Nothing Special   »   [go: up one dir, main page]

WO2018083797A1 - Differential amplification circuit and voltage buffer circuit - Google Patents

Differential amplification circuit and voltage buffer circuit Download PDF

Info

Publication number
WO2018083797A1
WO2018083797A1 PCT/JP2016/082966 JP2016082966W WO2018083797A1 WO 2018083797 A1 WO2018083797 A1 WO 2018083797A1 JP 2016082966 W JP2016082966 W JP 2016082966W WO 2018083797 A1 WO2018083797 A1 WO 2018083797A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
transistor
voltage
common
supply line
Prior art date
Application number
PCT/JP2016/082966
Other languages
French (fr)
Japanese (ja)
Inventor
隆也 丸山
恒次 堤
下沢 充弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/082966 priority Critical patent/WO2018083797A1/en
Priority to JP2017517133A priority patent/JPWO2018083797A1/en
Publication of WO2018083797A1 publication Critical patent/WO2018083797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers

Definitions

  • the present invention relates to a differential amplifier circuit and a voltage buffer circuit including the differential amplifier circuit.
  • CMRR common-mode rejection ratio
  • CMRR common-mode rejection ratio
  • CMRR common-mode rejection ratio
  • the common-mode rejection ratio is the ability to suppress the influence of the common-mode signal on the circuit when the common-mode signal is applied to the two input terminals of the differential circuit.
  • CMRR the noise component that appears in the output signal can be reduced even if noise is applied to the differential circuit as an in-phase signal component. Therefore, it is evaluated that the higher the value of CMRR, the higher the performance of the differential circuit.
  • CMRR 2 ⁇ r s ⁇ g m
  • g m is the transconductance
  • r s of the MOS transistor which is a component of the differential amplifier is the output resistance of the tail current source is a component of the differential amplifier.
  • an object of the present invention is to provide a differential amplifier circuit and a voltage buffer circuit capable of improving CMRR.
  • a differential amplifier circuit includes: first and second differential input terminals; a first power supply line that supplies a predetermined first power supply voltage; and the first power supply voltage.
  • a second power supply line for supplying a different second power supply voltage, a gate electrode electrically connected to the first differential input terminal, and a drain electrode electrically connected to the first power supply line
  • a first amplifying transistor comprising a field effect transistor having a gate electrode electrically connected to the second differential input terminal, and a drain electrode electrically connected to the first power supply line
  • a second amplifying transistor comprising a field effect transistor, a common connection node electrically connected to a source electrode of each of the first and second amplifying transistors, and the common connection node.
  • the common-mode input voltage is detected from the constant current source connected between the power supply line and the second power supply line, and the input voltages applied to the first and second differential input terminals, respectively.
  • the shunt circuit has a high CMRR by forming a current path having a conductance value according to the common-mode input voltage detected by the voltage detector between the first power supply line and the common connection node. Can be realized.
  • FIG. 1 is a diagram schematically showing a circuit configuration of a voltage buffer circuit 1 according to the first embodiment of the present invention.
  • the voltage buffer circuit 1 includes a differential amplifier circuit 11 and a source follower circuit 51.
  • the differential amplifier circuit 11 has differential input terminals INa and INb (first and second differential input terminals), a power supply voltage V DD supplied from the first power supply line 10D, and a second power supply line 10S.
  • the signals input to the differential input terminals INa and INb can be differentially amplified using the power supply voltage V SS (V SS ⁇ V DD ) supplied from the input terminal.
  • V SS negative voltage
  • the differential amplifier circuit 11 is a combination of a differential pair unit 21 and a constant current source 22 constituting a differential amplifier unit that amplifies a difference between input voltages V inp and V inn applied to the differential input terminals INa and INb, respectively.
  • a voltage detector 30 that detects the common-mode input voltage V C from these input voltages V inp and V inn , a shunt circuit 40 that operates by receiving the supply of the common-mode input voltage V C from the voltage detector 30, a differential Output terminals OTa, OTb (first and second differential output terminals).
  • the differential pair unit 21 has a differential transistor pair including a pair of amplification transistors M 1 and M 2 .
  • Each of these amplifying transistors M 1 and M 2 is composed of an n-channel field effect transistor (Field-Effect Transistor, FET).
  • a MOS (Metal-Oxide-Semiconductor) FET may be used as the n-channel FET.
  • one of the amplification transistor M 1 has a gate electrode connected differential input terminals INa and electrically, and a drain electrode connected a first power supply line 10D and electrically, The source electrode is electrically connected to the common connection node 21c.
  • the other amplifying transistor M 2 includes a gate electrode connected differential input terminal INb and electrically, the first power supply line 10D electrically the connected drain electrodes, the common connection node 21c and electrically And a connected source electrode.
  • the load resistor R 1 is provided between the one of the drain electrode of the amplifying transistor M 1 and the first power supply line 10D, the load resistance between the other of the drain electrode and the first power supply line 10D of the amplifying transistor M 2 R 2 is provided. Furthermore, one of the drain electrode of the amplifying transistor M 1 is one of the differential output terminals OTa electrically connected, the drain electrode of the other amplifying transistor M 2, electrically connected to the differential output terminal OTb Has been.
  • the amplification transistors M 1 and M 2 are designed to have the same transistor size ratio ⁇ and the same electrical characteristics, and load resistors R 1 and R 2. Are set to have the same resistance RL .
  • the transistor size ratio ⁇ is the ratio W a / L a gate width W a to the gate length L a.
  • the constant current source 22 is a tail current source having a constant current transistors M 3 consisting of n-channel type FET.
  • a constant bias voltage V b is applied to the gate electrode of the constant current transistor M 3
  • constant power supply voltage V SS is applied to the source electrode of constant current transistor M 3. Therefore, constant-current transistor M 3 are, functions as a constant current element.
  • the drain electrode of constant current transistor M 3 are, are commonly connected node 21c and electrically connected.
  • the voltage detector 30 includes resistance elements 31 and 32 connected in series with each other. That is, one end of the resistance element 31 and one end of the resistance element 32 are connected to each other via the intermediate node 30c. The other end of the resistance element 31 is electrically connected to the differential input terminal INa, and the other end of the resistance element 32 is electrically connected to the differential input terminal INb. These resistance elements 31 and 32 have the same resistance value.
  • Such a voltage detector 30 can detect the common-mode input voltage V C which is a common-mode component of the input voltages V inp and V inn and output the common-mode input voltage V C from the intermediate node 30c.
  • the common-mode input voltage V C is detected as an average of the input voltages V inp and V inn .
  • Shunt circuit 40 has a frequency reuse transistor M 4 consisting of a common connection node 21c and connected n-channel FET between the first power supply line 10D.
  • the partial diversion transistor M 4 has a gate electrode which is the voltage detector 30 intermediate node 30c electrically connected, the first power supply line 10D electrically the attached drain electrode, and the common connection node 21c A source electrode which is electrically connected.
  • Load resistor R 3 is provided between the drain electrode of the minute diverting transistor M 4 and the first power supply line 10D.
  • the source follower circuit 51 has a function of reducing the output impedance of the voltage buffer circuit 1. As shown in FIG. 1, the source follower circuit 51 includes input terminals 51a and 51b connected to the differential output terminals OTa and OTb of the differential amplifier circuit 11, respectively, and output terminals 51c and 51d. The source follower circuit 51 outputs output voltages V outp and V outn corresponding to the output voltages V mp and V mn input to the input terminals 51a and 51b from the output terminals 51c and 51d. More specifically, the source follower circuit 51 includes transistors M 11 and M 12 made of n-channel FETs and load transistors M 13 and M 14 made of n-channel FETs.
  • Transistor M 11 includes a gate electrode connected to the input terminal 51a, a drain electrode connected to the first power supply line 10D, a source electrode connected to the second power supply line 10S via the load transistor M 13 And have. Load the drain electrode of the transistor M 13 is the source electrode electrically connected to the transistor M 11.
  • the gate electrode of the load transistor M 13 is applied constant bias voltage V b, a constant power supply voltage V SS and the source electrode of the load transistor M 13 is applied.
  • Output terminal 51c of the source follower circuit 51 is electrically with the source electrodes of the transistor M 11 connected.
  • Other transistor M 12 includes a gate electrode connected to the input terminal 51b, and a drain electrode connected to the first power supply line 10D, and is connected to the second power supply line 10S via the load transistor M 14 A source electrode.
  • a drain electrode of the load transistor M 14 is electrically with the source electrodes of the transistor M 12 connected.
  • the load constant bias voltage V b to the gate electrode of the transistor M 14 is applied, a constant power supply voltage V SS and the source electrode of the load transistor M 14 is applied.
  • Output terminal 51d of the source follower circuit 51 is electrically with the source electrodes of the transistor M 12 connected.
  • the source follower circuit 51 is configured using a plurality of n-channel FETs, but is not limited to this. Instead of the source follower circuit 51, a source follower circuit configured using a plurality of p-channel FETs may be employed.
  • the differential input signal to the differential amplifier circuit 11 can be divided into an in-phase input component and a differential input component.
  • Phase with the input voltage V C is the common mode input component
  • the differential input voltage V D is a differential input component, the following equations (1), is given by (2).
  • a current corresponding to the amplitude of the differential input component flows through the differential pair 21 and the constant current source 22.
  • a current corresponding to the amplitude of the in-phase input component flows through both the differential pair 21 and the shunt circuit 40. Therefore, compared with the case where the shunt circuit 40 is not provided, The amount of current corresponding to the in-phase input component in the moving pair 21 is small. Therefore, the shunt circuit 40 can reduce the ratio of the in-phase output component to the differential output component, and can improve the CMRR.
  • the transistor size ratio of the frequency reuse transistor M 4 beta is given by the ratio W b / L b of the gate width W b of the partial diversion transistor M 4 to the gate length L b.
  • the larger the dimensional ratio M C ( ⁇ / ⁇ ) indicating the ratio of the transistor size ratio ⁇ to the transistor size ratio ⁇ , the smaller the amount of current corresponding to the in-phase input component in the differential pair 21.
  • the partial diverting transistor M 4 is configured to operate in a linear region with respect to common-mode input voltage V C, shunt circuit 40, a variable having a conductance value corresponding to the value of the common-mode input voltage V C Can function as a resistor. In this case, the larger the value of the common-mode input voltage V C, the conductance value increases.
  • the common source potential at the common connection node 21c is represented by V 0
  • the transconductance of each of the amplification transistors M 1 and M 2 is represented by g m
  • the output resistance of the tail current source 22 is represented by r O.
  • the transistor size ratio ⁇ min diverting transistor M 4 an M C times the amplification transistor M 1, M 2 each transistor size ratio alpha.
  • the common source potential V 0 can be obtained. That is, the common source potential V 0 is given by the following equation (4).
  • the output voltages V mp and V mn of the differential amplifier circuit 11 can be expressed by the following equations (5) and (6), respectively.
  • the load resistances R 1 and R 2 in the differential pair 21 are both the same resistance RL .
  • the output voltages V mp and V mn can be obtained by substituting the right side of the equation (4) into the common source potential V 0 of the equations (5) and (6). That is, the output voltages V mp and V mn are given by the following expressions (7) and (8).
  • CMRR of the differential amplifier circuit 11 is approximately as shown in the following equation (11).
  • the shunt circuit 40 a current path having a conductance value corresponding to the value of the detected common-mode input voltage V C by the voltage detector 30 first Since it is formed between the power supply line 10D and the common connection node 21c, CMRR can be improved. Therefore, it is possible to provide the differential amplifier circuit 11 and the voltage buffer circuit 1 having excellent noise resistance. Further, when the voltage buffer circuit 1 is configured as an integrated circuit, high CMRR can be realized even if the integrated circuit is miniaturized.
  • FIG. 2 is a diagram schematically showing a circuit configuration of the voltage buffer circuit 2 according to the second embodiment of the present invention.
  • the voltage buffer circuit 2 includes a differential amplifier circuit 12 and an emitter follower circuit 52.
  • the differential amplifier circuit 12 has differential input terminals INa and INb (first and second differential input terminals), and the power supply voltage V supplied from the first power supply line 10C.
  • the signals input to the differential input terminals INa and INb are differentially amplified.
  • a positive voltage as the power supply voltage V CC is, as the power supply voltage V EE is a negative voltage may be employed to supply, respectively.
  • the differential amplifier circuit 12 includes a combination of a differential pair 23 and a constant current source 24 for amplifying a difference between input voltages V inp and V inn applied to the differential input terminals INa and INb, and the input voltage V inp. , a voltage detector 30 for detecting the common mode input voltage V C from V inn, the shunt circuit 41 that operates by being supplied with the common-mode input voltage V C from the voltage detector 30, the differential output terminals OTa, OTB (a 1 and a second differential output terminal).
  • the differential pair section 23 has a differential transistor pair composed of a pair of amplification transistors Q 1 and Q 2 .
  • Each of these amplification transistors Q 1 and Q 2 is formed of an npn-type bipolar transistor.
  • one amplifying transistor Q 1 is a base electrode connected differential input terminals INa and electrically, the first power line 10C electrically connected to it are collector electrodes, The emitter electrode is electrically connected to the common connection node 23c.
  • the other amplifying transistor Q 2 is a base electrode connected differential input terminal INb and electrically, the first power line 10C electrically connected to it are collector electrodes, the common connection node 23c and electrically And an emitter electrode connected thereto.
  • the load resistor r 1 is provided between the one and the collector electrode of the amplifying transistor Q 1 and the first power supply line 10C, the load resistance between the collector electrode of the other of the amplifying transistor Q 2 and the first power supply line 10C r 2 is provided. Further, the collector electrode of one of the amplifying transistor Q 1 is are connected differential output terminals OTa electrically, the collector electrode of the other amplifying transistors Q 2, is electrically connected to the differential output terminal OTb Yes. At the design stage of the differential amplifier circuit 12, the amplification transistors Q 1 and Q 2 are designed to have the same electrical characteristics, and the load resistances r 1 and r 2 also have the same resistance r L. Is set.
  • the constant current source 24 is a tail current source connected between the common connection node 23c and the second power supply line 10E.
  • the constant current source 24 may be composed using at least one bipolar transistor Q 3 as shown schematically in Figure 2.
  • Shunt circuit 41 has a frequency reuse transistor Q 4 consisting of a common connection node 23c and connected npn-type bipolar transistor between a first power supply line 10C.
  • the partial diversion transistor Q 4 are a base electrode which is the voltage detector 30 intermediate node 30c electrically connected, the first power supply line 10C electrically connected to it are collector electrodes, and the common connection node 23c And an emitter electrode which is electrically connected.
  • the load resistor r 3 is provided between the collector electrode of the minute diverting transistor Q 4 and the first power supply line 10C.
  • the emitter follower circuit 52 has a function of reducing the output impedance of the entire voltage buffer circuit 2. As shown in FIG. 2, the emitter follower circuit 52 includes input terminals 52a and 52b respectively connected to the differential output terminals OTa and OTb of the differential amplifier circuit 12, and output terminals 52c and 52d. The emitter follower circuit 52 outputs output voltages V outp and V outn corresponding to the output voltages V mp and V mn input to these input terminals 52a and 52b from the output terminals 52c and 52d, respectively. More specifically, the emitter follower circuit 52 includes npn-type bipolar transistors Q 11 and Q 12 and constant current sources 53 and 54.
  • npn-type bipolar transistor Q 11 has a base electrode connected to the input terminal 52a, a collector electrode connected to the first power supply line 10C, is connected to the second power supply line 10E via a constant current source 53 And an emitter electrode.
  • Emitter output terminal 52c of the follower circuit 52 is npn-type bipolar transistors electrically connected to the emitter electrode of Q 11.
  • npn-type bipolar transistor Q 12 is connected to a base electrode connected to the input terminal 52 b, and a collector electrode connected to the first power supply line 10C, the second power supply line 10E via a constant current source 54 And an emitter electrode.
  • Emitter output terminal 52d of the follower circuit 52 is npn-type bipolar transistor connected emitter electrode and electrically in Q 12.
  • the emitter follower circuit 52 is configured using a plurality of npn-type bipolar transistors, but is not limited to this. Instead of the emitter follower circuit 52, an emitter follower circuit configured using a plurality of pnp bipolar transistors may be employed.
  • the shunt circuit 41 a first power supply current path having a conductance value corresponding to the common mode input voltage V C which is detected by the voltage detector 30 Since it can be formed between the line 10C and the common connection node 23c, CMRR can be improved. Therefore, it is possible to provide the differential amplifier circuit 12 and the voltage buffer circuit 2 having excellent noise resistance. Further, when the voltage buffer circuit 12 is configured as an integrated circuit, a high CMRR can be realized even if the integrated circuit is miniaturized.
  • FIG. 3 is a diagram schematically showing a circuit configuration of the voltage buffer circuit 3 according to the third embodiment of the present invention.
  • the voltage buffer circuit 3 includes a differential amplifier circuit 13 and a source follower circuit 51.
  • the differential amplifier circuit 13 and the source follower circuit 51 operates using a power supply voltage V DD supplied from the first power supply line 10D, and a power supply voltage V SS supplied from the second power supply line 10S.
  • the differential amplifier circuit 13 includes a differential pair 21 and a constant amplifier for amplifying the difference between the input voltages V inp and V inn applied to the differential input terminals INa and INb (first and second differential input terminals), respectively.
  • a shunt circuit 40 that operates in response to the supply of the amplified voltage output from the amplifier 44, and differential output terminals OTa, OTb (first and second differential output terminals).
  • the configuration of the voltage buffer circuit 3 of the present embodiment is the same as the configuration of the voltage buffer circuit 1 of the first embodiment except that the differential amplifier circuit 13 includes an amplifier 44.
  • the gate electrode of the minute diverting transistor M 4 of the shunt circuit 40 amplifies the voltage supplied from the amplifier 44 is applied. Thereby, the amount of current flowing through the shunt circuit 40 can be increased corresponding to the in-phase input component.
  • the CMRR of the differential amplifier circuit 13 is approximately given by the following equation (12).
  • the shunt circuit 40 commonly connects the current path having the conductance value corresponding to the common-mode input voltage amplified by the amplifier 44 with the first power supply line 10D. Since it can be formed with the node 21c, further improvement of CMRR can be realized as compared with the case of the first embodiment. Therefore, it is possible to provide the differential amplifier circuit 13 and the voltage buffer circuit 3 having excellent noise resistance. Further, when the voltage buffer circuit 3 is configured as an integrated circuit, a high CMRR can be realized even if the integrated circuit is miniaturized.
  • FIG. 4 schematically shows a circuit configuration of voltage buffer circuit 4 according to the fourth embodiment of the present invention.
  • the voltage buffer circuit 4 includes a differential amplifier circuit 14 and an emitter follower circuit 52.
  • the differential amplifier circuit 14 and an emitter follower circuit 52 operates using a power supply voltage V CC supplied from the first power supply line 10C, and a power supply voltage V EE supplied from the second power supply line 10E.
  • the differential amplifier circuit 14 includes a differential pair 23 and a constant amplifier for amplifying the difference between the input voltages V inp and V inn applied to the differential input terminals INa and INb (first and second differential input terminals), respectively.
  • the voltage detector 30 for detecting the common-mode input voltage V C from the input voltages V inp and V inn
  • a shunt circuit 41 that operates in response to the supplied amplified voltage and differential output terminals OTa, OTb (first and second differential output terminals) are provided.
  • the configuration of the voltage buffer circuit 4 of the present embodiment is the same as the configuration of the voltage buffer circuit 2 (FIG. 2) of the second embodiment except that the differential amplifier circuit 14 includes an amplifier 45.
  • the base electrode of the minute diverting transistor Q 4 of the shunt circuit 41 amplifies the voltage supplied from the amplifier 45 is applied. Thereby, the amount of current flowing through the shunt circuit 40 can be increased corresponding to the in-phase input component.
  • the shunt circuit 41 commonly connects the current path having the conductance value corresponding to the common-mode input voltage amplified by the amplifier 45 with the first power supply line 10C. Since it can be formed between the node 23c and the second embodiment, the CMRR can be further improved as compared with the second embodiment. Therefore, it is possible to provide the differential amplifier circuit 14 and the voltage buffer circuit 4 having excellent noise tolerance. Further, when the voltage buffer circuit 4 is configured as an integrated circuit, a high CMRR can be realized even if the integrated circuit is miniaturized.
  • FIG. 5 schematically shows a circuit configuration of voltage buffer circuit 5 according to the fifth embodiment of the present invention.
  • the voltage buffer circuit 5 includes a differential amplifier circuit 15 and a source follower circuit 51.
  • the differential amplifier circuit 15 and the source follower circuit 51 operates using a power supply voltage V DD supplied from the first power supply line 10D, and a power supply voltage V SS supplied from the second power supply line 10S.
  • the differential amplifier circuit 15 includes a differential pair 21 that amplifies a difference between input voltages V inp and V inn applied to the differential input terminals INa and INb (first and second differential input terminals), and a constant pair.
  • differential output terminals OTa and OTb first and second differential output terminals).
  • the configuration of the voltage buffer circuit 5 of the present embodiment is the same as that of the first embodiment except that the differential amplifier circuit 15 has the shunt circuit 42 of FIG. 5 instead of the shunt circuit 40 of the first embodiment.
  • the configuration of the buffer circuit 1 is the same.
  • the shunt circuit 42 includes a variable resistor 46 connected between the first power supply line 10D and the common connection node 21c.
  • the variable resistor 46 may be formed between the current path having a conductance value corresponding to the value of the common-mode input voltage V C and the first power supply line 10D and the common connection node 21c.
  • Variable resistor 46 the larger the value of the common-mode input voltage V C, it is possible to increase the conductance. Therefore, CMRR can be improved as in the case of the first embodiment.
  • 6A and 6B are schematic diagrams showing variable resistance circuits 46A and 46B, which are circuit configuration examples of such a variable resistor 46.
  • the 6A includes a resistance element 46a having one end connected to the first power supply line 10D and the other end connected to the common connection node 21c, and an n-channel type connected in parallel to the resistance element 46a. configured to include a control transistor M 5 consisting of FET. In the control transistor M 5, a drain electrode is electrically connected to the first power supply line 10D, a source electrode common connection node 21c and is electrically connected to the common mode input voltage V C is applied to the gate electrode.
  • the variable resistance circuit 46B of FIG. 6B includes a control element M including a resistance element 46b having one end connected to the first power supply line 10D and an n-channel FET connected in series to the other end of the resistance element 46b. 6 .
  • variable resistor 46 In the control transistor M 6 has a drain electrode electrically connected to the other end of the resistance element 46b, a source electrode connected to the common connection node 21c and electrically, the common mode input voltage V C is applied to the gate electrode.
  • the circuit configuration of the variable resistor 46 is not limited to the variable resistance circuits 46A and 46B of FIGS. 6A and 6B, and a circuit configuration other than the variable resistance circuits 46A and 46B may be used.
  • the differential amplifier circuit 15 and the voltage buffer circuit 5 that achieve an improvement in CMRR and have excellent noise resistance. Further, when the voltage buffer circuit 5 is configured as an integrated circuit, high CMRR can be realized even if the integrated circuit is miniaturized.
  • FIG. 7 schematically shows a circuit configuration of voltage buffer circuit 6 according to the sixth embodiment of the present invention.
  • the voltage buffer circuit 6 includes a differential amplifier circuit 16 and an emitter follower circuit 52.
  • the differential amplifier circuit 16 and an emitter follower circuit 52 operates using a power supply voltage V CC supplied from the first power supply line 10C, and a power supply voltage V EE supplied from the second power supply line 10E.
  • the differential amplifier circuit 16 includes a differential pair 23 and a constant amplifier that amplify the difference between the input voltages V inp and V inn applied to the differential input terminals INa and INb (first and second differential input terminals), respectively.
  • the configuration of the voltage buffer circuit 6 of the present embodiment is the same as that of the second embodiment except that the differential amplifier circuit 16 has the shunt circuit 43 of FIG. 7 instead of the shunt circuit 41 of the second embodiment.
  • the configuration is the same as that of the buffer circuit 2.
  • the shunt circuit 43 of the present embodiment includes a variable resistor 47 connected between the first power supply line 10C and the common connection node 23c.
  • the variable resistor 47 can form a current path having a conductance value corresponding to the value of the common-mode input voltage V C between the first power supply line 10C and the common connection node 23c.
  • the variable resistor 47 can increase the conductance value as the value of the common-mode input voltage V C increases. Therefore, as in the case of the second embodiment, CMRR can be improved. Further, when the voltage buffer circuit 6 is configured as an integrated circuit, a high CMRR can be realized even if the integrated circuit is miniaturized.
  • a voltage buffer circuit may be configured by combining any of differential amplifier circuits 11, 13, and 15 of the first, third, and fifth embodiments and emitter follower circuit 52 of the second embodiment.
  • the voltage buffer circuit may be configured by combining any of the differential amplifier circuits 12, 14, and 16 of the second, fourth, and sixth embodiments and the source follower circuit 51 of the first embodiment.
  • the differential amplifier circuit and the voltage buffer circuit according to the present invention are suitable for use in, for example, an analog integrated circuit that operates in a high frequency region.
  • 1 to 6 voltage buffer circuit 11 to 16 differential amplifier circuit, 21 and 23 differential pair, 21c and 23c common connection node, 22 and 24 constant current source, 30 voltage detector, 40 to 43 shunt circuit, 44, 45 amplifier, 46, 47 variable resistor, 46A, 46B variable resistance circuit, 51 source follower circuit, 52 emitter follower circuit, 53, 54 constant current source, M 1 , M 2 , Q 1 , Q 2 amplification transistor, M 3 constant current transistor, M 4 minutes diverting transistor, M 11, M 12 field effect transistor, M 13, M 14 load transistor, Q 3 bipolar transistors, Q 4 minutes diverted transistors, Q 11, Q 12 bipolar transistors, INa, INb difference Dynamic input terminal, OTa, OTb differential output terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

A differential amplification circuit (11) is provided with: differential input terminals (INa, INb); first and second amplification transistors (M1, M2); a common connection node (21c) electrically connected to source electrodes of the first and second amplification transistors; a constant current source (22) connected between the common connection node (21c) and a second power supply line; a voltage detector (30) which detects a common mode input voltage (Vc) from input voltages (Vinp, Vinn) applied to the differential input terminals (INa, INb); and a shunt circuit (40) which forms a current path having a conductance value corresponding to the common mode input voltage (Vc) between a first power supply line (10D) and the common connection node (21c).

Description

差動増幅回路及び電圧バッファ回路Differential amplifier circuit and voltage buffer circuit
 この発明は、差動増幅回路及びこれを備えた電圧バッファ回路に関する。 The present invention relates to a differential amplifier circuit and a voltage buffer circuit including the differential amplifier circuit.
 アナログ集積回路では、信号経路が差動化された、同相モード除去比(Common-Mode Rejection Ratio,CMRR)が高い差動型回路を採用することが望ましい。差動型回路は、不要輻射または外乱信号などのノイズが出力信号に重畳されることを抑制するので、当該ノイズによる信号品質の劣化もしくは次段の回路の誤動作を防止することができる。同相モード除去比(以下「CMRR」ともいう。)は、差動型回路の2つの入力端子に同相信号が印加されたとき、当該同相信号が回路に与える影響を抑制することができる能力を示す指標である(たとえば、非特許文献1)。CMRRの値が大きければ、ノイズが同相信号成分として差動型回路に印加されても、出力信号に現れるノイズ成分を小さくすることができる。よって、CMRRの値が大きいほど、差動型回路の性能が高いと評価される。 In an analog integrated circuit, it is desirable to employ a differential circuit having a common-mode rejection ratio (CMRR) with a signal path differentiated and a high common-mode rejection ratio (CMRR). The differential circuit suppresses the superimposition of noise such as unnecessary radiation or disturbance signal on the output signal, so that it is possible to prevent the signal quality from being deteriorated due to the noise or the malfunction of the subsequent circuit. The common-mode rejection ratio (hereinafter also referred to as “CMRR”) is the ability to suppress the influence of the common-mode signal on the circuit when the common-mode signal is applied to the two input terminals of the differential circuit. (For example, Non-Patent Document 1). If the value of CMRR is large, the noise component that appears in the output signal can be reduced even if noise is applied to the differential circuit as an in-phase signal component. Therefore, it is evaluated that the higher the value of CMRR, the higher the performance of the differential circuit.
 ところで、高周波(RF:Radio-Frequency)帯域で動作する典型的な電圧バッファ回路としては、ソースフォロアが挙げられる。しかしながら、この種のソースフォロアは、完全差動型(fully-differential)回路ではないため、上述のとおり、不要輻射または外乱信号などのノイズが出力信号に重畳されるという問題がある。この問題を解決するために、ソースフォロアの前段に差動増幅器を配置することで実効的に完全差動型の特性を有する電圧バッファ回路を構成することが可能である(たとえば、非特許文献2)。この種の電圧バッファ回路は、出力インピーダンスを下げることによって次段の回路に対する駆動能力を向上させ、ノイズの重畳量を少なくすることができる。 By the way, as a typical voltage buffer circuit operating in a radio frequency (RF) band, a source follower can be cited. However, since this type of source follower is not a fully-differential circuit, there is a problem that noise such as unwanted radiation or a disturbance signal is superimposed on the output signal as described above. In order to solve this problem, it is possible to effectively form a voltage buffer circuit having fully differential characteristics by disposing a differential amplifier in front of the source follower (for example, Non-Patent Document 2). ). This type of voltage buffer circuit can improve the driving capability for the next-stage circuit by lowering the output impedance, and can reduce the amount of superimposed noise.
 上述のとおり、ノイズ耐性を向上させるには、高いCMRRを有する差動型回路を採用することが望ましい。しかしながら、集積回路の微細化が進行すると、CMRRの値を大きくすることが難しいという課題がある。たとえば、微細CMOSデバイスの場合、電界効果トランジスタのゲート長の寸法が小さく、差動増幅器部分を構成するテール電流源の出力抵抗が小さいため、CMRRの値を大きくすることが難しい。非特許文献1によれば、典型的な差動増幅器のCMRRは、たとえば、次の近似式で与えられる。
      CMRR=2×r×g
As described above, in order to improve noise resistance, it is desirable to employ a differential circuit having a high CMRR. However, as the miniaturization of integrated circuits progresses, there is a problem that it is difficult to increase the value of CMRR. For example, in the case of a fine CMOS device, it is difficult to increase the value of CMRR because the size of the gate length of the field effect transistor is small and the output resistance of the tail current source constituting the differential amplifier portion is small. According to Non-Patent Document 1, the CMRR of a typical differential amplifier is given by the following approximate expression, for example.
CMRR = 2 × r s × g m
 ここで、gは、当該差動増幅器の構成要素であるMOSトランジスタのトランスコンダクタンス、rは、当該差動増幅器の構成要素であるテール電流源の出力抵抗である。一般に、MOSトランジスタのゲート長に対するゲート幅の寸法が小さいほど、トランスコンダクタンスgの値が小さくなる。 Here, g m is the transconductance, r s of the MOS transistor which is a component of the differential amplifier is the output resistance of the tail current source is a component of the differential amplifier. In general, the more the size of the gate width to the gate length of the MOS transistor is small, the value of the transconductance g m is small.
 上記に鑑みて本発明の目的は、CMRRの向上を可能とする差動増幅回路及び電圧バッファ回路を提供することである。 In view of the above, an object of the present invention is to provide a differential amplifier circuit and a voltage buffer circuit capable of improving CMRR.
 本発明の一態様による差動増幅回路は、第1及び第2の差動入力端子と、予め定められた第1の電源電圧を供給する第1電源ラインと、前記第1の電源電圧とは異なる第2の電源電圧を供給する第2電源ラインと、前記第1の差動入力端子と電気的に接続されたゲート電極を有するとともに、前記第1電源ラインと電気的に接続されたドレイン電極を有する電界効果トランジスタからなる第1の増幅トランジスタと、前記第2の差動入力端子と電気的に接続されたゲート電極を有するとともに、前記第1電源ラインと電気的に接続されたドレイン電極を有する電界効果トランジスタからなる第2の増幅トランジスタと、前記第1及び第2の増幅トランジスタのそれぞれのソース電極と電気的に接続された共通接続ノードと、前記共通接続ノードと前記第2電源ラインとの間に接続された定電流源と、前記第1及び第2の差動入力端子にそれぞれ印加された入力電圧から同相入力電圧を検出し、当該同相入力電圧を出力する電圧検出器と、前記共通接続ノードと前記第1電源ラインとの間に配置され、前記同相入力電圧に応じたコンダクタンス値を有する電流経路を形成する分流回路と、前記第1の増幅トランジスタの当該ドレイン電極及び前記第2の増幅トランジスタの当該ドレイン電極とそれぞれ電気的に接続された第1及び第2の差動出力端子とを備えることを特徴とする。 A differential amplifier circuit according to one aspect of the present invention includes: first and second differential input terminals; a first power supply line that supplies a predetermined first power supply voltage; and the first power supply voltage. A second power supply line for supplying a different second power supply voltage, a gate electrode electrically connected to the first differential input terminal, and a drain electrode electrically connected to the first power supply line A first amplifying transistor comprising a field effect transistor having a gate electrode electrically connected to the second differential input terminal, and a drain electrode electrically connected to the first power supply line A second amplifying transistor comprising a field effect transistor, a common connection node electrically connected to a source electrode of each of the first and second amplifying transistors, and the common connection node. The common-mode input voltage is detected from the constant current source connected between the power supply line and the second power supply line, and the input voltages applied to the first and second differential input terminals, respectively. An output voltage detector; a shunt circuit disposed between the common connection node and the first power supply line; and a current path having a conductance value corresponding to the common-mode input voltage; and the first amplification transistor And the first and second differential output terminals electrically connected to the drain electrode and the drain electrode of the second amplification transistor, respectively.
 本発明によれば、分流回路は、電圧検出器で検出された同相入力電圧に応じたコンダクタンス値を有する電流経路を第1電源ラインと共通接続ノードとの間に形成することにより、高いCMRRを実現することができる。 According to the present invention, the shunt circuit has a high CMRR by forming a current path having a conductance value according to the common-mode input voltage detected by the voltage detector between the first power supply line and the common connection node. Can be realized.
本発明に係る実施の形態1である電圧バッファ回路の回路構成を概略的に示す図である。It is a figure which shows schematically the circuit structure of the voltage buffer circuit which is Embodiment 1 which concerns on this invention. 本発明に係る実施の形態2である電圧バッファ回路の回路構成を概略的に示す図である。It is a figure which shows schematically the circuit structure of the voltage buffer circuit which is Embodiment 2 which concerns on this invention. 本発明に係る実施の形態3である電圧バッファ回路の回路構成を概略的に示す図である。It is a figure which shows schematically the circuit structure of the voltage buffer circuit which is Embodiment 3 which concerns on this invention. 本発明に係る実施の形態4である電圧バッファ回路の回路構成を概略的に示す図である。It is a figure which shows schematically the circuit structure of the voltage buffer circuit which is Embodiment 4 which concerns on this invention. 本発明に係る実施の形態5である電圧バッファ回路の回路構成を概略的に示す図である。It is a figure which shows schematically the circuit structure of the voltage buffer circuit which is Embodiment 5 which concerns on this invention. 図6Aは、実施の形態5の可変抵抗器の回路構成例を示す概略図であり、図6Bは、実施の形態5の可変抵抗器の他の回路構成例を示す概略図である。6A is a schematic diagram illustrating a circuit configuration example of the variable resistor of the fifth embodiment, and FIG. 6B is a schematic diagram illustrating another circuit configuration example of the variable resistor of the fifth embodiment. 本発明に係る実施の形態6である電圧バッファ回路の回路構成を概略的に示す図である。It is a figure which shows schematically the circuit structure of the voltage buffer circuit which is Embodiment 6 which concerns on this invention.
 以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。なお、図面全体において同一符号を付された構成要素は、同一構成及び同一機能を有するものとする。 Hereinafter, various embodiments according to the present invention will be described in detail with reference to the drawings. In addition, the component to which the same code | symbol was attached | subjected in the whole drawing shall have the same structure and the same function.
実施の形態1.
 図1は、本発明に係る実施の形態1である電圧バッファ回路1の回路構成を概略的に示す図である。この電圧バッファ回路1は、差動増幅回路11とソースフォロア回路51とを備えて構成されている。差動増幅回路11は、差動入力端子INa,INb(第1及び第2の差動入力端子)を有し、第1電源ライン10Dから供給される電源電圧VDDと、第2電源ライン10Sから供給される電源電圧VSS(VSS<VDD)とを用いて、差動入力端子INa,INbに入力された信号を差動増幅することができる。たとえば、電源電圧VDDとして正電圧が、電源電圧VSSとしては負電圧がそれぞれ供給されればよい。
Embodiment 1 FIG.
FIG. 1 is a diagram schematically showing a circuit configuration of a voltage buffer circuit 1 according to the first embodiment of the present invention. The voltage buffer circuit 1 includes a differential amplifier circuit 11 and a source follower circuit 51. The differential amplifier circuit 11 has differential input terminals INa and INb (first and second differential input terminals), a power supply voltage V DD supplied from the first power supply line 10D, and a second power supply line 10S. The signals input to the differential input terminals INa and INb can be differentially amplified using the power supply voltage V SS (V SS <V DD ) supplied from the input terminal. For example, a positive voltage as the power supply voltage V DD, the power supply voltage V SS is a negative voltage may be employed to supply, respectively.
 差動増幅回路11は、差動入力端子INa,INbにそれぞれ印加された入力電圧Vinp,Vinnの差分を増幅する差動増幅部を構成する差動対部21及び定電流源22の組み合わせと、これら入力電圧Vinp,Vinnから同相入力電圧Vを検出する電圧検出器30と、この電圧検出器30から同相入力電圧Vの供給を受けて動作する分流回路40と、差動出力端子OTa,OTb(第1及び第2の差動出力端子)とを備えている。 The differential amplifier circuit 11 is a combination of a differential pair unit 21 and a constant current source 22 constituting a differential amplifier unit that amplifies a difference between input voltages V inp and V inn applied to the differential input terminals INa and INb, respectively. A voltage detector 30 that detects the common-mode input voltage V C from these input voltages V inp and V inn , a shunt circuit 40 that operates by receiving the supply of the common-mode input voltage V C from the voltage detector 30, a differential Output terminals OTa, OTb (first and second differential output terminals).
 差動対部21は、増幅トランジスタM,Mの対からなる差動トランジスタ対を有する。これら増幅トランジスタM,Mの各々は、nチャネル型の電界効果トランジスタ(Field-Effect Transistor,FET)で構成されている。nチャネル型のFETとしては、MOS(Metal-Oxide-Semiconductor)FETを使用すればよい。図1に示されるように、一方の増幅トランジスタMは、差動入力端子INaと電気的に接続されているゲート電極と、第1電源ライン10Dと電気的に接続されているドレイン電極と、共通接続ノード21cと電気的に接続されているソース電極とを有する。他方の増幅トランジスタMは、差動入力端子INbと電気的に接続されているゲート電極と、第1電源ライン10Dと電気的に接続されているドレイン電極と、共通接続ノード21cと電気的に接続されているソース電極とを有している。 The differential pair unit 21 has a differential transistor pair including a pair of amplification transistors M 1 and M 2 . Each of these amplifying transistors M 1 and M 2 is composed of an n-channel field effect transistor (Field-Effect Transistor, FET). A MOS (Metal-Oxide-Semiconductor) FET may be used as the n-channel FET. As shown in FIG. 1, one of the amplification transistor M 1 has a gate electrode connected differential input terminals INa and electrically, and a drain electrode connected a first power supply line 10D and electrically, The source electrode is electrically connected to the common connection node 21c. The other amplifying transistor M 2 includes a gate electrode connected differential input terminal INb and electrically, the first power supply line 10D electrically the connected drain electrodes, the common connection node 21c and electrically And a connected source electrode.
 また、一方の増幅トランジスタMのドレイン電極と第1電源ライン10Dとの間に負荷抵抗Rが設けられ、他方の増幅トランジスタMのドレイン電極と第1電源ライン10Dとの間に負荷抵抗Rが設けられている。更に、一方の増幅トランジスタMのドレイン電極は、一方の差動出力端子OTaと電気的に接続されており、他方の増幅トランジスタMのドレイン電極は、差動出力端子OTbと電気的に接続されている。 The load resistor R 1 is provided between the one of the drain electrode of the amplifying transistor M 1 and the first power supply line 10D, the load resistance between the other of the drain electrode and the first power supply line 10D of the amplifying transistor M 2 R 2 is provided. Furthermore, one of the drain electrode of the amplifying transistor M 1 is one of the differential output terminals OTa electrically connected, the drain electrode of the other amplifying transistor M 2, electrically connected to the differential output terminal OTb Has been.
 差動増幅回路11の設計段階では、増幅トランジスタM,Mは、同一のトランジスタサイズ比αを有し且つ同一の電気的特性を有するように設計されており、負荷抵抗R,Rも、同一抵抗Rとなるように設定されている。ここで、トランジスタサイズ比αは、ゲート長Lに対するゲート幅Wの比率W/Lである。 At the design stage of the differential amplifier circuit 11, the amplification transistors M 1 and M 2 are designed to have the same transistor size ratio α and the same electrical characteristics, and load resistors R 1 and R 2. Are set to have the same resistance RL . Here, the transistor size ratio α is the ratio W a / L a gate width W a to the gate length L a.
 定電流源22は、nチャネル型FETからなる定電流トランジスタMを有するテール電流源である。定電流トランジスタMのゲート電極には一定のバイアス電圧Vが印加され、定電流トランジスタMのソース電極には一定の電源電圧VSSが印加されている。このため、定電流トランジスタMは、定電流素子として機能する。この定電流トランジスタMのドレイン電極は、共通接続ノード21cと電気的に接続されている。 The constant current source 22 is a tail current source having a constant current transistors M 3 consisting of n-channel type FET. A constant bias voltage V b is applied to the gate electrode of the constant current transistor M 3, constant power supply voltage V SS is applied to the source electrode of constant current transistor M 3. Therefore, constant-current transistor M 3 are, functions as a constant current element. The drain electrode of constant current transistor M 3 are, are commonly connected node 21c and electrically connected.
 電圧検出器30は、互いに直列接続された抵抗素子31,32で構成されている。すなわち、抵抗素子31の一端と抵抗素子32の一端とが中間ノード30cを介して互いに接続されている。また、抵抗素子31の他端は、差動入力端子INaと電気的に接続され、抵抗素子32の他端は、差動入力端子INbと電気的に接続されている。これら抵抗素子31,32の抵抗値は同じである。このような電圧検出器30は、入力電圧Vinp,Vinnの同相成分である同相入力電圧Vを検出し、同相入力電圧Vを中間ノード30cから出力することができる。同相入力電圧Vは、入力電圧Vinp,Vinnの平均として検出される。 The voltage detector 30 includes resistance elements 31 and 32 connected in series with each other. That is, one end of the resistance element 31 and one end of the resistance element 32 are connected to each other via the intermediate node 30c. The other end of the resistance element 31 is electrically connected to the differential input terminal INa, and the other end of the resistance element 32 is electrically connected to the differential input terminal INb. These resistance elements 31 and 32 have the same resistance value. Such a voltage detector 30 can detect the common-mode input voltage V C which is a common-mode component of the input voltages V inp and V inn and output the common-mode input voltage V C from the intermediate node 30c. The common-mode input voltage V C is detected as an average of the input voltages V inp and V inn .
 分流回路40は、共通接続ノード21cと第1電源ライン10Dとの間に接続されたnチャネル型FETからなる分流用トランジスタMを有している。この分流用トランジスタMは、電圧検出器30の中間ノード30cと電気的に接続されているゲート電極と、第1電源ライン10Dと電気的に接続されているドレイン電極と、共通接続ノード21cと電気的に接続されているソース電極とを有する。分流用トランジスタMのドレイン電極と第1電源ライン10Dとの間には負荷抵抗Rが設けられている。 Shunt circuit 40 has a frequency reuse transistor M 4 consisting of a common connection node 21c and connected n-channel FET between the first power supply line 10D. The partial diversion transistor M 4 has a gate electrode which is the voltage detector 30 intermediate node 30c electrically connected, the first power supply line 10D electrically the attached drain electrode, and the common connection node 21c A source electrode which is electrically connected. Load resistor R 3 is provided between the drain electrode of the minute diverting transistor M 4 and the first power supply line 10D.
 ソースフォロア回路51は、電圧バッファ回路1の出力インピーダンスを低下させる機能を有する。図1に示されるように、ソースフォロア回路51は、差動増幅回路11の差動出力端子OTa,OTbとそれぞれ接続された入力端子51a,51bと、出力端子51c,51dとを備える。ソースフォロア回路51は、入力端子51a,51bに入力された出力電圧Vmp,Vmnに応じた出力電圧Voutp,Voutnを出力端子51c,51dから出力する。より具体的には、ソースフォロア回路51は、nチャネル型FETからなるトランジスタM11,M12と、nチャネル型FETからなる負荷トランジスタM13,M14とを備える。トランジスタM11は、入力端子51aと接続されているゲート電極と、第1電源ライン10Dと接続されているドレイン電極と、負荷トランジスタM13を介して第2電源ライン10Sと接続されているソース電極とを有する。負荷トランジスタM13のドレイン電極は、トランジスタM11のソース電極と電気的に接続されている。また、負荷トランジスタM13のゲート電極には一定のバイアス電圧Vが印加され、負荷トランジスタM13のソース電極には一定の電源電圧VSSが印加されている。ソースフォロア回路51の出力端子51cは、トランジスタM11のソース電極と電気的に接続されている。 The source follower circuit 51 has a function of reducing the output impedance of the voltage buffer circuit 1. As shown in FIG. 1, the source follower circuit 51 includes input terminals 51a and 51b connected to the differential output terminals OTa and OTb of the differential amplifier circuit 11, respectively, and output terminals 51c and 51d. The source follower circuit 51 outputs output voltages V outp and V outn corresponding to the output voltages V mp and V mn input to the input terminals 51a and 51b from the output terminals 51c and 51d. More specifically, the source follower circuit 51 includes transistors M 11 and M 12 made of n-channel FETs and load transistors M 13 and M 14 made of n-channel FETs. Transistor M 11 includes a gate electrode connected to the input terminal 51a, a drain electrode connected to the first power supply line 10D, a source electrode connected to the second power supply line 10S via the load transistor M 13 And have. Load the drain electrode of the transistor M 13 is the source electrode electrically connected to the transistor M 11. The gate electrode of the load transistor M 13 is applied constant bias voltage V b, a constant power supply voltage V SS and the source electrode of the load transistor M 13 is applied. Output terminal 51c of the source follower circuit 51 is electrically with the source electrodes of the transistor M 11 connected.
 他のトランジスタM12は、入力端子51bと接続されているゲート電極と、第1電源ライン10Dと接続されているドレイン電極と、負荷トランジスタM14を介して第2電源ライン10Sと接続されているソース電極とを有する。負荷トランジスタM14のドレイン電極は、トランジスタM12のソース電極と電気的に接続されている。また、負荷トランジスタM14のゲート電極には一定のバイアス電圧Vが印加され、負荷トランジスタM14のソース電極には一定の電源電圧VSSが印加されている。ソースフォロア回路51の出力端子51dは、トランジスタM12のソース電極と電気的に接続されている。 Other transistor M 12 includes a gate electrode connected to the input terminal 51b, and a drain electrode connected to the first power supply line 10D, and is connected to the second power supply line 10S via the load transistor M 14 A source electrode. A drain electrode of the load transistor M 14 is electrically with the source electrodes of the transistor M 12 connected. The load constant bias voltage V b to the gate electrode of the transistor M 14 is applied, a constant power supply voltage V SS and the source electrode of the load transistor M 14 is applied. Output terminal 51d of the source follower circuit 51 is electrically with the source electrodes of the transistor M 12 connected.
 なお、ソースフォロア回路51は、複数のnチャネル型FETを用いて構成されているが、これに限定されるものではない。ソースフォロア回路51に代えて、複数のpチャネル型FETを用いて構成されたソースフォロア回路が採用されてもよい。 The source follower circuit 51 is configured using a plurality of n-channel FETs, but is not limited to this. Instead of the source follower circuit 51, a source follower circuit configured using a plurality of p-channel FETs may be employed.
 次に、上記した差動増幅回路11の動作について詳細に説明する。差動増幅回路11への差動入力信号は、同相入力成分と差動入力成分とに分けて考えることができる。同相入力成分である同相入力電圧Vと、差動入力成分である差動入力電圧Vは、それぞれ次式(1),(2)で与えられる。
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
Next, the operation of the differential amplifier circuit 11 will be described in detail. The differential input signal to the differential amplifier circuit 11 can be divided into an in-phase input component and a differential input component. Phase with the input voltage V C is the common mode input component, the differential input voltage V D is a differential input component, the following equations (1), is given by (2).
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
 差動入力成分に対する応答としては、その差動入力成分の振幅に応じた電流が差動対部21及び定電流源22に流れる。一方、同相入力成分に対する応答としては、その同相入力成分の振幅に応じた電流が差動対部21及び分流回路40の双方に流れるので、分流回路40が設けられていない場合と比べると、差動対部21における当該同相入力成分に対応する電流量は少ない。したがって、分流回路40は、差動出力成分に対する同相出力成分の割合を少なくすることができ、CMRRを向上させることができる。分流回路40に流れる電流量は、増幅トランジスタM,M各々のトランジスタサイズ比α(=W/L)と分流用トランジスタMのトランジスタサイズ比βとに依存する。ここで、分流用トランジスタMのトランジスタサイズ比βは、分流用トランジスタMのゲート長Lに対するゲート幅Wの比率W/Lで与えられる。トランジスタサイズ比αに対するトランジスタサイズ比βの比率を示す寸法比M(=β/α)が大きいほど、差動対部21における同相入力成分に対応する電流量が少なくなる。 As a response to the differential input component, a current corresponding to the amplitude of the differential input component flows through the differential pair 21 and the constant current source 22. On the other hand, as a response to the in-phase input component, a current corresponding to the amplitude of the in-phase input component flows through both the differential pair 21 and the shunt circuit 40. Therefore, compared with the case where the shunt circuit 40 is not provided, The amount of current corresponding to the in-phase input component in the moving pair 21 is small. Therefore, the shunt circuit 40 can reduce the ratio of the in-phase output component to the differential output component, and can improve the CMRR. The amount of current flowing through the shunt circuit 40 depends on the transistor size ratio α (= W a / L a ) of each of the amplification transistors M 1 and M 2 and the transistor size ratio β of the shunt transistor M 4 . Here, the transistor size ratio of the frequency reuse transistor M 4 beta is given by the ratio W b / L b of the gate width W b of the partial diversion transistor M 4 to the gate length L b. The larger the dimensional ratio M C (= β / α) indicating the ratio of the transistor size ratio β to the transistor size ratio α, the smaller the amount of current corresponding to the in-phase input component in the differential pair 21.
 ここで、分流用トランジスタMが同相入力電圧Vに対して線形領域で動作するように構成されている場合、分流回路40は、同相入力電圧Vの値に応じたコンダクタンス値を有する可変抵抗器として機能することができる。この場合、同相入力電圧Vの値が大きいほど、コンダクタンス値は大きくなる。 Here, if the partial diverting transistor M 4 is configured to operate in a linear region with respect to common-mode input voltage V C, shunt circuit 40, a variable having a conductance value corresponding to the value of the common-mode input voltage V C Can function as a resistor. In this case, the larger the value of the common-mode input voltage V C, the conductance value increases.
 次に、共通接続ノード21cでの共通ソース電位をV、増幅トランジスタM,M各々のトランスコンダクタンスをg、テール電流源22の出力抵抗をrで表すものと仮定する。上述のとおり、分流用トランジスタMのトランジスタサイズ比βは、増幅トランジスタM,M各々のトランジスタサイズ比αのM倍である。このとき、次式(3)が成立する。
Figure JPOXMLDOC01-appb-I000003
Next, it is assumed that the common source potential at the common connection node 21c is represented by V 0 , the transconductance of each of the amplification transistors M 1 and M 2 is represented by g m , and the output resistance of the tail current source 22 is represented by r O. As described above, the transistor size ratio β min diverting transistor M 4, an M C times the amplification transistor M 1, M 2 each transistor size ratio alpha. At this time, the following equation (3) is established.
Figure JPOXMLDOC01-appb-I000003
 この式(3)から共通ソース電位Vを求めることができる。すなわち、共通ソース電位Vは、次式(4)で与えられる。
Figure JPOXMLDOC01-appb-I000004
From this equation (3), the common source potential V 0 can be obtained. That is, the common source potential V 0 is given by the following equation (4).
Figure JPOXMLDOC01-appb-I000004
 差動増幅回路11の出力電圧Vmp,Vmnは、それぞれ、次式(5),(6)で表すことができる。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
The output voltages V mp and V mn of the differential amplifier circuit 11 can be expressed by the following equations (5) and (6), respectively.
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
 ここで、差動対部21における負荷抵抗R,Rは、ともに同一抵抗Rである。 Here, the load resistances R 1 and R 2 in the differential pair 21 are both the same resistance RL .
 したがって、式(4)の右辺を式(5),(6)の共通ソース電位Vに代入すれば、出力電圧Vmp,Vmnを求めることができる。すなわち、出力電圧Vmp,Vmnは、次式(7),(8)で与えられる。
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
Therefore, the output voltages V mp and V mn can be obtained by substituting the right side of the equation (4) into the common source potential V 0 of the equations (5) and (6). That is, the output voltages V mp and V mn are given by the following expressions (7) and (8).
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
 よって、差動増幅回路11の差動利得A及び同相利得Aは、次式(9),(10)で与えられる。
Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010
Thus, the differential gain A D and phase gain A C of the differential amplifier circuit 11 is expressed by the following equation (9) is given by (10).
Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010
 したがって、差動増幅回路11のCMRRは、近似的に次式(11)のとおりである。
Figure JPOXMLDOC01-appb-I000011
Therefore, the CMRR of the differential amplifier circuit 11 is approximately as shown in the following equation (11).
Figure JPOXMLDOC01-appb-I000011
 式(11)に示されるように、分流回路40が存在しない場合のCMRRの値(=2r)と比べると、差動増幅回路11のCMRRは、約(1+M/2)倍の値を有することが分かる。 As shown in the equation (11), the CMRR of the differential amplifier circuit 11 is about (1 + M C / 2) times as compared with the CMRR value (= 2r O g m ) when the shunt circuit 40 is not present. It can be seen that it has a value.
 以上に説明したように実施の形態1の差動増幅回路11では、分流回路40が、電圧検出器30で検出された同相入力電圧Vの値に応じたコンダクタンス値を有する電流経路を第1電源ライン10Dと共通接続ノード21cとの間に形成するので、CMRRの向上を実現することができる。したがって、優れたノイズ耐性を有する差動増幅回路11及び電圧バッファ回路1を提供することが可能である。また、電圧バッファ回路1が集積回路として構成された場合にその集積回路が微細化されても、高いCMRRを実現することができる。 In the differential amplifier circuit 11 of Embodiment 1 As described above, the shunt circuit 40, a current path having a conductance value corresponding to the value of the detected common-mode input voltage V C by the voltage detector 30 first Since it is formed between the power supply line 10D and the common connection node 21c, CMRR can be improved. Therefore, it is possible to provide the differential amplifier circuit 11 and the voltage buffer circuit 1 having excellent noise resistance. Further, when the voltage buffer circuit 1 is configured as an integrated circuit, high CMRR can be realized even if the integrated circuit is miniaturized.
実施の形態2.
 上記実施の形態1の電圧バッファ回路1における差動増幅回路11及びソースフォロア回路51は、複数のFETを用いて構成されている。これらFETに代えて、バイポーラトランジスタを用いて電圧バッファ回路を構成することが可能である。図2は、本発明に係る実施の形態2の電圧バッファ回路2の回路構成を概略的に示す図である。この電圧バッファ回路2は、差動増幅回路12とエミッタフォロア回路52とを備えて構成されている。
Embodiment 2. FIG.
The differential amplifier circuit 11 and the source follower circuit 51 in the voltage buffer circuit 1 of the first embodiment are configured using a plurality of FETs. Instead of these FETs, it is possible to configure a voltage buffer circuit using bipolar transistors. FIG. 2 is a diagram schematically showing a circuit configuration of the voltage buffer circuit 2 according to the second embodiment of the present invention. The voltage buffer circuit 2 includes a differential amplifier circuit 12 and an emitter follower circuit 52.
 図2に示されるように、差動増幅回路12は、差動入力端子INa,INb(第1及び第2の差動入力端子)を有し、第1電源ライン10Cから供給される電源電圧VCCと、第2電源ライン10Eから供給される電源電圧VEE(VEE<VCC)とを用いて、差動入力端子INa,INbに入力された信号を差動増幅する。たとえば、電源電圧VCCとして正電圧が、電源電圧VEEとしては負電圧がそれぞれ供給されればよい。 As shown in FIG. 2, the differential amplifier circuit 12 has differential input terminals INa and INb (first and second differential input terminals), and the power supply voltage V supplied from the first power supply line 10C. Using the CC and the power supply voltage V EE (V EE <V CC ) supplied from the second power supply line 10E, the signals input to the differential input terminals INa and INb are differentially amplified. For example, a positive voltage as the power supply voltage V CC is, as the power supply voltage V EE is a negative voltage may be employed to supply, respectively.
 差動増幅回路12は、差動入力端子INa,INbにそれぞれ印加された入力電圧Vinp,Vinnの差分を増幅する差動対部23及び定電流源24の組み合わせと、これら入力電圧Vinp,Vinnから同相入力電圧Vを検出する電圧検出器30と、この電圧検出器30から同相入力電圧Vの供給を受けて動作する分流回路41と、差動出力端子OTa,OTb(第1及び第2の差動出力端子)とを備えている。 The differential amplifier circuit 12 includes a combination of a differential pair 23 and a constant current source 24 for amplifying a difference between input voltages V inp and V inn applied to the differential input terminals INa and INb, and the input voltage V inp. , a voltage detector 30 for detecting the common mode input voltage V C from V inn, the shunt circuit 41 that operates by being supplied with the common-mode input voltage V C from the voltage detector 30, the differential output terminals OTa, OTB (a 1 and a second differential output terminal).
 差動対部23は、増幅トランジスタQ,Qの対からなる差動トランジスタ対を有する。これら増幅トランジスタQ,Qの各々は、npn型バイポーラトランジスタで構成されている。図2に示されるように、一方の増幅トランジスタQは、差動入力端子INaと電気的に接続されているベース電極と、第1電源ライン10Cと電気的に接続されているコレクタ電極と、共通接続ノード23cと電気的に接続されているエミッタ電極とを有する。他方の増幅トランジスタQは、差動入力端子INbと電気的に接続されているベース電極と、第1電源ライン10Cと電気的に接続されているコレクタ電極と、共通接続ノード23cと電気的に接続されているエミッタ電極とを有している。 The differential pair section 23 has a differential transistor pair composed of a pair of amplification transistors Q 1 and Q 2 . Each of these amplification transistors Q 1 and Q 2 is formed of an npn-type bipolar transistor. As shown in FIG. 2, one amplifying transistor Q 1 is a base electrode connected differential input terminals INa and electrically, the first power line 10C electrically connected to it are collector electrodes, The emitter electrode is electrically connected to the common connection node 23c. The other amplifying transistor Q 2 is a base electrode connected differential input terminal INb and electrically, the first power line 10C electrically connected to it are collector electrodes, the common connection node 23c and electrically And an emitter electrode connected thereto.
 また、一方の増幅トランジスタQのコレクタ電極と第1電源ライン10Cとの間に負荷抵抗rが設けられ、他方の増幅トランジスタQのコレクタ電極と第1電源ライン10Cとの間に負荷抵抗rが設けられている。更に、一方の増幅トランジスタQのコレクタ電極は、差動出力端子OTaと電気的に接続されており、他方の増幅トランジスタQのコレクタ電極は、差動出力端子OTbと電気的に接続されている。差動増幅回路12の設計段階では、増幅トランジスタQ,Qは、同一の電気的特性を有するように設計されており、負荷抵抗r,rも、同一抵抗rとなるように設定されている。定電流源24は、共通接続ノード23cと第2電源ライン10Eとの間に接続されたテール電流源である。定電流源24は、図2に概略的に示されるように少なくとも1個のバイポーラトランジスタQを用いて構成されていればよい。 The load resistor r 1 is provided between the one and the collector electrode of the amplifying transistor Q 1 and the first power supply line 10C, the load resistance between the collector electrode of the other of the amplifying transistor Q 2 and the first power supply line 10C r 2 is provided. Further, the collector electrode of one of the amplifying transistor Q 1 is are connected differential output terminals OTa electrically, the collector electrode of the other amplifying transistors Q 2, is electrically connected to the differential output terminal OTb Yes. At the design stage of the differential amplifier circuit 12, the amplification transistors Q 1 and Q 2 are designed to have the same electrical characteristics, and the load resistances r 1 and r 2 also have the same resistance r L. Is set. The constant current source 24 is a tail current source connected between the common connection node 23c and the second power supply line 10E. The constant current source 24 may be composed using at least one bipolar transistor Q 3 as shown schematically in Figure 2.
 分流回路41は、共通接続ノード23cと第1電源ライン10Cとの間に接続されたnpn型バイポーラトランジスタからなる分流用トランジスタQを有している。この分流用トランジスタQは、電圧検出器30の中間ノード30cと電気的に接続されているベース電極と、第1電源ライン10Cと電気的に接続されているコレクタ電極と、共通接続ノード23cと電気的に接続されているエミッタ電極とを有する。分流用トランジスタQのコレクタ電極と第1電源ライン10Cとの間には負荷抵抗rが設けられている。 Shunt circuit 41 has a frequency reuse transistor Q 4 consisting of a common connection node 23c and connected npn-type bipolar transistor between a first power supply line 10C. The partial diversion transistor Q 4 are a base electrode which is the voltage detector 30 intermediate node 30c electrically connected, the first power supply line 10C electrically connected to it are collector electrodes, and the common connection node 23c And an emitter electrode which is electrically connected. The load resistor r 3 is provided between the collector electrode of the minute diverting transistor Q 4 and the first power supply line 10C.
 エミッタフォロア回路52は、電圧バッファ回路2全体の出力インピーダンスを低下させる機能を有する。図2に示されるように、エミッタフォロア回路52は、差動増幅回路12の差動出力端子OTa,OTbとそれぞれ接続された入力端子52a,52bと、出力端子52c,52dとを備える。エミッタフォロア回路52は、これら入力端子52a,52bに入力された出力電圧Vmp,Vmnにそれぞれ応じた出力電圧Voutp,Voutnを出力端子52c,52dから出力する。より具体的には、エミッタフォロア回路52は、npn型バイポーラトランジスタQ11,Q12と、定電流源53,54とを備えて構成される。npn型バイポーラトランジスタQ11は、入力端子52aと接続されているベース電極と、第1電源ライン10Cと接続されているコレクタ電極と、定電流源53を介して第2電源ライン10Eと接続されているエミッタ電極とを有する。エミッタフォロア回路52の出力端子52cは、npn型バイポーラトランジスタQ11のエミッタ電極と電気的に接続されている。 The emitter follower circuit 52 has a function of reducing the output impedance of the entire voltage buffer circuit 2. As shown in FIG. 2, the emitter follower circuit 52 includes input terminals 52a and 52b respectively connected to the differential output terminals OTa and OTb of the differential amplifier circuit 12, and output terminals 52c and 52d. The emitter follower circuit 52 outputs output voltages V outp and V outn corresponding to the output voltages V mp and V mn input to these input terminals 52a and 52b from the output terminals 52c and 52d, respectively. More specifically, the emitter follower circuit 52 includes npn-type bipolar transistors Q 11 and Q 12 and constant current sources 53 and 54. npn-type bipolar transistor Q 11 has a base electrode connected to the input terminal 52a, a collector electrode connected to the first power supply line 10C, is connected to the second power supply line 10E via a constant current source 53 And an emitter electrode. Emitter output terminal 52c of the follower circuit 52 is npn-type bipolar transistors electrically connected to the emitter electrode of Q 11.
 一方、npn型バイポーラトランジスタQ12は、入力端子52bと接続されているベース電極と、第1電源ライン10Cと接続されているコレクタ電極と、定電流源54を介して第2電源ライン10Eと接続されているエミッタ電極とを有する。エミッタフォロア回路52の出力端子52dは、npn型バイポーラトランジスタQ12のエミッタ電極と電気的に接続されている。 On the other hand, npn-type bipolar transistor Q 12 is connected to a base electrode connected to the input terminal 52 b, and a collector electrode connected to the first power supply line 10C, the second power supply line 10E via a constant current source 54 And an emitter electrode. Emitter output terminal 52d of the follower circuit 52 is npn-type bipolar transistor connected emitter electrode and electrically in Q 12.
 なお、エミッタフォロア回路52は、複数のnpn型バイポーラトランジスタを用いて構成されているが、これに限定されるものではない。エミッタフォロア回路52に代えて、複数のpnp型バイポーラトランジスタを用いて構成されたエミッタフォロア回路が採用されてもよい。 The emitter follower circuit 52 is configured using a plurality of npn-type bipolar transistors, but is not limited to this. Instead of the emitter follower circuit 52, an emitter follower circuit configured using a plurality of pnp bipolar transistors may be employed.
 以上に説明したように実施の形態2の差動増幅回路12においても、分流回路41が、電圧検出器30で検出された同相入力電圧Vに応じたコンダクタンス値を有する電流経路を第1電源ライン10Cと共通接続ノード23cとの間に形成することができるので、CMRRの向上を実現することができる。したがって、優れたノイズ耐性を有する差動増幅回路12及び電圧バッファ回路2を提供することが可能である。また、電圧バッファ回路12が集積回路として構成された場合にその集積回路が微細化されても、高いCMRRを実現することができる。 Also in the differential amplifier circuit 12 of the second embodiment as described above, the shunt circuit 41, a first power supply current path having a conductance value corresponding to the common mode input voltage V C which is detected by the voltage detector 30 Since it can be formed between the line 10C and the common connection node 23c, CMRR can be improved. Therefore, it is possible to provide the differential amplifier circuit 12 and the voltage buffer circuit 2 having excellent noise resistance. Further, when the voltage buffer circuit 12 is configured as an integrated circuit, a high CMRR can be realized even if the integrated circuit is miniaturized.
実施の形態3.
 次に、上記実施の形態1の変形例である実施の形態3について説明する。図3は、本発明に係る実施の形態3である電圧バッファ回路3の回路構成を概略的に示す図である。図3に示されるように、この電圧バッファ回路3は、差動増幅回路13とソースフォロア回路51とを備えて構成されている。差動増幅回路13とソースフォロア回路51とは、第1電源ライン10Dから供給される電源電圧VDDと、第2電源ライン10Sから供給される電源電圧VSSとを用いて動作する。
Embodiment 3 FIG.
Next, a third embodiment which is a modification of the first embodiment will be described. FIG. 3 is a diagram schematically showing a circuit configuration of the voltage buffer circuit 3 according to the third embodiment of the present invention. As shown in FIG. 3, the voltage buffer circuit 3 includes a differential amplifier circuit 13 and a source follower circuit 51. The differential amplifier circuit 13 and the source follower circuit 51 operates using a power supply voltage V DD supplied from the first power supply line 10D, and a power supply voltage V SS supplied from the second power supply line 10S.
 差動増幅回路13は、差動入力端子INa,INb(第1及び第2の差動入力端子)にそれぞれ印加された入力電圧Vinp,Vinnの差分を増幅する差動対部21及び定電流源22の組み合わせと、これら入力電圧Vinp,Vinnから同相入力電圧Vを検出する電圧検出器30と、同相入力電圧Vを利得Aで増幅して増幅電圧を出力する増幅器44と、増幅器44から出力された増幅電圧の供給を受けて動作する分流回路40と、差動出力端子OTa,OTb(第1及び第2の差動出力端子)とを備えている。 The differential amplifier circuit 13 includes a differential pair 21 and a constant amplifier for amplifying the difference between the input voltages V inp and V inn applied to the differential input terminals INa and INb (first and second differential input terminals), respectively. A combination of the current sources 22, a voltage detector 30 that detects the common-mode input voltage V C from these input voltages V inp and V inn , and an amplifier 44 that amplifies the common-mode input voltage V C with a gain Av and outputs an amplified voltage. And a shunt circuit 40 that operates in response to the supply of the amplified voltage output from the amplifier 44, and differential output terminals OTa, OTb (first and second differential output terminals).
 本実施の形態の電圧バッファ回路3の構成は、差動増幅回路13が増幅器44を有する点を除いて、上記実施の形態1の電圧バッファ回路1の構成と同じである。分流回路40の分流用トランジスタMのゲート電極には、増幅器44から供給された増幅電圧が印加される。これにより、同相入力成分に対応して分流回路40に流れる電流量を増やすことができる。差動増幅回路13のCMRRは、近似的に次式(12)で与えられる。
Figure JPOXMLDOC01-appb-I000012
The configuration of the voltage buffer circuit 3 of the present embodiment is the same as the configuration of the voltage buffer circuit 1 of the first embodiment except that the differential amplifier circuit 13 includes an amplifier 44. The gate electrode of the minute diverting transistor M 4 of the shunt circuit 40 amplifies the voltage supplied from the amplifier 44 is applied. Thereby, the amount of current flowing through the shunt circuit 40 can be increased corresponding to the in-phase input component. The CMRR of the differential amplifier circuit 13 is approximately given by the following equation (12).
Figure JPOXMLDOC01-appb-I000012
 以上に説明したように実施の形態3の差動増幅回路13では、分流回路40が、増幅器44で増幅された同相入力電圧に応じたコンダクタンス値を有する電流経路を第1電源ライン10Dと共通接続ノード21cとの間に形成することができるので、実施の形態1の場合と比べると、更なるCMRRの向上を実現することができる。したがって、優れたノイズ耐性を有する差動増幅回路13及び電圧バッファ回路3を提供することが可能である。また、電圧バッファ回路3が集積回路として構成された場合にその集積回路が微細化されても、高いCMRRを実現することができる。 As described above, in the differential amplifier circuit 13 of the third embodiment, the shunt circuit 40 commonly connects the current path having the conductance value corresponding to the common-mode input voltage amplified by the amplifier 44 with the first power supply line 10D. Since it can be formed with the node 21c, further improvement of CMRR can be realized as compared with the case of the first embodiment. Therefore, it is possible to provide the differential amplifier circuit 13 and the voltage buffer circuit 3 having excellent noise resistance. Further, when the voltage buffer circuit 3 is configured as an integrated circuit, a high CMRR can be realized even if the integrated circuit is miniaturized.
実施の形態4.
 上記実施の形態3の電圧バッファ回路3における差動増幅回路13及びソースフォロア回路51は、複数のFETを用いて構成されている。これらFETに代えて、バイポーラトランジスタを用いて電圧バッファ回路を構成することが可能である。図4は、本発明に係る実施の形態4である電圧バッファ回路4の回路構成を概略的に示す図である。この電圧バッファ回路4は、差動増幅回路14とエミッタフォロア回路52とを備えて構成されている。差動増幅回路14とエミッタフォロア回路52とは、第1電源ライン10Cから供給される電源電圧VCCと、第2電源ライン10Eから供給される電源電圧VEEとを用いて動作する。
Embodiment 4 FIG.
The differential amplifier circuit 13 and the source follower circuit 51 in the voltage buffer circuit 3 of the third embodiment are configured using a plurality of FETs. Instead of these FETs, it is possible to configure a voltage buffer circuit using bipolar transistors. FIG. 4 schematically shows a circuit configuration of voltage buffer circuit 4 according to the fourth embodiment of the present invention. The voltage buffer circuit 4 includes a differential amplifier circuit 14 and an emitter follower circuit 52. The differential amplifier circuit 14 and an emitter follower circuit 52 operates using a power supply voltage V CC supplied from the first power supply line 10C, and a power supply voltage V EE supplied from the second power supply line 10E.
 差動増幅回路14は、差動入力端子INa,INb(第1及び第2の差動入力端子)にそれぞれ印加された入力電圧Vinp,Vinnの差分を増幅する差動対部23及び定電流源24の組み合わせと、入力電圧Vinp,Vinnから同相入力電圧Vを検出する電圧検出器30と、同相入力電圧Vを増幅して増幅電圧を出力する増幅器45と、増幅器45から出力された増幅電圧の供給を受けて動作する分流回路41と、差動出力端子OTa,OTb(第1及び第2の差動出力端子)とを備えている。 The differential amplifier circuit 14 includes a differential pair 23 and a constant amplifier for amplifying the difference between the input voltages V inp and V inn applied to the differential input terminals INa and INb (first and second differential input terminals), respectively. From the combination of the current sources 24, the voltage detector 30 for detecting the common-mode input voltage V C from the input voltages V inp and V inn , the amplifier 45 for amplifying the common-mode input voltage V C and outputting the amplified voltage, and the amplifier 45 A shunt circuit 41 that operates in response to the supplied amplified voltage and differential output terminals OTa, OTb (first and second differential output terminals) are provided.
 本実施の形態の電圧バッファ回路4の構成は、差動増幅回路14が増幅器45を有する点を除いて、上記実施の形態2の電圧バッファ回路2(図2)の構成と同じである。分流回路41の分流用トランジスタQのベース電極には、増幅器45から供給された増幅電圧が印加される。これにより、同相入力成分に対応して分流回路40に流れる電流量を増やすことができる。 The configuration of the voltage buffer circuit 4 of the present embodiment is the same as the configuration of the voltage buffer circuit 2 (FIG. 2) of the second embodiment except that the differential amplifier circuit 14 includes an amplifier 45. The base electrode of the minute diverting transistor Q 4 of the shunt circuit 41 amplifies the voltage supplied from the amplifier 45 is applied. Thereby, the amount of current flowing through the shunt circuit 40 can be increased corresponding to the in-phase input component.
 以上に説明したように実施の形態4の差動増幅回路14では、分流回路41が、増幅器45で増幅された同相入力電圧に応じたコンダクタンス値を有する電流経路を第1電源ライン10Cと共通接続ノード23cとの間に形成することができるので、実施の形態2の場合と比べると、更なるCMRRの向上を実現することができる。したがって、優れたノイズ耐性を有する差動増幅回路14及び電圧バッファ回路4を提供することが可能である。また、電圧バッファ回路4が集積回路として構成された場合にその集積回路が微細化されても、高いCMRRを実現することができる。 As described above, in the differential amplifier circuit 14 of the fourth embodiment, the shunt circuit 41 commonly connects the current path having the conductance value corresponding to the common-mode input voltage amplified by the amplifier 45 with the first power supply line 10C. Since it can be formed between the node 23c and the second embodiment, the CMRR can be further improved as compared with the second embodiment. Therefore, it is possible to provide the differential amplifier circuit 14 and the voltage buffer circuit 4 having excellent noise tolerance. Further, when the voltage buffer circuit 4 is configured as an integrated circuit, a high CMRR can be realized even if the integrated circuit is miniaturized.
実施の形態5.
 次に、上記実施の形態1の他の変形例である実施の形態5について説明する。図5は、本発明に係る実施の形態5である電圧バッファ回路5の回路構成を概略的に示す図である。図5に示されるように、この電圧バッファ回路5は、差動増幅回路15とソースフォロア回路51とを備えて構成されている。差動増幅回路15とソースフォロア回路51とは、第1電源ライン10Dから供給される電源電圧VDDと、第2電源ライン10Sから供給される電源電圧VSSとを用いて動作する。
Embodiment 5 FIG.
Next, a fifth embodiment which is another modification of the first embodiment will be described. FIG. 5 schematically shows a circuit configuration of voltage buffer circuit 5 according to the fifth embodiment of the present invention. As shown in FIG. 5, the voltage buffer circuit 5 includes a differential amplifier circuit 15 and a source follower circuit 51. The differential amplifier circuit 15 and the source follower circuit 51 operates using a power supply voltage V DD supplied from the first power supply line 10D, and a power supply voltage V SS supplied from the second power supply line 10S.
 差動増幅回路15は、差動入力端子INa,INb(第1及び第2の差動入力端子)にそれぞれ印加された入力電圧Vinp,Vinnの差分を増幅する差動対部21及び定電流源22の組み合わせと、入力電圧Vinp,Vinnから同相入力電圧Vを検出する電圧検出器30と、この電圧検出器30から同相入力電圧Vの供給を受けて動作する分流回路42と、差動出力端子OTa,OTb(第1及び第2の差動出力端子)とを備えている。 The differential amplifier circuit 15 includes a differential pair 21 that amplifies a difference between input voltages V inp and V inn applied to the differential input terminals INa and INb (first and second differential input terminals), and a constant pair. A combination of the current sources 22, a voltage detector 30 that detects the common-mode input voltage V C from the input voltages V inp and V inn , and a shunt circuit 42 that operates by receiving the supply of the common-mode input voltage V C from the voltage detector 30. And differential output terminals OTa and OTb (first and second differential output terminals).
 本実施の形態の電圧バッファ回路5の構成は、差動増幅回路15が実施の形態1の分流回路40に代えて図5の分流回路42を有する点を除いて、上記実施の形態1の電圧バッファ回路1の構成と同じである。 The configuration of the voltage buffer circuit 5 of the present embodiment is the same as that of the first embodiment except that the differential amplifier circuit 15 has the shunt circuit 42 of FIG. 5 instead of the shunt circuit 40 of the first embodiment. The configuration of the buffer circuit 1 is the same.
 本実施の形態の分流回路42は、第1電源ライン10Dと共通接続ノード21cとの間に接続された可変抵抗器46を有している。この可変抵抗器46は、同相入力電圧Vの値に応じたコンダクタンス値を有する電流経路を第1電源ライン10Dと共通接続ノード21cとの間に形成することができる。可変抵抗器46は、同相入力電圧Vの値が大きいほど、コンダクタンス値を大きくすることが可能である。よって、実施の形態1の場合と同様に、CMRRの向上を実現することができる。図6A及び図6Bは、このような可変抵抗器46の回路構成例である可変抵抗回路46A,46Bを示す概略図である。図6Aの可変抵抗回路46Aは、第1電源ライン10Dに接続された一端及び共通接続ノード21cに接続された他端を有する抵抗素子46aと、この抵抗素子46aに並列に接続されたnチャネル型FETからなる制御トランジスタMとを含んで構成される。制御トランジスタMにおいては、ドレイン電極が第1電源ライン10Dと電気的に接続され、ソース電極が共通接続ノード21cと電気的に接続され、ゲート電極に同相入力電圧Vが印加される。一方、図6Bの可変抵抗回路46Bは、第1電源ライン10Dに接続された一端を有する抵抗素子46bと、この抵抗素子46bの他端に直列に接続されたnチャネル型FETからなる制御トランジスタMとを含んで構成されている。制御トランジスタMにおいては、ドレイン電極が抵抗素子46bの他端と電気的に接続され、ソース電極が共通接続ノード21cと電気的に接続され、ゲート電極に同相入力電圧Vが印加される。なお、可変抵抗器46の回路構成は、図6A及び図6Bの可変抵抗回路46A,46Bに限定されるものではなく、可変抵抗回路46A,46B以外の回路構成を用いることも可能である。 The shunt circuit 42 according to the present embodiment includes a variable resistor 46 connected between the first power supply line 10D and the common connection node 21c. The variable resistor 46 may be formed between the current path having a conductance value corresponding to the value of the common-mode input voltage V C and the first power supply line 10D and the common connection node 21c. Variable resistor 46, the larger the value of the common-mode input voltage V C, it is possible to increase the conductance. Therefore, CMRR can be improved as in the case of the first embodiment. 6A and 6B are schematic diagrams showing variable resistance circuits 46A and 46B, which are circuit configuration examples of such a variable resistor 46. FIG. 6A includes a resistance element 46a having one end connected to the first power supply line 10D and the other end connected to the common connection node 21c, and an n-channel type connected in parallel to the resistance element 46a. configured to include a control transistor M 5 consisting of FET. In the control transistor M 5, a drain electrode is electrically connected to the first power supply line 10D, a source electrode common connection node 21c and is electrically connected to the common mode input voltage V C is applied to the gate electrode. On the other hand, the variable resistance circuit 46B of FIG. 6B includes a control element M including a resistance element 46b having one end connected to the first power supply line 10D and an n-channel FET connected in series to the other end of the resistance element 46b. 6 . In the control transistor M 6 has a drain electrode electrically connected to the other end of the resistance element 46b, a source electrode connected to the common connection node 21c and electrically, the common mode input voltage V C is applied to the gate electrode. The circuit configuration of the variable resistor 46 is not limited to the variable resistance circuits 46A and 46B of FIGS. 6A and 6B, and a circuit configuration other than the variable resistance circuits 46A and 46B may be used.
 以上に説明したように実施の形態5では、CMRRの向上を実現し優れたノイズ耐性を有する差動増幅回路15及び電圧バッファ回路5を提供することが可能である。また、電圧バッファ回路5が集積回路として構成された場合にその集積回路が微細化されても、高いCMRRを実現することができる。 As described above, in the fifth embodiment, it is possible to provide the differential amplifier circuit 15 and the voltage buffer circuit 5 that achieve an improvement in CMRR and have excellent noise resistance. Further, when the voltage buffer circuit 5 is configured as an integrated circuit, high CMRR can be realized even if the integrated circuit is miniaturized.
実施の形態6.
 上記実施の形態5の電圧バッファ回路5における差動増幅回路15及びソースフォロア回路51は、複数のFETを用いて構成されている。これらFETに代えて、バイポーラトランジスタを用いて電圧バッファ回路を構成することが可能である。図7は、本発明に係る実施の形態6である電圧バッファ回路6の回路構成を概略的に示す図である。この電圧バッファ回路6は、差動増幅回路16とエミッタフォロア回路52とを備えて構成されている。差動増幅回路16とエミッタフォロア回路52とは、第1電源ライン10Cから供給される電源電圧VCCと、第2電源ライン10Eから供給される電源電圧VEEとを用いて動作する。
Embodiment 6 FIG.
The differential amplifier circuit 15 and the source follower circuit 51 in the voltage buffer circuit 5 of the fifth embodiment are configured using a plurality of FETs. Instead of these FETs, it is possible to configure a voltage buffer circuit using bipolar transistors. FIG. 7 schematically shows a circuit configuration of voltage buffer circuit 6 according to the sixth embodiment of the present invention. The voltage buffer circuit 6 includes a differential amplifier circuit 16 and an emitter follower circuit 52. The differential amplifier circuit 16 and an emitter follower circuit 52 operates using a power supply voltage V CC supplied from the first power supply line 10C, and a power supply voltage V EE supplied from the second power supply line 10E.
 差動増幅回路16は、差動入力端子INa,INb(第1及び第2の差動入力端子)にそれぞれ印加された入力電圧Vinp,Vinnの差分を増幅する差動対部23及び定電流源24の組み合わせと、入力電圧Vinp,Vinnから同相入力電圧Vを検出する電圧検出器30と、この電圧検出器30から同相入力電圧Vの供給を受けて動作する分流回路43と、差動出力端子OTa,OTb(第1及び第2の差動出力端子)とを備えている。 The differential amplifier circuit 16 includes a differential pair 23 and a constant amplifier that amplify the difference between the input voltages V inp and V inn applied to the differential input terminals INa and INb (first and second differential input terminals), respectively. A combination of the current sources 24, a voltage detector 30 that detects the common-mode input voltage V C from the input voltages V inp and V inn , and a shunt circuit 43 that operates by receiving the supply of the common-mode input voltage V C from the voltage detector 30 And differential output terminals OTa and OTb (first and second differential output terminals).
 本実施の形態の電圧バッファ回路6の構成は、差動増幅回路16が実施の形態2の分流回路41に代えて図7の分流回路43を有する点を除いて、上記実施の形態2の電圧バッファ回路2の構成と同じである。 The configuration of the voltage buffer circuit 6 of the present embodiment is the same as that of the second embodiment except that the differential amplifier circuit 16 has the shunt circuit 43 of FIG. 7 instead of the shunt circuit 41 of the second embodiment. The configuration is the same as that of the buffer circuit 2.
 本実施の形態の分流回路43は、第1電源ライン10Cと共通接続ノード23cとの間に接続された可変抵抗器47を有する。この可変抵抗器47は、同相入力電圧Vの値に応じたコンダクタンス値を有する電流経路を第1電源ライン10Cと共通接続ノード23cとの間に形成することができる。可変抵抗器47は、同相入力電圧Vの値が大きいほど、コンダクタンス値を大きくすることが可能である。よって、実施の形態2の場合と同様に、CMRRの向上を実現することができる。また、電圧バッファ回路6が集積回路として構成された場合にその集積回路が微細化されても、高いCMRRを実現することができる。 The shunt circuit 43 of the present embodiment includes a variable resistor 47 connected between the first power supply line 10C and the common connection node 23c. The variable resistor 47 can form a current path having a conductance value corresponding to the value of the common-mode input voltage V C between the first power supply line 10C and the common connection node 23c. The variable resistor 47 can increase the conductance value as the value of the common-mode input voltage V C increases. Therefore, as in the case of the second embodiment, CMRR can be improved. Further, when the voltage buffer circuit 6 is configured as an integrated circuit, a high CMRR can be realized even if the integrated circuit is miniaturized.
 以上、図面を参照して本発明に係る種々の実施の形態について述べたが、これら実施の形態は本発明の例示であり、これら実施の形態以外の様々な形態を採用することもできる。たとえば、実施の形態1,3,5の差動増幅回路11,13,15のいずれかと実施の形態2のエミッタフォロア回路52とを組み合わせて電圧バッファ回路が構成されてもよい。あるいは、実施の形態2,4,6の差動増幅回路12,14,16のいずれかと実施の形態1のソースフォロア回路51とを組み合わせて電圧バッファ回路が構成されてもよい。 Although various embodiments according to the present invention have been described above with reference to the drawings, these embodiments are examples of the present invention, and various forms other than these embodiments can be adopted. For example, a voltage buffer circuit may be configured by combining any of differential amplifier circuits 11, 13, and 15 of the first, third, and fifth embodiments and emitter follower circuit 52 of the second embodiment. Alternatively, the voltage buffer circuit may be configured by combining any of the differential amplifier circuits 12, 14, and 16 of the second, fourth, and sixth embodiments and the source follower circuit 51 of the first embodiment.
 なお、本発明の範囲内において、上記実施の形態1~6の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 It should be noted that within the scope of the present invention, the above-described first to sixth embodiments can be freely combined, any constituent element of each embodiment can be modified, or any constituent element of each embodiment can be omitted.
 この発明に係る差動増幅回路及び電圧バッファ回路は、たとえば、高周波領域で動作するアナログ集積回路に用いられることに適している。 The differential amplifier circuit and the voltage buffer circuit according to the present invention are suitable for use in, for example, an analog integrated circuit that operates in a high frequency region.
 1~6 電圧バッファ回路、11~16 差動増幅回路、21,23 差動対部、21c,23c 共通接続ノード、22,24 定電流源、30 電圧検出器、40~43 分流回路、44,45 増幅器、46,47 可変抵抗器、46A,46B 可変抵抗回路、51 ソースフォロア回路、52 エミッタフォロア回路、53,54 定電流源、M,M,Q,Q 増幅トランジスタ、M 定電流トランジスタ、M 分流用トランジスタ、M11,M12 電界効果トランジスタ、M13,M14 負荷トランジスタ、Q バイポーラトランジスタ、Q 分流用トランジスタ、Q11,Q12 バイポーラトランジスタ、INa,INb 差動入力端子、OTa,OTb 差動出力端子。 1 to 6 voltage buffer circuit, 11 to 16 differential amplifier circuit, 21 and 23 differential pair, 21c and 23c common connection node, 22 and 24 constant current source, 30 voltage detector, 40 to 43 shunt circuit, 44, 45 amplifier, 46, 47 variable resistor, 46A, 46B variable resistance circuit, 51 source follower circuit, 52 emitter follower circuit, 53, 54 constant current source, M 1 , M 2 , Q 1 , Q 2 amplification transistor, M 3 constant current transistor, M 4 minutes diverting transistor, M 11, M 12 field effect transistor, M 13, M 14 load transistor, Q 3 bipolar transistors, Q 4 minutes diverted transistors, Q 11, Q 12 bipolar transistors, INa, INb difference Dynamic input terminal, OTa, OTb differential output terminal.

Claims (12)

  1.  第1及び第2の差動入力端子と、
     予め定められた第1の電源電圧を供給する第1電源ラインと、
     前記第1の電源電圧とは異なる第2の電源電圧を供給する第2電源ラインと、
     前記第1の差動入力端子と電気的に接続されたゲート電極を有するとともに、前記第1電源ラインと電気的に接続されたドレイン電極を有する電界効果トランジスタからなる第1の増幅トランジスタと、
     前記第2の差動入力端子と電気的に接続されたゲート電極を有するとともに、前記第1電源ラインと電気的に接続されたドレイン電極を有する電界効果トランジスタからなる第2の増幅トランジスタと、
     前記第1及び第2の増幅トランジスタのそれぞれのソース電極と電気的に接続された共通接続ノードと、
     前記共通接続ノードと前記第2電源ラインとの間に接続された定電流源と、
     前記第1及び第2の差動入力端子にそれぞれ印加された入力電圧から同相入力電圧を検出し、当該同相入力電圧を出力する電圧検出器と、
     前記共通接続ノードと前記第1電源ラインとの間に配置され、前記同相入力電圧に応じたコンダクタンス値を有する電流経路を形成する分流回路と、
     前記第1の増幅トランジスタの当該ドレイン電極及び前記第2の増幅トランジスタの当該ドレイン電極とそれぞれ電気的に接続された第1及び第2の差動出力端子と
    を備えることを特徴とする差動増幅回路。
    First and second differential input terminals;
    A first power supply line for supplying a predetermined first power supply voltage;
    A second power supply line for supplying a second power supply voltage different from the first power supply voltage;
    A first amplifying transistor comprising a field effect transistor having a gate electrode electrically connected to the first differential input terminal and having a drain electrode electrically connected to the first power supply line;
    A second amplification transistor comprising a field effect transistor having a gate electrode electrically connected to the second differential input terminal and having a drain electrode electrically connected to the first power supply line;
    A common connection node electrically connected to respective source electrodes of the first and second amplification transistors;
    A constant current source connected between the common connection node and the second power supply line;
    A voltage detector that detects a common-mode input voltage from input voltages applied to the first and second differential input terminals and outputs the common-mode input voltage;
    A shunt circuit disposed between the common connection node and the first power supply line and forming a current path having a conductance value corresponding to the common-mode input voltage;
    A differential amplifier comprising: a first differential output terminal electrically connected to the drain electrode of the first amplification transistor and the drain electrode of the second amplification transistor, respectively. circuit.
  2.  請求項1記載の差動増幅回路であって、
     前記分流回路は、分流用トランジスタを含み、
     前記分流用トランジスタは、前記同相入力電圧が印加されるゲート電極と、前記共通接続ノードと電気的に接続されたソース電極と、前記第1電源ラインと電気的に接続されたドレイン電極とを有する電界効果トランジスタからなる
    ことを特徴とする差動増幅回路。
    The differential amplifier circuit according to claim 1,
    The shunt circuit includes a shunt transistor;
    The shunt transistor includes a gate electrode to which the common-mode input voltage is applied, a source electrode electrically connected to the common connection node, and a drain electrode electrically connected to the first power supply line. A differential amplifier circuit comprising a field effect transistor.
  3.  請求項2記載の差動増幅回路であって、前記分流用トランジスタは、前記同相入力電圧の値が大きいほど、前記コンダクタンス値を大きくする可変抵抗器であることを特徴とする差動増幅回路。 3. The differential amplifier circuit according to claim 2, wherein the shunting transistor is a variable resistor that increases the conductance value as the value of the common-mode input voltage increases.
  4.  請求項1記載の差動増幅回路であって、前記同相入力電圧を増幅して増幅電圧を出力する増幅器を更に備え、
     前記分流回路は、前記共通接続ノードと前記第1電源ラインとの間に接続された分流用トランジスタを含み、
     前記分流用トランジスタは、前記増幅電圧が印加されるゲート電極と、前記共通接続ノードと電気的に接続されたソース電極と、前記第1電源ラインと電気的に接続されたドレイン電極とを有する電界効果トランジスタからなる
    ことを特徴とする差動増幅回路。
    The differential amplifier circuit according to claim 1, further comprising an amplifier that amplifies the common-mode input voltage and outputs an amplified voltage,
    The shunt circuit includes a shunt transistor connected between the common connection node and the first power supply line,
    The shunt transistor has an electric field having a gate electrode to which the amplified voltage is applied, a source electrode electrically connected to the common connection node, and a drain electrode electrically connected to the first power supply line. A differential amplifier circuit comprising an effect transistor.
  5.  請求項1記載の差動増幅回路であって、前記分流回路は、前記同相入力電圧の値が大きいほど、前記コンダクタンス値を大きくする可変抵抗器を含むことを特徴とする差動増幅回路。 2. The differential amplifier circuit according to claim 1, wherein the shunt circuit includes a variable resistor that increases the conductance value as the value of the common-mode input voltage increases.
  6.  第1及び第2の差動入力端子と、
     予め定められた第1の電源電圧を供給する第1電源ラインと、
     前記第1の電源電圧とは異なる第2の電源電圧を供給する第2電源ラインと、
     前記第1の差動入力端子と電気的に接続されたベース電極を有するとともに、前記第1電源ラインと電気的に接続されたコレクタ電極を有するバイポーラトランジスタからなる第1の増幅トランジスタと、
     前記第2の差動入力端子と電気的に接続されたベース電極を有するとともに、前記第1電源ラインと電気的に接続されたコレクタ電極を有するバイポーラトランジスタからなる第2の増幅トランジスタと、
     前記第1及び第2の増幅トランジスタのそれぞれのエミッタ電極と電気的に接続された共通接続ノードと、
     前記共通接続ノードと前記第2電源ラインとの間に接続された定電流源と、
     前記第1及び第2の差動入力端子にそれぞれ印加された入力電圧から同相入力電圧を検出し、当該同相入力電圧を出力する電圧検出器と、
     前記共通接続ノードと前記第1電源ラインとの間に接続され、前記同相入力電圧に応じたコンダクタンス値を有する分流回路と、
     前記第1の増幅トランジスタの当該コレクタ電極及び前記第2の増幅トランジスタの当該コレクタ電極とそれぞれ電気的に接続された第1及び第2の差動出力端子と
    を備えることを特徴とする差動増幅回路。
    First and second differential input terminals;
    A first power supply line for supplying a predetermined first power supply voltage;
    A second power supply line for supplying a second power supply voltage different from the first power supply voltage;
    A first amplifying transistor comprising a bipolar transistor having a base electrode electrically connected to the first differential input terminal and having a collector electrode electrically connected to the first power supply line;
    A second amplification transistor comprising a bipolar transistor having a base electrode electrically connected to the second differential input terminal and having a collector electrode electrically connected to the first power supply line;
    A common connection node electrically connected to the respective emitter electrodes of the first and second amplification transistors;
    A constant current source connected between the common connection node and the second power supply line;
    A voltage detector that detects a common-mode input voltage from input voltages applied to the first and second differential input terminals and outputs the common-mode input voltage;
    A shunt circuit connected between the common connection node and the first power supply line and having a conductance value corresponding to the common-mode input voltage;
    A differential amplifier comprising first and second differential output terminals electrically connected to the collector electrode of the first amplification transistor and the collector electrode of the second amplification transistor, respectively. circuit.
  7.  請求項6記載の差動増幅回路であって、
     前記分流回路は、分流用トランジスタを含み、
     前記分流用トランジスタは、前記同相入力電圧が印加されるベース電極と、前記共通接続ノードと電気的に接続されたエミッタ電極と、前記第1電源ラインと電気的に接続されたコレクタ電極とを有するバイポーラトランジスタからなる
    ことを特徴とする差動増幅回路。
    The differential amplifier circuit according to claim 6,
    The shunt circuit includes a shunt transistor;
    The shunt transistor includes a base electrode to which the common-mode input voltage is applied, an emitter electrode electrically connected to the common connection node, and a collector electrode electrically connected to the first power supply line. A differential amplifier circuit comprising a bipolar transistor.
  8.  請求項7記載の差動増幅回路であって、前記分流用トランジスタは、前記同相入力電圧の値が大きいほど、前記コンダクタンス値を大きくする可変抵抗器であることを特徴とする差動増幅回路。 8. The differential amplifier circuit according to claim 7, wherein the shunting transistor is a variable resistor that increases the conductance value as the value of the common-mode input voltage increases.
  9.  請求項6記載の差動増幅回路であって、前記同相入力電圧を増幅して増幅電圧を出力する増幅器を更に備え、
     前記分流回路は、前記共通接続ノードと前記第1電源ラインとの間に接続された分流用トランジスタを含み、
     前記分流用トランジスタは、前記増幅電圧が印加されるベース電極と、前記共通接続ノードと電気的に接続されたエミッタ電極と、前記第1電源ラインと電気的に接続されたコレクタ電極とを有するバイポーラトランジスタからなる
    ことを特徴とする差動増幅回路。
    The differential amplifier circuit according to claim 6, further comprising an amplifier that amplifies the common-mode input voltage and outputs an amplified voltage,
    The shunt circuit includes a shunt transistor connected between the common connection node and the first power supply line,
    The shunting transistor is a bipolar transistor having a base electrode to which the amplified voltage is applied, an emitter electrode electrically connected to the common connection node, and a collector electrode electrically connected to the first power supply line. A differential amplifier circuit comprising a transistor.
  10.  請求項6記載の差動増幅回路であって、前記分流回路は、前記同相入力電圧の値が大きいほど、前記コンダクタンス値を大きくする可変抵抗器を含むことを特徴とする差動増幅回路。 7. The differential amplifier circuit according to claim 6, wherein the shunt circuit includes a variable resistor that increases the conductance value as the value of the common-mode input voltage increases.
  11.  請求項1記載の差動増幅回路と、
     前記差動増幅回路の出力に応じた信号を出力するソースフォロア回路と
    を備えることを特徴とする電圧バッファ回路。
    A differential amplifier circuit according to claim 1;
    A voltage buffer circuit comprising: a source follower circuit that outputs a signal corresponding to an output of the differential amplifier circuit.
  12.  請求項6記載の差動増幅回路と、
     前記差動増幅回路の出力に応じた信号を出力するエミッタフォロア回路と
    を備えることを特徴とする電圧バッファ回路。
    A differential amplifier circuit according to claim 6;
    A voltage buffer circuit comprising: an emitter follower circuit that outputs a signal corresponding to the output of the differential amplifier circuit.
PCT/JP2016/082966 2016-11-07 2016-11-07 Differential amplification circuit and voltage buffer circuit WO2018083797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/082966 WO2018083797A1 (en) 2016-11-07 2016-11-07 Differential amplification circuit and voltage buffer circuit
JP2017517133A JPWO2018083797A1 (en) 2016-11-07 2016-11-07 Differential amplifier circuit and voltage buffer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082966 WO2018083797A1 (en) 2016-11-07 2016-11-07 Differential amplification circuit and voltage buffer circuit

Publications (1)

Publication Number Publication Date
WO2018083797A1 true WO2018083797A1 (en) 2018-05-11

Family

ID=62075900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082966 WO2018083797A1 (en) 2016-11-07 2016-11-07 Differential amplification circuit and voltage buffer circuit

Country Status (2)

Country Link
JP (1) JPWO2018083797A1 (en)
WO (1) WO2018083797A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314398A (en) * 2001-04-18 2002-10-25 Mitsubishi Electric Corp Semiconductor integrated circuit
US20080238549A1 (en) * 2007-03-27 2008-10-02 Philippe Freitas Amplifier electronic circuit comprising a differential pair and a feedback system
JP2011229073A (en) * 2010-04-22 2011-11-10 Panasonic Corp Gain variation compensator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893766B1 (en) * 2009-09-10 2011-02-22 International Business Machines Corporation Adaptive common mode bias for differential amplifier input circuits
JP5906818B2 (en) * 2012-03-02 2016-04-20 住友電気工業株式会社 Differential amplifier circuit and optical receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314398A (en) * 2001-04-18 2002-10-25 Mitsubishi Electric Corp Semiconductor integrated circuit
US20080238549A1 (en) * 2007-03-27 2008-10-02 Philippe Freitas Amplifier electronic circuit comprising a differential pair and a feedback system
JP2011229073A (en) * 2010-04-22 2011-11-10 Panasonic Corp Gain variation compensator

Also Published As

Publication number Publication date
JPWO2018083797A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US8676148B2 (en) Differential amplifier circuit and wireless receiving apparatus
US9236841B2 (en) Current-feedback operational amplifier
US7701289B2 (en) Variable gain amplifier including series-coupled cascode amplifiers
US9685914B2 (en) Amplifier circuit
WO2015078611A1 (en) Amplifier arrangement
WO2016152267A1 (en) Amplifier and electronic circuit
US9407221B2 (en) Differential amplifier circuit
US11811373B2 (en) Class AB amplifier and operational amplifier
KR101127461B1 (en) Highly Linear Variable Gain Amplifier
JP6416020B2 (en) Active load circuit and semiconductor integrated circuit
TW201838327A (en) Transconductance amplifier
JP2014207524A (en) Active balun
WO2018083797A1 (en) Differential amplification circuit and voltage buffer circuit
JP4371618B2 (en) Differential amplifier circuit
US8723599B1 (en) Adjustable gain amplifier system having cleanly adjustable and stable linearized gain
US9680420B2 (en) Apparatus for compensation of electronic circuitry and associated methods
CN112511110B (en) High-linearity programmable gain amplifier
US7609112B2 (en) Boosted tail-current circuit
CN111344949A (en) Class AB amplifier and operational amplifier
US20170346473A1 (en) Differential comparator
JP2008028766A (en) Electronic circuit, amplifier circuit and communication system mounted therewith
US10574193B2 (en) Class AB amplifier having cascode stage with filter for improving linearity
JP2008118563A (en) Amplifier
JP2007300437A (en) Amplifier and electronic equipment including the same
US20200287509A1 (en) Operational amplifier

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017517133

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920615

Country of ref document: EP

Kind code of ref document: A1