐메틸 요오다이드, 트리페닐메틸 요오다이드, 벤질리덴 요오다이드 ('벤잘 요오다이드'로도 불리움), 트리메틸실릴 요오다이드, 트리에틸실릴 요오다이드, 트리페닐실릴 요오다이드, 디메틸디요오도실란, 디에틸디요오도실란, 디페닐디요오도실란, 메틸트리요오도실란, 에틸트리요오도실란, 페닐트리요오도실란, 벤조일 요오다이드, 프로피오닐 요오다이드 또는 메틸 요오도포르메이트 등을 들 수 있다.
또한, 상기 비금속 할라이드로는 삼염화인, 삼브롬화인, 오염화인, 옥시염화인, 옥시브롬화인, 삼불화붕소, 삼염화붕소, 삼브롬화붕소, 사불화규소, 사염화규소(SiCl4), 사브롬화규소, 삼염화비소, 삼브롬화비소, 사염화셀레늄, 사브롬화셀레늄, 사염화텔루르, 사브롬화텔루르, 사요오드화규소, 삼요오드화비소, 사요오드화텔루르, 삼요오드화붕소, 삼요오드화인, 옥시요오드화인 또는 사요오드화셀레늄 등을 들 수 있다.
또한, 상기 금속 할라이드로는 사염화주석, 사브롬화주석, 삼염화알루미늄, 삼브롬화알루미늄, 삼염화안티몬, 오염화안티몬, 삼브롬화안티몬, 삼불화알루미늄, 삼염화갈륨, 삼브롬화갈륨, 삼불화갈륨, 삼염화인듐, 삼브롬화인듐, 삼불화인듐, 사염화티타늄, 사브롬화티타늄, 이염화아연, 이브롬화아연, 이불화아연, 삼요오드화알루미늄, 삼요오드화갈륨, 삼요오드화인듐, 사요오드화티타늄, 이요오드화아연, 사요오드화게르마늄, 사요오드화주석, 이요오드화주석, 삼요오드화안티몬 또는 이요오드화마그네슘을 들 수 있다.
또한, 상기 유기금속 할라이드로는 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디메틸알루미늄 브로마이드, 디에틸알루미늄 브로마이드, 디메틸알루미늄 플루오라이드, 디에틸알루미늄 플루오라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 디브로마이드, 에틸알루미늄 디브로마이드, 메틸알루미늄 디플루오라이드, 에틸알루미늄 디플루오라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드(EASC), 이소부틸알루미늄 세스퀴클로라이드, 메틸마그네슘 클로라이드, 메틸마그네슘 브로마이드, 에틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, n-부틸마그네슘 클로라이드, n-부틸마그네슘 브로마이드, 페닐마그네슘 클로라이드, 페닐마그네슘 브로마이드, 벤질마그네슘 클로라이드, 트리메틸주석 클로라이드, 트리메틸주석 브로마이드, 트리에틸주석 클로라이드, 트리에틸주석 브로마이드, 디-t-부틸주석 디클로라이드, 디-t-부틸주석 디브로마이드, 디-n-부틸주석 디클로라이드, 디-n-부틸주석 디브로마이드, 트리-n-부틸주석 클로라이드, 트리-n-부틸주석 브로마이드, 메틸마그네슘 요오다이드, 디메틸알루미늄 요오다이드, 디에틸알루미늄 요오다이드, 디-n-부틸알루미늄 요오다이드, 디이소부틸알루미늄 요오다이드, 디-n-옥틸알루미늄 요오다이드, 메틸알루미늄 디요오다이드, 에틸알루미늄 디요오다이드, n-부틸알루미늄 디요오다이드, 이소부틸알루미늄 디요오다이드, 메틸알루미늄 세스퀴요오다이드, 에틸알루미늄 세스퀴요오다이드, 이소부틸알루미늄 세스퀴요오다이드, 에틸마그네슘 요오다이드, n-부틸마그네슘 요오다이드, 이소부틸마그네슘 요오다이드, 페닐마그네슘 요오다이드, 벤질마그네슘 요오다이드, 트리메틸주석 요오다이드, 트리에틸주석 요오다이드, 트리-n-부틸주석 요오다이드, 디-n-부틸주석 디요오다이드 또는 디-t-부틸주석 디요오다이드 등을 들 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 촉매 조성물은 상기 할로겐화물을 상기 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 1 몰 내지 20 몰, 보다 구체적으로는 1 몰 내지 5 몰, 보다 구체적으로는 2 몰 내지 3 몰로 포함할 수 있다. 만약, 상기 할로겐화물을 20 몰비를 초과하여 포함하는 경우에는, 촉매 반응의 제거가 용이하지 않고, 과량의 할로겐화물이 부반응을 일으킬 우려가 있다.
또한, 본 발명의 일 실시예에 따른 공액 디엔 중합체 제조용 촉매 조성물은, 상기 할로겐화물 대신에 또는 상기 할로겐화물과 함께, 비배위성 음이온 함유 화합물 또는 비배위 음이온 전구체 화합물을 포함할 수도 있다.
구체적으로, 상기 비배위성 음이온을 포함하는 화합물에 있어서, 비배위성 음이온은 입체 장애로 인해 촉매계의 활성 중심과 배위결합을 형성하지 않는, 입체적으로 부피가 큰 음이온으로서, 테트라아릴보레이트 음이온 또는 불화 테트라아릴보레이트 음이온 등일 수 있다. 또한, 상기 비배위성 음이온을 포함하는 화합물은 상기한 비배위성 음이온과 함께 트리아릴 카르보늄 양이온과 같은 카르보늄 양이온; N,N-디알킬 아닐리늄 양이온 등과 같은 암모늄 양이온, 또는 포스포늄 양이온 등의 상대 양이온을 포함하는 것일 수 있다. 보다 구체적으로, 상기 비배위성 음이온을 포함하는 화합물은, 트리페닐 카르보늄 테트라키스(펜타플루오로 페닐) 보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로 페닐) 보레이트, 트리페닐 카르보늄 테트라키스[3,5-비스(트리플루오로메틸) 페닐]보레이트, 또는 N,N-디메틸아닐리늄 테트라키스[3,5-비스(트리플루오로메틸) 페닐]보레이트 등일 수 있다.
또한, 상기 비배위성 음이온 전구체로서는, 반응 조건하에서 비배위성 음이온이 형성 가능한 화합물로서, 트리아릴 붕소 화합물(BE3, 이때 E는 펜타플루오로페닐기 또는 3,5-비스(트리플루오로메틸) 페닐기 등과 같은 강한 전자흡인성의 아릴기임)을 들 수 있다.
(c) 공액디엔계 단량체
또한, 상기 촉매 조성물은 공액디엔계 단량체를 더 포함할 수 있으며, 중합반응에 사용되는 공액디엔계 단량체의 일부를 중합용 촉매 조성물과 미리 혼합하여 전(pre) 중합한 예비중합(preforming) 촉매 조성물의 형태로 사용함으로써, 촉매 조성물 활성을 향상시킬 수 있을 뿐만 아니라, 제조되는 공액디엔계 중합체를 안정화시킬 수 있다.
본 발명에 있어서, 상기 "예비중합(preforming)"이란, 란탄 계열 희토류 원소 함유 화합물, 알킬화제 및 할로겐화물을 포함하는 촉매 조성물, 즉 촉매 시스템에서 디이소부틸알루미늄 하이드라이드(DIBAH) 등을 포함하는 경우, 이와 함께 다양한 촉매 조성물 활성종 생성가능성을 줄이기 위해 1,3-부타디엔 등의 공액디엔계 단량체를 소량 첨가하게 되며, 1,3-부타디엔 첨가와 함께 촉매 조성물 시스템 내에서 전(pre) 중합이 이루어짐을 의미할 수 있다. 또한 "예비혼합(premix)"이란 촉매 조성물 시스템에서 중합이 이루어지지 않고 각 화합물들이 균일하게 혼합된 상태를 의미할 수 있다.
이때, 상기 촉매 조성물의 제조에 사용되는 공액디엔계 단량체는 상기 중합반응에 사용되는 공액디엔계 단량체의 총 사용량 범위 내에서 일부의 양이 사용되는 것일 수 있으며, 예컨대 상기 란탄 계열 희토류 원소 함유 화합물 1 몰 에 대하여 1 몰 내지 100 몰, 구체적으로는 10 몰 내지 50 몰, 또는 20 몰 내지 50 몰로 사용되는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 촉매 조성물은 유기용매 중에서 전술한 란탄 계열 희토류 원소 함유 화합물 및 알킬화제, 할로겐화물 및 공액디엔계 단량체 중 적어도 하나, 구체적으로는 란탄 계열 희토류 원소 함유 화합물, 알킬화제 및 할로겐화물, 그리고 선택적으로 공액디엔계 단량체를 순차적으로 혼합함으로써 제조할 수 있다. 이때, 상기 유기용매는 상기한 촉매 구성 성분들과 반응성이 없는 비극성 용매일 수 있다. 구체적으로, 상기 비극성 용매는 n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸, 이소펜탄, 이소헥산, 이소펜탄, 이소옥탄, 2,2-디메틸부탄, 시클로펜탄, 시클로헥산, 메틸시클로펜탄 또는 메틸시클로헥산 등과 같은 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소; 석유 에테르(petroleum ether) 또는 석유 주정제(petroleum spirits), 또는 케로센(kerosene) 등과 같은 탄소수 5 내지 20의 지방족 탄화수소의 혼합용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소계 용매 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 비극성 용매는 상기한 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소 또는 지방족 탄화수소의 혼합용매일 수 있으며, 보다 더 구체적으로는 n-헥산, 시클로헥산, 또는 이들의 혼합물일 수 있다.
또한, 상기 유기용매는 촉매 조성물을 구성하는 구성 물질, 특히 알킬화제의 종류에 따라 적절히 선택될 수 있다.
구체적으로, 알킬화제로서 메틸알루미녹산(MAO) 또는 에틸알루미녹산 등의 알킬알루미녹산의 경우 지방족 탄화수소계 용매에 쉽게 용해되지 않기 때문에 방향족 탄화수소계 용매가 적절히 사용될 수 있다.
또한, 알킬화제로서 변성 메틸알루미녹산이 사용되는 경우, 지방족 탄화수소계 용매가 적절히 사용될 수 있다. 이 경우, 중합 용매로서 주로 사용되는 헥산 등의 지방족 탄화수소계 용매와 함께 단일 용매 시스템의 구현이 가능하므로 중합 반응에 더욱 유리할 수 있다. 또한, 지방족 탄화수소계 용매는 촉매 활성을 촉진시킬 수 있으며, 이러한 촉매 활성에 의해 반응성을 더욱 향상시킬 수 있다.
한편, 상기 유기용매는 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 20 몰 내지 20,000 몰로, 보다 구체적으로는 100 몰 내지 1,000 몰로 사용되는 것일 수 있다.
한편, 상기 단계 1의 중합은 배위 음이온 중합을 이용하여 수행하거나, 라디칼 중합에 의해 수행될 수 있으며, 구체적으로는 벌크중합, 용액중합, 현탁중합 또는 유화중합일 수 있고, 더 구체적으로는 용액중합일 수 있다.
또한, 상기 중합은 회분식 및 연속식 중 어느 방법으로도 수행될 수 있다. 구체적으로는, 상기 단계 1의 중합은 유기용매 중에서 상기 촉매 조성물에 대해 공액디엔계 단량체를 투입하여 반응시킴으로써 실시될 수 있다.
여기에서, 상기 유기용매는 촉매 조성물을 제조하는데 사용될 수 있는 유기용매의 양에 추가로 첨가되는 것일 수 있고, 구체적인 종류는 전술한 바와 같을 수 있다. 또한, 상기 유기용매의 사용 시 단량체의 농도는 3 중량% 내지 80 중량%, 또는 10 중량% 내지 30 중량%일 수 있다.
또한, 상기 중합은 폴리옥시에틸렌글리콜포스페이트 등과 같은 중합반응을 완료시키기 위한 반응정지제; 또는 2,6-디-t-부틸파라크레졸 등과 같은 산화방지제 등의 첨가제가 더 사용될 수 있다. 이외에도, 통상 용액중합을 용이하도록 하는 첨가제, 구체적으로는 킬레이트제, 분산제, pH 조절제, 탈산소제 또는 산소포착제(oxygen scavenger)와 같은 첨가제가 선택적으로 더 사용될 수 있다.
또한, 상기 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있다.
여기에서, 정온 중합은 유기 금속 화합물을 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 나타내는 것이고, 상기 승온 중합은 상기 유기 금속 화합물을 투입한 이후 임의로 열을 가하여 온도를 증가시키는 중합방법을 나타내는 것이며, 상기 등온 중합은 상기 유기 금속 화합물을 투입한 이후 열을 가하여 열을 증가시키거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 나타내는 것이다.
상기 중합은 -20℃ 내지 200℃의 온도범위에서 수행하는 것일 수 있으며, 구체적으로는 20℃ 내지 150℃, 더욱 구체적으로는 10℃ 내지 120℃의 온도범위에서 15분 내지 3시간 동안 수행하는 것일 수 있다. 만약, 상기 중합 시 온도가 200℃를 초과하는 경우에는 중합 반응을 충분히 제어하기 어렵고, 생성된 디엔계 중합체의 시스-1,4 결합 함량이 낮아질 우려가 있으며, 온도가 -20℃ 미만이면 중합반응 속도 및 효율이 저하될 우려가 있다.
상기 단계 2는 변성 공액디엔계 중합체를 제조하기 위하여, 상기 활성 중합체와 상기 화학식 1로 표시되는 변성제와 반응시키는 단계이다.
상기 화학식 1로 표시되는 변성제는 전술한 바와 같을 수 있으며, 1종 또는 2종 이상을 혼합하여 상기 반응에 사용하는 것일 수 있다.
상기 화학식 1로 표시되는 변성제는 촉매 조성물 내 란탄 계열 희토류 원소 함유 화합물 1 몰 대비 0.5 몰 내지 20 몰로 사용하는 것일 수 있다. 구체적으로는 상기 화학식 1로 표시되는 변성제는 촉매 조성물 내 란탄 계열 희토류 원소 함유 화합물 1 몰 대비 1 몰 내지 10 몰로 사용하는 것일 수 있다. 만약, 상기 변성제를 상기의 비율범위가 되는 양으로 사용하는 경우 최적 성능의 변성반응을 수행할 수 있어, 고변성율의 공액디엔계 중합체를 얻을 수 있다.
상기 단계 2의 반응은 중합체에 관능기를 도입시키기 위한 변성반응으로, 0℃ 내지 90℃에서 1분 내지 5시간 동안 반응을 수행하는 것일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체의 제조방법은 회분식(배치식) 또는 1종 이상의 반응기를 포함하는 연속식 중합방법에 의하여 수행하는 것일 수 있다.
상기한 변성반응의 종료 후, 2,6-디-t-부틸-p-크레졸(BHT)의 이소프로판올 용액 등을 중합 반응계에 첨가하여 중합 반응을 정지시킬 수 있다. 이후 수증기의 공급을 통해 용제의 분압을 낮추는 스팀 스트립핑 등의 탈용매 처리나 진공 건조 처리를 거쳐서 변성 공액디엔계 중합체가 수득될 수 있다. 또한, 상기한 변성 반응의 결과로 수득되는 반응생성물 중에는 상기한 변성 공액디엔 중합체와 함께, 변성되지 않은, 활성 중합체가 포함될 수도 있다.
본 발명의 일 실시예에 따른 제조방법은 상기 단계 2 이후에 필요에 따라 용매 및 미반응 단량체 회수 및 건조 중 1 이상의 단계를 더 포함할 수 있다.
더 나아가, 본 발명은 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물 및 상기 고무 조성물로부터 제조된 성형품을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 변성 공액디엔계 중합체를 0.1 중량% 이상 100 중량% 이하, 구체적으로는 10 중량% 내지 100 중량%, 더욱 구체적으로는 20 중량% 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 변성 공액디엔계 중합체의 함량이 0.1 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 공액디엔계 공중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 150 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계, 카본블랙 또는 이들 조합인 것일 수 있다. 구체적으로는, 상기 충진제는 카본븐랙인 것일 수 있다.
상기 카본블랙계 충진제는 특별히 제한하는 것은 아니나, 예컨대 질소 흡착 비표면적(N2SA, JIS K 6217-2:2001에 준거해서 측정함)이 20 ㎡/g 내지 250 ㎡/g인 것일 수 있다. 또, 상기 카본블랙은 디부틸프탈레이트 흡유량(DBP)이 80 cc/100g 내지 200 cc/100g인 것일 수 있다. 상기 카본블랙의 질소흡착 비표면적이 250 m2/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 20 m2/g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다. 또한, 상기 카본블랙의 DBP 흡유량이 200 cc/100g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 80 cc/100g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다.
또한, 상기 실리카는 특별히 제한하는 것은 아니나, 예컨대 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있다. 구체적으로는, 상기 실리카는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 현저한 습실 실리카일 수 있다. 또한, 상기 실리카는 질소흡착 비표면적(nitrogen surface area per gram, N2SA)이 120 ㎡/g 내지 180 ㎡/g이고, CTAB(cetyl trimethyl ammonium bromide) 흡착 비표면적이 100 ㎡/g 내지 200 ㎡/g일 수 있다. 상기 실리카의 질소흡착 비표면적이 120 ㎡/g 미만이면 실리카에 의한 보강 성능이 저하될 우려가 있고, 180 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다. 또한, 상기 실리카의 CTAB 흡착 비표면적이 100 ㎡/g 미만이면 충진제인 실리카에 의한 보강 성능이 저하될 우려가 있고, 200 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다.
한편, 상기 충진제로서 실리카가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 상기 고무 조성물에 있어서는, 고무 성분으로서 활성 부위에 충진제와의 친화성이 높은 관능기가 도입된 변성 공액디엔계 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있다. 구체적으로, 상기 실란 커플링제는 충진제 100 중량부에 대하여 1 중량부 내지 20 중량부로 사용될 수 있다. 상기한 범위로 사용될 때, 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지할 수 있다. 보다 구체적으로는 상기 실란 커플링제는 실리카 100 중량부에 대하여 5 중량부 내지 15 중량부로 사용될 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
상기 고무 조성물을 이용하여 제조된 성형품은 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조예 1: 화학식 1-1로 표시되는 변성제 제조
1) 에틸 6-아미노헥사노에이트 하이드로클로라이드의 제조
2 L 둥근바닥 플라스크에 6-아미노헥사노익산 240.0 g(1.83 mol)을 넣고, 에탄올 80 ml를 첨가한 후 0℃로 맞췄다. 이후, 티오닐클로라이드 126.77 ml(1.74 mol)을 30분 동안 천천히 투입하면서 반응을 진행시켰다. 발열이 멈추면 상온에서 12시간 이상 반응시킨 후 반응을 종료하고, 감압하여 용매를 제거하였다. 1 L의 n-헥산을 넣고 30분간 교반한 후 여과하고 디에틸에테르 1 L를 넣고 2차 교반하고 여과한 후 농축하여 에틸 6-아미노헥사노에이트 하이드로클로라이드 347.4 g(수율: 97%)를 수득하였다. 에틸 6-아미노헥사노에이트 하이드로클로라이드의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
1H-NMR (500 MHz, CDCl3) δ 8.30(s, 3H), 4.14-4.10(q, 2H), 3.03-3.00(t, 2H), 2.33-2.30(t, 2H), 1.82-1.79(t, 2H), 1.68-1.65(t, 2H), 1.47-1.44(t, 2H), 1.26-1.23(t, 3H).
2) 에틸 6-아미노헥사노에이트의 제조
2 L 둥근바닥 플라스크에 상기 1)에서 제조된 에틸 6-아미노헥사노에이트 하이드로클로라이드 340.0 g(1.74 mol)을 넣고, 디클로로메탄 700 ml를 첨가한 후 0℃로 맞췄다. 이후, 트리에틸아민 605.86 ml(4.34 mol)을 30분 동안 천천히 투입하면서 온도를 상온으로 서서히 승온하여 12시간 동안 반응시킨 후 반응을 종료하였다. 물 500 ml를 넣고 추출한 후 유기층에 소듐설페이트를 첨가하여 여과한 후 농축하여 에틸 6-아미노헥사노에이트 273.7 g(수율: 98.9%)를 수득하였다. 에틸 6-아미노헥사노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
1H-NMR (500 MHz, CDCl3) δ 4.13-4.09 (q, 2H), 2.69-2.67(t, 2H), 2.30-2.27(t, 2H), 1.60(m, 2H), 1.48-1.42(m, 2H), 1.37-1.31(m, 2H), 1.25-1.23(t, 2H), 1.19(s, 3H).
3) 하기 화학식 1-1로 표시되는 변성제 제조
1 L 둥근바닥 플라스크에 상기 2)에서 제조된 에틸 6-아미노헥사노에이트 170.0 g(1.07 mol)을 넣고, 메틸이소부틸케톤 267 ml(2.14 mol)를 첨가한 후 Dean-Stark 장치를 이용하여 135℃로 승온하여 12시간 동안 반응시킨 후 반응을 종료하였다. 남아있는 메틸이소부틸케톤을 제거하여 하기 화학식 1-1로 표시되는 화합물 240.3 g (수율: 93.2%)을 제조하였다. 화학식 1-1의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-1]
1H-NMR (500 MHz, CDCl3) δ 4.13-4.09 (q, 2H), 3.23-3.20(t, 2H), 2.31-2.29(t, 2H), 2.12-2.10(m, 2H), 1.77(s, 3H), 1.69-1.61(m, 4H), 1.40-1.34(m, 2H), 1.26-1.23(t, 2H), 0.92-0.88(m, 6H).
제조예 2: 화학식 1-2으로 표시되는 변성제 제조
1) 에틸 11-아미노운데카노에이트 하이드로클로라이드의 제조
250 mL 둥근바닥 플라스크에 11-아미노운데카노익산 30.0 g(149.02 mmol)을 넣고, 에탄올 100 ml를 첨가한 후 0℃로 맞췄다. 이후, 티오닐클로라이드 10.33 ml(141.57 mmol)을 30분 동안 천천히 투입하면서 반응을 진행시켰다. 발열이 멈추면 상온에서 12시간 이상 반응시킨 후 반응을 종료하고, 감압하여 용매를 제거하였다. 500 mL의 n-헥산을 넣고 30분간 교반한 후 여과하고 디에틸에테르 500 mL를 넣고 2차 교반하고 여과한 후 농축하여 에틸 11-아미노운데카노에이트 하이드로클로라이드 38.4 g(수율: 97%)를 수득하였다. 에틸 11-아미노운데카노에이트 하이드로클로라이드의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
1H-NMR (500 MHz, CDCl3) δ 8.32(s, 3H), 4.14-4.10(q, 2H), 3.99-2.96(t, 2H), 2.30-2.27(t, 2H), 1.79-1.73(m, 2H), 1.62-1.58(m, 2H), 1.39-1.37(m, 2H), 1.28-1.24(t, 13H).
2) 에틸 11-아미노운데카노에이트의 제조
250 mL 둥근바닥 플라스크에 상기 1)에서 제조된 에틸 11-아미노운데카노에이트 하이드로클로라이드 36.6 g(137.69 mmol)을 넣고, 디클로로메탄 100 ml를 첨가한 후 0℃로 맞췄다. 이후, 트리에틸아민 28.81 ml(206.53 mmol)을 30분 동안 천천히 투입하면서 온도를 상온으로 서서히 승온하여 12시간 동안 반응시킨 후 반응을 종료하였다. 물 500 ml를 넣고 추출한 후 유기층에 소듐설페이트를 첨가하여 여과한 후 농축하여 에틸 11-아미노운데카노에이트 37.8 g(수율: 97.8%)를 수득하였다. 에틸 11-아미노운데카노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
1H-NMR (500 MHz, CDCl3) δ 4.13-4.09 (q, 2H), 2.68-2.66(t, 2H), 2.28(t, 2H), 1.61-1.58(m, 2H), 1.54-1.51(m, 2H), 1.44-1.40(m, 2H), 1.27-1.22(m, 15H).
3) 하기 화학식 1-2로 표시되는 변성제 제조
500 mL 둥근바닥 플라스크에 상기 2)에서 제조된 에틸 11-아미노운데카노에이트 30.0 g(130.80 mmol)을 넣고, 메틸이소부틸케톤 32.71 ml(261.92 mmol)를 첨가한 후 Dean-Stark 장치를 이용하여 135℃로 승온하여 12시간 동안 반응시킨 후 반응을 종료하였다. 남아있는 메틸이소부틸케톤을 제거하여 하기 화학식 1-2로 표시되는 화합물 38.1 g(수율: 93.5%)을 제조하였다. 화학식 1-2의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-2]
1H-NMR (500 MHz, CDCl3) δ 4.14-4.10 (q, 2H), 3.26-3.21(m, 2H), 2.29-2.26(t, 2H), 2.12-2.10(m, 2H), 1.97-1.92(m, 2H), 1.77(s, 3H), 1.63-1.56(m, 4H), 1.27-1.23(m, 11H), 1.26-1.23(t, 3H), 0.93-0.87(m, 6H).
제조예 3: 화학식 1-3으로 표시되는 변성제 제조
1) 에틸 4-아미노부타노에이트 하이드로클로라이드의 제조
2 L 둥근바닥 플라스크에 4-아미노부타노익산 200.0 g(1.94 mol)을 넣고, 에탄올 500 ml를 첨가한 후 0℃로 맞췄다. 이후, 티오닐클로라이드 134.38 ml(1.84 mol)을 30분 동안 천천히 투입하면서 반응을 진행시켰다. 발열이 멈추면 상온에서 12시간 이상 반응시킨 후 반응을 종료하고, 감압하여 용매를 제거하였다. 1 L의 n-헥산을 넣고 30분간 교반한 후 여과하고 디에틸에테르 1 L를 넣고 2차 교반하고 여과한 후 농축하여 에틸 4-아미노부타노에이트 하이드로클로라이드 315.7 g(수율: 97%)를 수득하였다. 에틸 4-아미노부타노에이트 하이드로클로라이드의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
1H-NMR (500 MHz, CDCl3) δ 8.27(br, s, 3H), 4.16-4.12(q, 2H), 3.15-3.10(m, 2H), 2.52-2.50(t, 2H), 2.12-2.10(t, 2H), 1.24-1.25(t, 3H).
2) 에틸 4-아미노부타노에이트의 제조
2 L 둥근바닥 플라스크에 상기 1)에서 제조된 에틸 4-아미노헥사노에이트 하이드로클로라이드 300.0 g(1.79 mol)을 넣고, 디클로로메탄 600 ml를 첨가한 후 0℃로 맞췄다. 이후, 트리에틸아민 374.43 ml(2.68 mol)을 30분 동안 천천히 투입하면서 온도를 상온으로 서서히 승온하여 12시간 동안 반응시킨 후 반응을 종료하였다. 물 500 ml를 넣고 추출한 후 유기층에 소듐설페이트를 첨가하여 여과한 후 농축하여 에틸 4-아미노부타노에이트 230.6 g(수율: 98.2%)를 수득하였다. 에틸 4-아미노부타노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
1H-NMR (500 MHz, CDCl3) δ 4.13-4.09 (q, 2H), 2.68-2.66(t, 2H), 2.46-2.44(t, 2H), 2.06-2.02(m, 2H), 1.25-1.22(t, 3H), 1.18(s, 2H).
3) 하기 화학식 1-3으로 표시되는 변성제 제조
1 L 둥근바닥 플라스크에 상기 2)에서 제조된 에틸 4-아미노부타노에이트 220.0 g(1.68 mol)을 넣고, 메틸이소부틸케톤 419.44 ml(3.35 mol)를 첨가한 후 Dean-Stark 장치를 이용하여 135℃로 승온하여 12시간 동안 반응시킨 후 반응을 종료하였다. 남아있는 메틸이소부틸케톤을 제거하여 하기 화학식 1-3으로 표시되는 화합물 335.7 g (수율: 93.8%)을 제조하였다. 화학식 1-3의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-3]
1H-NMR (500 MHz, CDCl3) δ 4.12-4.08 (q, 2H), 3.21-3.18(t, 2H), 2.30-2.28(t, 2H), 2.10-2.08(m, 2H), 1.76(s, 3H), 1.69-1.61(m, 3H), 1.25-1.22(t, 3H), 0.92-0.88(d, 6H).
제조예 4: 화학식 1-4로 표시되는 변성제 제조
1) 부틸 6-아미노헥사노에이트 하이드로클로라이드의 제조
2 L 둥근바닥 플라스크에 6-아미노헥사노익산 204.0 g(1.52 mol)을 넣고, n-부탄올 600 ml를 첨가한 후 0℃로 맞췄다. 이후, 티오닐클로라이드 100.15 ml(1.37 mol)을 30분 동안 천천히 투입하면서 반응을 진행시켰다. 발열이 멈추면 상온에서 12시간 이상 반응시킨 후 반응을 종료하고, 감압하여 용매를 제거하였다. 1 L의 n-헥산을 넣고 30분간 교반한 후 여과하고 디에틸에테르 1 L를 넣고 2차 교반하고 여과한 후 농축하여 부틸 6-아미노헥사노에이트 하이드로클로라이드 328.9 g(수율: 96.4%)를 수득하였다. 부틸 6-아미노헥사노에이트 하이드로클로라이드의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
1H-NMR (500 MHz, CDCl3) δ 8.28(s, 3H), 4.13-4.09(q, 2H), 3.02-2.99(t, 2H), 2.33-2.30(t, 2H), 1.81-1.78(t, 2H), 1.67-1.64(t, 2H), 1.47-1.44(t, 2H), 1.34-1.31(m, 2H), 1.25-1.22(m, 2H), 0.94-0.91(t, 3H).
2) 부틸 6-아미노헥사노에이트의 제조
2 L 둥근바닥 플라스크에 상기 1)에서 제조된 부틸 6-아미노헥사노에이트 하이드로클로라이드 300.0 g(1.34 mol)을 넣고, 디클로로메탄 600 ml를 첨가한 후 0℃로 맞췄다. 이후, 트리에틸아민 280.34 ml(2.01 mol)을 30분 동안 천천히 투입하면서 온도를 상온으로 서서히 승온하여 12시간 동안 반응시킨 후 반응을 종료하였다. 물 400 ml를 넣고 추출한 후 유기층에 소듐설페이트를 첨가하여 여과한 후 농축하여 부틸 6-아미노헥사노에이트 244.5 g(수율: 97.4%)를 수득하였다. 부틸 6-아미노헥사노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
1H-NMR (500 MHz, CDCl3) δ 4.14-4.10 (q, 2H), 3.03-3.00(t, 2H), 2.34-2.31(t, 2H), 1.80-1.77(t, 2H), 1.65-1.62(t, 2H), 1.46-1.43(t, 2H), 1.31-1.28(m, 2H), 1.24-1.21(m, 2H), 1.19(s, 2H), 0.92-0.89(t, 3H).
3) 하기 화학식 1-4로 표시되는 변성제 제조
1 L 둥근바닥 플라스크에 상기 2)에서 제조된 부틸 6-아미노헥사노에이트 220.0 g(1.17 mol)을 넣고, 메틸이소부틸케톤 293.8 ml(2.35 mol)를 첨가한 후 Dean-Stark 장치를 이용하여 135℃로 승온하여 12시간 동안 반응시킨 후 반응을 종료하였다. 남아있는 메틸이소부틸케톤을 제거하여 하기 화학식 1-4로 표시되는 화합물 294.1 g (수율: 92.9%)을 제조하였다. 화학식 1-4의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-4]
1H-NMR (500 MHz, CDCl3) δ 4.14-4.10(q, 2H), 3.24-3.21(t, 2H), 2.32-2.29(t, 2H), 2.12-2.10(m, 2H), 1.98-1.92(m, 2H), 1.77(s, 3H), 1.70-1.65(m, 3H), 1.40-1.34(m, 2H), 1.26-1.23(t, 2H), 1.24-1.21(m, 2H), 0.92-0.84(m, 9H).
실시예 1
20 L 오토클레이브 반응기에 1,3-부타디엔 900 g 및 노말헥산 6.6 kg을 넣은 후 반응기 내부온도를 70℃로 승온하였다. Nd(2,2-디에틸 데카노에이트)3 0.10 mmol이 용해된 헥산 용액과 디이소부틸알루미늄 하이드라이드(diisobutylaluminum hydride, DIBAH) 0.89 mmol, 디에틸알루미늄 클로라이드(diethylaluminum chloride) 0.24 mmol, 1,3-부타디엔 3.3 mmol과의 반응을 통해 제조한 촉매 조성물을 반응기에 첨가한 후 60분 동안 중합을 진행하였다. 이후, 상기 제조예 1에서 제조된 화학식 2로 표시되는 변성제 0.23 mmol이 포함된 헥산용액을 첨가한 후 70℃에서 30분 동안 변성반응을 진행시켰다. 이후 중합정지제 1.0 g이 포함된 헥산용액과 산화방지제인 WINGSTAY (Eliokem SAS, France)가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 부타디엔 중합체를 제조하였다.
실시예 2
20 L 오토클레이브 반응기에 1,3-부타디엔 900 g 및 노말헥산 6.6 kg을 넣은 후 반응기 내부온도를 70℃로 승온하였다. Nd(2,2-디에틸 데카노에이트)3 0.10 mmol이 용해된 헥산 용액과 디이소부틸알루미늄 하이드라이드(diisobutylaluminum hydride, DIBAH) 0.89 mmol, 디에틸알루미늄 클로라이드(diethylaluminum chloride) 0.24 mmol, 1,3-부타디엔 3.3 mmol과의 반응을 통해 제조한 촉매 조성물을 반응기에 첨가한 후 60분 동안 중합을 진행하였다. 이후, 상기 제조예 2에서 제조된 화학식 3으로 표시되는 변성제 0.23 mmol이 포함된 헥산용액을 첨가한 후 70℃에서 30분 동안 변성반응을 진행시켰다. 이후 중합정지제 1.0 g이 포함된 헥산용액과 산화방지제인 WINGSTAY (Eliokem SAS, France)가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 부타디엔 중합체를 제조하였다.
실시예 3
20 L 오토클레이브 반응기에 1,3-부타디엔 900 g 및 노말헥산 6.6 kg을 넣은 후 반응기 내부온도를 70℃로 승온하였다. Nd(2,2-디에틸 데카노에이트)3 0.10 mmol이 용해된 헥산 용액과 디이소부틸알루미늄 하이드라이드(diisobutylaluminum hydride, DIBAH) 0.89 mmol, 디에틸알루미늄 클로라이드(diethylaluminum chloride) 0.24 mmol, 1,3-부타디엔 3.3 mmol과의 반응을 통해 제조한 촉매 조성물을 반응기에 첨가한 후 60분 동안 중합을 진행하였다. 이후, 상기 제조예 3에서 제조된 화학식 1-3으로 표시되는 변성제 0.23 mmol이 포함된 헥산용액을 첨가한 후 70℃에서 30분 동안 변성반응을 진행시켰다. 이후 중합정지제 1.0 g이 포함된 헥산용액과 산화방지제인 WINGSTAY (Eliokem SAS, France)가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 부타디엔 중합체를 제조하였다.
실시예 4
20 L 오토클레이브 반응기에 1,3-부타디엔 900 g 및 노말헥산 6.6 kg을 넣은 후 반응기 내부온도를 70℃로 승온하였다. Nd(2,2-디에틸 데카노에이트)3 0.10 mmol이 용해된 헥산 용액과 디이소부틸알루미늄 하이드라이드(diisobutylaluminum hydride, DIBAH) 0.89 mmol, 디에틸알루미늄 클로라이드(diethylaluminum chloride) 0.24 mmol, 1,3-부타디엔 3.3 mmol과의 반응을 통해 제조한 촉매 조성물을 반응기에 첨가한 후 60분 동안 중합을 진행하였다. 이후, 상기 제조예 4에서 제조된 화학식 1-4로 표시되는 변성제 0.23 mmol이 포함된 헥산용액을 첨가한 후 70℃에서 30분 동안 변성반응을 진행시켰다. 이후 중합정지제 1.0 g이 포함된 헥산용액과 산화방지제인 WINGSTAY (Eliokem SAS, France)가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 부타디엔 중합체를 제조하였다.
비교예
20 L 오토클레이브 반응기에 1,3-부타디엔 900 g 및 노말헥산 6.6 kg을 넣은 후 반응기 내부온도를 70℃로 승온하였다. Nd(2,2-디에틸 데카노에이트)3 0.10 mmol이 용해된 헥산 용액과 디이소부틸알루미늄 하이드라이드(diisobutylaluminum hydride, DIBAH) 0.89 mmol, 디에틸알루미늄 클로라이드(diethylaluminum chloride) 0.24 mmol, 1,3-부타디엔 3.3 mmol과의 반응을 통해 제조한 촉매 조성물을 반응기에 첨가한 후 60분 동안 중합을 진행하였다. 이후 중합정지제 1.0 g이 포함된 헥산용액과 산화방지제인 WINGSTAY (Eliokem SAS, France)가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 부타디엔 중합체를 제조하였다.
실험예 1
상기 실시예 1 내지 4에서 제조한 변성 부타디엔 중합체 및 비교예에서 제조한 부타디엔 중합체에 대해 하기와 같은 방법으로 각각의 물성을 측정하고, 그 결과를 하기 표 1에 나타내었다.
1) 중량 평균 분자량(Mw), 수 평균 분자량(Mn), 및 분자량 분포
각 중합체를 40 ℃ 조건 하에서 테트라히드로퓨란(THF)에 30분간 녹인 후 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)에 적재하여 흘려주었다. 이때, 칼럼은 폴리머 라보레토리즈사(Polymer Laboratories)의 상품명 PLgel Olexis 칼럼 두 자루와 PLgel mixed-C 칼럼 한 자루를 조합 사용하였다. 또 새로 교체한 칼럼은 모두 혼합상(mixed bed) 타입의 칼럼을 사용하였으며, 겔 투과 크로마토그래피 표준 물질(GPC Standard material)로서 폴리스티렌(Polystyrene)을 사용하였다.
2) 무니점도 및 -S/R 값
각 중합체에 대해 Monsanto사 MV2000E로 Large Rotor를 사용하여 100℃에서 Rotor Speed 2±0.02 rpm의 조건에서 무니점도(MV)를 측정하였다. 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정하였다.
또, 상기 무니점도의 측정시 토크가 풀어지면서 나타나는 무니점도의 변화를 1분간 관찰하고, 그 기울기값으로부터 -S/R값을 결정하였다.
3) 시스-1,4 결합 함량
각 중합체에 대해 푸리에 변환 적외 분광 분석을 실시하고, 그 결과로부터 상기 1,4-시스 폴리부타디엔 내 시스 1,4 결합의 함량을 구하였다.
구분 |
실시예 1 |
실시예 2 |
실시예 3 |
실시예 4 |
비교예 |
변성여부 |
변성 |
변성 |
변성 |
변성 |
미변성 |
GPC 결과 |
Mn(x105 g/mol) |
28.4 |
27.9 |
28.1 |
28.0 |
28.3 |
Mw(x105 g/mol) |
93.4 |
86.8 |
88.4 |
91.2 |
80.0 |
Mw/Mn |
3.29 |
3.11 |
3.14 |
3.25 |
2.83 |
MV(ML1+4, @100℃) (MU) |
50.1 |
50.6 |
48.4 |
49.7 |
45.0 |
-S/R |
0.764 |
0.751 |
0.755 |
0.747 |
0.694 |
시스-1,4 결합 함량(%) |
96.3 |
96.8 |
96.5 |
96.6 |
96.1 |
상기 표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 4의 변성 부타디엔 중합체는 -S/R 값이 0.7 이상으로 비교예의 부타디엔 중합체 대비 크게 증가된 것을 확인하였다. 이를 통하여, 본 발명의 일 실시예에 따른 변성 부타디엔 중합체가 높은 선형성을 가짐을 확인할 수 있다.
실험예 2
상기 실시예 1 내지 4에서 제조한 변성 부타디엔 중합체 및 비교예에서 제조한 부타디엔 중합체를 이용하여 고무 조성물 및 고무 시편을 제조한 후, 하기와 같은 방법으로 무니점도, 300% 모듈러스 그리고 점탄성을 각각 측정하였다. 이중 300% 모듈러스 및 점탄성에서 Index 값은 비교예의 측정값을 100으로 두고 지수화하여 나타낸 것이다. 그 결과를 하기 표 2에 나타내었다.
구체적으로, 상기 고무 조성물은 상기 각 변성 부타디엔 중합체 및 부타디엔 중합체 100 중량부에 카본블랙 70 중량부, 공정오일(process oil) 22.5 중량부, 노화방지제(TMDQ) 2 중량부, 산화아연(ZnO) 3 중량부 및 스테아린산(stearic acid) 2 중량부를 배합하여 각각의 고무 조성물을 제조하였다. 이후, 상기 각 고무 조성물에 황 2 중량부, 가류 촉진제(CZ) 2 중량부 및 가류 촉진제(DPG) 0.5 중량부를 첨가하고, 160℃에서 25분 동안 가류하여 고무시편을 제조하였다.
1) 무니점도(ML1+4)
각 고무시편에 대해 Monsanto사 MV2000E로 Large Rotor를 사용하여 100℃에서 Rotor Speed 2±0.02 rpm의 조건에서 측정하였다.
2) 인장강도(tensile strength, kg·f/cm2), 300% 모듈러스(300% modulus, kg·f/cm2) 및 신율
상기 각 고무 조성물을 150℃에서 t90분 가류 후 ASTM D412에 준하여 가류물의 인장강도, 300% 신장시의 모듈러스(M-300%) 및 파단시 가류물의 신율을 측정하였다.
3) 점탄성(Tanδ @60℃)저 연비 특성에 가장 중요한 Tan δ 물성은 독일 Gabo사 DMTS 500N을 사용하여 주파수 10㎐, Prestrain 5%, Dynamic Strain 3%에서 60℃에서의 점탄성 계수(Tan δ)를 측정하였다.
구분 |
실시예 1 |
실시예 2 |
실시예 3 |
실시예 4 |
비교예 |
ML1+4(FMB: Final Master batch |
92.1 |
93.6 |
88.4 |
90.3 |
67 |
M-300%(Index) |
110(108) |
112(110) |
106(105) |
108(107) |
101(100) |
tanδ @60℃(Index) |
0.134(106) |
0.132(108) |
0.137(104) |
0.135(105) |
0.142(100) |
상기 표 2에 나타낸 바와 같이, 본 발명의 일 실시예에 따른 변성제를 사용하여 제조된 실시예 1 내지 실시예 4의 변성 부타디엔 중합체를 이용하여 제조된 고무시편의 무니점도 특성, 300% 모듈러스 및 점탄성 특성이 비교예의 부타디엔 중합체를 이용하여 제조된 고무시편 대비 우수한 것을 확인하였다.
구체적으로, 본 발명의 일 실시예에 따른 변성제를 사용하여 제조된 실시예 1 내지 실시예 4의 변성 부타디엔 중합체를 이용하여 제조된 고무시편이 비교예의 변성되지 않은 부타디엔 중합체를 이용하여 제조된 고무시편 대비 300% 모듈러스가 크게 증가하면서, 60℃에서의 Tan δ 값이 감소(지수(Index) 향상)하는 것을 확인하였다. 이는, 본 발명의 일 실시예에 따른 변성제를 이용하여 제조된 변성 부타디엔 중합체가 우수한 인장특성을 가지면서 구름저항(RR) 특성이 우수하고, 연비 효율이 높을 수 있음을 나타내는 결과이다.