Nothing Special   »   [go: up one dir, main page]

WO2018084170A1 - Autonomous robot that identifies persons - Google Patents

Autonomous robot that identifies persons Download PDF

Info

Publication number
WO2018084170A1
WO2018084170A1 PCT/JP2017/039505 JP2017039505W WO2018084170A1 WO 2018084170 A1 WO2018084170 A1 WO 2018084170A1 JP 2017039505 W JP2017039505 W JP 2017039505W WO 2018084170 A1 WO2018084170 A1 WO 2018084170A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
user
master
moving object
image
Prior art date
Application number
PCT/JP2017/039505
Other languages
French (fr)
Japanese (ja)
Inventor
林要
Original Assignee
Groove X株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Groove X株式会社 filed Critical Groove X株式会社
Priority to JP2018549031A priority Critical patent/JP6671577B2/en
Publication of WO2018084170A1 publication Critical patent/WO2018084170A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H11/00Self-movable toy figures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/174Facial expression recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/28Recognition of hand or arm movements, e.g. recognition of deaf sign language

Definitions

  • the present invention relates to a robot that autonomously selects an action according to an internal state or an external environment.
  • the robot In order to realize the above-mentioned behavior characteristics, the robot must have the ability to identify humans.
  • the captured image (hereinafter referred to as “master image”) to be the reference of known person A and the captured image (hereinafter referred to as “test image”) of unconfirmed person X are compared It is determined whether the person A and the person X are the same person.
  • master image the captured image
  • test image the captured image of unconfirmed person X are compared It is determined whether the person A and the person X are the same person.
  • the system often instructs a person to be an object regarding the posture and expression at the time of imaging.
  • a high quality master image is required to improve the identification accuracy of a person, but it is not preferable to place an excessive burden on the user to obtain a master image.
  • forcing a user to act on a robot that should realize biological behavior characteristics may cause the user to feel the abiotic nature of the robot.
  • the present invention is an invention completed based on the above recognition, and its main object is to provide a technology for enhancing the identification capability of a robot while suppressing the burden on the user.
  • An autonomous action type robot includes an imaging control unit that controls a camera, a recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object, and a determination result.
  • the robot comprises: an operation selection unit that selects a motion of the robot; a drive mechanism that executes the motion selected by the operation selection unit; and an operation detection unit that detects lifting of the robot by the moving object.
  • the recognition unit sets a captured image obtained when the robot is held up by the moving object as a master image, and sets a determination reference of the moving object based on the feature vector extracted from the master image.
  • An autonomous-action robot includes an imaging control unit that controls a camera, a recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object, and a determination result. And a drive mechanism for executing the motion selected by the motion selection unit; and a motion detection unit for detecting a touch by a moving object.
  • the recognition unit sets a captured image when a touch is detected as a master image, and sets a determination reference of a moving object based on a feature vector extracted from the master image.
  • An autonomous-action robot includes an imaging control unit that controls a camera, a recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object, and a determination result. And an operation selection unit that selects a motion of the robot, and a drive mechanism that executes the motion selected by the operation selection unit.
  • the recognition unit sets, as a master image, an image captured when the moving object is located at a predetermined relative position with respect to the robot as a master image, and sets a determination criterion of the moving object based on the feature vector extracted from the master image. Do.
  • the behavior control program in an aspect of the present invention is a computer program for object recognition by a robot.
  • This program has a function of setting as a master image a captured image of a moving object when the robot is held up by the moving object, and a function of setting a determination reference of the moving object based on a feature vector extracted from the master image And causing the robot to exhibit a function of determining a moving object based on a feature vector extracted from a captured image of the moving object.
  • the behavior control program in another aspect of the present invention is a computer program for object recognition by a robot.
  • the identification ability of the robot can be easily enhanced while suppressing the burden on the user.
  • FIG. 2 is a cross-sectional view schematically illustrating the structure of a robot. It is a block diagram of a robot system. It is a conceptual diagram of an emotion map. It is a hardware block diagram of a robot. It is a functional block diagram of a robot system. It is an image figure when holding a robot. It is a data structure figure of master information. It is a 1st schematic diagram for demonstrating a user identification method. It is a 2nd schematic diagram for demonstrating a user identification method. It is a flowchart which shows the extraction process process of a master vector. It is a schematic diagram which shows a user's image tracking method. It is a schematic diagram for demonstrating the method to extract a master vector from the distance.
  • FIG. 1A is a front external view of the robot 100.
  • FIG. FIG. 1 (b) is a side external view of the robot 100.
  • the robot 100 in the present embodiment is an autonomous action robot that determines an action or gesture (gesture) based on an external environment and an internal state.
  • the external environment is recognized by various sensors such as a camera and a thermo sensor.
  • the internal state is quantified as various parameters representing the emotion of the robot 100. These will be described later.
  • the robot 100 takes an indoor range of an owner's home as an action range.
  • a human being related to the robot 100 is referred to as a "user”
  • a user who is a member of a home to which the robot 100 belongs is referred to as an "owner”.
  • the “moving objects” to be identified by the robot 100 include both human and pet, but in the present embodiment, description will be made for human (user).
  • the body 104 of the robot 100 has an overall rounded shape, and includes an outer shell formed of a soft and elastic material such as urethane, rubber, resin, or fiber.
  • the robot 100 may be dressed. By making the body 104 round and soft and have a good touch, the robot 100 provides the user with a sense of security and a pleasant touch.
  • the robot 100 has a total weight of 15 kilograms or less, preferably 10 kilograms or less, and more preferably 5 kilograms or less.
  • the average weight of a 13-month-old baby is just over 9 kilograms for boys and less than 9 kilograms for girls. Therefore, if the total weight of the robot 100 is 10 kilograms or less, the user can hold the robot 100 with almost the same effort as holding a baby that can not walk alone.
  • the average weight of babies less than 2 months old is less than 5 kilograms for both men and women. Therefore, if the total weight of the robot 100 is 5 kg or less, the user can hold the robot 100 with the same effort as holding an infant.
  • the various attributes such as appropriate weight, roundness, softness, and good touch realize an effect that the user can easily hold the robot 100 and can not hold it.
  • it is desirable that the height of the robot 100 is 1.2 meters or less, preferably 0.7 meters or less.
  • being able to hold it is an important concept.
  • the robot 100 includes three wheels for traveling three wheels. As shown, a pair of front wheels 102 (left wheel 102a, right wheel 102b) and one rear wheel 103 are included.
  • the front wheel 102 is a driving wheel
  • the rear wheel 103 is a driven wheel.
  • the front wheel 102 does not have a steering mechanism, but its rotational speed and rotational direction can be individually controlled.
  • the rear wheel 103 is a so-called omni wheel, and is rotatable in order to move the robot 100 back and forth and right and left.
  • the robot 100 can turn left or rotate counterclockwise.
  • the rotational speed of the left wheel 102a larger than that of the right wheel 102b, the robot 100 can turn right or rotate clockwise.
  • the front wheel 102 and the rear wheel 103 can be completely housed in the body 104 by a drive mechanism (a rotation mechanism, a link mechanism). Even when traveling, most of the wheels are hidden by the body 104, but when the wheels are completely housed in the body 104, the robot 100 can not move. That is, the body 104 descends and is seated on the floor surface F along with the storing operation of the wheels. In this sitting state, the flat seating surface 108 (grounding bottom surface) formed on the bottom of the body 104 abuts on the floor surface F.
  • a drive mechanism a rotation mechanism, a link mechanism
  • the robot 100 has two hands 106.
  • the hand 106 does not have the function of gripping an object.
  • the hand 106 can perform simple operations such as raising, shaking and vibrating.
  • the two hands 106 are also individually controllable.
  • the eye 110 can display an image with a liquid crystal element or an organic EL element.
  • the robot 100 mounts various sensors such as a microphone array capable of specifying a sound source direction, an ultrasonic sensor, an odor sensor, a distance measuring sensor, and an acceleration sensor.
  • the robot 100 can incorporate a speaker and can emit a simple voice.
  • a capacitive touch sensor is installed on the body 104 of the robot 100. The touch sensor allows the robot 100 to detect a touch of the user.
  • a horn 112 is attached to the head of the robot 100. As described above, since the robot 100 is lightweight, the user can lift the robot 100 by grasping the tongue 112. An omnidirectional camera is attached to the horn 112 so that the entire upper portion of the robot 100 can be imaged at one time.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the robot 100.
  • the body 104 of the robot 100 includes a base frame 308, a body frame 310, a pair of resin wheel covers 312 and a shell 314.
  • the base frame 308 is made of metal and constitutes an axial center of the body 104 and supports an internal mechanism.
  • the base frame 308 is configured by connecting an upper plate 332 and a lower plate 334 by a plurality of side plates 336 up and down.
  • the plurality of side plates 336 is sufficiently spaced to allow air flow.
  • a battery 118, a control circuit 342 and various actuators are accommodated.
  • the body frame 310 is made of a resin material and includes a head frame 316 and a body frame 318.
  • the head frame 316 has a hollow hemispherical shape and forms a head skeleton of the robot 100.
  • the body frame 318 has a stepped cylindrical shape and forms the body frame of the robot 100.
  • the body frame 318 is integrally fixed to the base frame 308.
  • the head frame 316 is assembled to the upper end of the body frame 318 so as to be relatively displaceable.
  • the head frame 316 is provided with three axes of a yaw axis 320, a pitch axis 322 and a roll axis 324, and an actuator 326 for rotationally driving each axis.
  • the actuator 326 includes a plurality of servomotors for individually driving each axis.
  • the yaw shaft 320 is driven for swinging motion
  • the pitch shaft 322 is driven for loosening motion
  • the roll shaft 324 is driven for tilting motion.
  • a plate 325 supporting the yaw axis 320 is fixed to the top of the head frame 316.
  • the plate 325 is formed with a plurality of vents 327 for ensuring ventilation between the top and bottom.
  • a metallic base plate 328 is provided to support the head frame 316 and its internal features from below.
  • the base plate 328 is connected to the plate 325 via the cross link mechanism 329 (pantograph mechanism), and is connected to the upper plate 332 (base frame 308) via the joint 330.
  • Torso frame 318 houses base frame 308 and wheel drive mechanism 370.
  • the wheel drive mechanism 370 includes a pivot shaft 378 and an actuator 379.
  • the lower half of the body frame 318 is narrow to form a storage space S of the front wheel 102 with the wheel cover 312.
  • the outer cover 314 is made of urethane rubber and covers the body frame 310 and the wheel cover 312 from the outside.
  • the hand 106 is integrally molded with the skin 314.
  • an opening 390 for introducing external air is provided at the upper end of the shell 314.
  • FIG. 3 is a block diagram of the robot system 300.
  • the robot system 300 includes a robot 100, a server 200 and a plurality of external sensors 114.
  • a plurality of external sensors 114 (external sensors 114a, 114b, ..., 114n) are installed in advance in the house.
  • the external sensor 114 may be fixed to the wall of the house or may be mounted on the floor.
  • position coordinates of the external sensor 114 are registered. The position coordinates are defined as x, y coordinates in a house assumed as the action range of the robot 100.
  • the server 200 is installed in a house.
  • the server 200 and the robot 100 in the present embodiment usually correspond one to one.
  • the server 200 determines the basic behavior of the robot 100 based on the information obtained from the sensors contained in the robot 100 and the plurality of external sensors 114.
  • the external sensor 114 is for reinforcing the senses of the robot 100, and the server 200 is for reinforcing the brain of the robot 100.
  • the external sensor 114 periodically transmits a wireless signal (hereinafter referred to as a “robot search signal”) including the ID of the external sensor 114 (hereinafter referred to as “beacon ID”).
  • a wireless signal hereinafter referred to as a “robot search signal”
  • the robot 100 sends back a radio signal (hereinafter referred to as a “robot reply signal”) including a beacon ID.
  • the server 200 measures the time from when the external sensor 114 transmits the robot search signal to when the robot reply signal is received, and measures the distance from the external sensor 114 to the robot 100. By measuring the distances between the plurality of external sensors 114 and the robot 100, the position coordinates of the robot 100 are specified. Of course, the robot 100 may periodically transmit its position coordinates to the server 200.
  • FIG. 4 is a conceptual view of the emotion map 116.
  • the emotion map 116 is a data table stored in the server 200.
  • the robot 100 selects an action according to the emotion map 116.
  • An emotion map 116 shown in FIG. 4 indicates the size of a bad feeling for the location of the robot 100.
  • the x-axis and y-axis of emotion map 116 indicate two-dimensional space coordinates.
  • the z-axis indicates the size of the bad feeling. When the z value is positive, the preference for the location is high, and when the z value is negative, it indicates that the location is disliked.
  • the coordinate P1 is a point (hereinafter, referred to as a “favory point”) in the indoor space managed by the server 200 as the action range of the robot 100, in which the favorable feeling is high.
  • the favor point may be a "safe place” such as a shade of a sofa or under a table, a place where people easily gather like a living, or a lively place. In addition, it may be a place which has been gently boiled or touched in the past.
  • the definition of what kind of place the robot 100 prefers is arbitrary, generally, it is desirable to set a place favored by small children such as small children and dogs and cats.
  • a coordinate P2 is a point at which a bad feeling is high (hereinafter, referred to as a “disgust point”).
  • Aversion points are places with loud noise such as near a television, places that are easy to get wet like baths and washrooms, closed spaces or dark places, places that lead to unpleasant memories that have been roughly treated by users, etc. It may be.
  • the definition of what place the robot 100 hates is also arbitrary, it is generally desirable to set a place where small animals such as small children, dogs and cats are scared as a disappointment point.
  • the coordinate Q indicates the current position of the robot 100.
  • the server 200 may grasp how far the robot 100 is from which external sensor 114 and in which direction.
  • the movement distance of the robot 100 may be calculated from the number of revolutions of the front wheel 102 or the rear wheel 103 to specify the current position, or the current position may be determined based on an image obtained from a camera. It may be specified.
  • the emotion map 116 shown in FIG. 4 is given, the robot 100 moves in the direction in which it is drawn to the favor point (coordinate P1) and in the direction away from the aversion point (coordinate P2).
  • the emotion map 116 changes dynamically.
  • the z-value (favorable feeling) at the coordinate P1 decreases with time.
  • the robot 100 can reach the favor point (coordinate P1), and emulate the biological behavior of "feeling of emotion” being satisfied and eventually "being bored” at the place.
  • bad feelings at coordinate P2 are also alleviated with time.
  • new favor points and aversion points are created, whereby the robot 100 makes a new action selection.
  • the robot 100 has an "interest" at a new favor point and continuously selects an action.
  • the emotion map 116 expresses the ups and downs of emotion as the internal state of the robot 100.
  • the robot 100 aims at the favor point, avoids the disgust point, stays at the favor point for a while, and then takes the next action again.
  • Such control can make the behavior selection of the robot 100 human and biological.
  • the map that affects the behavior of the robot 100 (hereinafter collectively referred to as “action map”) is not limited to the emotion map 116 of the type shown in FIG. 4.
  • action map is not limited to the emotion map 116 of the type shown in FIG. 4.
  • various action maps such as curiosity, fear of fear, feeling of relief, feeling of calmness and dimness, feeling of physical comfort such as coolness and warmth, and so on.
  • the destination point of the robot 100 may be determined by weighted averaging the z values of each of the plurality of action maps.
  • the robot 100 has parameters indicating the magnitudes of various emotions and senses separately from the action map. For example, when the value of the emotion parameter of loneliness is increasing, the weighting coefficient of the behavior map for evaluating a safe place is set large, and the value of the emotion parameter is lowered by reaching the target point. Similarly, when the value of the parameter indicating a feeling of being boring is increasing, the weighting coefficient of the behavior map for evaluating a place satisfying the curiosity may be set large.
  • FIG. 5 is a hardware configuration diagram of the robot 100.
  • the robot 100 includes an internal sensor 128, a communicator 126, a storage device 124, a processor 122, a drive mechanism 120 and a battery 118.
  • the drive mechanism 120 includes the wheel drive mechanism 370 described above.
  • Processor 122 and storage 124 are included in control circuit 342.
  • the units are connected to each other by a power supply line 130 and a signal line 132.
  • the battery 118 supplies power to each unit via the power supply line 130. Each unit transmits and receives control signals through a signal line 132.
  • the battery 118 is a lithium ion secondary battery and is a power source of the robot 100.
  • the internal sensor 128 is an assembly of various sensors incorporated in the robot 100. Specifically, it is a camera (all-sky camera), a microphone array, a distance measurement sensor (infrared sensor), a thermo sensor, a touch sensor, an acceleration sensor, an odor sensor, a touch sensor, and the like.
  • the touch sensor is disposed between the outer skin 314 and the body frame 310 to detect a touch of the user.
  • the odor sensor is a known sensor to which the principle that the electric resistance is changed by the adsorption of the molecule that is the source of the odor is applied. The odor sensor classifies various odors into multiple categories.
  • the communication device 126 is a communication module that performs wireless communication for various external devices such as the server 200, the external sensor 114, and a portable device owned by a user.
  • the storage device 124 is configured by a non-volatile memory and a volatile memory, and stores a computer program and various setting information.
  • the processor 122 is an execution means of a computer program.
  • the drive mechanism 120 is an actuator that controls an internal mechanism. In addition to this, indicators and speakers will also be installed.
  • the processor 122 performs action selection of the robot 100 while communicating with the server 200 and the external sensor 114 via the communication device 126.
  • Various external information obtained by the internal sensor 128 also affects behavior selection.
  • the drive mechanism 120 mainly controls the wheel (front wheel 102) and the head (head frame 316).
  • the drive mechanism 120 changes the rotational direction and the rotational direction of the two front wheels 102 to change the moving direction and the moving speed of the robot 100.
  • the drive mechanism 120 can also raise and lower the wheels (the front wheel 102 and the rear wheel 103). When the wheel ascends, the wheel is completely housed in the body 104, and the robot 100 abuts on the floor surface F at the seating surface 108 to be in the seating state.
  • FIG. 6 is a functional block diagram of the robot system 300.
  • robot system 300 includes robot 100, server 200, and a plurality of external sensors 114.
  • Each component of the robot 100 and the server 200 includes computing devices such as a CPU (Central Processing Unit) and various co-processors, storage devices such as memory and storage, hardware including wired or wireless communication lines connecting them, and storage It is stored in the device and implemented by software that supplies processing instructions to the computing unit.
  • the computer program may be configured by a device driver, an operating system, various application programs located in the upper layer of them, and a library that provides common functions to these programs.
  • Each block described below indicates not a hardware unit configuration but a function unit block.
  • Some of the functions of the robot 100 may be realized by the server 200, and some or all of the functions of the server 200 may be realized by the robot 100.
  • the server 200 includes a communication unit 204, a data processing unit 202, and a data storage unit 206.
  • the communication unit 204 takes charge of communication processing with the external sensor 114 and the robot 100.
  • the data storage unit 206 stores various data.
  • the data processing unit 202 executes various processes based on the data acquired by the communication unit 204 and the data stored in the data storage unit 206.
  • the data processing unit 202 also functions as an interface of the communication unit 204 and the data storage unit 206.
  • the communication unit 204 of the server 200 is connected to the communication unit 142 of the robot 100 by two types of communication lines, a first communication line and a second communication line.
  • the first communication line is a 920 MHz ISM frequency (Industrial, Scientific and Medical Band) communication line.
  • the second communication line is a 2.4 GHz communication line. Since the frequency of the first communication line is lower than that of the second communication line, radio waves are likely to get around, but the communication speed is slow.
  • the data storage unit 206 includes a motion storage unit 232, a map storage unit 216, and a personal data storage unit 218.
  • the robot 100 has a plurality of motion patterns (motions). Various motions are defined, such as shaking the hand 106, approaching the owner while meandering, staring at the owner with a sharp neck, and the like.
  • the motion storage unit 232 stores a "motion file" that defines control content of motion. Each motion is identified by a motion ID. The motion file is also downloaded to the motion storage unit 160 of the robot 100. Which motion is to be performed may be determined by the server 200 or the robot 100.
  • the motions of the robot 100 are configured as complex motions including a plurality of unit motions.
  • the robot 100 may be expressed as a combination of a unit motion that turns toward the owner, a unit motion that approaches while raising the hand, a unit motion that approaches while shaking the body, and a unit motion that sits while raising both hands. .
  • the combination of such four motions realizes a motion of “close to the owner, raise your hand halfway, and finally sit down with your body shaking”.
  • the rotation angle and angular velocity of an actuator provided in the robot 100 are defined in association with the time axis.
  • Various motions are represented by controlling each actuator with the passage of time according to a motion file (actuator control information).
  • the transition time when changing from the previous unit motion to the next unit motion is called “interval".
  • the interval may be defined according to the time required for unit motion change and the contents of the motion.
  • the length of the interval is adjustable.
  • settings relating to behavior control of the robot 100 such as when to select which motion, output adjustment of each actuator for realizing the motion, and the like are collectively referred to as “behavior characteristics”.
  • the behavior characteristics of the robot 100 are defined by a motion selection algorithm, a motion selection probability, a motion file, and the like.
  • the motion storage unit 232 stores, in addition to the motion file, a motion selection table that defines motion to be executed when various events occur.
  • a motion selection table that defines motion to be executed when various events occur.
  • one or more motions and their selection probabilities are associated with an event.
  • the map storage unit 216 stores, in addition to a plurality of action maps, a map indicating the arrangement of obstacles such as chairs and tables.
  • the personal data storage unit 218 stores information of the user, in particular, the owner. Specifically, master information indicating the closeness to the user and the physical and behavioral characteristics of the user is stored. Other attribute information such as age and gender may be stored. Details of the master information will be described later with reference to FIG.
  • the robot system 300 (the robot 100 and the server 200) identifies the user based on the physical or behavioral characteristics of the user.
  • the robot 100 captures an image of the periphery with the omnidirectional camera. Then, physical features and behavioral features of the person shown in the image are extracted. Physical characteristics include eye-to-eye size, eye-to-mouth and nose balance, height, clothes you like to wear, glasses, skin color, hair color, ear size, etc. It may be a visual feature associated with the body, or it may include other features such as average temperature, smell, voice quality, and the like.
  • the behavioral feature is a feature that accompanies the action, such as the place the user likes, the activity activity, and the presence or absence of smoking.
  • the robot system 300 extracts a plurality of parameters indicating physical features from a master image described later, and identifies the user based on the master image.
  • the process of identifying the user based on the master image is referred to as “user identification process”. Details of the user identification process will be described later.
  • the robot 100 has an internal parameter called familiarity for each user.
  • familiarity for each user.
  • an action indicating favor with itself such as raising itself or giving a voice
  • familiarity with the user is increased.
  • the closeness to the user who is not involved in the robot 100, the user who is violent, and the user who is infrequently encountered is low.
  • the data processing unit 202 includes a position management unit 208, a map management unit 210, a recognition unit 212, an operation control unit 222, an intimacy management unit 220, and an emotion management unit 244.
  • the position management unit 208 specifies the position coordinates of the robot 100 by the method described with reference to FIG.
  • the position management unit 208 may also track the user's position coordinates in real time.
  • the emotion management unit 244 manages various emotion parameters that indicate the emotion (the loneliness, the fun, the fear, etc.) of the robot 100. These emotional parameters are constantly fluctuating. The importance of the plurality of action maps changes according to the emotion parameter, the movement target point of the robot 100 changes according to the action map, and the emotion parameter changes according to the movement of the robot 100 or the passage of time.
  • the emotion management unit 244 sets the weighting coefficient of the behavior map for evaluating a safe place large.
  • the emotion management unit 244 reduces the emotion parameter indicating the loneliness.
  • various emotional parameters are also changed by the response action described later. For example, the emotion parameter indicating loneliness declines when being "held" from the owner, and the emotion parameter indicating loneliness gradually increases when the owner is not viewed for a long time.
  • the map management unit 210 changes the parameter of each coordinate in the method described with reference to FIG. 4 for a plurality of action maps.
  • the recognition unit 212 recognizes the external environment.
  • the recognition of the external environment includes various recognitions such as recognition of weather and season based on temperature and humidity, recognition of an object shade (safety area) based on light quantity and temperature.
  • the recognition unit 156 of the robot 100 acquires various types of environment information by the internal sensor 128, performs primary processing on the environment information, and transfers the information to the recognition unit 212 of the server 200.
  • the recognition unit 156 of the robot 100 extracts an image area corresponding to a moving object, in particular, a person or an animal from the image, and extracts a “feature vector” indicating the physical feature or behavioral feature of the moving object from the extracted image area Do.
  • the robot 100 transmits the feature vector to the server 200.
  • the recognition unit 212 of the server 200 further includes a person recognition unit 214 and a response recognition unit 228.
  • the person recognition unit 214 compares the feature vector extracted from the image captured by the built-in camera of the robot 100 with the feature vector of the user registered in advance in the personal data storage unit 218 to determine which person the captured user is It determines whether it corresponds to (user identification processing).
  • the person recognition unit 214 includes an expression recognition unit 230.
  • the facial expression recognition unit 230 estimates the user's emotion by performing image recognition on the user's facial expression.
  • the person recognition unit 214 also performs user identification processing on moving objects other than a person, for example, cats and dogs that are pets.
  • the recognition unit 156 of the robot 100 extracts an image area corresponding to a moving object (a person and an animal) from a captured image, and extracts a feature vector from the extracted captured image.
  • a moving object a person and an animal
  • feature vectors of a plurality of users hereinafter, referred to as "master vectors" are registered.
  • the master vector is a feature vector extracted based on a user's master image.
  • the person recognition unit 214 of the server 200 identifies the user by comparing the feature vector sent from the robot 100 with the master vector.
  • a user whose master vector is registered in the personal data storage unit 218 is referred to as a “registered user”, and an unconfirmed user who is a target of user identification processing recognized by a camera is referred to as an “unknown user”. If the master vector of registered user A and the feature vector of unknown user X (hereinafter also referred to as “test vector”) match or are similar, it is determined that unknown user X is the same person as registered user A.
  • the response recognition unit 228 recognizes various response actions made to the robot 100, and classifies them as pleasant and unpleasant actions.
  • the response recognition unit 228 also classifies into a positive / negative response by recognizing the owner's response to the behavior of the robot 100.
  • the pleasant and unpleasant behavior is determined depending on whether the user's response behavior is comfortable or unpleasant as a living thing. For example, holding is a pleasant act for the robot 100, and kicking is an unpleasant act for the robot 100.
  • the positive / negative response is determined depending on whether the user's response indicates a user's pleasant emotion or an unpleasant emotion. For example, being held is a positive response indicating the user's pleasant feeling, and kicking is a negative response indicating the user's unpleasant feeling.
  • the motion control unit 222 of the server 200 cooperates with the motion control unit 150 of the robot 100 to determine the motion of the robot 100.
  • the motion control unit 222 of the server 200 creates a movement target point of the robot 100 and a movement route for the movement based on the action map selection by the map management unit 210.
  • the operation control unit 222 may create a plurality of movement routes, and then select one of the movement routes.
  • the motion control unit 222 selects the motion of the robot 100 from the plurality of motions of the motion storage unit 232.
  • Each motion is associated with a selection probability for each situation. For example, a selection method is defined such that motion A is executed with a probability of 20% when a pleasant action is made by the owner, and motion B is executed with a probability of 5% when the temperature reaches 30 degrees or more. .
  • a movement target point and a movement route are determined in the action map, and a motion is selected by various events described later.
  • the closeness management unit 220 manages closeness for each user. As described above, the intimacy degree is registered in the personal data storage unit 218 as part of the personal data. When a pleasant act is detected, the closeness management unit 220 increases the closeness to the owner. The intimacy is down when an offensive act is detected. In addition, the closeness of the owner who has not viewed for a long time gradually decreases.
  • the robot 100 includes a communication unit 142, a data processing unit 136, a data storage unit 148, an internal sensor 128, and a drive mechanism 120.
  • the communication unit 142 corresponds to the communication device 126 (see FIG. 5), and takes charge of communication processing with the external sensor 114, the server 200, and the other robot 100.
  • the data storage unit 148 stores various data.
  • the data storage unit 148 corresponds to the storage device 124 (see FIG. 5).
  • the data processing unit 136 executes various processes based on the data acquired by the communication unit 142 and the data stored in the data storage unit 148.
  • the data processing unit 136 corresponds to a processor 122 and a computer program executed by the processor 122.
  • the data processing unit 136 also functions as an interface of the communication unit 142, the internal sensor 128, the drive mechanism 120, and the data storage unit 148.
  • the data storage unit 148 includes a motion storage unit 160 that defines various motions of the robot 100.
  • Various motion files are downloaded from the motion storage unit 232 of the server 200 to the motion storage unit 160 of the robot 100.
  • Motion is identified by motion ID.
  • a state in which the front wheel 102 is accommodated which causes the robot 100 to rotate by having only the front wheel 102 housed and seated, lifting the hand 106, rotating the two front wheels 102 in reverse, or rotating only one front wheel 102
  • various motions such as shaking by rotating the front wheel 102 at a time, stopping and turning back once when leaving the user, operation timing, operation time, operation direction, etc. of various actuators (drive mechanism 120) Temporarily defined in motion file.
  • Various data may also be downloaded to the data storage unit 148 from the map storage unit 216 and the personal data storage unit 218.
  • Internal sensor 128 includes a camera 134.
  • the camera 134 in the present embodiment is an omnidirectional camera attached to the horn 112.
  • the data processing unit 136 includes a recognition unit 156, an operation control unit 150, an operation detection unit 152, an imaging control unit 154, and a distance measurement unit 158.
  • the motion control unit 150 of the robot 100 determines the motion of the robot 100 in cooperation with the motion control unit 222 of the server 200. Some motions may be determined by the server 200, and other motions may be determined by the robot 100. Also, although the robot 100 determines the motion, the server 200 may determine the motion when the processing load of the robot 100 is high. The base motion may be determined at server 200 and additional motion may be determined at robot 100. How to share the motion determination process in the server 200 and the robot 100 may be designed according to the specification of the robot system 300.
  • the motion control unit 150 of the robot 100 determines the moving direction of the robot 100 together with the motion control unit 222 of the server 200.
  • the movement based on the action map may be determined by the server 200, and the immediate movement such as turning off the obstacle may be determined by the movement control unit 150 of the robot 100.
  • the drive mechanism 120 drives the front wheel 102 in accordance with an instruction from the operation control unit 150 to direct the robot 100 to the movement target point.
  • the operation control unit 150 of the robot 100 instructs the drive mechanism 120 to execute the selected motion.
  • the drive mechanism 120 controls each actuator according to the motion file.
  • the motion control unit 150 can also execute a motion to lift both hands 106 as a gesture that encourages "hug” when a user with high intimacy is nearby, and when the "hug” gets tired, the left and right front wheels 102 By alternately repeating reverse rotation and stop while being accommodated, it is also possible to express a motion that annoys you.
  • the drive mechanism 120 causes the robot 100 to express various motions by driving the front wheel 102, the hand 106, and the neck (head frame 316) according to the instruction of the operation control unit 150.
  • the motion detection unit 152 detects “hold up” and “hold down” of the robot 100 in addition to the touch by the user. “Holding up” is typically an action where the user lifts the robot 100 by putting both hands on the body 104 of the robot 100. “Holding down” is an action in which the user typically puts the robot 100 on the floor surface F with his hands attached to the body 104 of the robot 100.
  • the motion detection unit 152 detects a touch of the user by a touch sensor installed under the outer skin 314 of the robot 100. On the condition that the acceleration sensor has detected a rise in the touched state, the operation detection unit 152 determines that the “holding up” has been performed.
  • the operation detection unit 152 determines that the “holding down” is performed.
  • the moving image of the outside world may be captured by the camera 134, and “lifting” and “holding down” may be determined by recognizing the ascent and descent of the robot 100 from changes in the image.
  • the imaging control unit 154 controls the camera 134.
  • the imaging control unit 154 images a subject when holding up or holding down, when a touch is detected, or at various timings described later.
  • the distance measuring unit 158 detects a distance to a moving object (person and pet) to be a subject by using a distance measuring sensor (infrared sensor) included in the internal sensor 128.
  • the recognition unit 156 also detects the relative angle between the robot 100 and the subject by performing image recognition on the subject.
  • the captured image when the robot 100 is positioned at a predetermined relative position with respect to the subject may be used as a master image candidate (hereinafter, referred to as “master candidate image”).
  • master candidate image The method of acquiring the master candidate image based on the distance measurement will be described later with reference to FIG.
  • the recognition unit 156 of the robot 100 interprets external information obtained from the internal sensor 128.
  • the recognition unit 156 is capable of visual recognition (visual unit), odor recognition (olfactory unit), sound recognition (hearing unit), and tactile recognition (tactile unit).
  • the recognition unit 156 periodically images the outside world with the built-in omnidirectional camera, and detects a moving object such as a person or a pet.
  • the feature vector extracted from the captured image of the moving object by the recognition unit 156 is transmitted to the server 200, and the person recognition unit 214 of the server 200 identifies the user.
  • the recognition unit 156 of the robot 100 also detects the smell of the user and the voice of the user. Smells and sounds (voices) are classified into multiple types by known methods.
  • the recognition unit 156 recognizes this by the built-in acceleration sensor, and the response recognition unit 228 of the server 200 recognizes that the "abuse act" is performed by the user in the vicinity. Even when the user holds the tongue 112 and lifts the robot 100, it may be recognized as a violent act.
  • the response recognition unit 228 of the server 200 may recognize that the “voice call action” has been performed on itself.
  • a temperature at a temperature close to the body temperature it may be recognized that the user has made a "contact act”.
  • the robot 100 acquires the action of the user as physical information by the internal sensor 128, and the action detection unit 152 determines the action such as "hold up” or “hold down", and the response recognition unit 228 of the server 200 The discomfort is determined, and the recognition unit 212 of the server 200 executes a user identification process based on the feature vector.
  • the response recognition unit 228 of the server 200 recognizes various responses of the user to the robot 100.
  • some typical response actions correspond to pleasure or discomfort, affirmation or denial.
  • most pleasurable actions are positive responses, and most offensive actions are negative.
  • Pleasure and discomfort are related to intimacy, and affirmative and negative responses affect the action selection of the robot 100.
  • the recognition unit 156 of the robot 100 selects and extracts information necessary for recognition, and interpretation processes such as determination are executed by the recognition unit 212 of the server 200. .
  • the recognition processing may be performed only by the recognition unit 212 of the server 200, or may be performed only by the recognition unit 156 of the robot 100, or both perform the above-mentioned recognition processing while sharing roles. It is also good.
  • the closeness management unit 220 of the server 200 changes the closeness to the user.
  • the intimacy with the user who has performed pleasure is increased, and the intimacy with the user who has performed offensive activity decreases.
  • the recognition unit 212 of the server 200 determines the comfort / discomfort according to the response, and the map management unit 210 changes the z value of the point where the comfort / discommitment was performed in the action map expressing “attachment to a place”. May be For example, when a pleasant act is performed in the living, the map management unit 210 may set a favor point in the living with a high probability. In this case, a positive feedback effect is realized in that the robot 100 prefers a living and enjoys an activity in the living, and thus prefers a living more and more.
  • the closeness to the user changes depending on what action is taken from the moving object (user).
  • the robot 100 sets a high degree of intimacy for people who frequently meet, people who frequently touch, and people who frequently speak. On the other hand, the intimacy with the people who rarely see, those who do not touch very much, the violent people, the people who speak loudly becomes low.
  • the robot 100 changes the intimacy degree of each user based on various external information detected by sensors (vision, touch, hearing).
  • the actual robot 100 autonomously performs complex action selection in accordance with the action map.
  • the robot 100 acts while being influenced by a plurality of action maps based on various parameters such as loneliness, boredom and curiosity.
  • the robot 100 tries to approach people with high intimacy and leaves people with low intimacy, in principle, when the influence of the action map is excluded or in an internal state where the influence of the behavior map is small. I assume.
  • the behavior of the robot 100 is categorized as follows according to closeness.
  • the user robot 100 with a very high degree of intimacy approaches the user (hereinafter referred to as “proximity action”), and performs the affection of love by predefining a gesture of love for people. Express strongly.
  • the user robot 100 with relatively high intimacy performs only the proximity action.
  • the user robot 100 with relatively low intimacy does not perform any particular action.
  • the user robot 100 with a particularly low intimacy performs a leaving action.
  • the robot 100 when the robot 100 finds a user with high intimacy, it approaches that user, and conversely, when finding a user with low intimacy, it leaves the user.
  • it is possible to express so-called "human sight" behavior.
  • the robot 100 may move away from the visitor and head toward the family (user B with high intimacy).
  • the user B can feel that the robot 100 is aware of strangers and feels uneasy, and relies on himself.
  • Such a behavioral expression evokes the user B the joy of being selected and relied upon, and the accompanying attachment.
  • the user A who is a visitor frequently visits, calls and makes a touch the intimacy with the user A of the robot 100 gradually increases, and the robot 100 does not act as an acquaintance with the user A (disengagement behavior) .
  • the user A can also have an attachment to the robot 100 by feeling that the robot 100 has become familiar with himself.
  • the robot 100 may not select the behavior influenced by the intimacy because the action map for finding a place satisfying the curiosity is emphasized. .
  • the external sensor 114 installed at the entrance detects that the user has returned home, the user may be asked to give priority to the user's meeting action.
  • FIG. 7 is an image view when a robot is held.
  • the robot 100 has a round, soft, well-touched body 104 and an appropriate weight, and recognizes a touch as a pleasure, so it is easy for the user to feel that he / she wants to hold the robot 100.
  • the robot 100 applies this involuntary feeling to the user identification process.
  • the robot 100 acquires a master image.
  • the recognition unit 156 of the robot 100 extracts a feature vector (master vector) from the master image.
  • the feature vector has a plurality of vector components.
  • the feature vector component is a numerical value that quantifies the various physical features described above. For example, the width of the eye is quantified in the range of 0 to 1, and these form feature vector components.
  • the method of extracting feature vectors from a captured image of a person is an application of known face recognition technology.
  • the master vector of the user A is stored as master information 224 of the personal data storage unit 218.
  • the process of extracting a feature vector from a captured image is referred to as “vector extraction process”.
  • the recognition unit 156 extracts a feature vector (inspection vector) from the captured image (inspection image) of the unknown user X. If the inspection vector of unknown user X and the master vector of registered user A are similar, person recognition unit 214 of server 200 determines that unknown user X and registered user A are the same person.
  • the recognition unit 156 in the present embodiment sets a captured image when the motion detection unit 152 detects holding of the robot 100 as a master image.
  • the robot 100 can be imaged with high accuracy by the built-in camera 134. This is because when the robot 100 is lifted, the distance between the user's face and the camera 134 incorporated in the robot 100 falls within a certain range.
  • the action instruction for capturing a master image, it is possible to obtain a good-quality master image without putting a burden on the user, at a timing when the user holds the robot 100 by his own intention.
  • FIG. 8 is a data structure diagram of master information.
  • the master information 224 is stored in the agent recognition unit 228.
  • the master image is acquired not only from the front of the user (01) but also from profile faces such as the right side and left side. For this reason, a plurality of master vectors are associated with one registered user by imaging the user from a plurality of angles and a plurality of distances.
  • the master vector is identified by a master ID.
  • the master vector (01) is extracted from the master image when the face of the user (01) is captured from the front, and the master vector (02) is extracted from the master image when the face of the user (01) is captured from the right .
  • the master vector shown in FIG. 8 is described as a five-dimensional vector having five vector components.
  • the five vector components a to e correspond to arbitrary feature amounts such as the eye-to-eye distance and the skin color.
  • the master vector (01) includes feature quantities a1, b1 and c1 corresponding to three vector components a to c.
  • no feature amount is set for the vector components d and e. For example, when the vector component d is a feature indicating the ear size, there is a possibility that the component d can not be extracted from the front master image.
  • the master vector (02) includes feature quantities a2, c2 and e2 corresponding to three vector components a, c and e, but does not include feature quantities corresponding to vector components b and d.
  • the master vector (03) includes feature quantities a3, b3, d3 and e3 corresponding to the four vector components a, b, d and e, but does not include feature quantities corresponding to the vector component c. If a plurality of master images are acquired by imaging the user (01) from a plurality of directions, physical features of the user (01) can be three-dimensionally grasped.
  • the person recognition unit 214 calculates the center of gravity vector MB by arithmetically averaging the three master vectors of the user (01).
  • the vector component a of the centroid vector MB is an average value of the a components (a1, a2, a3) of the three master vectors. Since only the master vector (03) has the vector component d, the vector component d of the gravity center vector MB becomes the feature amount d3 of the master vector (03).
  • the person recognition unit 214 executes user identification processing based on the master vector or the gravity center vector MB (described later).
  • the motion detection unit 152 acquires a master image when being held by the unknown user A.
  • the unknown user A is registered in the master information 224 as a registered user (01).
  • the master vector (01) is acquired on June 7, 2016.
  • the motion detection unit 152 acquires a master image.
  • the person recognition unit 214 compares the master vector MX extracted from the master image of the unknown user X with the master vector (01) of the registered user (01).
  • the person recognizing unit 214 determines that the unknown user X is different from the user (01).
  • the distance of the feature vector may be calculated as Euclidean distance, or may be calculated based on another definition such as Chebyshev distance.
  • two users, user (01) and user (02) are registered in the master information 224.
  • the person recognizing unit 214 determines that the unknown user X and the registered user (01) are the same person.
  • the number of master vectors of the user (01) is two, and the information for identifying the user (01) is enriched.
  • the master vectors of each registered user are to be compared.
  • the gravity center vector of the registered user and the master vector of the unknown user are to be compared.
  • FIG. 9 is a first schematic diagram for explaining the user identification method.
  • two vector components a and b will be described as targets.
  • the processing method is the same when having three or more vector components.
  • one master vector MA and one master vector MB are extracted for each of registered user A and registered user B.
  • the recognition unit 156 determines which one of the registered users A and B the unknown user X shown in the inspection image is.
  • the feature vector (inspection vector) obtained from the inspection image of the unknown user X usually does not have the accuracy as the master vector.
  • the communication unit 142 of the robot 100 transmits the inspection vector DX to the communication unit 204 of the server 200.
  • the person recognition unit 214 of the server 200 calculates the distance ra between the test vector DX and the master vector MA, and the distance rb between the test vector DX and the master vector MB.
  • the person recognizing unit 214 determines that the unknown user X is the registered user B. On the other hand, if ra ⁇ rb and ra ⁇ rm, the person recognizing unit 214 determines that the unknown user X is the registered user A. On the other hand, when ra> rm and rb> rm, the unknown user X does not correspond to any of the registered users A and B.
  • the operation control unit 150 may select an intimacy action such as running to the unknown user X.
  • the operation control unit 150 may select a evasion action such as fleeing from the unknown user X.
  • the person recognition unit 214 may notify the robot 100 that the unknown user X has not been confirmed, and the operation control unit 150 of the robot 100 may select a motion to hold the unknown user X. Specifically, motions such as approaching the unknown user X, raising the hand 106, and sitting in front of the unknown user X can be considered.
  • the imaging control unit 154 controls the camera 134 to pick up an image of the unknown user X at a short distance.
  • the recognition unit 156 extracts a master vector MX from the master image of the unknown user obtained at the time of holding.
  • the person recognition unit 214 of the server 200 may execute the user identification process again by comparing the master vector MX of the unknown user X with the existing master vectors MA and MB. Since the comparison is between master vectors, more accurate identification is possible. If the unknown user X is determined to be another person from the registered users A and B also by comparison of the master vectors, the person recognition unit 214 sets the unknown user X as the third registered user in the master information 224 together with the master vector MX. sign up.
  • the person recognition unit 214 may register the test vector obtained from the test image of the unknown user X as a new master vector of the registered user A.
  • FIG. 10 is a second schematic diagram for explaining the user identification method.
  • a plurality of master vectors are extracted for each of registered user A and registered user B.
  • the person recognition unit 214 calculates the gravity center vector MB (A) of the registered user A and the gravity center vector MB (B) of the registered user B.
  • the robot 100 acquires a captured image (examination image) of the unknown user X who walks from the front.
  • the recognition unit 156 determines which one of the registered users A and B the unknown user X shown in the inspection image is.
  • the communication unit 142 of the robot 100 transmits the inspection vector DX to the communication unit 204 of the server 200.
  • the person recognition unit 214 of the server 200 calculates the distance ra between the test vector DX and the barycentric vector MB (A) and the distance rb between the test vector DX and the barycenter vector MB (B).
  • the person recognizing unit 214 determines that the unknown user X is the registered user B. On the other hand, if ra ⁇ rb and ra ⁇ rm, the person recognizing unit 214 determines that the unknown user X is the registered user A. On the other hand, when ra> rm and rb> rm, the unknown user X does not correspond to any of the registered users A and B.
  • FIG. 11 is a flowchart showing a process of extracting a master vector.
  • the operation control unit 150 executes a predetermined guidance motion (S10).
  • Guided motion is a motion defined in advance to bring the user's attention. Specifically, non-verbal motions are assumed such as shaking the hand 106, shaking the body 104, pointing the head frame 316 to the user, shaking the head frame 316 up and down or left and right. Induction motion is not limited to mechanical motion.
  • the operation control unit 150 causes the organic EL element to display an image of “pupil” on the eye 110.
  • the operation control unit 150 may instruct image control such as opening the pupil, shaking the pupil, or causing a wink by enlarging the pupil image.
  • the user's face is directed to the robot 100 by pulling the user's attention with the induced motion. Further, by preparing various induction motions, it is possible to extract various master vectors corresponding to various expressions by extracting various expressions of the user. For example, features specific to smiles, such as smiles and bumps can be included as vector components of the master vector.
  • the imaging control unit 154 controls the camera 134 to image the user (S12).
  • the captured image at this time is the “master candidate image”.
  • the recognition unit 156 determines the quality of the master candidate image (S14).
  • the quality determination of the master candidate image is referred to as “quality inspection”.
  • a master candidate image that has passed the quality inspection is set as a master image. If the quality inspection fails (N in S14), the process returns to S10 to reacquire the master candidate image. At this time, another type of induction motion may be performed.
  • a plurality of evaluation items are set in advance with respect to the user's face size, light intensity, expression, and the like. For example, when the user has a closed eye, when the master candidate image is too dark or too bright, or when the master candidate image is not in focus, the quality check fails. It is optional what kind of evaluation item is set for quality inspection.
  • the recognition unit 156 adopts the master candidate image that has passed the quality inspection as a formal master image (Y in S14).
  • the recognition unit 156 extracts a master vector from the master image (S16).
  • the communication unit 142 transmits the master vector to the server 200 (S18).
  • the person recognition unit 214 compares the newly obtained master vector with the master vector already registered in the master information 224 (S20). When the distance of the master vector in which the newly obtained master vector is already registered is close (Y in S20), the master vector is additionally registered (S22). For example, when a master vector similar to the master vector (01) of the user (01) is obtained, the new master vector is also mapped to the user (01). If none of the registered master vectors is close (N in S20), a new user ID and a master ID are added to newly register a master vector (S24).
  • the registered master vector may be compared with the master vector of the new extraction, or, as described with reference to FIG. 10, the registered centroid vector may be compared with the master vector of the new extraction.
  • the extraction process of the master vector is not limited to holding, and may be executed when the user touches the robot 100 as a trigger.
  • the user may be able to obtain a good-quality master image because the user is near the robot 100.
  • the recognition unit 156 executes a master vector extraction process.
  • the motion detection unit 152 continuously captures an image of the user when the hold down is detected.
  • the recognition unit 156 sequentially performs quality inspection on the plurality of master candidate images obtained at this time, and extracts a plurality of master vectors. At the time of holding and lowering, it is possible to image physical features such as the jaw, the waist and the legs at a short distance.
  • the master vector obtained when the user lifts the robot 100 is referred to as “first master vector”, and the master vector obtained when the user lowers the robot 100 or after being lowered is referred to as “second master vector”.
  • the recognition unit 156 After obtaining the first master vector of the user (01), the recognition unit 156 also extracts one or more second master vectors from the master image at the time of holding and lowering. As described above, when the first master vector with high accuracy is obtained, the master vector of the user (01) can be enriched by acquiring the second master vector even when holding down.
  • the “second master vector” also includes master vectors obtained from various distances and angles, including the back view of the user even after the robot 100 is lowered. The first and second master vectors are associated with each other for one user as shown in master information 224.
  • FIG. 12 is a schematic view showing the image tracking method of the user. Even after the robot 100 is lowered to the floor F, the imaging control unit 154 further tracks the user with the camera 134 (all-sky camera).
  • a celestial imaging range 418 shown in FIG. 12 is an imaging range by the omnidirectional camera. The omnidirectional camera is capable of imaging the entire upper hemisphere of the robot 100 at one time.
  • the recognition unit 156 of the robot 100 tracks the user in the celestial imaging range 418 for a predetermined period, for example, about 10 seconds.
  • the imaging control unit 154 captures a master image of the user from various angles and different distances during tracking. For example, the length of hair, the thinness of waist, etc.
  • the recognition unit 156 enriches the master vector by extracting various second master vectors from the master image obtained during tracking. These second master vectors are managed in association with the first master vector.
  • the operation control unit 150 may execute tracking actions such as following the user, moving around the user, and the like. Then, the imaging control unit 154 may enrich the master vector by imaging the user even during the tracking action.
  • the operation control unit 150 may instruct the tracking behavior, or the operation control unit 222 of the server 200 may instruct the operation control unit 150.
  • FIG. 13 is a schematic diagram for explaining a method of remotely extracting a master vector.
  • the imaging control unit 154 picks up not only a hug or a touch but also a master candidate image when the user is positioned at a predetermined relative point with respect to the robot 100.
  • the relative point includes both the distance between the user and the robot 100 and the relative angle.
  • the distance measuring unit 158 periodically measures the distance to one or more users recognized in the celestial imaging range 418.
  • the robot 100 is located at a horizontal angle a to the front direction of the user, an elevation angle b to the position of the user's face, and a distance r from the user.
  • the recognition unit 156 determines the orientation of the user's body by image recognition.
  • the imaging control unit 154 captures a master candidate image when the distance, the horizontal angle, and the elevation angle are in a predetermined range (hereinafter, referred to as a “master shot range”).
  • the recognition unit 156 performs quality inspection on the master candidate image, and if it passes, extracts a master vector.
  • the distance measuring unit 158 has a plurality of master shot ranges set in advance.
  • the distance measuring unit 158 notifies the imaging control unit 154 each time the user enters the master shot range, and the imaging control unit 154 acquires a master candidate image.
  • a master candidate image corresponding to the master shot range R1 is acquired.
  • master vectors corresponding to each of the master shot ranges R1 to R3 are extracted.
  • the user C can be multilaterally imaged from a plurality of master shot ranges, in other words, from a plurality of relative points, and master vectors from multiple directions can be acquired to three-dimensionally grasp the physical characteristics of the user.
  • the imaging control unit 154 may obtain a master candidate image. For example, even if a small child resists holding or touching, it can extract a master vector when approaching with interest. Also, in order to obtain information on the length and shape of the user's hair, the robot 100 has to be away from the user to some extent. By setting various master shot ranges, various master vectors including not only the face of the user but also the figure can be obtained.
  • the first master vector is a feature vector useful for identifying a user because it is based on a master image taken at a close distance to the user.
  • the imaging control unit 154 enters the tracking mode in response to extraction of the first master vector (A) from the master image A when being held or touched.
  • the tracking mode may continue for a predetermined time.
  • the imaging control unit 154 acquires, for example, the master image B1 when it is detected that the holding and lowering is performed.
  • the second master vector (B1) is extracted from the master image B1 and is associated with the first master vector (A) extracted earlier.
  • the tracking mode continues after holding down, and further acquires the master image B2 when the user enters the master shot range.
  • the second master vector (B2) obtained from the master image B2 is also associated with the first master vector (A) that triggered the tracking mode.
  • various second master vectors obtained thereafter are associated with the first master vector (A) which can easily identify the user. Even if it is the second master vector where features do not easily appear like "back view", it is possible to enrich the master vector group corresponding to one user by associating it with the first master vector that triggered the acquisition. .
  • the robot 100 and the robot system 300 including the robot 100 have been described above based on the embodiment.
  • a user is often given a language instruction such as “please face forward” or “please look at the camera”, and then a master image is often acquired.
  • Such language instructions such as voice and text tend to be burdensome to the user.
  • the language instruction for acquiring the master image is not desirable in that it makes the user aware of the inanimate nature of the robot 100.
  • the robot 100 in the present embodiment can acquire a master image casually at the timing when the user holds the robot 100.
  • the robot 100 has a small, soft, light, round shape that human beings like to touch. Instead of forcing the user to take some action, it is possible to capture high-quality master images by capturing the timing at which the user naturally “held”.
  • the master image can be acquired casually by utilizing the characteristic of the robot 100 that stimulates the feeling of wanting to hold and touch.
  • the robot 100 further draws the user's attention by non-verbal induced motion such as flipping the hand 106.
  • the user is less likely to have a sense of being forced because it is a method of making the user pay attention to it by non-verbal communication.
  • the robot 100 captures an image of the user when being held and acquires a first master vector. Furthermore, the robot 100 can also acquire a plurality of second master vectors by capturing a master image even when being held down or after being held down. By accumulating the second master vector also at the timing at which the first master vector is extracted, it becomes easier to grasp the physical characteristics of the user in multiple ways.
  • the user identification process is a premise of the recognition of the response action and the closeness calculation.
  • the robot 100 can change the behavior characteristic according to the user.
  • the present invention is not limited to the above-described embodiment and modification, and the components can be modified and embodied without departing from the scope of the invention.
  • Various inventions may be formed by appropriately combining a plurality of components disclosed in the above-described embodiment and modifications. Moreover, some components may be deleted from all the components shown in the above-mentioned embodiment and modification.
  • the robot system 300 is described as being configured of one robot 100, one server 200, and a plurality of external sensors 114, part of the functions of the robot 100 may be realized by the server 200, or the functions of the server 200 A part or all of may be assigned to the robot 100.
  • One server 200 may control a plurality of robots 100, or a plurality of servers 200 may cooperate to control one or more robots 100.
  • a third device other than the robot 100 or the server 200 may have a part of the function.
  • An aggregate of the functions of the robot 100 and the functions of the server 200 described with reference to FIG. 6 can also be generally understood as one “robot”. How to allocate a plurality of functions necessary to realize the present invention to one or more hardwares will be considered in view of the processing capability of each hardware, the specifications required of the robot system 300, etc. It should be decided.
  • the “robot in a narrow sense” refers to the robot 100 not including the server 200
  • the “robot in a broad sense” refers to the robot system 300.
  • Many of the functions of the server 200 may be integrated into the robot 100 in the future.
  • the master vector may include feature quantities other than the feature quantities extracted from the master image as vector components.
  • the smell detected by the odor sensor, the voice quality detected by the microphone, and the body temperature detected by the temperature sensor may be included as vector components.
  • the master image may not be a still image, but may be a moving image (hereinafter referred to as "master moving image").
  • the recognition unit 156 may extract wrinkles, such as how the user walks or a poor baby, from the master moving image, and may include these feature information in the master vector component.
  • the camera 134 in the present embodiment is an omnidirectional camera, but the camera 134 may be a normal camera.
  • the camera 134 may be built into the horn 112 or may be built into the eye 110.
  • both an omnidirectional camera and a normal camera may be incorporated.
  • centroid vector is formed by arithmetic averaging of a plurality of master vectors
  • the median of a plurality of master vectors may be used as a component of the centroid vector.
  • the a component of the gravity center vector may be a2.
  • a plurality of evaluation items may be weighted at the time of quality inspection of the master candidate image.
  • (E1) is facing the front, (E2) is appropriate, (E3) is the eye open, or the like.
  • the induced motion may be performed other than when being held.
  • the motion control unit 150 may execute the induction motion when the distance between the robot 100 and the user is within a predetermined range. For example, when the user is in the master shot range shown in FIG. 13, a master candidate image may be captured after executing the induction motion.
  • the robot 100 extracts a master vector without missing a “shutter chance” that is effective in grasping the physical and behavioral characteristics of the user while engaging in various ways with the user.
  • a variety of high quality master vectors can be collected without making the user aware.
  • the induction motion in the present embodiment is a type of non-verbal communication.
  • the non-verbal motion referred to here may include speech that does not make sense as a verb like an animal call.
  • the robot 100 may ask the user in a simple language.
  • the robot 100 may acquire three face images of a front face, a right face, and a left face as a master image when being held by the user.
  • the recognition unit 156 may determine which direction the user is looking at by recognizing the user's ears and nose.
  • the robot 100 may mount a gyroscope.
  • the recognition unit 156 may detect the tilt direction of the robot 100 when being held by the user using a gyroscope and thereby determine from which direction the user is viewed.
  • user identification may be performed by the Mahalanobis distance.
  • the person recognition unit 214 determines the Mahalanobis distance (Mahalanobis' Distance) between the test vector DX and the master vector group of the user A in consideration of the variance value. .
  • the person recognition unit 214 obtains the Mahalanobis distance between the test vector DX and the master vector group of the user B. Then, based on the Mahalanobis distance for each group, it may be determined whether the unknown user X is the user A or the user B by a known discriminant analysis method (hereinafter referred to as "the Mahalanobis determination method”. Say).
  • the person recognition unit 214 may form a neural network using the master vector group of each user as teacher data, and perform user identification based on the matching between the test vector of the unknown user X and the master vector. (Hereafter, it is called "neural network judgment method").
  • the person recognition unit 214 may identify a user by combining a plurality of distance determination methods, Mahalanobis determination methods, and neural network determination methods. Further, not only comparison of the inspection vector and the master vector, but also when comparing the master vector of the registered user and the master vector of the unknown user, similarity determination may be performed by the various methods described above.
  • the imaging control unit 154 has been described as acquiring the master image at timing such as holding or touching.
  • the imaging control unit 154 may periodically image the user, and the recognition unit 156 may select a large number of captured images as master candidate images.
  • the user is imaged at a timing of once every 10 seconds, and the recognition unit 156 performs quality inspection as a master candidate image.
  • the recognition unit 156 extracts a master vector from the passed master image. According to such a method, it is possible to extract a master vector also from a high-quality captured image obtained by chance.
  • the person recognition unit 214 may delete the old master vector from the personal data storage unit 218 when the number of master vectors is equal to or more than a predetermined number.
  • old master vectors for example, master vectors obtained three or more years ago may be deleted. According to such a control method, not only can the amount of data stored in the personal data storage unit 218 be reduced, but it is also possible to cope with changes in physical characteristics as the user ages and grows.
  • the user is identified by extracting feature vectors in the robot 100 and comparing the feature vectors in the server 200.
  • the robot 100 may send a captured image to the server 200, and the person recognition unit 214 of the server 200 may perform both extraction of feature vectors and user identification.
  • the robot 100 may execute the user identification process in the recognition unit 156 without relying on the processing capability of the server 200.
  • the robot 100 may manage the master vector of each user in the data storage unit 148 of the robot 100.
  • the sensors incorporated in the external sensor 114 may extract physical and behavioral features of the user.
  • the external sensor 114 captures an image of the user when the user is nearby, and transmits the captured image to the robot 100.
  • the recognition unit 156 of the robot 100 may execute quality inspection and component extraction of this captured image.
  • the personal data storage unit 218 is described as storing the master vector instead of the master image, both the master image and the master vector may be stored.
  • the robot system 300 does not have to be provided with a user identification function by a master vector from the time of factory shipment.
  • the robot system 300 may perform user identification by a clustering technology applying deep learning.
  • the functional enhancement of the robot system 300 may be realized by downloading the behavior control program for realizing the user identification function by the master vector via the communication network after the shipment of the robot system 300.
  • the recognition unit 156 selects a captured image when the robot 100 is held up as a master candidate image.
  • the recognition unit 156 may detect the position and orientation of the user's face by a temperature sensor such as a thermal camera, or may detect the distance between the user and the robot 100 by a distance measurement sensor.
  • the recognition unit 156 may select, as a master candidate image, a captured image when a predetermined specific condition is satisfied for both or one of temperature information by a thermal camera and distance information by a distance measurement sensor.
  • the recognition unit 156 can confirm that the user is facing the robot 100 by the thermal camera, and the captured image when the distance between the user and the robot 100 is within the predetermined range by using the distance measurement sensor as the master candidate image You may choose. According to such a control method, it becomes easy to select an appropriate master candidate image based on a plurality of types of sensors.
  • the camera mounted on the robot 100 may be an omnidirectional camera.
  • the robot 100 When the robot 100 is held by the user from the back side, in other words, even when the user does not face the robot 100, the robot 100 can capture the rear user with the omnidirectional camera. Therefore, even when the robot 100 is held from the back side, the recognition unit 156 can acquire an appropriate master candidate image, and thus the acquisition opportunity of the master candidate image can be expanded.
  • the recognition unit 156 may specify the master candidate image on condition that the robot 100 and the user are facing each other.
  • the recognition unit 156 may not select this captured image as a master candidate image.
  • the recognition unit 156 extracts the feature vector of the registered user P1 from this captured image, and additionally registers it as a new master vector of the registered user P1. It may be When a registered user is not detected in a captured image including a plurality of users, in other words, when a captured image including only a plurality of unknown users is obtained, the recognition unit 156 faces the front, for example. A feature vector may be extracted for an unknown user P2 that satisfies the condition, and this may be newly registered as a master vector of the unknown user P2.
  • the recognition unit 156 may also acquire the user's voice (voice information) with a microphone at the time of shooting.
  • the master vector may include not only image information but also feature vectors based on audio information.
  • the recognition unit 156 may acquire the user's odor (olfactory information) by the odor sensor when photographing. As described above, various pieces of sensor information such as voice information and olfactory information may be included as information for identifying a registered user, in addition to image information.
  • the robot 100 may include a plurality of microphones. At the time of voice registration, voice may be detected only from a microphone corresponding to the direction in which the user is present, for example, a microphone attached to the front of the robot 100.
  • the recognition unit 156 may invalidate other microphones. According to such a control method, environmental sounds other than the user are less likely to be taken into the master vector. It is desirable that the microphones, in particular the microphones mounted on the front, have directivity.
  • the recognition unit 156 may acquire the user's voice information as part of the master vector, on the condition that the voice information is detected when a motion is detected on the user's lips in the captured image. When an unknown user is detected, the recognition unit 156 may execute a motion that approaches the unknown user and asks for holding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Psychiatry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Social Psychology (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Image Analysis (AREA)
  • Toys (AREA)

Abstract

A robot 100 takes an image of a user with a built-in camera, and extracts a feature vector that quantitatively represents physical features of the user from the taken image. The robot 100 extracts a feature vector (master vector) from an image taken when the robot 100 is held by the user (master image). A robot system identifies the user by comparing the master vector with a feature vector extracted from an unknown user. The robot 100 may extract a master vector from a master image taken when the robot is touched by the user instead of the master image taken when the robot is held by the user.

Description

人を識別する自律行動型ロボットAutonomous Behavioral Robot to Identify People
 本発明は、内部状態または外部環境に応じて自律的に行動選択するロボット、に関する。 The present invention relates to a robot that autonomously selects an action according to an internal state or an external environment.
 人間は、感覚器官を通して外部環境からさまざまな情報を取得し、行動選択する。意識的に行動選択することもあれば、無意識的な行動選択もある。繰り返し行動はやがて無意識的行動となり、新しい行動は意識領域にとどまる。 Humans acquire various information from the external environment through sense organs and select actions. Sometimes they choose to act consciously, and sometimes they choose to act unconsciously. Repeated actions eventually become unconscious actions, and new actions remain in the conscious domain.
 人間は、自らの行動を自由に選択する意志、すなわち、自由意志をもっていると信じている。人間が他人に対して愛情や憎しみといった感情を抱くのは、他人にも自由意志があると信じているからである。自由意志を持つ者、少なくとも自由意志を持っていると想定可能な存在は、人の寂しさを癒す存在にもなる。 Humans believe that they have the will to freely choose their own actions, that is, the free will. Humans have feelings of affection and hate towards others because we believe that others also have free will. A person with a free will, at least an entity that can be assumed to have a free will, also serves to heal a person's loneliness.
 人間がペットを飼う理由は、人間の役に立つか否かよりも、ペットが癒しを与えてくれるからである。ペットは、多かれ少なかれ自由意志を感じさせる存在であるからこそ、人間のよき伴侶となることができる。 The reason for humans to keep pets is that they provide healing rather than their usefulness. Pets can be good companions to humans because they are more or less free-willing beings.
 その一方、ペットの世話をする時間を十分に確保できない、ペットを飼える住環境にない、アレルギーがある、死別がつらい、といったさまざまな理由により、ペットをあきらめている人は多い。もし、ペットの役割が務まるロボットがあれば、ペットを飼えない人にもペットが与えてくれるような癒しを与えられるかもしれない(特許文献1参照)。 On the other hand, many people give up their pets for various reasons such as lack of time to take care of their pets, lack of living environment for pets, allergies, and bereavement difficulties. If there is a robot that plays the role of a pet, it may be possible to give healing that a pet gives to a person who can not keep the pet (see Patent Document 1).
特開2000-323219号公報JP 2000-323219 A
 近年、ロボット技術は急速に進歩しつつあるが、ペットのような伴侶としての存在感を実現するには至っていない。ロボットに自由意志があるとは思えないからである。人間は、ペットの自由意志があるとしか思えないような行動を観察することにより、ペットに自由意志の存在を感じ、ペットに共感し、ペットに癒される。
 したがって、人間的・生物的な行動を表現できるロボットであれば、特に、相手に応じて行動を変化させるロボットであれば、ロボットへの共感を大きく高めることができると考えられる。
In recent years, although robot technology has been rapidly advancing, it has not been able to realize its presence as a pet-like companion. It is because I do not think that the robot has free will. Human beings feel the presence of free will in pets, sympathize with pets, and be healed by pets by observing such behavior that only the pet's free will seems to be present.
Therefore, it is considered that a robot capable of expressing human and biological behavior, in particular, a robot that changes its behavior according to the other party, can greatly enhance empathy for the robot.
 上述の行動特性を実現するためには、ロボットに人間を識別する能力を持たせなければならない。顔認証技術においては、既知の人物Aの基準となるべき撮像画像(以下、「マスタ画像」とよぶ)と未確認の人物Xの撮像画像(以下、「検査画像」とよぶ)を比較することにより、人物Aと人物Xが同一人物であるか否かを判定する。マスタ画像の取得に際しては、システムが被写体となる人物に撮像時の姿勢や表情について指示することも多い。 In order to realize the above-mentioned behavior characteristics, the robot must have the ability to identify humans. In the face recognition technology, the captured image (hereinafter referred to as “master image”) to be the reference of known person A and the captured image (hereinafter referred to as “test image”) of unconfirmed person X are compared It is determined whether the person A and the person X are the same person. When acquiring a master image, the system often instructs a person to be an object regarding the posture and expression at the time of imaging.
 人物の識別精度を高めるためには質のよいマスタ画像が必要であるが、マスタ画像を取得させるためにユーザに過度の負担をかけることは好ましくない。特に、生物的な行動特性を実現すべきロボットにおいてユーザに行動強制することは、ロボットの非生物性をユーザに感じさせてしまうおそれもある。 A high quality master image is required to improve the identification accuracy of a person, but it is not preferable to place an excessive burden on the user to obtain a master image. In particular, forcing a user to act on a robot that should realize biological behavior characteristics may cause the user to feel the abiotic nature of the robot.
 本発明は上記認識に基づいて完成された発明であり、その主たる目的は、ユーザへの負担を抑制しつつロボットの識別能力を高める技術、を提供することにある。 The present invention is an invention completed based on the above recognition, and its main object is to provide a technology for enhancing the identification capability of a robot while suppressing the burden on the user.
 本発明のある態様における自律行動型ロボットは、カメラを制御する撮像制御部と、移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する認識部と、判別結果に応じて、ロボットのモーションを選択する動作選択部と、動作選択部により選択されたモーションを実行する駆動機構と、移動物体によるロボットの抱え上げを検出する動作検出部と、を備える。
 認識部は、移動物体にロボットが抱え上げられたときの撮像画像をマスタ画像として設定し、マスタ画像から抽出される特徴ベクトルに基づいて移動物体の判別基準を設定する。
An autonomous action type robot according to an aspect of the present invention includes an imaging control unit that controls a camera, a recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object, and a determination result. The robot comprises: an operation selection unit that selects a motion of the robot; a drive mechanism that executes the motion selected by the operation selection unit; and an operation detection unit that detects lifting of the robot by the moving object.
The recognition unit sets a captured image obtained when the robot is held up by the moving object as a master image, and sets a determination reference of the moving object based on the feature vector extracted from the master image.
 本発明の別の態様における自律行動型ロボットは、カメラを制御する撮像制御部と、移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する認識部と、判別結果に応じて、ロボットのモーションを選択する動作選択部と、動作選択部により選択されたモーションを実行する駆動機構と、移動物体によるタッチを検出する動作検出部と、を備える。
 認識部は、タッチが検出されたときの撮像画像をマスタ画像として設定し、マスタ画像から抽出される特徴ベクトルに基づいて移動物体の判別基準を設定する。
An autonomous-action robot according to another aspect of the present invention includes an imaging control unit that controls a camera, a recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object, and a determination result. And a drive mechanism for executing the motion selected by the motion selection unit; and a motion detection unit for detecting a touch by a moving object.
The recognition unit sets a captured image when a touch is detected as a master image, and sets a determination reference of a moving object based on a feature vector extracted from the master image.
 本発明の別の態様における自律行動型ロボットは、カメラを制御する撮像制御部と、移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する認識部と、判別結果に応じて、ロボットのモーションを選択する動作選択部と、動作選択部により選択されたモーションを実行する駆動機構と、を備える。
 認識部は、移動物体がロボットに対して所定の相対地点に位置したことを契機として撮像した画像をマスタ画像として設定し、マスタ画像から抽出される特徴ベクトルに基づいて移動体の判別基準を設定する。
An autonomous-action robot according to another aspect of the present invention includes an imaging control unit that controls a camera, a recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object, and a determination result. And an operation selection unit that selects a motion of the robot, and a drive mechanism that executes the motion selected by the operation selection unit.
The recognition unit sets, as a master image, an image captured when the moving object is located at a predetermined relative position with respect to the robot as a master image, and sets a determination criterion of the moving object based on the feature vector extracted from the master image. Do.
 本発明のある態様における行動制御プログラムは、ロボットによる物体認識のためのコンピュータプログラムである。
 このプログラムは、移動物体にロボットが抱え上げられたときの移動物体の撮像画像をマスタ画像として設定する機能と、マスタ画像から抽出される特徴ベクトルに基づいて移動物体の判別基準を設定する機能と、移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する機能と、をロボットに発揮させる。
The behavior control program in an aspect of the present invention is a computer program for object recognition by a robot.
This program has a function of setting as a master image a captured image of a moving object when the robot is held up by the moving object, and a function of setting a determination reference of the moving object based on a feature vector extracted from the master image And causing the robot to exhibit a function of determining a moving object based on a feature vector extracted from a captured image of the moving object.
 本発明の別の態様における行動制御プログラムは、ロボットによる物体認識のためのコンピュータプログラムである。
 移動物体にロボットがタッチされたときの移動物体の撮像画像をマスタ画像として設定する機能と、マスタ画像から抽出される特徴ベクトルに基づいて移動物体の判別基準を設定する機能と、移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する機能と、をロボットに発揮させる。
The behavior control program in another aspect of the present invention is a computer program for object recognition by a robot.
A function of setting as a master image a captured image of the moving object when the robot is touched to the moving object, a function of setting a determination reference of the moving object based on a feature vector extracted from the master image, and imaging of the moving object And causing the robot to exhibit a function of determining a moving object based on a feature vector extracted from an image.
 本発明によれば、ユーザへの負担を抑制しつつ、ロボットの識別能力を高めやすくなる。 According to the present invention, the identification ability of the robot can be easily enhanced while suppressing the burden on the user.
ロボットの正面外観図である。It is a front external view of a robot. ロボットの側面外観図である。It is a side external view of a robot. ロボットの構造を概略的に表す断面図である。FIG. 2 is a cross-sectional view schematically illustrating the structure of a robot. ロボットシステムの構成図である。It is a block diagram of a robot system. 感情マップの概念図である。It is a conceptual diagram of an emotion map. ロボットのハードウェア構成図である。It is a hardware block diagram of a robot. ロボットシステムの機能ブロック図である。It is a functional block diagram of a robot system. ロボットを抱っこしたときのイメージ図である。It is an image figure when holding a robot. マスタ情報のデータ構造図である。It is a data structure figure of master information. ユーザ識別方法を説明するための第1の模式図である。It is a 1st schematic diagram for demonstrating a user identification method. ユーザ識別方法を説明するための第2の模式図である。It is a 2nd schematic diagram for demonstrating a user identification method. マスタベクトルの抽出処理過程を示すフローチャートである。It is a flowchart which shows the extraction process process of a master vector. ユーザの画像追跡方法を示す模式図である。It is a schematic diagram which shows a user's image tracking method. マスタベクトルを遠隔から抽出する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method to extract a master vector from the distance.
 図1(a)は、ロボット100の正面外観図である。図1(b)は、ロボット100の側面外観図である。
 本実施形態におけるロボット100は、外部環境および内部状態に基づいて行動や仕草(ジェスチャー)を決定する自律行動型のロボットである。外部環境は、カメラやサーモセンサなど各種のセンサにより認識される。内部状態はロボット100の感情を表現するさまざまなパラメータとして定量化される。これらについては後述する。
FIG. 1A is a front external view of the robot 100. FIG. FIG. 1 (b) is a side external view of the robot 100.
The robot 100 in the present embodiment is an autonomous action robot that determines an action or gesture (gesture) based on an external environment and an internal state. The external environment is recognized by various sensors such as a camera and a thermo sensor. The internal state is quantified as various parameters representing the emotion of the robot 100. These will be described later.
 ロボット100は、原則として、オーナー家庭の家屋内を行動範囲とする。以下、ロボット100に関わる人間を「ユーザ」とよび、ロボット100が所属する家庭の構成員となるユーザのことを「オーナー」とよぶ。ロボット100が識別すべき「移動物体」は、人間およびペットの双方を含むが、本実施形態においては人間(ユーザ)を対象として説明する。 In principle, the robot 100 takes an indoor range of an owner's home as an action range. Hereinafter, a human being related to the robot 100 is referred to as a "user", and a user who is a member of a home to which the robot 100 belongs is referred to as an "owner". The “moving objects” to be identified by the robot 100 include both human and pet, but in the present embodiment, description will be made for human (user).
 ロボット100のボディ104は、全体的に丸みを帯びた形状を有し、ウレタンやゴム、樹脂、繊維などやわらかく弾力性のある素材により形成された外皮を含む。ロボット100に服を着せてもよい。丸くてやわらかく、手触りのよいボディ104とすることで、ロボット100はユーザに安心感とともに心地よい触感を提供する。 The body 104 of the robot 100 has an overall rounded shape, and includes an outer shell formed of a soft and elastic material such as urethane, rubber, resin, or fiber. The robot 100 may be dressed. By making the body 104 round and soft and have a good touch, the robot 100 provides the user with a sense of security and a pleasant touch.
 ロボット100は、総重量が15キログラム以下、好ましくは10キログラム以下、更に好ましくは、5キログラム以下である。生後13ヶ月までに、赤ちゃんの過半数は一人歩きを始める。生後13ヶ月の赤ちゃんの平均体重は、男児が9キログラム強、女児が9キログラム弱である。このため、ロボット100の総重量が10キログラム以下であれば、ユーザは一人歩きできない赤ちゃんを抱きかかえるのとほぼ同等の労力でロボット100を抱きかかえることができる。生後2ヶ月未満の赤ちゃんの平均体重は男女ともに5キログラム未満である。したがって、ロボット100の総重量が5キログラム以下であれば、ユーザは乳児を抱っこするのと同等の労力でロボット100を抱っこできる。 The robot 100 has a total weight of 15 kilograms or less, preferably 10 kilograms or less, and more preferably 5 kilograms or less. By 13 months of age, the majority of babies will start walking alone. The average weight of a 13-month-old baby is just over 9 kilograms for boys and less than 9 kilograms for girls. Therefore, if the total weight of the robot 100 is 10 kilograms or less, the user can hold the robot 100 with almost the same effort as holding a baby that can not walk alone. The average weight of babies less than 2 months old is less than 5 kilograms for both men and women. Therefore, if the total weight of the robot 100 is 5 kg or less, the user can hold the robot 100 with the same effort as holding an infant.
 適度な重さと丸み、柔らかさ、手触りのよさ、といった諸属性により、ユーザがロボット100を抱きかかえやすく、かつ、抱きかかえたくなるという効果が実現される。同様の理由から、ロボット100の身長は1.2メートル以下、好ましくは、0.7メートル以下であることが望ましい。本実施形態におけるロボット100にとって、抱きかかえることができるというのは重要なコンセプトである。 The various attributes such as appropriate weight, roundness, softness, and good touch realize an effect that the user can easily hold the robot 100 and can not hold it. For the same reason, it is desirable that the height of the robot 100 is 1.2 meters or less, preferably 0.7 meters or less. For the robot 100 in the present embodiment, being able to hold it is an important concept.
 ロボット100は、3輪走行するための3つの車輪を備える。図示のように、一対の前輪102(左輪102a,右輪102b)と、一つの後輪103を含む。前輪102が駆動輪であり、後輪103が従動輪である。前輪102は、操舵機構を有しないが、回転速度や回転方向を個別に制御可能とされている。後輪103は、いわゆるオムニホイールからなり、ロボット100を前後左右へ移動させるために回転自在となっている。左輪102aよりも右輪102bの回転数を大きくすることで、ロボット100は左折したり、左回りに回転できる。右輪102bよりも左輪102aの回転数を大きくすることで、ロボット100は右折したり、右回りに回転できる。 The robot 100 includes three wheels for traveling three wheels. As shown, a pair of front wheels 102 (left wheel 102a, right wheel 102b) and one rear wheel 103 are included. The front wheel 102 is a driving wheel, and the rear wheel 103 is a driven wheel. The front wheel 102 does not have a steering mechanism, but its rotational speed and rotational direction can be individually controlled. The rear wheel 103 is a so-called omni wheel, and is rotatable in order to move the robot 100 back and forth and right and left. By making the rotation speed of the right wheel 102b larger than that of the left wheel 102a, the robot 100 can turn left or rotate counterclockwise. By making the rotational speed of the left wheel 102a larger than that of the right wheel 102b, the robot 100 can turn right or rotate clockwise.
 前輪102および後輪103は、駆動機構(回動機構、リンク機構)によりボディ104に完全収納できる。走行時においても各車輪の大部分はボディ104に隠れているが、各車輪がボディ104に完全収納されるとロボット100は移動不可能な状態となる。すなわち、車輪の収納動作にともなってボディ104が降下し、床面Fに着座する。この着座状態においては、ボディ104の底部に形成された平坦状の着座面108(接地底面)が床面Fに当接する。 The front wheel 102 and the rear wheel 103 can be completely housed in the body 104 by a drive mechanism (a rotation mechanism, a link mechanism). Even when traveling, most of the wheels are hidden by the body 104, but when the wheels are completely housed in the body 104, the robot 100 can not move. That is, the body 104 descends and is seated on the floor surface F along with the storing operation of the wheels. In this sitting state, the flat seating surface 108 (grounding bottom surface) formed on the bottom of the body 104 abuts on the floor surface F.
 ロボット100は、2つの手106を有する。手106には、モノを把持する機能はない。手106は上げる、振る、振動するなど簡単な動作が可能である。2つの手106も個別制御可能である。 The robot 100 has two hands 106. The hand 106 does not have the function of gripping an object. The hand 106 can perform simple operations such as raising, shaking and vibrating. The two hands 106 are also individually controllable.
 目110には、液晶素子または有機EL素子による画像表示が可能である。ロボット100は、音源方向を特定可能なマイクロフォンアレイや超音波センサ、ニオイセンサ、測距センサ、加速度センサなどさまざまなセンサを搭載する。また、ロボット100はスピーカーを内蔵し、簡単な音声を発することもできる。ロボット100のボディ104には、静電容量式のタッチセンサが設置される。タッチセンサにより、ロボット100はユーザのタッチを検出できる。 The eye 110 can display an image with a liquid crystal element or an organic EL element. The robot 100 mounts various sensors such as a microphone array capable of specifying a sound source direction, an ultrasonic sensor, an odor sensor, a distance measuring sensor, and an acceleration sensor. In addition, the robot 100 can incorporate a speaker and can emit a simple voice. A capacitive touch sensor is installed on the body 104 of the robot 100. The touch sensor allows the robot 100 to detect a touch of the user.
 ロボット100の頭部にはツノ112が取り付けられる。上述のようにロボット100は軽量であるため、ユーザはツノ112をつかむことでロボット100を持ち上げることも可能である。ツノ112には全天球カメラが取り付けられ、ロボット100の上部全域を一度に撮像可能である。 A horn 112 is attached to the head of the robot 100. As described above, since the robot 100 is lightweight, the user can lift the robot 100 by grasping the tongue 112. An omnidirectional camera is attached to the horn 112 so that the entire upper portion of the robot 100 can be imaged at one time.
 図2は、ロボット100の構造を概略的に表す断面図である。
 図2に示すように、ロボット100のボディ104は、ベースフレーム308、本体フレーム310、一対の樹脂製のホイールカバー312および外皮314を含む。ベースフレーム308は、金属からなり、ボディ104の軸芯を構成するとともに内部機構を支持する。ベースフレーム308は、アッパープレート332とロアプレート334とを複数のサイドプレート336により上下に連結して構成される。複数のサイドプレート336間には通気が可能となるよう、十分な間隔が設けられる。ベースフレーム308の内方には、バッテリー118、制御回路342および各種アクチュエータが収容されている。
FIG. 2 is a cross-sectional view schematically showing the structure of the robot 100. As shown in FIG.
As shown in FIG. 2, the body 104 of the robot 100 includes a base frame 308, a body frame 310, a pair of resin wheel covers 312 and a shell 314. The base frame 308 is made of metal and constitutes an axial center of the body 104 and supports an internal mechanism. The base frame 308 is configured by connecting an upper plate 332 and a lower plate 334 by a plurality of side plates 336 up and down. The plurality of side plates 336 is sufficiently spaced to allow air flow. Inside the base frame 308, a battery 118, a control circuit 342 and various actuators are accommodated.
 本体フレーム310は、樹脂材からなり、頭部フレーム316および胴部フレーム318を含む。頭部フレーム316は、中空半球状をなし、ロボット100の頭部骨格を形成する。胴部フレーム318は、段付筒形状をなし、ロボット100の胴部骨格を形成する。胴部フレーム318は、ベースフレーム308と一体に固定される。頭部フレーム316は、胴部フレーム318の上端部に相対変位可能に組み付けられる。 The body frame 310 is made of a resin material and includes a head frame 316 and a body frame 318. The head frame 316 has a hollow hemispherical shape and forms a head skeleton of the robot 100. The body frame 318 has a stepped cylindrical shape and forms the body frame of the robot 100. The body frame 318 is integrally fixed to the base frame 308. The head frame 316 is assembled to the upper end of the body frame 318 so as to be relatively displaceable.
 頭部フレーム316には、ヨー軸320、ピッチ軸322およびロール軸324の3軸と、各軸を回転駆動するためのアクチュエータ326が設けられる。アクチュエータ326は、各軸を個別に駆動するための複数のサーボモータを含む。首振り動作のためにヨー軸320が駆動され、頷き動作のためにピッチ軸322が駆動され、首を傾げる動作のためにロール軸324が駆動される。 The head frame 316 is provided with three axes of a yaw axis 320, a pitch axis 322 and a roll axis 324, and an actuator 326 for rotationally driving each axis. The actuator 326 includes a plurality of servomotors for individually driving each axis. The yaw shaft 320 is driven for swinging motion, the pitch shaft 322 is driven for loosening motion, and the roll shaft 324 is driven for tilting motion.
 頭部フレーム316の上部には、ヨー軸320を支持するプレート325が固定されている。プレート325には、上下間の通気を確保するための複数の通気孔327が形成される。 A plate 325 supporting the yaw axis 320 is fixed to the top of the head frame 316. The plate 325 is formed with a plurality of vents 327 for ensuring ventilation between the top and bottom.
 頭部フレーム316およびその内部機構を下方から支持するように、金属製のベースプレート328が設けられる。ベースプレート328は、クロスリンク機構329(パンタグラフ機構)を介してプレート325と連結される一方、ジョイント330を介してアッパープレート332(ベースフレーム308)と連結されている。 A metallic base plate 328 is provided to support the head frame 316 and its internal features from below. The base plate 328 is connected to the plate 325 via the cross link mechanism 329 (pantograph mechanism), and is connected to the upper plate 332 (base frame 308) via the joint 330.
 胴部フレーム318は、ベースフレーム308と車輪駆動機構370を収容する。車輪駆動機構370は、回動軸378およびアクチュエータ379を含む。胴部フレーム318の下半部は、ホイールカバー312との間に前輪102の収納スペースSを形成するために小幅とされている。 Torso frame 318 houses base frame 308 and wheel drive mechanism 370. The wheel drive mechanism 370 includes a pivot shaft 378 and an actuator 379. The lower half of the body frame 318 is narrow to form a storage space S of the front wheel 102 with the wheel cover 312.
 外皮314は、ウレタンゴムからなり、本体フレーム310およびホイールカバー312を外側から覆う。手106は、外皮314と一体成形される。外皮314の上端部には、外気を導入するための開口部390が設けられる。 The outer cover 314 is made of urethane rubber and covers the body frame 310 and the wheel cover 312 from the outside. The hand 106 is integrally molded with the skin 314. At the upper end of the shell 314, an opening 390 for introducing external air is provided.
 図3は、ロボットシステム300の構成図である。
 ロボットシステム300は、ロボット100、サーバ200および複数の外部センサ114を含む。家屋内にはあらかじめ複数の外部センサ114(外部センサ114a、114b、・・・、114n)が設置される。外部センサ114は、家屋の壁面に固定されてもよいし、床に載置されてもよい。サーバ200には、外部センサ114の位置座標が登録される。位置座標は、ロボット100の行動範囲として想定される家屋内においてx,y座標として定義される。
FIG. 3 is a block diagram of the robot system 300. As shown in FIG.
The robot system 300 includes a robot 100, a server 200 and a plurality of external sensors 114. A plurality of external sensors 114 ( external sensors 114a, 114b, ..., 114n) are installed in advance in the house. The external sensor 114 may be fixed to the wall of the house or may be mounted on the floor. In the server 200, position coordinates of the external sensor 114 are registered. The position coordinates are defined as x, y coordinates in a house assumed as the action range of the robot 100.
 サーバ200は、家屋内に設置される。本実施形態におけるサーバ200とロボット100は、通常、1対1で対応する。ロボット100の内蔵するセンサおよび複数の外部センサ114から得られる情報に基づいて、サーバ200がロボット100の基本行動を決定する。
 外部センサ114はロボット100の感覚器を補強するためのものであり、サーバ200はロボット100の頭脳を補強するためのものである。
The server 200 is installed in a house. The server 200 and the robot 100 in the present embodiment usually correspond one to one. The server 200 determines the basic behavior of the robot 100 based on the information obtained from the sensors contained in the robot 100 and the plurality of external sensors 114.
The external sensor 114 is for reinforcing the senses of the robot 100, and the server 200 is for reinforcing the brain of the robot 100.
 外部センサ114は、定期的に外部センサ114のID(以下、「ビーコンID」とよぶ)を含む無線信号(以下、「ロボット探索信号」とよぶ)を送信する。ロボット100はロボット探索信号を受信するとビーコンIDを含む無線信号(以下、「ロボット返答信号」とよぶ)を返信する。サーバ200は、外部センサ114がロボット探索信号を送信してからロボット返答信号を受信するまでの時間を計測し、外部センサ114からロボット100までの距離を測定する。複数の外部センサ114とロボット100とのそれぞれの距離を計測することで、ロボット100の位置座標を特定する。
 もちろん、ロボット100が自らの位置座標を定期的にサーバ200に送信する方式でもよい。
The external sensor 114 periodically transmits a wireless signal (hereinafter referred to as a “robot search signal”) including the ID of the external sensor 114 (hereinafter referred to as “beacon ID”). When the robot 100 receives the robot search signal, the robot 100 sends back a radio signal (hereinafter referred to as a “robot reply signal”) including a beacon ID. The server 200 measures the time from when the external sensor 114 transmits the robot search signal to when the robot reply signal is received, and measures the distance from the external sensor 114 to the robot 100. By measuring the distances between the plurality of external sensors 114 and the robot 100, the position coordinates of the robot 100 are specified.
Of course, the robot 100 may periodically transmit its position coordinates to the server 200.
 図4は、感情マップ116の概念図である。
 感情マップ116は、サーバ200に格納されるデータテーブルである。ロボット100は、感情マップ116にしたがって行動選択する。図4に示す感情マップ116は、ロボット100の場所に対する好悪感情の大きさを示す。感情マップ116のx軸とy軸は、二次元空間座標を示す。z軸は、好悪感情の大きさを示す。z値が正値のときにはその場所に対する好感が高く、z値が負値のときにはその場所を嫌悪していることを示す。
FIG. 4 is a conceptual view of the emotion map 116. As shown in FIG.
The emotion map 116 is a data table stored in the server 200. The robot 100 selects an action according to the emotion map 116. An emotion map 116 shown in FIG. 4 indicates the size of a bad feeling for the location of the robot 100. The x-axis and y-axis of emotion map 116 indicate two-dimensional space coordinates. The z-axis indicates the size of the bad feeling. When the z value is positive, the preference for the location is high, and when the z value is negative, it indicates that the location is disliked.
 図4の感情マップ116において、座標P1は、ロボット100の行動範囲としてサーバ200が管理する屋内空間のうち好感情が高い地点(以下、「好意地点」とよぶ)である。好意地点は、ソファの陰やテーブルの下などの「安全な場所」であってもよいし、リビングのように人が集まりやすい場所、賑やかな場所であってもよい。また、過去にやさしく撫でられたり、触れられたりした場所であってもよい。
 ロボット100がどのような場所を好むかという定義は任意であるが、一般的には、小さな子どもや犬や猫などの小動物が好む場所を好意地点として設定することが望ましい。
In the emotion map 116 of FIG. 4, the coordinate P1 is a point (hereinafter, referred to as a “favory point”) in the indoor space managed by the server 200 as the action range of the robot 100, in which the favorable feeling is high. The favor point may be a "safe place" such as a shade of a sofa or under a table, a place where people easily gather like a living, or a lively place. In addition, it may be a place which has been gently boiled or touched in the past.
Although the definition of what kind of place the robot 100 prefers is arbitrary, generally, it is desirable to set a place favored by small children such as small children and dogs and cats.
 座標P2は、悪感情が高い地点(以下、「嫌悪地点」とよぶ)である。嫌悪地点は、テレビの近くなど大きな音がする場所、お風呂や洗面所のように濡れやすい場所、閉鎖空間や暗い場所、ユーザから乱暴に扱われたことがある不快な記憶に結びつく場所などであってもよい。
 ロボット100がどのような場所を嫌うかという定義も任意であるが、一般的には、小さな子どもや犬や猫などの小動物が怖がる場所を嫌悪地点として設定することが望ましい。
A coordinate P2 is a point at which a bad feeling is high (hereinafter, referred to as a “disgust point”). Aversion points are places with loud noise such as near a television, places that are easy to get wet like baths and washrooms, closed spaces or dark places, places that lead to unpleasant memories that have been roughly treated by users, etc. It may be.
Although the definition of what place the robot 100 hates is also arbitrary, it is generally desirable to set a place where small animals such as small children, dogs and cats are scared as a hatred point.
 座標Qは、ロボット100の現在位置を示す。複数の外部センサ114が定期的に送信するロボット探索信号とそれに対するロボット返答信号により、サーバ200はロボット100の位置座標を特定する。たとえば、ビーコンID=1の外部センサ114とビーコンID=2の外部センサ114がそれぞれロボット100を検出したとき、2つの外部センサ114からロボット100の距離を求め、そこからロボット100の位置座標を求める。 The coordinate Q indicates the current position of the robot 100. The server 200 specifies position coordinates of the robot 100 based on a robot search signal periodically transmitted by the plurality of external sensors 114 and a robot reply signal corresponding thereto. For example, when the external sensor 114 with beacon ID = 1 and the external sensor 114 with beacon ID = 2 respectively detect the robot 100, the distance between the robot 100 is determined from the two external sensors 114, and the position coordinate of the robot 100 is determined therefrom. .
 あるいは、ビーコンID=1の外部センサ114は、ロボット探索信号を複数方向に送信し、ロボット100はロボット探索信号を受信したときロボット返答信号を返す。これにより、サーバ200は、ロボット100がどの外部センサ114からどの方向のどのくらいの距離にいるかを把握してもよい。また、別の実施の形態では、前輪102または後輪103の回転数からロボット100の移動距離を算出して、現在位置を特定してもよいし、カメラから得られる画像に基づいて現在位置を特定してもよい。
 図4に示す感情マップ116が与えられた場合、ロボット100は好意地点(座標P1)に引き寄せられる方向、嫌悪地点(座標P2)から離れる方向に移動する。
Alternatively, the external sensor 114 with beacon ID = 1 transmits a robot search signal in a plurality of directions, and when the robot 100 receives the robot search signal, it returns a robot reply signal. Thus, the server 200 may grasp how far the robot 100 is from which external sensor 114 and in which direction. In another embodiment, the movement distance of the robot 100 may be calculated from the number of revolutions of the front wheel 102 or the rear wheel 103 to specify the current position, or the current position may be determined based on an image obtained from a camera. It may be specified.
When the emotion map 116 shown in FIG. 4 is given, the robot 100 moves in the direction in which it is drawn to the favor point (coordinate P1) and in the direction away from the aversion point (coordinate P2).
 感情マップ116は動的に変化する。ロボット100が座標P1に到達すると、座標P1におけるz値(好感情)は時間とともに低下する。これにより、ロボット100は好意地点(座標P1)に到達して、「感情が満たされ」、やがて、その場所に「飽きてくる」という生物的行動をエミュレートできる。同様に、座標P2における悪感情も時間とともに緩和される。時間経過とともに新たな好意地点や嫌悪地点が生まれ、それによってロボット100は新たな行動選択を行う。ロボット100は、新しい好意地点に「興味」を持ち、絶え間なく行動選択する。 The emotion map 116 changes dynamically. When the robot 100 reaches the coordinate P1, the z-value (favorable feeling) at the coordinate P1 decreases with time. As a result, the robot 100 can reach the favor point (coordinate P1), and emulate the biological behavior of "feeling of emotion" being satisfied and eventually "being bored" at the place. Similarly, bad feelings at coordinate P2 are also alleviated with time. As time passes, new favor points and aversion points are created, whereby the robot 100 makes a new action selection. The robot 100 has an "interest" at a new favor point and continuously selects an action.
 感情マップ116は、ロボット100の内部状態として、感情の起伏を表現する。ロボット100は、好意地点を目指し、嫌悪地点を避け、好意地点にしばらくとどまり、やがてまた次の行動を起こす。このような制御により、ロボット100の行動選択を人間的・生物的なものにできる。 The emotion map 116 expresses the ups and downs of emotion as the internal state of the robot 100. The robot 100 aims at the favor point, avoids the disgust point, stays at the favor point for a while, and then takes the next action again. Such control can make the behavior selection of the robot 100 human and biological.
 なお、ロボット100の行動に影響を与えるマップ(以下、「行動マップ」と総称する)は、図4に示したようなタイプの感情マップ116に限らない。たとえば、好奇心、恐怖を避ける気持ち、安心を求める気持ち、静けさや薄暗さ、涼しさや暖かさといった肉体的安楽を求める気持ち、などさまざまな行動マップを定義可能である。そして、複数の行動マップそれぞれのz値を重み付け平均することにより、ロボット100の目的地点を決定してもよい。 The map that affects the behavior of the robot 100 (hereinafter collectively referred to as “action map”) is not limited to the emotion map 116 of the type shown in FIG. 4. For example, it is possible to define various action maps such as curiosity, fear of fear, feeling of relief, feeling of calmness and dimness, feeling of physical comfort such as coolness and warmth, and so on. Then, the destination point of the robot 100 may be determined by weighted averaging the z values of each of the plurality of action maps.
 ロボット100は、行動マップとは別に、さまざまな感情や感覚の大きさを示すパラメータを有する。たとえば、寂しさという感情パラメータの値が高まっているときには、安心する場所を評価する行動マップの重み付け係数を大きく設定し、目標地点に到達することでこの感情パラメータの値を低下させる。同様に、つまらないという感覚を示すパラメータの値が高まっているときには、好奇心を満たす場所を評価する行動マップの重み付け係数を大きく設定すればよい。 The robot 100 has parameters indicating the magnitudes of various emotions and senses separately from the action map. For example, when the value of the emotion parameter of loneliness is increasing, the weighting coefficient of the behavior map for evaluating a safe place is set large, and the value of the emotion parameter is lowered by reaching the target point. Similarly, when the value of the parameter indicating a feeling of being boring is increasing, the weighting coefficient of the behavior map for evaluating a place satisfying the curiosity may be set large.
 図5は、ロボット100のハードウェア構成図である。
 ロボット100は、内部センサ128、通信機126、記憶装置124、プロセッサ122、駆動機構120およびバッテリー118を含む。駆動機構120は、上述した車輪駆動機構370を含む。プロセッサ122と記憶装置124は、制御回路342に含まれる。各ユニットは電源線130および信号線132により互いに接続される。バッテリー118は、電源線130を介して各ユニットに電力を供給する。各ユニットは信号線132により制御信号を送受する。バッテリー118は、リチウムイオン二次電池であり、ロボット100の動力源である。
FIG. 5 is a hardware configuration diagram of the robot 100. As shown in FIG.
The robot 100 includes an internal sensor 128, a communicator 126, a storage device 124, a processor 122, a drive mechanism 120 and a battery 118. The drive mechanism 120 includes the wheel drive mechanism 370 described above. Processor 122 and storage 124 are included in control circuit 342. The units are connected to each other by a power supply line 130 and a signal line 132. The battery 118 supplies power to each unit via the power supply line 130. Each unit transmits and receives control signals through a signal line 132. The battery 118 is a lithium ion secondary battery and is a power source of the robot 100.
 内部センサ128は、ロボット100が内蔵する各種センサの集合体である。具体的には、カメラ(全天球カメラ)、マイクロフォンアレイ、測距センサ(赤外線センサ)、サーモセンサ、タッチセンサ、加速度センサ、ニオイセンサ、タッチセンサなどである。タッチセンサは、外皮314と本体フレーム310の間に設置され、ユーザのタッチを検出する。ニオイセンサは、匂いの元となる分子の吸着によって電気抵抗が変化する原理を応用した既知のセンサである。ニオイセンサは、さまざまな匂いを複数種類のカテゴリに分類する。 The internal sensor 128 is an assembly of various sensors incorporated in the robot 100. Specifically, it is a camera (all-sky camera), a microphone array, a distance measurement sensor (infrared sensor), a thermo sensor, a touch sensor, an acceleration sensor, an odor sensor, a touch sensor, and the like. The touch sensor is disposed between the outer skin 314 and the body frame 310 to detect a touch of the user. The odor sensor is a known sensor to which the principle that the electric resistance is changed by the adsorption of the molecule that is the source of the odor is applied. The odor sensor classifies various odors into multiple categories.
 通信機126は、サーバ200や外部センサ114、ユーザの有する携帯機器など各種の外部機器を対象として無線通信を行う通信モジュールである。記憶装置124は、不揮発性メモリおよび揮発性メモリにより構成され、コンピュータプログラムや各種設定情報を記憶する。プロセッサ122は、コンピュータプログラムの実行手段である。駆動機構120は、内部機構を制御するアクチュエータである。このほかには、表示器やスピーカーなども搭載される。 The communication device 126 is a communication module that performs wireless communication for various external devices such as the server 200, the external sensor 114, and a portable device owned by a user. The storage device 124 is configured by a non-volatile memory and a volatile memory, and stores a computer program and various setting information. The processor 122 is an execution means of a computer program. The drive mechanism 120 is an actuator that controls an internal mechanism. In addition to this, indicators and speakers will also be installed.
 プロセッサ122は、通信機126を介してサーバ200や外部センサ114と通信しながら、ロボット100の行動選択を行う。内部センサ128により得られるさまざまな外部情報も行動選択に影響する。駆動機構120は、主として、車輪(前輪102)と頭部(頭部フレーム316)を制御する。駆動機構120は、2つの前輪102それぞれの回転速度や回転方向を変化させることにより、ロボット100の移動方向や移動速度を変化させる。また、駆動機構120は、車輪(前輪102および後輪103)を昇降させることもできる。車輪が上昇すると、車輪はボディ104に完全に収納され、ロボット100は着座面108にて床面Fに当接し、着座状態となる。 The processor 122 performs action selection of the robot 100 while communicating with the server 200 and the external sensor 114 via the communication device 126. Various external information obtained by the internal sensor 128 also affects behavior selection. The drive mechanism 120 mainly controls the wheel (front wheel 102) and the head (head frame 316). The drive mechanism 120 changes the rotational direction and the rotational direction of the two front wheels 102 to change the moving direction and the moving speed of the robot 100. The drive mechanism 120 can also raise and lower the wheels (the front wheel 102 and the rear wheel 103). When the wheel ascends, the wheel is completely housed in the body 104, and the robot 100 abuts on the floor surface F at the seating surface 108 to be in the seating state.
 図6は、ロボットシステム300の機能ブロック図である。
 上述のように、ロボットシステム300は、ロボット100、サーバ200および複数の外部センサ114を含む。ロボット100およびサーバ200の各構成要素は、CPU(Central Processing Unit)および各種コプロセッサなどの演算器、メモリやストレージといった記憶装置、それらを連結する有線または無線の通信線を含むハードウェアと、記憶装置に格納され、演算器に処理命令を供給するソフトウェアによって実現される。コンピュータプログラムは、デバイスドライバ、オペレーティングシステム、それらの上位層に位置する各種アプリケーションプログラム、また、これらのプログラムに共通機能を提供するライブラリによって構成されてもよい。以下に説明する各ブロックは、ハードウェア単位の構成ではなく、機能単位のブロックを示している。
 ロボット100の機能の一部はサーバ200により実現されてもよいし、サーバ200の機能の一部または全部はロボット100により実現されてもよい。
FIG. 6 is a functional block diagram of the robot system 300. As shown in FIG.
As described above, robot system 300 includes robot 100, server 200, and a plurality of external sensors 114. Each component of the robot 100 and the server 200 includes computing devices such as a CPU (Central Processing Unit) and various co-processors, storage devices such as memory and storage, hardware including wired or wireless communication lines connecting them, and storage It is stored in the device and implemented by software that supplies processing instructions to the computing unit. The computer program may be configured by a device driver, an operating system, various application programs located in the upper layer of them, and a library that provides common functions to these programs. Each block described below indicates not a hardware unit configuration but a function unit block.
Some of the functions of the robot 100 may be realized by the server 200, and some or all of the functions of the server 200 may be realized by the robot 100.
(サーバ200)
 サーバ200は、通信部204、データ処理部202およびデータ格納部206を含む。
 通信部204は、外部センサ114およびロボット100との通信処理を担当する。データ格納部206は各種データを格納する。データ処理部202は、通信部204により取得されたデータおよびデータ格納部206に格納されるデータに基づいて各種処理を実行する。データ処理部202は、通信部204およびデータ格納部206のインタフェースとしても機能する。
(Server 200)
The server 200 includes a communication unit 204, a data processing unit 202, and a data storage unit 206.
The communication unit 204 takes charge of communication processing with the external sensor 114 and the robot 100. The data storage unit 206 stores various data. The data processing unit 202 executes various processes based on the data acquired by the communication unit 204 and the data stored in the data storage unit 206. The data processing unit 202 also functions as an interface of the communication unit 204 and the data storage unit 206.
 本実施形態においては、サーバ200の通信部204は、ロボット100の通信部142と第1通信回線および第2通信回線の2種類の通信回線により接続する。第1通信回線は、920MHzのISM周波数(Industrial, Scientific and Medical Band)通信回線である。第2通信回線は、2.4GHzの通信回線である。第1通信回線は、第2通信回線よりも周波数が低いため電波が回り込みやすいが、通信速度は遅い。 In the present embodiment, the communication unit 204 of the server 200 is connected to the communication unit 142 of the robot 100 by two types of communication lines, a first communication line and a second communication line. The first communication line is a 920 MHz ISM frequency (Industrial, Scientific and Medical Band) communication line. The second communication line is a 2.4 GHz communication line. Since the frequency of the first communication line is lower than that of the second communication line, radio waves are likely to get around, but the communication speed is slow.
 データ格納部206は、モーション格納部232、マップ格納部216および個人データ格納部218を含む。
 ロボット100は、複数の動作パターン(モーション)を有する。手106を震わせる、蛇行しながらオーナーに近づく、首をかしげたままオーナーを見つめる、などさまざまなモーションが定義される。
The data storage unit 206 includes a motion storage unit 232, a map storage unit 216, and a personal data storage unit 218.
The robot 100 has a plurality of motion patterns (motions). Various motions are defined, such as shaking the hand 106, approaching the owner while meandering, staring at the owner with a sharp neck, and the like.
 モーション格納部232は、モーションの制御内容を定義する「モーションファイル」を格納する。各モーションは、モーションIDにより識別される。モーションファイルは、ロボット100のモーション格納部160にもダウンロードされる。どのモーションを実行するかは、サーバ200で決定されることもあるし、ロボット100で決定されることもある。 The motion storage unit 232 stores a "motion file" that defines control content of motion. Each motion is identified by a motion ID. The motion file is also downloaded to the motion storage unit 160 of the robot 100. Which motion is to be performed may be determined by the server 200 or the robot 100.
 ロボット100のモーションの多くは、複数の単位モーションを含む複合モーションとして構成される。たとえば、ロボット100がオーナーに近づくとき、オーナーの方に向き直る単位モーション、手を上げながら近づく単位モーション、体を揺すりながら近づく単位モーション、両手を上げながら着座する単位モーションの組み合わせとして表現されてもよい。このような4つのモーションの組み合わせにより、「オーナーに近づいて、途中で手を上げて、最後は体をゆすった上で着座する」というモーションが実現される。モーションファイルには、ロボット100に設けられたアクチュエータの回転角度や角速度などが時間軸に関連づけて定義される。モーションファイル(アクチュエータ制御情報)にしたがって、時間経過とともに各アクチュエータを制御することで様々なモーションが表現される。 Many of the motions of the robot 100 are configured as complex motions including a plurality of unit motions. For example, when the robot 100 approaches the owner, it may be expressed as a combination of a unit motion that turns toward the owner, a unit motion that approaches while raising the hand, a unit motion that approaches while shaking the body, and a unit motion that sits while raising both hands. . The combination of such four motions realizes a motion of “close to the owner, raise your hand halfway, and finally sit down with your body shaking”. In the motion file, the rotation angle and angular velocity of an actuator provided in the robot 100 are defined in association with the time axis. Various motions are represented by controlling each actuator with the passage of time according to a motion file (actuator control information).
 先の単位モーションから次の単位モーションに変化するときの移行時間を「インターバル」とよぶ。インターバルは、単位モーション変更に要する時間やモーションの内容に応じて定義されればよい。インターバルの長さは調整可能である。
 以下、いつ、どのモーションを選ぶか、モーションを実現する上での各アクチュエータの出力調整など、ロボット100の行動制御に関わる設定のことを「行動特性」と総称する。ロボット100の行動特性は、モーション選択アルゴリズム、モーションの選択確率、モーションファイル等により定義される。
The transition time when changing from the previous unit motion to the next unit motion is called "interval". The interval may be defined according to the time required for unit motion change and the contents of the motion. The length of the interval is adjustable.
Hereinafter, settings relating to behavior control of the robot 100, such as when to select which motion, output adjustment of each actuator for realizing the motion, and the like are collectively referred to as “behavior characteristics”. The behavior characteristics of the robot 100 are defined by a motion selection algorithm, a motion selection probability, a motion file, and the like.
 モーション格納部232は、モーションファイルのほか、各種のイベントが発生したときに実行すべきモーションを定義するモーション選択テーブルを格納する。モーション選択テーブルにおいては、イベントに対して1以上のモーションとその選択確率が対応づけられる。 The motion storage unit 232 stores, in addition to the motion file, a motion selection table that defines motion to be executed when various events occur. In the motion selection table, one or more motions and their selection probabilities are associated with an event.
 マップ格納部216は、複数の行動マップのほか、椅子やテーブルなどの障害物の配置状況を示すマップも格納する。個人データ格納部218は、ユーザ、特に、オーナーの情報を格納する。具体的には、ユーザに対する親密度とユーザの身体的特徴・行動的特徴を示すマスタ情報を格納する。年齢や性別などの他の属性情報を格納してもよい。マスタ情報の詳細は図8に関連して後述する。 The map storage unit 216 stores, in addition to a plurality of action maps, a map indicating the arrangement of obstacles such as chairs and tables. The personal data storage unit 218 stores information of the user, in particular, the owner. Specifically, master information indicating the closeness to the user and the physical and behavioral characteristics of the user is stored. Other attribute information such as age and gender may be stored. Details of the master information will be described later with reference to FIG.
 ロボットシステム300(ロボット100およびサーバ200)はユーザの身体的特徴や行動的特徴に基づいてユーザを識別する。ロボット100は、全天球カメラで周辺を撮像する。そして、画像に写る人物の身体的特徴と行動的特徴を抽出する。身体的特徴とは、目と目の間隔の大きさ、目と口と鼻のバランス、背の高さ、好んで着る服、メガネの有無、肌の色、髪の色、耳の大きさなど身体に付随する視覚的特徴であってもよいし、平均体温や匂い、声質、などその他の特徴も含めてもよい。行動的特徴とは、具体的には、ユーザが好む場所、動きの活発さ、喫煙の有無など行動に付随する特徴である。たとえば、父親として識別されるオーナーは在宅しないことが多く、在宅時にはソファで動かないことが多いが、母親は台所にいることが多く、行動範囲が広い、といった行動上の特徴を抽出する。
 本実施形態におけるロボットシステム300は、後述のマスタ画像により身体的特徴を示す複数のパラメータを抽出し、このマスタ画像に基づいてユーザを識別する。以下、マスタ画像に基づいてユーザを識別する処理のことを「ユーザ識別処理」とよぶ。ユーザ識別処理の詳細は後述する。
The robot system 300 (the robot 100 and the server 200) identifies the user based on the physical or behavioral characteristics of the user. The robot 100 captures an image of the periphery with the omnidirectional camera. Then, physical features and behavioral features of the person shown in the image are extracted. Physical characteristics include eye-to-eye size, eye-to-mouth and nose balance, height, clothes you like to wear, glasses, skin color, hair color, ear size, etc. It may be a visual feature associated with the body, or it may include other features such as average temperature, smell, voice quality, and the like. Specifically, the behavioral feature is a feature that accompanies the action, such as the place the user likes, the activity activity, and the presence or absence of smoking. For example, an owner who is identified as a father often does not stay at home and often does not move on a couch when at home, but a mother often extracts behavior characteristics such as being in the kitchen and having a wide range of behavior.
The robot system 300 according to the present embodiment extracts a plurality of parameters indicating physical features from a master image described later, and identifies the user based on the master image. Hereinafter, the process of identifying the user based on the master image is referred to as “user identification process”. Details of the user identification process will be described later.
 ロボット100は、ユーザごとに親密度という内部パラメータを有する。ロボット100が、自分を抱き上げる、声をかけてくれるなど、自分に対して好意を示す行動を認識したとき、そのユーザに対する親密度が高くなる。ロボット100に関わらないユーザや、乱暴を働くユーザ、出会う頻度が低いユーザに対する親密度は低くなる。 The robot 100 has an internal parameter called familiarity for each user. When the robot 100 recognizes an action indicating favor with itself, such as raising itself or giving a voice, familiarity with the user is increased. The closeness to the user who is not involved in the robot 100, the user who is violent, and the user who is infrequently encountered is low.
 データ処理部202は、位置管理部208、マップ管理部210、認識部212、動作制御部222、親密度管理部220および感情管理部244を含む。
 位置管理部208は、ロボット100の位置座標を、図3を用いて説明した方法にて特定する。位置管理部208はユーザの位置座標もリアルタイムで追跡してもよい。
The data processing unit 202 includes a position management unit 208, a map management unit 210, a recognition unit 212, an operation control unit 222, an intimacy management unit 220, and an emotion management unit 244.
The position management unit 208 specifies the position coordinates of the robot 100 by the method described with reference to FIG. The position management unit 208 may also track the user's position coordinates in real time.
 感情管理部244は、ロボット100の感情(寂しさ、楽しさ、恐怖など)を示すさまざまな感情パラメータを管理する。これらの感情パラメータは常に揺らいでいる。感情パラメータに応じて複数の行動マップの重要度が変化し、行動マップによってロボット100の移動目標地点が変化し、ロボット100の移動や時間経過によって感情パラメータが変化する。 The emotion management unit 244 manages various emotion parameters that indicate the emotion (the loneliness, the fun, the fear, etc.) of the robot 100. These emotional parameters are constantly fluctuating. The importance of the plurality of action maps changes according to the emotion parameter, the movement target point of the robot 100 changes according to the action map, and the emotion parameter changes according to the movement of the robot 100 or the passage of time.
 たとえば、寂しさを示す感情パラメータが高いときには、感情管理部244は安心する場所を評価する行動マップの重み付け係数を大きく設定する。ロボット100が、この行動マップにおいて寂しさを解消可能な地点に至ると、感情管理部244は寂しさを示す感情パラメータを低下させる。また、後述の応対行為によっても各種感情パラメータは変化する。たとえば、オーナーから「抱っこ」をされると寂しさを示す感情パラメータは低下し、長時間にわたってオーナーを視認しないときには寂しさを示す感情パラメータは少しずつ増加する。 For example, when the emotion parameter indicating loneliness is high, the emotion management unit 244 sets the weighting coefficient of the behavior map for evaluating a safe place large. When the robot 100 reaches a point at which loneliness can be eliminated in the action map, the emotion management unit 244 reduces the emotion parameter indicating the loneliness. In addition, various emotional parameters are also changed by the response action described later. For example, the emotion parameter indicating loneliness declines when being "held" from the owner, and the emotion parameter indicating loneliness gradually increases when the owner is not viewed for a long time.
 マップ管理部210は、複数の行動マップについて図4に関連して説明した方法にて各座標のパラメータを変化させる。マップ管理部210は、複数の行動マップのいずれかを選択してもよいし、複数の行動マップのz値を加重平均してもよい。たとえば、行動マップAでは座標R1、座標R2におけるz値が4と3であり、行動マップBでは座標R1、座標R2におけるz値が-1と3であるとする。単純平均の場合、座標R1の合計z値は4-1=3、座標R2の合計z値は3+3=6であるから、ロボット100は座標R1ではなく座標R2の方向に向かう。
 行動マップAを行動マップBの5倍重視するときには、座標R1の合計z値は4×5-1=19、座標R2の合計z値は3×5+3=18であるから、ロボット100は座標R1の方向に向かう。
The map management unit 210 changes the parameter of each coordinate in the method described with reference to FIG. 4 for a plurality of action maps. The map management unit 210 may select one of the plurality of behavior maps, or may perform weighted averaging of z values of the plurality of behavior maps. For example, it is assumed that z values at coordinates R1 and R2 are 4 and 3 in action map A, and z values at coordinates R1 and R2 in action map B are -1 and 3, respectively. In the case of simple average, the total z value of the coordinate R1 is 4-1 = 3, and the total z value of the coordinate R2 is 3 + 3 = 6, so the robot 100 moves in the direction of the coordinate R2 instead of the coordinate R1.
When emphasizing the action map A five times the action map B, the total z value of the coordinate R1 is 4 × 5-1 = 19, and the total z value of the coordinate R2 is 3 × 5 + 3 = 18. Head in the direction of
 認識部212は、外部環境を認識する。外部環境の認識には、温度や湿度に基づく天候や季節の認識、光量や温度に基づく物陰(安全地帯)の認識など多様な認識が含まれる。ロボット100の認識部156は、内部センサ128により各種の環境情報を取得し、これを一次処理した上でサーバ200の認識部212に転送する。ロボット100の認識部156は、画像から移動物体、特に、人物や動物に対応する画像領域を抽出し、抽出した画像領域から移動物体の身体的特徴や行動的特徴を示す「特徴ベクトル」を抽出する。ロボット100は、特徴ベクトルをサーバ200に送信する。 The recognition unit 212 recognizes the external environment. The recognition of the external environment includes various recognitions such as recognition of weather and season based on temperature and humidity, recognition of an object shade (safety area) based on light quantity and temperature. The recognition unit 156 of the robot 100 acquires various types of environment information by the internal sensor 128, performs primary processing on the environment information, and transfers the information to the recognition unit 212 of the server 200. The recognition unit 156 of the robot 100 extracts an image area corresponding to a moving object, in particular, a person or an animal from the image, and extracts a “feature vector” indicating the physical feature or behavioral feature of the moving object from the extracted image area Do. The robot 100 transmits the feature vector to the server 200.
 サーバ200の認識部212は、更に、人物認識部214と応対認識部228を含む。
 人物認識部214は、ロボット100の内蔵カメラによる撮像画像から抽出された特徴ベクトルと、個人データ格納部218にあらかじめ登録されているユーザの特徴ベクトルと比較することにより、撮像されたユーザがどの人物に該当するかを判定する(ユーザ識別処理)。人物認識部214は、表情認識部230を含む。表情認識部230は、ユーザの表情を画像認識することにより、ユーザの感情を推定する。
 なお、人物認識部214は、人物以外の移動物体、たとえば、ペットである猫や犬についてもユーザ識別処理を行う。
The recognition unit 212 of the server 200 further includes a person recognition unit 214 and a response recognition unit 228.
The person recognition unit 214 compares the feature vector extracted from the image captured by the built-in camera of the robot 100 with the feature vector of the user registered in advance in the personal data storage unit 218 to determine which person the captured user is It determines whether it corresponds to (user identification processing). The person recognition unit 214 includes an expression recognition unit 230. The facial expression recognition unit 230 estimates the user's emotion by performing image recognition on the user's facial expression.
The person recognition unit 214 also performs user identification processing on moving objects other than a person, for example, cats and dogs that are pets.
 以上のように、本実施形態においては、ロボット100の認識部156が撮像画像から移動物体(人物および動物)に対応する画像領域を抽出し、抽出した撮像画像から特徴ベクトルを抽出する。サーバ200の個人データ格納部218には、あらかじめ複数のユーザの特徴ベクトル(以下、「マスタベクトル」とよぶ)が登録されている。マスタベクトルは、ユーザのマスタ画像に基づいて抽出される特徴ベクトルである。サーバ200の人物認識部214は、ロボット100から送られる特徴ベクトルとマスタベクトルを比較することによりユーザを識別する。 As described above, in the present embodiment, the recognition unit 156 of the robot 100 extracts an image area corresponding to a moving object (a person and an animal) from a captured image, and extracts a feature vector from the extracted captured image. In the personal data storage unit 218 of the server 200, feature vectors of a plurality of users (hereinafter, referred to as "master vectors") are registered. The master vector is a feature vector extracted based on a user's master image. The person recognition unit 214 of the server 200 identifies the user by comparing the feature vector sent from the robot 100 with the master vector.
 以下、個人データ格納部218にマスタベクトルが登録されているユーザを「登録ユーザ」、カメラにより認識されたユーザ識別処理の対象となる未確認のユーザを「未知ユーザ」とよぶ。登録ユーザAのマスタベクトルと未知ユーザXの特徴ベクトル(以下、「検査ベクトル」ともよぶ)が一致または類似していれば、未知ユーザXは登録ユーザAと同一人物であると判定する。 Hereinafter, a user whose master vector is registered in the personal data storage unit 218 is referred to as a “registered user”, and an unconfirmed user who is a target of user identification processing recognized by a camera is referred to as an “unknown user”. If the master vector of registered user A and the feature vector of unknown user X (hereinafter also referred to as “test vector”) match or are similar, it is determined that unknown user X is the same person as registered user A.
 応対認識部228は、ロボット100になされたさまざまな応対行為を認識し、快・不快行為に分類する。応対認識部228は、また、ロボット100の行動に対するオーナーの応対行為を認識することにより、肯定・否定反応に分類する。
 快・不快行為は、ユーザの応対行為が、生物として心地よいものであるか不快なものであるかにより判別される。たとえば、抱っこされることはロボット100にとって快行為であり、蹴られることはロボット100にとって不快行為である。肯定・否定反応は、ユーザの応対行為が、ユーザの快感情を示すものか不快感情を示すものであるかにより判別される。たとえば、抱っこされることはユーザの快感情を示す肯定反応であり、蹴られることはユーザの不快感情を示す否定反応である。
The response recognition unit 228 recognizes various response actions made to the robot 100, and classifies them as pleasant and unpleasant actions. The response recognition unit 228 also classifies into a positive / negative response by recognizing the owner's response to the behavior of the robot 100.
The pleasant and unpleasant behavior is determined depending on whether the user's response behavior is comfortable or unpleasant as a living thing. For example, holding is a pleasant act for the robot 100, and kicking is an unpleasant act for the robot 100. The positive / negative response is determined depending on whether the user's response indicates a user's pleasant emotion or an unpleasant emotion. For example, being held is a positive response indicating the user's pleasant feeling, and kicking is a negative response indicating the user's unpleasant feeling.
 サーバ200の動作制御部222は、ロボット100の動作制御部150と協働して、ロボット100のモーションを決定する。サーバ200の動作制御部222は、マップ管理部210による行動マップ選択に基づいて、ロボット100の移動目標地点とそのための移動ルートを作成する。動作制御部222は、複数の移動ルートを作成し、その上で、いずれかの移動ルートを選択してもよい。 The motion control unit 222 of the server 200 cooperates with the motion control unit 150 of the robot 100 to determine the motion of the robot 100. The motion control unit 222 of the server 200 creates a movement target point of the robot 100 and a movement route for the movement based on the action map selection by the map management unit 210. The operation control unit 222 may create a plurality of movement routes, and then select one of the movement routes.
 動作制御部222は、モーション格納部232の複数のモーションからロボット100のモーションを選択する。各モーションには状況ごとに選択確率が対応づけられている。たとえば、オーナーから快行為がなされたときには、モーションAを20%の確率で実行する、気温が30度以上となったとき、モーションBを5%の確率で実行する、といった選択方法が定義される。
 行動マップに移動目標地点や移動ルートが決定され、後述の各種イベントによりモーションが選択される。
The motion control unit 222 selects the motion of the robot 100 from the plurality of motions of the motion storage unit 232. Each motion is associated with a selection probability for each situation. For example, a selection method is defined such that motion A is executed with a probability of 20% when a pleasant action is made by the owner, and motion B is executed with a probability of 5% when the temperature reaches 30 degrees or more. .
A movement target point and a movement route are determined in the action map, and a motion is selected by various events described later.
 親密度管理部220は、ユーザごとの親密度を管理する。上述したように、親密度は個人データ格納部218において個人データの一部として登録される。快行為を検出したとき、親密度管理部220はそのオーナーに対する親密度をアップさせる。不快行為を検出したときには親密度はダウンする。また、長期間視認していないオーナーの親密度は徐々に低下する。 The closeness management unit 220 manages closeness for each user. As described above, the intimacy degree is registered in the personal data storage unit 218 as part of the personal data. When a pleasant act is detected, the closeness management unit 220 increases the closeness to the owner. The intimacy is down when an offensive act is detected. In addition, the closeness of the owner who has not viewed for a long time gradually decreases.
(ロボット100)
 ロボット100は、通信部142、データ処理部136、データ格納部148、内部センサ128および駆動機構120を含む。
 通信部142は、通信機126(図5参照)に該当し、外部センサ114、サーバ200および他のロボット100との通信処理を担当する。データ格納部148は各種データを格納する。データ格納部148は、記憶装置124(図5参照)に該当する。データ処理部136は、通信部142により取得されたデータおよびデータ格納部148に格納されているデータに基づいて各種処理を実行する。データ処理部136は、プロセッサ122およびプロセッサ122により実行されるコンピュータプログラムに該当する。データ処理部136は、通信部142、内部センサ128、駆動機構120およびデータ格納部148のインタフェースとしても機能する。
(Robot 100)
The robot 100 includes a communication unit 142, a data processing unit 136, a data storage unit 148, an internal sensor 128, and a drive mechanism 120.
The communication unit 142 corresponds to the communication device 126 (see FIG. 5), and takes charge of communication processing with the external sensor 114, the server 200, and the other robot 100. The data storage unit 148 stores various data. The data storage unit 148 corresponds to the storage device 124 (see FIG. 5). The data processing unit 136 executes various processes based on the data acquired by the communication unit 142 and the data stored in the data storage unit 148. The data processing unit 136 corresponds to a processor 122 and a computer program executed by the processor 122. The data processing unit 136 also functions as an interface of the communication unit 142, the internal sensor 128, the drive mechanism 120, and the data storage unit 148.
 データ格納部148は、ロボット100の各種モーションを定義するモーション格納部160を含む。
 ロボット100のモーション格納部160には、サーバ200のモーション格納部232から各種モーションファイルがダウンロードされる。モーションは、モーションIDによって識別される。前輪102を収容して着座する、手106を持ち上げる、2つの前輪102を逆回転させることで、あるいは、片方の前輪102だけを回転させることでロボット100を回転行動させる、前輪102を収納した状態で前輪102を回転させることで震える、ユーザから離れるときにいったん停止して振り返る、などのさまざまなモーションを表現するために、各種アクチュエータ(駆動機構120)の動作タイミング、動作時間、動作方向などがモーションファイルにおいて時系列定義される。
The data storage unit 148 includes a motion storage unit 160 that defines various motions of the robot 100.
Various motion files are downloaded from the motion storage unit 232 of the server 200 to the motion storage unit 160 of the robot 100. Motion is identified by motion ID. A state in which the front wheel 102 is accommodated, which causes the robot 100 to rotate by having only the front wheel 102 housed and seated, lifting the hand 106, rotating the two front wheels 102 in reverse, or rotating only one front wheel 102 In order to express various motions such as shaking by rotating the front wheel 102 at a time, stopping and turning back once when leaving the user, operation timing, operation time, operation direction, etc. of various actuators (drive mechanism 120) Temporarily defined in motion file.
 データ格納部148には、マップ格納部216および個人データ格納部218からも各種データがダウンロードされてもよい。 Various data may also be downloaded to the data storage unit 148 from the map storage unit 216 and the personal data storage unit 218.
 内部センサ128は、カメラ134を含む。本実施形態におけるカメラ134は、ツノ112に取り付けられる全天球カメラである。 Internal sensor 128 includes a camera 134. The camera 134 in the present embodiment is an omnidirectional camera attached to the horn 112.
 データ処理部136は、認識部156、動作制御部150、動作検出部152、撮像制御部154および測距部158を含む。
 ロボット100の動作制御部150は、サーバ200の動作制御部222と協働してロボット100のモーションを決める。一部のモーションについてはサーバ200で決定し、他のモーションについてはロボット100で決定してもよい。また、ロボット100がモーションを決定するが、ロボット100の処理負荷が高いときにはサーバ200がモーションを決定するとしてもよい。サーバ200においてベースとなるモーションを決定し、ロボット100において追加のモーションを決定してもよい。モーションの決定処理をサーバ200およびロボット100においてどのように分担するかはロボットシステム300の仕様に応じて設計すればよい。
The data processing unit 136 includes a recognition unit 156, an operation control unit 150, an operation detection unit 152, an imaging control unit 154, and a distance measurement unit 158.
The motion control unit 150 of the robot 100 determines the motion of the robot 100 in cooperation with the motion control unit 222 of the server 200. Some motions may be determined by the server 200, and other motions may be determined by the robot 100. Also, although the robot 100 determines the motion, the server 200 may determine the motion when the processing load of the robot 100 is high. The base motion may be determined at server 200 and additional motion may be determined at robot 100. How to share the motion determination process in the server 200 and the robot 100 may be designed according to the specification of the robot system 300.
 ロボット100の動作制御部150は、サーバ200の動作制御部222とともにロボット100の移動方向を決める。行動マップに基づく移動をサーバ200で決定し、障害物をよけるなどの即時的移動をロボット100の動作制御部150により決定してもよい。駆動機構120は、動作制御部150の指示にしたがって前輪102を駆動することで、ロボット100を移動目標地点に向かわせる。 The motion control unit 150 of the robot 100 determines the moving direction of the robot 100 together with the motion control unit 222 of the server 200. The movement based on the action map may be determined by the server 200, and the immediate movement such as turning off the obstacle may be determined by the movement control unit 150 of the robot 100. The drive mechanism 120 drives the front wheel 102 in accordance with an instruction from the operation control unit 150 to direct the robot 100 to the movement target point.
 ロボット100の動作制御部150は選択したモーションを駆動機構120に実行指示する。駆動機構120は、モーションファイルにしたがって、各アクチュエータを制御する。 The operation control unit 150 of the robot 100 instructs the drive mechanism 120 to execute the selected motion. The drive mechanism 120 controls each actuator according to the motion file.
 動作制御部150は、親密度の高いユーザが近くにいるときには「抱っこ」をせがむ仕草として両方の手106をもちあげるモーションを実行することもできるし、「抱っこ」に飽きたときには左右の前輪102を収容したまま逆回転と停止を交互に繰り返すことで抱っこをいやがるモーションを表現することもできる。駆動機構120は、動作制御部150の指示にしたがって前輪102や手106、首(頭部フレーム316)を駆動することで、ロボット100にさまざまなモーションを表現させる。 The motion control unit 150 can also execute a motion to lift both hands 106 as a gesture that encourages "hug" when a user with high intimacy is nearby, and when the "hug" gets tired, the left and right front wheels 102 By alternately repeating reverse rotation and stop while being accommodated, it is also possible to express a motion that annoys you. The drive mechanism 120 causes the robot 100 to express various motions by driving the front wheel 102, the hand 106, and the neck (head frame 316) according to the instruction of the operation control unit 150.
 動作検出部152は、ユーザによるタッチのほか、ロボット100の「抱え上げ」と「抱え下ろし」を検出する。「抱え上げ」とは、典型的には、ユーザがロボット100のボディ104に両手を添えて、ロボット100を持ち上げる行為である。「抱え下ろし」とは、典型的には、ユーザがロボット100のボディ104に両手を添えて、ロボット100を床面Fの上に下ろす行為である。動作検出部152は、ロボット100の外皮314の下に設置されるタッチセンサによりユーザのタッチを検出する。タッチされた状態で加速度センサが上昇を検知したことを条件として動作検出部152は「抱え上げ」がなされたと判定する。同様にして、タッチされた状態で加速度センサにより下降を検出したとき、あるいは、着座面108または前輪102への荷重を検出したときには、動作検出部152は「抱え下ろし」がなされたと判定する。カメラ134によって外界を動画撮像し、ロボット100の上昇および下降を画像の変化から認識することで「抱え上げ」と「抱え下ろし」を判定してもよい。 The motion detection unit 152 detects “hold up” and “hold down” of the robot 100 in addition to the touch by the user. “Holding up” is typically an action where the user lifts the robot 100 by putting both hands on the body 104 of the robot 100. “Holding down” is an action in which the user typically puts the robot 100 on the floor surface F with his hands attached to the body 104 of the robot 100. The motion detection unit 152 detects a touch of the user by a touch sensor installed under the outer skin 314 of the robot 100. On the condition that the acceleration sensor has detected a rise in the touched state, the operation detection unit 152 determines that the “holding up” has been performed. Similarly, when the descent is detected by the acceleration sensor in the touched state, or when a load on the seating surface 108 or the front wheel 102 is detected, the operation detection unit 152 determines that the “holding down” is performed. The moving image of the outside world may be captured by the camera 134, and “lifting” and “holding down” may be determined by recognizing the ascent and descent of the robot 100 from changes in the image.
 撮像制御部154は、カメラ134を制御する。撮像制御部154は、抱え上げや抱え下ろし、タッチが検出されたとき、あるいは、後述の各種タイミングにて被写体を撮像する。 The imaging control unit 154 controls the camera 134. The imaging control unit 154 images a subject when holding up or holding down, when a touch is detected, or at various timings described later.
 測距部158は、内部センサ128に含まれる測距センサ(赤外線センサ)により、被写体となる移動物体(人物およびペット)との距離を検出する。また、認識部156は、被写体を画像認識することにより、ロボット100と被写体の相対角度も検出する。被写体に対してロボット100が所定の相対地点に位置したときの撮像画像をマスタ画像の候補(以下、「マスタ候補画像」とよぶ)とすることもできる。測距に基づくマスタ候補画像の取得方法については、図13に関連して後述する。 The distance measuring unit 158 detects a distance to a moving object (person and pet) to be a subject by using a distance measuring sensor (infrared sensor) included in the internal sensor 128. The recognition unit 156 also detects the relative angle between the robot 100 and the subject by performing image recognition on the subject. The captured image when the robot 100 is positioned at a predetermined relative position with respect to the subject may be used as a master image candidate (hereinafter, referred to as “master candidate image”). The method of acquiring the master candidate image based on the distance measurement will be described later with reference to FIG.
 ロボット100の認識部156は、内部センサ128から得られた外部情報を解釈する。認識部156は、視覚的な認識(視覚部)、匂いの認識(嗅覚部)、音の認識(聴覚部)、触覚的な認識(触覚部)が可能である。
 認識部156は、内蔵の全天球カメラにより定期的に外界を撮像し、人やペットなどの移動物体を検出する。認識部156が移動物体の撮像画像から抽出した特徴ベクトルはサーバ200に送信され、サーバ200の人物認識部214はユーザを識別する。ロボット100の認識部156は、ユーザの匂いやユーザの声も検出する。匂いや音(声)は既知の方法にて複数種類に分類される。
The recognition unit 156 of the robot 100 interprets external information obtained from the internal sensor 128. The recognition unit 156 is capable of visual recognition (visual unit), odor recognition (olfactory unit), sound recognition (hearing unit), and tactile recognition (tactile unit).
The recognition unit 156 periodically images the outside world with the built-in omnidirectional camera, and detects a moving object such as a person or a pet. The feature vector extracted from the captured image of the moving object by the recognition unit 156 is transmitted to the server 200, and the person recognition unit 214 of the server 200 identifies the user. The recognition unit 156 of the robot 100 also detects the smell of the user and the voice of the user. Smells and sounds (voices) are classified into multiple types by known methods.
 ロボット100に対する強い衝撃が与えられたとき、認識部156は内蔵の加速度センサによりこれを認識し、サーバ200の応対認識部228は、近隣にいるユーザによって「乱暴行為」が働かれたと認識する。ユーザがツノ112を掴んでロボット100を持ち上げるときにも、乱暴行為と認識してもよい。ロボット100に正対した状態にあるユーザが特定音量領域および特定周波数帯域にて発声したとき、サーバ200の応対認識部228は、自らに対する「声掛け行為」がなされたと認識してもよい。また、体温程度の温度を検知したときにはユーザによる「接触行為」がなされたと認識してもよい。
 まとめると、ロボット100は内部センサ128によりユーザの行為を物理的情報として取得し、動作検出部152は「抱え上げ」「抱え下ろし」等の行為を判定し、サーバ200の応対認識部228は快・不快を判定し、サーバ200の認識部212は特徴ベクトルに基づくユーザ識別処理を実行する。
When a strong impact is given to the robot 100, the recognition unit 156 recognizes this by the built-in acceleration sensor, and the response recognition unit 228 of the server 200 recognizes that the "abuse act" is performed by the user in the vicinity. Even when the user holds the tongue 112 and lifts the robot 100, it may be recognized as a violent act. When the user directly facing the robot 100 utters in a specific sound volume region and a specific frequency band, the response recognition unit 228 of the server 200 may recognize that the “voice call action” has been performed on itself. In addition, when a temperature at a temperature close to the body temperature is detected, it may be recognized that the user has made a "contact act".
In summary, the robot 100 acquires the action of the user as physical information by the internal sensor 128, and the action detection unit 152 determines the action such as "hold up" or "hold down", and the response recognition unit 228 of the server 200 The discomfort is determined, and the recognition unit 212 of the server 200 executes a user identification process based on the feature vector.
 サーバ200の応対認識部228は、ロボット100に対するユーザの各種応対を認識する。各種応対行為のうち一部の典型的な応対行為には、快または不快、肯定または否定が対応づけられる。一般的には快行為となる応対行為のほとんどは肯定反応であり、不快行為となる応対行為のほとんどは否定反応となる。快・不快行為は親密度に関連し、肯定・否定反応はロボット100の行動選択に影響する。 The response recognition unit 228 of the server 200 recognizes various responses of the user to the robot 100. Of the various types of response actions, some typical response actions correspond to pleasure or discomfort, affirmation or denial. In general, most pleasurable actions are positive responses, and most offensive actions are negative. Pleasure and discomfort are related to intimacy, and affirmative and negative responses affect the action selection of the robot 100.
 検出・分析・判定を含む一連の認識処理のうち、ロボット100の認識部156は認識に必要な情報の取捨選択や抽出を行い、判定等の解釈処理はサーバ200の認識部212により実行される。認識処理は、サーバ200の認識部212だけで行ってもよいし、ロボット100の認識部156だけで行ってもよいし、上述のように双方が役割分担をしながら上記認識処理を実行してもよい。 Among the series of recognition processes including detection, analysis, and determination, the recognition unit 156 of the robot 100 selects and extracts information necessary for recognition, and interpretation processes such as determination are executed by the recognition unit 212 of the server 200. . The recognition processing may be performed only by the recognition unit 212 of the server 200, or may be performed only by the recognition unit 156 of the robot 100, or both perform the above-mentioned recognition processing while sharing roles. It is also good.
 認識部156により認識された応対行為に応じて、サーバ200の親密度管理部220はユーザに対する親密度を変化させる。原則的には、快行為を行ったユーザに対する親密度は高まり、不快行為を行ったユーザに対する親密度は低下する。 In accordance with the response action recognized by the recognition unit 156, the closeness management unit 220 of the server 200 changes the closeness to the user. In principle, the intimacy with the user who has performed pleasure is increased, and the intimacy with the user who has performed offensive activity decreases.
 サーバ200の認識部212は、応対に応じて快・不快を判定し、マップ管理部210は「場所に対する愛着」を表現する行動マップにおいて、快・不快行為がなされた地点のz値を変化させてもよい。たとえば、リビングにおいて快行為がなされたとき、マップ管理部210はリビングに好意地点を高い確率で設定してもよい。この場合、ロボット100はリビングを好み、リビングで快行為を受けることで、ますますリビングを好む、というポジティブ・フィードバック効果が実現する。 The recognition unit 212 of the server 200 determines the comfort / discomfort according to the response, and the map management unit 210 changes the z value of the point where the comfort / discommitment was performed in the action map expressing “attachment to a place”. May be For example, when a pleasant act is performed in the living, the map management unit 210 may set a favor point in the living with a high probability. In this case, a positive feedback effect is realized in that the robot 100 prefers a living and enjoys an activity in the living, and thus prefers a living more and more.
 移動物体(ユーザ)からどのような行為をされるかによってそのユーザに対する親密度が変化する。 The closeness to the user changes depending on what action is taken from the moving object (user).
 ロボット100は、よく出会う人、よく触ってくる人、よく声をかけてくれる人に対して高い親密度を設定する。一方、めったに見ない人、あまり触ってこない人、乱暴な人、大声で叱る人に対する親密度は低くなる。ロボット100はセンサ(視覚、触覚、聴覚)によって検出するさまざまな外界情報にもとづいて、ユーザごとの親密度を変化させる。 The robot 100 sets a high degree of intimacy for people who frequently meet, people who frequently touch, and people who frequently speak. On the other hand, the intimacy with the people who rarely see, those who do not touch very much, the violent people, the people who speak loudly becomes low. The robot 100 changes the intimacy degree of each user based on various external information detected by sensors (vision, touch, hearing).
 実際のロボット100は行動マップにしたがって自律的に複雑な行動選択を行う。ロボット100は、寂しさ、退屈さ、好奇心などさまざまなパラメータに基づいて複数の行動マップに影響されながら行動する。ロボット100は、行動マップの影響を除外すれば、あるいは、行動マップの影響が小さい内部状態にあるときには、原則的には、親密度の高い人に近づこうとし、親密度の低い人からは離れようとする。 The actual robot 100 autonomously performs complex action selection in accordance with the action map. The robot 100 acts while being influenced by a plurality of action maps based on various parameters such as loneliness, boredom and curiosity. The robot 100 tries to approach people with high intimacy and leaves people with low intimacy, in principle, when the influence of the action map is excluded or in an internal state where the influence of the behavior map is small. I assume.
 ロボット100の行動は親密度に応じて以下に類型化される。
(1)親密度が非常に高いユーザ
 ロボット100は、ユーザに近づき(以下、「近接行動」とよぶ)、かつ、人に好意を示す仕草としてあらかじめ定義される愛情仕草を行うことで親愛の情を強く表現する。
(2)親密度が比較的高いユーザ
 ロボット100は、近接行動のみを行う。
(3)親密度が比較的低いユーザ
 ロボット100は特段のアクションを行わない。
(4)親密度が特に低いユーザ
 ロボット100は、離脱行動を行う。
The behavior of the robot 100 is categorized as follows according to closeness.
(1) The user robot 100 with a very high degree of intimacy approaches the user (hereinafter referred to as “proximity action”), and performs the affection of love by predefining a gesture of love for people. Express strongly.
(2) The user robot 100 with relatively high intimacy performs only the proximity action.
(3) The user robot 100 with relatively low intimacy does not perform any particular action.
(4) The user robot 100 with a particularly low intimacy performs a leaving action.
 以上の制御方法によれば、ロボット100は、親密度が高いユーザを見つけるとそのユーザに近寄り、逆に親密度が低いユーザを見つけるとそのユーザから離れる。このような制御方法により、いわゆる「人見知り」を行動表現できる。また、来客(親密度が低いユーザA)が現れたとき、ロボット100は、来客から離れて家族(親密度が高いユーザB)の方に向かうこともある。この場合、ユーザBはロボット100が人見知りをして不安を感じていること、自分を頼っていること、を感じ取ることができる。このような行動表現により、ユーザBは、選ばれ、頼られることの喜び、それにともなう愛着の情を喚起される。 According to the above control method, when the robot 100 finds a user with high intimacy, it approaches that user, and conversely, when finding a user with low intimacy, it leaves the user. By such a control method, it is possible to express so-called "human sight" behavior. In addition, when a visitor (user A with low intimacy) appears, the robot 100 may move away from the visitor and head toward the family (user B with high intimacy). In this case, the user B can feel that the robot 100 is aware of strangers and feels uneasy, and relies on himself. Such a behavioral expression evokes the user B the joy of being selected and relied upon, and the accompanying attachment.
 一方、来客であるユーザAが頻繁に訪れ、声を掛け、タッチをするとロボット100のユーザAに対する親密度は徐々に上昇し、ロボット100はユーザAに対して人見知り行動(離脱行動)をしなくなる。ユーザAも自分にロボット100が馴染んできてくれたことを感じ取ることで、ロボット100に対する愛着を抱くことができる。 On the other hand, when the user A who is a visitor frequently visits, calls and makes a touch, the intimacy with the user A of the robot 100 gradually increases, and the robot 100 does not act as an acquaintance with the user A (disengagement behavior) . The user A can also have an attachment to the robot 100 by feeling that the robot 100 has become familiar with himself.
 なお、以上の行動選択は、常に実行されるとは限らない。たとえば、ロボット100の好奇心を示す内部パラメータが高くなっているときには、好奇心を満たす場所を求める行動マップが重視されるため、ロボット100は親密度に影響された行動を選択しない可能性もある。また、玄関に設置されている外部センサ114がユーザの帰宅を検知した場合には、ユーザのお出迎え行動を最優先で実行するかもしれない。 Note that the above action selection is not always performed. For example, when the internal parameter indicating the curiosity of the robot 100 is high, the robot 100 may not select the behavior influenced by the intimacy because the action map for finding a place satisfying the curiosity is emphasized. . In addition, when the external sensor 114 installed at the entrance detects that the user has returned home, the user may be asked to give priority to the user's meeting action.
 図7は、ロボットを抱っこしたときのイメージ図である。
 ロボット100は、丸く、やわらかく、手触りのよいボディ104と適度な重量を有し、かつ、タッチを快行為と認識するため、ロボット100を抱っこしたいという感情をユーザに抱かせやすい。ロボット100は、この関わりたいという気持ちを抱かせることをユーザ識別処理に応用している。
FIG. 7 is an image view when a robot is held.
The robot 100 has a round, soft, well-touched body 104 and an appropriate weight, and recognizes a touch as a pleasure, so it is easy for the user to feel that he / she wants to hold the robot 100. The robot 100 applies this involuntary feeling to the user identification process.
 ロボット100がユーザを識別するためには、その手がかりとなる情報が必要である。たとえば、眉の太さ、目の大きさ、目の形状、肌の色、肌の明るさ、皺の形状、髪の明るさ、前髪の長さ、顔全体に占める目や鼻の大きさの割合、目と目の間隔などの身体的特徴が手がかりとなる。本実施形態においては、まず、ロボット100はマスタ画像を取得する。ロボット100の認識部156はマスタ画像から特徴ベクトル(マスタベクトル)を抽出する。特徴ベクトルは、複数のベクトル成分を有する。特徴ベクトル成分は、上述の各種身体的特徴を定量化した数値である。たとえば、目の横幅は0~1の範囲で数値化され、これらが特徴ベクトル成分を形成する。人物の撮像画像から特徴ベクトルを抽出する手法については、既知の顔認識技術の応用である。ユーザAのマスタベクトルは、個人データ格納部218のマスタ情報224として保存される。
 以下、撮像画像から特徴ベクトルを抽出する処理のことを「ベクトル抽出処理」とよぶ。
In order for the robot 100 to identify the user, information to be a clue is needed. For example, eyebrow thickness, eye size, eye shape, skin color, skin brightness, eyebrow shape, hair brightness, bangs length, eye or nose size in the entire face The clues are physical characteristics such as proportions and eye-to-eye spacing. In the present embodiment, first, the robot 100 acquires a master image. The recognition unit 156 of the robot 100 extracts a feature vector (master vector) from the master image. The feature vector has a plurality of vector components. The feature vector component is a numerical value that quantifies the various physical features described above. For example, the width of the eye is quantified in the range of 0 to 1, and these form feature vector components. The method of extracting feature vectors from a captured image of a person is an application of known face recognition technology. The master vector of the user A is stored as master information 224 of the personal data storage unit 218.
Hereinafter, the process of extracting a feature vector from a captured image is referred to as “vector extraction process”.
 ロボット100が未知ユーザXを撮像したとき、認識部156は未知ユーザXの撮像画像(検査画像)から特徴ベクトル(検査ベクトル)を抽出する。サーバ200の人物認識部214は、未知ユーザXの検査ベクトルと登録ユーザAのマスタベクトルが類似していれば、未知ユーザXと登録ユーザAが同一人物であると判定する。 When the robot 100 captures an unknown user X, the recognition unit 156 extracts a feature vector (inspection vector) from the captured image (inspection image) of the unknown user X. If the inspection vector of unknown user X and the master vector of registered user A are similar, person recognition unit 214 of server 200 determines that unknown user X and registered user A are the same person.
 識別精度を高めるためには、マスタベクトルを抽出しやすい良質なマスタ画像、より具体的には、近距離でユーザを撮像する必要がある。本実施形態における認識部156は、動作検出部152がロボット100の抱え上げを検出したときの撮像画像をマスタ画像として設定する。ロボット100が抱っこされているときには、ロボット100は内蔵のカメラ134により高精度に撮像できる。これは、ロボット100を抱え上げたときには、ユーザの顔とロボット100の内蔵するカメラ134の距離が一定の範囲内に収まるためである。マスタ画像を撮像するためにユーザに「行動指示」を与えるのではなく、ユーザが自らの意思でロボット100を抱っこするタイミングを見計らって、ユーザに負担をかけることなく良質なマスタ画像を取得できる。 In order to improve identification accuracy, it is necessary to image the user at a high quality master image where the master vector can be easily extracted, more specifically, at a short distance. The recognition unit 156 in the present embodiment sets a captured image when the motion detection unit 152 detects holding of the robot 100 as a master image. When the robot 100 is held, it can be imaged with high accuracy by the built-in camera 134. This is because when the robot 100 is lifted, the distance between the user's face and the camera 134 incorporated in the robot 100 falls within a certain range. Instead of giving the user a "action instruction" for capturing a master image, it is possible to obtain a good-quality master image without putting a burden on the user, at a timing when the user holds the robot 100 by his own intention.
 図8は、マスタ情報のデータ構造図である。
 マスタ情報224は、応対認識部228に格納される。図8においては、ユーザID=01のユーザ(以下、「ユーザ(01)」のように表記する)に3つのマスタベクトルが対応づけられている。ユーザ(01)の正面だけでなく、右側面や左側面などの横顔からもマスタ画像が取得される。このため、複数角度、複数距離からユーザを撮像することにより、一人の登録ユーザに対して複数のマスタベクトルが対応づけられる。マスタベクトルは、マスタIDにより識別される。マスタベクトル(01)はユーザ(01)の顔を正面から撮像したときのマスタ画像から抽出され、マスタベクトル(02)はユーザ(01)の顔を右側から撮像したときのマスタ画像から抽出される。
FIG. 8 is a data structure diagram of master information.
The master information 224 is stored in the agent recognition unit 228. In FIG. 8, three master vectors are associated with a user with user ID = 01 (hereinafter referred to as “user (01)”). The master image is acquired not only from the front of the user (01) but also from profile faces such as the right side and left side. For this reason, a plurality of master vectors are associated with one registered user by imaging the user from a plurality of angles and a plurality of distances. The master vector is identified by a master ID. The master vector (01) is extracted from the master image when the face of the user (01) is captured from the front, and the master vector (02) is extracted from the master image when the face of the user (01) is captured from the right .
 説明を簡単にするため、図8に示すマスタベクトルは5つのベクトル成分を有する5次元ベクトルであるとして説明する。5つのベクトル成分a~eは、目と目の間隔、肌の色など任意の特徴量に対応する。マスタベクトル(01)は、3つのベクトル成分a~cに対応する特徴量a1,b1,c1を含む。一方、ベクトル成分d,eには特徴量が設定されていない。たとえば、ベクトル成分dが耳の大きさを示す特徴量であるときには、正面のマスタ画像からは成分dを抽出できない可能性があるためである。 In order to simplify the description, the master vector shown in FIG. 8 is described as a five-dimensional vector having five vector components. The five vector components a to e correspond to arbitrary feature amounts such as the eye-to-eye distance and the skin color. The master vector (01) includes feature quantities a1, b1 and c1 corresponding to three vector components a to c. On the other hand, no feature amount is set for the vector components d and e. For example, when the vector component d is a feature indicating the ear size, there is a possibility that the component d can not be extracted from the front master image.
 マスタベクトル(02)は、3つのベクトル成分a,c,eに対応する特徴量a2,c2,e2を含むがベクトル成分b,dに対応する特徴量は含まない。マスタベクトル(03)は、4つのベクトル成分a,b,d,eに対応する特徴量a3,b3,d3,e3を含むがベクトル成分cに対応する特徴量は含まない。複数方向からユーザ(01)を撮像することにより複数のマスタ画像が取得すれば、ユーザ(01)の身体的特徴を3次元的に把握できる。 The master vector (02) includes feature quantities a2, c2 and e2 corresponding to three vector components a, c and e, but does not include feature quantities corresponding to vector components b and d. The master vector (03) includes feature quantities a3, b3, d3 and e3 corresponding to the four vector components a, b, d and e, but does not include feature quantities corresponding to the vector component c. If a plurality of master images are acquired by imaging the user (01) from a plurality of directions, physical features of the user (01) can be three-dimensionally grasped.
 人物認識部214は、ユーザ(01)の3つのマスタベクトルを相加平均することにより、重心ベクトルMBを算出する。重心ベクトルMBのベクトル成分aは、3つのマスタベクトルのa成分(a1,a2,a3)の平均値である。マスタベクトル(03)しかベクトル成分dを有していないため、重心ベクトルMBのベクトル成分dは、マスタベクトル(03)の特徴量d3となる。人物認識部214は、マスタベクトルまたは重心ベクトルMBに基づいて、ユーザ識別処理を実行する(後述)。 The person recognition unit 214 calculates the center of gravity vector MB by arithmetically averaging the three master vectors of the user (01). The vector component a of the centroid vector MB is an average value of the a components (a1, a2, a3) of the three master vectors. Since only the master vector (03) has the vector component d, the vector component d of the gravity center vector MB becomes the feature amount d3 of the master vector (03). The person recognition unit 214 executes user identification processing based on the master vector or the gravity center vector MB (described later).
 登録ユーザが一人もいない状況を想定する。
 動作検出部152は、未知ユーザAに抱っこされたときマスタ画像を取得する。人物認識部214は、未知ユーザAのマスタ画像から抽出されたマスタベクトル(01)にユーザID=01を対応づけてマスタ情報224に記録する。このとき、人物認識部214はマスタベクトル(01)の取得日時も記録する。以上の処理により、未知ユーザAは登録ユーザ(01)としてマスタ情報224に登録される。図8においては、マスタベクトル(01)は、2016年6月7日に取得されている。
Assume that there is no registered user.
The motion detection unit 152 acquires a master image when being held by the unknown user A. The person recognition unit 214 associates the user ID = 01 with the master vector (01) extracted from the master image of the unknown user A, and records it in the master information 224. At this time, the person recognition unit 214 also records the acquisition date and time of the master vector (01). By the above processing, the unknown user A is registered in the master information 224 as a registered user (01). In FIG. 8, the master vector (01) is acquired on June 7, 2016.
 ユーザ(01)の登録後、新たな未知ユーザXがロボット100を抱っこしたときにも、動作検出部152はマスタ画像を取得する。人物認識部214は、未知ユーザXのマスタ画像から抽出されたマスタベクトルMXと登録ユーザ(01)のマスタベクトル(01)を比較する。 Even when a new unknown user X holds the robot 100 after registration of the user (01), the motion detection unit 152 acquires a master image. The person recognition unit 214 compares the master vector MX extracted from the master image of the unknown user X with the master vector (01) of the registered user (01).
(1)未登録の場合
 人物認識部214は、マスタベクトルMXとマスタベクトル(01)のベクトル距離が所定距離以上であれば、未知ユーザXはユーザ(01)とは異なると判定する。特徴ベクトルの距離は、ユークリッド距離として計算してもよいし、チェビシェフ距離など他の定義に基づく距離計算であってもよい。人物認識部214は、未知ユーザXを新たな登録ユーザ(02)としてマスタ情報224に登録するとともに、ユーザXにユーザID=02を割り当て、マスタベクトルMXにマスタID=04を割り当てる。以上の処理により、マスタ情報224にはユーザ(01)およびユーザ(02)の二人が登録される。
(1) When Not Registered If the vector distance between the master vector MX and the master vector (01) is equal to or greater than a predetermined distance, the person recognizing unit 214 determines that the unknown user X is different from the user (01). The distance of the feature vector may be calculated as Euclidean distance, or may be calculated based on another definition such as Chebyshev distance. The person recognition unit 214 registers the unknown user X in the master information 224 as a new registered user (02), assigns the user ID = 02 to the user X, and assigns the master ID = 04 to the master vector MX. As a result of the above processing, two users, user (01) and user (02), are registered in the master information 224.
(2)既登録の場合
 マスタベクトルMXとマスタベクトル(01)の距離が所定距離未満であれば、人物認識部214は、未知ユーザXと登録ユーザ(01)は同一人物であると判定する。人物認識部214は、マスタベクトルMXにマスタID=02を設定して、ユーザ(01)に対応づける。ユーザ(01)のマスタベクトルは2つとなり、ユーザ(01)を識別するための情報が充実する。
(2) In the Case of Already Registered If the distance between the master vector MX and the master vector (01) is less than a predetermined distance, the person recognizing unit 214 determines that the unknown user X and the registered user (01) are the same person. The person recognition unit 214 sets master ID = 02 in the master vector MX, and associates it with the user (01). The number of master vectors of the user (01) is two, and the information for identifying the user (01) is enriched.
 マスタ画像からは高品質のマスタベクトルが得られるため、マスタベクトル同士を比較することにより、ロボット100を抱っこしているユーザが登録ユーザと人物であるか否かを容易に判定できる。 Since high-quality master vectors are obtained from the master image, it is possible to easily determine whether the user holding the robot 100 is a registered user and a person by comparing the master vectors.
 複数の登録ユーザがいるときには、各登録ユーザのマスタベクトルが比較対象となる。一人の登録ユーザが2以上のマスタベクトルを有するときには、登録ユーザの重心ベクトルと未知ユーザのマスタベクトルが比較対象となる。 When there are multiple registered users, the master vectors of each registered user are to be compared. When one registered user has two or more master vectors, the gravity center vector of the registered user and the master vector of the unknown user are to be compared.
 図9は、ユーザ識別方法を説明するための第1の模式図である。
 図9および図10では、ユーザ識別処理の原理を図解するため、特徴ベクトルに含まれるベクトル成分のうち、2つのベクトル成分a,bを対象として説明する。3つ以上のベクトル成分を有するときにも処理方法は同じである。
 図9においては、登録ユーザAおよび登録ユーザBそれぞれについて、マスタベクトルMAとマスタベクトルMBが1つずつ抽出されている。マスタベクトルMA=(a1,b1)、マスタベクトルMB=(a2,b2)である。このような状況において、ロボット100が正面から歩いてくる未知ユーザXの撮像画像(検査画像)を取得したとする。認識部156は、検査画像に映る未知ユーザXが登録ユーザA,Bのいずれであるかを判定する。抱っこされているわけではないので、未知ユーザXの検査画像から得られる特徴ベクトル(検査ベクトル)は、通常、マスタベクトルほどの精度を有さない。
FIG. 9 is a first schematic diagram for explaining the user identification method.
In FIG. 9 and FIG. 10, in order to illustrate the principle of the user identification process, among the vector components contained in the feature vector, two vector components a and b will be described as targets. The processing method is the same when having three or more vector components.
In FIG. 9, one master vector MA and one master vector MB are extracted for each of registered user A and registered user B. Master vector MA = (a1, b1) and master vector MB = (a2, b2). In such a situation, it is assumed that the captured image (inspection image) of the unknown user X who walks from the front of the robot 100 is acquired. The recognition unit 156 determines which one of the registered users A and B the unknown user X shown in the inspection image is. As not being held, the feature vector (inspection vector) obtained from the inspection image of the unknown user X usually does not have the accuracy as the master vector.
 認識部156は、まず、未知ユーザXの検査画像から、検査ベクトルDX=(ax,bx)を抽出する。ロボット100の通信部142は、サーバ200の通信部204に検査ベクトルDXを送信する。サーバ200の人物認識部214は、検査ベクトルDXとマスタベクトルMAとの距離であるra,検査ベクトルDXとマスタベクトルMBとの距離であるrbをそれぞれ算出する。 The recognition unit 156 first extracts the inspection vector DX = (ax, bx) from the inspection image of the unknown user X. The communication unit 142 of the robot 100 transmits the inspection vector DX to the communication unit 204 of the server 200. The person recognition unit 214 of the server 200 calculates the distance ra between the test vector DX and the master vector MA, and the distance rb between the test vector DX and the master vector MB.
 任意の閾値rmを設定したとき、rb<ra、かつ、rb<rmであれば、人物認識部214は未知ユーザXが登録ユーザBであると判定する。一方、ra<rb、かつ、ra<rmであれば、人物認識部214は未知ユーザXが登録ユーザAであると判定する。一方、ra>rm、かつ、rb>rmであるときには、未知ユーザXは登録ユーザA、Bのいずれにも該当しない。未知ユーザXが親密度の高い登録ユーザAであると判明したときには、動作制御部150は未知ユーザXのもとに駆け寄るなどの親密行動を選択してもよい。一方、未知ユーザXが親密度の低い登録ユーザBであると判明したときには、動作制御部150は未知ユーザXから逃げるなどの忌避行動を選択してもよい。 When an arbitrary threshold value rm is set, if rb <ra and rb <rm, the person recognizing unit 214 determines that the unknown user X is the registered user B. On the other hand, if ra <rb and ra <rm, the person recognizing unit 214 determines that the unknown user X is the registered user A. On the other hand, when ra> rm and rb> rm, the unknown user X does not correspond to any of the registered users A and B. When it is determined that the unknown user X is a registered user A with high intimacy, the operation control unit 150 may select an intimacy action such as running to the unknown user X. On the other hand, when it is determined that the unknown user X is a registered user B with low intimacy, the operation control unit 150 may select a evasion action such as fleeing from the unknown user X.
 未知ユーザXを識別できなかったときには、人物認識部214は未確認の旨をロボット100に通知し、ロボット100の動作制御部150は未知ユーザXに抱っこをせがむモーションを選択してもよい。具体的には、未知ユーザXに近づく、手106を挙げる、未知ユーザXの前で座り込むなどのモーションが考えられる。 When the unknown user X can not be identified, the person recognition unit 214 may notify the robot 100 that the unknown user X has not been confirmed, and the operation control unit 150 of the robot 100 may select a motion to hold the unknown user X. Specifically, motions such as approaching the unknown user X, raising the hand 106, and sitting in front of the unknown user X can be considered.
 未知ユーザXがロボット100を抱え上げ、動作検出部152が「抱え上げ」を検出すると、撮像制御部154はカメラ134を制御して未知ユーザXを近距離から撮像する。抱え上げ時に得られた未知ユーザのマスタ画像から、認識部156はマスタベクトルMXを抽出する。サーバ200の人物認識部214は、未知ユーザXのマスタベクトルMXと、既存のマスタベクトルMA,MBを比較することにより再度のユーザ識別処理を実行してもよい。マスタベクトル同士の比較であるためより高精度の識別が可能である。マスタベクトルの比較によっても未知ユーザXが登録ユーザA,Bとは別人物であると判定されたときには、人物認識部214は未知ユーザXを3人目の登録ユーザとしてマスタベクトルMXとともにマスタ情報224に登録する。 When the unknown user X holds the robot 100 and the motion detection unit 152 detects “hold”, the imaging control unit 154 controls the camera 134 to pick up an image of the unknown user X at a short distance. The recognition unit 156 extracts a master vector MX from the master image of the unknown user obtained at the time of holding. The person recognition unit 214 of the server 200 may execute the user identification process again by comparing the master vector MX of the unknown user X with the existing master vectors MA and MB. Since the comparison is between master vectors, more accurate identification is possible. If the unknown user X is determined to be another person from the registered users A and B also by comparison of the master vectors, the person recognition unit 214 sets the unknown user X as the third registered user in the master information 224 together with the master vector MX. sign up.
 なお、未知ユーザXが登録ユーザAであると判明したときには、人物認識部214は、未知ユーザXの検査画像から得られた検査ベクトルを登録ユーザAの新たなマスタベクトルとして登録してもよい。 When it is determined that the unknown user X is the registered user A, the person recognition unit 214 may register the test vector obtained from the test image of the unknown user X as a new master vector of the registered user A.
 図10は、ユーザ識別方法を説明するための第2の模式図である。
 図10においては、登録ユーザAおよび登録ユーザBそれぞれについて、複数のマスタベクトルが抽出されている。人物認識部214は、登録ユーザAの重心ベクトルMB(A)および登録ユーザBの重心ベクトルMB(B)を算出する。このような状況において、ロボット100が、正面から歩いてくる未知ユーザXの撮像画像(検査画像)を取得したとする。認識部156は、検査画像に映る未知ユーザXが登録ユーザA,Bのいずれであるかを判定する。
FIG. 10 is a second schematic diagram for explaining the user identification method.
In FIG. 10, a plurality of master vectors are extracted for each of registered user A and registered user B. The person recognition unit 214 calculates the gravity center vector MB (A) of the registered user A and the gravity center vector MB (B) of the registered user B. In such a situation, it is assumed that the robot 100 acquires a captured image (examination image) of the unknown user X who walks from the front. The recognition unit 156 determines which one of the registered users A and B the unknown user X shown in the inspection image is.
 認識部156は、まず、未知ユーザXの検査画像から、検査ベクトルDX=(ax,bx)を抽出する。ロボット100の通信部142は、サーバ200の通信部204に検査ベクトルDXを送信する。サーバ200の人物認識部214は、検査ベクトルDXと重心ベクトルMB(A)との距離であるra,検査ベクトルDXと重心ベクトルMB(B)との距離であるrbをそれぞれ算出する。 The recognition unit 156 first extracts the inspection vector DX = (ax, bx) from the inspection image of the unknown user X. The communication unit 142 of the robot 100 transmits the inspection vector DX to the communication unit 204 of the server 200. The person recognition unit 214 of the server 200 calculates the distance ra between the test vector DX and the barycentric vector MB (A) and the distance rb between the test vector DX and the barycenter vector MB (B).
 任意の閾値rmを設定したとき、rb<ra、かつ、rb<rmであれば、人物認識部214は未知ユーザXが登録ユーザBであると判定する。一方、ra<rb、かつ、ra<rmであれば、人物認識部214は未知ユーザXが登録ユーザAであると判定する。一方、ra>rm、かつ、rb>rmであるときには、未知ユーザXは登録ユーザA、Bのいずれにも該当しない。 When an arbitrary threshold value rm is set, if rb <ra and rb <rm, the person recognizing unit 214 determines that the unknown user X is the registered user B. On the other hand, if ra <rb and ra <rm, the person recognizing unit 214 determines that the unknown user X is the registered user A. On the other hand, when ra> rm and rb> rm, the unknown user X does not correspond to any of the registered users A and B.
 図11は、マスタベクトルの抽出処理過程を示すフローチャートである。
 ロボット100の動作検出部152がロボット100の抱え上げを検出したとき、図11のベクトル抽出処理が実行される。動作制御部150は、抱え上げが検出されたとき、所定の誘導モーションを実行する(S10)。誘導モーションは、ユーザを注目させるためにあらかじめ定義されたモーションである。具体的には、手106を振る、ボディ104を揺らす、頭部フレーム316をユーザに向ける、頭部フレーム316を上下または左右に揺らすなどの非言語モーションが想定される。誘導モーションは機械的なモーションに限らない。動作制御部150は有機EL素子により目110に「瞳」を映像表示させる。動作制御部150は、瞳画像を大きくすることで瞳を見開く、瞳を揺らす、ウィンクさせるなどの画像制御を指示してもよい。
FIG. 11 is a flowchart showing a process of extracting a master vector.
When the motion detection unit 152 of the robot 100 detects lifting of the robot 100, the vector extraction process of FIG. 11 is performed. When holding up is detected, the operation control unit 150 executes a predetermined guidance motion (S10). Guided motion is a motion defined in advance to bring the user's attention. Specifically, non-verbal motions are assumed such as shaking the hand 106, shaking the body 104, pointing the head frame 316 to the user, shaking the head frame 316 up and down or left and right. Induction motion is not limited to mechanical motion. The operation control unit 150 causes the organic EL element to display an image of “pupil” on the eye 110. The operation control unit 150 may instruct image control such as opening the pupil, shaking the pupil, or causing a wink by enlarging the pupil image.
 誘導モーションでユーザの気を引くことにより、ユーザの顔をロボット100に向けさせる。また、多様な誘導モーションを用意することで、ユーザの多様な表情を引き出すことにより、多様な表情に対応した多様なマスタベクトルを抽出可能となる。たとえば、笑い皺や、えくぼなど、笑顔に特有の特徴量をマスタベクトルのベクトル成分として含めることもできる。 The user's face is directed to the robot 100 by pulling the user's attention with the induced motion. Further, by preparing various induction motions, it is possible to extract various master vectors corresponding to various expressions by extracting various expressions of the user. For example, features specific to smiles, such as smiles and bumps can be included as vector components of the master vector.
 誘導モーションを実行後、撮像制御部154はカメラ134を制御してユーザを撮像する(S12)。このときの撮像画像が「マスタ候補画像」となる。誘導モーションによってユーザがロボット100を見つめるタイミングにてユーザを撮像することにより、ユーザの顔を認識しやすい高品質なマスタ候補画像を取得できる。 After executing the induction motion, the imaging control unit 154 controls the camera 134 to image the user (S12). The captured image at this time is the “master candidate image”. By imaging the user at the timing when the user gazes at the robot 100 by the guidance motion, it is possible to acquire a high-quality master candidate image that easily recognizes the user's face.
 認識部156は、マスタ候補画像の品質を判定する(S14)。以下、マスタ候補画像の品質判定のことを「品質検査」とよぶ。品質検査に合格したマスタ候補画像がマスタ画像として設定される。品質検査が不合格の場合には(S14のN)、処理はS10に戻り、マスタ候補画像を再取得する。このときには、別の種類の誘導モーションを実行してもよい。品質検査のために、あらかじめユーザの顔の大きさ、光量、表情などについて複数の評価項目が設定される。たとえば、ユーザが閉眼しているときや、マスタ候補画像が暗すぎるときや明るすぎるとき、マスタ候補画像の焦点が合っていないときには、品質検査は不合格となる。品質検査のためにどのような評価項目を設定するかは任意である。 The recognition unit 156 determines the quality of the master candidate image (S14). Hereinafter, the quality determination of the master candidate image is referred to as “quality inspection”. A master candidate image that has passed the quality inspection is set as a master image. If the quality inspection fails (N in S14), the process returns to S10 to reacquire the master candidate image. At this time, another type of induction motion may be performed. For the quality inspection, a plurality of evaluation items are set in advance with respect to the user's face size, light intensity, expression, and the like. For example, when the user has a closed eye, when the master candidate image is too dark or too bright, or when the master candidate image is not in focus, the quality check fails. It is optional what kind of evaluation item is set for quality inspection.
 認識部156は、品質検査に合格したマスタ候補画像を正式なマスタ画像として採用する(S14のY)。認識部156は、マスタ画像からマスタベクトルを抽出する(S16)。通信部142は、マスタベクトルをサーバ200に送信する(S18)。 The recognition unit 156 adopts the master candidate image that has passed the quality inspection as a formal master image (Y in S14). The recognition unit 156 extracts a master vector from the master image (S16). The communication unit 142 transmits the master vector to the server 200 (S18).
 人物認識部214は、新たに得られたマスタベクトルとマスタ情報224に既に登録されているマスタベクトルを比較する(S20)。新たに得られたマスタベクトルが既に登録されているマスタベクトルの距離が近いときには(S20のY)、マスタベクトルを追加登録する(S22)。たとえば、ユーザ(01)のマスタベクトル(01)と類似のマスタベクトルが得られたときには、新たなマスタベクトルもユーザ(01)に対応づける。登録されているいずれのマスタベクトルとも近くないときには(S20のN)、新たなユーザIDとマスタIDを付与してマスタベクトルを新規登録する(S24)。 The person recognition unit 214 compares the newly obtained master vector with the master vector already registered in the master information 224 (S20). When the distance of the master vector in which the newly obtained master vector is already registered is close (Y in S20), the master vector is additionally registered (S22). For example, when a master vector similar to the master vector (01) of the user (01) is obtained, the new master vector is also mapped to the user (01). If none of the registered master vectors is close (N in S20), a new user ID and a master ID are added to newly register a master vector (S24).
 S20においては登録済みのマスタベクトルと新規抽出のマスタベクトルを比較してもよいし、図10に関連して説明したように登録済みの重心ベクトルと新規抽出のマスタベクトルを比較してもよい。 In S20, the registered master vector may be compared with the master vector of the new extraction, or, as described with reference to FIG. 10, the registered centroid vector may be compared with the master vector of the new extraction.
 マスタベクトルの抽出処理は、抱っこに限らず、ユーザがロボット100にタッチしたことを契機として実行されてもよい。ユーザがロボット100にタッチするときには、ユーザはロボット100の近くにいるため良質なマスタ画像を得られる可能性がある。 The extraction process of the master vector is not limited to holding, and may be executed when the user touches the robot 100 as a trigger. When the user touches the robot 100, the user may be able to obtain a good-quality master image because the user is near the robot 100.
 動作検出部152がロボット100の抱え下ろしを検出するときにも、認識部156はマスタベクトルの抽出処理を実行する。動作検出部152は、抱え下ろしが検出されたとき、連続的にユーザを撮像する。認識部156はこのときに得られた複数のマスタ候補画像を順次品質検査し、複数のマスタベクトルを抽出する。抱え下ろしのときには、顎や腰、足などの身体的特徴を近距離にて撮像できる。 Also when the motion detection unit 152 detects that the robot 100 is being lowered, the recognition unit 156 executes a master vector extraction process. The motion detection unit 152 continuously captures an image of the user when the hold down is detected. The recognition unit 156 sequentially performs quality inspection on the plurality of master candidate images obtained at this time, and extracts a plurality of master vectors. At the time of holding and lowering, it is possible to image physical features such as the jaw, the waist and the legs at a short distance.
 ユーザがロボット100を抱え上げたときに得られたマスタベクトルを「第1マスタベクトル」、ユーザがロボット100を下ろすとき、または、下ろしたあとに得られるマスタベクトルを「第2マスタベクトル」とよぶ。認識部156は、ユーザ(01)の第1マスタベクトルを得たあとは、抱え下ろしのときのマスタ画像から1以上の第2マスタベクトルも抽出する。このように高精度の第1マスタベクトルが得られたときには、抱え下ろしのときにも第2マスタベクトルを取得することにより、ユーザ(01)のマスタベクトルを充実させることができる。ここでいう「第2マスタベクトル」は、ロボット100が抱え下ろされたあとも、ユーザの後ろ姿も含めて、さまざまな距離や角度から得られるマスタベクトルも含まれる。第1マスタベクトルと第2マスタベクトルは、マスタ情報224に示したように一人のユーザについて互いに関連付けられる。 The master vector obtained when the user lifts the robot 100 is referred to as “first master vector”, and the master vector obtained when the user lowers the robot 100 or after being lowered is referred to as “second master vector”. . After obtaining the first master vector of the user (01), the recognition unit 156 also extracts one or more second master vectors from the master image at the time of holding and lowering. As described above, when the first master vector with high accuracy is obtained, the master vector of the user (01) can be enriched by acquiring the second master vector even when holding down. Here, the “second master vector” also includes master vectors obtained from various distances and angles, including the back view of the user even after the robot 100 is lowered. The first and second master vectors are associated with each other for one user as shown in master information 224.
 図12は、ユーザの画像追跡方法を示す模式図である。
 ロボット100が床面Fに降ろされたあとも、更に、撮像制御部154はカメラ134(全天球カメラ)によりユーザを追跡する。図12に示す天球撮像範囲418は、全天球カメラによる撮像範囲である。全天球カメラは、ロボット100の上方半球略全域を一度に撮像可能である。ロボット100の認識部156は、第1マスタベクトルを抽出したあともユーザを所定期間、たとえば、10秒程度は天球撮像範囲418において追跡する。撮像制御部154は、追跡中に、さまざまな角度、さまざまな距離からユーザのマスタ画像を撮像する。たとえば、髪の長さ、腰の細さなどはユーザから離れないと得られない情報である。認識部156は、追跡中に得られるマスタ画像からさまざまな第2マスタベクトルを抽出することにより、マスタベクトルを充実させる。これらの第2マスタベクトルは第1マスタベクトルと対応づけて管理される。天球撮像範囲418においてユーザを画像上で追跡するだけでなく、動作制御部150はユーザについていく、ユーザの周りを動き回るなどの追跡行動を実行させてもよい。そして、追跡行動中にも撮像制御部154はユーザを撮像することにより、マスタベクトルを充実させてもよい。追跡行動は、動作制御部150が指示してもよいし、サーバ200の動作制御部222が動作制御部150に指示してもよい。
FIG. 12 is a schematic view showing the image tracking method of the user.
Even after the robot 100 is lowered to the floor F, the imaging control unit 154 further tracks the user with the camera 134 (all-sky camera). A celestial imaging range 418 shown in FIG. 12 is an imaging range by the omnidirectional camera. The omnidirectional camera is capable of imaging the entire upper hemisphere of the robot 100 at one time. After extracting the first master vector, the recognition unit 156 of the robot 100 tracks the user in the celestial imaging range 418 for a predetermined period, for example, about 10 seconds. The imaging control unit 154 captures a master image of the user from various angles and different distances during tracking. For example, the length of hair, the thinness of waist, etc. are information that can not be obtained without leaving the user. The recognition unit 156 enriches the master vector by extracting various second master vectors from the master image obtained during tracking. These second master vectors are managed in association with the first master vector. In addition to tracking the user on the image in the celestial imaging range 418, the operation control unit 150 may execute tracking actions such as following the user, moving around the user, and the like. Then, the imaging control unit 154 may enrich the master vector by imaging the user even during the tracking action. The operation control unit 150 may instruct the tracking behavior, or the operation control unit 222 of the server 200 may instruct the operation control unit 150.
 図13は、マスタベクトルを遠隔から抽出する方法を説明するための模式図である。
 撮像制御部154は、抱っこやタッチだけではなく、ユーザがロボット100に対して所定の相対地点に位置したときマスタ候補画像を撮像する。ここでいう相対地点とは、ユーザとロボット100の距離および相対角度の双方を含む。測距部158は、天球撮像範囲418において認識された1以上のユーザに対して定期的に測距する。図13においては、ロボット100は、ユーザの正面方向に対して水平角a、ユーザの顔の位置に対して仰角b、ユーザからの距離rの相対地点に位置している。ユーザの体の向きは認識部156が画像認識により判定する。撮像制御部154は、距離、水平角および仰角が所定範囲(以下、「マスタショット範囲」とよぶ)にあるとき、マスタ候補画像を撮像する。認識部156は、マスタ候補画像を品質検査し、合格であればマスタベクトルを抽出する。
FIG. 13 is a schematic diagram for explaining a method of remotely extracting a master vector.
The imaging control unit 154 picks up not only a hug or a touch but also a master candidate image when the user is positioned at a predetermined relative point with respect to the robot 100. Here, the relative point includes both the distance between the user and the robot 100 and the relative angle. The distance measuring unit 158 periodically measures the distance to one or more users recognized in the celestial imaging range 418. In FIG. 13, the robot 100 is located at a horizontal angle a to the front direction of the user, an elevation angle b to the position of the user's face, and a distance r from the user. The recognition unit 156 determines the orientation of the user's body by image recognition. The imaging control unit 154 captures a master candidate image when the distance, the horizontal angle, and the elevation angle are in a predetermined range (hereinafter, referred to as a “master shot range”). The recognition unit 156 performs quality inspection on the master candidate image, and if it passes, extracts a master vector.
 測距部158は、あらかじめ複数のマスタショット範囲を設定されている。測距部158は、ユーザがマスタショット範囲に入るごとに撮像制御部154に通知し、撮像制御部154はマスタ候補画像を取得する。たとえば、マスタショット範囲R1~R3が定義されているとき、新規ユーザCがマスタショット範囲R1に入ったときには、マスタショット範囲R1に対応するマスタ候補画像を取得する。このようにして、マスタショット範囲R1~R3それぞれに対応するマスタベクトルを抽出する。ユーザCを複数のマスタショット範囲、いいかえれば、複数の相対地点から多角的に撮像し、多方向からのマスタベクトルを取得することでユーザの身体的特徴を3次元的に把握できる。 The distance measuring unit 158 has a plurality of master shot ranges set in advance. The distance measuring unit 158 notifies the imaging control unit 154 each time the user enters the master shot range, and the imaging control unit 154 acquires a master candidate image. For example, when the master shot range R1 to R3 is defined, when a new user C enters the master shot range R1, a master candidate image corresponding to the master shot range R1 is acquired. In this manner, master vectors corresponding to each of the master shot ranges R1 to R3 are extracted. The user C can be multilaterally imaged from a plurality of master shot ranges, in other words, from a plurality of relative points, and master vectors from multiple directions can be acquired to three-dimensionally grasp the physical characteristics of the user.
 抱っこやタッチなどの接触時には至近距離からユーザを撮影できるため、ユーザの顔について良質な情報を得やすい。一方、抱っこやタッチがされていないときでも、測距部158が至近距離のユーザを検出したときには、撮像制御部154はマスタ候補画像を取得すればよい。たとえば、小さな子どもが抱っこやタッチに抵抗があっても、興味をもって近づいてきたときにはマスタベクトルを抽出できる。また、ユーザの髪の長さや体型に関する情報を得るためにはロボット100はユーザからある程度は離れなければならない。さまざまなマスタショット範囲を設定することにより、ユーザの顔だけでなく体型まで含めた多様なマスタベクトルを取得できる。 At the time of contact such as holding or touching, the user can be photographed from a close distance, so it is easy to obtain good information on the user's face. On the other hand, even when holding or touching is not performed, when the distance measuring unit 158 detects a user at a close distance, the imaging control unit 154 may obtain a master candidate image. For example, even if a small child resists holding or touching, it can extract a master vector when approaching with interest. Also, in order to obtain information on the length and shape of the user's hair, the robot 100 has to be away from the user to some extent. By setting various master shot ranges, various master vectors including not only the face of the user but also the figure can be obtained.
 第1マスタベクトルは、ユーザを至近距離から撮像したマスタ画像に基づくため、ユーザを識別する上で有用な特徴ベクトルである。一方、第2マスタベクトルは、第1マスタベクトルほどユーザの身体的特徴がはっきりと現れないことも多い。そこで、抱っこやタッチをされたときのマスタ画像Aから第1マスタベクトル(A)を抽出したことを契機として、撮像制御部154は追跡モードに入る。追跡モードは所定時間継続するとしてもよい。撮像制御部154は、たとえば、抱え下ろしを検出したときにマスタ画像B1を取得する。このマスタ画像B1から第2マスタベクトル(B1)が抽出され、さきほど抽出された第1マスタベクトル(A)に対応づけられる。抱え下ろしのあとも追跡モードは継続し、ユーザがマスタショット範囲に入るとマスタ画像B2を更に取得する。このマスタ画像B2から得られる第2マスタベクトル(B2)も、追跡モードの契機となった第1マスタベクトル(A)に対応づけられる。このように、ユーザを確実に識別しやすい第1マスタベクトル(A)に対して、その後に得られるさまざまな第2マスタベクトルが対応づけられる。「後ろ姿」のように特徴が現れにくい第2マスタベクトルであっても、その取得契機となった第1マスタベクトルと対応づけることで、一人のユーザに対応するマスタベクトル群を充実させることができる。 The first master vector is a feature vector useful for identifying a user because it is based on a master image taken at a close distance to the user. On the other hand, in the second master vector, the physical features of the user often do not appear as clearly as the first master vector. Therefore, the imaging control unit 154 enters the tracking mode in response to extraction of the first master vector (A) from the master image A when being held or touched. The tracking mode may continue for a predetermined time. The imaging control unit 154 acquires, for example, the master image B1 when it is detected that the holding and lowering is performed. The second master vector (B1) is extracted from the master image B1 and is associated with the first master vector (A) extracted earlier. The tracking mode continues after holding down, and further acquires the master image B2 when the user enters the master shot range. The second master vector (B2) obtained from the master image B2 is also associated with the first master vector (A) that triggered the tracking mode. In this way, various second master vectors obtained thereafter are associated with the first master vector (A) which can easily identify the user. Even if it is the second master vector where features do not easily appear like "back view", it is possible to enrich the master vector group corresponding to one user by associating it with the first master vector that triggered the acquisition. .
 以上、実施形態に基づいてロボット100およびロボット100を含むロボットシステム300について説明した。
 顔認識技術では、「正面を向いてください」「カメラを見つめてください」などの言語指示をユーザに与えた上で、マスタ画像を取得することが多い。このような音声や文字などの言語指示は、ユーザの負担になりやすい。また、マスタ画像を取得するための言語指示は、ロボット100の非生物性をユーザに意識させてしまうという点でも望ましくない。本実施形態におけるロボット100は、ユーザがロボット100を抱っこしたタイミングで、さりげなくマスタ画像を取得できる。ロボット100は、小さい、柔らかい、軽い、丸い、といった人間が触りたくなる形状を有する。ユーザになんらかの行動を強いるのではなく、ユーザが自然に「抱っこ」したタイミングを捉えて、高品質のマスタ画像を取得できる。抱っこやタッチをしたくなる気持ちを刺激するというロボット100の特性を生かすことで、マスタ画像をさりげなく取得できる。
The robot 100 and the robot system 300 including the robot 100 have been described above based on the embodiment.
In face recognition technology, a user is often given a language instruction such as “please face forward” or “please look at the camera”, and then a master image is often acquired. Such language instructions such as voice and text tend to be burdensome to the user. In addition, the language instruction for acquiring the master image is not desirable in that it makes the user aware of the inanimate nature of the robot 100. The robot 100 in the present embodiment can acquire a master image casually at the timing when the user holds the robot 100. The robot 100 has a small, soft, light, round shape that human beings like to touch. Instead of forcing the user to take some action, it is possible to capture high-quality master images by capturing the timing at which the user naturally “held”. The master image can be acquired casually by utilizing the characteristic of the robot 100 that stimulates the feeling of wanting to hold and touch.
 ロボット100は、更に、手106をばたつかせるなどの非言語の誘導モーションにより、ユーザの注意を喚起する。非言語コミュニケーション(non-verbal communication)によってユーザに注目させる方式であるため、ユーザは強制されている感覚をもちにくい。 The robot 100 further draws the user's attention by non-verbal induced motion such as flipping the hand 106. The user is less likely to have a sense of being forced because it is a method of making the user pay attention to it by non-verbal communication.
 ロボット100は、抱っこされたときにユーザを撮像し、第1マスタベクトルを取得する。更に、ロボット100は、抱え下ろされるときや抱え下ろされたあともマスタ画像を撮像することにより、複数の第2マスタベクトルも取得できる。第1マスタベクトルを抽出したタイミングで第2マスタベクトルも蓄積することにより、ユーザの身体的特徴をより多面的に把握しやすくなる。 The robot 100 captures an image of the user when being held and acquires a first master vector. Furthermore, the robot 100 can also acquire a plurality of second master vectors by capturing a master image even when being held down or after being held down. By accumulating the second master vector also at the timing at which the first master vector is extracted, it becomes easier to grasp the physical characteristics of the user in multiple ways.
 本実施形態によれば、高品質かつ多数のマスタ画像に基づいて、ユーザ識別処理のための精緻な判別基準を確立しやすくなる。ユーザ識別処理は、応対行為の認識や親密度計算の前提となる。マスタベクトルに基づいて高精度にてユーザを識別することにより、ロボット100はユーザに応じて行動特性を変化させることができる。 According to the present embodiment, it becomes easy to establish a fine discrimination criterion for user identification processing based on high quality and a large number of master images. The user identification process is a premise of the recognition of the response action and the closeness calculation. By identifying the user with high accuracy based on the master vector, the robot 100 can change the behavior characteristic according to the user.
 なお、本発明は上記実施形態や変形例に限定されるものではなく、要旨を逸脱しない範囲で構成要素を変形して具体化することができる。上記実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成してもよい。また、上記実施形態や変形例に示される全構成要素からいくつかの構成要素を削除してもよい。 The present invention is not limited to the above-described embodiment and modification, and the components can be modified and embodied without departing from the scope of the invention. Various inventions may be formed by appropriately combining a plurality of components disclosed in the above-described embodiment and modifications. Moreover, some components may be deleted from all the components shown in the above-mentioned embodiment and modification.
 1つのロボット100と1つのサーバ200、複数の外部センサ114によりロボットシステム300が構成されるとして説明したが、ロボット100の機能の一部はサーバ200により実現されてもよいし、サーバ200の機能の一部または全部がロボット100に割り当てられてもよい。1つのサーバ200が複数のロボット100をコントロールしてもよいし、複数のサーバ200が協働して1以上のロボット100をコントロールしてもよい。 Although the robot system 300 is described as being configured of one robot 100, one server 200, and a plurality of external sensors 114, part of the functions of the robot 100 may be realized by the server 200, or the functions of the server 200 A part or all of may be assigned to the robot 100. One server 200 may control a plurality of robots 100, or a plurality of servers 200 may cooperate to control one or more robots 100.
 ロボット100やサーバ200以外の第3の装置が、機能の一部を担ってもよい。図6において説明したロボット100の各機能とサーバ200の各機能の集合体は大局的には1つの「ロボット」として把握することも可能である。1つまたは複数のハードウェアに対して、本発明を実現するために必要な複数の機能をどのように配分するかは、各ハードウェアの処理能力やロボットシステム300に求められる仕様等に鑑みて決定されればよい。 A third device other than the robot 100 or the server 200 may have a part of the function. An aggregate of the functions of the robot 100 and the functions of the server 200 described with reference to FIG. 6 can also be generally understood as one “robot”. How to allocate a plurality of functions necessary to realize the present invention to one or more hardwares will be considered in view of the processing capability of each hardware, the specifications required of the robot system 300, etc. It should be decided.
 上述したように、「狭義におけるロボット」とはサーバ200を含まないロボット100のことであるが、「広義におけるロボット」はロボットシステム300のことである。サーバ200の機能の多くは、将来的にはロボット100に統合されていく可能性も考えられる。 As described above, the “robot in a narrow sense” refers to the robot 100 not including the server 200, while the “robot in a broad sense” refers to the robot system 300. Many of the functions of the server 200 may be integrated into the robot 100 in the future.
 マスタベクトルは、マスタ画像から抽出される特徴量以外の特徴量をベクトル成分として含んでもよい。たとえば、ニオイセンサで検出した匂いやマイクロフォンで検出した声質、温度センサで検出した体温をベクトル成分として含んでもよい。特に、抱っこのときにはユーザの匂いや体温などを高精度にて検出しやすい。マスタ画像は静止画ではなく動画(以下、「マスタ動画」とよぶ)であってもよい。認識部156は、マスタ動画からユーザの歩き方や貧乏ゆすりなどの癖を抽出し、これらの特徴情報をマスタベクトル成分に含めてもよい。 The master vector may include feature quantities other than the feature quantities extracted from the master image as vector components. For example, the smell detected by the odor sensor, the voice quality detected by the microphone, and the body temperature detected by the temperature sensor may be included as vector components. In particular, it is easy to detect the user's smell, body temperature, etc. with high accuracy when carrying. The master image may not be a still image, but may be a moving image (hereinafter referred to as "master moving image"). The recognition unit 156 may extract wrinkles, such as how the user walks or a poor baby, from the master moving image, and may include these feature information in the master vector component.
 本実施形態におけるカメラ134は、全天球カメラであるが、カメラ134は通常のカメラであってもよい。カメラ134はツノ112に内蔵されてもよいし、目110に内蔵されてもよい。また、全天球カメラと通常のカメラの双方が内蔵されてもよい。 The camera 134 in the present embodiment is an omnidirectional camera, but the camera 134 may be a normal camera. The camera 134 may be built into the horn 112 or may be built into the eye 110. In addition, both an omnidirectional camera and a normal camera may be incorporated.
 図8においては、重心ベクトルは複数のマスタベクトルの相加平均により形成されるが、変形例としては複数のマスタベクトルの中央値を重心ベクトルの成分としてもよい。たとえば、図8においてa1<a2<a3であれば、重心ベクトルのa成分はa2としてもよい。 Although in FIG. 8 the centroid vector is formed by arithmetic averaging of a plurality of master vectors, as a modification, the median of a plurality of master vectors may be used as a component of the centroid vector. For example, if a1 <a2 <a3 in FIG. 8, the a component of the gravity center vector may be a2.
 マスタ候補画像の品質検査に際しては、複数の評価項目に重み付けがなされてもよい。評価項目としては、(E1)正面を向いているか(E2)光量は適切か(E3)目を開けているか、などが考えられる。各評価項目についてマスタ候補画像を採点し、それらの項目点を加重平均することでマスタ候補画像の品質を判定してもよい。たとえば、E1~E3にp1,p2,p3の係数が設定され(p1+p2+p3=1)、E1~E3の項目値がs1,s2,s3であれば、総合点はp1・s1+p2・s2+p3・s3となる。総合点が所定の閾値以上であればマスタ画像として採択され、マスタベクトルはマスタ情報224に登録される。 A plurality of evaluation items may be weighted at the time of quality inspection of the master candidate image. As an evaluation item, (E1) is facing the front, (E2) is appropriate, (E3) is the eye open, or the like. The master candidate image may be scored for each evaluation item, and the quality of the master candidate image may be determined by weighted averaging those item points. For example, if the coefficients of p1, p2 and p3 are set to E1 to E3 (p1 + p2 + p3 = 1), and the item values of E1 to E3 are s1, s2 and s3, the combined point is p1 · s1 + p2 · s2 + p3 · s3 . If the combined point is equal to or greater than a predetermined threshold, the master image is adopted, and the master vector is registered in the master information 224.
 誘導モーションは、抱っこされたとき以外に実行されてもよい。ロボット100とユーザの距離が所定範囲内にあるときに、動作制御部150は誘導モーションを実行してもよい。たとえば、図13に示したマスタショット範囲にユーザがいるときに誘導モーションを実行した上で、マスタ候補画像を撮像してもよい。概括すれば、ロボット100はユーザとさまざまな関わり方をする最中に、ユーザの身体的・行動的特徴を把握する上で有効な「シャッターチャンス」を逃すことなくマスタベクトルを抽出することにより、多様かつ高品質なマスタベクトルをユーザに意識させることなく集めることができる。また、誘導モーションによる非言語の働きかけにより、積極的に「シャッターチャンス」を作り出すこともできる。 The induced motion may be performed other than when being held. The motion control unit 150 may execute the induction motion when the distance between the robot 100 and the user is within a predetermined range. For example, when the user is in the master shot range shown in FIG. 13, a master candidate image may be captured after executing the induction motion. In summary, the robot 100 extracts a master vector without missing a “shutter chance” that is effective in grasping the physical and behavioral characteristics of the user while engaging in various ways with the user. A variety of high quality master vectors can be collected without making the user aware. In addition, it is possible to create a "shutter opportunity" positively by non-verbal approach by induced motion.
 本実施形態における誘導モーションは、非言語コミュニケーションの一種である。ここでいう非言語モーションは動物の鳴き声のように言語としての意味をなさない音声を含んでもよい。変形例として、ロボット100は簡単な言語によりユーザによびかけてもよい。 The induction motion in the present embodiment is a type of non-verbal communication. The non-verbal motion referred to here may include speech that does not make sense as a verb like an animal call. Alternatively, the robot 100 may ask the user in a simple language.
 ロボット100は、ユーザに抱っこされたとき、正面顔、右顔、左顔の3つの顔画像をマスタ画像として取得してもよい。認識部156は、ユーザの耳や鼻を認識することにより、どの方向からユーザを見ているかを判定してもよい。内部センサ128のひとつとして、ロボット100はジャイロスコープを搭載してもよい。認識部156はジャイロスコープにより、ユーザに抱っこされたときにロボット100の傾き方向を検出し、それによりユーザをどの方向から見ているかを判定してもよい。 The robot 100 may acquire three face images of a front face, a right face, and a left face as a master image when being held by the user. The recognition unit 156 may determine which direction the user is looking at by recognizing the user's ears and nose. As one of the internal sensors 128, the robot 100 may mount a gyroscope. The recognition unit 156 may detect the tilt direction of the robot 100 when being held by the user using a gyroscope and thereby determine from which direction the user is viewed.
 図9および図10に示した方法(以下、「距離判定法」とよぶ)のほか、マハラノビス距離(Mahalanobis' Distance)によりユーザ識別を実行してもよい。図10において、人物認識部214は、複数のマスタベクトルが得られたときには、その分散値を考慮して、検査ベクトルDXとユーザAのマスタベクトル・グループとのマハラノビス距離(Mahalanobis' Distance)を求める。同様にして、人物認識部214は、検査ベクトルDXとユーザBのマスタベクトル・グループとのマハラノビス距離を求める。そして、それぞれのグループを対象としたマハラノビス距離に基づいて、既知の判別分析手法により未知ユーザXがユーザAまたはユーザBのいずれであるかを判定してもよい(以下、「マハラノビス判定法」とよぶ)。 In addition to the methods shown in FIG. 9 and FIG. 10 (hereinafter referred to as “distance determination method”), user identification may be performed by the Mahalanobis distance. In FIG. 10, when a plurality of master vectors are obtained, the person recognition unit 214 determines the Mahalanobis distance (Mahalanobis' Distance) between the test vector DX and the master vector group of the user A in consideration of the variance value. . Similarly, the person recognition unit 214 obtains the Mahalanobis distance between the test vector DX and the master vector group of the user B. Then, based on the Mahalanobis distance for each group, it may be determined whether the unknown user X is the user A or the user B by a known discriminant analysis method (hereinafter referred to as "the Mahalanobis determination method". Say).
 人物認識部214は、各ユーザのマスタベクトル・グループを教師データとするニューラル・ネットワークを形成し、未知ユーザXの検査ベクトルとマスタベクトルとの当てはまりのよさに基づいてユーザ識別を実行してもよい(以下、「ニューラル・ネットワーク判定法」とよぶ)。 The person recognition unit 214 may form a neural network using the master vector group of each user as teacher data, and perform user identification based on the matching between the test vector of the unknown user X and the master vector. (Hereafter, it is called "neural network judgment method").
 人物認識部214は、距離判定法、マハラノビス判定法、ニューラル・ネットワーク判定法のうち、複数を組み合わせてユーザを識別してもよい。また、検査ベクトルとマスタベクトルの比較だけでなく、登録ユーザのマスタベクトルと未知ユーザのマスタベクトルを比較するときにも、上述の各種方法により類似判定をしてもよい。 The person recognition unit 214 may identify a user by combining a plurality of distance determination methods, Mahalanobis determination methods, and neural network determination methods. Further, not only comparison of the inspection vector and the master vector, but also when comparing the master vector of the registered user and the master vector of the unknown user, similarity determination may be performed by the various methods described above.
 本実施形態においては、撮像制御部154は抱っこやタッチなどのタイミングにてマスタ画像を取得するとして説明した。変形例として、撮像制御部154はユーザを定期的に撮像し、認識部156は多数の撮像画像をマスタ候補画像として取捨選択してもよい。たとえば、10秒に1回のタイミングにてユーザを撮像し、認識部156はこれをマスタ候補画像として品質検査する。認識部156は合格したマスタ画像からマスタベクトルを抽出する。このような方法によれば、偶然得られた良質な撮像画像からもマスタベクトルを抽出できる。 In the present embodiment, the imaging control unit 154 has been described as acquiring the master image at timing such as holding or touching. As a modification, the imaging control unit 154 may periodically image the user, and the recognition unit 156 may select a large number of captured images as master candidate images. For example, the user is imaged at a timing of once every 10 seconds, and the recognition unit 156 performs quality inspection as a master candidate image. The recognition unit 156 extracts a master vector from the passed master image. According to such a method, it is possible to extract a master vector also from a high-quality captured image obtained by chance.
 人物認識部214は、マスタベクトルの数が所定数以上となったとき、古いマスタベクトルを個人データ格納部218から削除してもよい。あるいは、古いマスタベクトル、たとえば、3年以上前に取得されたマスタベクトルを削除してもよい。このような制御方法によれば、個人データ格納部218のデータ量を抑制できるだけではなく、ユーザの加齢や成長にともなう身体的特徴の変化にも対応できる。 The person recognition unit 214 may delete the old master vector from the personal data storage unit 218 when the number of master vectors is equal to or more than a predetermined number. Alternatively, old master vectors, for example, master vectors obtained three or more years ago may be deleted. According to such a control method, not only can the amount of data stored in the personal data storage unit 218 be reduced, but it is also possible to cope with changes in physical characteristics as the user ages and grows.
 本実施形態においてはロボット100において特徴ベクトルを抽出し、サーバ200において特徴ベクトルの比較を行うことでユーザ識別するとして説明した。変形例として、ロボット100は、撮像画像をサーバ200に送り、サーバ200の人物認識部214が特徴ベクトルの抽出およびユーザ識別の双方を実行してもよい。あるいは、ロボット100は、サーバ200の処理能力に頼ることなく、認識部156においてユーザ識別処理を実行してもよい。この場合には、ロボット100は各ユーザのマスタベクトルをロボット100のデータ格納部148において管理してもよい。 In the present embodiment, it is described that the user is identified by extracting feature vectors in the robot 100 and comparing the feature vectors in the server 200. As a modification, the robot 100 may send a captured image to the server 200, and the person recognition unit 214 of the server 200 may perform both extraction of feature vectors and user identification. Alternatively, the robot 100 may execute the user identification process in the recognition unit 156 without relying on the processing capability of the server 200. In this case, the robot 100 may manage the master vector of each user in the data storage unit 148 of the robot 100.
 ロボット100に内蔵されるカメラや各種センサに限らず、外部センサ114に内蔵されるセンサによりユーザの身体的・行動的特徴を抽出してもよい。外部センサ114はユーザが近くにいるときにユーザを撮像し、撮像画像をロボット100に送信する。ロボット100の認識部156は、この撮像画像の品質検査や成分抽出を実行してもよい。 Not only the camera and various sensors incorporated in the robot 100 but also the sensors incorporated in the external sensor 114 may extract physical and behavioral features of the user. The external sensor 114 captures an image of the user when the user is nearby, and transmits the captured image to the robot 100. The recognition unit 156 of the robot 100 may execute quality inspection and component extraction of this captured image.
 本実施形態においては、個人データ格納部218はマスタ画像ではなくマスタベクトルを保存するとして説明したが、マスタ画像とマスタベクトルの双方を保存してもよい。 In the present embodiment, although the personal data storage unit 218 is described as storing the master vector instead of the master image, both the master image and the master vector may be stored.
 ロボットシステム300は、工場出荷時からマスタベクトルによるユーザ識別機能を備える必要はない。たとえば、ロボットシステム300は、ディープラーニングを応用したクラスタリング技術によりユーザ識別を行ってもよい。ロボットシステム300の出荷後に、通信ネットワークを介してマスタベクトルによるユーザ識別機能を実現する行動制御プログラムをダウンロードすることにより、ロボットシステム300の機能強化が実現されてもよい。 The robot system 300 does not have to be provided with a user identification function by a master vector from the time of factory shipment. For example, the robot system 300 may perform user identification by a clustering technology applying deep learning. The functional enhancement of the robot system 300 may be realized by downloading the behavior control program for realizing the user identification function by the master vector via the communication network after the shipment of the robot system 300.
 上述したように、認識部156は、ロボット100が抱え上げられたときの撮像画像をマスタ候補画像として選択する。認識部156は、サーマルカメラなどの温度センサによりユーザの顔の位置および向きを検出してもよいし、測距センサによりユーザとロボット100の距離を検出してもよい。認識部156は、サーマルカメラによる温度情報および測距センサによる距離情報の双方または一方について所定の特定条件が成立したときの撮像画像をマスタ候補画像として選択してもよい。たとえば、認識部156は、サーマルカメラによりユーザがロボット100に向かい合っていることが確認でき、かつ、測距センサによりユーザとロボット100の距離が所定範囲内にあるときの撮像画像をマスタ候補画像として選択してもよい。このような制御方法によれば、適切なマスタ候補画像を複数種類のセンサに基づいて厳選しやすくなる。 As described above, the recognition unit 156 selects a captured image when the robot 100 is held up as a master candidate image. The recognition unit 156 may detect the position and orientation of the user's face by a temperature sensor such as a thermal camera, or may detect the distance between the user and the robot 100 by a distance measurement sensor. The recognition unit 156 may select, as a master candidate image, a captured image when a predetermined specific condition is satisfied for both or one of temperature information by a thermal camera and distance information by a distance measurement sensor. For example, the recognition unit 156 can confirm that the user is facing the robot 100 by the thermal camera, and the captured image when the distance between the user and the robot 100 is within the predetermined range by using the distance measurement sensor as the master candidate image You may choose. According to such a control method, it becomes easy to select an appropriate master candidate image based on a plurality of types of sensors.
 ロボット100が搭載するカメラは全天球カメラであってもよい。ロボット100がユーザに背中側から抱っこされたとき、いいかえれば、ロボット100とユーザが正対していないときでも、ロボット100は全天球カメラにより後方のユーザを撮影できる。したがって、ロボット100が背中側から抱っこされているときでも、認識部156は適切なマスタ候補画像を取得可能となるため、マスタ候補画像の取得機会を拡大できる。あるいは、ロボット100とユーザが正対していることを条件として、認識部156はマスタ候補画像を特定するとしてもよい。 The camera mounted on the robot 100 may be an omnidirectional camera. When the robot 100 is held by the user from the back side, in other words, even when the user does not face the robot 100, the robot 100 can capture the rear user with the omnidirectional camera. Therefore, even when the robot 100 is held from the back side, the recognition unit 156 can acquire an appropriate master candidate image, and thus the acquisition opportunity of the master candidate image can be expanded. Alternatively, the recognition unit 156 may specify the master candidate image on condition that the robot 100 and the user are facing each other.
 抱っこされたときの撮像画像に複数のユーザが映っているときには、認識部156はこの撮像画像をマスタ候補画像として選択しないとしてもよい。 When a plurality of users appear in the captured image when being held, the recognition unit 156 may not select this captured image as a master candidate image.
 複数のユーザが含まれる撮像画像において登録ユーザP1が検出されたときには、認識部156は登録ユーザP1の特徴ベクトルをこの撮像画像から抽出し、これを登録ユーザP1の新たなマスタベクトルとして追加登録するとしてもよい。複数のユーザが含まれる撮像画像において登録ユーザが検出されなかったときには、いいかえれば、複数の未知ユーザのみが含まれる撮像画像が得られたときには、認識部156は、正面を向いているなど所定の条件を満たす未知ユーザP2について特徴ベクトルを抽出し、これを未知ユーザP2のマスタベクトルとして新規登録してもよい。 When the registered user P1 is detected in the captured image including a plurality of users, the recognition unit 156 extracts the feature vector of the registered user P1 from this captured image, and additionally registers it as a new master vector of the registered user P1. It may be When a registered user is not detected in a captured image including a plurality of users, in other words, when a captured image including only a plurality of unknown users is obtained, the recognition unit 156 faces the front, for example. A feature vector may be extracted for an unknown user P2 that satisfies the condition, and this may be newly registered as a master vector of the unknown user P2.
 認識部156は、撮影に際して、マイクロフォンによりユーザの声(音声情報)も取得してもよい。マスタベクトルは、画像情報に限らず、音声情報に基づく特徴ベクトルを含んでもよい。同様にして、認識部156は、撮影に際して、ニオイセンサによりユーザの匂い(嗅覚情報)を取得してもよい。このように登録ユーザを特定するための情報として、画像情報のほか、音声情報や嗅覚情報など多様なセンサ情報が含まれてもよい。 The recognition unit 156 may also acquire the user's voice (voice information) with a microphone at the time of shooting. The master vector may include not only image information but also feature vectors based on audio information. Similarly, the recognition unit 156 may acquire the user's odor (olfactory information) by the odor sensor when photographing. As described above, various pieces of sensor information such as voice information and olfactory information may be included as information for identifying a registered user, in addition to image information.
 ロボット100は、複数のマイクロフォンを備えてもよい。音声登録に際しては、ユーザの存在する方向に対応するマイクロフォン、たとえば、ロボット100の前方に取り付けられるマイクロフォンのみから音声を検出してもよい。認識部156は、他のマイクロフォンを無効にしてもよい。このような制御方法によれば、ユーザ以外の環境音がマスタベクトルに取り込まれにくくなる。マイクロフォン、特に、前方に取り付けられるマイクロフォンは指向性を有することが望ましい。 The robot 100 may include a plurality of microphones. At the time of voice registration, voice may be detected only from a microphone corresponding to the direction in which the user is present, for example, a microphone attached to the front of the robot 100. The recognition unit 156 may invalidate other microphones. According to such a control method, environmental sounds other than the user are less likely to be taken into the master vector. It is desirable that the microphones, in particular the microphones mounted on the front, have directivity.
 撮像画像に映るユーザの口唇に動きを検出したときの音声情報であることを条件として、認識部156はユーザの音声情報をマスタベクトルの一部として取得するとしてもよい。未知ユーザを検出したとき、認識部156は未知ユーザに近づいて抱っこをせがむモーションを実行させてもよい。 The recognition unit 156 may acquire the user's voice information as part of the master vector, on the condition that the voice information is detected when a motion is detected on the user's lips in the captured image. When an unknown user is detected, the recognition unit 156 may execute a motion that approaches the unknown user and asks for holding.

Claims (11)

  1.  カメラを制御する撮像制御部と、
     移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する認識部と、
     判別結果に応じて、ロボットのモーションを選択する動作選択部と、
     前記動作選択部により選択されたモーションを実行する駆動機構と、
     移動物体によるロボットの抱え上げを検出する動作検出部と、を備え、
     前記認識部は、前記移動物体にロボットが抱え上げられたときの撮像画像をマスタ画像として設定し、前記マスタ画像から抽出される特徴ベクトルに基づいて移動物体の判別基準を設定することを特徴とする自律行動型ロボット。
    An imaging control unit that controls the camera;
    A recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object;
    An operation selection unit that selects a motion of the robot according to the determination result;
    A drive mechanism for executing the motion selected by the operation selection unit;
    A motion detection unit for detecting lifting of the robot by a moving object;
    The recognition unit sets a captured image when the robot is held up by the moving object as a master image, and sets a determination reference of the moving object based on a feature vector extracted from the master image. Autonomous robot.
  2.  前記認識部は、前記移動物体を複数の角度から撮像した複数の撮像画像をマスタ画像として設定することを特徴とする請求項1に記載の自律行動型ロボット。 The autonomous action type robot according to claim 1, wherein the recognition unit sets a plurality of captured images obtained by capturing the moving object from a plurality of angles as a master image.
  3.  前記動作選択部は、所定の誘導モーションを前記駆動機構に実行させ、
     前記撮像制御部は、前記誘導モーションの実行を契機として前記移動物体のマスタ画像を撮像することを特徴とする請求項1または2に記載の自律行動型ロボット。
    The operation selection unit causes the drive mechanism to execute a predetermined induction motion.
    The autonomous action type robot according to claim 1 or 2, wherein the imaging control unit captures a master image of the moving object in response to execution of the guidance motion.
  4.  前記誘導モーションは、非言語モーションであることを特徴とする請求項3に記載の自律行動型ロボット。 The autonomous motion robot according to claim 3, wherein the guidance motion is a non-verbal motion.
  5.  前記認識部は、更に、前記移動物体にロボットが抱え下ろされるときの撮像画像もマスタ画像として設定することを特徴とする請求項1に記載の自律行動型ロボット。 The autonomous action type robot according to claim 1, wherein the recognition unit further sets, as a master image, a captured image when the robot is held down by the moving object.
  6.  前記動作選択部は、前記移動物体にロボットが抱え下ろされたあとに前記移動物体を追跡するモーションを選択させ、
     前記撮像制御部は、追跡時に前記移動物体のマスタ画像を撮像することを特徴とする請求項1に記載の自律行動型ロボット。
    The motion selection unit causes a motion object to be selected to track the moving object after the robot is held down by the moving object.
    The autonomous action type robot according to claim 1, wherein the imaging control unit captures a master image of the moving object at the time of tracking.
  7.  前記撮像制御部は、前記移動物体にロボットが抱え下ろされたあとも前記移動物体を追跡し、所定のタイミングにて前記移動物体の第2のマスタ画像を撮像し、
     前記認識部は、前記移動物体にロボットが抱え上げられたときに取得される第1のマスタ画像と前記第2のマスタ画像を対応づけて、前記移動物体に関する複数の特徴ベクトルを抽出することを特徴とする請求項1に記載の自律行動型ロボット。
    The imaging control unit tracks the moving object even after the robot is held down by the moving object, and captures a second master image of the moving object at a predetermined timing.
    The recognition unit extracts a plurality of feature vectors related to the moving object by associating a first master image acquired when the robot is held up with the moving object with the second master image. The autonomous behavior robot according to claim 1, characterized in that
  8.  カメラを制御する撮像制御部と、
     移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する認識部と、
     判別結果に応じて、ロボットのモーションを選択する動作選択部と、
     前記動作選択部により選択されたモーションを実行する駆動機構と、
     移動物体によるタッチを検出する動作検出部と、を備え、
     前記認識部は、前記タッチが検出されたときの撮像画像をマスタ画像として設定し、前記マスタ画像から抽出される特徴ベクトルに基づいて移動物体の判別基準を設定することを特徴とする自律行動型ロボット。
    An imaging control unit that controls the camera;
    A recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object;
    An operation selection unit that selects a motion of the robot according to the determination result;
    A drive mechanism for executing the motion selected by the operation selection unit;
    A motion detection unit for detecting a touch by a moving object;
    The recognition unit sets a captured image when the touch is detected as a master image, and sets a discrimination reference of a moving object based on a feature vector extracted from the master image. robot.
  9.  カメラを制御する撮像制御部と、
     移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する認識部と、
     判別結果に応じて、ロボットのモーションを選択する動作選択部と、
     前記動作選択部により選択されたモーションを実行する駆動機構と、を備え、
     前記認識部は、移動物体がロボットに対して所定の相対地点に位置したことを契機として撮像した画像をマスタ画像として設定し、前記マスタ画像から抽出される特徴ベクトルに基づいて移動体の判別基準を設定することを特徴とする自律行動型ロボット。
    An imaging control unit that controls the camera;
    A recognition unit that determines a moving object based on a feature vector extracted from a captured image of the moving object;
    An operation selection unit that selects a motion of the robot according to the determination result;
    And a drive mechanism for executing the motion selected by the operation selection unit,
    The recognition unit sets, as a master image, an image captured when the moving object is positioned at a predetermined relative point with respect to the robot as a master image, and determines a moving object based on a feature vector extracted from the master image. An autonomous behavior robot characterized by setting.
  10.  ロボットによる物体認識のためのコンピュータプログラムであって、
     移動物体にロボットが抱え上げられたときの移動物体の撮像画像をマスタ画像として設定する機能と、
     前記マスタ画像から抽出される特徴ベクトルに基づいて移動物体の判別基準を設定する機能と、
     移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する機能と、をロボットに発揮させることを特徴とする行動制御プログラム。
    A computer program for object recognition by a robot, comprising
    A function of setting, as a master image, a captured image of the moving object when the robot is held up by the moving object;
    A function of setting a discrimination reference of a moving object based on a feature vector extracted from the master image;
    And a function of causing a robot to exhibit a function of determining a moving object based on a feature vector extracted from a captured image of the moving object.
  11.  ロボットによる物体認識のためのコンピュータプログラムであって、
     移動物体にロボットがタッチされたときの移動物体の撮像画像をマスタ画像として設定する機能と、
     前記マスタ画像から抽出される特徴ベクトルに基づいて移動物体の判別基準を設定する機能と、
     移動物体の撮像画像から抽出される特徴ベクトルに基づいて移動物体を判別する機能と、をロボットに発揮させることを特徴とする行動制御プログラム。
    A computer program for object recognition by a robot, comprising
    Setting a captured image of a moving object when the robot is touched to the moving object as a master image;
    A function of setting a discrimination reference of a moving object based on a feature vector extracted from the master image;
    And a function of causing a robot to exhibit a function of determining a moving object based on a feature vector extracted from a captured image of the moving object.
PCT/JP2017/039505 2016-11-07 2017-11-01 Autonomous robot that identifies persons WO2018084170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018549031A JP6671577B2 (en) 2016-11-07 2017-11-01 An autonomous robot that identifies people

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016216912 2016-11-07
JP2016-216912 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018084170A1 true WO2018084170A1 (en) 2018-05-11

Family

ID=62075945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039505 WO2018084170A1 (en) 2016-11-07 2017-11-01 Autonomous robot that identifies persons

Country Status (2)

Country Link
JP (1) JP6671577B2 (en)
WO (1) WO2018084170A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018416A1 (en) * 2018-07-16 2020-01-23 Alibaba Group Holding Limited Payment method, apparatus, and system
WO2020158641A1 (en) * 2019-01-31 2020-08-06 ソニー株式会社 Robot control device, robot control method, and program
CN112720527A (en) * 2020-12-25 2021-04-30 航天科工深圳(集团)有限公司 Music and dance self-programming robot
JP2022060288A (en) * 2019-03-25 2022-04-14 カシオ計算機株式会社 Control device, robot, control method, and program
US11332147B2 (en) * 2018-09-12 2022-05-17 Toyota Jidosha Kabushiki Kaisha Driving evaluation apparatus, driving evaluation system, and driving evaluation method
WO2024014824A1 (en) * 2022-07-11 2024-01-18 한양대학교 에리카산학협력단 Pet robot apparatus based on identity authentication using voice recognition, and method for operating same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064350A1 (en) * 2017-09-26 2019-04-04 日産自動車株式会社 Driving assistance method and driving assistance apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205179A (en) * 2002-01-10 2003-07-22 Fuji Photo Film Co Ltd Pet type robot
JP2005161450A (en) * 2003-12-02 2005-06-23 Advanced Telecommunication Research Institute International Communication robot
US20090055019A1 (en) * 2007-05-08 2009-02-26 Massachusetts Institute Of Technology Interactive systems employing robotic companions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823760B2 (en) * 2001-05-28 2006-09-20 日本電気株式会社 Robot equipment
JP4303602B2 (en) * 2004-01-09 2009-07-29 本田技研工業株式会社 Facial image acquisition system
JP2007220004A (en) * 2006-02-20 2007-08-30 Funai Electric Co Ltd Television and authentication device
JP6058978B2 (en) * 2012-11-19 2017-01-11 サターン ライセンシング エルエルシーSaturn Licensing LLC Image processing apparatus, image processing method, photographing apparatus, and computer program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205179A (en) * 2002-01-10 2003-07-22 Fuji Photo Film Co Ltd Pet type robot
JP2005161450A (en) * 2003-12-02 2005-06-23 Advanced Telecommunication Research Institute International Communication robot
US20090055019A1 (en) * 2007-05-08 2009-02-26 Massachusetts Institute Of Technology Interactive systems employing robotic companions

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018416A1 (en) * 2018-07-16 2020-01-23 Alibaba Group Holding Limited Payment method, apparatus, and system
US10747990B2 (en) 2018-07-16 2020-08-18 Alibaba Group Holding Limited Payment method, apparatus, and system
US10769417B2 (en) 2018-07-16 2020-09-08 Alibaba Group Holding Limited Payment method, apparatus, and system
US11332147B2 (en) * 2018-09-12 2022-05-17 Toyota Jidosha Kabushiki Kaisha Driving evaluation apparatus, driving evaluation system, and driving evaluation method
JPWO2020158641A1 (en) * 2019-01-31 2021-12-02 ソニーグループ株式会社 Robot control device, robot control method, and program
CN113329798A (en) * 2019-01-31 2021-08-31 索尼集团公司 Robot control device, robot control method, and program
WO2020158641A1 (en) * 2019-01-31 2020-08-06 ソニー株式会社 Robot control device, robot control method, and program
CN113329798B (en) * 2019-01-31 2023-04-28 索尼集团公司 Robot control device, robot control method, and program
JP7415956B2 (en) 2019-01-31 2024-01-17 ソニーグループ株式会社 Robot control device, robot control method, and program
JP2022060288A (en) * 2019-03-25 2022-04-14 カシオ計算機株式会社 Control device, robot, control method, and program
JP7435641B2 (en) 2019-03-25 2024-02-21 カシオ計算機株式会社 Control device, robot, control method and program
CN112720527A (en) * 2020-12-25 2021-04-30 航天科工深圳(集团)有限公司 Music and dance self-programming robot
CN112720527B (en) * 2020-12-25 2024-04-09 航天科工深圳(集团)有限公司 Music dance self-programming robot
WO2024014824A1 (en) * 2022-07-11 2024-01-18 한양대학교 에리카산학협력단 Pet robot apparatus based on identity authentication using voice recognition, and method for operating same

Also Published As

Publication number Publication date
JPWO2018084170A1 (en) 2019-02-28
JP6671577B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP7068709B2 (en) Autonomous behavior robot that changes eyes
JP7320239B2 (en) A robot that recognizes the direction of a sound source
WO2018084170A1 (en) Autonomous robot that identifies persons
JP6467674B2 (en) Autonomous robot that understands skinship
JP6402320B2 (en) An autonomous behavioral robot
JP6472113B2 (en) Autonomous robots and programs that maintain a natural sense of distance
JP7236142B2 (en) Autonomous action robot
JP6409209B2 (en) Autonomous robot for coolness
JP7055402B2 (en) Autonomous behavior robot that accepts guests
JP2019107461A (en) Autonomous behavior robot whose active mass is controlled
JPWO2018207908A1 (en) Robot, jewelry and robot control program
JP2018192559A (en) Autonomous mobile robot detecting touch to body of curved surface shape

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018549031

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868215

Country of ref document: EP

Kind code of ref document: A1