Nothing Special   »   [go: up one dir, main page]

WO2018074539A1 - Method for forming cured film, radiation-sensitive resin composition, and display element and sensor provided with cured film - Google Patents

Method for forming cured film, radiation-sensitive resin composition, and display element and sensor provided with cured film Download PDF

Info

Publication number
WO2018074539A1
WO2018074539A1 PCT/JP2017/037808 JP2017037808W WO2018074539A1 WO 2018074539 A1 WO2018074539 A1 WO 2018074539A1 JP 2017037808 W JP2017037808 W JP 2017037808W WO 2018074539 A1 WO2018074539 A1 WO 2018074539A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
cured film
mass
radiation
pattern
Prior art date
Application number
PCT/JP2017/037808
Other languages
French (fr)
Japanese (ja)
Inventor
仁 浜口
健朗 田中
光弘 和田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201780063875.8A priority Critical patent/CN109843452A/en
Priority to KR1020197004666A priority patent/KR20190071672A/en
Priority to JP2018546395A priority patent/JP7099323B2/en
Publication of WO2018074539A1 publication Critical patent/WO2018074539A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Definitions

  • the present invention relates to a method for forming a cured film, a radiation-sensitive resin composition, a display element and a sensor provided with the cured film.
  • a photolithography method using a radiation-sensitive material is widely used for forming a pattern used for a display element, a semiconductor element, or the like.
  • the removal of the unexposed portion of the radiation sensitive material is performed by development if the negative type, and the exposed portion of the radiation sensitive material is removed by development if the positive type.
  • the radiation-sensitive material used for the photolithography method can be used only if it can be removed by a developer.
  • the radiation-sensitive curable composition containing a colorant and the like is widely used for the formation of display elements, image sensors, etc., but in the formation of a colored pattern, from the viewpoint of efficiently realizing a coloring function and the like.
  • a curable composition having a high concentration of colorant and the like there has been a demand for a curable composition having a high concentration of colorant and the like.
  • the coating film formed from the radiation-sensitive curable composition is colored, so that radiation due to exposure is sufficiently transmitted.
  • the coating film formed from the radiation-sensitive curable composition is colored, so that radiation due to exposure is sufficiently transmitted.
  • Such a problem is likely to occur particularly in a curable composition that is sensitive to radiation and contains a high-density black agent that blocks radiation caused by exposure or a high-density refractive agent.
  • each printing method such as ink jet printing, screen printing, and gravure printing used in printed electronics is a simple and low-cost method because a desired pattern can be directly formed on a substrate.
  • a printing method there is a limit to forming a fine pattern because the ink material used flows and wets and spreads.
  • the above-described method performs high-energy laser irradiation to form a region with high wettability to be a pattern, and it is difficult to say that the efficiency is good.
  • a laser for example, as the pattern becomes more complicated, the scanning path becomes more complicated and the working time becomes longer.
  • the above method is limited to patterns using conductive ink, and a specific material whose surface energy is changed by applying energy includes polyimide in the main chain and is hydrophilic by irradiation with ultraviolet rays. Only polymers having side chains capable of generating groups are used.
  • the present invention has been made based on the circumstances as described above, and the purpose thereof is to use a curable composition containing a curable composition having poor developability and an insoluble material such as a colorant. And efficiently forming a cured film pattern. Furthermore, it is providing the display element or sensor which comprises the cured film pattern obtained from the formation method of the said cured film.
  • the invention made in order to solve the above-described problems is a process for forming a layer containing a liquid-repellent surface and a layer containing a lyophilic surface on a substrate, and a curable composition in the layer containing the lyophilic surface.
  • a method for forming a cured film comprising a step of applying a coating, a step of curing the coating film, and a step of removing a layer including a liquid repellent surface.
  • a radiation-sensitive composition containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator is used to form a layer containing a liquid-repellent surface and a layer containing a lyophilic surface.
  • a radiation-sensitive acid generator is used to form a layer containing a liquid-repellent surface and a layer containing a lyophilic surface.
  • This irradiation can be performed by exposure through a photomask without using a laser.
  • the obtained layer containing a lyophilic surface can be removed by development, and a lyophilic substrate surface can be obtained.
  • a cured composition is applied onto a template having a layer containing a liquid repellent surface and a layer containing a lyophilic surface, the cured composition collects in the lyophilic portion due to the difference in wettability, and cures in that state. By curing the composition, a cured product can be formed only on the layer containing the lyophilic surface.
  • the present invention can efficiently form a cured film pattern by using a curable composition in which an insoluble matter such as a curable composition or a colorant having poor developability is dispersed and contained.
  • a curable composition in which an insoluble matter such as a curable composition or a colorant having poor developability is dispersed and contained.
  • FIG. 1 is an explanatory view of a step (A) of forming a layer including a liquid repellent surface and a layer including a lyophilic surface according to an embodiment of the present invention
  • a step of forming a template coating film (A) -1) is an explanatory diagram, an explanatory diagram of a step (A-2) for forming a layer including a lyophilic surface by irradiation with radiation, and an explanatory diagram of a step (A-3) for forming a pattern by development.
  • FIG. 1 is an explanatory view of a step (A) of forming a layer including a liquid repellent surface and a layer including a lyophilic surface according to an embodiment of the present invention
  • a step of forming a template coating film (A) -1) is an explanatory diagram
  • an explanatory diagram of a step (A-2) for forming a layer including a lyophilic surface by irradiation with radiation and an explanatory diagram of
  • FIG. 2 is an explanatory view of a step (A) of forming a layer including a liquid repellent surface and a layer including a lyophilic surface according to an embodiment of the present invention, and a step of forming a template coating film (A) -1), an explanatory diagram of the step (A-2) for forming a layer including a lyophilic surface by irradiation with radiation, and a step (A-4) when there is a residual film by changing exposure conditions, etc. ).
  • FIG. 3 is an explanatory diagram of a step (B) of applying a curable composition to a layer including a lyophilic surface (A-3) according to an embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of the step (B) of applying a curable composition to a layer including a lyophilic surface (A-4) according to an embodiment of the present invention.
  • FIG. 5 is an explanatory view of a step (C) of applying a curable composition to a layer containing a lyophilic surface of (A-3) according to an embodiment of the present invention and curing the coating film.
  • FIG. 6 is an explanatory view of a step (C) of applying a curable composition to a layer including a lyophilic surface of (A-4) according to an embodiment of the present invention and curing the coating film. .
  • FIG. 5 is an explanatory view of a step (C) of applying a curable composition to a layer containing a lyophilic surface of (A-3) according to an embodiment of the present invention and curing the coating film.
  • FIG. 6 is an explanatory view of a step (C) of applying a curable composition to a layer including a
  • FIG. 7 shows a coating of a curable composition on a layer containing a lyophilic surface of (A-3) according to an embodiment of the present invention, curing the coating film, and then including a liquid repellent surface. It is explanatory drawing of the process (D) which removes a layer.
  • FIG. 8 shows a coating of a curable composition on a layer containing a lyophilic surface of (A-4) according to an embodiment of the present invention, the coating film is cured, and then containing a liquid repellent surface. It is explanatory drawing of the process (D) which removes a layer.
  • FIG. 8 shows a coating of a curable composition on a layer containing a lyophilic surface of (A-4) according to an embodiment of the present invention, the coating film is cured, and then containing a liquid repellent surface. It is explanatory drawing of the process (D) which removes a layer.
  • FIG. 9 shows that the layer containing a lyophilic surface (A-3) according to one embodiment of the present invention has a height comparable to the thickness of the layer pattern containing a lyophobic surface. It is explanatory drawing of the process (C) which apply
  • FIG. 10 shows a layer having a lyophilic surface of (A-4) according to an embodiment of the present invention, the curable composition having a height similar to the thickness of a layer pattern including a liquid repellent surface. It is explanatory drawing of the process (C) which apply
  • FIG. 11 shows that the curable composition is added to the layer containing the lyophilic surface of (A-3) according to one embodiment of the present invention so that the thickness is about the same as the thickness of the layer pattern including the liquid repellent surface. It is explanatory drawing of the process (D) of apply
  • FIG. 12 shows that the curable composition is added to the layer containing the lyophilic surface of (A-4) according to an embodiment of the present invention so that the layer pattern has the same height as the layer pattern including the liquid repellent surface.
  • FIG. 13 is a process (C) in which a curable composition is applied to a base film in which a film thickness of a layer pattern including a liquid repellent surface according to an embodiment of the present invention is thin, and the coating film is cured. It is explanatory drawing of the process (D) which makes it harden
  • FIG. 13 is a process (C) in which a curable composition is applied to a base film in which a film thickness of a layer pattern including a liquid repellent surface according to an embodiment of the present invention is thin, and the coating film is cured. It is explanatory drawing of the process (D) which makes it harden
  • FIG. 14 shows a process of applying a curable composition to a template coating film having a thin layer pattern including a liquid repellent surface according to an embodiment of the present invention and curing the coating film (C ) And then removing the layer including the liquid repellent surface (D).
  • FIG. 15 is a diagram showing the process of (A-4) including a lyophilic surface according to an embodiment of the present invention, in which a curable composition is applied, the coating film is cured, and then a liquid repellent surface is included. It is an electron micrograph of the cured film pattern formed in the layer containing a lyophilic surface after removing a layer.
  • FIG. 15 is a diagram showing the process of (A-4) including a lyophilic surface according to an embodiment of the present invention, in which a curable composition is applied, the coating film is cured, and then a liquid repellent surface is included. It is an electron micrograph of the cured film pattern formed in the layer containing a lyophilic surface after removing a layer.
  • FIG. 16 is an electron micrograph according to a perspective view and a cross-sectional view of a layer pattern including a liquid repellent surface according to an embodiment of the present invention.
  • FIG. 17 is a perspective view of the remaining cured film pattern in which a cured film is formed between the layer patterns including the liquid repellent surface according to the embodiment of the present invention, and then the layer including the liquid repellent surface is removed. It is an electron micrograph concerning a sectional view.
  • FIG. 18 is an electron micrograph according to a perspective view and a cross-sectional view of a layer pattern including a liquid repellent surface according to an embodiment of the present invention.
  • 19 is a perspective view of a remaining cured film pattern in which a cured film is formed between layer patterns including a liquid repellent surface according to an embodiment of the present invention, and then the layer including the liquid repellent surface is removed. It is an electron micrograph concerning a sectional view.
  • the object of the present invention has been achieved by the following. 1) forming a layer including a liquid repellent surface and a layer including a lyophilic surface on a substrate; Applying a curable composition to the layer including the lyophilic surface to form a coating film; Curing the coating film; and Developing and removing the layer containing the liquid repellent surface with a developer;
  • the contact angle difference with respect to tetradecane of the layer containing the liquid repellent surface and the layer containing the lyophilic surface is 30 ° or more.
  • a method for forming a cured film according to an embodiment of the present invention includes: A step (A) of forming a layer including a liquid-repellent surface and a layer including a lyophilic surface on a substrate; a step (B) of applying a curable composition to the layer including the lyophilic surface; A step (C) for curing the coating film and a step (D) for removing the layer including the liquid repellent surface are provided.
  • the step (A) of forming a layer including a liquid repellent surface and a layer including a lyophilic surface includes a polymer having an acid dissociable group and a radiation sensitive acid generator on the surface of the substrate.
  • a region not irradiated with radiation is a region having a layer including a liquid repellent surface.
  • the liquid repellent surface means a surface having a contact angle with respect to tetradecane of 30 ° or more
  • the layer containing a liquid repellent surface means a layer having a surface with a contact angle with respect to tetradecane of 30 ° or more.
  • a layer including a surface of 40 ° or more is preferable.
  • the step (A) of forming a layer containing a liquid repellent surface and a layer containing a lyophilic surface is a step (A-1) of forming a template coating film, and a layer containing a lyophilic surface by irradiation with radiation. It is preferable to include a step (A-2) of forming a pattern and a step (A-3) or (A-4) of forming a pattern by development.
  • the patterned region is a layer including a lyophobic surface
  • the portion removed by development is a layer including a lyophilic surface.
  • the step (B) of applying the curable composition in the forming method includes spin coating, ink jet method, dipping method, printing on a substrate on which a layer including a liquid repellent surface and a layer including a lyophilic surface are formed. Etc., and a method for forming a coating film is not limited.
  • the coating film can be cured by heating or light irradiation.
  • the entire coating film may be exposed, exposed through a photomask, or directly irradiated with a laser or the like.
  • the step (D) of removing the layer including the liquid repellent surface is a step of removing a portion other than the cured film formed by the heating or light irradiation to form a cured film pattern.
  • the removal method is not particularly limited, and examples thereof include development and etching.
  • development may be performed with an alkaline developer or with an organic solvent.
  • the region is further exposed to acid dissociation.
  • the functional group dissociates and becomes a lyophilic region.
  • the layer including the region can be removed with an alkaline developer.
  • the formation method will be described in detail in order.
  • the order of the steps is not limited to the following order, and the order of the steps may be different as long as a similar cured film can be formed, and a plurality of steps may be performed simultaneously.
  • Step (A) of forming a layer including a liquid repellent surface and a layer including a lyophilic surface is a step (A-1) of forming a template coating film, and a layer containing a lyophilic surface by irradiation with radiation.
  • A-1 a step of forming a template coating film, and a layer containing a lyophilic surface by irradiation with radiation.
  • the template coating film forming step (A-1) is a step of forming a template coating film having a liquid-repellent surface from the radiation-sensitive composition.
  • the radiation sensitive composition contains a polymer having an acid dissociable group and a radiation sensitive acid generator.
  • the acid dissociable group refers to a group in which a hydrogen atom in an acidic functional group such as a phenolic hydroxyl group, a carboxyl group, or a sulfonic acid group is substituted, and refers to a group that dissociates in the presence of an acid.
  • This radiation sensitive composition will be described in detail later.
  • the template coating film 11 is formed by applying a radiation-sensitive composition to the surface of the substrate 10.
  • Examples of the material of the substrate 10 include glass, quartz, silicon, and resin.
  • Examples of the resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether sulfone, polycarbonate, polyimide, cyclic olefin ring-opening polymer (ROMP polymer), polyacrylate, ABS resin, AES resin, and the like. it can.
  • the substrate 10 is preferably a conventional resin substrate, glass substrate, or semiconductor substrate. By using such a substrate, the obtained laminated pattern can be used as it is for optical applications and the like.
  • the application method of the radiation-sensitive composition is not particularly limited, and is a coating method using a brush or brush, a dipping method, a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar
  • Known methods such as a coating method, flexographic printing, offset printing, ink jet printing, and dispensing method can be exemplified.
  • the template coating film 11 is preferably heated (pre-baked).
  • the heating conditions vary depending on the composition of the radiation-sensitive composition, but are, for example, about 60 ° C. or higher and 120 ° C. or lower and about 1 minute or longer and 10 minutes or shorter.
  • the average thickness of the template coating film 11 to be obtained can be adjusted as appropriate according to the application, etc., but the lower limit is preferably 0.05 ⁇ m, more preferably 0.1 ⁇ m. On the other hand, the upper limit is preferably 20 ⁇ m, and more preferably 10 ⁇ m.
  • the layer forming step (A-2) including a lyophilic surface as shown in FIG. 1, a part of the surface region of the template coating film 11 is irradiated (exposure) with radiation (h ⁇ ). This is a step of forming the layer 12 including the surface.
  • the surface of the coating film 11 for templates obtained from a radiation sensitive composition has liquid repellency, and the area
  • the region not irradiated with radiation is the layer 13 including a liquid repellent surface.
  • the layer containing a lyophilic surface is a region in which the contact angle with respect to tetradecane described later is 30 degrees or more smaller than the contact angle with respect to tetradecane on the liquid repellent surface. If it exists, it is not necessary to be an area derived from the template coating film. That is, when the template coating film is removed by development and the substrate surface is exposed, the substrate surface becomes a layer including a lyophilic surface. Although the entire substrate surface may be exposed, even a part of the substrate surface is preferable because it becomes a lyophilic surface.
  • the reason why the layer 12 including the lyophilic surface is formed by irradiation with radiation is as follows.
  • an acid is generated from the radiation-sensitive acid generator in the radiation-sensitive composition, whereby the acid-dissociable group of the polymer is dissociated. Due to the dissociation of the acid dissociable group, the surface energy of the irradiated region changes, and wettability increases.
  • the acid-dissociable group has a fluorine atom, the expression of this liquid repellency becomes remarkable.
  • the layer 12 including the lyophilic surface becomes a recess (concave pattern). Since the layer 12 including the lyophilic surface becomes a concave portion, the concave portion (the layer 12 including the lyophilic surface) can be filled with the cured film composition without bleeding, as will be described later.
  • Radiation irradiation can be performed through a photomask having a predetermined pattern so that the layer 12 including a lyophilic surface having a shape similar to the pattern shape of the cured product to be formed is formed.
  • Exposure can be performed through a photomask having a predetermined pattern so that the layer 12 including a lyophilic surface having a shape similar to the pattern shape of the cured product to be formed is formed.
  • the radiation irradiated in this step (A-2) visible light, ultraviolet light, far ultraviolet light, charged particle beam, X-ray or the like can be used.
  • radiation having a wavelength in the range of 190 nm to 450 nm is preferable, and radiation containing ultraviolet light having a wavelength of 365 nm is more preferable.
  • the exposure dose of radiation in this step (A-2) may be appropriately set within a range in which a sufficient change in wettability and formation of recesses can be formed.
  • the lower limit of the exposure amount is preferably 10 mJ / cm 2 and more preferably 20 mJ / cm 2 as the intensity of radiation at a wavelength of 365 nm.
  • this upper limit 1000 mJ / cm 2 is preferable, and 500 mJ / cm 2 is more preferable.
  • the size and shape of the layer 12 including the lyophilic surface to be formed correspond to the desired size and shape of the pattern, but can be linear with a width of 50 ⁇ m or less, preferably 0.1. It can be a linear shape of ⁇ 30 ⁇ m, more preferably 0.5 ⁇ 10 ⁇ m.
  • the template coating film 11 and the layer 12 including a lyophilic surface may be heated.
  • the heating condition varies depending on the composition of the radiation-sensitive composition, but is, for example, about 50 ° C. to 120 ° C. and about 1 minute to 20 minutes.
  • the development step (A-3) is a step of developing the template coating film 11 irradiated with radiation.
  • the acid dissociable group can be dissociated in the region irradiated with radiation (layer 12 including a lyophilic surface).
  • the part irradiated with the radiation becomes a layer including a lyophilic surface, and can be removed by the developer.
  • the wettability of the layer including the lyophilic surface is further increased by exposing the substrate surface.
  • a layer including a lyophilic surface can be formed by leaving a partial film without exposing the substrate surface.
  • the depth of the layer 12 (concave portion) including the lyophilic surface formed by leaving a part of the film can be, for example, 0.1 ⁇ m or more and 1 ⁇ m or less. Moreover, as a minimum of the depth of the layer 12 (concave part) containing the lyophilic surface with respect to the average thickness of the layer 13 containing the liquid repellent surface in the coating film 11 for templates, 5% is preferable and 10% is more preferable. On the other hand, the upper limit is preferably 70% and more preferably 50%.
  • Examples of the developer used for development include at least one alkaline compound such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and the like.
  • An aqueous solution in which is dissolved can be used.
  • An appropriate amount of a water-soluble organic solvent such as methanol or ethanol can be added to the aqueous solution of the alkaline compound described above.
  • an organic solvent shown below when an alkaline aqueous solution is used as a developer, a region irradiated with radiation (a layer including a lyophilic surface) remains and a non-radiation region (hydrophobic surface region) is removed by an organic solvent. A reverse pattern can be formed.
  • an organic solvent developer that can be used, development can be performed using an organic solvent such as ethyl acetate, butyl acetate, and isobutyl acetate as the developer.
  • Examples of the developing method include a liquid filling method, a dipping method, a rocking dipping method, and a spray method.
  • the development time varies depending on the composition of the cured film forming composition, but the lower limit of the development time is preferably 5 seconds, and more preferably 10 seconds. Further, the upper limit of the development time is preferably 300 seconds, and more preferably 180 seconds. Subsequent to the development processing, for example, washing with running water is performed for 30 seconds to 90 seconds and then dried with compressed air or compressed nitrogen, whereby a desired cured film pattern is obtained.
  • the contact angle difference between the layer 12 including the lyophilic surface thus formed and the layer 13 including the liquid repellent surface with respect to tetradecane (the contact angle in the layer 13 including the liquid repellent surface minus the lyophilic surface).
  • the contact angle in the containing layer 12) is 30 ° or more, preferably 40 ° or more, and more preferably 50 ° or more.
  • the upper limit of this contact angle difference is, for example, 70 °.
  • a contact angle difference between the layer 12 including the lyophilic surface and the layer 13 including the lyophobic surface with respect to water contact angle in the layer 13 including the lyophobic surface ⁇ contact in the layer 12 including the lyophilic surface
  • the lower limit of (angle) is preferably 20 °, more preferably 25 °.
  • the upper limit of this contact angle difference is, for example, 90 °.
  • the curable composition in contact with the layer 13 including the lyophobic surface can easily move to the layer 12 including the lyophilic surface, A cured film can be suitably formed along the layer 12 including a lyophilic surface.
  • the step (B) of applying the curable composition is a step of forming a coating film of the curable composition by applying the curable composition to the surface of the template coating film or the substrate surface irradiated with radiation. (See FIGS. 3 and 4).
  • the curable composition is not particularly limited.
  • it may be a curable material containing a component that crosslinks with heat or light, and may contain a polymerizable compound, a polymerization initiator, an additive such as a colorant, a fluorescent substance, a metal oxide, a resin, and the like.
  • a functional resin composition can also be preferably used.
  • the additive refers to a component that does not contribute to polymerization.
  • the curable composition is not particularly limited as long as it contains a curable component, but since the pattern can be complicated, the cured film can be used even if it contains a conductive component so as not to interfere with proximity. Insulating is preferable.
  • “insulating” means a material having a volume resistivity of 1 ⁇ ⁇ cm or more. It can be measured according to JISK7194. Examples thereof include curable compositions described in JP 2012-149141 A, JP 2013-237835 A, and the like.
  • the polymerizable compound is preferably a compound having two or more polymerizable groups.
  • the polymerizable group include an ethylenically unsaturated group, an oxiranyl group, an oxetanyl group, and an N-alkoxymethylamino group. be able to.
  • the polymerizable compound is preferably a compound having two or more (meth) acryloyl groups or a compound having two or more N-alkoxymethylamino groups.
  • the compound having two or more (meth) acryloyl groups include a polyfunctional (meth) acrylate obtained by reacting an aliphatic polyhydroxy compound and (meth) acrylic acid, a polyfunctional (meta) modified with caprolactone. ) Acrylate, alkylene oxide modified polyfunctional (meth) acrylate, polyfunctional urethane (meth) acrylate obtained by reacting hydroxyl-functional (meth) acrylate and polyfunctional isocyanate, hydroxyl-functional (meth) acrylate and acid anhydride
  • the polyfunctional (meth) acrylate which has a carboxyl group obtained by making a product react can be mentioned.
  • examples of the aliphatic polyhydroxy compound include divalent aliphatic polyhydroxy compounds such as ethylene glycol, propylene glycol, polyethylene glycol, and polypropylene glycol; and 3 such as glycerin, trimethylolpropane, pentaerythritol, and dipentaerythritol. Mention may be made of aliphatic polyhydroxy compounds having a valence higher than that.
  • hydroxyl group-containing (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and glycerol diester.
  • a methacrylate etc. can be mentioned.
  • polyfunctional isocyanate examples include tolylene diisocyanate, hexamethylene diisocyanate, diphenylmethylene diisocyanate, and isophorone diisocyanate.
  • acid anhydrides include succinic anhydride, maleic anhydride, glutaric anhydride, itaconic anhydride, phthalic anhydride, dibasic acid anhydrides such as hexahydrophthalic anhydride, pyromellitic anhydride, biphenyltetracarboxylic acid.
  • dianhydrides and tetrabasic acid dianhydrides such as benzophenone tetracarboxylic dianhydride.
  • Examples of caprolactone-modified polyfunctional (meth) acrylates include compounds described in paragraphs [0015] to [0018] of JP-A No. 11-44955.
  • the alkylene oxide-modified polyfunctional (meth) acrylate is at least one selected from bisphenol A di (meth) acrylate modified with at least one selected from ethylene oxide and propylene oxide, ethylene oxide and propylene oxide.
  • Examples of the compound having two or more N-alkoxymethylamino groups include compounds having a melamine structure, a benzoguanamine structure, and a urea structure.
  • the melamine structure and the benzoguanamine structure refer to a chemical structure having one or more triazine rings or phenyl-substituted triazine rings as a basic skeleton, and is a concept including melamine, benzoguanamine or a condensate thereof.
  • the compound having two or more N-alkoxymethylamino groups include N, N, N ′, N ′, N ′′, N ′′ -hexa (alkoxymethyl) melamine, N, N, N ′. , N′-tetra (alkoxymethyl) benzoguanamine, N, N, N ′, N′-tetra (alkoxymethyl) glycoluril, and the like.
  • polyfunctional (meth) acrylates obtained by reacting trivalent or higher aliphatic polyhydroxy compounds with (meth) acrylic acid, caprolactone-modified polyfunctional (meth) acrylates, polyfunctional urethanes (Meth) acrylate, N, N, N ′, N ′, N ′′, N ′′ -hexa (alkoxymethyl) melamine, N, N, N ′, N′-tetra (alkoxymethyl) benzoguanamine are preferred.
  • polyfunctional (meth) acrylates obtained by reacting trivalent or higher aliphatic polyhydroxy compounds with (meth) acrylic acid, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol Pentaacrylate and dipentaerythritol hexaacrylate are particularly preferred.
  • the content of the polymerizable compound is usually 3 to 200 parts by weight, preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the total amount of the (A) colorant. is there.
  • the content of the polymerizable compound is usually 20 to 300 parts by weight, preferably 50 to 250 parts by weight, and more preferably 100 to 200 parts by weight with respect to 100 parts by weight of the resin (B).
  • the curable composition of the present invention is preferably a curable composition containing a colorant as an additive.
  • additives include color pigments, dyes, carbon black, metal oxides having a high refractive index, and hollow particles.
  • JP 2006-113380 A, JP 2013-134263 A, WO 2009/119622, WO 2009/119622, JP 2014-146029, JP 2008-46330 examples thereof include a curable composition containing a colorant and the like described in JP-A-2013-225091.
  • Examples of the fluorescent material include inorganic fluorescent materials, organic fluorescent materials, quantum dots, and quantum rods.
  • Examples of the curable composition containing these fluorescent materials include Japanese Unexamined Patent Application Publication Nos. 2014-174406 and 2015-018131. And curable compositions such as JP-A-2015-127733, JP-A-2015-125197, and JP-A-2016-35602.
  • the metal oxide examples include a metal oxide containing at least one metal element selected from the group consisting of titanium oxide, cesium, barium, strontium, calcium, magnesium, zirconium and lead. Specific examples of such metal oxides include titanium oxide, barium oxide, cesium tungsten oxide, barium titanate and strontium titanate.
  • Examples of the curable composition containing these metal oxides include Japanese Patent Application Laid-Open Nos. 2016-14849 and 2016-27384.
  • Examples of the carbon material include carbon nanotubes, fullerenes, graphite, and carbon black materials.
  • the hollow particles are not particularly limited as long as they have pores inside, and may be organic hollow particles or inorganic hollow particles. From the viewpoint of easy dispersion in a solvent, organic hollow particles may be used. Particles are preferred.
  • the organic hollow particles commercially available products may be used, and conventionally known methods, for example, JP-A-62-2127336, JP-A-01-315454, JP-A-4-126771, They may be synthesized by the methods described in JP-A No. 2002-241448, JP-A No. 2007-112935, and Japanese Patent No. 5439102.
  • the inorganic hollow particles are not particularly limited, and examples thereof include inorganic particles composed of glass, SiO 2 , CaCO 3 , polyorganosiloxane compounds, and the like.
  • the high concentration is specifically 30% by mass or more when the total amount of components excluding the solvent of the curable composition is 100% by mass. It means that it is 95% by mass or less, preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more.
  • the coating film formed by the curable composition containing a colorant or the like having a high concentration as described above does not sufficiently transmit radiation due to exposure, for example, the composition described in JP2013-134263A As a result of the insufficient developability of the coating film formed by the product, it is difficult to obtain a desired pattern shape.
  • a desired pattern shape can be easily obtained by the curable composition containing a high concentration of colorant and the like. Can do.
  • the photopolymerization initiator is a compound that generates active species capable of initiating polymerization of a polymerizable compound by exposure to radiation such as visible light, ultraviolet light, far ultraviolet light, electron beam, and X-ray.
  • a photoinitiator can be used 1 type or in mixture of 2 or more types.
  • photopolymerization initiators include thioxanthone compounds, acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, acyl compounds.
  • photopolymerization initiators include thioxanthone compounds, acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, acyl compounds.
  • examples thereof include phosphine oxide compounds, titanocene compounds, ⁇ -diketone compounds, polynuclear quinone compounds, diazo compounds, imide sulfonate compounds, onium salt compounds, and the like.
  • at least one selected from O-acyloxime compounds, acetophenone compounds, acylphosphine oxide compounds, and titanocene compounds is preferable.
  • examples of the O-acyloxime compounds include 1,2-octanedione, 1- [4- (phenylthio) phenyl]-, 2- (O-benzoyloxime), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), ethanone, 1- [9-ethyl-6- (2 -Methyl-4-tetrahydrofuranylmethoxybenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), ethanone, 1- [9-ethyl-6- ⁇ 2-methyl-4- (2 , 2-Dimethyl-1,3-dioxolanyl) methoxybenzoyl ⁇ -9H-carbazol-3-yl]-, 1- (O-acetyloxime), 1-octanone,
  • O-acyloxime compounds include NCI-831, NCI-930 (above, manufactured by ADEKA Corporation), DFI-020, DFI-091 (above, made by Daito Chemix Corporation), Irgacure® OXE-03, Irgacure® OXE-04 (manufactured by BASF) or the like can also be used.
  • O-acyloxime compounds etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), 1- Octanone, 1- [4- [3- [4-[[2- (acetyloxy) ethyl] sulfonyl] -2-methylbenzoyl] -6- [1-[(acetyloxy) imino] ethyl] -9H-carbazole ] -9-yl] phenyl, 1- (O-acetyloxime) is preferred.
  • the acetophenone compound is more preferably an ⁇ -aminoalkylphenone compound, such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2- (4-methylbenzyl) -2- (dimethylamino) -1- (4-morpho And linophenyl) butan-1-one.
  • 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-one 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one
  • 2- (4-methylbenzyl) -2- (dimethylamino) -1- (4-morpho And linophenyl) butan-1-one 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane
  • the acetophenone compounds can be used alone or in combination of two or more.
  • acylphosphine oxide compounds include, for example, isobutyrylmethylphosphinic acid methyl ester, isobutyrylphenylphosphinic acid methyl ester, pivaloylphenylphosphinic acid methyl ester, 2- Ethyl hexanoylphenylphosphinic acid methyl ester, pivaloylphenylphosphinic acid isopropyl ester, p-toluylphenylphosphinic acid methyl ester, o-toluylphenylphosphinic acid methyl ester, 2,4-dimethylbenzoylphenylphosphinic acid methyl ester, p- t-butylbenzoylphenylphosphinic acid isopropyl ester, acryloylphenylphosphinic acid methyl ester, isobutyryldiphenylphosphine oxide,
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide (for example, Darocur TPO manufactured by BASF) is preferable as the monoacylphosphine oxide, and bis (2 , 4,6-trimethylbenzoyl) phenylphosphine oxide (for example, Irgacure 819 manufactured by BASF), bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphenylphosphine oxide (for example, Irgacure 1700 manufactured by BASF) ) Is preferred, and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide is more preferred.
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide for example, Darocur TPO manufactured by BASF
  • bis (2 , 4,6-trimethylbenzoyl) phenylphosphine oxide for example, Irgacure 819 manufactured by BASF
  • the acylphosphine oxide compounds can be used alone or in combination of two or more.
  • titanocene photo compounds include, for example, bis (cyclopentadienyl) -Ti-di-chloride, bis (cyclopentadienyl) -Ti-bis-phenyl, bis ( Cyclopentadienyl) -Ti-bis-2,3,4,5,6-pentafluorophenyl, bis (cyclopentadienyl) -Ti-bis-2,3,5,6-tetrafluorophenyl, bis ( Cyclopentadienyl) -Ti-bis-2,4,6-trifluorophenyl, bis (cyclopentadienyl) -Ti-bis-2,6-difluorophenyl, bis (cyclopentadienyl) -Ti-bis -2,4-difluorophenyl, bis (methylcyclopentadienyl) -Ti-bis-2,3,4,5,
  • titanocene compounds bis (cyclopentadienyl) -bis (2,6-difluoro-3- (py-1-yl) phenyl) titanium is preferable.
  • the titanocene compounds can be used alone or in combination of two or more. Examples of photopolymerization initiators other than the above include those exemplified in paragraphs [0079] to [0095] of JP2010-134419A.
  • the photopolymerization initiator preferably contains at least one selected from acylphosphine oxide compounds and titanocene compounds.
  • the content is preferably 90% by mass or more, particularly 96% by mass or more of the total photopolymerization initiator.
  • the content of the photopolymerization initiator is 5 to 200 parts by mass, preferably 10 to 100 parts by mass, and more preferably 15 to 50 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • the said desired pattern is a viewpoint which apply
  • a method for providing a layer including a liquid repellent surface to the desired pattern include a method of adding an ink repellent agent described in WO2015 / 190294 to a curable composition.
  • the contact of the curable composition to the surface of the template coating film 11 can be performed by a known method such as coating. Specifically, application method using brush or brush, dipping method, spray method, roll coating method, spin coating method (spin coating method), slit die coating method, bar coating method, flexographic printing, offset printing, inkjet Well-known methods, such as printing and a dispensing method, can be mentioned.
  • a dipping method, a spray method, a spin coating method, a slit die coating method, an offset printing method, an ink jet method, and a dispensing method are preferable.
  • an ink jet method that can save the liquid of the cured composition and easily applies the cured composition to a desired position is preferable.
  • a layer 12 including a lyophilic surface and a layer 13 including a liquid repellent surface are formed on the surface of the template coating film 11. Therefore, when the curable composition is brought into contact with the surface of the template coating film 11, the curable composition is repelled by the layer 13 including the liquid repellent surface, and preferably includes a lyophilic surface that is a recess. It flows into layer 12. Thereby, the coating film of a curable composition is formed along the layer 12 containing the lyophilic surface which is a recessed part.
  • the cured composition is applied not only to the concave portion but also to the convex portion, and patterning of the cured composition cannot be achieved. Therefore, this method using patterning by lyophilicity and liquid repellency is excellent.
  • the radiation irradiation step is a step of irradiating the side on which the curable composition is applied with radiation (h ⁇ ).
  • exposure can be performed through a photomask, but exposure can also be performed without using a photomask.
  • the hydrophilic region to which the curable composition is applied is cured, and the hydrophobic region becomes a hydrophilic region because the acid dissociation property is dissociated.
  • regions other than the cured portion can be removed by developing with an alkaline aqueous solution (see FIGS. 7 and 8).
  • Specific examples and preferred examples of radiation irradiated in this step are the same as those in the layer forming step including a lyophilic surface.
  • the exposure dose of radiation in this step can also be the same as in the layer forming step including a lyophilic surface.
  • the component derived from the acid dissociable group dissociated in the exposed portion (exposed portion) is volatilized, and the exposed portion becomes thinner and more lyophilic.
  • This heating method is not particularly limited, and examples thereof include a method of heating using a hot plate, oven, dryer or the like. In addition, you may heat by vacuum baking.
  • the heating conditions are not particularly limited, but may be, for example, 50 ° C. or higher and 200 ° C. or lower and 1 minute or longer and 120 minutes or shorter.
  • the development process after exposure of the radiation irradiated in this process is, for example, the same as the layer forming process including a lyophilic surface.
  • the exposure dose of radiation in this step can also be the same as in the layer forming step including a lyophilic surface.
  • the cured film obtained in the present invention can be obtained in an inversely tapered shape (referred to as a downward trapezoidal or T-shaped shape with a large top and a small bottom).
  • the radiation-sensitive composition is not particularly limited, but is preferably a composition in which a part of a coating film formed from the composition volatilizes and decomposes upon irradiation and heating with radiation.
  • a composition containing a polymer having a functional group hereinafter also referred to as “[A] polymer” and an acid generator (hereinafter also referred to as “[C] acid generator”) is more preferable.
  • Such a radiation-sensitive composition is used as an underlayer-forming composition for forming a high-definition pattern by suppressing bleeding of the pattern-forming material on the substrate, and improves the adhesion between the pattern and the substrate.
  • the composition for forming an underlayer can be suitably used.
  • the composition may further contain a solvent (hereinafter also referred to as “[B] solvent”).
  • the composition exhibits a liquid state by containing the [B] solvent, and can easily form a coating film by coating.
  • the composition may further contain a sensitizer as an auxiliary material for the [C] acid generator, and may contain a quencher as a material for suppressing the diffusion of acid from the [C] acid generator.
  • the said composition may contain the polymeric compound which has ethylenically unsaturated bonds other than a [A] polymer, and may contain the radiation sensitive polymerization initiator. Furthermore, the said composition may contain another arbitrary component, unless the effect of this invention is impaired.
  • the viscosity (temperature: 20 ° C., shear rate: 10 sec-1) of the composition may be adjusted depending on the desired coating method and the film thickness of the coating film to be formed.
  • the viscosity is preferably 5 cP (0.003 Pa ⁇ s) to 20 cP (0.02 Pa ⁇ 0.02) when a coating film having a film thickness of 0.5 to 2 ⁇ m is formed and the spin coating method is used as the coating method. s), and when the slit die coating method is used as the coating method, it is preferably 1 cP (0.001 Pa ⁇ s) to 20 cP (0.01 Pa ⁇ s).
  • the acid dissociable group is preferably a group containing a fluorine atom. Since the polymer [A] has such a group, a liquid repellent coating film can be formed in the step (i), and the liquid repellent property can be obtained through the subsequent step (ii). Can be easily formed, and a high-definition pattern can be manufactured through subsequent steps (iv) and (v). preferable.
  • the acid-dissociable group is a group having a group containing at least one bond selected from the group consisting of an acetal bond and a hemiacetal ester bond from the viewpoint that a high-definition pattern can be produced. More preferably, such a group is at least one group selected from the group consisting of a group represented by the following formula (1-1) and a group represented by the following formula (1-2). preferable.
  • R1 and R2 each independently represent a hydrogen atom or a methyl group
  • Rf independently represents an organic group having a fluorine atom. * Indicates a binding site.
  • a compound containing an acetal bond can be obtained by reacting an alcohol with a compound having a group CH2 ⁇ C (R1) —O—, and a compound containing a hemiacetal ester bond can be obtained by reacting a carboxylic acid with a group CH2 ⁇ C ( R1) It can be obtained by reacting with a compound having —O—.
  • Rf is preferably a group of the following formulas (1-1) to (1-33), a 2,2,2-trifluoroethyl group or a 1,2,2-trifluorovinyl group.
  • an acid dissociable group derived from a vinyl ether compound represented by the following formula (1) (hereinafter also referred to as “compound (1)”) is introduced into the hydroxyl group of the precursor compound having a hydroxyl group. It is preferable that it is a compound which has the structure formed.
  • the polymer may be a compound having a structure in which an acid-dissociable group derived from the compound (1) is introduced into a carboxyl group of a compound having a carboxyl group as a precursor.
  • a compound having a structure in which these acid dissociable groups are introduced (hereinafter also referred to as “compound (a)”), particularly a compound having a hydroxyl group as a precursor, is unlikely to cause dissociation of the acid dissociable group due to heat.
  • compound (a) since it has the property that the dissociation of the acid-dissociable group by irradiation can be controlled, it can be suitably used as the [A] polymer.
  • the compound (a) is preferable because the dissociation of the acid dissociable group can be controlled with higher accuracy by irradiation with a combination with the [C] acid generator described later.
  • R 0 represents a hydrogen atom or a methyl group.
  • R A independently represents a methylene group, an alkylene group having 2 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 13 carbon atoms. And a substituted or unsubstituted alicyclic hydrocarbon group having 4 to 12 carbon atoms, or a group in which one or more hydrogen atoms of these groups are substituted with a fluorine atom.
  • R A is preferably a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, a phenylene group, or a vinylene group.
  • R B represents a group in which one or more hydrogen atoms of a hydrocarbon group are substituted with fluorine atoms.
  • R B represents, for example, a group represented by the formulas (1-1) to (1-33) in the Rf, a 2,2,2-trifluoroethyl group, 1,2,2-trimethyl Fluorovinyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group of the above formula (1-1), 4,4,4- Trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group of formula (1-4), 4,4,5,5,6,6,6-hepta of formula (1-16) Fluorohexyl group, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl group of formula (1-8), 1,2,2-tri A fluorovinyl group and a 2,3,4,5,6-pentafluorophenyl group of the formula (1-29) are preferred.
  • x represents an integer of 0 to 12, an integer of 0 to 9 is preferable, and 0 is more preferable.
  • the coating film formed in the step (i) exhibits characteristics based on the [A] polymer, [A]
  • the compound (a) When the compound (a) is used as the polymer, it exhibits characteristics derived from the acid-dissociable group of the compound (a).
  • step (i) when a coating film is formed from the radiation-sensitive composition containing the compound (a), first, in step (i), a liquid-repellent coating film is formed, and when this coating film is irradiated with radiation In the exposed part, dissociation of the acid-dissociable group occurs, and in the part where the acid-dissociable group dissociates, the hydroxyl group remains and the liquid repellency due to the acid-dissociable group is lost.
  • a method for obtaining the [A] polymer will be described.
  • a method for obtaining the [A] polymer two methods are possible: a method using a polymer as a compound serving as a precursor and a method using a monomer as a compound serving as a precursor.
  • the precursor polymer contains a hydroxyl group or a carboxyl group in the molecule, and the compound (1) is reacted with the hydroxyl group or carboxyl group of the precursor polymer. By doing so, the [A] polymer can be obtained.
  • the precursor monomer contains a hydroxyl group or a carboxyl group in the molecule, and the compound (1) is reacted with the hydroxyl group or carboxyl group of the precursor monomer. Then, the [A] polymer can be obtained by polymerizing the obtained monomer.
  • the two methods for obtaining the [A] polymer will be described more specifically.
  • a polymer as a compound to be a precursor a monomer having a hydroxyl group or a carboxyl group is polymerized to obtain a polymer having a hydroxyl group or a carboxyl group (precursor), and then the precursor and The [A] polymer can be obtained by reacting the compound (1) with a hydroxyl group or a carboxyl group of the resulting polymer.
  • (meth) acrylic acid ester is preferable.
  • 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxy Phenyl (meth) acrylate, 4-hydroxybenzyl acrylamide, 3,5-dimethyl-4-hydroxybenzyl acrylamide, etc. can be mentioned.
  • the compound which has hydroxyl groups and unsaturated bonds such as isopropenyl phenol, can also be used besides this compound.
  • the monomer having a hydroxyl group one type may be used alone, or two or more types may be used.
  • Examples of the monomer having a carboxyl group include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethylphthalic acid, 4-carboxylphenyl (meth) acrylate, and the like. Can be mentioned.
  • the monomer which has a carboxyl group may be used individually by 1 type, and may use 2 or more types.
  • the polymer having a hydroxyl group or a carboxyl group which is a precursor of the polymer, can be obtained using only the above-mentioned monomer having a hydroxyl group or a carboxyl group. It can be obtained by copolymerizing with a monomer other than a monomer having a hydroxyl group or a carboxyl group.
  • (meth) acrylic acid chain alkyl ester As monomers other than the monomer having a hydroxyl group or a carboxyl group, (meth) acrylic acid chain alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated aromatic compound, conjugated diene, tetrahydrofuran Mention may be made of unsaturated compounds containing skeletons, maleimides and monomers other than these.
  • Monomers other than the monomer having a hydroxyl group or a carboxyl group may be used alone or in combination of two or more. Specifically, unsaturated compounds described in WO2014 / 178279 can be used.
  • a solvent used in a polymerization reaction for synthesizing a polymer having a hydroxyl group or a carboxyl group which is a precursor of a polymer
  • diethylene glycol monoalkyl ether diethylene glycol dialkyl ether
  • the solvent described in WO2014 / 178279 can be used.
  • the solvent may be used alone or in combination of two or more.
  • one or more molecular weight regulators can be used to adjust the molecular weight.
  • the polystyrene-reduced weight average molecular weight (Mw) of the polymer having a hydroxyl group or a carboxyl group by gel permeation chromatography (GPC) is preferably from 1000 to 40000, more preferably from 1000 to 30000, and further preferably from 5000 to 30000.
  • the sensitivity of the radiation sensitive composition containing the [A] polymer which has this molecular weight can be raised by making Mw of the polymer which has a hydroxyl group or a carboxyl group into the above-mentioned range.
  • a method of reacting the compound (1) with a hydroxyl group or a carboxyl group of a polymer having a hydroxyl group or a carboxyl group to obtain a polymer [A] can be polymerized by a polymerization method described in WO2014 / 178279.
  • an acetal bond is formed by the hydroxyl group of the monomer having a hydroxyl group and the vinyl ether group of the compound (1), or the carboxyl group of the monomer having a carboxyl group
  • a hemiacetal ester bond is formed by the vinyl ether group of the compound (1) to form an adduct.
  • [A] polymer can be obtained in the same manner as in the method for producing a polymer having a hydroxyl group or a carboxyl group as described above.
  • Preferred examples of the [A] polymer obtained as described above include a polymer having at least one selected from the group consisting of structural units represented by the following formulas (2) to (6). .
  • R3 independently represents a hydrogen atom or a methyl group.
  • R4 is independently a methylene group, an alkylene group having 2 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 13 carbon atoms, or 4 to 12 carbon atoms.
  • R5 independently represents a group in which one or more hydrogen atoms of a hydrocarbon group are substituted with a fluorine atom.
  • m represents 0 or 1; n independently represents an integer of 0 to 12.
  • polymer More preferable examples of the polymer include a polymer having at least one selected from the group consisting of structural units represented by the following formula.
  • a polymer may be used individually by 1 type, and may use 2 or more types.
  • Suitable [B] solvents include alcohol solvents, ethers, diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionates, aliphatic hydrocarbons. , Aromatic hydrocarbons, ketones and esters. [B] solvent mentioned above may be used individually by 1 type, and may use 2 or more types.
  • the amount of the solvent used is preferably 200 to 1600 parts by mass, and more preferably 400 to 1000 parts by mass with respect to 100 parts by mass of the component excluding the solvent of the radiation-sensitive composition.
  • the amount of the solvent used is preferably 200 to 1600 parts by mass, and more preferably 400 to 1000 parts by mass with respect to 100 parts by mass of the component excluding the solvent of the radiation-sensitive composition.
  • the acid generator is a compound that generates an acid at least upon irradiation with radiation.
  • the radiation-sensitive composition contains a [C] acid generator, the acid-dissociable group can be dissociated from the [A] polymer.
  • Examples of the acid generator include oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and carboxylic acid ester compounds.
  • the acid generator may be used alone or in combination of two or more.
  • oxime sulfonate compound As said oxime sulfonate compound, the compound containing the oxime sulfonate group represented by following formula (5) is preferable.
  • R 11 is an alkyl group having 1 to 12 carbon atoms, a fluoroalkyl group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group having 4 to 12 carbon atoms, or an aryl having 6 to 20 carbon atoms. Or a group in which some or all of the hydrogen atoms of the alkyl group, alicyclic hydrocarbon group and aryl group are substituted with a substituent.
  • oxime sulfonate compounds include (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene).
  • onium salt examples include diphenyliodonium salt, triphenylsulfonium salt, alkylsulfonium salt, benzylsulfonium salt, dibenzylsulfonium salt, substituted benzylsulfonium salt, benzothiazonium salt, and tetrahydrothiophenium salt. Of these, triphenylsulfonium salt is particularly preferable.
  • Preferred sulfonimide compounds as acid generators include, for example, N- (trifluoromethylsulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (4-methylphenylsulfonyloxy) succinimide, N— (2-trifluoromethylphenylsulfonyloxy) succinimide, N- (4-fluorophenylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (camphorsulfonyloxy) phthalimide, N- (2-tri Fluoromethylphenylsulfonyloxy) phthalimide, N- (2-fluorophenylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (camphorsulfonyloxy) succinimi
  • the content of the [C] acid generator is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the [A] polymer.
  • ⁇ Other optional components As other optional components, a surfactant, a storage stabilizer, an adhesion assistant, a heat resistance improver, and the like can be blended. Specific examples and formulation examples of these optional components can be referred to the specific examples and formulation examples described in WO2014 / 178279.
  • solid content concentration means the ratio of the copolymer mass which occupies for the total mass of a copolymer solution.
  • the obtained reaction solution was added dropwise to a large excess of methanol for reprecipitation purification, and after drying, 230 parts by mass of [A] polymer (P-1) was obtained as a white solid copolymer.
  • the obtained [A] polymer (P-1) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 5.50 ppm, acetal group C—H). .
  • the temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing a polymer (P-2) as a copolymer.
  • the polymer (P-2) had a weight average molecular weight (Mw) in terms of polystyrene of 9000.
  • Mw weight average molecular weight
  • the solid content concentration of the polymer solution obtained here was 31.3 mass%.
  • a surfactant 0.1 parts by mass of Polyflow No95 (manufactured by Kyoeisha Chemical Co., Ltd.) is added, and when the total amount of components excluding the solvent is 100% by mass, 30% by mass, respectively. After adding propylene glycol monomethyl ether acetate, the mixture is filtered through a Millipore filter having a pore size of 0.5 ⁇ m to obtain a radiation sensitive composition (X-3 ) Was prepared.
  • a coating film was formed on the substrate using the above radiation sensitive compositions (X-1) to (X-3), and a template was formed through exposure and development steps.
  • the forming method is shown below. It is described as a template pattern (T-1 to T-7).
  • the exposed portion was removed by immersing the substrate in an aqueous 2.38% tetraammonium hydroxide solution for 2 minutes.
  • the finally obtained pattern was dried and baked on a hot plate at 90 ° C. for 15 minutes to obtain a liquid repellent template pattern (T-1).
  • T-1 liquid repellent template pattern
  • the contact angle with respect to tetradecane of the layer containing the remaining liquid repellent surface is 60 °
  • the contact angle with water is 109 °
  • the contact angle with respect to tetradecane of the lyophilic surface without the film is 8 °
  • the contact angle with water is It was 23 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
  • the contact angle with respect to tetradecane of the layer including the remaining liquid repellent surface is 61 °
  • the contact angle with water is 110 °
  • the contact angle with respect to tetradecane of the lyophilic surface having no film is 9 °
  • the contact angle with water is It was 25 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
  • the contact angle with respect to tetradecane of the layer containing the remaining liquid repellent surface is 61 °
  • the contact angle with water is 110 °
  • the contact angle with respect to tetradecane of the lyophilic surface having no film is 7 °
  • the contact angle with water is It was 23 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
  • the contact angle with respect to tetradecane of the layer containing the remaining liquid-repellent surface is 60 °
  • the contact angle with water is 106 °
  • the contact angle with tetradecane of the lyophilic surface where no film is present is 8 °
  • the contact angle with water is It was 25 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
  • the contact angle with respect to tetradecane of the layer containing the remaining liquid-repellent surface is 60 °
  • the contact angle with water is 108 °
  • the contact angle with tetradecane of the lyophilic surface without the film is 8 °
  • the contact angle with water is It was 25 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
  • the contact angle with respect to tetradecane of the layer containing the remaining liquid repellent surface is 60 °
  • the contact angle with water is 109 °
  • the contact angle with respect to tetradecane of the lyophilic surface without the film is 8 °
  • the contact angle with water is It was 24 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
  • the contact angle with respect to tetradecane of the layer containing the remaining liquid-repellent surface is 5 °
  • the contact angle with water is 52 °
  • the contact angle with respect to tetradecane of the lyophilic surface without the film is 6 °
  • the contact angle with water is It was 28 °.
  • a curable composition was prepared as a curable ink composition as follows.
  • ⁇ Preparation of curable ink composition (B-1)> As a polymerizable compound, dipentaerythritol hexaacrylate (30 parts by mass), trimethylolpropane triacrylate (30 parts by mass), isobornyl acrylate (35 parts by mass), 3-acryloxypropyltrimethoxysilane (5 parts by mass), Irgacure 907 (BASF, 8 parts by mass) as a photopolymerization initiator and Basic Blue 7 (TCI, 0.5 parts by mass) as a colorant were stirred until uniform to prepare an ink composition (B-1). .
  • an emulsifier an anionic surfactant (New Coal 707SF manufactured by Nippon Emulsifier Co., Ltd., active ingredient concentration: 30% by mass), 3.3 parts by mass (in terms of active ingredient), and 60 parts by mass of water are added to the composition.
  • An aqueous dispersion of the monomer was prepared by dispersing and mixing with an ultrasonic disperser under ice cooling.
  • hollow organic particles prepared according to the method described in Example ⁇ Production of Hollow Base Particles (A-1)> of Japanese Patent No. 5181565 30% by volume) aqueous dispersion 7.0 parts by weight (in terms of non-volatile content), 28.0 parts in terms of solid organic particle dispersion (in terms of non-volatile content), a fluorosurfactant (Kyoeisha Chemical Co., Ltd.) as a wetting agent ) Produced aftergent 215M) and 0.3 parts by mass of water and water were added so that the non-volatile content was 25% by mass, and the mixture was stirred well to prepare an ink composition (B-2).
  • TMPTA Trimethylolpropane triacrylate 100 parts by mass as a polymerizable compound, Irgacure 907 (BASF, 3 parts by mass) as a photopolymerization initiator, and carbon black MA100R (Mitsubishi Chemical Corporation, 20 parts by mass) as a black pigment,
  • the ink composition (B-3) was prepared by stirring well at room temperature.
  • carbon black Printex 45, average primary particle size 26 nm, manufactured by Orion Engineered Carbons
  • DISPERBYK-168 manufactured by BYK Chemie
  • paramethoxyphenol as a polymerization inhibitor 0.1 parts by mass
  • carbon black Printex 45, average primary particle size 26 nm, manufactured by Orion Engineered Carbons
  • DISPERBYK-161 manufactured by BYK Chemie
  • Solsperse 5000 as a dispersion aid 1 part by mass of Lubrizol
  • 3-methoxybutanol 3-methoxybutanol
  • the black dispersion liquid (V-2) 87.8 parts by mass, EPICLON EXA-4816 (manufactured by DIC) 9.2 parts by mass as a crosslinking agent, N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester 1. 7 parts by mass, 1.2 parts by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant are mixed, and an ink composition (B-5) having a carbon black concentration of 50% by mass with respect to the total amount of components excluding the solvent Was prepared.
  • An ink composition (B-8) having a carbon black concentration of 50% by mass relative to the total amount of the components excluding the components was prepared.
  • the temperature of the reaction solution was raised to 90 ° C., and further polymerized for 1 hour to obtain a polymer (Q-1).
  • ⁇ Preparation of curable ink composition (B-10)> Add 100 parts by weight of trimethylolpropane triacrylate (TMPTA) as a polymerizable compound, Irgacure 907 (BASF, 3 parts by weight) as a photopolymerization initiator, and titanium oxide (20 parts by weight) as a metal oxide material, and stir well at room temperature.
  • TMPTA trimethylolpropane triacrylate
  • Irgacure 907 BASF, 3 parts by weight
  • titanium oxide 20 parts by weight
  • the reaction solution was heated to 80 ° C. with stirring. Then, the polymerization was carried out while maintaining this temperature for 5 hours to obtain a polymerization solution containing 33% by mass of the alkali-soluble resin (P-3).
  • the weight average molecular weight (Mw) in terms of polystyrene by GPC of this alkali-soluble resin C1 was 3,000.
  • V-4 black pigment dispersion
  • 20.0 parts by mass of carbon black Printex 45, average primary particle size 26 nm, manufactured by Orion Engineered Carbons
  • 4.0 parts by mass of DISPERBYK-2001 manufactured by BYK Chemie
  • Black pigment dispersion (V-4) was prepared by mixing with butyl acetate with a bead mill using a solid content of 24% by mass.
  • ⁇ Preparation of black resist composition 150 parts by mass of a black pigment dispersion (V-4), 19 parts by mass of a polymerization solution (solid content concentration: 33% by mass) containing an alkali-soluble resin (P-3), and dipentaerythritol hexaacrylate as a polymerizable oligomer.
  • a white pigment dispersion (V-5) was prepared by mixing with a bead mill using a partial concentration of 45% by mass.
  • ⁇ Preparation of white resist composition 150 parts by weight of a white pigment dispersion (V-5), 19 parts by weight of a polymerization solution (solid content concentration 33% by weight) containing an alkali-soluble resin (P-3), and dipentaerythritol hexaacrylate as a polymerizable oligomer.
  • Example 1 An ink composition (B-1) was formed on a linear liquid-repellent template (T-1) having a thickness of 0.5 ⁇ m and a width of 50 ⁇ m obtained using the radiation-sensitive resin composition (X-1). As a result, the ink composition was not applied on the liquid repellent pattern but was selectively applied onto a 50 ⁇ m development pattern. Then, the exposure amount was set to 1000 mJ / cm 2 using a high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • Example 2 The ink composition (B-1) is formed on the 10 ⁇ m-thick line-like liquid-repellent template (T-2) obtained by using the radiation-sensitive resin composition (X-1).
  • T-2 the 10 ⁇ m-thick line-like liquid-repellent template obtained by using the radiation-sensitive resin composition (X-1).
  • X-1 the radiation-sensitive resin composition
  • ink-jet coating was performed using a Mattix Material Printer DMP-2831 (Fujifilm Global Graphic Systems)
  • the ink composition did not remain on the liquid repellent pattern and was selectively coated on a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-1) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 3 On the 10 ⁇ m thick, 10 ⁇ m ⁇ 10 ⁇ m square liquid-repellent template (T-3) (FIG. 16) obtained using the radiation sensitive resin composition (X-2), the ink composition (B -1) was applied by inkjet using DMP-2831 (Fujifilm Global Graphic Systems Co., Ltd.), and the ink composition did not remain on the liquid repellent pattern and was selected on a 10 ⁇ m ⁇ 10 ⁇ m development pattern. Applied.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-1) (FIG. 17) remained.
  • the obtained pattern was 10 ⁇ m ⁇ 10 ⁇ m, and the pattern matched to the template was formed favorably.
  • Example 4 On the line-shaped liquid repellent template (T-4) having a thickness of 2.0 ⁇ m and a width of 50 ⁇ m obtained by using the radiation sensitive resin composition (X-2), the ink composition (B-2) As a result of dip coating, the ink composition did not remain on the liquid repellent pattern but was selectively coated on a 50 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-2) remained.
  • the obtained pattern width was 50 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 5 On the liquid repellent template (T-2) obtained by using the radiation sensitive resin composition (X-1), the ink composition (B-3) was added to the Dimamics Material Printer DMP-2831 (Fuji When ink jet coating was performed using Film Global Graphic Systems), the ink composition did not remain on the liquid repellent pattern, but was selectively coated on a 10 ⁇ m wide development pattern.
  • the high-pressure mercury lamp was used, the exposure amount was 1000 mJ / cm 2 using the high-pressure mercury lamp, and the entire substrate was irradiated with radiation to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-3) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 6 On the line-shaped liquid repellent template (T-5) (FIG. 18) having a thickness of 10 ⁇ m and a width of 10 ⁇ m obtained using the radiation-sensitive resin composition (X-2), the ink composition (B- When 4) was applied using a microcapillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied on a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-4) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern corresponding to the template width was well formed (FIG. 19).
  • Example 7 On the 5 ⁇ m-thickness, 10 ⁇ m-wide line-shaped liquid-repellent template (T-6) obtained using the radiation-sensitive resin composition (X-2), the ink composition (B-5) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-5) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 8 The ink composition (B-6) is micro-coated on the 5 ⁇ m-thickness, 10 ⁇ m-width linear liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2). When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-6) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 9 The ink composition (B-7) was micro-coated on the 5 ⁇ m-thickness, 10 ⁇ m-width linear liquid-repellent template (T-6) obtained using the radiation-sensitive resin composition (X-2). When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-7) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 10 On the 5 ⁇ m-thickness, 10 ⁇ m-wide linear liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2), the ink composition (B-8) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-8) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 11 On the line-shaped liquid repellent template (T-3) having a thickness of 2.0 ⁇ m and a width of 50 ⁇ m obtained by using the radiation sensitive resin composition (X-2), the ink composition (B-9) was applied using a microcapillary, and the ink composition did not remain on the liquid repellent pattern but was selectively applied onto a 50 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-9) remained.
  • the obtained pattern width was 50 ⁇ m, and a pattern matched to the template width was formed favorably.
  • the obtained pattern was further examined for fluorescence quantum yield at 25 ° C. using an absolute PL quantum yield measuring apparatus (C11347-01, Hamamatsu Photonics).
  • the fluorescence quantum yield was 38%, and the fluorescence characteristics were judged to be good.
  • Example 12 On the 5 ⁇ m-thickness, 10 ⁇ m-wide line-shaped liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2), the ink composition (B-10) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-10) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 13 On the 5 ⁇ m-thickness, 10 ⁇ m-wide line-shaped liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2), the ink composition (B-11) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-11) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • Example 14 On the 5 ⁇ m-thickness, 10 ⁇ m-wide line-shaped liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2), the ink composition (B-12) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 ⁇ m development pattern.
  • the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
  • the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-12) remained.
  • the obtained pattern width was 10 ⁇ m, and a pattern matched to the template width was formed favorably.
  • the black resist composition (B-13) was applied to a silicon wafer substrate using a spin coater, and then pre-baked on a 90 ° C. hot plate for 150 seconds to form a film having a thickness of 1.7 ⁇ m.
  • the substrate is cooled to room temperature, and each wavelength of 365 nm, 405 nm, and 436 nm is applied to the coating film through a photomask having a width of 50 ⁇ m using an exposure apparatus (trade name “Mask Aligner MA200e”, manufactured by SUSS). Exposed ultraviolet light was exposed.
  • the exposure amount at this time was 500 mJ / cm 2. Thereafter, the substrate was shower-developed for 1 minute using a 0.05% by weight tetramethylammonium hydroxide aqueous solution containing a polyoxyethylene surfactant at 23 ° C.
  • the white resist composition (B-14) was applied to a silicon wafer substrate using a spin coater, and then pre-baked on a 90 ° C. hot plate for 150 seconds to form a film having a thickness of 1.7 ⁇ m.
  • the substrate is cooled to room temperature, and each wavelength of 365 nm, 405 nm, and 436 nm is applied to the coating film through a photomask having a width of 50 ⁇ m using an exposure apparatus (trade name “Mask Aligner MA200e”, manufactured by SUSS). Exposed ultraviolet light was exposed. The exposure amount at this time was 500 mJ / cm 2.
  • the substrate was shower-developed for 1 minute using a 0.05% by mass tetramethylammonium hydroxide aqueous solution containing a polyoxyethylene surfactant at 23 ° C. And it wash
  • post baking was performed on a hot plate at 180 ° C. for 5 minutes to form a patterned film on the substrate.
  • the obtained patterned film was observed with an electron microscope to confirm whether the pattern was formed satisfactorily. As a result, it was found that the white pattern was not confirmed and disappeared during development. This is because the white pigment concentration was too high and photocuring did not proceed sufficiently.
  • a black ink composition (B-3) to (B-7) is coated on a 9.5 cm square non-alkali glass substrate (EAGLE-XG, 0.7 mm thickness, manufactured by Corning)), and a high-pressure mercury lamp The exposure amount was set to 1000 mJ / cm 2 using, and the entire substrate was irradiated with radiation, followed by heating at 70 ° C. for 15 minutes to cure the ink composition to a thickness of 1 ⁇ m. Thereafter, the optical density OD value of the black cured film was measured under an atmosphere of 23 ° C. and 55% RH using X-Rite 361T (manufactured by Sakata Inx Engineering).
  • a black ink composition (B-5), (B-7), (B-8) is entirely coated on a 9.5 cm square alkali-free glass substrate (EAGLE-XG, 0.7 mm thickness, manufactured by Corning). Apply, set the exposure to 1000 mJ / cm 2 using a high-pressure mercury lamp, irradiate the entire substrate with radiation, and then heat at 70 ° C. for 15 minutes to cure the ink composition to a thickness of 1 ⁇ m. It was.
  • the contact angle on the surface of the cured film of the present invention was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A cured film pattern is efficiently formed using a curable composition having poor developability or a curable composition in which insoluble materials such as coloring agents are dispersed or incorporated. Also provided are a display element and a sensor including a cured film pattern obtained from a method for forming the cured film. The invention, which was devised in order to solve the problem, is a method for forming a cured film, said method comprising: a step for forming, on a substrate, a layer that includes a liquid-repellent surface and a layer that includes a liquid-attracting surface; a step for coating the layer including the liquid-attracting surface with a curable composition; a step for curing the coated film; and a step for removing the layer that includes the liquid-repellent surface. The present invention is achieved by using a radiation-sensitive composition that includes a polymer having an acid-dissociable group and a radiation-sensitive acid generator in the formation of the layer that includes the liquid-repelling surface and the layer that includes the liquid-attracting surface.

Description

硬化膜の形成方法、感放射線樹脂組成物、硬化膜を備える表示素子及びセンサーMethod for forming cured film, radiation-sensitive resin composition, display element and sensor provided with cured film
 本発明は、硬化膜の形成方法、感放射線樹脂組成物、硬化膜を備える表示素子及びセンサーに関する。 The present invention relates to a method for forming a cured film, a radiation-sensitive resin composition, a display element and a sensor provided with the cured film.
 表示素子や半導体素子等に使われるパターンの形成には感放射線性材料が用いた、フォトリソグラフィー法が広く用いられている。現像工程を有するフォトリソグラフィー法では、ネガ型であれば感放射線性材料の未露光部の除去を現像により行い、ポジ型であれば感放射線性材料の露光部の除去を現像により行う。 A photolithography method using a radiation-sensitive material is widely used for forming a pattern used for a display element, a semiconductor element, or the like. In the photolithography method having a development step, the removal of the unexposed portion of the radiation sensitive material is performed by development if the negative type, and the exposed portion of the radiation sensitive material is removed by development if the positive type.
 そのため、フォトリソグラフィー法に用いる感放射線性材料は現像液によって除去できる材料でなければ用いることができない。
 一方、着色剤等を含む感放射線性である硬化性組成物は、表示素子、イメージセンサー等の形成に広く用いられているが、着色パターン形成においては、着色機能等を効率良く実現させる観点から、近年は着色剤等を高濃度にした硬化性組成物が求められている。
Therefore, the radiation-sensitive material used for the photolithography method can be used only if it can be removed by a developer.
On the other hand, the radiation-sensitive curable composition containing a colorant and the like is widely used for the formation of display elements, image sensors, etc., but in the formation of a colored pattern, from the viewpoint of efficiently realizing a coloring function and the like. In recent years, there has been a demand for a curable composition having a high concentration of colorant and the like.
 ここで、着色剤等が含まれている感放射線性である硬化性組成物では、感放射線性である硬化性組成物から形成される塗膜が着色しているため露光による放射線が十分に透過せず、塗膜下部の光反応が不十分になった結果、所望のパターン形状を形成できない等の問題があった。このような問題は、特に、露光による放射線を遮る高濃度の黒色剤や、高濃度の屈折剤が含まれている感放射線性である硬化性組成物で発生しやすい。 Here, in a radiation-sensitive curable composition containing a colorant or the like, the coating film formed from the radiation-sensitive curable composition is colored, so that radiation due to exposure is sufficiently transmitted. In addition, as a result of insufficient photoreaction under the coating film, there was a problem that a desired pattern shape could not be formed. Such a problem is likely to occur particularly in a curable composition that is sensitive to radiation and contains a high-density black agent that blocks radiation caused by exposure or a high-density refractive agent.
 一方、プリンテッドエレクトロニクスにおいて用いられるインクジェット印刷、スクリーン印刷、グラビア印刷等の各印刷法は、基板上に直接所望パターンを形成できるため、簡便で低コストな方法とされている。しかしながら、印刷法によるパターンの形成においては、使用するインク材料が流動して濡れ広がりやにじみが生じるため、微細なパターンを形成するには限界がある。 On the other hand, each printing method such as ink jet printing, screen printing, and gravure printing used in printed electronics is a simple and low-cost method because a desired pattern can be directly formed on a substrate. However, in forming a pattern by a printing method, there is a limit to forming a fine pattern because the ink material used flows and wets and spreads.
 このような中、エネルギーの付与により表面エネルギーが変化する材料を用いた印刷法により積層パターンを形成する方法が提案されている(特開2015-15378号公報参照)。 In such circumstances, a method of forming a laminated pattern by a printing method using a material whose surface energy changes by applying energy has been proposed (see Japanese Patent Application Laid-Open No. 2015-15378).
 しかし、上記方法は、パターンとなる濡れ性の高い領域の形成に高エネルギーのレーザー照射を行うものであり、効率性が良いとは言い難い。レーザーを用いる場合、例えば、パターンが複雑になるにつれて、走査経路が複雑になり、作業時間も長くなる。 However, the above-described method performs high-energy laser irradiation to form a region with high wettability to be a pattern, and it is difficult to say that the efficiency is good. When a laser is used, for example, as the pattern becomes more complicated, the scanning path becomes more complicated and the working time becomes longer.
 また、上記方法は、導電性インクを使用したパターンに限定されており、またエネルギーの付与により表面エネルギーが変化する具体的な材料としては、主鎖中にポリイミドを含み、紫外線の照射により親水性基を生成可能な側鎖を有するポリマーが用いられているのみである。 In addition, the above method is limited to patterns using conductive ink, and a specific material whose surface energy is changed by applying energy includes polyimide in the main chain and is hydrophilic by irradiation with ultraviolet rays. Only polymers having side chains capable of generating groups are used.
特開2015-15378号公報Japanese Patent Laid-Open No. 2015-15378
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、現像性に乏しい硬化性組成物や着色剤等の不溶物を分散、含有している硬化性組成物を用いて効率的に硬化膜パターンを形成することである。さらに当該硬化膜の形成方法から得られた硬化膜パターンを具備する表示素子又はセンサーを提供することである。 The present invention has been made based on the circumstances as described above, and the purpose thereof is to use a curable composition containing a curable composition having poor developability and an insoluble material such as a colorant. And efficiently forming a cured film pattern. Furthermore, it is providing the display element or sensor which comprises the cured film pattern obtained from the formation method of the said cured film.
 上記課題を解決するためになされた発明は、基板上に、撥液性表面を含む層と親液性表面を含む層を形成する工程、上記親液性表面を含む層に、硬化性組成物を塗布する工程、上記塗膜を硬化させる工程及び、撥液性表面を含む層を除去する工程を備える硬化膜の形成方法である。 The invention made in order to solve the above-described problems is a process for forming a layer containing a liquid-repellent surface and a layer containing a lyophilic surface on a substrate, and a curable composition in the layer containing the lyophilic surface. Is a method for forming a cured film, comprising a step of applying a coating, a step of curing the coating film, and a step of removing a layer including a liquid repellent surface.
 当該形成方法においては、撥液性表面を含む層と親液性表面を含む層の形成に、例えば酸解離性基を有する重合体及び感放射線性酸発生体を含む感放射線性組成物を用いることができる。このため、放射線が照射された領域においては、酸が発生し、この酸の発生により重合体の酸解離性基が解離することにより、濡れ性が変化する。 In the formation method, for example, a radiation-sensitive composition containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator is used to form a layer containing a liquid-repellent surface and a layer containing a lyophilic surface. be able to. For this reason, in the region irradiated with radiation, an acid is generated, and the acid dissociable group of the polymer is dissociated by the generation of this acid, whereby the wettability changes.
 この放射線の照射は、レーザーを用いなくとも、フォトマスクを介した露光等により行うことができる。得られた親液性表面を含む層は、現像により除去することも可能であり、親液性の基板面を得ることが出来る。この撥液性表面を含む層と親液性表面を含む層を有するテンプレート上に、硬化物組成物を塗布すると、その濡れ性の差により硬化組成物が親液部分に集り、その状態で硬化組成物を硬化させることにより親液性表面を含む層上にのみ硬化物を形成することが出来る。 This irradiation can be performed by exposure through a photomask without using a laser. The obtained layer containing a lyophilic surface can be removed by development, and a lyophilic substrate surface can be obtained. When a cured composition is applied onto a template having a layer containing a liquid repellent surface and a layer containing a lyophilic surface, the cured composition collects in the lyophilic portion due to the difference in wettability, and cures in that state. By curing the composition, a cured product can be formed only on the layer containing the lyophilic surface.
 本発明は、現像性に乏しい硬化性組成物や着色剤等の不溶物を分散、含有している硬化性組成物を用いて効率的に硬化膜パターンを形成することができ、この硬化膜パターンは、表示素子としてのカラーフィルターやブラックマトリクス、イメージセンサーとしてのCCD、CMOS、各種光学用途等に好ましく適用することができる。 The present invention can efficiently form a cured film pattern by using a curable composition in which an insoluble matter such as a curable composition or a colorant having poor developability is dispersed and contained. Can be preferably applied to color filters and black matrices as display elements, CCDs and CMOSs as image sensors, various optical applications, and the like.
図1は、本発明の一実施形態に係る撥液性表面を含む層と親液性表面を含む層を形成する工程(A)の説明図であり、テンプレート用塗膜を形成する工程(A-1)の説明図、放射線の照射により、親液性表面を含む層を形成する工程(A-2)の説明図、及び現像によりパターンを形成する工程(A-3)の説明図である。FIG. 1 is an explanatory view of a step (A) of forming a layer including a liquid repellent surface and a layer including a lyophilic surface according to an embodiment of the present invention, and a step of forming a template coating film (A) -1) is an explanatory diagram, an explanatory diagram of a step (A-2) for forming a layer including a lyophilic surface by irradiation with radiation, and an explanatory diagram of a step (A-3) for forming a pattern by development. . 図2は、本発明の一実施形態に係る撥液性表面を含む層と親液性表面を含む層を形成する工程(A)の説明図であり、テンプレート用塗膜を形成する工程(A-1)の説明図、放射線の照射により、親液性表面を含む層を形成する工程(A-2)の説明図、及び露光条件の変更等により残膜がある場合の工程(A-4)の説明図である。FIG. 2 is an explanatory view of a step (A) of forming a layer including a liquid repellent surface and a layer including a lyophilic surface according to an embodiment of the present invention, and a step of forming a template coating film (A) -1), an explanatory diagram of the step (A-2) for forming a layer including a lyophilic surface by irradiation with radiation, and a step (A-4) when there is a residual film by changing exposure conditions, etc. ). 図3は、本発明の一実施形態に係る(A-3)の親液性表面を含む層に、硬化性組成物を塗布する工程(B)の説明図である。FIG. 3 is an explanatory diagram of a step (B) of applying a curable composition to a layer including a lyophilic surface (A-3) according to an embodiment of the present invention. 図4は、本発明の一実施形態に係る(A-4)の親液性表面を含む層に、硬化性組成物を塗布する工程(B)の説明図である。FIG. 4 is an explanatory diagram of the step (B) of applying a curable composition to a layer including a lyophilic surface (A-4) according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る(A-3)の親液性表面を含む層に、硬化性組成物を塗布し、その塗膜を硬化させる工程(C)の説明図である。FIG. 5 is an explanatory view of a step (C) of applying a curable composition to a layer containing a lyophilic surface of (A-3) according to an embodiment of the present invention and curing the coating film. . 図6は、本発明の一実施形態に係る(A-4)の親液性表面を含む層に、硬化性組成物を塗布し、その塗膜を硬化させる工程(C)の説明図である。FIG. 6 is an explanatory view of a step (C) of applying a curable composition to a layer including a lyophilic surface of (A-4) according to an embodiment of the present invention and curing the coating film. . 図7は、本発明の一実施形態に係る(A-3)の親液性表面を含む層に、硬化性組成物を塗布し、その塗膜を硬化させ、その後、撥液性表面を含む層を除去する工程(D)の説明図である。FIG. 7 shows a coating of a curable composition on a layer containing a lyophilic surface of (A-3) according to an embodiment of the present invention, curing the coating film, and then including a liquid repellent surface. It is explanatory drawing of the process (D) which removes a layer. 図8は、本発明の一実施形態に係る(A-4)の親液性表面を含む層に、硬化性組成物を塗布し、その塗膜を硬化させ、その後、撥液性表面を含む層を除去する工程(D)の説明図である。FIG. 8 shows a coating of a curable composition on a layer containing a lyophilic surface of (A-4) according to an embodiment of the present invention, the coating film is cured, and then containing a liquid repellent surface. It is explanatory drawing of the process (D) which removes a layer. 図9は、本発明の一実施形態に係る(A-3)の親液性表面を含む層に、硬化性組成物を撥液性表面を含む層パターンの厚さと同程度の高さになるように塗布し、その塗膜を硬化させる工程(C)の説明図である。FIG. 9 shows that the layer containing a lyophilic surface (A-3) according to one embodiment of the present invention has a height comparable to the thickness of the layer pattern containing a lyophobic surface. It is explanatory drawing of the process (C) which apply | coats so that the coating film may be hardened. 図10は、本発明の一実施形態に係る(A-4)の親液性表面を含む層に、硬化性組成物を撥液性表面を含む層パターンの厚さと同程度の高さになるように塗布し、その塗膜を硬化させる工程(C)の説明図である。FIG. 10 shows a layer having a lyophilic surface of (A-4) according to an embodiment of the present invention, the curable composition having a height similar to the thickness of a layer pattern including a liquid repellent surface. It is explanatory drawing of the process (C) which apply | coats so that the coating film may be hardened. 図11は、本発明の一実施形態に係る(A-3)の親液性表面を含む層に、硬化性組成物を、撥液性表面を含む層パターンの厚さと同程度の高さになるように塗布し、その塗膜を硬化させ、その後、撥液性表面を含む層を除去する工程(D)の説明図である。FIG. 11 shows that the curable composition is added to the layer containing the lyophilic surface of (A-3) according to one embodiment of the present invention so that the thickness is about the same as the thickness of the layer pattern including the liquid repellent surface. It is explanatory drawing of the process (D) of apply | coating so that the coating film may be hardened, and removing the layer containing a liquid-repellent surface after that. 図12は、本発明の一実施形態に係る(A-4)の親液性表面を含む層に、硬化性組成物を、撥液性表面を含む層パターンの厚さと同程度の高さになるように塗布し、その塗膜を硬化させ、その後、撥液性表面を含む層を除去する工程(D)の説明図である。FIG. 12 shows that the curable composition is added to the layer containing the lyophilic surface of (A-4) according to an embodiment of the present invention so that the layer pattern has the same height as the layer pattern including the liquid repellent surface. It is explanatory drawing of the process (D) of apply | coating so that the coating film may be hardened, and removing the layer containing a liquid-repellent surface after that. 図13は、本発明の一実施形態に係る撥液性表面を含む層パターンの膜厚を薄く形成した下地膜に、硬化性組成物を塗布し、その塗膜を硬化させる工程(C)で硬化させ、その後、撥液性表面を含む層を除去する工程(D)の説明図である。の説明図である。FIG. 13 is a process (C) in which a curable composition is applied to a base film in which a film thickness of a layer pattern including a liquid repellent surface according to an embodiment of the present invention is thin, and the coating film is cured. It is explanatory drawing of the process (D) which makes it harden | cure and then removes the layer containing a liquid-repellent surface. It is explanatory drawing of. 図14は、本発明の一実施形態に係る撥液性表面を含む層パターンの膜厚を薄く形成したテンプレート用塗膜に、硬化性組成物を塗布し、その塗膜を硬化させる工程(C)で硬化させ、その後、撥液性表面を含む層を除去する工程(D)の説明図である。の説明図である。FIG. 14 shows a process of applying a curable composition to a template coating film having a thin layer pattern including a liquid repellent surface according to an embodiment of the present invention and curing the coating film (C ) And then removing the layer including the liquid repellent surface (D). It is explanatory drawing of. 図15は、本発明の一実施形態に係る(A-4)の親液性表面を含む層に、硬化性組成物を塗布し、その塗膜を硬化させ、その後、撥液性表面を含む層を除去した後に、親液性表面を含む層に形成された硬化膜パターンの電子顕微鏡写真である。FIG. 15 is a diagram showing the process of (A-4) including a lyophilic surface according to an embodiment of the present invention, in which a curable composition is applied, the coating film is cured, and then a liquid repellent surface is included. It is an electron micrograph of the cured film pattern formed in the layer containing a lyophilic surface after removing a layer. 図16は、本発明の一実施形態に係る撥液性表面を含む層パターンの斜視図、断面図に係る電子顕微鏡写真である。FIG. 16 is an electron micrograph according to a perspective view and a cross-sectional view of a layer pattern including a liquid repellent surface according to an embodiment of the present invention. 図17は、本発明の一実施形態に係る撥液性表面を含む層パターンの間に硬化膜を形成し、その後撥液性表面を含む層を除去し、残った硬化膜パターンの斜視図、断面図に係る電子顕微鏡写真である。FIG. 17 is a perspective view of the remaining cured film pattern in which a cured film is formed between the layer patterns including the liquid repellent surface according to the embodiment of the present invention, and then the layer including the liquid repellent surface is removed. It is an electron micrograph concerning a sectional view. 図18は、本発明の一実施形態に係る撥液性表面を含む層パターンの斜視図、断面図に係る電子顕微鏡写真である。FIG. 18 is an electron micrograph according to a perspective view and a cross-sectional view of a layer pattern including a liquid repellent surface according to an embodiment of the present invention. 図19は、本発明の一実施形態に係る撥液性表面を含む層パターンの間に硬化膜を形成し、その後撥液性表面を含む層を除去し、残った硬化膜パターンの斜視図、断面図に係る電子顕微鏡写真である。FIG. 19 is a perspective view of a remaining cured film pattern in which a cured film is formed between layer patterns including a liquid repellent surface according to an embodiment of the present invention, and then the layer including the liquid repellent surface is removed. It is an electron micrograph concerning a sectional view.
 本発明の目的は、下記によって達成された。
1)基板上に、撥液性表面を含む層と親液性表面を含む層を形成する工程、
前記親液性表面を含む層に、硬化性組成物を塗布し塗膜を形成する工程、
前記塗膜を硬化させる工程及び、
前記撥液性表面を含む層を現像液で現像して除去する工程、
とを備え、前記撥液性表面を含む層と親液性表面を含む層のテトラデカンに対する接触角差が、30°以上である、硬化膜の形成方法。
The object of the present invention has been achieved by the following.
1) forming a layer including a liquid repellent surface and a layer including a lyophilic surface on a substrate;
Applying a curable composition to the layer including the lyophilic surface to form a coating film;
Curing the coating film; and
Developing and removing the layer containing the liquid repellent surface with a developer;
The contact angle difference with respect to tetradecane of the layer containing the liquid repellent surface and the layer containing the lyophilic surface is 30 ° or more.
 以下、適宜図面を参照にしつつ、本発明の一実施形態に係る硬化膜の形成方法について詳説する。 Hereinafter, a method for forming a cured film according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
<硬化膜の形成方法>
 本発明の一実施形態に係る硬化膜の形成方法は、
 基板上に、撥液性表面を含む層と親液性表面を含む層を形成する工程(A)、上記親液性表面を含む層に、硬化性組成物を塗布する工程(B)、上記塗膜を硬化させる工程(C)及び、撥液性表面を含む層を除去する工程(D)を備える。
<Method for forming cured film>
A method for forming a cured film according to an embodiment of the present invention includes:
A step (A) of forming a layer including a liquid-repellent surface and a layer including a lyophilic surface on a substrate; a step (B) of applying a curable composition to the layer including the lyophilic surface; A step (C) for curing the coating film and a step (D) for removing the layer including the liquid repellent surface are provided.
 撥液性表面を含む層と親液性表面を含む層を形成する工程(A)は、上記基材の表面に、酸解離性基を有する重合体及び感放射線性酸発生体を含む感放射線性組成物を塗布し、塗膜を形成する工程を備え、上記塗膜を放射線の照射により親液性表面を含む層を形成する工程を備える。この場合、放射線を照射していない領域が、撥液性表面を含む層を有する領域となる。 The step (A) of forming a layer including a liquid repellent surface and a layer including a lyophilic surface includes a polymer having an acid dissociable group and a radiation sensitive acid generator on the surface of the substrate. A step of applying an adhesive composition to form a coating film, and a step of forming a layer including a lyophilic surface by irradiation of the coating film with radiation. In this case, a region not irradiated with radiation is a region having a layer including a liquid repellent surface.
 ここで撥液性表面とは、テトラデカンに対する接触角が30°以上の表面をいい、撥液性表面を含む層とは、テトラデカンに対する接触角が30°以上の表面を含む層をいう。特に硬化性組成物のパターニング性の観点から、40°以上の表面を含む層であることが好ましい。 Here, the liquid repellent surface means a surface having a contact angle with respect to tetradecane of 30 ° or more, and the layer containing a liquid repellent surface means a layer having a surface with a contact angle with respect to tetradecane of 30 ° or more. In particular, from the viewpoint of patternability of the curable composition, a layer including a surface of 40 ° or more is preferable.
 撥液性表面を含む層と親液性表面を含む層を形成する工程(A)は、テンプレート用塗膜を形成する工程(A-1)、放射線の照射により、親液性表面を含む層を形成する工程(A-2)、及び現像によりにパターンを形成する工程(A-3)または(A-4)を備えることが好ましい。 The step (A) of forming a layer containing a liquid repellent surface and a layer containing a lyophilic surface is a step (A-1) of forming a template coating film, and a layer containing a lyophilic surface by irradiation with radiation. It is preferable to include a step (A-2) of forming a pattern and a step (A-3) or (A-4) of forming a pattern by development.
 この場合、パターン化された領域が撥液性表面を含む層となり、現像によって除去された部分が親液性表面を含む層となる。また、親液性表面を含む層は完全に除去せずに一部膜を残存させて親液性表面を含む層を形成することも可能である。 In this case, the patterned region is a layer including a lyophobic surface, and the portion removed by development is a layer including a lyophilic surface. In addition, it is possible to form a layer including a lyophilic surface by leaving a part of the film without completely removing the layer including the lyophilic surface.
 当該形成方法における硬化性組成物を塗布する工程(B)は、撥液性表面を含む層と親液性表面を含む層が形成された基板上に、スピン塗布、インクジェット法、ディップ法、印刷等を適用でき、塗膜を形成する方法には限定されない。 The step (B) of applying the curable composition in the forming method includes spin coating, ink jet method, dipping method, printing on a substrate on which a layer including a liquid repellent surface and a layer including a lyophilic surface are formed. Etc., and a method for forming a coating film is not limited.
 さらに、基板上の親液性表面を含む層に形成された塗膜を硬化させる工程(C)は、塗膜を加熱又は光照射によって硬化することができる。光照射の場合、塗膜全面へ露光してもよく、フォトマスクを介して露光してもよく、レーザー等で直接照射することも好ましい。 Furthermore, in the step (C) of curing the coating film formed on the layer including the lyophilic surface on the substrate, the coating film can be cured by heating or light irradiation. In the case of light irradiation, the entire coating film may be exposed, exposed through a photomask, or directly irradiated with a laser or the like.
 また、撥液性表面を含む層を除去する工程(D)は、上記加熱又は光照射によって形成された硬化膜以外の部分を除去し、硬化膜のパターンを形成する工程である。除去する方法は、特に限定されないが、現像、エッチング等を挙げることができる。 Further, the step (D) of removing the layer including the liquid repellent surface is a step of removing a portion other than the cured film formed by the heating or light irradiation to form a cured film pattern. The removal method is not particularly limited, and examples thereof include development and etching.
 本発明の場合、現像はアルカリ性現像液による現像でもよく、有機溶剤による現像でもよい。本発明において、酸解離性基を有する重合体及び感放射線性酸発生体を含む感放射線性組成物により撥液性表面を含む層を形成した後、当該領域をさらに露光することで、酸解離性基が解離し、親液性領域となる。この場合、アルカリ性現像液によって、当該領域を含む層を除去することが可能となる。 In the present invention, development may be performed with an alkaline developer or with an organic solvent. In the present invention, after forming a layer containing a liquid-repellent surface with a radiation-sensitive composition containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator, the region is further exposed to acid dissociation. The functional group dissociates and becomes a lyophilic region. In this case, the layer including the region can be removed with an alkaline developer.
 以下、当該形成方法について、順に詳説する。なお、工程の順は、以下の順に限定されるものでは無く、同様の硬化膜を形成することができる限り、工程の順は異なっていてもよく、複数の工程を同時に行ってもよい。 Hereinafter, the formation method will be described in detail in order. The order of the steps is not limited to the following order, and the order of the steps may be different as long as a similar cured film can be formed, and a plurality of steps may be performed simultaneously.
<撥液性表面を含む層と親液性表面を含む層を形成する工程(A)>
 撥液性表面を含む層と親液性表面を含む層を形成する工程(A)は、テンプレート用塗膜を形成する工程(A-1)、放射線の照射により、親液性表面を含む層を形成する工程(A-2)、及び現像によりパターンを形成する工程(A-3)から好ましく構成される。
<Step of forming a layer including a liquid repellent surface and a layer including a lyophilic surface (A)>
The step (A) of forming a layer containing a liquid repellent surface and a layer containing a lyophilic surface is a step (A-1) of forming a template coating film, and a layer containing a lyophilic surface by irradiation with radiation. Is preferably comprised of a step (A-2) for forming a pattern and a step (A-3) for forming a pattern by development.
<テンプレート用塗膜形成工程(A-1)>
 テンプレート用塗膜形成工程(A-1)は、感放射線性組成物により、撥液性の表面を有するテンプレート用塗膜を形成する工程である。感放射線性組成物は、酸解離性基を有する重合体及び感放射線性酸発生体を含む。酸解離性基とは、例えばフェノール性水酸基、カルボキシル基、スルホン酸基等の酸性官能基中の水素原子を置換した基をいい、酸の存在下で解離する基をいう。この感放射線性組成物については、後に詳述する。工程(A-1)は、具体的には、図1に示すように、基板10表面への感放射線性組成物の塗布により、テンプレート用塗膜11を形成する。
<Template coating process (A-1)>
The template coating film forming step (A-1) is a step of forming a template coating film having a liquid-repellent surface from the radiation-sensitive composition. The radiation sensitive composition contains a polymer having an acid dissociable group and a radiation sensitive acid generator. The acid dissociable group refers to a group in which a hydrogen atom in an acidic functional group such as a phenolic hydroxyl group, a carboxyl group, or a sulfonic acid group is substituted, and refers to a group that dissociates in the presence of an acid. This radiation sensitive composition will be described in detail later. Specifically, in the step (A-1), as shown in FIG. 1, the template coating film 11 is formed by applying a radiation-sensitive composition to the surface of the substrate 10.
 基板10の材質としては、例えばガラス、石英、シリコン、樹脂等を挙げることができる。樹脂としては、ポリエチレンテレフラレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリカーボネート、ポリイミド、環状オレフィンの開環重合体(ROMPポリマー)、ポリアクリレート、ABS樹脂、AES樹脂等を挙げることができる。 Examples of the material of the substrate 10 include glass, quartz, silicon, and resin. Examples of the resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether sulfone, polycarbonate, polyimide, cyclic olefin ring-opening polymer (ROMP polymer), polyacrylate, ABS resin, AES resin, and the like. it can.
 基板10としては、従来の樹脂製基板、ガラス基板及び半導体基板が好ましい。このような基板を用いることで、得られる積層パターンをそのまま光学用途等に用いることができる。 The substrate 10 is preferably a conventional resin substrate, glass substrate, or semiconductor substrate. By using such a substrate, the obtained laminated pattern can be used as it is for optical applications and the like.
 なお、基板10に感放射線性組成物を塗布する前に、必要に応じて基板10表面に前処理を施してもよい。前処理としては、洗浄、粗面化処理等を挙げることができる。 In addition, before apply | coating a radiation sensitive composition to the board | substrate 10, you may pre-process on the board | substrate 10 surface as needed. Examples of the pretreatment include washing and roughening treatment.
 感放射線性組成物の塗布方法としては特に限定されず、はけやブラシを用いた塗布法、ディッピング法、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、フレキソ印刷、オフセット印刷、インクジェット印刷、ディスペンス法等の公知の方法を挙げることができる。 The application method of the radiation-sensitive composition is not particularly limited, and is a coating method using a brush or brush, a dipping method, a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar Known methods such as a coating method, flexographic printing, offset printing, ink jet printing, and dispensing method can be exemplified.
 感放射線性組成物の塗布後、好ましくはテンプレート用塗膜11を加熱(プレベーク)する。加熱条件は、感放射線性組成物の組成等によって異なるが、例えば60℃以上120℃以下、1分以上10分以下程度である。 After application of the radiation-sensitive composition, the template coating film 11 is preferably heated (pre-baked). The heating conditions vary depending on the composition of the radiation-sensitive composition, but are, for example, about 60 ° C. or higher and 120 ° C. or lower and about 1 minute or longer and 10 minutes or shorter.
 得られるテンプレート用塗膜11の平均厚みは、用途等に応じて適宜調整することができるが、この下限としては0.05μmが好ましく、0.1μmがより好ましい。一方、この上限としては20μmが好ましく、10μmがより好ましい。 The average thickness of the template coating film 11 to be obtained can be adjusted as appropriate according to the application, etc., but the lower limit is preferably 0.05 μm, more preferably 0.1 μm. On the other hand, the upper limit is preferably 20 μm, and more preferably 10 μm.
<親液性表面を含む層形成工程(A-2)>
 親液性表面を含む層形成工程(A-2)は、図1に示すように、テンプレート用塗膜11の一部の表面領域への放射線(hν)の照射(露光)により、親液性表面を含む層12を形成する工程である。なお、感放射線性組成物から得られるテンプレート用塗膜11の表面は、撥液性を有しており、放射線が照射された領域が親液性表面を含む層12となる。
 一方、放射線が照射されていない領域は撥液性表面を含む層13である。
<Layer forming step including lyophilic surface (A-2)>
In the layer forming step (A-2) including a lyophilic surface, as shown in FIG. 1, a part of the surface region of the template coating film 11 is irradiated (exposure) with radiation (hν). This is a step of forming the layer 12 including the surface. In addition, the surface of the coating film 11 for templates obtained from a radiation sensitive composition has liquid repellency, and the area | region where the radiation was irradiated becomes the layer 12 containing a lyophilic surface.
On the other hand, the region not irradiated with radiation is the layer 13 including a liquid repellent surface.
 本発明において親液性表面を含む層とは、後述するテトラデカンに対する接触角が、撥液性表面のテトラデカンに対する接触角よりも30度以上小さくなる領域のことであり、前記のような接触角差が存在すれば、テンプレート用塗膜由来の領域である必要はない。つまり、現像によりテンプレート用塗膜が除去され、基板表面が露出した場合、基板表面が親液性表面を含む層となる。基板表面の露出は、全部であっても良いが、一部であっても親液性表面となることから好ましい。 In the present invention, the layer containing a lyophilic surface is a region in which the contact angle with respect to tetradecane described later is 30 degrees or more smaller than the contact angle with respect to tetradecane on the liquid repellent surface. If it exists, it is not necessary to be an area derived from the template coating film. That is, when the template coating film is removed by development and the substrate surface is exposed, the substrate surface becomes a layer including a lyophilic surface. Although the entire substrate surface may be exposed, even a part of the substrate surface is preferable because it becomes a lyophilic surface.
 放射線の照射により、親液性表面を含む層12が形成される理由は以下の通りである。放射線の照射により、感放射線性組成物中の感放射線性酸発生体から酸が発生し、これにより、重合体が有する酸解離性基が解離する。酸解離性基の解離により、照射された領域の表面エネルギーが変化し、濡れ性が高まる。特に、酸解離性基がフッ素原子を有する場合、この撥液性の発現が顕著になる。 The reason why the layer 12 including the lyophilic surface is formed by irradiation with radiation is as follows. By irradiation with radiation, an acid is generated from the radiation-sensitive acid generator in the radiation-sensitive composition, whereby the acid-dissociable group of the polymer is dissociated. Due to the dissociation of the acid dissociable group, the surface energy of the irradiated region changes, and wettability increases. In particular, when the acid-dissociable group has a fluorine atom, the expression of this liquid repellency becomes remarkable.
 なお、解離した酸解離性基に由来する成分は、好ましくは揮発するため、親液性表面を含む層12は凹部(凹パターン)となる。親液性表面を含む層12が凹部となることで、後述するようにこの凹部(親液性表面を含む層12)に、滲みだすことなく硬化膜組成物を充填することができる。 In addition, since the component derived from the dissociated acid dissociable group is preferably volatilized, the layer 12 including the lyophilic surface becomes a recess (concave pattern). Since the layer 12 including the lyophilic surface becomes a concave portion, the concave portion (the layer 12 including the lyophilic surface) can be filled with the cured film composition without bleeding, as will be described later.
 放射線の照射(露光)は、形成したい硬化物のパターン形状と同様の形状の親液性表面を含む層12が形成されるように、所定のパターンを有するフォトマスクを介して行うことができる。フォトマスクを介して露光を行うことで、複雑なパターンを形成する場合も効率的に照射を行うことができる。その他、直描式露光機等を用いて、所定のパターンを描画露光することができる。 Radiation irradiation (exposure) can be performed through a photomask having a predetermined pattern so that the layer 12 including a lyophilic surface having a shape similar to the pattern shape of the cured product to be formed is formed. By performing exposure through a photomask, irradiation can be efficiently performed even when a complicated pattern is formed. In addition, a predetermined pattern can be drawn and exposed using a direct drawing type exposure machine or the like.
 本工程(A-2)において照射する放射線としては、可視光線、紫外線、遠紫外線、荷電粒子線、X線等を使用することができる。これらの中でも、波長が190nm以上450nm以下の範囲内にある放射線が好ましく、365nmの波長の紫外線を含む放射線がより好ましい。 As the radiation irradiated in this step (A-2), visible light, ultraviolet light, far ultraviolet light, charged particle beam, X-ray or the like can be used. Among these, radiation having a wavelength in the range of 190 nm to 450 nm is preferable, and radiation containing ultraviolet light having a wavelength of 365 nm is more preferable.
 本工程(A-2)における放射線の露光量としては、十分な濡れ性の変化や、凹部の形成ができる範囲で適宜設定すればよい。この露光量の下限としては、放射線の波長365nmにおける強度として、10mJ/cmが好ましく、20mJ/cmがより好ましい。一方、この上限としては、1000mJ/cmが好ましく、500mJ/cmがより好ましい。 The exposure dose of radiation in this step (A-2) may be appropriately set within a range in which a sufficient change in wettability and formation of recesses can be formed. The lower limit of the exposure amount is preferably 10 mJ / cm 2 and more preferably 20 mJ / cm 2 as the intensity of radiation at a wavelength of 365 nm. On the other hand, as this upper limit, 1000 mJ / cm 2 is preferable, and 500 mJ / cm 2 is more preferable.
 形成される親液性表面を含む層12のサイズ及び形状は、所望するパターンのサイズ及び形状に対応するものであるが、幅が50μm以下の線状とすることができ、好ましくは0.1~30μm、さらに好ましくは0.5~10μmの線状とすることができる。 The size and shape of the layer 12 including the lyophilic surface to be formed correspond to the desired size and shape of the pattern, but can be linear with a width of 50 μm or less, preferably 0.1. It can be a linear shape of ˜30 μm, more preferably 0.5˜10 μm.
感放射線性組成物への露光後、テンプレート用塗膜11、親液性表面を含む層12を加熱してもよい。加熱条件は、感放射線性組成物の組成等によって異なるが、例えば50℃以上120℃以下、1分以上20分以下程度である。 After the exposure to the radiation-sensitive composition, the template coating film 11 and the layer 12 including a lyophilic surface may be heated. The heating condition varies depending on the composition of the radiation-sensitive composition, but is, for example, about 50 ° C. to 120 ° C. and about 1 minute to 20 minutes.
<現像工程(A-3)または(A-4)>
 現像工程(A-3)は、放射線が照射されたテンプレート用塗膜11を現像する工程である。この現像により、放射線が照射された領域(親液性表面を含む層12)において酸解離性基を解離させることができる。これにより、放射線が照射された部分が親液性表面を含む層となり、現像液によって除去することができる。これにより基板表面が露出することで、親液性表面を含む層の濡れ性がより高まる。また、工程(A-4)として現像条件を変更することで、基板表面を露出ることなく、一部膜を残すことによっても親液性表面を含む層を形成することができる。
<Developing step (A-3) or (A-4)>
The development step (A-3) is a step of developing the template coating film 11 irradiated with radiation. By this development, the acid dissociable group can be dissociated in the region irradiated with radiation (layer 12 including a lyophilic surface). Thereby, the part irradiated with the radiation becomes a layer including a lyophilic surface, and can be removed by the developer. Thereby, the wettability of the layer including the lyophilic surface is further increased by exposing the substrate surface. Further, by changing the development conditions as the step (A-4), a layer including a lyophilic surface can be formed by leaving a partial film without exposing the substrate surface.
 一部膜を残すことによって形成された親液性表面を含む層12(凹部)の深さとしては、例えば0.1μm以上1μm以下とすることができる。また、テンプレート用塗膜11における撥液性表面を含む層13の平均厚みに対する親液性表面を含む層12(凹部)の深さの下限としては、5%が好ましく、10%がより好ましい。一方、この上限としては、70%が好ましく、50%がより好ましい。 The depth of the layer 12 (concave portion) including the lyophilic surface formed by leaving a part of the film can be, for example, 0.1 μm or more and 1 μm or less. Moreover, as a minimum of the depth of the layer 12 (concave part) containing the lyophilic surface with respect to the average thickness of the layer 13 containing the liquid repellent surface in the coating film 11 for templates, 5% is preferable and 10% is more preferable. On the other hand, the upper limit is preferably 70% and more preferably 50%.
 現像に使用される現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等のアルカリ性化合物の少なくとも1種を溶解した水溶液を使用することができる。上述のアルカリ性化合物の水溶液には、メタノール、エタノール等の水溶性有機溶媒を適当量添加して使用することもできる。 Examples of the developer used for development include at least one alkaline compound such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and the like. An aqueous solution in which is dissolved can be used. An appropriate amount of a water-soluble organic solvent such as methanol or ethanol can be added to the aqueous solution of the alkaline compound described above.
 また、以下に示す有機溶剤を用いて現像することができる。この場合、放射線が照射された領域(親液性表面を含む層)が残膜し、非放射線領域(疎水性表面領域)が有機溶剤によって除去される、アルカリ水溶液を現像液に用いた場合と逆のパターン形成が可能となる。使用できる有機溶剤現像液としては、酢酸エチル、酢酸ブチル、酢酸イソブチル等の有機溶剤を現像液に用いて現像することもできる。 Moreover, it can develop using the organic solvent shown below. In this case, when an alkaline aqueous solution is used as a developer, a region irradiated with radiation (a layer including a lyophilic surface) remains and a non-radiation region (hydrophobic surface region) is removed by an organic solvent. A reverse pattern can be formed. As an organic solvent developer that can be used, development can be performed using an organic solvent such as ethyl acetate, butyl acetate, and isobutyl acetate as the developer.
 現像方法としては、例えば液盛り法、ディッピング法、揺動浸漬法、スプレー法等が挙げられる。現像時間は、硬化膜形成用組成物の組成によって異なるが、その現像時間の下限としては、5秒が好ましく、10秒がより好ましい。また、現像時間の上限としては、300秒が好ましく、180秒がより好ましい。現像処理に続いて、例えば流水洗浄を30秒以上90秒以下の時間で行った後、圧縮空気や圧縮窒素で乾燥させることにより、所望の硬化膜のパターンが得られる。 Examples of the developing method include a liquid filling method, a dipping method, a rocking dipping method, and a spray method. The development time varies depending on the composition of the cured film forming composition, but the lower limit of the development time is preferably 5 seconds, and more preferably 10 seconds. Further, the upper limit of the development time is preferably 300 seconds, and more preferably 180 seconds. Subsequent to the development processing, for example, washing with running water is performed for 30 seconds to 90 seconds and then dried with compressed air or compressed nitrogen, whereby a desired cured film pattern is obtained.
 このようにして形成される親液性表面を含む層12と、撥液性表面を含む層13とのテトラデカンに対する接触角差(撥液性表面を含む層13における接触角-親液性表面を含む層12における接触角)は、30°以上であり、40°以上が好ましく、50°以上がより好ましい。 The contact angle difference between the layer 12 including the lyophilic surface thus formed and the layer 13 including the liquid repellent surface with respect to tetradecane (the contact angle in the layer 13 including the liquid repellent surface minus the lyophilic surface). The contact angle in the containing layer 12) is 30 ° or more, preferably 40 ° or more, and more preferably 50 ° or more.
 この接触角差の上限としては、例えば70°である。また、親液性表面を含む層12と、撥液性表面を含む層13との水に対する接触角差(撥液性表面を含む層13における接触角-親液性表面を含む層12における接触角)の下限としては、20°が好ましく、25°がより好ましい。 The upper limit of this contact angle difference is, for example, 70 °. Further, a contact angle difference between the layer 12 including the lyophilic surface and the layer 13 including the lyophobic surface with respect to water (contact angle in the layer 13 including the lyophobic surface−contact in the layer 12 including the lyophilic surface) The lower limit of (angle) is preferably 20 °, more preferably 25 °.
 この接触角差の上限としては、例えば90°である。このように、テトラデカン又は水に対しての接触角差が大きいことで、撥液性表面を含む層13に接触した硬化性組成物が、親液性表面を含む層12へ移動しやすくなり、親液性表面を含む層12に沿った硬化膜の形成を好適に行うことができる。 The upper limit of this contact angle difference is, for example, 90 °. Thus, because the contact angle difference with respect to tetradecane or water is large, the curable composition in contact with the layer 13 including the lyophobic surface can easily move to the layer 12 including the lyophilic surface, A cured film can be suitably formed along the layer 12 including a lyophilic surface.
<硬化性組成物を塗布する工程(B)>
 硬化性組成物を塗布する工程(B)は、放射線が照射されたテンプレート用塗膜表面または基材面への硬化性組成物を塗布することにより、硬化性組成物の塗膜を形成する工程である(図3、図4参照)。
<Step (B) of applying curable composition>
The step (B) of applying the curable composition is a step of forming a coating film of the curable composition by applying the curable composition to the surface of the template coating film or the substrate surface irradiated with radiation. (See FIGS. 3 and 4).
≪硬化性組成物≫
 硬化性組成物は、特に限定されるものではない。例えば、熱または光で架橋する成分を含有する硬化性材料であればよく、重合性化合物、重合開始剤、添加剤、例えば着色剤、蛍光物質、金属酸化物、樹脂等を含んでよく、硬化性樹脂組成物も好ましく使用することができる。ここで添加剤とは、重合に寄与しない成分をいう。
≪Curable composition≫
The curable composition is not particularly limited. For example, it may be a curable material containing a component that crosslinks with heat or light, and may contain a polymerizable compound, a polymerization initiator, an additive such as a colorant, a fluorescent substance, a metal oxide, a resin, and the like. A functional resin composition can also be preferably used. Here, the additive refers to a component that does not contribute to polymerization.
 硬化性組成物としては硬化性成分を含有しているものなら特に限定されないが、パターンの複雑化が可能であることから、近接と干渉しないために導電性成分を含有していても、硬化膜としては絶縁性であることが好ましい。本発明において絶縁性とは、体積固有抵抗率が1Ω・cm以上のものをいう。JISK7194に準じて測定することができる。
 例えば、特開2012-149141号公報、特開2013-237835号公報等に記載の硬化性組成物が挙げられる。
The curable composition is not particularly limited as long as it contains a curable component, but since the pattern can be complicated, the cured film can be used even if it contains a conductive component so as not to interfere with proximity. Insulating is preferable. In the present invention, “insulating” means a material having a volume resistivity of 1 Ω · cm or more. It can be measured according to JISK7194.
Examples thereof include curable compositions described in JP 2012-149141 A, JP 2013-237835 A, and the like.
 [重合性化合物]
 重合性化合物としては、2個以上の重合可能な基を有する化合物が好ましく、重合可能な基としては、例えば、エチレン性不飽和基、オキシラニル基、オキセタニル基、N-アルコキシメチルアミノ基等を挙げることができる。本発明において、重合性化合物としては、2個以上の(メタ)アクリロイル基を有する化合物、又は2個以上のN-アルコキシメチルアミノ基を有する化合物が好ましい。
[Polymerizable compound]
The polymerizable compound is preferably a compound having two or more polymerizable groups. Examples of the polymerizable group include an ethylenically unsaturated group, an oxiranyl group, an oxetanyl group, and an N-alkoxymethylamino group. be able to. In the present invention, the polymerizable compound is preferably a compound having two or more (meth) acryloyl groups or a compound having two or more N-alkoxymethylamino groups.
 2個以上の(メタ)アクリロイル基を有する化合物の具体例としては、脂肪族ポリヒドロキシ化合物と(メタ)アクリル酸を反応させて得られる多官能(メタ)アクリレート、カプロラクトン変性された多官能(メタ)アクリレート、アルキレンオキサイド変性された多官能(メタ)アクリレート、水酸基を有する(メタ)アクリレートと多官能イソシアネートを反応させて得られる多官能ウレタン(メタ)アクリレート、水酸基を有する(メタ)アクリレートと酸無水物を反応させて得られるカルボキシル基を有する多官能(メタ)アクリレート等を挙げることができる。    Specific examples of the compound having two or more (meth) acryloyl groups include a polyfunctional (meth) acrylate obtained by reacting an aliphatic polyhydroxy compound and (meth) acrylic acid, a polyfunctional (meta) modified with caprolactone. ) Acrylate, alkylene oxide modified polyfunctional (meth) acrylate, polyfunctional urethane (meth) acrylate obtained by reacting hydroxyl-functional (meth) acrylate and polyfunctional isocyanate, hydroxyl-functional (meth) acrylate and acid anhydride The polyfunctional (meth) acrylate which has a carboxyl group obtained by making a product react can be mentioned.
 ここで、脂肪族ポリヒドロキシ化合物としては、例えば、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコールの如き2価の脂肪族ポリヒドロキシ化合物;グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールの如き3価以上の脂肪族ポリヒドロキシ化合物を挙げることができる。 Here, examples of the aliphatic polyhydroxy compound include divalent aliphatic polyhydroxy compounds such as ethylene glycol, propylene glycol, polyethylene glycol, and polypropylene glycol; and 3 such as glycerin, trimethylolpropane, pentaerythritol, and dipentaerythritol. Mention may be made of aliphatic polyhydroxy compounds having a valence higher than that.
上記水酸基を有する(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールジメタクリレート等を挙げることができる。 Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and glycerol diester. A methacrylate etc. can be mentioned.
 上記多官能イソシアネートとしては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメチレンジイソシアネート、イソホロンジイソシアネート等を挙げることができる。酸無水物としては、例えば、無水こはく酸、無水マレイン酸、無水グルタル酸、無水イタコン酸、無水フタル酸、ヘキサヒドロ無水フタル酸の如き二塩基酸の無水物、無水ピロメリット酸、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物の如き四塩基酸二無水物を挙げることができる。 Examples of the polyfunctional isocyanate include tolylene diisocyanate, hexamethylene diisocyanate, diphenylmethylene diisocyanate, and isophorone diisocyanate. Examples of acid anhydrides include succinic anhydride, maleic anhydride, glutaric anhydride, itaconic anhydride, phthalic anhydride, dibasic acid anhydrides such as hexahydrophthalic anhydride, pyromellitic anhydride, biphenyltetracarboxylic acid. Examples thereof include dianhydrides and tetrabasic acid dianhydrides such as benzophenone tetracarboxylic dianhydride.
 また、カプロラクトン変性された多官能(メタ)アクリレートとしては、例えば、特開平11-44955号公報の段落〔0015〕~〔0018〕に記載されている化合物を挙げることができる。上記アルキレンオキサイド変性された多官能(メタ)アクリレートとしては、エチレンオキサイド及びプロピレンオキサイドから選ばれる少なくとも1種により変性されたビスフェノールAジ(メタ)アクリレート、エチレンオキサイド及びプロピレンオキサイドから選ばれる少なくとも1種により変性されたイソシアヌル酸トリ(メタ)アクリレート、エチレンオキサイド及びプロピレンオキサイドから選ばれる少なくとも1種により変性されたトリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド及びプロピレンオキサイドから選ばれる少なくとも1種により変性されたペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド及びプロピレンオキサイドから選ばれる少なくとも1種により変性されたペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキサイド及びプロピレンオキサイドから選ばれる少なくとも1種により変性されたジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド及びプロピレンオキサイドから選ばれる少なくとも1種により変性されたジペンタエリスリトールヘキサ(メタ)アクリレート等を挙げることができる。 Examples of caprolactone-modified polyfunctional (meth) acrylates include compounds described in paragraphs [0015] to [0018] of JP-A No. 11-44955. The alkylene oxide-modified polyfunctional (meth) acrylate is at least one selected from bisphenol A di (meth) acrylate modified with at least one selected from ethylene oxide and propylene oxide, ethylene oxide and propylene oxide. Modified with at least one selected from trimethylolpropane tri (meth) acrylate, ethylene oxide and propylene oxide modified with at least one selected from modified isocyanuric acid tri (meth) acrylate, ethylene oxide and propylene oxide Pen modified with at least one selected from pentaerythritol tri (meth) acrylate, ethylene oxide and propylene oxide. Dipentaerythritol modified with at least one selected from dipentaerythritol penta (meth) acrylate, ethylene oxide and propylene oxide modified with at least one selected from taerythritol tetra (meth) acrylate, ethylene oxide and propylene oxide Examples include hexa (meth) acrylate.
 また、2個以上のN-アルコキシメチルアミノ基を有する化合物としては、例えば、メラミン構造、ベンゾグアナミン構造、ウレア構造を有する化合物等を挙げることができる。なお、メラミン構造、ベンゾグアナミン構造とは、1以上のトリアジン環又はフェニル置換トリアジン環を基本骨格として有する化学構造をいい、メラミン、ベンゾグアナミン又はそれらの縮合物をも含む概念である。 Examples of the compound having two or more N-alkoxymethylamino groups include compounds having a melamine structure, a benzoguanamine structure, and a urea structure. The melamine structure and the benzoguanamine structure refer to a chemical structure having one or more triazine rings or phenyl-substituted triazine rings as a basic skeleton, and is a concept including melamine, benzoguanamine or a condensate thereof.
 2個以上のN-アルコキシメチルアミノ基を有する化合物の具体例としては、N,N,N',N',N'',N''-ヘキサ(アルコキシメチル)メラミン、N,N,N',N'-テトラ(アルコキシメチル)ベンゾグアナミン、N,N,N',N'-テトラ(アルコキシメチル)グリコールウリル等を挙げることができる。 Specific examples of the compound having two or more N-alkoxymethylamino groups include N, N, N ′, N ′, N ″, N ″ -hexa (alkoxymethyl) melamine, N, N, N ′. , N′-tetra (alkoxymethyl) benzoguanamine, N, N, N ′, N′-tetra (alkoxymethyl) glycoluril, and the like.
 これらの重合性化合物のうち、3価以上の脂肪族ポリヒドロキシ化合物と(メタ)アクリル酸を反応させて得られる多官能(メタ)アクリレート、カプロラクトン変性された多官能(メタ)アクリレート、多官能ウレタン(メタ)アクリレート、N,N,N',N',N'',N''-ヘキサ(アルコキシメチル)メラミン、N,N,N',N'-テトラ(アルコキシメチル)ベンゾグアナミンが好ましい。 Among these polymerizable compounds, polyfunctional (meth) acrylates obtained by reacting trivalent or higher aliphatic polyhydroxy compounds with (meth) acrylic acid, caprolactone-modified polyfunctional (meth) acrylates, polyfunctional urethanes (Meth) acrylate, N, N, N ′, N ′, N ″, N ″ -hexa (alkoxymethyl) melamine, N, N, N ′, N′-tetra (alkoxymethyl) benzoguanamine are preferred.
 3価以上の脂肪族ポリヒドロキシ化合物と(メタ)アクリル酸を反応させて得られる多官能(メタ)アクリレートの中では、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートが、特に好ましい。 Among polyfunctional (meth) acrylates obtained by reacting trivalent or higher aliphatic polyhydroxy compounds with (meth) acrylic acid, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol Pentaacrylate and dipentaerythritol hexaacrylate are particularly preferred.
 本発明において、重合性化合物の含有量は、(A)着色剤の合計100質量部に対して、通常3~200質量部、好ましくは5~100質量部、より好ましくは10~50質量部である。また、重合性化合物の含有量は、(B)樹脂100質量部に対して、通常20~300質量部、好ましくは50~250質量部、より好ましくは100~200質量部である。 In the present invention, the content of the polymerizable compound is usually 3 to 200 parts by weight, preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the total amount of the (A) colorant. is there. The content of the polymerizable compound is usually 20 to 300 parts by weight, preferably 50 to 250 parts by weight, and more preferably 100 to 200 parts by weight with respect to 100 parts by weight of the resin (B).
<添加剤>
 本発明の硬化性組成物は添加剤としての着色剤等を含む硬化性組成物であることが好ましい。添加剤としては、着色顔料、染料、カーボンブラック、高屈折率である金属酸化物、中空粒子等があげられる。
<Additives>
The curable composition of the present invention is preferably a curable composition containing a colorant as an additive. Examples of additives include color pigments, dyes, carbon black, metal oxides having a high refractive index, and hollow particles.
 具体的には、特開2006-113380号公報、特開2013-134263号公報、WO2009/119622号公報、WO2009/119622号公報、特開2014-146029号公報、特開2008-46330号公報、特開2013-225091号公報等に記載の着色剤等含有の硬化性組成物が挙げられる。 Specifically, JP 2006-113380 A, JP 2013-134263 A, WO 2009/119622, WO 2009/119622, JP 2014-146029, JP 2008-46330, Examples thereof include a curable composition containing a colorant and the like described in JP-A-2013-225091.
 蛍光物質としては、無機蛍光物質、有機蛍光物質、量子ドット、量子ロッドが挙げられ、これらの蛍光物質を含む硬化性組成物としては、例えば、特開2014-174406号公報、特開2015-018131号公報、特開2015-127733号公報、特開2015-125197号公報、特開2016-35602号公報等の硬化性組成物が挙げられる。 Examples of the fluorescent material include inorganic fluorescent materials, organic fluorescent materials, quantum dots, and quantum rods. Examples of the curable composition containing these fluorescent materials include Japanese Unexamined Patent Application Publication Nos. 2014-174406 and 2015-018131. And curable compositions such as JP-A-2015-127733, JP-A-2015-125197, and JP-A-2016-35602.
 金属酸化物としては、チタン酸化物、セシウム、バリウム、ストロンチウム、カルシウム、マグネシウム、ジルコニウムおよび鉛からなる群より選ばれる少なくとも1種の金属元素とを含む金属酸化物が挙げられる。このような金属酸化物の具体例としては、酸化チタン、酸化バリウム、セシウムタングステン酸化物、チタン酸バリウムおよびチタン酸ストロンチウム等が挙げられる。 Examples of the metal oxide include a metal oxide containing at least one metal element selected from the group consisting of titanium oxide, cesium, barium, strontium, calcium, magnesium, zirconium and lead. Specific examples of such metal oxides include titanium oxide, barium oxide, cesium tungsten oxide, barium titanate and strontium titanate.
 これらの金属酸化物を含む硬化性組成物としては、例えば、特開2016-14849号公報、特開2016-27384号公報等が挙げられる。
 カーボン材料としては、カーボンナノチューブ、フラーレン、グラファイト、カーボンブラック材料が挙げられ、例えば、特開2016-83618号公報、特開2016-162863号公報、特開2007-249113号公報等に記載のカーボン材料が挙げられる。
Examples of the curable composition containing these metal oxides include Japanese Patent Application Laid-Open Nos. 2016-14849 and 2016-27384.
Examples of the carbon material include carbon nanotubes, fullerenes, graphite, and carbon black materials. For example, the carbon materials described in JP-A-2016-83618, JP-A-2016-162863, JP-A-2007-249113, and the like. Is mentioned.
 中空粒子としては、内部に空孔を有していれば特に制限されず、有機中空粒子であっても、無機中空粒子であってもよいが、溶剤への分散容易性の観点から、有機中空粒子が好ましい。 The hollow particles are not particularly limited as long as they have pores inside, and may be organic hollow particles or inorganic hollow particles. From the viewpoint of easy dispersion in a solvent, organic hollow particles may be used. Particles are preferred.
 ここで、有機中空粒子としては、市販品を用いてもよく、従来公知の方法、例えば、特開昭62-127336号公報、特開平01-315454号公報、特開平04-126771号公報、特開2002-241448号公報、特開2007-112935号公報、特許第5439102号公報に記載の方法で合成して得てもよい。無機中空粒子としては特に制限されず、ガラス、SiO、CaCOおよびポリオルガノシロキサン系化合物などからなる無機粒子等が挙げられる。 Here, as the organic hollow particles, commercially available products may be used, and conventionally known methods, for example, JP-A-62-2127336, JP-A-01-315454, JP-A-4-126771, They may be synthesized by the methods described in JP-A No. 2002-241448, JP-A No. 2007-112935, and Japanese Patent No. 5439102. The inorganic hollow particles are not particularly limited, and examples thereof include inorganic particles composed of glass, SiO 2 , CaCO 3 , polyorganosiloxane compounds, and the like.
 本発明での着色剤等を高濃度にした硬化性組成物において高濃度とは、具体的には、硬化性組成物の溶剤を除く成分全量を100質量%としたときに、30質量%以上95質量%以下であることを言い、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。 In the curable composition having a high concentration of the colorant or the like in the present invention, the high concentration is specifically 30% by mass or more when the total amount of components excluding the solvent of the curable composition is 100% by mass. It means that it is 95% by mass or less, preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more.
 ここで、前記のような高濃度の着色剤等を含む硬化性組成物によって形成される塗膜は、露光による放射線が十分に透過しないため、例えば、特開2013-134263号公報に記載の組成物によって形成される塗膜は、現像性が不十分になる結果、所望パターン形状を得ることが困難である。一方、本発明によれば、硬化性組成物によって形成される塗膜を、現像により除去する必要がないため、高濃度の着色剤等を含む硬化性組成物によって容易に所望パターン形状を得ることができる。 Here, since the coating film formed by the curable composition containing a colorant or the like having a high concentration as described above does not sufficiently transmit radiation due to exposure, for example, the composition described in JP2013-134263A As a result of the insufficient developability of the coating film formed by the product, it is difficult to obtain a desired pattern shape. On the other hand, according to the present invention, since it is not necessary to remove the coating film formed by the curable composition by development, a desired pattern shape can be easily obtained by the curable composition containing a high concentration of colorant and the like. Can do.
 [重合開始剤]
 重合開始剤としては、以下の光重合開始剤を含有させることができる。光重合開始剤は、可視光線、紫外線、遠紫外線、電子線、X線等の放射線の露光により、重合性化合物の重合を開始しうる活性種を発生する化合物である。光重合開始剤は、1種又は2種以上を混合して使用することができる。   
[Polymerization initiator]
As a polymerization initiator, the following photoinitiators can be contained. The photopolymerization initiator is a compound that generates active species capable of initiating polymerization of a polymerizable compound by exposure to radiation such as visible light, ultraviolet light, far ultraviolet light, electron beam, and X-ray. A photoinitiator can be used 1 type or in mixture of 2 or more types.
このような光重合開始剤としては、例えば、チオキサントン系化合物、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、アシルホスフィンオキサイド系化合物、チタノセン系化合物、α-ジケトン系化合物、多核キノン系化合物、ジアゾ系化合物、イミドスルホナート系化合物、オニウム塩系化合物等を挙げることができる。中でも、O-アシルオキシム系化合物、アセトフェノン系化合物、アシルホスフィンオキサイド系化合物及びチタノセン系化合物から選ばれる少なくとも1種が好ましい。 Examples of such photopolymerization initiators include thioxanthone compounds, acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, acyl compounds. Examples thereof include phosphine oxide compounds, titanocene compounds, α-diketone compounds, polynuclear quinone compounds, diazo compounds, imide sulfonate compounds, onium salt compounds, and the like. Among these, at least one selected from O-acyloxime compounds, acetophenone compounds, acylphosphine oxide compounds, and titanocene compounds is preferable.
 本発明における好ましい光重合開始剤のうち、O-アシルオキシム系化合物としては、例えば、1,2-オクタンジオン,1-〔4-(フェニルチオ)フェニル〕-,2-(O-ベンゾイルオキシム)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、エタノン,1-〔9-エチル-6-(2-メチル-4-テトラヒドロフラニルメトキシベンゾイル)-9H-カルバゾール-3-イル〕-,1-(O-アセチルオキシム)、エタノン,1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9H-カルバゾール-3-イル〕-,1-(O-アセチルオキシム)、1-オクタノン,1-[4-[3-[4-[[2-(アセチルオキシ)エチル]スルホニル]-2-メチルベンゾイル]-6-[1-[(アセチルオキシ)イミノ]エチル]-9H-カルバゾール]-9-イル]フェニル,1-(O-アセチルオキシム)等を挙げることができる。 Among the preferred photopolymerization initiators in the present invention, examples of the O-acyloxime compounds include 1,2-octanedione, 1- [4- (phenylthio) phenyl]-, 2- (O-benzoyloxime), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), ethanone, 1- [9-ethyl-6- (2 -Methyl-4-tetrahydrofuranylmethoxybenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), ethanone, 1- [9-ethyl-6- {2-methyl-4- (2 , 2-Dimethyl-1,3-dioxolanyl) methoxybenzoyl} -9H-carbazol-3-yl]-, 1- (O-acetyloxime), 1-octanone, 1- [4- [3- [4-[[2- (acetyloxy) ethyl] sulfonyl] -2-methylbenzoyl] -6- [1-[(acetyloxy) imino] ethyl] -9H-carbazol] -9-yl] phenyl , 1- (O-acetyloxime) and the like.
 O-アシルオキシム系化合物の市販品としては、NCI-831、NCI-930(以上、株式会社ADEKA社製)、DFI-020、DFI-091(以上、ダイトーケミックス株式会社製)、Irgacure OXE-03、Irgacure OXE-04(以上、BASF社製)等を使用することもできる。    Commercially available O-acyloxime compounds include NCI-831, NCI-930 (above, manufactured by ADEKA Corporation), DFI-020, DFI-091 (above, made by Daito Chemix Corporation), Irgacure® OXE-03, Irgacure® OXE-04 (manufactured by BASF) or the like can also be used.
 これらのO-アシルオキシム系化合物の中でも、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、1-オクタノン,1-[4-[3-[4-[[2-(アセチルオキシ)エチル]スルホニル]-2-メチルベンゾイル]-6-[1-[(アセチルオキシ)イミノ]エチル]-9H-カルバゾール]-9-イル]フェニル,1-(O-アセチルオキシム)が好ましい。 Among these O-acyloxime compounds, etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), 1- Octanone, 1- [4- [3- [4-[[2- (acetyloxy) ethyl] sulfonyl] -2-methylbenzoyl] -6- [1-[(acetyloxy) imino] ethyl] -9H-carbazole ] -9-yl] phenyl, 1- (O-acetyloxime) is preferred.
 本発明における好ましい光重合開始剤のうち、アセトフェノン系化合物としてはα-アミノアルキルフェノン系化合物がより好ましく、例えば、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-(4-メチルベンジル)-2-(ジメチルアミノ)-1-(4-モルフォリノフェニル)ブタン-1-オン等を挙げることができる。 Among the preferred photopolymerization initiators in the present invention, the acetophenone compound is more preferably an α-aminoalkylphenone compound, such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2- (4-methylbenzyl) -2- (dimethylamino) -1- (4-morpho And linophenyl) butan-1-one.
これらのアセトフェノン系化合物の中でも、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オンが好ましい。 Among these acetophenone compounds, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) Butan-1-one is preferred.
 アセトフェノン系化合物は、単独で又は2種以上を組み合わせて用いることができる。 The acetophenone compounds can be used alone or in combination of two or more.
 本発明における好ましい光重合開始剤のうち、アシルホスフィンオキサイド系化合物としては、例えば、イソブチリルメチルホスフィン酸メチルエステル、イソブチリルフェニルホスフィン酸メチルエステル、ピバロイルフェニルホスフィン酸メチルエステル、2-エチルヘキサノイルフェニルホスフィン酸メチルエステル、ピバロイルフェニルホスフィン酸イソプロピルエステル、p-トルイルフェニルホスフィン酸メチルエステル、o-トルイルフェニルホスフィン酸メチルエステル、2,4-ジメチルベンゾイルフェニルホスフィン酸メチルエステル、p-t-ブチルベンゾイルフェニルホスフィン酸イソプロピルエステル、アクリロイルフェニルホスフィン酸メチルエステル、イソブチリルジフェニルホスフィンオキサイド、2-エチルヘキサノイルジフェニルホスフィンオキサイド、o-トルイルジフェニルホスフィンオキサイド、p-t-ブチルベンゾイルジフェニルホスフィンオキサイド、3-ピリジルカルボニルジフェニルホスフィンオキサイド、アクリロイル-ジフェニルホスフィンオキサイド、ベンゾイルジフェニルホスフィンオキサイド、ピバロイルフェニルホスフィン酸ビニルエステル、アジポイルビスジフェニルホスフィンオキサイド、ピバロイルジフェニルホスフィンオキサイド、p-トルイルジフェニルホスフィンオキサイド、4-(t-ブチル)ベンゾイルジフェニルホスフィンオキサイド、テレフタロイルビスジフェニルホスフィンオキサイド、2-メチルベンゾイルジフェニルホスフィンオキサイド、バーサトイルジフェニルホスフィンオキサイド、2-メチル-2-エチルヘキサノイルジフェニルホスフィンオキサイド、1-メチル-シクロヘキサノイルジフェニルホスフィンオキサイド、ピバロイルフェニルホスフィン酸メチルエステル、ピバロイルフェニルホスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のモノアシルホスフィンオキサイド;
ビス(2,6-ジクロロベンゾイル)フェニルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)-4-エトキシフェニルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)-2-ナフチルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)-4-クロロフェニルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)-2,4-ジメトキシフェニルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)デシルホスフィンオキサイド、ビス(2,6-ジクロロベンゾイル)-4-オクチルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス(2,6-ジクロロ3,4,5-トリメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス(2,6-ジクロロ-3,4,5-トリメトキシベンゾイル)-4-エトキシフェニルホスフィンオキサイド、ビス(2-メチル-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス(2-メチル-1-ナフトイル)-4-エトキシフェニルホスフィンオキサイド、ビス(2-メチル-1-ナフトイル)-2-ナフチルホスフィンオキサイド、ビス(2-メチル-1-ナフトイル)-4-プロピルフェニルホスフィンオキサイド、ビス(2-メチル-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス(2-メトキシ-1-ナフトイル)-4-エトキシフェニルホスフィンオキサイド、ビス(2-クロロ-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のビスアシルホスフィンオキサイド;などが挙げられる。このほか、特開平3-101686号公報、特開平5-345790号公報、特開平6-298818号公報に記載のアシルホスフィン化合物を用いることもできる。
Among the preferred photopolymerization initiators in the present invention, acylphosphine oxide compounds include, for example, isobutyrylmethylphosphinic acid methyl ester, isobutyrylphenylphosphinic acid methyl ester, pivaloylphenylphosphinic acid methyl ester, 2- Ethyl hexanoylphenylphosphinic acid methyl ester, pivaloylphenylphosphinic acid isopropyl ester, p-toluylphenylphosphinic acid methyl ester, o-toluylphenylphosphinic acid methyl ester, 2,4-dimethylbenzoylphenylphosphinic acid methyl ester, p- t-butylbenzoylphenylphosphinic acid isopropyl ester, acryloylphenylphosphinic acid methyl ester, isobutyryldiphenylphosphine oxide, Ruhexanoyl diphenylphosphine oxide, o-toluyldiphenylphosphine oxide, pt-butylbenzoyldiphenylphosphine oxide, 3-pyridylcarbonyldiphenylphosphine oxide, acryloyl-diphenylphosphine oxide, benzoyldiphenylphosphine oxide, vinyl pivaloylphenylphosphinate Esters, adipoylbisdiphenylphosphine oxide, pivaloyldiphenylphosphine oxide, p-toluyldiphenylphosphine oxide, 4- (t-butyl) benzoyldiphenylphosphine oxide, terephthaloylbisdiphenylphosphine oxide, 2-methylbenzoyldiphenylphosphine oxide , Versatoyl diphenylphosphine oxy 2-methyl-2-ethylhexanoyldiphenylphosphine oxide, 1-methyl-cyclohexanoyldiphenylphosphine oxide, pivaloylphenylphosphinic acid methyl ester, pivaloylphenylphosphinic acid isopropyl ester, 2,4,6- Monoacylphosphine oxides such as trimethylbenzoyldiphenylphosphine oxide;
Bis (2,6-dichlorobenzoyl) phenylphosphine oxide, bis (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis (2,6-dichlorobenzoyl) -4-ethoxyphenylphosphine oxide, bis (2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis (2,6-dichlorobenzoyl) -2-naphthylphosphine oxide, bis (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis ( 2,6-dichlorobenzoyl) -4-chlorophenylphosphine oxide, bis (2,6-dichlorobenzoyl) -2,4-dimethoxyphenylphosphine oxide, bis (2,6-dichlorobenzoyl) decylphosphine oxide, bi (2,6-dichlorobenzoyl) -4-octylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,5-dimethylphenylphosphine Oxide, bis (2,6-dichloro3,4,5-trimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis (2,6-dichloro-3,4,5-trimethoxybenzoyl) -4- Ethoxyphenylphosphine oxide, bis (2-methyl-1-naphthoyl) -2,5-dimethylphenylphosphine oxide, bis (2-methyl-1-naphthoyl) -4-ethoxyphenylphosphine oxide, bis (2-methyl-1 -Naphthoyl) -2-naphthylphosphine oxy Bis (2-methyl-1-naphthoyl) -4-propylphenylphosphine oxide, bis (2-methyl-1-naphthoyl) -2,5-dimethylphenylphosphine oxide, bis (2-methoxy-1-naphthoyl) Such as -4-ethoxyphenylphosphine oxide, bis (2-chloro-1-naphthoyl) -2,5-dimethylphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, etc. Bisacylphosphine oxide; and the like. In addition, acylphosphine compounds described in JP-A-3-101686, JP-A-5-345790, and JP-A-6-298818 can also be used.
 これらのアシルホスフィンオキサイド系化合物の中でも、モノアシルホスフィンオキサイドとしては2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(例えば、BASF社製、Darocur TPO)が好ましく、ビスアシルホスフィンオキサイドとしては、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド(例えば、BASF社製、Irgacure819)、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフェニルホスフィンオキサイド(例えば、BASF社製、Irgacure1700)が好ましく、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイドがより好ましい。 Among these acylphosphine oxide compounds, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (for example, Darocur TPO manufactured by BASF) is preferable as the monoacylphosphine oxide, and bis (2 , 4,6-trimethylbenzoyl) phenylphosphine oxide (for example, Irgacure 819 manufactured by BASF), bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphenylphosphine oxide (for example, Irgacure 1700 manufactured by BASF) ) Is preferred, and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide is more preferred.
 アシルホスフィンオキサイド系化合物は、単独で又は2種以上を組み合わせて用いることができる。 The acylphosphine oxide compounds can be used alone or in combination of two or more.
 本発明における好ましい光重合開始剤のうち、チタノセン系光化合物としては、例えば、ビス(シクロペンタジエニル)-Ti-ジ-クロライド、ビス(シクロペンタジエニル)-Ti-ビス-フェニル、ビス(シクロペンタジエニル)-Ti-ビス-2,3,4,5,6-ペンタフルオロフェニル、ビス(シクロペンタジエニル)-Ti-ビス-2,3,5,6-テトラフルオロフェニル、ビス(シクロペンタジエニル)-Ti-ビス-2,4,6-トリフルオロフェニル、ビス(シクロペンタジエニル)-Ti-ビス-2,6-ジフルオロフェニル、ビス(シクロペンタジエニル)-Ti-ビス-2,4-ジフルオロフェニル、ビス(メチルシクロペンタジエニル)-Ti-ビス-2,3,4,5,6-ペンタフルオロフェニル、ビス(メチルシクロペンタジエニル)-Ti-ビス-2,3,5,6-テトラフルオロフェニル、ビス(メチルシクロペンタジエニル)-Ti-ビス-2,6-ジフルオロフェニル(例えば、BASF社製、Irgacure727L)、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピリ-1-イル)フェニル)チタニウム(例えば、BASF社製、Irgacure784)、ビス(シクロペンタジエニル)-ビス(2,4,6-トリフルオロ-3-(ピリ-1-イル)フェニル)チタニウムビス(シクロペンタジエニル)-ビス(2,4,6-トリフルオロ-3-(2-5-ジメチルピリ-1-イル)フェニル)チタニウムの他、特開昭59-152396号公報、特開昭61-151197号公報、特開昭63-10602号公報、特開昭63-41483号公報、特開昭63-41484号公報、特開平2-291号公報、特開平3-12403号公報、特開平3-20293号公報、特開平3-27393号公報、特開平3-52050号公報、特開平4-219756号公報、特開平4-221958号公報等に記載されている化合物などを挙げることができる。 Among preferred photopolymerization initiators in the present invention, titanocene photo compounds include, for example, bis (cyclopentadienyl) -Ti-di-chloride, bis (cyclopentadienyl) -Ti-bis-phenyl, bis ( Cyclopentadienyl) -Ti-bis-2,3,4,5,6-pentafluorophenyl, bis (cyclopentadienyl) -Ti-bis-2,3,5,6-tetrafluorophenyl, bis ( Cyclopentadienyl) -Ti-bis-2,4,6-trifluorophenyl, bis (cyclopentadienyl) -Ti-bis-2,6-difluorophenyl, bis (cyclopentadienyl) -Ti-bis -2,4-difluorophenyl, bis (methylcyclopentadienyl) -Ti-bis-2,3,4,5,6-pentafluorophenyl, bis Methylcyclopentadienyl) -Ti-bis-2,3,5,6-tetrafluorophenyl, bis (methylcyclopentadienyl) -Ti-bis-2,6-difluorophenyl (eg, Irgacure 727L manufactured by BASF) ), Bis (cyclopentadienyl) -bis (2,6-difluoro-3- (py-1-yl) phenyl) titanium (for example, Irgacure 784, manufactured by BASF), bis (cyclopentadienyl) -bis ( 2,4,6-trifluoro-3- (pyridin-1-yl) phenyl) titanium bis (cyclopentadienyl) -bis (2,4,6-trifluoro-3- (2-5-dimethylpyri-1) -Yl) phenyl) titanium, JP-A-59-152396, JP-A-61-151197, JP-A-63-1 No. 602, JP-A-63-41483, JP-A-63-41484, JP-A-2-291, JP-A-3-12403, JP-A-3-20293, JP-A-3-293 Examples thereof include compounds described in JP-A No. 27393, JP-A-3-52050, JP-A-4-219756, JP-A-4-221958, and the like.
 これらのチタノセン系化合物の中でも、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピリ-1-イル)フェニル)チタニウムが好ましい。チタノセン系化合物は、単独で又は2種以上を組み合わせて用いることが可能である。
 上記以外の光重合開始剤としては、例えば、特開2010-134419の段落〔0079〕~〔0095〕に例示されているものを挙げることができる。
Among these titanocene compounds, bis (cyclopentadienyl) -bis (2,6-difluoro-3- (py-1-yl) phenyl) titanium is preferable. The titanocene compounds can be used alone or in combination of two or more.
Examples of photopolymerization initiators other than the above include those exemplified in paragraphs [0079] to [0095] of JP2010-134419A.
 中でも、光重合開始剤としては、アシルホスフィンオキサイド系化合物及びチタノセン系化合物から選ばれる少なくとも1種を含むことが好ましい。アシルホスフィンオキサイド系化合物及びチタノセン系化合物から選ばれる少なくとも1種を含む場合、その含有割合は、全光重合開始剤の90質量%以上、特に96質量%以上であることが好ましい。 Among these, the photopolymerization initiator preferably contains at least one selected from acylphosphine oxide compounds and titanocene compounds. In the case where at least one selected from an acylphosphine oxide compound and a titanocene compound is included, the content is preferably 90% by mass or more, particularly 96% by mass or more of the total photopolymerization initiator.
 本発明において、光重合開始剤の含有量は、重合性化合物100質量部に対して、5~200質量部、好ましくは10~100質量部、より好ましくは15~50質量部である。 In the present invention, the content of the photopolymerization initiator is 5 to 200 parts by mass, preferably 10 to 100 parts by mass, and more preferably 15 to 50 parts by mass with respect to 100 parts by mass of the polymerizable compound.
 また、前記硬化性組成物によって形成される所望パターンに、第二の硬化性組成物を塗布する工程がさらに存在する場合、前記所望パターンは、第二の硬化性組成物を容易に塗布する観点から、撥液性表面を含む層を含むことが好ましい。前記所望パターンに、撥液性表面を含む層を付与する方法としては、WO2015/190294号公報等に記載の撥インク剤を、硬化性組成物に添加する方法などが挙げられる。 Moreover, when the process of apply | coating a 2nd curable composition exists in the desired pattern formed with the said curable composition, the said desired pattern is a viewpoint which apply | coats a 2nd curable composition easily. Therefore, it is preferable to include a layer including a liquid repellent surface. Examples of a method for providing a layer including a liquid repellent surface to the desired pattern include a method of adding an ink repellent agent described in WO2015 / 190294 to a curable composition.
 硬化性組成物のテンプレート用塗膜11表面への接触は、塗布等の公知に方法で行うことができる。具体的には、はけやブラシを用いた塗布法、ディッピング法、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、フレキソ印刷、オフセット印刷、インクジェット印刷、ディスペンス法等の公知の方法を挙げることができる。 The contact of the curable composition to the surface of the template coating film 11 can be performed by a known method such as coating. Specifically, application method using brush or brush, dipping method, spray method, roll coating method, spin coating method (spin coating method), slit die coating method, bar coating method, flexographic printing, offset printing, inkjet Well-known methods, such as printing and a dispensing method, can be mentioned.
 これらの中でも、ディッピング法、スプレー法、スピンコート法、スリットダイ塗布法、オフセット印刷法、インクジェット法及びディスペンス法が好ましい。
 特に工業的な観点から、硬化組成物の省液化が可能であり、かつ所望の位置に硬化組成物を塗布しやすいインクジェット法が好ましい。
Among these, a dipping method, a spray method, a spin coating method, a slit die coating method, an offset printing method, an ink jet method, and a dispensing method are preferable.
In particular, from an industrial point of view, an ink jet method that can save the liquid of the cured composition and easily applies the cured composition to a desired position is preferable.
 テンプレート用塗膜11の表面には、親液性表面を含む層12と撥液性表面を含む層13とが形成されている。このため、テンプレート用塗膜11の表面へ硬化性組成物を接触させた場合、硬化性組成物は、撥液性表面を含む層13でははじかれ、好ましくは凹部である親液性表面を含む層12に流れ込む。これにより、凹部である親液性表面を含む層12に沿って硬化性組成物の塗膜が形成される。 A layer 12 including a lyophilic surface and a layer 13 including a liquid repellent surface are formed on the surface of the template coating film 11. Therefore, when the curable composition is brought into contact with the surface of the template coating film 11, the curable composition is repelled by the layer 13 including the liquid repellent surface, and preferably includes a lyophilic surface that is a recess. It flows into layer 12. Thereby, the coating film of a curable composition is formed along the layer 12 containing the lyophilic surface which is a recessed part.
 通常のフォトレジスト等を用いた凹パターンにおいては、硬化組成物が凹部のみならず、凸部にも塗布されてしまい、硬化組成物のパターニングを達成することが出来ない。そのため親液性、撥液性によるパターニングを用いた本手法が優れている。 In a concave pattern using a normal photoresist or the like, the cured composition is applied not only to the concave portion but also to the convex portion, and patterning of the cured composition cannot be achieved. Therefore, this method using patterning by lyophilicity and liquid repellency is excellent.
<放射線照射工程>
 放射線照射工程は、硬化性組成物が塗布された側に放射線(hν)を照射する工程である。この場合、フォトマスクを介して露光することもできるが、フォトマスクを使用しないで露光することもできる。この場合、硬化性組成物が塗布された親水性領域は硬化し、疎水性領域は酸解離性が解離するため、親水性領域となる。この場合、アルカリ性水溶液で現像することで、硬化した部分以外の領域を除去することができる(図7、図8参照)。
<Radiation irradiation process>
The radiation irradiation step is a step of irradiating the side on which the curable composition is applied with radiation (hν). In this case, exposure can be performed through a photomask, but exposure can also be performed without using a photomask. In this case, the hydrophilic region to which the curable composition is applied is cured, and the hydrophobic region becomes a hydrophilic region because the acid dissociation property is dissociated. In this case, regions other than the cured portion can be removed by developing with an alkaline aqueous solution (see FIGS. 7 and 8).
 本工程において照射する放射線の具体例、及び好ましい例としては、親液性表面を含む層形成工程と同様である。また、本工程における放射線の露光量も、親液性表面を含む層形成工程と同様とすることができる。 Specific examples and preferred examples of radiation irradiated in this step are the same as those in the layer forming step including a lyophilic surface. The exposure dose of radiation in this step can also be the same as in the layer forming step including a lyophilic surface.
 放射線の照射後、加熱することが好ましい。この加熱により、露出部分(露光部分)において解離した酸解離性基由来の成分が揮発し、露出部分が薄くなると共に親液性がより高まる。 It is preferable to heat after irradiation. By this heating, the component derived from the acid dissociable group dissociated in the exposed portion (exposed portion) is volatilized, and the exposed portion becomes thinner and more lyophilic.
 この加熱方法としては、特に限定されず、ホットプレート、オーブン、ドライヤー等を用いて加熱する方法を挙げることができる。その他、真空ベークによって加熱してもよい。加熱条件も特に限定されないが、例えば50℃以上200℃以下、1分以上120分以下とすることができる。 This heating method is not particularly limited, and examples thereof include a method of heating using a hot plate, oven, dryer or the like. In addition, you may heat by vacuum baking. The heating conditions are not particularly limited, but may be, for example, 50 ° C. or higher and 200 ° C. or lower and 1 minute or longer and 120 minutes or shorter.
 本工程において照射する放射線の露光後の現像工程は、例としては、親液性表面を含む層形成工程と同様である。また、本工程における放射線の露光量も、親液性表面を含む層形成工程と同様とすることができる。
また、本発明において得られる硬化膜を逆テーパ形状(上が大きく下が小さい下向き台形やT字型の形状をいう)で得られることができる。
The development process after exposure of the radiation irradiated in this process is, for example, the same as the layer forming process including a lyophilic surface. The exposure dose of radiation in this step can also be the same as in the layer forming step including a lyophilic surface.
In addition, the cured film obtained in the present invention can be obtained in an inversely tapered shape (referred to as a downward trapezoidal or T-shaped shape with a large top and a small bottom).
<感放射線性組成物>
 前記感放射線性組成物は、特に制限されないが、該組成物から形成された塗膜の一部が、放射線の照射および加熱により、揮発、分解するような組成物であることが好ましく、酸解離性基を有する重合体(以下「[A]重合体」ともいう。)および酸発生剤(以下「[C]酸発生剤」ともいう。)を含有する組成物であることがより好ましい。
<Radiation sensitive composition>
The radiation-sensitive composition is not particularly limited, but is preferably a composition in which a part of a coating film formed from the composition volatilizes and decomposes upon irradiation and heating with radiation. A composition containing a polymer having a functional group (hereinafter also referred to as “[A] polymer”) and an acid generator (hereinafter also referred to as “[C] acid generator”) is more preferable.
 このような感放射線性組成物は、基板上でパターン形成材料の滲みを抑えて高精細なパターンを形成するための下地層形成用組成物として、また、パターンと基板との密着性を向上させる下地層形成用組成物として、好適に使用することができる。 Such a radiation-sensitive composition is used as an underlayer-forming composition for forming a high-definition pattern by suppressing bleeding of the pattern-forming material on the substrate, and improves the adhesion between the pattern and the substrate. The composition for forming an underlayer can be suitably used.
 前記組成物は、更に、溶剤(以下「[B]溶剤」ともいう。)を含有してもよい。該組成物が、[B]溶剤を含有することで液状を呈し、塗布によって容易に塗膜を形成できる。
 前記組成物は、[C]酸発生剤の補助材料として、更に、増感剤を含んでもよく、[C]酸発生剤からの酸の拡散抑制材料としてクエンチャーを含んでもよい。
The composition may further contain a solvent (hereinafter also referred to as “[B] solvent”). The composition exhibits a liquid state by containing the [B] solvent, and can easily form a coating film by coating.
The composition may further contain a sensitizer as an auxiliary material for the [C] acid generator, and may contain a quencher as a material for suppressing the diffusion of acid from the [C] acid generator.
 また、前記組成物は、[A]重合体以外のエチレン性不飽和結合を有する重合性化合物を含んでもよく、感放射線性重合開始剤を含んでもよい。
 さらに、前記組成物は、本発明の効果を損なわない限り、その他の任意成分を含有してもよい。
Moreover, the said composition may contain the polymeric compound which has ethylenically unsaturated bonds other than a [A] polymer, and may contain the radiation sensitive polymerization initiator.
Furthermore, the said composition may contain another arbitrary component, unless the effect of this invention is impaired.
 前記組成物の粘度(温度:20℃、剪断速度:10sec-1)は、所望の塗布方法および形成したい塗膜の膜厚等によって調節すればよい。該粘度としては、膜厚0.5~2μmの塗膜を形成する場合であって、塗布方法としてスピンコート法を用いる場合、好ましくは5cP(0.003Pa・s)~20cP(0.02Pa・s)を例示でき、塗布方法としてスリットダイ塗布法を用いる場合、好ましくは1cP(0.001Pa・s)~20cP(0.01Pa・s)を例示できる。 The viscosity (temperature: 20 ° C., shear rate: 10 sec-1) of the composition may be adjusted depending on the desired coating method and the film thickness of the coating film to be formed. The viscosity is preferably 5 cP (0.003 Pa · s) to 20 cP (0.02 Pa · 0.02) when a coating film having a film thickness of 0.5 to 2 μm is formed and the spin coating method is used as the coating method. s), and when the slit die coating method is used as the coating method, it is preferably 1 cP (0.001 Pa · s) to 20 cP (0.01 Pa · s).
 <[A]酸解離性基を有する重合体>
 前記[A]重合体は、酸により、解離する性質を有する基を含有する重合体であれば特に制限されない。
<[A] Polymer having an acid dissociable group>
The said [A] polymer will not be restrict | limited especially if it is a polymer containing the group which has the property dissociated by an acid.
 前記酸解離性基としては、フッ素原子を含む基であることが好ましい。前記[A]重合体がこのような基を有することで、前記工程(i)で、撥液性の塗膜を形成することができ、その後の工程(ii)等を経ることで、撥液性の凸部と、該部分より親液性の凹部とを容易に形成することができ、その後の工程(iv)や(v)等を経ることで高精細なパターンを製造することができるため好ましい。 The acid dissociable group is preferably a group containing a fluorine atom. Since the polymer [A] has such a group, a liquid repellent coating film can be formed in the step (i), and the liquid repellent property can be obtained through the subsequent step (ii). Can be easily formed, and a high-definition pattern can be manufactured through subsequent steps (iv) and (v). preferable.
 また、前記酸解離性基としては、高精細なパターンを製造することができる等の点から、アセタール結合およびヘミアセタールエステル結合からなる群より選ばれる少なくとも1つの結合を含む基を有する基であることがより好ましく、このような基としては、下記式(1-1)で示される基および下記式(1-2)で示される基からなる群より選ばれる少なくとも1つの基であることが特に好ましい。 The acid-dissociable group is a group having a group containing at least one bond selected from the group consisting of an acetal bond and a hemiacetal ester bond from the viewpoint that a high-definition pattern can be produced. More preferably, such a group is at least one group selected from the group consisting of a group represented by the following formula (1-1) and a group represented by the following formula (1-2). preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1-1)および(1-2)中、R1およびR2はそれぞれ独立して、水素原子またはメチル基を示し、Rfは独立して、フッ素原子を有する有機基を示す。*は結合部位を示す。 In formulas (1-1) and (1-2), R1 and R2 each independently represent a hydrogen atom or a methyl group, and Rf independently represents an organic group having a fluorine atom. * Indicates a binding site.
 アセタール結合を含む化合物は、アルコールと基CH2=C(R1)-O-を有する化合物とを反応させることで得ることができ、ヘミアセタールエステル結合を含む化合物は、カルボン酸と基CH2=C(R1)-O-を有する化合物とを反応させることで得ることができる。 A compound containing an acetal bond can be obtained by reacting an alcohol with a compound having a group CH2═C (R1) —O—, and a compound containing a hemiacetal ester bond can be obtained by reacting a carboxylic acid with a group CH2═C ( R1) It can be obtained by reacting with a compound having —O—.
 前記Rfとしては、下記式(1-1)~(1-33)の基、2,2,2-トリフルオロエチル基および1,2,2-トリフルオロビニル基が好ましい。 Rf is preferably a group of the following formulas (1-1) to (1-33), a 2,2,2-trifluoroethyl group or a 1,2,2-trifluorovinyl group.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 [A]重合体は、前駆体である水酸基を有する化合物の水酸基に、下記式(1)で示されるビニルエーテル化合物(以下「化合物(1)」ともいう。)に由来する酸解離性基が導入されてなる構造を有する化合物であることが好ましい。また、[A]重合体は、前駆体であるカルボキシル基を有する化合物のカルボキシル基に、化合物(1)に由来する酸解離性基が導入されてなる構造を有する化合物であってもよい。 [A] In the polymer, an acid dissociable group derived from a vinyl ether compound represented by the following formula (1) (hereinafter also referred to as “compound (1)”) is introduced into the hydroxyl group of the precursor compound having a hydroxyl group. It is preferable that it is a compound which has the structure formed. [A] The polymer may be a compound having a structure in which an acid-dissociable group derived from the compound (1) is introduced into a carboxyl group of a compound having a carboxyl group as a precursor.
 これらの酸解離性基が導入されてなる構造を有する化合物(以下「化合物(a)」ともいう。)、特に前駆体として水酸基を有する化合物は、熱による酸解離性基の解離が生じ難いという性質を備え、一方で、放射線照射による酸解離性基の解離の制御ができるという性質を備えるため、[A]重合体として好適に使用できる。さらに、化合物(a)は、後述する[C]酸発生剤との組み合わせによって、放射線照射による、より高精度の酸解離性基の解離の制御が可能となるため好ましい。 A compound having a structure in which these acid dissociable groups are introduced (hereinafter also referred to as “compound (a)”), particularly a compound having a hydroxyl group as a precursor, is unlikely to cause dissociation of the acid dissociable group due to heat. On the other hand, since it has the property that the dissociation of the acid-dissociable group by irradiation can be controlled, it can be suitably used as the [A] polymer. Furthermore, the compound (a) is preferable because the dissociation of the acid dissociable group can be controlled with higher accuracy by irradiation with a combination with the [C] acid generator described later.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rは、水素原子またはメチル基を示す。式(1)中、Rは独立して、メチレン基、炭素数2~12のアルキレン基、炭素数2~12のアルケニレン基、炭素数6~13の置換または非置換の芳香族炭化水素基、炭素数4~12の置換または非置換の脂環式炭化水素基、または、これらの基の1つ以上の水素原子がフッ素原子で置換された基を示す。 In formula (1), R 0 represents a hydrogen atom or a methyl group. In the formula (1), R A independently represents a methylene group, an alkylene group having 2 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 13 carbon atoms. And a substituted or unsubstituted alicyclic hydrocarbon group having 4 to 12 carbon atoms, or a group in which one or more hydrogen atoms of these groups are substituted with a fluorine atom.
 Rとしては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、フェニレン基、ビニレン基が好ましい。 R A is preferably a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, a phenylene group, or a vinylene group.
 式(1)中、Rは、炭化水素基の1つ以上の水素原子がフッ素原子で置換された基を示す。 In the formula (1), R B represents a group in which one or more hydrogen atoms of a hydrocarbon group are substituted with fluorine atoms.
 式(1)中、Rは、例えば、前記Rfにおける前記式(1-1)~(1-33)で示す基、2,2,2-トリフルオロエチル基、1,2,2-トリフルオロビニル基が挙げられ、2,2,2-トリフルオロエチル基、前記式(1-1)の3,3,3-トリフルオロプロピル基、式(1-2)の4,4,4-トリフルオロブチル基、式(1-4)の3,3,4,4,4-ペンタフルオロブチル基、前記式(1-16)の4,4,5,5,6,6,6-ヘプタフルオロヘキシル基、式(1-8)の3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチル基、1,2,2-トリフルオロビニル基、式(1-29)の2,3,4,5,6-ペンタフルオロフェニル基が好ましい。 In the formula (1), R B represents, for example, a group represented by the formulas (1-1) to (1-33) in the Rf, a 2,2,2-trifluoroethyl group, 1,2,2-trimethyl Fluorovinyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group of the above formula (1-1), 4,4,4- Trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group of formula (1-4), 4,4,5,5,6,6,6-hepta of formula (1-16) Fluorohexyl group, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl group of formula (1-8), 1,2,2-tri A fluorovinyl group and a 2,3,4,5,6-pentafluorophenyl group of the formula (1-29) are preferred.
 式(1)中、xは0~12の整数を示し、0~9の整数が好ましく、0がより好ましい。 In the formula (1), x represents an integer of 0 to 12, an integer of 0 to 9 is preferable, and 0 is more preferable.
 工程(i)において用いる感放射線性組成物が、[A]重合体を含む組成物である場合、前記工程(i)で形成される塗膜は、[A]重合体に基づく特性を示し、[A]重合体として、前記化合物(a)を用いる場合、該化合物(a)の酸解離性基に由来する特性を示す。具体的には、該化合物(a)を含む感放射線性組成物から塗膜を形成すると、まず、前記工程(i)において、撥液性の塗膜が形成され、この塗膜を放射線照射すると、露光部分では、酸解離性基の解離が生じ、酸解離性基が解離した部分では、水酸基が残って、酸解離性基に起因した撥液性が失われる。 When the radiation sensitive composition used in the step (i) is a composition containing the [A] polymer, the coating film formed in the step (i) exhibits characteristics based on the [A] polymer, [A] When the compound (a) is used as the polymer, it exhibits characteristics derived from the acid-dissociable group of the compound (a). Specifically, when a coating film is formed from the radiation-sensitive composition containing the compound (a), first, in step (i), a liquid-repellent coating film is formed, and when this coating film is irradiated with radiation In the exposed part, dissociation of the acid-dissociable group occurs, and in the part where the acid-dissociable group dissociates, the hydroxyl group remains and the liquid repellency due to the acid-dissociable group is lost.
 次に、[A]重合体、を得るための方法について説明する。該[A]重合体を得るための方法としては、前駆体となる化合物として重合体を用いる方法と、前駆体となる化合物としてモノマーを用いる方法の2つの方法が可能である。 Next, a method for obtaining the [A] polymer will be described. As a method for obtaining the [A] polymer, two methods are possible: a method using a polymer as a compound serving as a precursor and a method using a monomer as a compound serving as a precursor.
 前駆体となる化合物として重合体を用いる方法では、前駆体となる重合体が水酸基またはカルボキシル基を分子内に含有し、前駆体となる重合体の水酸基またはカルボキシル基に前記化合物(1)を反応させることで[A]重合体を得ることができる。 In the method of using a polymer as a precursor compound, the precursor polymer contains a hydroxyl group or a carboxyl group in the molecule, and the compound (1) is reacted with the hydroxyl group or carboxyl group of the precursor polymer. By doing so, the [A] polymer can be obtained.
 また、前駆体となる化合物としてモノマーを用いる方法では、前駆体となるモノマーが分子内に水酸基またはカルボキシル基を含有し、前駆体となるモノマーの水酸基またはカルボキシル基に前記化合物(1)を反応させた後、得られたモノマーを重合させることで[A]重合体を得ることができる。
 以下、[A]重合体を得るための2つの方法について、より具体的に説明する。
In the method using a monomer as the precursor compound, the precursor monomer contains a hydroxyl group or a carboxyl group in the molecule, and the compound (1) is reacted with the hydroxyl group or carboxyl group of the precursor monomer. Then, the [A] polymer can be obtained by polymerizing the obtained monomer.
Hereinafter, the two methods for obtaining the [A] polymer will be described more specifically.
 (1)前駆体となる化合物として重合体を用いる方法
 この方法では、水酸基またはカルボキシル基を有するモノマーを重合して水酸基またはカルボキシル基を有する重合体(前駆体)を得て、その後、前駆体となる重合体の水酸基またはカルボキシル基に前記化合物(1)を反応させて、[A]重合体を得ることができる。
(1) Method of using a polymer as a compound to be a precursor In this method, a monomer having a hydroxyl group or a carboxyl group is polymerized to obtain a polymer having a hydroxyl group or a carboxyl group (precursor), and then the precursor and The [A] polymer can be obtained by reacting the compound (1) with a hydroxyl group or a carboxyl group of the resulting polymer.
 上述の水酸基を有するモノマーとしては、(メタ)アクリル酸エステルが好ましく、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、4-ヒドロキシベンジルアクリルアミド、3、5-ジメチル-4-ヒドロキシベンジルアクリルアミドなどを挙げることができ、株式会社ダイセル製のプラクセルFM1、プラクセルFM1D、プラクセルFM2D、プラクセルFM3、プラクセルFM3Xを挙げることができる。 As the above-mentioned monomer having a hydroxyl group, (meth) acrylic acid ester is preferable. For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxy Phenyl (meth) acrylate, 4-hydroxybenzyl acrylamide, 3,5-dimethyl-4-hydroxybenzyl acrylamide, etc. can be mentioned. Can be mentioned.
 なお、水酸基を有するモノマーとしては、上述の(メタ)アクリル酸エステルが好ましいが、この化合物以外にも、イソプロペニルフェノールなどの水酸基および不飽和結合を有する化合物を用いることもできる。
 水酸基を有するモノマーは、1種を単独で使用してもよいし、2種以上を使用してもよい。
In addition, as a monomer which has a hydroxyl group, although the above-mentioned (meth) acrylic acid ester is preferable, the compound which has hydroxyl groups and unsaturated bonds, such as isopropenyl phenol, can also be used besides this compound.
As the monomer having a hydroxyl group, one type may be used alone, or two or more types may be used.
 上述のカルボキシル基を有するモノマーとしては、例えば、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルフタル酸、4-カルボキシルフェニル(メタ)アクリレートなどを挙げることができる。
 カルボキシル基を有するモノマーは、1種を単独で使用してもよいし、2種以上を使用してもよい。
Examples of the monomer having a carboxyl group include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethylphthalic acid, 4-carboxylphenyl (meth) acrylate, and the like. Can be mentioned.
The monomer which has a carboxyl group may be used individually by 1 type, and may use 2 or more types.
 [A]重合体の前駆体となる、水酸基またはカルボキシル基を有する重合体は、上述の水酸基またはカルボキシル基を有するモノマーのみを用いて得ることができる他、上述の水酸基またはカルボキシル基を有するモノマーと、水酸基またはカルボキシル基を有するモノマー以外のモノマーとを共重合して得ることができる。 [A] The polymer having a hydroxyl group or a carboxyl group, which is a precursor of the polymer, can be obtained using only the above-mentioned monomer having a hydroxyl group or a carboxyl group. It can be obtained by copolymerizing with a monomer other than a monomer having a hydroxyl group or a carboxyl group.
 水酸基またはカルボキシル基を有するモノマー以外のモノマーとしては、(メタ)アクリル酸鎖状アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和芳香族化合物、共役ジエン、テトラヒドロフラン骨格を含有する不飽和化合物、マレイミドおよびこれら以外のモノマーを挙げることができる。 As monomers other than the monomer having a hydroxyl group or a carboxyl group, (meth) acrylic acid chain alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated aromatic compound, conjugated diene, tetrahydrofuran Mention may be made of unsaturated compounds containing skeletons, maleimides and monomers other than these.
 水酸基またはカルボキシル基を有するモノマー以外のモノマーは、1種を単独で使用してもよいし、2種以上を使用してもよい。具体的には、WO2014/178279号公報に記載の不飽和化合物を用いることができる。 Monomers other than the monomer having a hydroxyl group or a carboxyl group may be used alone or in combination of two or more. Specifically, unsaturated compounds described in WO2014 / 178279 can be used.
 [A]重合体の前駆体となる、水酸基またはカルボキシル基を有する重合体を合成するための重合反応に用いられる溶媒としては、例えばジエチレングリコールモノアルキルエーテル、ジエチレングリコールジアルキルエーテルを用いることができ、その他の具体例としては、WO2014/178279号公報に記載の溶媒を用いることができる。該溶媒は、1種を単独で使用してもよいし、2種以上を使用してもよい。 [A] As a solvent used in a polymerization reaction for synthesizing a polymer having a hydroxyl group or a carboxyl group, which is a precursor of a polymer, for example, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether can be used. As a specific example, the solvent described in WO2014 / 178279 can be used. The solvent may be used alone or in combination of two or more.
 [A]重合体の前駆体となる、水酸基またはカルボキシル基を有する重合体を得るための重合反応においては、分子量を調整するために、1種または2種以上の分子量調整剤を使用できる。 [A] In the polymerization reaction for obtaining a polymer having a hydroxyl group or a carboxyl group, which is a precursor of the polymer, one or more molecular weight regulators can be used to adjust the molecular weight.
 水酸基またはカルボキシル基を有する重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)としては、1000~40000が好ましく、1000~30000がより好ましく、5000~30000がさらに好ましい。水酸基またはカルボキシル基を有する重合体のMwを上述の範囲とすることで、この分子量を有する[A]重合体を含有する感放射線性組成物の感度を高めることができる。 The polystyrene-reduced weight average molecular weight (Mw) of the polymer having a hydroxyl group or a carboxyl group by gel permeation chromatography (GPC) is preferably from 1000 to 40000, more preferably from 1000 to 30000, and further preferably from 5000 to 30000. The sensitivity of the radiation sensitive composition containing the [A] polymer which has this molecular weight can be raised by making Mw of the polymer which has a hydroxyl group or a carboxyl group into the above-mentioned range.
 次に、水酸基またはカルボキシル基を有する重合体の水酸基またはカルボキシル基に前記化合物(1)を反応させ、[A]重合体を得る方法は、WO2014/178279号公報に記載の重合法により重合できる。 Next, a method of reacting the compound (1) with a hydroxyl group or a carboxyl group of a polymer having a hydroxyl group or a carboxyl group to obtain a polymer [A] can be polymerized by a polymerization method described in WO2014 / 178279.
 (2)前駆体となる化合物としてモノマーを用いる方法
 この方法では、水酸基またはカルボキシル基を有するモノマーの水酸基またはカルボキシル基に前記化合物(1)を反応させて付加物を得て、それらを重合させることで、[A]重合体を得る。このような[A]重合体を得る方法は、公知の方法を参考にすることができる。
(2) Method of using a monomer as a precursor compound In this method, the compound (1) is reacted with a hydroxyl group or a carboxyl group of a monomer having a hydroxyl group or a carboxyl group to obtain an adduct and polymerize them. [A] A polymer is obtained. A known method can be referred to for obtaining such a polymer [A].
 例えば、特開2005-187609号公報に記載されているように、水酸基を有するモノマーの水酸基と化合物(1)のビニルエーテル基によってアセタール結合を生成して、または、カルボキシル基を有するモノマーのカルボキシル基と前記化合物(1)のビニルエーテル基によってヘミアセタールエステル結合を生成して、付加物を形成する。 For example, as described in JP-A-2005-187609, an acetal bond is formed by the hydroxyl group of the monomer having a hydroxyl group and the vinyl ether group of the compound (1), or the carboxyl group of the monomer having a carboxyl group A hemiacetal ester bond is formed by the vinyl ether group of the compound (1) to form an adduct.
 次いで、得られたモノマーを用いて、上述した水酸基またはカルボキシル基を有する重合体の製造方法と同様にして、[A]重合体を得ることができる。 Next, using the obtained monomer, [A] polymer can be obtained in the same manner as in the method for producing a polymer having a hydroxyl group or a carboxyl group as described above.
 以上のようにして得られる[A]重合体の好ましい例としては、下記式(2)~(6)で示される構成単位よりなる群から選ばれる少なくとも1つを有する重合体を挙げることができる。 Preferred examples of the [A] polymer obtained as described above include a polymer having at least one selected from the group consisting of structural units represented by the following formulas (2) to (6). .
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)~(6)中、R3は独立して、水素原子またはメチル基を示す。R4は独立して、メチレン基、炭素数2~12のアルキレン基、炭素数2~12のアルケニレン基、炭素数6~13の置換または非置換の芳香族炭化水素基、炭素数4~12の置換または非置換の脂環式炭化水素基、または、これらの基の1つ以上の水素原子がフッ素原子で置換された基を示す。R5は独立して、炭化水素基の1つ以上の水素原子がフッ素原子で置換された基を示す。mは0または1を示す。nは独立して0~12の整数を示す。 In formulas (2) to (6), R3 independently represents a hydrogen atom or a methyl group. R4 is independently a methylene group, an alkylene group having 2 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 13 carbon atoms, or 4 to 12 carbon atoms. A substituted or unsubstituted alicyclic hydrocarbon group, or a group in which one or more hydrogen atoms of these groups are substituted with a fluorine atom. R5 independently represents a group in which one or more hydrogen atoms of a hydrocarbon group are substituted with a fluorine atom. m represents 0 or 1; n independently represents an integer of 0 to 12.
 [A]重合体のより好ましい例としては、下記式で示される構成単位よりなる群から選ばれる少なくとも1つを有する重合体を挙げることができる。 [A] More preferable examples of the polymer include a polymer having at least one selected from the group consisting of structural units represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 [A]重合体は、1種を単独で使用してもよいし、2種以上を使用してもよい。 [A] A polymer may be used individually by 1 type, and may use 2 or more types.
 <[B]溶剤>
 [B]溶剤としては特に限定されないが、[A]重合体の他、後述する[C]酸発生剤および任意成分の重合性化合物等の各成分を均一に溶解または分散することができる溶剤が好ましい。
<[B] solvent>
[B] Although it does not specifically limit as a solvent, The solvent which can melt | dissolve or disperse | distribute uniformly each component, such as the [C] acid generator mentioned later and an arbitrary polymeric compound, besides a [A] polymer. preferable.
 好適な[B]溶剤としては、アルコール系溶剤、エーテル類、ジエチレングリコールアルキルエーテル類、エチレングリコールアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルプロピオネート類、脂肪族炭化水素類、芳香族炭化水素類、ケトン類およびエステル類等を挙げることができる。以上で挙げた[B]溶剤は、1種を単独で使用してもよいし、2種以上を使用してもよい。 Suitable [B] solvents include alcohol solvents, ethers, diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionates, aliphatic hydrocarbons. , Aromatic hydrocarbons, ketones and esters. [B] solvent mentioned above may be used individually by 1 type, and may use 2 or more types.
 [B]溶剤の使用量は、前記感放射線性組成物の溶剤を除く成分100質量部に対して、好ましくは200~1600質量部、より好ましくは400~1000質量部である。[B]溶剤の使用量を上述の範囲内とすることによって、感放射線性組成物のガラス基板等に対する塗布性を向上し、さらに塗布ムラ(筋状ムラ、ピン跡ムラ、モヤムラ等)の発生を抑制し、膜厚均一性の向上した塗膜を得ることができる。 [B] The amount of the solvent used is preferably 200 to 1600 parts by mass, and more preferably 400 to 1000 parts by mass with respect to 100 parts by mass of the component excluding the solvent of the radiation-sensitive composition. [B] By making the amount of the solvent used within the above-mentioned range, the coating property of the radiation-sensitive composition on the glass substrate and the like is improved, and furthermore, uneven coating (such as streaky unevenness, uneven pin trace, and unevenness) occurs. And a coating film with improved film thickness uniformity can be obtained.
 <[C]酸発生剤>
 [C]酸発生剤は、少なくとも放射線の照射によって酸を発生する化合物である。感放射線性組成物が、[C]酸発生剤を含有することで、[A]重合体から酸解離性基を解離させることができる。
<[C] acid generator>
[C] The acid generator is a compound that generates an acid at least upon irradiation with radiation. When the radiation-sensitive composition contains a [C] acid generator, the acid-dissociable group can be dissociated from the [A] polymer.
 [C]酸発生剤としては、例えば、オキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物等が挙げられる。
 [C]酸発生剤は、単独または2種類以上を用いてもよい。
[C] Examples of the acid generator include oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and carboxylic acid ester compounds.
[C] The acid generator may be used alone or in combination of two or more.
 [オキシムスルホネート化合物]
 上述のオキシムスルホネート化合物としては、下記式(5)で表されるオキシムスルホネート基を含む化合物が好ましい。
[Oxime sulfonate compound]
As said oxime sulfonate compound, the compound containing the oxime sulfonate group represented by following formula (5) is preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記式(5)中、R11は、炭素数1~12のアルキル基、炭素数1~12のフルオロアルキル基、炭素数4~12の脂環式炭化水素基、炭素数6~20のアリール基、あるいはこれらのアルキル基、脂環式炭化水素基およびアリール基が有する水素原子の一部または全部が置換基で置換された基である。 In the above formula (5), R 11 is an alkyl group having 1 to 12 carbon atoms, a fluoroalkyl group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group having 4 to 12 carbon atoms, or an aryl having 6 to 20 carbon atoms. Or a group in which some or all of the hydrogen atoms of the alkyl group, alicyclic hydrocarbon group and aryl group are substituted with a substituent.
 オキシムスルホネート化合物の具体例としては、(5-プロピルスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-オクチルスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(カンファースルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-p-トルエンスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-オクチルスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(4-メトキシフェニル)アセトニトリルであり、その他の具体例としては、WO2014/178279号公報に記載のオキシムスルホネート化合物を用いることができる。 Specific examples of oxime sulfonate compounds include (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene). -(2-methylphenyl) acetonitrile, (camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5-p-toluenesulfonyloxyimino-5H-thiophen-2-ylidene) -(2-methylphenyl) acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene)-(4-methoxyphenyl) acetonitrile, and other specific examples include WO2014 / 178279. It can be used oxime sulfonate compounds described in JP.
 [オニウム塩]
 オニウム塩としては、例えば、ジフェニルヨードニウム塩、トリフェニルスルホニウム塩、アルキルスルホニウム塩、ベンジルスルホニウム塩、ジベンジルスルホニウム塩、置換ベンジルスルホニウム塩、ベンゾチアゾニウム塩、テトラヒドロチオフェニウム塩が挙げられる。これらの内、特にトリフェニルスルホニウム塩が好ましい。
[Onium salt]
Examples of the onium salt include diphenyliodonium salt, triphenylsulfonium salt, alkylsulfonium salt, benzylsulfonium salt, dibenzylsulfonium salt, substituted benzylsulfonium salt, benzothiazonium salt, and tetrahydrothiophenium salt. Of these, triphenylsulfonium salt is particularly preferable.
 [スルホンイミド化合物]
 [C]酸発生剤として好ましいスルホンイミド化合物としては、例えば、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(カンファスルホニルオキシ)スクシンイミド、N-(4-メチルフェニルスルホニルオキシ)スクシンイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N-(4-フルオロフェニルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(カンファスルホニルオキシ)フタルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N-(2-フルオロフェニルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(カンファスルホニルオキシ)ジフェニルマレイミドが挙げられる。
[Sulfonimide compound]
[C] Preferred sulfonimide compounds as acid generators include, for example, N- (trifluoromethylsulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (4-methylphenylsulfonyloxy) succinimide, N— (2-trifluoromethylphenylsulfonyloxy) succinimide, N- (4-fluorophenylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (camphorsulfonyloxy) phthalimide, N- (2-tri Fluoromethylphenylsulfonyloxy) phthalimide, N- (2-fluorophenylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (camphor Ruhoniruokishi), and the diphenyl maleimide.
 [C]酸発生剤としては、WO2014/178279号公報に記載の酸発生剤を用いることができる。 [C] The acid generator described in WO2014 / 178279 can be used as the acid generator.
 [C]酸発生剤の含有量としては、[A]重合体100質量部に対して、0.1~10質量部が好ましく、1~5質量部がより好ましい。[C]酸発生剤の含有量を上述の範囲とすることで、感放射線性組成物の感度を最適化できるため、前記工程(i)~(v)を経ることで高解像度な凹パターンを形成できる。 The content of the [C] acid generator is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the [A] polymer. [C] By adjusting the content of the acid generator within the above range, the sensitivity of the radiation-sensitive composition can be optimized. Therefore, a high-resolution concave pattern can be obtained by performing the steps (i) to (v). Can be formed.
 <その他の任意成分>
その他の任意成分としては、界面活性剤、保存安定剤、接着助剤、耐熱性向上剤等を配合することができる。これらの任意成分の具体例、配合例はWO2014/178279号公報に記載の具体例、配合例を参考にすることができる。
<Other optional components>
As other optional components, a surfactant, a storage stabilizer, an adhesion assistant, a heat resistance improver, and the like can be blended. Specific examples and formulation examples of these optional components can be referred to the specific examples and formulation examples described in WO2014 / 178279.
 以下、実施例に基づき本発明を詳述するが、本発明は、この実施例に限定的して解釈されるものではない。以下に、本実施例で用いた測定方法を示す。 Hereinafter, the present invention will be described in detail based on examples, but the present invention should not be construed as being limited to these examples. The measurement method used in this example is shown below.
[重量平均分子量(Mw)及び分子量分布(Mw/Mn)]
 以下の合成例で得られた重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、以下の条件で測定した。
・測定方法:ゲルパーミエーションクロマトグラフィー(GPC)法
・標準物質:ポリスチレン換算
・装置  :東ソー社の「HLC-8220」
・カラム :東ソー社のガードカラム「HXL-H」、「TSK gel G7000HXL」、「TSK gel GMHXL」2本、及び「TSK gel G2000HXL」を順次連結したもの
・溶媒  :テトラヒドロフラン
・サンプル濃度:0.7質量%
・注入量 :70μL
・流速  :1mL/min
[Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)]
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) in terms of polystyrene of the polymers obtained in the following synthesis examples were measured under the following conditions.
・ Measurement method: Gel permeation chromatography (GPC) method ・ Standard material: polystyrene conversion ・ Device: “HLC-8220” manufactured by Tosoh Corporation
Column: Tosoh guard column “HXL-H”, “TSK gel G7000HXL”, “TSK gel GMHXL”, and “TSK gel G2000HXL” sequentially connected. Solvent: Tetrahydrofuran Sample concentration: 0.7 mass%
・ Injection volume: 70 μL
・ Flow rate: 1mL / min
H-NMRの測定]
 H-NMRは、溶媒としてCDCl3を用い、核磁気共鳴装置(Bruker社の「AVANCEIII AV400N」)を用い、温度25℃の条件下で測定した。
[Measurement of 1 H-NMR]
1 H-NMR was measured using CDCl 3 as a solvent and using a nuclear magnetic resonance apparatus (“AVANCE III AV400N” manufactured by Bruker) at a temperature of 25 ° C.
<実施例>
<重合体の合成>
[合成例1]
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)8質量部、2,4-ジフェニル-4-メチル-1-ペンテン2質量部、および、プロピレングリコールモノメチルエーテルアセテート300質量部を仕込んだ。引き続き4-ヒドロキシフェニルメタクリレート60質量部、メタクリル酸メチル40質量部を仕込み、窒素雰囲気下、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A-1)を含有する溶液を得た(固形分濃度=26.1質量%、Mw=23000、Mw/Mn=2.6)。尚、固形分濃度は共重合体溶液の全質量に占める共重合体質量の割合を意味する。
<Example>
<Synthesis of polymer>
[Synthesis Example 1]
In a flask equipped with a condenser and a stirrer, 8 parts by mass of dimethyl 2,2′-azobis (2-methylpropionate), 2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and propylene 300 parts by mass of glycol monomethyl ether acetate was charged. Subsequently, 60 parts by mass of 4-hydroxyphenyl methacrylate and 40 parts by mass of methyl methacrylate are charged, the temperature of the solution is raised to 80 ° C. while gently stirring in a nitrogen atmosphere, and this temperature is maintained for 4 hours for polymerization. As a result, a solution containing the copolymer (A-1) was obtained (solid content concentration = 26.1% by mass, Mw = 23000, Mw / Mn = 2.6). In addition, solid content concentration means the ratio of the copolymer mass which occupies for the total mass of a copolymer solution.
 次いで、得られた重合体(A-1)にプロピレングリコールモノメチルエーテルアセテート190質量部、ピリジニウム-p-トルエンスルホナート0.4質量部、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-ビニルオキシオクタン155質量部を加え、窒素雰囲気下、80℃で2時間反応させた。 Next, 190 parts by mass of propylene glycol monomethyl ether acetate, 0.4 parts by mass of pyridinium-p-toluenesulfonate, 3,3,4,4,5,5,6,6 were added to the obtained polymer (A-1). , 7,7,8,8,8-tridecafluoro-1-vinyloxyoctane was added in an amount of 155 parts by mass, and the mixture was reacted at 80 ° C. for 2 hours in a nitrogen atmosphere.
 得られた反応溶液を大過剰のメタノールに滴下することにより再沈殿精製を行い、乾燥後、白色固形状の共重合体として[A]重合体(P-1)が230質量部得られた。得られた[A]重合体(P-1)についてH-NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.50ppm、アセタール基C-H)。 The obtained reaction solution was added dropwise to a large excess of methanol for reprecipitation purification, and after drying, 230 parts by mass of [A] polymer (P-1) was obtained as a white solid copolymer. The obtained [A] polymer (P-1) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 5.50 ppm, acetal group C—H). .
[合成例2]
冷却管および攪拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)7質量部、ジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸5質量部、テトラヒドロ-2H-ピラン-2-イルメタクリレート40質量部、スチレン5質量部、メタクリル酸グリシジル40質量部、2-ヒドロキシエチルメタクリレート10質量部およびα-メチルスチレンダイマー3質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し、共重合体である重合体(P-2)を含む重合体溶液を得た。重合体(P-2)のポリスチレン換算質量平均分子量(Mw)は9000であった。また、ここで得られた重合体溶液の固形分濃度は、31.3質量%であった。
[Synthesis Example 2]
A flask equipped with a condenser and a stirrer was charged with 7 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by mass of diethylene glycol ethyl methyl ether. Subsequently, 5 parts by weight of methacrylic acid, 40 parts by weight of tetrahydro-2H-pyran-2-yl methacrylate, 5 parts by weight of styrene, 40 parts by weight of glycidyl methacrylate, 10 parts by weight of 2-hydroxyethyl methacrylate and 3 parts by weight of α-methylstyrene dimer Was added, and the mixture was purged with nitrogen. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing a polymer (P-2) as a copolymer. The polymer (P-2) had a weight average molecular weight (Mw) in terms of polystyrene of 9000. Moreover, the solid content concentration of the polymer solution obtained here was 31.3 mass%.
<感放射線性組成物(X-1)の調製>
  上記合成例1で得られた[A]重合体(P-1)を100質量部、[C]酸発生剤としてPA-528(ヘレウス社)を2質量部、クエンチャーとして2-フェニルベンゾイミダゾールを0.1質量部混合し、界面活性剤としてポリフローNo95(共栄社化学(株)製)0.1質量部を加え、溶剤を除く成分全量を100質量%としたときに30質量%となるように、それぞれ[B]溶剤として、プロピレングリコールモノメチルエーテルアセテートを加えた後、孔径0.5μmのミリポアフィルタでろ過することにより、感放射線性組成物(X-1)を調製した。
<Preparation of radiation-sensitive composition (X-1)>
100 parts by mass of [A] polymer (P-1) obtained in Synthesis Example 1 above, 2 parts by mass of PA-528 (Hereus) as [C] acid generator, and 2-phenylbenzimidazole as a quencher 0.1 part by mass of Polyflow No. 95 (manufactured by Kyoeisha Chemical Co., Ltd.) as a surfactant is added, and the total amount of components excluding the solvent is 100% by mass, so that it becomes 30% by mass. Further, propylene glycol monomethyl ether acetate was added as a solvent [B], respectively, followed by filtration with a Millipore filter having a pore size of 0.5 μm to prepare a radiation sensitive composition (X-1).
<感放射線性組成物(X-2)の調製>
 上記合成例1で得られた[A]重合体(P-1)を2質量部、合成例2で得られた重合体(P-2)を98質量部、[C]酸発生剤としてN-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステルを2質量部、増感剤として2,4-ジエチルチオキサントンを0.5質量部、および、クエンチャーとして2-フェニルベンゾイミダゾールを0.2質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン3質量部を混合し、界面活性剤としてポリフローNo95(共栄社化学(株)製)0.1質量部を加え、溶剤を除く成分全量を100質量%としたときに30質量%となるように、それぞれ[B]溶剤として、プロピレングリコールモノメチルエーテルアセテートを加えた後、孔径0.5μmのミリポアフィルタでろ過することにより、感放射線性組成物(X-2)を調製した。
<Preparation of radiation-sensitive composition (X-2)>
2 parts by mass of [A] polymer (P-1) obtained in Synthesis Example 1 above, 98 parts by mass of polymer (P-2) obtained in Synthesis Example 2 and [C] N as an acid generator 2 parts by weight of 2-hydroxynaphthalimide-trifluoromethanesulfonate ester, 0.5 parts by weight of 2,4-diethylthioxanthone as a sensitizer, and 0.2 part by weight of 2-phenylbenzimidazole as a quencher 3 parts by mass of 3-glycidoxypropyltrimethoxysilane was mixed as an auxiliary agent, 0.1 part by mass of Polyflow No95 (manufactured by Kyoeisha Chemical Co., Ltd.) was added as a surfactant, and the total amount of components excluding the solvent was 100% by mass. After adding propylene glycol monomethyl ether acetate as a solvent [B] so that the amount becomes 30% by mass, Millipore Fill with a pore size of 0.5 μm In by filtration, radiation-sensitive composition (X-2) was prepared.
<感放射線性組成物(X-3)の調製>
 上記合成例2で得られた[A]重合体(P-2)を100質量部、[C]酸発生剤としてN-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステルを2質量部、増感剤として2,4-ジエチルチオキサントンを0.5質量部、および、クエンチャーとして2-フェニルベンゾイミダゾールを0.2質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン3質量部を混合し、界面活性剤としてポリフローNo95(共栄社化学(株)製)0.1質量部を加え、溶剤を除く成分全量を100質量%としたときに30質量%となるように、それぞれ[B]溶剤として、プロピレングリコールモノメチルエーテルアセテートを加えた後、孔径0.5μmのミリポアフィルタでろ過することにより、感放射線性組成物(X-3)を調製した。
<Preparation of radiation-sensitive composition (X-3)>
100 parts by weight of [A] polymer (P-2) obtained in Synthesis Example 2 above, 2 parts by weight of N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester as [C] acid generator, and as sensitizer 0.5 parts by mass of 2,4-diethylthioxanthone, 0.2 parts by mass of 2-phenylbenzimidazole as a quencher, and 3 parts by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant were mixed. As a surfactant, 0.1 parts by mass of Polyflow No95 (manufactured by Kyoeisha Chemical Co., Ltd.) is added, and when the total amount of components excluding the solvent is 100% by mass, 30% by mass, respectively, After adding propylene glycol monomethyl ether acetate, the mixture is filtered through a Millipore filter having a pore size of 0.5 μm to obtain a radiation sensitive composition (X-3 ) Was prepared.
<テンプレートの作製>
 上記の感放射線性組成物(X-1)から(X-3)を用いて、基板上に塗膜を形成し、露光、現像工程を経てテンプレートを形成した。以下に形成方法を示す。テンプレートパターン(T-1~T-7)と記す。
<Production of template>
A coating film was formed on the substrate using the above radiation sensitive compositions (X-1) to (X-3), and a template was formed through exposure and development steps. The forming method is shown below. It is described as a template pattern (T-1 to T-7).
<テンプレート(T-1)の作製>
9.5cm角の無アルカリガラス基板(EAGLE-XG、0.7mm厚,コーニング社製))上に、上記で調製した感放射線性樹脂組成物(X-1)をスピンナーにより0.5μmの膜厚になるように塗布した後、90℃のホットプレート上で3分間プレベークすることにより塗膜を形成した。得られた塗膜にフォトマスク(ライン&スペース=50μm/450μm)を介して高圧水銀ランプを用いて露光量を200mJ/cmとして放射線照射を行った。続いて90℃のホットプレート上で15分間ベークを行った。
<Preparation of template (T-1)>
On a 9.5 cm square alkali-free glass substrate (EAGLE-XG, 0.7 mm thickness, manufactured by Corning)), the radiation-sensitive resin composition (X-1) prepared above was formed into a 0.5 μm film by a spinner. After coating to a thickness, a coating film was formed by prebaking on a hot plate at 90 ° C. for 3 minutes. The obtained coating film was irradiated with radiation through a photomask (line & space = 50 μm / 450 μm) using a high-pressure mercury lamp at an exposure amount of 200 mJ / cm 2 . Subsequently, baking was performed on a hot plate at 90 ° C. for 15 minutes.
 その後、基板を2.38%テトラアンモニウムヒドロキシド水溶液に2分間浸漬することにより露光部が除去した。最後に得られたパターンを90℃のホットプレート上で15分間乾燥ベークすることにより、撥液性のテンプレートパターン(T-1)を得た。
 残留した撥液性表面を含む層のテトラデカンに対する接触角は60°、水に対する接触角は109°であり、膜が存在しない親液性表面のテトラデカンに対する接触角は8°、水に対する接触角は23°となり、撥液性表面を含む層は十分に撥液性であることを確認した。
Thereafter, the exposed portion was removed by immersing the substrate in an aqueous 2.38% tetraammonium hydroxide solution for 2 minutes. The finally obtained pattern was dried and baked on a hot plate at 90 ° C. for 15 minutes to obtain a liquid repellent template pattern (T-1).
The contact angle with respect to tetradecane of the layer containing the remaining liquid repellent surface is 60 °, the contact angle with water is 109 °, the contact angle with respect to tetradecane of the lyophilic surface without the film is 8 °, and the contact angle with water is It was 23 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
<テンプレート(T-2)の作製>
9.5cm角の無アルカリガラス基板(EAGLE-XG、0.7mm厚,コーニング社製))上に、上記で調製した感放射線性樹脂組成物(X-1)をスピンナーにより10μmの膜厚になるように塗布した後、90℃のホットプレート上で3分間プレベークすることにより塗膜を形成した。得られた塗膜にフォトマスク(ライン&スペース=10μm/30μm)を介して高圧水銀ランプを用いて露光量を300mJ/cmとして放射線照射を行った。続いて90℃のホットプレート上で15分間ベークを行った。
<Preparation of template (T-2)>
On a 9.5 cm square alkali-free glass substrate (EAGLE-XG, 0.7 mm thickness, manufactured by Corning)), the radiation-sensitive resin composition (X-1) prepared above was formed to a thickness of 10 μm using a spinner. After coating, the coating film was formed by pre-baking on a hot plate at 90 ° C. for 3 minutes. The obtained coating film was irradiated with radiation through a photomask (line & space = 10 μm / 30 μm) using a high-pressure mercury lamp at an exposure amount of 300 mJ / cm 2 . Subsequently, baking was performed on a hot plate at 90 ° C. for 15 minutes.
 その後、基板を2.38%テトラアンモニウムヒドロキシド水溶液に2分間浸漬することにより露光部を除去した。最後に得られたパターンを90℃のホットプレート上で15分間乾燥ベークすることにより、撥液性のテンプレートパターン(T-2)(図18)を得た。 Thereafter, the exposed portion was removed by immersing the substrate in an aqueous 2.38% tetraammonium hydroxide solution for 2 minutes. Finally, the obtained pattern was dried and baked on a hot plate at 90 ° C. for 15 minutes to obtain a liquid repellent template pattern (T-2) (FIG. 18).
 残留した撥液性表面を含む層のテトラデカンに対する接触角は61°、水に対する接触角は110°であり、膜が存在しない親液性表面のテトラデカンに対する接触角は9°、水に対する接触角は25°となり、撥液性表面を含む層は十分に撥液性であることを確認した。 The contact angle with respect to tetradecane of the layer including the remaining liquid repellent surface is 61 °, the contact angle with water is 110 °, the contact angle with respect to tetradecane of the lyophilic surface having no film is 9 °, and the contact angle with water is It was 25 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
<テンプレート(T-3)の作製>
 6インチガラスウェハ(EAGLE-XG、0.7mm厚,コーニング社製)上に、上記で調製した感放射線性樹脂組成物(X-2)をスピンナーにより10μmの膜厚になるように塗布した後、90℃のホットプレート上で3分間プレベークすることにより塗膜を形成した。得られた塗膜にフォトマスク(10μm×10μm)を介してミラープロジェクションアライナー(CANON(株)製)を用いて露光量を300mJ/cmとして放射線照射を行った。続いて70℃のホットプレート上で15分間ベークを行った。
<Preparation of template (T-3)>
After applying the radiation-sensitive resin composition (X-2) prepared above on a 6-inch glass wafer (EAGLE-XG, 0.7 mm thickness, manufactured by Corning) to a thickness of 10 μm by a spinner A coating film was formed by pre-baking on a hot plate at 90 ° C. for 3 minutes. The obtained coating film was irradiated with radiation through a photomask (10 μm × 10 μm) using a mirror projection aligner (manufactured by CANON Co., Ltd.) with an exposure amount of 300 mJ / cm 2 . Subsequently, baking was performed on a hot plate at 70 ° C. for 15 minutes.
 その後、基板を2.38%テトラアンモニウムヒドロキシド水溶液に2分間浸漬することにより露光部が除去した。最後に得られたパターンを70℃のホットプレート上で15分間乾燥ベークすることにより、撥液性のテンプレートパターン(T-3)(図16)を得た。 Thereafter, the exposed portion was removed by immersing the substrate in an aqueous 2.38% tetraammonium hydroxide solution for 2 minutes. Finally, the obtained pattern was dried and baked on a hot plate at 70 ° C. for 15 minutes to obtain a liquid repellent template pattern (T-3) (FIG. 16).
 残留した撥液性表面を含む層のテトラデカンに対する接触角は61°、水に対する接触角は110°であり、膜が存在しない親液性表面のテトラデカンに対する接触角は7°、水に対する接触角は23°となり、撥液性表面を含む層は十分に撥液性であることを確認した。 The contact angle with respect to tetradecane of the layer containing the remaining liquid repellent surface is 61 °, the contact angle with water is 110 °, the contact angle with respect to tetradecane of the lyophilic surface having no film is 7 °, and the contact angle with water is It was 23 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
<テンプレート(T-4)の作製>
9.5cm角の無アルカリガラス基板(EAGLE-XG、0.7mm厚,コーニング社製))上に、上記で調製した感放射線性樹脂組成物(X-2)をスピンナーにより2μmの膜厚になるように塗布した後、90℃のホットプレート上で3分間プレベークすることにより塗膜を形成した。得られた塗膜にフォトマスク(ライン&スペース=50μm/450μm)を介して高圧水銀ランプを用いて露光量を200mJ/cmとして放射線照射を行った。続いて90℃のホットプレート上で15分間ベークを行った。
<Preparation of template (T-4)>
On the 9.5 cm square alkali-free glass substrate (EAGLE-XG, 0.7 mm thickness, manufactured by Corning)), the radiation-sensitive resin composition (X-2) prepared above was formed into a film thickness of 2 μm using a spinner. After coating, the coating film was formed by pre-baking on a hot plate at 90 ° C. for 3 minutes. The obtained coating film was irradiated with radiation through a photomask (line & space = 50 μm / 450 μm) using a high-pressure mercury lamp at an exposure amount of 200 mJ / cm 2 . Subsequently, baking was performed on a hot plate at 90 ° C. for 15 minutes.
 その後、基板を2.38%テトラアンモニウムヒドロキシド水溶液に2分間浸漬することにより露光部が除去した。最後に得られたパターンを90℃のホットプレート上で15分間乾燥ベークすることにより、撥液性のテンプレートパターン(T-4)を得た。 Thereafter, the exposed portion was removed by immersing the substrate in an aqueous 2.38% tetraammonium hydroxide solution for 2 minutes. Finally, the obtained pattern was dried and baked on a hot plate at 90 ° C. for 15 minutes to obtain a liquid repellent template pattern (T-4).
 残留した撥液性表面を含む層のテトラデカンに対する接触角は60°、水に対する接触角は106°であり、膜が存在しない親液性表面のテトラデカンに対する接触角は8°、水に対する接触角は25°となり、であり、撥液性表面を含む層は十分に撥液性であることを確認した。 The contact angle with respect to tetradecane of the layer containing the remaining liquid-repellent surface is 60 °, the contact angle with water is 106 °, the contact angle with tetradecane of the lyophilic surface where no film is present is 8 °, and the contact angle with water is It was 25 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
<テンプレート(T-5)の作製>
6インチガラスウェハ(EAGLE-XG、0.7mm厚,コーニング社製)上に、上記で調製した感放射線性樹脂組成物(X-2)をスピンナーにより10μmの膜厚になるように塗布した後、90℃のホットプレート上で3分間プレベークすることにより塗膜を形成した。得られた塗膜にフォトマスク(ライン&スペース=10μm/30μm)を介してミラープロジェクションアライナー(CANON(株)製)を用いて露光量を200mJ/cmとして放射線照射を行った。続いて70℃のホットプレート上で15分間ベークを行った。
<Preparation of template (T-5)>
After applying the radiation-sensitive resin composition (X-2) prepared above on a 6-inch glass wafer (EAGLE-XG, 0.7 mm thickness, manufactured by Corning) to a thickness of 10 μm by a spinner A coating film was formed by pre-baking on a hot plate at 90 ° C. for 3 minutes. The obtained coating film was irradiated with radiation through a photomask (line & space = 10 μm / 30 μm) using a mirror projection aligner (manufactured by CANON Co., Ltd.) with an exposure amount of 200 mJ / cm 2 . Subsequently, baking was performed on a hot plate at 70 ° C. for 15 minutes.
 その後、基板を2.38%テトラアンモニウムヒドロキシド水溶液に2分間浸漬することにより露光部が除去した。最後に得られたパターンを70℃のホットプレート上で15分間乾燥ベークすることにより、撥液性のテンプレートパターン(T-5)を得た。 Thereafter, the exposed portion was removed by immersing the substrate in an aqueous 2.38% tetraammonium hydroxide solution for 2 minutes. Finally, the obtained pattern was dried and baked on a hot plate at 70 ° C. for 15 minutes to obtain a liquid repellent template pattern (T-5).
 残留した撥液性表面を含む層のテトラデカンに対する接触角は60°、水に対する接触角は108°であり、膜が存在しない親液性表面のテトラデカンに対する接触角は8°、水に対する接触角は25°となり、撥液性表面を含む層は十分に撥液性であることを確認した。 The contact angle with respect to tetradecane of the layer containing the remaining liquid-repellent surface is 60 °, the contact angle with water is 108 °, the contact angle with tetradecane of the lyophilic surface without the film is 8 °, and the contact angle with water is It was 25 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
<テンプレート(T-6)の作製>
6インチガラスウェハ(EAGLE-XG、0.7mm厚,コーニング社製)上に、上記で調製した感放射線性樹脂組成物(X-2)をスピンナーにより5μmの膜厚になるように塗布した後、90℃のホットプレート上で3分間プレベークすることにより塗膜を形成した。得られた塗膜にフォトマスク(ライン&スペース=10μm/30μm)を介してミラープロジェクションアライナー(CANON(株)製)を用いて露光量を200mJ/cmとして放射線照射を行った。続いて70℃のホットプレート上で15分間ベークを行った。
<Preparation of template (T-6)>
After applying the radiation-sensitive resin composition (X-2) prepared above on a 6-inch glass wafer (EAGLE-XG, 0.7 mm thickness, manufactured by Corning) to a thickness of 5 μm with a spinner A coating film was formed by pre-baking on a hot plate at 90 ° C. for 3 minutes. The obtained coating film was irradiated with radiation through a photomask (line & space = 10 μm / 30 μm) using a mirror projection aligner (manufactured by CANON Co., Ltd.) with an exposure amount of 200 mJ / cm 2 . Subsequently, baking was performed on a hot plate at 70 ° C. for 15 minutes.
 その後、基板を2.38%テトラアンモニウムヒドロキシド水溶液に2分間浸漬することにより露光部が除去した。最後に得られたパターンを70℃のホットプレート上で15分間乾燥ベークすることにより、撥液性のテンプレートパターン(T-6)を得た。 Thereafter, the exposed portion was removed by immersing the substrate in an aqueous 2.38% tetraammonium hydroxide solution for 2 minutes. Finally, the obtained pattern was dried and baked on a hot plate at 70 ° C. for 15 minutes to obtain a liquid repellent template pattern (T-6).
 残留した撥液性表面を含む層のテトラデカンに対する接触角は60°、水に対する接触角は109°であり、膜が存在しない親液性表面のテトラデカンに対する接触角は8°、水に対する接触角は24°となり、撥液性表面を含む層は十分に撥液性であることを確認した。 The contact angle with respect to tetradecane of the layer containing the remaining liquid repellent surface is 60 °, the contact angle with water is 109 °, the contact angle with respect to tetradecane of the lyophilic surface without the film is 8 °, and the contact angle with water is It was 24 °, and it was confirmed that the layer including the liquid repellent surface was sufficiently liquid repellent.
<比較例テンプレート(T-7)の作製>
9.5cm角の無アルカリガラス基板(EAGLE-XG、0.7mm厚,コーニング社製))上に、上記で調製した感放射線性樹脂組成物(X-3)をスピンナーにより2μmの膜厚になるように塗布した後、90℃のホットプレート上で3分間プレベークすることにより塗膜を形成した。得られた塗膜にフォトマスク(ライン&スペース=50μm/450μm)を介して高圧水銀ランプを用いて露光量を200mJ/cmとして放射線照射を行った。続いて70℃のホットプレート上で15分間ベークを行った。
<Preparation of Comparative Example Template (T-7)>
On a 9.5 cm square alkali-free glass substrate (EAGLE-XG, 0.7 mm thickness, manufactured by Corning)), the radiation-sensitive resin composition (X-3) prepared above was formed to a thickness of 2 μm using a spinner. After coating, the coating film was formed by pre-baking on a hot plate at 90 ° C. for 3 minutes. The obtained coating film was irradiated with radiation through a photomask (line & space = 50 μm / 450 μm) using a high-pressure mercury lamp at an exposure amount of 200 mJ / cm 2 . Subsequently, baking was performed on a hot plate at 70 ° C. for 15 minutes.
 その後、基板を2.38%テトラアンモニウムヒドロキシド水溶液に2分間浸漬することにより露光部が除去した。最後に得られたパターンを70℃のホットプレート上で15分間乾燥ベークすることにより、撥液性のテンプレートパターン(T-6)を得た。 Thereafter, the exposed portion was removed by immersing the substrate in an aqueous 2.38% tetraammonium hydroxide solution for 2 minutes. Finally, the obtained pattern was dried and baked on a hot plate at 70 ° C. for 15 minutes to obtain a liquid repellent template pattern (T-6).
 残留した撥液性表面を含む層のテトラデカンに対する接触角は5°、水に対する接触角は52°であり、膜が存在しない親液性表面のテトラデカンに対する接触角は6°、水に対する接触角は28°であった。 The contact angle with respect to tetradecane of the layer containing the remaining liquid-repellent surface is 5 °, the contact angle with water is 52 °, the contact angle with respect to tetradecane of the lyophilic surface without the film is 6 °, and the contact angle with water is It was 28 °.
<硬化性組成物としての硬化性インクの調製>
 以下のように硬化性組成物を、硬化性インク組成物として調製した。
<硬化性インク組成物(B-1)の調製>
 重合性化合物としてジペンタエリスリトールヘキサアクリレート(30質量部)、トリメチロールプロパントリアクリレート(30質量部)、イソボルニルアクリレート(35質量部)、3-アクリロキシプロピルトリメトキシシラン(5質量部)、光重合開始剤としてIrgacure907(BASF社、8質量部)、着色材としてベーシックブルー7(TCI社、0.5質量部)を均一になるまで攪拌し、インク組成物(B-1)を調製した。
<Preparation of curable ink as curable composition>
A curable composition was prepared as a curable ink composition as follows.
<Preparation of curable ink composition (B-1)>
As a polymerizable compound, dipentaerythritol hexaacrylate (30 parts by mass), trimethylolpropane triacrylate (30 parts by mass), isobornyl acrylate (35 parts by mass), 3-acryloxypropyltrimethoxysilane (5 parts by mass), Irgacure 907 (BASF, 8 parts by mass) as a photopolymerization initiator and Basic Blue 7 (TCI, 0.5 parts by mass) as a colorant were stirred until uniform to prepare an ink composition (B-1). .
<硬化性インク組成物(B-2)の調製>
 重合性化合物としてジペンタエリスリトールポリアクリレート(新中村化学工業(株)製のA-9550)61.8質量部と、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製のIrgacure184)3.0質量部とを混合溶解し、均一な組成物を得た。乳化剤としてアニオン系界面活性剤(日本乳化剤(株)製のニューコール707SF、有効成分濃度30質量%)3.3質量部(有効成分換算)と、水60質量部とを前記組成物に加え、氷冷下で超音波分散機を用いて分散・混合することにより、前記単量体の水性分散体を調製した。
<Preparation of curable ink composition (B-2)>
2. 61.8 parts by mass of dipentaerythritol polyacrylate (A-9550 manufactured by Shin-Nakamura Chemical Co., Ltd.) as a polymerizable compound and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184 manufactured by BASF) as a photopolymerization initiator 0 parts by mass was mixed and dissolved to obtain a uniform composition. As an emulsifier, an anionic surfactant (New Coal 707SF manufactured by Nippon Emulsifier Co., Ltd., active ingredient concentration: 30% by mass), 3.3 parts by mass (in terms of active ingredient), and 60 parts by mass of water are added to the composition. An aqueous dispersion of the monomer was prepared by dispersing and mixing with an ultrasonic disperser under ice cooling.
 前記水性分散体に、特許第5181566号公報の実施例<中空基材粒子(A-1)の製造>記載の方法に従って作成した中空有機粒子(孔径0.4μm、外径0.6μm、中空率30体積%)の水性分散体7.0質量部(不揮発分換算)、中実有機粒子の水性分散体28.0部(不揮発分換算)、濡れ剤としてフッ素系界面活性剤(共栄社化学(株)製のフタージェント215M)0.3質量部、および水を不揮発分が25質量%となるように加え、よく撹拌し、インク組成物(B-2)を調製した。 To the aqueous dispersion, hollow organic particles (pore diameter 0.4 μm, outer diameter 0.6 μm, hollow ratio) prepared according to the method described in Example <Production of Hollow Base Particles (A-1)> of Japanese Patent No. 5181565 30% by volume) aqueous dispersion 7.0 parts by weight (in terms of non-volatile content), 28.0 parts in terms of solid organic particle dispersion (in terms of non-volatile content), a fluorosurfactant (Kyoeisha Chemical Co., Ltd.) as a wetting agent ) Produced aftergent 215M) and 0.3 parts by mass of water and water were added so that the non-volatile content was 25% by mass, and the mixture was stirred well to prepare an ink composition (B-2).
<硬化性インク組成物(B-3)の調製>
重合性化合物としてトリメチロールプロパントリアクリレート(TMPTA)100質量部、光重合開始剤としてIrgacure907(BASF社、3質量部)、黒色顔料としてカーボンブラックMA100R(三菱化学社製、20質量部)を加え、室温下でよく撹拌し、インク組成物(B-3)を調製した。
<Preparation of curable ink composition (B-3)>
Trimethylolpropane triacrylate (TMPTA) 100 parts by mass as a polymerizable compound, Irgacure 907 (BASF, 3 parts by mass) as a photopolymerization initiator, and carbon black MA100R (Mitsubishi Chemical Corporation, 20 parts by mass) as a black pigment, The ink composition (B-3) was prepared by stirring well at room temperature.
<硬化性インク組成物(B-4)の調製>
 カーボンブラック(プリンテックス45、平均一次粒子径26nm 、オリオン・エンジニアドカーボンズ社製)15質量部、分散剤としてDISPERBYK-168(ビックケミ-社製)を5質量部、重合禁止剤としてパラメトキシフェノール0.1質量部、反応性希釈剤としてフェノキシエチルアクリレート60質量部、トリメチロールプロパントリアクリレート(TMPTA)20質量部を混合し、ビーズミルで一昼夜練肉し、黒色分散液(V-1)を調製した。
<Preparation of curable ink composition (B-4)>
15 parts by mass of carbon black (Printex 45, average primary particle size 26 nm, manufactured by Orion Engineered Carbons), 5 parts by mass of DISPERBYK-168 (manufactured by BYK Chemie) as a dispersant, and paramethoxyphenol as a polymerization inhibitor 0.1 parts by mass, 60 parts by mass of phenoxyethyl acrylate as a reactive diluent and 20 parts by mass of trimethylolpropane triacrylate (TMPTA) are mixed, and the mixture is kneaded overnight in a bead mill to prepare a black dispersion (V-1). did.
 上記黒色分散液(V-1)に光重合開始剤としてIrgacure907(BASF社製)3質量部を混合しインク組成物(B-4)を調製した。 3 parts by weight of Irgacure 907 (manufactured by BASF) as a photopolymerization initiator was mixed with the black dispersion liquid (V-1) to prepare an ink composition (B-4).
<硬化性インク組成物(B-5)の調製>
 カーボンブラック(プリンテックス45、平均一次粒子径26nm 、オリオン・エンジニアドカーボンズ社製)20質量部、分散剤としてDISPERBYK-161(ビックケミ-社製)を5質量部、分散助剤としてソルスパース5000(ルーブリゾール社製)を1質量部、溶剤として3-メトキシブタノールを74質量部を混合し、ビーズミルで一昼夜練肉し、黒色分散液(V-2)を調製した。
<Preparation of curable ink composition (B-5)>
20 parts by mass of carbon black (Printex 45, average primary particle size 26 nm, manufactured by Orion Engineered Carbons), 5 parts by mass of DISPERBYK-161 (manufactured by BYK Chemie) as a dispersant, Solsperse 5000 (as a dispersion aid) 1 part by mass of Lubrizol) and 74 parts by mass of 3-methoxybutanol as a solvent were mixed, and the mixture was kneaded overnight in a bead mill to prepare a black dispersion (V-2).
 上記黒色分散液(V-2)87.8質量部に架橋剤としてEPICLON EXA-4816(DIC社製)9.2質量部、酸発生剤としてN-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステル1.7質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン1.2質量部を混合し、溶剤を除く成分全量に対しカーボンブラック濃度が50質量%であるインク組成物(B-5)を調製した。 The black dispersion liquid (V-2) 87.8 parts by mass, EPICLON EXA-4816 (manufactured by DIC) 9.2 parts by mass as a crosslinking agent, N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester 1. 7 parts by mass, 1.2 parts by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant are mixed, and an ink composition (B-5) having a carbon black concentration of 50% by mass with respect to the total amount of components excluding the solvent Was prepared.
<硬化性インク組成物(B-6)の調製>
 上記黒色分散液(V-2)97.6質量部に架橋剤としてEPICLON EXA-4816(DIC社製)1.84質量部、酸発生剤としてN-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステル0.34質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン0.24質量部を混合し、溶剤を除く成分全量に対しカーボンブラック濃度が70質量%であるインク組成物(B-6)を調製した。
<Preparation of curable ink composition (B-6)>
97.6 parts by mass of the above black dispersion (V-2) 1.84 parts by mass of EPICLON EXA-4816 (manufactured by DIC) as a crosslinking agent, N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester as an acid generator Ink composition (B-6) in which 34 parts by mass and 0.24 parts by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant are mixed and the carbon black concentration is 70% by mass with respect to the total amount of components excluding the solvent Was prepared.
<硬化性インク組成物(B-7)の調製>
 上記黒色分散液(V-2)87.8質量部に架橋剤としてEPICLON EXA-4816(DIC社製)8.6質量部、酸発生剤としてN-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステル1.6質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン1.1質量部、撥インク剤としてサーフロンS386(フッ素系撥液剤、AGCセイミケミカル社製)を0.88質量部混合し、溶剤を除く成分全量に対しカーボンブラック濃度が50質量%であるインク組成物(B-7)を調製した。
<Preparation of curable ink composition (B-7)>
87.8 parts by mass of the above black dispersion (V-2), 8.6 parts by mass of EPICLON EXA-4816 (manufactured by DIC) as a crosslinking agent, and N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester as an acid generator 6 parts by weight, 1.1 parts by weight of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant, 0.88 parts by weight of Surflon S386 (fluorine-based liquid repellent, manufactured by AGC Seimi Chemical Co., Ltd.) as an ink repellent agent, An ink composition (B-7) having a carbon black concentration of 50% by mass relative to the total amount of the components excluding the solvent was prepared.
<硬化性インク組成物(B-8)の調製>
上記黒色分散液(V-2)87.8質量部に架橋剤としてEPICLON EXA-4816(DIC社製)8.6質量部、酸発生剤としてN-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステル1.6質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン1.1質量部、撥インク剤としてモディパーFS700(シリコン系撥液剤、日油社製)を0.88質量部混合し、溶剤を除く成分全量に対しカーボンブラック濃度が50質量%であるインク組成物(B-8)を調製した。
<Preparation of curable ink composition (B-8)>
87.8 parts by mass of the above black dispersion (V-2), 8.6 parts by mass of EPICLON EXA-4816 (manufactured by DIC) as a crosslinking agent, and N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester as an acid generator 6 parts by mass, 1.1 parts by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant, 0.88 parts by mass of Modiper FS700 (silicone liquid repellent, manufactured by NOF Corporation) as an ink repellent agent An ink composition (B-8) having a carbon black concentration of 50% by mass relative to the total amount of the components excluding the components was prepared.
<硬化性インク組成物(B-9)の調製>
冷却管と攪拌機を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート150質量部を仕込んで窒素置換した。80℃に加熱して、同温度で、プロピレングリコールモノメチルエーテルアセテート50質量部、2-メタクリロイロキシエチルコハク酸30質量部、ベンジルメタクリレート10質量部、2-エチルヘキシルメタクリレート60質量部および2,2’-アゾビス(2,4-ジメチルバレロニトリル)6質量部の混合溶液を2時間かけて滴下し、この温度を保持して1時間重合した。
<Preparation of curable ink composition (B-9)>
A flask equipped with a condenser and a stirrer was charged with 150 parts by mass of propylene glycol monomethyl ether acetate and purged with nitrogen. Heating to 80 ° C., at the same temperature, 50 parts by mass of propylene glycol monomethyl ether acetate, 30 parts by mass of 2-methacryloyloxyethyl succinic acid, 10 parts by mass of benzyl methacrylate, 60 parts by mass of 2-ethylhexyl methacrylate and 2,2 ′ A mixed solution of 6 parts by mass of azobis (2,4-dimethylvaleronitrile) was added dropwise over 2 hours, and polymerization was carried out for 1 hour while maintaining this temperature.
 その後、反応溶液の温度を90℃に昇温させ、さらに1時間重合することにより、重合体(Q-1)を得た。重合体(Q-1)は、重合体溶液(固形分濃度=33質量%)の状態で得られ、Mw=11000、Mn=6100、Mw/Mn=1.80であった。これを重合体(Q-1)溶液とする。 Thereafter, the temperature of the reaction solution was raised to 90 ° C., and further polymerized for 1 hour to obtain a polymer (Q-1). The polymer (Q-1) was obtained in the state of a polymer solution (solid content concentration = 33% by mass), and Mw = 11000, Mn = 6100, and Mw / Mn = 1.80. This is referred to as a polymer (Q-1) solution.
 重合体(Q-1)溶液90質量部にメチルシクロヘキサン40質量部を加えて溶解させた後、InP/ZnSコアシェル型量子ドットを10質量部混合して均一な溶液を作製し、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASFジャパン社製イルガキュア(登録商標)OXE01)10質量部、1,9-ノナンジオールジアクリレート70質量部を混合し、量子ドットを含む硬化性材料(B-9)を調製した。 After adding 40 parts by mass of methylcyclohexane to 90 parts by mass of the polymer (Q-1) solution, 10 parts by mass of InP / ZnS core-shell quantum dots are mixed to prepare a uniform solution. 10 parts by weight of octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)] (Irgacure (registered trademark) OXE01 manufactured by BASF Japan) and 70 parts by weight of 1,9-nonanediol diacrylate are mixed Then, a curable material (B-9) containing quantum dots was prepared.
<硬化性インク組成物(B-10)の調製>
重合性化合物としてトリメチロールプロパントリアクリレート(TMPTA)100量部、光重合開始剤としてIrgacure907(BASF社、3質量部)、金属酸化物料として酸化チタン(20質量部)を加え、室温下でよく撹拌し、インク組成物(B-10)を調製した。
<Preparation of curable ink composition (B-10)>
Add 100 parts by weight of trimethylolpropane triacrylate (TMPTA) as a polymerizable compound, Irgacure 907 (BASF, 3 parts by weight) as a photopolymerization initiator, and titanium oxide (20 parts by weight) as a metal oxide material, and stir well at room temperature. An ink composition (B-10) was prepared.
<硬化性インク組成物(B-11)の調製>
 酸化チタン(C R - 5 0、平均粒子径250nm 、石原産業社製)40質量部、分散剤としてDISPERBYK-145(ビックケミ-社製)を5質量部、溶剤として3-メトキシブタノール55質量部を混合し、ビーズミルで一昼夜練肉し、白色分散液(V-3)を調製した。
<Preparation of curable ink composition (B-11)>
40 parts by mass of titanium oxide (CR 50, average particle diameter 250 nm, manufactured by Ishihara Sangyo Co., Ltd.), 5 parts by mass of DISPERBYK-145 (manufactured by BYK Chemie) as a dispersant, and 55 parts by mass of 3-methoxybutanol as a solvent The mixture was mixed and kneaded overnight in a bead mill to prepare a white dispersion (V-3).
 上記白色分散液(V-3)74.6質量部に架橋剤としてEPICLON EXA-4816(DIC社製)19.3質量部、酸発生剤としてN-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステル3.6質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン2.5質量部を混合し、溶剤を除く成分全量に対し酸化チタン濃度が50質量%であるインク組成物(B-11)を調製した。 2. 13.4 parts by mass of EPICLON EXA-4816 (manufactured by DIC) as a cross-linking agent in 74.6 parts by mass of the white dispersion (V-3), and N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester as an acid generator. 6 parts by mass and 2.5 parts by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant are mixed, and the titanium oxide concentration is 50% by mass with respect to the total amount of components excluding the solvent (B-11) Was prepared.
<硬化性インク組成物(B-12)の調製>
上記白色分散液(V-3)89.2質量部に架橋剤としてEPICLON EXA-4816(DIC社製)8.2質量部、酸発生剤としてN-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステル1.5質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン1.06質量部を混合し、溶剤を除く成分全量に対し酸化チタン濃度が70質量%であるインク組成物(B-12)を調製した。
 本発明の硬化性インク組成物による硬化膜は、すべて絶縁体であった。
<Preparation of curable ink composition (B-12)>
89.2 parts by mass of the above white dispersion (V-3), 8.2 parts by mass of EPICLON EXA-4816 (manufactured by DIC) as a crosslinking agent, and N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester as an acid generator Ink composition (B-12) in which 5 parts by mass and 1.06 parts by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant are mixed and the titanium oxide concentration is 70% by mass with respect to the total amount of components excluding the solvent Was prepared.
All cured films of the curable ink composition of the present invention were insulators.
<比較用硬化性インク組成物(B-13)の調製>
 ≪アルカリ可溶性樹脂の合成≫
 冷却管及び攪拌機を備えたフラスコ内で、メタクリル酸15.0g、アセナフチレン30.0g、ベンジルメタクリレート40.0g、ヒドロキシエチルメタクリレート10.0g及びω-カルボキシポリカプロラクトンモノアクリレート5.0gを、プロピレングリコールモノメチルエーテルアセテート220gに溶解した。次いで、2,2’-アゾビスイソブチロニトリル4.0g及びα-メチルスチレンダイマー6.0gを投入し、フラスコ内を15分間窒素パージした。
<Preparation of comparative curable ink composition (B-13)>
≪Synthesis of alkali-soluble resin≫
In a flask equipped with a condenser and a stirrer, 15.0 g of methacrylic acid, 30.0 g of acenaphthylene, 40.0 g of benzyl methacrylate, 10.0 g of hydroxyethyl methacrylate and 5.0 g of ω-carboxypolycaprolactone monoacrylate were mixed with propylene glycol monomethyl. Dissolved in 220 g of ether acetate. Next, 4.0 g of 2,2′-azobisisobutyronitrile and 6.0 g of α-methylstyrene dimer were added, and the inside of the flask was purged with nitrogen for 15 minutes.
 窒素パージの後、反応液を攪拌しながら、80℃に加熱した。そして、この温度を保持して5時間重合することにより、アルカリ可溶性樹脂(P-3)を33質量%含む重合溶液を得た。このアルカリ可溶性樹脂C1のGPCによるポリスチレン換算重量平均分子量(Mw)は3,000であった。
≪黒色顔料分散液(V-4)の調製≫
 カーボンブラック(プリンテックス45、平均一次粒子径26nm、オリオン・エンジニアドカーボンズ社製)20.0質量部と、DISPERBYK-2001(ビックケミ-社製)4.0質量部と、溶剤として3-メトキシブチルアセテートと、を固形分濃度が24質量% となるよう用いて、ビーズミルにより混合して、黒色顔料分散液(V-4)を調製した。
≪黒色レジスト組成物の調製≫
 黒色顔料分散液(V-4)150質量部と、アルカリ可溶性樹脂(P-3)を含む重合溶液(固形分濃度33質量% )19質量部と、重合性オリゴマーとしてジペンタエリスリトールヘキサアクリレート10.0質量部と、光重合開始剤として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン2.6質量部、2,2’ -ビス(2-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾール2.0質量部、4,4’-ビス(ジエチルアミノ)ベンゾフェノン0.7質量部と添加剤として2-メルカプトベンゾチアゾール1.0質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン0.7質量部と、界面活性剤としてメガファックF475(DIC社製)0.02質量部と、溶剤としてプロピレングリコールモノメチルエーテルアセテート10.0質量部と、シクロヘキサノン17.0質量部とを混合して、溶剤を除く成分全量に対しカーボンブラック濃度が60質量%である黒色レジスト組成物(B-13)を得た。
After purging with nitrogen, the reaction solution was heated to 80 ° C. with stirring. Then, the polymerization was carried out while maintaining this temperature for 5 hours to obtain a polymerization solution containing 33% by mass of the alkali-soluble resin (P-3). The weight average molecular weight (Mw) in terms of polystyrene by GPC of this alkali-soluble resin C1 was 3,000.
<< Preparation of black pigment dispersion (V-4) >>
20.0 parts by mass of carbon black (Printex 45, average primary particle size 26 nm, manufactured by Orion Engineered Carbons), 4.0 parts by mass of DISPERBYK-2001 (manufactured by BYK Chemie), and 3-methoxy as a solvent Black pigment dispersion (V-4) was prepared by mixing with butyl acetate with a bead mill using a solid content of 24% by mass.
≪Preparation of black resist composition≫
150 parts by mass of a black pigment dispersion (V-4), 19 parts by mass of a polymerization solution (solid content concentration: 33% by mass) containing an alkali-soluble resin (P-3), and dipentaerythritol hexaacrylate as a polymerizable oligomer. 0 part by mass, 2.6 parts by mass of 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one as a photopolymerization initiator, 2,2′-bis (2-chlorophenyl)- 2,5,4 ′, 5′-tetraphenyl-1,2′-biimidazole (2.0 parts by mass), 4,4′-bis (diethylamino) benzophenone (0.7 part by mass) and 2-mercaptobenzothiazole as an additive 1.0 part by mass, 0.7 part by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant, and 0.02 part by mass of MegaFac F475 (manufactured by DIC) as a surfactant Part, propylene glycol monomethyl ether acetate 10.0 parts by weight as a solvent, and cyclohexanone 17.0 parts by weight, and a black resist composition having a carbon black concentration of 60% by weight with respect to the total amount of components excluding the solvent ( B-13) was obtained.
<比較用白色レジスト組成物(B-14)の調製>
≪白色顔料分散液(V-5)の調製≫
 酸化チタン(CR-50、平均粒子径250nm、石原産業社製)40.0質量部と、DISPERBYK-2096(ビックケミ-社製)5.0質量部と、溶剤として55-メトキシブチルアセテートとを固形分濃度が45質量%となるよう用いて、ビーズミルにより混合して、白色顔料分散液(V-5)を調製した。
≪白色レジスト組成物の調製≫
白色顔料分散液(V-5)150質量部と、アルカリ可溶性樹脂(P-3)を含む重合溶液(固形分濃度33質量% )19質量部と、重合性オリゴマーとしてジペンタエリスリトールヘキサアクリレート10.0質量部と、光重合開始剤として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン2.6質量部、2,2’ -ビス(2-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾール2.0質量部、4,4’-ビス(ジエチルアミノ)ベンゾフェノン0.7質量部と添加剤として2-メルカプトベンゾチアゾール1.0質量部、密着助剤として3-グリシドキシプロピルトリメトキシシラン0.7質量部と、界面活性剤としてメガファックF475(DIC社製)0.02質量部と、溶剤としてプロピレングリコールモノメチルエーテルアセテート10.0質量部と、シクロヘキサノン17.0質量部とを混合して、溶剤を除く成分全量に対し酸化チタン濃度が74質量%である白色レジスト組成物(B-14)を得た。
<Preparation of comparative white resist composition (B-14)>
≪Preparation of white pigment dispersion (V-5) ≫
40.0 parts by mass of titanium oxide (CR-50, average particle size 250 nm, manufactured by Ishihara Sangyo Co., Ltd.), 5.0 parts by mass of DISPERBYK-2096 (manufactured by BYK Chemie), and 55-methoxybutyl acetate as a solvent are solid. A white pigment dispersion (V-5) was prepared by mixing with a bead mill using a partial concentration of 45% by mass.
≪Preparation of white resist composition≫
150 parts by weight of a white pigment dispersion (V-5), 19 parts by weight of a polymerization solution (solid content concentration 33% by weight) containing an alkali-soluble resin (P-3), and dipentaerythritol hexaacrylate as a polymerizable oligomer. 0 part by mass, 2.6 parts by mass of 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one as a photopolymerization initiator, 2,2′-bis (2-chlorophenyl)- 2,5,4 ′, 5′-tetraphenyl-1,2′-biimidazole (2.0 parts by mass), 4,4′-bis (diethylamino) benzophenone (0.7 part by mass) and 2-mercaptobenzothiazole as an additive 1.0 part by mass, 0.7 part by mass of 3-glycidoxypropyltrimethoxysilane as an adhesion assistant, and 0.02 part by mass of MegaFac F475 (manufactured by DIC) as a surfactant Part, propylene glycol monomethyl ether acetate 10.0 parts by weight, and cyclohexanone 17.0 parts by weight, a white resist composition having a titanium oxide concentration of 74% by weight with respect to the total amount of components excluding the solvent ( B-14) was obtained.
<テンプレートを用いたパターニング性評価>
 上記で作製したテンプレートに対し、パターニング性を評価した。
[実施例1]
 感放射線性樹脂組成物(X-1)を用いて得られた、0.5μmの膜厚、50μm幅のライン状撥液性テンプレート(T-1)上に、インク組成物(B-1)をシリンジ塗布したところインク組成物は撥液パターン上には残らず、50μmの現像パターン上に選択的に塗布された。その後、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。
<Patternability evaluation using template>
The patterning property was evaluated with respect to the template produced above.
[Example 1]
An ink composition (B-1) was formed on a linear liquid-repellent template (T-1) having a thickness of 0.5 μm and a width of 50 μm obtained using the radiation-sensitive resin composition (X-1). As a result, the ink composition was not applied on the liquid repellent pattern but was selectively applied onto a 50 μm development pattern. Then, the exposure amount was set to 1000 mJ / cm 2 using a high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、プロピレングリコールモノメチルエーテルアセテートに1分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-1)が残った((図15)。得られたパターン幅は50μmであり、テンプレート幅に合わせたパターンが良好に形成された。 Thereafter, by immersing in propylene glycol monomethyl ether acetate for 1 minute, the liquid repellent template portion was removed, and the cured ink composition (B-1) remained ((FIG. 15). The obtained pattern width was 50 μm. A pattern matching the template width was formed satisfactorily.
[実施例2]
 感放射線性樹脂組成物(X-1)を用いて得られた、10μmの膜厚、10μm幅のライン状撥液性テンプレート(T-2)上に、インク組成物(B-1)をダイマティックス・マテリアルプリンター DMP-2831(富士フイルムグローバルグラフィックシステムズ社)を用いてインクジェット塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 2]
The ink composition (B-1) is formed on the 10 μm-thick line-like liquid-repellent template (T-2) obtained by using the radiation-sensitive resin composition (X-1). When ink-jet coating was performed using a Mattix Material Printer DMP-2831 (Fujifilm Global Graphic Systems), the ink composition did not remain on the liquid repellent pattern and was selectively coated on a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-1)が残った。得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。 Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-1) remained. The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
 なお、テンプレートを使用せず、インク組成物(B-1)を塗布し、フォトマスクを介して、露光量を1000mJ/cmで露光し、現像しても、パターンは形成されず、パターンが解像されなかった。発明のテンプレートを用いてパターン形成した場合、適切な露光量でパターンを解像できると考えられる。 Even if the ink composition (B-1) was applied without using a template, and the exposure amount was 1000 mJ / cm 2 through a photomask and developed, no pattern was formed. It was not resolved. When a pattern is formed using the template of the invention, it is considered that the pattern can be resolved with an appropriate exposure amount.
[実施例3]
 感放射線性樹脂組成物(X-2)を用いて得られた、10μmの膜厚、10μm×10μmの四角状撥液性テンプレート(T-3)(図16)上に、インク組成物(B-1)をダイマティックス・マテリアルプリンター DMP-2831(富士フイルムグローバルグラフィックシステムズ社)を用いてインクジェット塗布したところインク組成物は撥液パターン上には残らず、10μm×10μmの現像パターン上に選択的に塗布された。
[Example 3]
On the 10 μm thick, 10 μm × 10 μm square liquid-repellent template (T-3) (FIG. 16) obtained using the radiation sensitive resin composition (X-2), the ink composition (B -1) was applied by inkjet using DMP-2831 (Fujifilm Global Graphic Systems Co., Ltd.), and the ink composition did not remain on the liquid repellent pattern and was selected on a 10 μm × 10 μm development pattern. Applied.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-1)(図17)が残った。
 得られたパターンは10μm×10μmであり、テンプレートに合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-1) (FIG. 17) remained.
The obtained pattern was 10 μm × 10 μm, and the pattern matched to the template was formed favorably.
[実施例4]
 感放射線性樹脂組成物(X-2)を用いて得られた、2.0μmの膜厚、50μm幅のライン状撥液性テンプレート(T-4)上に、インク組成物(B-2)をディップ塗布したところインク組成物は撥液パターン上には残らず、50μmの現像パターン上に選択的に塗布された。
[Example 4]
On the line-shaped liquid repellent template (T-4) having a thickness of 2.0 μm and a width of 50 μm obtained by using the radiation sensitive resin composition (X-2), the ink composition (B-2) As a result of dip coating, the ink composition did not remain on the liquid repellent pattern but was selectively coated on a 50 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-2)が残った。
 得られたパターン幅は50μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-2) remained.
The obtained pattern width was 50 μm, and a pattern matched to the template width was formed favorably.
[実施例5]
 感放射線性樹脂組成物(X-1)を用いて得られた、撥液性テンプレート(T-2)上に、インク組成物(B-3)をダイマティックス・マテリアルプリンター DMP-2831(富士フイルムグローバルグラフィックシステムズ社)を用いインクジェット塗布したところインク組成物は撥液パターン上には残らず、10μm幅の現像パターン上に選択的に塗布された。
[Example 5]
On the liquid repellent template (T-2) obtained by using the radiation sensitive resin composition (X-1), the ink composition (B-3) was added to the Dimamics Material Printer DMP-2831 (Fuji When ink jet coating was performed using Film Global Graphic Systems), the ink composition did not remain on the liquid repellent pattern, but was selectively coated on a 10 μm wide development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、インク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure amount was 1000 mJ / cm 2 using the high-pressure mercury lamp, and the entire substrate was irradiated with radiation to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-3)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-3) remained.
The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
[実施例6]
 感放射線性樹脂組成物(X-2)を用いて得られた、10μmの膜厚、10μm幅のライン状撥液性テンプレート(T-5)(図18)上に、インク組成物(B-4)をマイクロキャピラリ-を用い塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 6]
On the line-shaped liquid repellent template (T-5) (FIG. 18) having a thickness of 10 μm and a width of 10 μm obtained using the radiation-sensitive resin composition (X-2), the ink composition (B- When 4) was applied using a microcapillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied on a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-4)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された(図19)。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-4) remained.
The obtained pattern width was 10 μm, and a pattern corresponding to the template width was well formed (FIG. 19).
[実施例7]
 感放射線性樹脂組成物(X-2)を用いて得られた、5μmの膜厚、10μm幅のライン状撥液性テンプレート(T-6)上に、インク組成物(B-5)をマイクロキャピラリ-を用い塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 7]
On the 5 μm-thickness, 10 μm-wide line-shaped liquid-repellent template (T-6) obtained using the radiation-sensitive resin composition (X-2), the ink composition (B-5) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-5)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-5) remained.
The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
[実施例8]
 感放射線性樹脂組成物(X-2)を用いて得られた、5μmの膜厚、10μm幅のライン状撥液性テンプレート(T-6)上に、インク組成物(B-6)をマイクロキャピラリ-を用い塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 8]
The ink composition (B-6) is micro-coated on the 5 μm-thickness, 10 μm-width linear liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2). When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-6)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-6) remained.
The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
[実施例9]
 感放射線性樹脂組成物(X-2)を用いて得られた、5μmの膜厚、10μm幅のライン状撥液性テンプレート(T-6)上に、インク組成物(B-7)をマイクロキャピラリ-を用い塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 9]
The ink composition (B-7) was micro-coated on the 5 μm-thickness, 10 μm-width linear liquid-repellent template (T-6) obtained using the radiation-sensitive resin composition (X-2). When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-7)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-7) remained.
The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
[実施例10]
 感放射線性樹脂組成物(X-2)を用いて得られた、5μmの膜厚、10μm幅のライン状撥液性テンプレート(T-6)上に、インク組成物(B-8)をマイクロキャピラリ-を用い塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 10]
On the 5 μm-thickness, 10 μm-wide linear liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2), the ink composition (B-8) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-8)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-8) remained.
The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
[実施例11]
 感放射線性樹脂組成物(X-2)を用いて得られた、2.0μmの膜厚、50μm幅のライン状撥液性テンプレート(T-3)上に、インク組成物(B-9)をマイクロキャピラリ-を用い塗布したところ、インク組成物は撥液パターン上には残らず、50μmの現像パターン上に選択的に塗布された。
[Example 11]
On the line-shaped liquid repellent template (T-3) having a thickness of 2.0 μm and a width of 50 μm obtained by using the radiation sensitive resin composition (X-2), the ink composition (B-9) Was applied using a microcapillary, and the ink composition did not remain on the liquid repellent pattern but was selectively applied onto a 50 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-9)が残った。
 得られたパターン幅は50μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-9) remained.
The obtained pattern width was 50 μm, and a pattern matched to the template width was formed favorably.
 得られたパターンについて、さらに、絶対PL量子収率測定装置(C11347-01、浜松ホトニクス社)を用いて、25℃における蛍光量子収率を調べた。蛍光量子収率は38%であり、蛍光特性は良好と判断した。  The obtained pattern was further examined for fluorescence quantum yield at 25 ° C. using an absolute PL quantum yield measuring apparatus (C11347-01, Hamamatsu Photonics). The fluorescence quantum yield was 38%, and the fluorescence characteristics were judged to be good. *
[実施例12]
 感放射線性樹脂組成物(X-2)を用いて得られた、5μmの膜厚、10μm幅のライン状撥液性テンプレート(T-6)上に、インク組成物(B-10)をマイクロキャピラリ-を用い塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 12]
On the 5 μm-thickness, 10 μm-wide line-shaped liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2), the ink composition (B-10) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-10)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-10) remained.
The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
[実施例13]
 感放射線性樹脂組成物(X-2)を用いて得られた、5μmの膜厚、10μm幅のライン状撥液性テンプレート(T-6)上に、インク組成物(B-11)をマイクロキャピラリ-を用い塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 13]
On the 5 μm-thickness, 10 μm-wide line-shaped liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2), the ink composition (B-11) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-11)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-11) remained.
The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
[実施例14]
 感放射線性樹脂組成物(X-2)を用いて得られた、5μmの膜厚、10μm幅のライン状撥液性テンプレート(T-6)上に、インク組成物(B-12)をマイクロキャピラリ-を用い塗布したところインク組成物は撥液パターン上には残らず、10μmの現像パターン上に選択的に塗布された。
[Example 14]
On the 5 μm-thickness, 10 μm-wide line-shaped liquid-repellent template (T-6) obtained by using the radiation-sensitive resin composition (X-2), the ink composition (B-12) was micronized. When applied using a capillary, the ink composition did not remain on the liquid repellent pattern, but was selectively applied onto a 10 μm development pattern.
 その後高圧水銀ランプを用い、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を硬化させた。 Thereafter, the high-pressure mercury lamp was used, the exposure dose was 1000 mJ / cm 2 using the high-pressure mercury lamp, the whole substrate was irradiated with radiation, and then heated at 70 ° C. for 15 minutes to cure the ink composition.
 その後、2.38%テトラメチルアンモニウムヒドロキシド水溶液に2分間浸漬することにより、撥液性テンプレート部が除去され、硬化したインク組成物(B-12)が残った。
 得られたパターン幅は10μmであり、テンプレート幅に合わせたパターンが良好に形成された。
Thereafter, the substrate was immersed in an aqueous 2.38% tetramethylammonium hydroxide solution for 2 minutes to remove the liquid repellent template portion, and the cured ink composition (B-12) remained.
The obtained pattern width was 10 μm, and a pattern matched to the template width was formed favorably.
(比較例1)
 感放射線性樹脂組成物(X-3)を用いて得られた、撥液性テンプレートパターン(T-7)上に、インク組成物(B-1)をシリンジ塗布したところインク組成物は50μmの現像パターン上に選択的に塗布されることなく濡れ広がってしまい、パターニングすることが出来なかった。
(Comparative Example 1)
When the ink composition (B-1) was applied onto the liquid repellent template pattern (T-7) obtained by using the radiation sensitive resin composition (X-3), the ink composition was 50 μm. The film was wet and spread without being selectively applied onto the development pattern, and could not be patterned.
(比較例2)
 感放射線性樹脂組成物(X-3)を用いて得られた、撥液性テンプレートパターン(T-7)上に、インク組成物(B-2)をディップ塗布したところインク組成物は50μmの現像パターン上に選択的に塗布されることなく全面に塗布されてしまい、パターニングすることが出来なかった。
(Comparative Example 2)
When the ink composition (B-2) was dip coated on the liquid repellent template pattern (T-7) obtained using the radiation sensitive resin composition (X-3), the ink composition was 50 μm. It was applied to the entire surface without being selectively applied onto the development pattern, and could not be patterned.
(比較例3)
 感放射線性樹脂組成物(X-3)を用いて得られた、撥液性テンプレートパターン(T-7)上に、インク組成物(B-3)をダイマティックス・マテリアルプリンター DMP-2831(富士フイルムグローバルグラフィックシステムズ社)を用いインクジェット塗布したところインク組成物は50μmの現像(T-7)パターン上に選択的に塗布されることなく濡れ広がってしまい、パターニングすることが出来なかった。
(Comparative Example 3)
On the liquid-repellent template pattern (T-7) obtained by using the radiation-sensitive resin composition (X-3), the ink composition (B-3) was added to the Dimatics Material Printer DMP-2831 ( When ink-jet coating was performed using FUJIFILM Global Graphic Systems, Inc., the ink composition was wet spread without being selectively applied onto a 50 μm development (T-7) pattern, and patterning could not be performed.
(比較例4)
 黒色レジスト組成物(B-13)を、シリコンウエハ基板に、スピンコーターを用いて塗布した後、90℃のホットプレート上で150秒間プレベークを行って、膜厚1.7μmの被膜を形成した。次いで、基板を室温に冷却し、露光装置( 商品名「マスクアライナーMA200e」、SUSS社製)を用いて、幅50μmサイズを有するフォトマスクを介して、被膜に365nm、405nm及び436nmの各波長を含む紫外線を露光した。
(Comparative Example 4)
The black resist composition (B-13) was applied to a silicon wafer substrate using a spin coater, and then pre-baked on a 90 ° C. hot plate for 150 seconds to form a film having a thickness of 1.7 μm. Next, the substrate is cooled to room temperature, and each wavelength of 365 nm, 405 nm, and 436 nm is applied to the coating film through a photomask having a width of 50 μm using an exposure apparatus (trade name “Mask Aligner MA200e”, manufactured by SUSS). Exposed ultraviolet light was exposed.
 このときの露光量は500mJ/cm2であった。その後、23℃のポリオキシエチレン系界面活性剤含有0.05質量% テトラメチルアンモニウムヒドロキシド水溶液を用いて、基板を1 分間シャワー現像した。 The exposure amount at this time was 500 mJ / cm 2. Thereafter, the substrate was shower-developed for 1 minute using a 0.05% by weight tetramethylammonium hydroxide aqueous solution containing a polyoxyethylene surfactant at 23 ° C.
 そして、超純水を用いて洗浄して風乾した。次いで、1 8 0 ℃ のホットプレート上で5分間ポストベークを行って、基板上にパターン化皮膜を形成した。得られたパターン化皮膜を電子顕微鏡にて観察し、パターンが良好に形成されているか確認した。その結果、黒色パターンは確認されず現像時に消失していることがわかった。これは黒色顔料濃度が高過ぎ、光硬化が十分に進行しなかったためである。 Then, it was washed with ultrapure water and air-dried. Subsequently, it was post-baked for 5 minutes on a hot plate of 1-8 ° C. and 0 ° C. to form a patterned film on the substrate. The obtained patterned film was observed with an electron microscope to confirm whether the pattern was formed satisfactorily. As a result, it was found that the black pattern was not confirmed and disappeared during development. This is because the black pigment concentration was too high and photocuring did not proceed sufficiently.
(比較例5)
 白色レジスト組成物(B-14)を、シリコンウエハ基板に、スピンコーターを用いて塗布した後、90℃のホットプレート上で150秒間プレベークを行って、膜厚1.7μmの被膜を形成した。次いで、基板を室温に冷却し、露光装置( 商品名「マスクアライナーMA200e」、SUSS社製)を用いて、幅50μmサイズを有するフォトマスクを介して、被膜に365nm、405nm及び436nmの各波長を含む紫外線を露光した。このときの露光量は500mJ/cm2であった。
(Comparative Example 5)
The white resist composition (B-14) was applied to a silicon wafer substrate using a spin coater, and then pre-baked on a 90 ° C. hot plate for 150 seconds to form a film having a thickness of 1.7 μm. Next, the substrate is cooled to room temperature, and each wavelength of 365 nm, 405 nm, and 436 nm is applied to the coating film through a photomask having a width of 50 μm using an exposure apparatus (trade name “Mask Aligner MA200e”, manufactured by SUSS). Exposed ultraviolet light was exposed. The exposure amount at this time was 500 mJ / cm 2.
 その後、23℃のポリオキシエチレン系界面活性剤含有0.05質量% テトラメチルアンモニウムヒドロキシド水溶液を用いて、基板を1 分間シャワー現像した。そして、超純水を用いて洗浄して風乾した。次いで、1 8 0 ℃ のホットプレート上で5分間ポストベークを行って、基板上にパターン化皮膜を形成した。得られたパターン化皮膜を電子顕微鏡にて観察し、パターンが良好に形成されているか確認した。
 その結果、白色パターンは確認されず現像時に消失していることがわかった。これは白色顔料濃度が高過ぎ、光硬化が十分に進行しなかったためである。
Thereafter, the substrate was shower-developed for 1 minute using a 0.05% by mass tetramethylammonium hydroxide aqueous solution containing a polyoxyethylene surfactant at 23 ° C. And it wash | cleaned and air-dried using the ultrapure water. Next, post baking was performed on a hot plate at 180 ° C. for 5 minutes to form a patterned film on the substrate. The obtained patterned film was observed with an electron microscope to confirm whether the pattern was formed satisfactorily.
As a result, it was found that the white pattern was not confirmed and disappeared during development. This is because the white pigment concentration was too high and photocuring did not proceed sufficiently.
<黒色の硬化性インク組成物(B-3~B-7)のOD値測定>
 9.5cm角の無アルカリガラス基板(EAGLE-XG、0.7mm厚,コーニング社製))上に、黒色インク組成物(B-3)~(B-7)を全面塗布し、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を1μm膜厚になるように硬化させた。その後、X-Rite361T(サカタインクスエンジニアリング社製)を用いて、23℃55%RHの雰囲気下、黒色硬化膜の光学濃度OD値を測定した。
<Measurement of OD value of black curable ink composition (B-3 to B-7)>
A black ink composition (B-3) to (B-7) is coated on a 9.5 cm square non-alkali glass substrate (EAGLE-XG, 0.7 mm thickness, manufactured by Corning)), and a high-pressure mercury lamp The exposure amount was set to 1000 mJ / cm 2 using, and the entire substrate was irradiated with radiation, followed by heating at 70 ° C. for 15 minutes to cure the ink composition to a thickness of 1 μm. Thereafter, the optical density OD value of the black cured film was measured under an atmosphere of 23 ° C. and 55% RH using X-Rite 361T (manufactured by Sakata Inx Engineering).
Figure JPOXMLDOC01-appb-T000009
 カーボンブラック濃度の高いB-5~B-8においてOD/μm>3の高い遮光性が確認された。
Figure JPOXMLDOC01-appb-T000009
A high light shielding property of OD / μm> 3 was confirmed in B-5 to B-8 having a high carbon black concentration.
<黒色の硬化性インク組成物(B-5.7,8)の撥液性測定>
 9.5cm角の無アルカリガラス基板(EAGLE-XG、0.7mm厚,コーニング社製))上に、黒色インク組成物(B-5)、(B-7)、(B-8)を全面塗布し、高圧水銀ランプを用いて露光量を1000mJ/cmとして、基板全体に放射線照射を行い、続いて70℃で15分間加熱することによりインク組成物を1μm膜厚になるように硬化させた。
 その後、DM-501(協和界面科学社製)を用いて、23℃55%RHの雰囲気下、黒色硬化膜の水及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)に対する静的接触角を測定した。
<Measurement of liquid repellency of black curable ink composition (B-5.7, 8)>
A black ink composition (B-5), (B-7), (B-8) is entirely coated on a 9.5 cm square alkali-free glass substrate (EAGLE-XG, 0.7 mm thickness, manufactured by Corning). Apply, set the exposure to 1000 mJ / cm 2 using a high-pressure mercury lamp, irradiate the entire substrate with radiation, and then heat at 70 ° C. for 15 minutes to cure the ink composition to a thickness of 1 μm. It was.
Then, using DM-501 (manufactured by Kyowa Interface Science Co., Ltd.), the static contact angle of black cured film with water and propylene glycol monomethyl ether acetate (PGMEA) was measured in an atmosphere of 23 ° C. and 55% RH.
Figure JPOXMLDOC01-appb-T000010
 本発明の硬化膜表面の接触角が確認された。
Figure JPOXMLDOC01-appb-T000010
The contact angle on the surface of the cured film of the present invention was confirmed.
10 基板
11 テンプレート用塗膜
12 親液性表面を含む層
13 撥液性表面を含む層
14 硬化性樹脂組成物
15 硬化膜
hν 放射線
DESCRIPTION OF SYMBOLS 10 Substrate 11 Coating film for template 12 Layer containing lyophilic surface 13 Layer containing liquid repellent surface 14 Curable resin composition 15 Cured film hν Radiation

Claims (16)

  1.  基板上に、撥液性表面を含む層と親液性表面を含む層を形成する工程、
    前記親液性表面を含む層に、硬化性組成物を塗布し塗膜を形成する工程、
    前記塗膜を硬化させる工程及び、
    前記撥液性表面を含む層を現像液で現像して除去する工程、
    とを備え、前記撥液性表面を含む層と親液性表面を含む層のテトラデカンに対する接触角差が、30°以上である、硬化膜の形成方法。
    Forming a layer including a liquid repellent surface and a layer including a lyophilic surface on a substrate;
    Applying a curable composition to the layer including the lyophilic surface to form a coating film;
    Curing the coating film; and
    Developing and removing the layer containing the liquid repellent surface with a developer;
    The contact angle difference with respect to tetradecane of the layer containing the liquid repellent surface and the layer containing the lyophilic surface is 30 ° or more.
  2.  前記撥液性表面を含む層と親液性表面を含む層を形成する工程が、
    酸解離性基を有する重合体及び感放射線性酸発生体を含む感放射線性樹脂組成物により、撥液性の表面を有する塗膜を形成する工程、及び
    前記塗膜の一部の表面領域への放射線の照射により、前記親液性表面を含む層を形成する工程を備える請求項1に記載の硬化膜の形成方法。
    Forming the layer including the liquid repellent surface and the layer including a lyophilic surface,
    A step of forming a coating film having a liquid-repellent surface with a radiation-sensitive resin composition containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator, and a partial surface region of the coating film The formation method of the cured film of Claim 1 provided with the process of forming the layer containing the said lyophilic surface by irradiation of this radiation.
  3.  前記酸解離性基が、フッ素原子を含有する請求項2に記載の硬化膜の形成方法。 The method for forming a cured film according to claim 2, wherein the acid dissociable group contains a fluorine atom.
  4.  前記硬化性組成物が重合性化合物および重合開始剤を含む請求項1から請求項3のいずれか1項に記載の硬化膜の形成方法。 The method for forming a cured film according to any one of claims 1 to 3, wherein the curable composition contains a polymerizable compound and a polymerization initiator.
  5.  前記硬化性組成物が、蛍光粒子、着色剤、金属酸化物およびカーボン材料から選ばれる少なくとも一種の添加剤をさらに含む請求項4に記載の硬化膜の形成方法。 The method for forming a cured film according to claim 4, wherein the curable composition further contains at least one additive selected from fluorescent particles, a colorant, a metal oxide, and a carbon material.
  6.  前記添加剤が、酸化チタン、酸化バリウム、セシウムタングステン酸化物、チタン酸バリウム、チタン酸ストロンチウム、カーボンナノチューブ、フラーレン、グラファイトおよびカーボンブラックから選ばれる少なくとも一種を含む請求項4または5に記載の硬化膜の形成方法。 The cured film according to claim 4 or 5, wherein the additive contains at least one selected from titanium oxide, barium oxide, cesium tungsten oxide, barium titanate, strontium titanate, carbon nanotube, fullerene, graphite, and carbon black. Forming method.
  7.  前記硬化性組成物の添加剤の使用量が、硬化性組成物中、溶剤を除く成分全量を100質量%としたときに、40質量%以上95質量%以下である請求項5及び請求項6のいずれか1項に記載の硬化膜の形成方法。 The amount of the additive of the curable composition used is 40% by mass or more and 95% by mass or less when the total amount of the components excluding the solvent in the curable composition is 100% by mass. The method for forming a cured film according to any one of the above.
  8.  前記硬化性組成物の添加剤の使用量が、硬化性組成物中、溶剤を除く成分全量を100質量%としたときに、60質量%以上95質量%以下である請求項5から請求項7のいずれか1項に記載の硬化膜の形成方法。 The usage-amount of the additive of the said curable composition is 60 mass% or more and 95 mass% or less, when the component whole quantity except a solvent is 100 mass% in a curable composition. The method for forming a cured film according to any one of the above.
  9.  前記硬化性組成物が撥インク剤を含む請求項1から請求項8のいずれか1項に記載の硬化膜の形成方法。 The method for forming a cured film according to any one of claims 1 to 8, wherein the curable composition contains an ink repellent agent.
  10.  前記撥インク剤は、フッ素原子およびケイ素原子の少なくとも1つを含む請求項9に記載の硬化膜の形成方法。 The method for forming a cured film according to claim 9, wherein the ink repellent agent includes at least one of a fluorine atom and a silicon atom.
  11.  前記硬化性組成物が、さらに分散剤を含む請求項1から請求項10のいずれか1項に記載の硬化膜の形成方法。 The method for forming a cured film according to any one of claims 1 to 10, wherein the curable composition further contains a dispersant.
  12.  請求項1から請求項11のいずれか1項に記載の硬化膜の形成方法において、硬化性組成物の塗布をインクジェット法またはディップ法により行い塗膜を形成する硬化膜の形成方法。 The method for forming a cured film according to any one of claims 1 to 11, wherein the curable composition is applied by an ink jet method or a dip method to form a coating film.
  13.  請求項1から請求項12のいずれか1項に記載の硬化膜の形成方法により形成される硬化膜の形状が、逆テーパ形状である硬化膜の形成方法。 A method for forming a cured film, wherein the shape of the cured film formed by the method for forming a cured film according to any one of claims 1 to 12 is an inversely tapered shape.
  14.  請求項1から請求項13のいずれか1項に記載の硬化膜の形成方法において、撥液性表面を含む層と親液性表面を含む層を形成するために用いられる感放射線性樹脂組成物。 The radiation-sensitive resin composition used for forming the layer containing a liquid repellent surface and the layer containing a lyophilic surface in the formation method of the cured film of any one of Claims 1-13. .
  15.  請求項1から13のいずれか1項に記載の表示素子用の硬化膜の形成方法。 The method for forming a cured film for a display element according to any one of claims 1 to 13.
  16.  請求項1から13のいずれか1項に記載のセンサー用の硬化膜の形成方法。 A method for forming a cured film for a sensor according to any one of claims 1 to 13.
PCT/JP2017/037808 2016-10-21 2017-10-19 Method for forming cured film, radiation-sensitive resin composition, and display element and sensor provided with cured film WO2018074539A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780063875.8A CN109843452A (en) 2016-10-21 2017-10-19 The forming method of cured film, radiation resin combination, the display element and sensor for having cured film
KR1020197004666A KR20190071672A (en) 2016-10-21 2017-10-19 Method for forming a cured film, a radiation sensitive resin composition, a display element and a sensor provided with a cured film
JP2018546395A JP7099323B2 (en) 2016-10-21 2017-10-19 A method for forming a cured film, a radiation-sensitive resin composition, a display element and a sensor provided with the cured film.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016207405 2016-10-21
JP2016-207405 2016-10-21

Publications (1)

Publication Number Publication Date
WO2018074539A1 true WO2018074539A1 (en) 2018-04-26

Family

ID=62018495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037808 WO2018074539A1 (en) 2016-10-21 2017-10-19 Method for forming cured film, radiation-sensitive resin composition, and display element and sensor provided with cured film

Country Status (5)

Country Link
JP (1) JP7099323B2 (en)
KR (1) KR20190071672A (en)
CN (1) CN109843452A (en)
TW (1) TW201829493A (en)
WO (1) WO2018074539A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193941A1 (en) * 2018-04-02 2019-10-10 Jsr株式会社 Method of forming cured film and curable composition
CN110850680A (en) * 2018-08-21 2020-02-28 Jsr株式会社 Curable composition, display element, and method for forming cured film
TWI696045B (en) * 2018-05-21 2020-06-11 日商信越化學工業股份有限公司 Patterning process
JP6947269B1 (en) * 2020-09-18 2021-10-13 荒川化学工業株式会社 Coating agents for cyclic olefin resins, coating agent kits, cured products, and laminates
KR20230046242A (en) 2021-09-29 2023-04-05 후지필름 가부시키가이샤 Composition, light shielding film, solid-state imaging element, image display device, and method for manufacturing cured film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459691B (en) * 2019-08-30 2022-04-08 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349981A (en) * 2005-06-16 2006-12-28 Jsr Corp Radiation-sensitive composition for forming color layer, and color filter
JP2008256972A (en) * 2007-04-05 2008-10-23 Toppan Printing Co Ltd Optical element manufacturing method, color filter manufacturing method, and organic electroluminescence element manufacturing method
WO2014178279A1 (en) * 2013-05-01 2014-11-06 Jsr株式会社 Method for manufacturing base material having recessed pattern, composition, method for forming electrically conductive film, electronic circuit and electronic device
JP2016087602A (en) * 2014-10-31 2016-05-23 Jsr株式会社 Method of manufacturing base material having lyophilic part and liquid repellent part, composition, method of forming conductive film, electronic circuit, and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0147976B1 (en) * 1995-06-30 1998-10-15 배순훈 A method for planarization patterning onto the thin film head
JP2007178532A (en) * 2005-12-27 2007-07-12 Seiko Epson Corp Method for manufacturing color filter substrate and method for manufacturing liquid crystal display device
JP6197418B2 (en) 2013-07-05 2017-09-20 株式会社リコー Method for forming multilayer wiring, multilayer wiring, and electronic device
TWI651593B (en) * 2014-03-14 2019-02-21 日商Jsr股份有限公司 Manufacturing method of wiring, radiation sensitive composition, electronic circuit, and electronic device
CN105573053B (en) * 2014-10-31 2020-12-29 Jsr株式会社 Method for producing substrate having lyophilic and lyophobic parts, use thereof and composition
JP6776565B2 (en) * 2016-03-15 2020-10-28 Jsr株式会社 Pattern formation method using repellent material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349981A (en) * 2005-06-16 2006-12-28 Jsr Corp Radiation-sensitive composition for forming color layer, and color filter
JP2008256972A (en) * 2007-04-05 2008-10-23 Toppan Printing Co Ltd Optical element manufacturing method, color filter manufacturing method, and organic electroluminescence element manufacturing method
WO2014178279A1 (en) * 2013-05-01 2014-11-06 Jsr株式会社 Method for manufacturing base material having recessed pattern, composition, method for forming electrically conductive film, electronic circuit and electronic device
JP2016087602A (en) * 2014-10-31 2016-05-23 Jsr株式会社 Method of manufacturing base material having lyophilic part and liquid repellent part, composition, method of forming conductive film, electronic circuit, and electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193941A1 (en) * 2018-04-02 2019-10-10 Jsr株式会社 Method of forming cured film and curable composition
JP2019182899A (en) * 2018-04-02 2019-10-24 Jsr株式会社 Curable composition, and cured film forming method
TWI696045B (en) * 2018-05-21 2020-06-11 日商信越化學工業股份有限公司 Patterning process
CN110850680A (en) * 2018-08-21 2020-02-28 Jsr株式会社 Curable composition, display element, and method for forming cured film
CN110850680B (en) * 2018-08-21 2024-10-25 Jsr株式会社 Curable composition, display element, and method for forming cured film
JP6947269B1 (en) * 2020-09-18 2021-10-13 荒川化学工業株式会社 Coating agents for cyclic olefin resins, coating agent kits, cured products, and laminates
JP2022051220A (en) * 2020-09-18 2022-03-31 荒川化学工業株式会社 Coating agent for cyclic olefin resin, coating agent kit, cured product, and laminate
KR20230046242A (en) 2021-09-29 2023-04-05 후지필름 가부시키가이샤 Composition, light shielding film, solid-state imaging element, image display device, and method for manufacturing cured film

Also Published As

Publication number Publication date
JPWO2018074539A1 (en) 2019-08-29
KR20190071672A (en) 2019-06-24
CN109843452A (en) 2019-06-04
JP7099323B2 (en) 2022-07-12
TW201829493A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018074539A1 (en) Method for forming cured film, radiation-sensitive resin composition, and display element and sensor provided with cured film
JP7216642B2 (en) Quantum dot-containing curable composition, quantum dot-containing cured product, method for producing optical member, and method for producing display device
JP5847993B2 (en) Resin composition for color filter containing cardo resin
CN104823108B (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element
JP5994782B2 (en) Negative photosensitive resin composition, partition, black matrix and optical element
WO2007069703A1 (en) Fluorine-containing polymer, negative photosensitive composition and partition wall
WO2007061115A1 (en) Process for producing organic el, color filter and diaphragm
JP6136928B2 (en) Negative photosensitive resin composition, method for producing partition wall, and method for producing optical element
JP5682573B2 (en) Photosensitive composition, partition, color filter, and organic EL device
JP2010157706A (en) Curable composition for optical imprint and method of manufacturing hardened material using same
JP6036699B2 (en) Method for producing ink repellent agent, negative photosensitive resin composition, partition wall and optical element
JP7010240B2 (en) Negative photosensitive resin composition
JP6459477B2 (en) Colored composition, colored cured film, and display element
JP7026767B2 (en) Kit, underlayer film forming composition for imprint, pattern forming method, manufacturing method of semiconductor device
JP2017040869A (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element and method for manufacturing the same
WO2019193941A1 (en) Method of forming cured film and curable composition
TWI829905B (en) Photosensitve resin composition for black resist,light-shielding layer cured thereof,and color filter with them
WO2021024928A1 (en) Resin composition
JP2010186175A (en) Coloring composition for color filter, color filter, and use thereof
WO2017033835A1 (en) Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor
JP2007304544A (en) Negative resist for forming protrusion for liquid crystal alignment, protrusion for liquid crystal alignment, color filter, liquid crystal display element and manufacturing method of liquid crystal display element
JP2010186174A (en) Method for manufacturing color filter, color filter, and use thereof
WO2020012753A1 (en) Curable composition, structure and method for forming same
WO2023237612A1 (en) Composition
WO2017033834A1 (en) Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546395

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197004666

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863169

Country of ref document: EP

Kind code of ref document: A1