WO2018062835A1 - Quinone curable compositions and adhesive compositions comprising same - Google Patents
Quinone curable compositions and adhesive compositions comprising same Download PDFInfo
- Publication number
- WO2018062835A1 WO2018062835A1 PCT/KR2017/010695 KR2017010695W WO2018062835A1 WO 2018062835 A1 WO2018062835 A1 WO 2018062835A1 KR 2017010695 W KR2017010695 W KR 2017010695W WO 2018062835 A1 WO2018062835 A1 WO 2018062835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- curable composition
- oxygen
- group
- catechol
- oxygen inclusion
- Prior art date
Links
- 0 *CC(c(cc1)cc(O)c1O)O Chemical compound *CC(c(cc1)cc(O)c1O)O 0.000 description 1
- FJZQDDKVDMOSRI-UHFFFAOYSA-N C=NCCc(cc1O)ccc1O Chemical compound C=NCCc(cc1O)ccc1O FJZQDDKVDMOSRI-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N N[C@@H](Cc(cc1)cc(O)c1O)C(O)=O Chemical compound N[C@@H](Cc(cc1)cc(O)c1O)C(O)=O WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- QAIPRVGONGVQAS-DUXPYHPUSA-N OC(/C=C/c(cc1)cc(O)c1O)=O Chemical compound OC(/C=C/c(cc1)cc(O)c1O)=O QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 description 1
- YCIMNLLNPGFGHC-UHFFFAOYSA-N Oc(cccc1)c1O Chemical compound Oc(cccc1)c1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N Oc1cccc(O)c1O Chemical compound Oc1cccc(O)c1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
- C08J5/08—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J179/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
- C09J179/02—Polyamines
Definitions
- the present invention relates to a quinone curable composition capable of producing a cured film that is easily surface and internal curable and an adhesive composition comprising the same.
- Biomimetics means to develop new technologies by studying and imitating the characteristics of living organisms. Biomimetics, a study of biomimetics, has helped to create new biomaterials, design new intelligent systems, create new devices by mimicking biological structures, and design new optical systems.
- biomimetics include Gecko tapes using the gecko lizard's sole bristles, Whale Power, a wind turbine using uneven protrusions in the fins of whales, and a Shinkansen high-speed train with reduced noise, modeling the shape of a kingfisher's beak. And mussel adhesives imitated from the protein of mussel family.
- Mussel adhesives have the ability to bond to a wide variety of surfaces, including inorganic, plastic, metal, glass and biomaterials.
- surfaces including inorganic, plastic, metal, glass and biomaterials.
- mussel adhesives can be bonded in water.
- Mussel adhesives for medical use are mainly used as tissue adhesives.
- mussel adhesive proteins were extracted and measured for adhesion to pig skin.
- they showed better adhesion than fibrin glue, but the curing time and bio temperature of 6 to 24 hours 37
- a curing temperature of 45 ° C. outside of C was required and therefore unsuitable for medical use [HJ Cha et al ., Development of bioadhesives from matine mussels, Biotechnol. J. 3 , 631-638 (2008)].
- Korean Patent Laid-Open Publication No. 2015-0144846 uses a catechol-based organic compound and an amine polymer to prepare a functional film (ie, cured film) at an interface between a liquid phase and a gaseous phase, and the functional film is a biomaterial. It has been disclosed that it can be applied to various fields such as hemostatic agents, biocatalysts and membranes.
- the curing reaction occurs mainly on the surface of the functional film in the presence of oxygen, the inside of the water is present in the physical properties of the film is low (e.g., recognized strength, durability, etc.) is difficult to apply to the product substantially, the curing rate is The formation of the cured film is limited on the surface through which oxygen does not pass because it is slow and forms the functional film only at the interface with oxygen.
- Patent Document 1 Korean Patent Publication No. 2015-0144846
- Non-Patent Document 1 V. Vreeland, JH Waite, and L. Epstein, J Phycol ., 34 , 1 (1998)
- Non-Patent Document 2 CR Matos-Perez, JD White, and JJ Wilker, J. Am . Chem . Soc ., 134 , 9498 (2012)
- Non-Patent Document 3 BP Lee, JL Dalsin, and PB Messersmith, Biomacromolecules. , 3 , 1038 (2002)
- Non-Patent Document 4 E. Faure, C. Falentin-Daudre, C. Jerome, J. Lyskawa, D. Fournier, P. Woisel, and C. Detrembleur, Prog . Polym . Sci ., 38 , 236 (2013)
- Non-Patent Document 5 DG Barrett, DE Fullenkamp, L. He, N. Holten-Andersen, KYC Lee, and PB Messersmith, Adv . Funct . Mater ., 23 , 1111 (2013)
- Non-Patent Document 6 HJ Cha et al ., Development of bioadhesives from matine mussels, Biotechnol. J. 3 , 631-638 (2008)
- the present inventors conducted various studies to increase the curing rate of the compound having a catechol structure and the amine polymer and to improve the physical properties of the obtained functional film.
- the present invention was completed by confirming that internal curing may be simultaneously performed to improve the physical properties of the film and to shorten the curing time by using a material capable of supplying oxygen, that is, an oxygen inclusion structure, so that curing can be achieved.
- an object of the present invention is to provide a curable composition capable of curing the air / solution interface and solution inside, and to prepare a cured film having a fast curing rate.
- Another object of the present invention is to provide a use of the curable composition.
- the present invention (a) catechol-based organic compound capable of denaturation to quinone by oxidation; (b) amine polymer compounds; And (c) provides a curable composition comprising an oxygen inclusion structure.
- the oxygen inclusion structure is characterized in that it comprises an aerogel, web, sheet, foam, sphere, tube, porous structure or lattice structure containing 1 to 99% oxygen.
- the present invention also provides the use of the curable composition as an adhesive and a coating agent.
- Curable composition according to the present invention is hardened at a faster rate than the existing composition does not contain an oxygen trapping structure, the curing occurs by the oxygen released from the oxygen trapping structure even inside the solution, it serves to cure evenly as a whole Compared to the composition, it has excellent physical properties when used as an adhesive and a coating. The characteristics include adhesion, cohesion, strength, and the like.
- the curable compositions are applicable and applicable throughout most industries where cured films are required.
- 1 is a graph showing the change in dissolved oxygen amount of water according to the amount of airgel.
- FIG. 2 is a photograph comparing the catechol-based organic compound solution (Comparative Example 1) that does not include an airgel and Examples 1, 2 and 3 including an airgel by concentration (1%, 2%, 3%) (a) Is taken within 5 minutes of mixing, and (b) is taken after 24 hours.
- Figure 3 (a) is a photograph of the adhesive cross-section of Comparative Example 1 applied to the two metal cross-section facing the solution containing no airgel, (b) of Example 1 applied to the metal cross-section facing the solution containing aerogel Adhesive cross section photo. (c) and (d) are the images which observed the cross section of (a) and (b) with the cross-sectional scanning electron microscope, respectively.
- the curable composition according to the present invention undergoes curing through the quinone curing mechanism.
- the quinone curing mechanism is converted into a quinone structure by oxidation, and the quinone is subjected to a chain-forming reaction with a polymer compound containing an amine group (NH 2 ). It means that hardening takes place.
- Such quinone curing can be easily proceeded by oxygen in the air without the consumption of energy applied externally, that is, heat or UV light irradiation, such as conventional thermal curing or photocuring.
- the curable composition according to the present invention includes a catechol-based organic compound and an amine-based polymer compound capable of oxidizing to a quinone-based compound by oxygen as a reaction material. Curing occurs by the reaction between the catechol-based organic compound and the amine-based polymer compound, but at this time, the curing is performed only at an interface capable of reacting with oxygen, and is limited within the cured film applied for curing, thereby adhering or There are many limitations in using the coating material.
- curing is performed not only at the interface but also at the inside of the cured film, and an oxygen inclusion structure is used to improve the curing reaction rate.
- the oxygen inclusion structure may contain oxygen in the structure, and means a material capable of supplying oxygen so that the oxidation reaction of the catechol-based organic compound may proceed.
- the oxygen inclusion structure that can be used is not particularly limited in the present invention, but it is preferable that the oxygen inclusion amount is high and oxygen can be easily supplied into the cured film.
- the oxygen inclusion amount of the oxygen inclusion structure is 1 to 99%, preferably 3 to 90%.
- the oxygen may be used in addition to oxygen contained in the air, high purity or high compression oxygen.
- the oxygen inclusion structure preferably has a porosity characteristic of the pores in the structure so that oxygen can be easily supplied in order to smoothly oxidize the catechol organic compound.
- a porosity 10 to 99%, preferably 15 to 96%.
- the oxygen inclusion structure of the present invention preferably does not lower the physical properties of the cured film formed after the application of the curable composition, it is more preferable to improve its physical properties.
- the oxygen inclusion structure is preferably uniformly applied in the cured film so that internal curing can occur at a high speed at the same time. If the particles are too large or heavy, curing may occur only at one side (lower side) and only at the interface at the other side (upper side and side).
- Preferable oxygen inclusion structure can be any property as long as oxygen supply is possible, and is not specifically limited in this invention. Representatively, they may be aerogels, webs, sheets, foams, spheres, tubes, porous structures or lattice structures, preferably in the form of gels, webs, microspheres.
- the term 'gel' refers to a solid substance that is filled with gas instead of liquid in the gel.
- the airgel is made up of 90 to 99.9% of air, the density is 3 to 150 mg / cm 3 , forms a porous structure having a pore of 0.1 to 100nm level in the shape of a mesh, and has hydrophilicity as it is.
- the airgel may be made of various materials, and these may include an airgel made of silica, aluminum, chromium, tin, carbon, sodium, calcium, and the like, and an airgel made of two or more materials thereof.
- the term 'web' means that the fiber aggregates or films are bonded to each other by mechanical or suitable moisture or heat by physical or chemical means.
- a web is a plane made by tangling various fibers of glass, metal, polymer, or a hybrid material thereof according to mutual characteristics to form a sheet-shaped web, and then joining them by a mechanical or physical method. Refers to structural molded products.
- the average pore of the web is 1nm to 100 ⁇ m, has a porosity of 1 to 70%, and has a thickness of 1nm to 1000 ⁇ m.
- the term 'sheet' refers to a porous sheet produced through wet coating, extrusion process, sheet molding or calendar molding.
- the sheet may be a metal, a metal oxide, a polymer, or a hybrid material thereof.
- the average pore is 1 nm to 100 ⁇ m, has a porosity of 1 to 70%, and has a thickness of 1 nm to 1000 ⁇ m.
- the term 'foam' is also called a sponge (sponge), and more than 90% of the volume to form a pore, that is, a complete open cell (pore), forming a three-dimensional network structure, each of the pores are completely continuous structure
- the sponge is manufactured by foaming, and the material may be any metal or polymer that can be foamed, and examples thereof include Ti sponge, polyethylene sponge, polyurethane sponge, rubber sponge, polyvinyl alcohol sponge, and the like. It has excellent hydrophilicity depending on the material. At this time, the density of the sponge is 1 to 300 mg / cm 3 , the pores are nano-level to micron level, having a variety of pores of various sizes.
- microsphere' refers to particles in the form of spheres, and may be nanospheres having a diameter of nanoscale, or microspheres having a diameter of a micrometer, depending on the size thereof. It may be a hollow sphere or a porous sphere with pores formed therein. In one example, the hollow nanospheres may be hollow and have a nanoscale diameter size.
- the diameter of the sphere is 1nm to 100 ⁇ m pore, has a porosity of 10 to 99%, and has a thickness of 1nm to 1000 ⁇ m
- the term 'tube' refers to a cylinder, cylindrical or spiral cylindrical structure, and oxygen can be contained in the tube and the space between the tubes.
- the tube may be a metal nanotube, a metal oxide nanotube and a carbon nanotube, the diameter may be 1 to 5000nm, has a length of 1nm to 1000 ⁇ m.
- 'porous structure' refers to a structure having about 15 to 95% of the volume of pores and having new properties or not imparted to existing dense materials.
- the term 'lattice structure' refers to a structure having a structure in which pores arranged connected to each other in a lattice form are stacked.
- the pores may be connected to each other to form open pores, the average pore is 1nm to 100 ⁇ m, has a porosity of 10 to 99%, 1nm to.
- the lattice structure may have a thickness of 1000 ⁇ m.
- a well-known method may be used as the lattice structure by laminating wires, by three-dimensional assembling, or by manufacturing and removing a structure for forming pores.
- the material of the oxygen inclusion structure is not particularly limited and may be used in the form of one or more selected from the group consisting of metals, metal oxides, glass, carbon materials and polymers, or two or more kinds thereof.
- a material that is not corrosive to water and oxygen may be preferable, but is not particularly limited.
- Do. W, Mo, V, Ti, Al, Be, Zr, Au, Pt, Cu, Cr, Zn, Mo, Ag, Rh, Pa, La, Ir, Kr, Nd, Nb, Se, Sc, Ru, At least one selected from the group consisting of In, Y, Z, and stainless steel, or a mixture of two or more thereof, and preferably Ti.
- the metal oxide at least one compound selected from the group consisting of SiO 2 , TiO 2 , ZrO 2 , CeO 2 , Al 2 O 3 , B 2 O 3 , ZnO, BaO, MgO, CaO, and BaCa (CO 3 ) 2 It may be made of, preferably SiO 2 is used.
- glass well-known glass, such as a soda lime glass, calcium lime glass, lead glass, barium glass, and a silicate glass, can be used, It does not specifically limit in this invention.
- the carbon material may be carbon fiber, carbon black, carbon nanotubes (CNT), graphite, graphene, activated carbon, and the like, and is not particularly limited in the present invention.
- CNT carbon nanotubes
- the polymer material may be both a natural polymer and a synthetic polymer
- the synthetic polymer may be both a thermoplastic resin and a thermosetting resin.
- thermoplastic resins include polyethylene, polypropylene, polycarbonate, polystyrene, polyacrylate, nylon, polyester, polyvinyl alcohol, polyamide, polyimide, polyacetal, polysulfone, polyethersulfone, polyketone, and the like.
- the thermosetting resin may be a phenol resin, melamine resin, epoxy resin, unsaturated polyester resin, or the like.
- a variety of known polymer materials may be used, and are not particularly limited in the present invention.
- the oxygen inclusion structure proposed in the present invention is activated carbon, activated carbon fiber, TiO 2 halosphere, glass web, silica aerogel, fume silica nanoparticles, SiO 2 hollow particles, TiO in consideration of both material and properties 2 hollow particles, silica nanotubes and carbon nanotubes are possible
- Such oxygen inclusion structure depends on the oxygen inclusion ratio but is used in the range of 1 to 99% by weight, preferably 2 to 99% by weight in the curable composition based on the solid content. If the content is less than the above range, the inside of the cured film may be uncured. If the content exceeds the above range, the physical properties of the cured film may be deteriorated. Therefore, it is preferable to use the cured film appropriately within the above range.
- the oxygen inclusion structure is preferably 10 to 99% by weight, more preferably 15 to 99% by weight in the curable composition based on the solid content.
- the solid content of the oxygen inclusion structure must be relatively high.
- the shape of the oxygen inclusion structure is preferably 1 to 50% by weight, more preferably 1 to 20% by weight in the curable composition based on the solid content in the case of aerogel, sphere, tube, lattice structure, and polymer fiber.
- the curable composition according to the present invention comprises a catechol-based organic compound and an amine-based high molecular compound for quinone curing.
- the catechol-based organic compound means a compound having a structure in which two hydroxy groups are linked to a benzene ring, and a compound having a characteristic capable of being oxidized to a quinone state through reaction with oxygen is applicable thereto. It can have many different functional groups.
- the catechol-based organic compounds include L-Dopa, Pyrogallol, Dopamine, Pyrocatechol, norepinephrine, and 3,4-dihydride in the following formulas: It may be at least one selected from the group consisting of oxycinnamic acid (3,4-dihydroxycinnamic acid, DHCA), preferably may be pyrogalol fast oxidation characteristics by oxygen.
- the catechol-containing compound may be the single compound, but may be any type of compound as long as they are present in the molecular structure.
- the catechol-based organic compound may have a form attached to a functional group in the main chain or the side chain of the polymer.
- the content of the catechol-based organic compound may vary depending on the properties or the purpose of the final cured film to be obtained, it is used in 3 to 90% by weight, preferably 5 to 50% by weight in the curable composition based on the solid content. If the content is less than the above range, the quinone hardening does not occur sufficiently and the properties of the cured film (strength and adhesive strength, etc.) are lowered. On the contrary, if the content is exceeded, the content of the other composition is relatively reduced, which also lowers the properties of the cured film. Since it may become, it uses suitably within the said range.
- the amine-based high molecular compound is a material containing an amine group in the molecular structure, the amine group is cured through a chemical bond with the quinone of the catechol-based organic compound oxidized as shown in Scheme 1.
- an amine polymer having an amine group in the main chain, the side chain, or the terminal is preferably used for forming a cured film, and the representative amine polymer is not limited in the present invention, and all polymers known in the art may be used.
- the amine-based polymer is polyethyleneimine, polyamines, polyamideamine, polyvinylamine, polyamidoimine, polyallylamine, polyallylamine, poly Lysine (poly-L-lysine), chitosan (chitosan) alone, copolymers thereof, one selected from a blend thereof is possible, preferably polyimine-based polymer (polyethyleneimine), polyamine-based polyethyleneamine , Polyethylenediamine, polydiaminepropane, polyhexamethylenediamine, and the like, and more preferably polyethyleneimine.
- the content of the amine-based polymer compound may vary depending on the physical properties and the purpose of the final cured film to be obtained, it is used in 3 to 90% by weight, preferably 60 to 90% by weight in the curable composition based on the solid content. If the content is less than the above range, it may be difficult to form a cured film. On the contrary, if the content exceeds the above range, the content of other compositions may be reduced, which may lower the physical properties of the cured film. do.
- the curable composition comprising the oxygen inclusion structure, the catechol-based organic compound, and the amine-based high molecular compound as described above may further include additives as known in various fields depending on the use thereof.
- the additives that can be used include plasticizers, colorants, preservatives, heat dispersants, biocompatible agents, preservatives, stabilizers, and the like, but are not particularly limited thereto.
- the content of the additive is added within a range that does not affect the curing, preferably 10% by weight or less in the total composition.
- the curable composition as described above is converted to quinone by oxidation of the catechol derivative, and they cause a curing reaction with the amine polymer compound to produce a cured film.
- the cured film has an advantage in that not only the surface but also internal hardening occurs, thereby providing excellent adhesion, cohesion, strength, durability, and curing time. Any field can be used as long as it can form a cured film, and the present invention is not particularly limited.
- it can be applied to adhesives, coatings for various adhesives, separators that can selectively permeate gas or liquid, biocatalysts containing proteins and cells in the biomedical field, hemostatic agents to stop bleeding or prevent bleeding It can be applied to a barrier to block moisture, a scaffold for tissue construction, and the like.
- adherends such as paper, metal, fiber, wood, plastic, glass, ceramics, etc. as industrial use. It can also be used as a functional adhesive for parts, optical fibers, and lenses.
- the curable composition according to the invention can be used as an adhesive.
- An adhesive has a special property of bonding an object to an object, and in order to serve as an adhesive, first, the adhesive needs to be in close contact with the object to be bonded, and secondly, the adhesive itself must be of an appropriate strength after bonding.
- the curable composition according to the present invention is instantaneously reacted by the quinonation of the catechol and the reaction with the amine, thereby adhering and increasing the adhesion between the adherends with high adhesive strength.
- the adherend is not limited to the material in the present invention, for example, can be applied to various places such as metal, paper, fiber, silicon substrate, glass, the cured film formed after the application of the curable composition according to the present invention is a high level It can be seen that the adhesive strength is excellent due to the shear strength (see Experimental Examples 2 to 4).
- the curable composition concerning this invention can be used suitably as a medical adhesive agent also in an adhesive agent.
- Medical adhesives must be in direct contact with skin or tissues, so they must be toxic and non-hazardous under strict conditions and require more rigorous biocompatibility and biodegradability. Medical adhesives currently in use include cyanoacrylate instant adhesives, fibrin glues, gelatin glues, and polyurethane-based adhesives, but do not sufficiently satisfy the above conditions. Recently, polyethyleneimine-based (PEI) adhesives have been proposed, which has a problem that the adhesive is toxic for medical use.
- PEI polyethyleneimine-based
- the curable composition of the present invention can be suitably used as a substitute material for a conventional medical adhesive by the use of an amine polymer compound and a catechol-based organic compound.
- the curable composition according to the present invention can be easily applied to the wound site.
- a mechanical bonding material such as sutures, staplers, wires, etc.
- the therapeutic drug may include a poorly soluble drug, a therapeutic peptide, a protein or an antibody, and human growth hormone, erythropoietin, interferon, insulin, interleukin, calcitonin, growth factor (G-CSF), angiotropin, VEGF-Trap, monoclonal antibodies, antibody fragments may be included, hemostatic proteins, antibiotics, analgesics may be further included in the curable composition, used for sublingual immunotherapy for angina, asthma and allergic rhinitis Allergen extract (allergen extract), antihistamine, may include anti-allergic agents, etc., is not particularly limited
- the airgel (main silica, porosity of 90% or more, hydrophilicity, Guangdong Alison High-tech Co., Ltd.) was dispersed in 15 mL water at concentrations of 10, 20 and 30 mg / mL. The amount of dissolved oxygen was analyzed.
- 1 is a result of measuring the amount of dissolved oxygen dissolved in water at a temperature of 25.6 ⁇ 0.2 °C.
- 6.6 ppm of oxygen is dissolved in water without using the oxygen inclusion structure, but when the oxygen inclusion structure is contained at concentrations of 10, 20, and 30 mg / mL, respectively, 6.9, 7.1, and 7.2 ppm Showed the amount of dissolved oxygen.
- the oxygen inclusions contained in the oxygen inclusions were increased, and the dissolved oxygen content of the water increased as the concentration thereof increased. As a result, it was confirmed that the oxygen inclusion structures could provide oxygen.
- oxygen inclusion structures an airgel (preferred silica, porosity of 90% or more, hydrophilicity, Guangdong Alison High-tech Co., Ltd.) was selected, and pyrogalol solution (0.2M) was prepared by putting 25.2 g of pyrogallol in 1L of water.
- Oxygen inclusion structure was put into each tube by 0 (Preparation Example 1), 10, 20 and 30 mg (Preparation Examples 2, 3 and 4), respectively.
- 1 mL of 0.2 M pyrogallol solution was added to each tube to prepare a pyrogallol / aerogel mixed solution. The color change was confirmed immediately after vortexing for 30 seconds and even after 24 hours for even mixing.
- a photograph comparing the oxidation degree of the catechol compound is shown in FIG. 2.
- Figure 2 (a) is a photograph immediately after stirring 30 seconds after mixing the airgel, (b) is a photograph after 24 hours, wherein Only PG is a pyrogallol solution of Preparation Example 1, 10 mg / mL, 20 mg / mL, and 30 mg / mL each are pyrogallol / aerogel mixed solution.
- Figure 2 (b) is a photo showing the oxidation after 24 hours can be seen that the pyrogallol solution turned pale yellow light, the pyrogallol / aerogel mixed solution including the airgel is not only the air / liquid interface but also the top of the submerged airgel Also shows that the oxidation proceeds more specifically.
- PEI polyethylenimine, Mw: 750 kDa
- Oxygen clathrates include aerogels (silicate silica, hydrophilicity, 90% or more porosity, Guangdong Alison High-tech), fume silica nanoparticles (silica, hydrophilic, Evonik, AEROSIL® 200), silica hollow particles (silicate silica , Hydrophilicity, diameter 80nm, RS, Korea Innotech Co., Ltd., silica nanotubes (preferred silica, hydrophilicity, diameter 100nm, SNT, Korea Innotech Co., Ltd.), and glass web (presence silica, hydrophilicity, 1035MS, Asahikasei) Evaluated.
- aerogels silicate silica, hydrophilicity, 90% or more porosity, Guangdong Alison High-tech
- fume silica nanoparticles sica, hydrophilic, Evonik, AEROSIL® 200
- silica hollow particles silicate silica , Hydrophilicity, diameter
- the glass web was cut into an adhesive specimen area size of 10 ⁇ 15 mm 2 .
- Shear strength was measured by applying tensile force at a rate of 5 mm / min to the substrates prepared in Examples and Comparative Examples using a universal testing machine (INSTRON 5583). At this time, the result was measured by the average of five samples, the higher the value means that the adhesion is excellent.
- Comparative Example 1 shows the results of the composition of the curable composition and thus the shear strength. At this time, Comparative Example 1 does not use an oxygen inclusion structure, Comparative Example 2 means that a commercial adhesive (cyanoacrylate) was used.
- Figure 3 (a) is a photograph showing an adhesive cross section of Comparative Example 1 does not include an airgel, the edge portion means that the curing was made by oxygen but the inside is not cured because the air is blocked.
- Figure 3 (b) is an image showing the adhesive cross section of Example 1 including an airgel, compared with (a), the color is changed evenly means that the curing was made to the inside.
- 3C is a cross-sectional scanning microscope image of Comparative Example 1
- (d) is a cross-sectional scanning microscope image of Example 1.
- FIG. By comparing (c) and (d), (d) shows the surface containing particles compared to (c) showing a smooth surface, thereby confirming the presence of the airgel.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
The present invention relates to a curable composition and a use thereof and, more particularly, to a curable composition and a use thereof, the curable composition comprising: (a) a compound capable of being denatured to a quinone-based compound by oxygen; (b) an amine-based polymeric compound; and (c) an oxygen clathrate structure. The curable composition is rapidly cured and can be cured not only at an interface of a conventional film but also to the inside of the film, such that the curable composition has uniform physical properties throughout the entire film and excellent physical properties compared to a cured film obtained by curing at an existing interface.
Description
본 발명은 표면 및 내부 경화가 용이한 경화막의 제조가 가능한 퀴논 경화형 조성물 및 이를 포함하는 접착제 조성물에 관한 것이다.The present invention relates to a quinone curable composition capable of producing a cured film that is easily surface and internal curable and an adhesive composition comprising the same.
생체 모방(바이오미메틱스, biomimetics)은 자연에서 볼 수 있는 생물체의 특성을 연구 및 모방하여 새로운 기술을 개발하고자 하는 것을 의미한다. 생체 모방을 연구하는 생체 모방학은 새로운 생체물질을 만들고, 새로운 지능 시스템을 설계하며, 생체 구조를 그대로 모방하여 새로운 디바이스를 만들고, 새로운 광학 시스템을 디자인하는데 많은 도움을 주고 있다Biomimetics (biomimetics) means to develop new technologies by studying and imitating the characteristics of living organisms. Biomimetics, a study of biomimetics, has helped to create new biomaterials, design new intelligent systems, create new devices by mimicking biological structures, and design new optical systems.
생체 모방과 관련하여 실제 적용 사례로는 게코 도마뱀의 발바닥 강모 특성을 이용한 게코 테이프, 고래의 지느러미 내 요철 형태의 돌기를 이용한 풍력 터빈인 웨일파워, 물총새의 부리 모양을 본떠 소음이 저감된 신칸센 고속열차, 홍합족사의 단백질로부터 모방된 홍합 접착제 등이 있다. Related examples of biomimetics include Gecko tapes using the gecko lizard's sole bristles, Whale Power, a wind turbine using uneven protrusions in the fins of whales, and a Shinkansen high-speed train with reduced noise, modeling the shape of a kingfisher's beak. And mussel adhesives imitated from the protein of mussel family.
홍합 접착제와 관련하여 자세히 설명하면 다음과 같다. 홍합의 족사는 물속에서 바위, 금속 및 플라스틱과 같은 다양한 표면에 강력히 접착하는데 붙어있는 부분을 분석해보면 3,4-디히드록시-L-페닐알라닌(3,4-dihydroxy-L-phenylalanine, DOPA) 카테콜 전구체를 다량 포함하고 있다Detailed description of the mussel adhesive is as follows. Mussels are strongly bonded to various surfaces in water, such as rocks, metals, and plastics. Analysis of the attached mussels results in a 3,4-dihydroxy-L-phenylalanine (DOPA) catechol. Contains a lot of call precursor
홍합족사가 발현하는 접착기능에 대한 명확한 메커니즘 이해는 아직 이루어지지 못하였으나, 족사에 많이 존재하는 DOPA 부분이 산화제나 효소에 의하여 촉진된 상호결합에 의해 접착력이 생긴다고 보고되어 왔다. 하나의 이론으로는 접착 플라그(plaque) 형성 과정 중에 퀴논 작용기가 라디칼 반응을 통해 주변의 다른 퀴논과 가교되거나, 주변의 아민, 티올(thiol)과 Michael addition을 통해서 반응하여 가교가 이루어지거나[V. Vreeland, J. H. Waite, and L. Epstein, J
Phycol., 34, 1 (1998); C. R. Matos-Perez, J. D. White, and J. J. Wilker, J. Am. Chem. Soc., 134, 9498 (2012); B. P. Lee, J. L. Dalsin, and P. B. Messersmith, Biomacromolecules., 3, 1038 (2002).], 금속 이온배위 결합을 통해 세 개의 카테콜(catechol) 작용기가 하나의 Fe(III) 이온과 결합을 통해 가교가 진행된다는 의견이 있다[E. Faure, C. Falentin-Daudre, C. Jerome, J. Lyskawa, D. Fournier, P. Woisel, and C. Detrembleur, Prog. Polym. Sci., 38, 236 (2013); D. G. Barrett, D. E. Fullenkamp, L. He, N. Holten-Andersen, K. Y. C. Lee, and P. B. Messersmith, Adv. Funct. Mater., 23, 1111 (2013).].Although there is no clear understanding of the adhesive function of mussel glioma, it has been reported that many of the DOPA moieties are produced by oxidants or enzyme-promoted cross-linking. One theory is that during the formation of adhesive plaques, the quinone functionality crosslinks with other quinones via radical reactions, or with amines, thiols and Michael additions, to form crosslinks [V. Vreeland, JH Waite, and L. Epstein, J Phycol ., 34 , 1 (1998); CR Matos-Perez, JD White, and JJ Wilker, J. Am . Chem . Soc ., 134 , 9498 (2012); BP Lee, JL Dalsin, and PB Messersmith, Biomacromolecules. , 3 , 1038 (2002).] There is an opinion that three catechol functional groups crosslink through a single Fe (III) ion through metal ion coordination bonds [E. Faure, C. Falentin-Daudre, C. Jerome, J. Lyskawa, D. Fournier, P. Woisel, and C. Detrembleur, Prog . Polym . Sci ., 38 , 236 (2013); DG Barrett, DE Fullenkamp, L. He, N. Holten-Andersen, KYC Lee, and PB Messersmith, Adv . Funct . Mater ., 23 , 1111 (2013).].
홍합 접착제는 무기물, 플라스틱, 금속, 유리 및 생체재료 등 다양한 종류의 표면에 접착할 수 있는 능력을 갖추고 있다. 또한, 습한 표면이나 물속에서 접착력이 떨어지는 기존의 화학 접착제와는 달리 홍합 접착제는 물속에서도 접착이 가능하다. 더불어, 생체에 직접 사용해도 세포를 공격하거나 면역반응을 일으키지 않으므로 의료용으로도 매우 용이하다.Mussel adhesives have the ability to bond to a wide variety of surfaces, including inorganic, plastic, metal, glass and biomaterials. In addition, unlike conventional chemical adhesives that have low adhesion on wet surfaces or in water, mussel adhesives can be bonded in water. In addition, since it does not attack cells or cause an immune response even when used directly in a living body, it is also very easy for medical use.
의료용으로서의 홍합 접착제는 주로 조직 접착제로 사용하고 있으며, 그 시도로 홍합 접착 단백질을 추출하여 돼지 피부에 접착력을 측정한 결과, 피브린 글루보다는 우수한 접착력을 보였으나 6 내지 24시간의 경화 시간과 생체 온도 37℃를 벗어난 45℃의 경화 온도를 필요로하여 의료용으로 사용하기에는 다소 부적합하였다[H.J. Cha et al., Development of bioadhesives from matine mussels, Biotechnol. J. 3, 631-638 (2008)].Mussel adhesives for medical use are mainly used as tissue adhesives. As a result, mussel adhesive proteins were extracted and measured for adhesion to pig skin. However, they showed better adhesion than fibrin glue, but the curing time and bio temperature of 6 to 24 hours 37 A curing temperature of 45 ° C. outside of C was required and therefore unsuitable for medical use [HJ Cha et al ., Development of bioadhesives from matine mussels, Biotechnol. J. 3 , 631-638 (2008)].
이에 홍합에서 추출한 접착 단백질의 자연적 특성을 모방한 DOPA의 카테콜(catechol) 구조가 도입된 접착형 고분자의 연구가 진행되었다. 구체적으로, 카테콜 작용기와 유사한 3,4-디히드록시스타이렌(3,4-dihydroxystyrene)을 사용한 폴리[(3,4-디히드록시스타이렌)-코-스타이렌](poly[(3,4-dihydroxystyrene)-co-styrene])을 사용한 방법을 통해 접착력 및 기계적 강도를 높이고자 하였으나 이 또한 안정적인 접착력을 확보할 수 없었다.Thus, research into adhesive polymers incorporating the catechol structure of DOPA that mimics the natural properties of adhesive proteins extracted from mussels has been conducted. Specifically, poly [(3,4-dihydroxystyrene) -co-styrene] (poly [(3) using 3,4-dihydroxystyrene, similar to a catechol functional group, , 4-dihydroxystyrene) -co-styrene]) was used to increase the adhesion and mechanical strength, but this also could not secure stable adhesion.
또 다른 시도로서, 대한민국 공개특허 제2015-0144846호에서는 카테콜계 유기 화합물과 아민계 고분자를 혼합 사용하여 액상과 기상의 계면에서 기능성 필름(즉, 경화막)을 제조하고, 이 기능성 필름이 생체 재료로써 지혈제, 생촉매 및 분리막 등의 다양한 분야에 적용 가능함을 개시하였다. 상기 경화 반응은 산소 가 존재하는 기능성 필름의 표면에서 주로 발생하고, 내부는 물이 존재하여 필름의 물성(예, 인정강도, 내구성 등)이 낮아 실질적으로 제품에 적용하기에 곤란하고, 경화 속도가 느리며, 산소가 있는 계면에서만 기능성 필름을 형성하기 때문에 산소가 통하지 않는 표면에서는 경화막의 형성이 제한적이다.In another attempt, Korean Patent Laid-Open Publication No. 2015-0144846 uses a catechol-based organic compound and an amine polymer to prepare a functional film (ie, cured film) at an interface between a liquid phase and a gaseous phase, and the functional film is a biomaterial. It has been disclosed that it can be applied to various fields such as hemostatic agents, biocatalysts and membranes. The curing reaction occurs mainly on the surface of the functional film in the presence of oxygen, the inside of the water is present in the physical properties of the film is low (e.g., recognized strength, durability, etc.) is difficult to apply to the product substantially, the curing rate is The formation of the cured film is limited on the surface through which oxygen does not pass because it is slow and forms the functional film only at the interface with oxygen.
(특허문헌 1) 대한민국 공개특허 제2015-0144846호(Patent Document 1) Korean Patent Publication No. 2015-0144846
(비특허문헌 1) V. Vreeland, J. H. Waite, and L. Epstein, J
Phycol., 34, 1 (1998)(Non-Patent Document 1) V. Vreeland, JH Waite, and L. Epstein, J Phycol ., 34 , 1 (1998)
(비특허문헌 2) C. R. Matos-Perez, J. D. White, and J. J. Wilker, J. Am. Chem. Soc., 134, 9498 (2012)(Non-Patent Document 2) CR Matos-Perez, JD White, and JJ Wilker, J. Am . Chem . Soc ., 134 , 9498 (2012)
(비특허문헌 3) B. P. Lee, J. L. Dalsin, and P. B. Messersmith, Biomacromolecules., 3, 1038 (2002)(Non-Patent Document 3) BP Lee, JL Dalsin, and PB Messersmith, Biomacromolecules. , 3 , 1038 (2002)
(비특허문헌 4) E. Faure, C. Falentin-Daudre, C. Jerome, J. Lyskawa, D. Fournier, P. Woisel, and C. Detrembleur, Prog. Polym. Sci., 38, 236 (2013)(Non-Patent Document 4) E. Faure, C. Falentin-Daudre, C. Jerome, J. Lyskawa, D. Fournier, P. Woisel, and C. Detrembleur, Prog . Polym . Sci ., 38 , 236 (2013)
(비특허문헌 5) D. G. Barrett, D. E. Fullenkamp, L. He, N. Holten-Andersen, K. Y. C. Lee, and P. B. Messersmith, Adv. Funct. Mater., 23, 1111 (2013)(Non-Patent Document 5) DG Barrett, DE Fullenkamp, L. He, N. Holten-Andersen, KYC Lee, and PB Messersmith, Adv . Funct . Mater ., 23 , 1111 (2013)
(비특허문헌 6) H.J. Cha et al., Development of bioadhesives from matine mussels, Biotechnol. J. 3, 631-638 (2008)(Non-Patent Document 6) HJ Cha et al ., Development of bioadhesives from matine mussels, Biotechnol. J. 3 , 631-638 (2008)
이에 본 발명자들은 카테콜 구조를 갖는 화합물과 아민계 고분자의 경화 속도를 높이고 얻어진 기능성 필름의 물성을 높이고자 다양한 연구를 수행한 결과, 산소 공급이 수월하게 되는 공기/용액 계면상 뿐만 아니라 용액 내부에도 경화가 이뤄질 수 있도록 산소 공급이 가능한 물질, 즉 산소 포접 구조체를 혼합 사용함으로써, 내부 경화가 동시에 이루어져 상기 필름의 물성을 개선하고, 경화 시간을 단축시킬 수 있음을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors conducted various studies to increase the curing rate of the compound having a catechol structure and the amine polymer and to improve the physical properties of the obtained functional film. The present invention was completed by confirming that internal curing may be simultaneously performed to improve the physical properties of the film and to shorten the curing time by using a material capable of supplying oxygen, that is, an oxygen inclusion structure, so that curing can be achieved.
따라서, 본 발명의 목적은 공기/용액 계면 및 용액 내부 경화가 가능하며, 빠른 경화 속도를 갖는 경화막의 제조가 가능한 경화성 조성물을 제공하는데 있다.Accordingly, an object of the present invention is to provide a curable composition capable of curing the air / solution interface and solution inside, and to prepare a cured film having a fast curing rate.
또한, 본 발명의 다른 목적은 상기 경화성 조성물의 용도를 제공하는데 있다.Another object of the present invention is to provide a use of the curable composition.
상기 목적을 달성하기 위해, 본 발명은 (a) 산화에 의해 퀴논으로 변성이 가능한 카테콜계 유기 화합물; (b) 아민계 고분자 화합물; 및 (c) 산소 포접 구조체를 포함하는 것을 특징으로 하는 경화성 조성물을 제공한다.In order to achieve the above object, the present invention (a) catechol-based organic compound capable of denaturation to quinone by oxidation; (b) amine polymer compounds; And (c) provides a curable composition comprising an oxygen inclusion structure.
이때 상기 산소 포접 구조체는 산소를 1 내지 99% 함유한 에어로겔, 웹, 시트, 폼, 스피어, 튜브, 다공성 구조체 또는 격자 구조체를 포함하는 것을 특징으로 한다.At this time, the oxygen inclusion structure is characterized in that it comprises an aerogel, web, sheet, foam, sphere, tube, porous structure or lattice structure containing 1 to 99% oxygen.
또한, 본 발명은 상기 경화성 조성물을 접착제 및 코팅제로서 용도를 제공한다.The present invention also provides the use of the curable composition as an adhesive and a coating agent.
본 발명에 따른 경화성 조성물은 산소 포접 구조체를 함유하지 않는 기존 조성대비 빠른 속도로 경화가 이루어지고, 용액 내부에서도 산소 포집 구조체가 방출하는 산소에 의하여 경화가 일어남으로써, 전체적으로 고르게 경화시키는 역할을 하여 기존 조성에 비해 접착제 및 코팅제로 사용시 우수한 물리적 특성을 갖는다. 그 특성으로는 접착력, 응집력, 강도등을 들 수 있다. 상기 경화성 조성물은 경화막이 요구되는 대부분의 산업 전반에 걸쳐 응용 및 적용이 가능하다.Curable composition according to the present invention is hardened at a faster rate than the existing composition does not contain an oxygen trapping structure, the curing occurs by the oxygen released from the oxygen trapping structure even inside the solution, it serves to cure evenly as a whole Compared to the composition, it has excellent physical properties when used as an adhesive and a coating. The characteristics include adhesion, cohesion, strength, and the like. The curable compositions are applicable and applicable throughout most industries where cured films are required.
도 1은 에어로겔의 양에 따른 물의 용존 산소량 변화를 보여주는 그래프이다.1 is a graph showing the change in dissolved oxygen amount of water according to the amount of airgel.
도 2는 에어로겔을 포함하지 않은 카테콜계 유기 화합물 용액 (비교예1)과 농도 별 (1%, 2%, 3%)로 에어로겔을 포함하는 실시예 1,2,3 비교하는 사진으로 (a)는 섞어준 후 5분 이내에 찍은 사진이고, (b)는 24시간 이후에 찍은 사진이다.FIG. 2 is a photograph comparing the catechol-based organic compound solution (Comparative Example 1) that does not include an airgel and Examples 1, 2 and 3 including an airgel by concentration (1%, 2%, 3%) (a) Is taken within 5 minutes of mixing, and (b) is taken after 24 hours.
도 3의 (a)는 에어로겔을 포함하지 않는 용액을 마주하는 두 금속 단면에 적용한 비교예 1의 접착 단면 사진이고, (b)는 에어로겔을 포함하는 용액을 마주하는 금속 단면에 적용한 실시예 1의 접착 단면 사진이다. (c)와 (d)는 각각 (a)와 (b)의 단면을 단면 주사 전자 현미경으로 관찰한 이미지이다.Figure 3 (a) is a photograph of the adhesive cross-section of Comparative Example 1 applied to the two metal cross-section facing the solution containing no airgel, (b) of Example 1 applied to the metal cross-section facing the solution containing aerogel Adhesive cross section photo. (c) and (d) are the images which observed the cross section of (a) and (b) with the cross-sectional scanning electron microscope, respectively.
이하 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따른 경화성 조성물은 퀴논 경화 메카니즘을 통해 경화가 진행된다. The curable composition according to the present invention undergoes curing through the quinone curing mechanism.
상기 '퀴논 경화 메카니즘'은 하기 반응식 1에 나타낸 바와 같이, 산화에 의해 카테콜의 구조가 퀴논으로 전환되고, 이 퀴논이 아민기(NH2)를 포함하는 고분자 화합물과 연쇄적인 네트워크형성 반응을 통해 경화가 일어나는 것을 의미한다.As shown in Scheme 1, the quinone curing mechanism is converted into a quinone structure by oxidation, and the quinone is subjected to a chain-forming reaction with a polymer compound containing an amine group (NH 2 ). It means that hardening takes place.
[반응식 1]Scheme 1
이러한 퀴논 경화는 종래 열경화 또는 광경화와 같이 외부에서 인가해주는 에너지의 소비, 즉 열 또는 UV 광조사 등이 없이도 공기 중의 산소에 의해서 쉽게 반응이 진행될 수 있다.Such quinone curing can be easily proceeded by oxygen in the air without the consumption of energy applied externally, that is, heat or UV light irradiation, such as conventional thermal curing or photocuring.
상기 퀴논 경화 메카니즘이 가능하도록 본 발명에 따르는 경화성 조성물은 반응 물질로 산소에 의해 퀴논계 화합물로 산화가 가능한 카테콜계 유기 화합물과 아민계 고분자 화합물을 포함한다. 상기 카테콜계 유기 화합물과 아민계 고분자 화합물의 반응에 의해 경화가 발생하나, 이때 경화는 주로 산소와 반응할 수 있는 계면에서만 이루어지며 경화를 위해 도포하는 경화막 내부에서 제한적으로 이루어짐으로써, 이를 접착 또는 코팅소재로 사용하는 데에는 많은 제약이 있었다.In order to enable the quinone curing mechanism, the curable composition according to the present invention includes a catechol-based organic compound and an amine-based polymer compound capable of oxidizing to a quinone-based compound by oxygen as a reaction material. Curing occurs by the reaction between the catechol-based organic compound and the amine-based polymer compound, but at this time, the curing is performed only at an interface capable of reacting with oxygen, and is limited within the cured film applied for curing, thereby adhering or There are many limitations in using the coating material.
이에 본 발명에서는 계면뿐만 아니라 경화막 내부에서도 경화가 이뤄지며 경화 반응 속도를 향상시킬 수 있도록 산소 포접 구조체를 사용하고자 한다.Accordingly, in the present invention, curing is performed not only at the interface but also at the inside of the cured film, and an oxygen inclusion structure is used to improve the curing reaction rate.
산소 포접 구조체란 구조체 내 산소를 함유 할 수 있는 것으로, 상기 카테콜계 유기 화합물의 산화 반응이 진행될 수 있도록 산소를 공급할 수 있는 물질을 의미한다. The oxygen inclusion structure may contain oxygen in the structure, and means a material capable of supplying oxygen so that the oxidation reaction of the catechol-based organic compound may proceed.
사용 가능한 산소 포접 구조체는 본 발명에서 특별히 한정하지 않으나, 산소 포접량이 높고, 산소를 쉽게 경화막 내부에 공급가능 할 수 있는 것이 바람직하다.The oxygen inclusion structure that can be used is not particularly limited in the present invention, but it is preferable that the oxygen inclusion amount is high and oxygen can be easily supplied into the cured film.
산소 포접 구조체의 산소 포접량은 1 내지 99%, 바람직하기로는 3 내지 90%인 것이 바람직하다. 또한, 상기 산소는 공기 중에 포함하고 있는 산소뿐만 아니라, 고순도 또는 고압축된 산소가 사용될 수 있다.The oxygen inclusion amount of the oxygen inclusion structure is 1 to 99%, preferably 3 to 90%. In addition, the oxygen may be used in addition to oxygen contained in the air, high purity or high compression oxygen.
또한, 산소 포접 구조체는 카테콜 유기화합물의 산화반응이 원활하게 일어나게 하기 위하여, 산소를 쉽게 공급할 수 있도록 구조체 내에 기공이 존재하는 다공성을 특성을 갖는 것이 바람직하다. 이때 구조체의 형상에 따라 달라지나 10 내지 99%, 바람직하기로 15 내지 96%의 기공도를 갖는 것이 유리하다.In addition, the oxygen inclusion structure preferably has a porosity characteristic of the pores in the structure so that oxygen can be easily supplied in order to smoothly oxidize the catechol organic compound. At this time, depending on the shape of the structure, it is advantageous to have a porosity of 10 to 99%, preferably 15 to 96%.
더불어, 본 발명의 산소 포접 구조체는 경화성 조성물의 도포 후 형성되는 경화막의 물성을 저하시키지 않는 것이 바람직하며, 이의 물성을 향상시키는 것이 더욱 바람직하다. 상기 산소 포접 구조체는 경화막 내에 균일하게 도포되어 내부 경화가 동시에 빠른 속도로 일어날 수 있도록 하는 것이 바람직하다. 입자가 너무 크거나 무거울 경우 일측(하부)에서만 경화가 발생하고 타측(상부, 측면부)에서는 계면에서만 발생할 우려가 있다. In addition, the oxygen inclusion structure of the present invention preferably does not lower the physical properties of the cured film formed after the application of the curable composition, it is more preferable to improve its physical properties. The oxygen inclusion structure is preferably uniformly applied in the cured film so that internal curing can occur at a high speed at the same time. If the particles are too large or heavy, curing may occur only at one side (lower side) and only at the interface at the other side (upper side and side).
바람직한 산소 포접 구조체는 산소 공급이 가능한 성상이면 어느 것이든 가능하며, 본 발명에서 특별히 한정하지 않는다. 대표적으로, 에어로겔, 웹, 시트, 폼, 스피어, 튜브, 다공성 구조체 또는 격자 구조체일 수 있으며, 바람직하기로 겔, 웹, 마이크로스피어 형태일 수 있다.Preferable oxygen inclusion structure can be any property as long as oxygen supply is possible, and is not specifically limited in this invention. Representatively, they may be aerogels, webs, sheets, foams, spheres, tubes, porous structures or lattice structures, preferably in the form of gels, webs, microspheres.
상기 용어 '에어로겔(gel)'은 고체 상태의 물질로 젤에서 액체 대신 기체로 채워져 있는 것을 의미한다. 상기 에어로겔은 90 내지 99.9%가 공기로 이루어져 있으며, 밀도는 3 내지 150 mg/cm3이며, 그물망 모양으로 0.1 내지 100nm 수준의 기공을 갖는 다공성 구조를 형성하며, 그 자체로서 친수성을 갖는다. 상기 에어로겔은 다양한 물질로 제조가 가능하며, 이들은 실리카, 알루미늄, 크롬, 주석, 탄소, 나트륨, 칼슘 등으로 제조된 에어로겔 및 이들의 2 이상의 물질로 제조된 에어로겔을 들 수 있다.The term 'gel' refers to a solid substance that is filled with gas instead of liquid in the gel. The airgel is made up of 90 to 99.9% of air, the density is 3 to 150 mg / cm 3 , forms a porous structure having a pore of 0.1 to 100nm level in the shape of a mesh, and has hydrophilicity as it is. The airgel may be made of various materials, and these may include an airgel made of silica, aluminum, chromium, tin, carbon, sodium, calcium, and the like, and an airgel made of two or more materials thereof.
상기 용어 '웹(web)'은 섬유 집합체 또는 필름을 물리적, 화학적 수단에 의해 기계적 또는 적당한 수분이나 열로서 상호 간을 결합시킨 것을 의미한다. 이러한 웹은 유리, 금속, 고분자, 또는 이들의 하이브리드 재질의 각종 섬유를 상호 간의 특성에 따라 엉키게 하여 시트(sheet) 모양의 웹(web)을 형성한 후 기계적 또는 물리적인 방법으로 결합시켜 만든 평면 구조 성형 제품을 의미한다. 상기 웹의 평균 기공은 1nm 내지 100㎛이고, 1 내지 70%의 기공도를 가지고, 1nm 내지 1000㎛의 두께를 갖는다. The term 'web' means that the fiber aggregates or films are bonded to each other by mechanical or suitable moisture or heat by physical or chemical means. Such a web is a plane made by tangling various fibers of glass, metal, polymer, or a hybrid material thereof according to mutual characteristics to form a sheet-shaped web, and then joining them by a mechanical or physical method. Refers to structural molded products. The average pore of the web is 1nm to 100㎛, has a porosity of 1 to 70%, and has a thickness of 1nm to 1000㎛.
상기 용어 '시트(sheet)'는 습식 코팅, 압출 공정, 시트 성형 또는 칼렌다 성형을 통해 제조된 다공성 시트를 의미한다. 상기 시트는 금속, 금속 산화물, 고분자 또는 이들의 하이브리드 재질이 가능하며, 평균 기공은 1nm 내지 100㎛이고, 1 내지 70%의 기공도를 가지고, 1nm 내지 1000㎛의 두께를 갖는다The term 'sheet' refers to a porous sheet produced through wet coating, extrusion process, sheet molding or calendar molding. The sheet may be a metal, a metal oxide, a polymer, or a hybrid material thereof. The average pore is 1 nm to 100 μm, has a porosity of 1 to 70%, and has a thickness of 1 nm to 1000 μm.
상기 용어 '폼(foam)'은 스펀지(sponge)라고도 하며, 용적의 90% 이상이 기공, 즉 완전한 기공(open cell)을 형성하는 것으로, 입체 그물코 구조를 이루며 각개의 기공이 완전히 연속화된 구조를 갖는다. 상기 스펀지는 발포 가공을 통해 제조된 것으로, 그 재질로는 발포 가공이 가능한 금속 또는 고분자면 어느 것이든 가능하며, 일례로 Ti 스펀지, 폴리에틸렌 스펀지, 폴리우레탄 스펀지, 고무 스폰지, 폴리비닐알코올 스폰지 등이 있으며, 재질에 따라 우수한 친수성을 갖는다. 이때 스펀지의 밀도는 1 내지 300 mg/cm3이며, 기공은 나노 수준에서 마이크론 수준으로, 다양한 크기의 기공을 갖는다.The term 'foam' is also called a sponge (sponge), and more than 90% of the volume to form a pore, that is, a complete open cell (pore), forming a three-dimensional network structure, each of the pores are completely continuous structure Have The sponge is manufactured by foaming, and the material may be any metal or polymer that can be foamed, and examples thereof include Ti sponge, polyethylene sponge, polyurethane sponge, rubber sponge, polyvinyl alcohol sponge, and the like. It has excellent hydrophilicity depending on the material. At this time, the density of the sponge is 1 to 300 mg / cm 3 , the pores are nano-level to micron level, having a variety of pores of various sizes.
상기 용어 '스피어(microsphere)'는 구체 형태의 입자를 의미하며, 그 크기에 따라 직경이 나노 크기인 나노 스피어, 마이크로미터 수준인 마이크로 스피어일 수 있으며, 그 형태에 따라 내부가 비어있는 중공 형태의 할로우 스피어이거나 내부까지 기공이 형성된 포러스 스피어일 수 있다. 일례로, 내부가 비어 있으며 나노 수준의 직경 크기를 갖는 할로우 나노 스피어일 수 있다. 상기 스피어의 직경은 기공은 1nm 내지 100㎛이고, 10 내지 99%의 기공도를 가지고, 1nm 내지 1000㎛의 두께를 갖는다The term 'microsphere' refers to particles in the form of spheres, and may be nanospheres having a diameter of nanoscale, or microspheres having a diameter of a micrometer, depending on the size thereof. It may be a hollow sphere or a porous sphere with pores formed therein. In one example, the hollow nanospheres may be hollow and have a nanoscale diameter size. The diameter of the sphere is 1nm to 100㎛ pore, has a porosity of 10 to 99%, and has a thickness of 1nm to 1000㎛
상기 용어 '튜브(tube)'는 원기둥, 원통형 또는 나선 원통형 모양의 구조를 가지며 튜브 내부 및 튜브 간 공간에 산소가 포접될 수 있는 것을 의미한다. 바람직하기로, 상기 튜브는 금속나노튜브, 금속산화물나노튜브 및 탄소나노튜브일 수 있으며, 직경이 1 내지 5000nm일 것이 가능하며, 1nm 내지 1000㎛의 길이를 갖는다The term 'tube' refers to a cylinder, cylindrical or spiral cylindrical structure, and oxygen can be contained in the tube and the space between the tubes. Preferably, the tube may be a metal nanotube, a metal oxide nanotube and a carbon nanotube, the diameter may be 1 to 5000nm, has a length of 1nm to 1000㎛.
상기 용어 '다공성 구조체'는 체적의 15~95% 정도가 기공으로 이루어진 재료로 기존의 치밀한 재료가 가지지 못하는 새로운 특성을 가지고 있는 혹은 부여할 수 있는 구조를 말한다.The term 'porous structure' refers to a structure having about 15 to 95% of the volume of pores and having new properties or not imparted to existing dense materials.
상기 용어 '격자 구조체(lattice structure)'은 격자 형태로 서로 연결되어 배열된 기공들이 적층된 구조를 갖는 구조체를 의미한다. 이때 기공들은 서로 연결되어 개방된 기공을 형성할 수 있으며, 평균 기공은 1nm 내지 100㎛이고, 10 내지 99%의 기공도를 가지고, 1nm 내지. 1000㎛의 두께를 갖는다 상기 격자 구조체는 와이어를 적층하는 방식, 3차원적으로 조립하는 방식, 또는 기공 형성을 위한 구조체를 제조 후 제거하는 방식 등 공지의 방법이 사용될 수 있다. The term 'lattice structure' refers to a structure having a structure in which pores arranged connected to each other in a lattice form are stacked. The pores may be connected to each other to form open pores, the average pore is 1nm to 100㎛, has a porosity of 10 to 99%, 1nm to. The lattice structure may have a thickness of 1000 μm. A well-known method may be used as the lattice structure by laminating wires, by three-dimensional assembling, or by manufacturing and removing a structure for forming pores.
이때 산소 포접 구조체의 재질은 특별히 한정하지 않으며 금속, 금속 산화물, 유리, 탄소재료 및 고분자로 이루어진 군에서 선택된 1종 이상 또는, 2종 이상이 복합화된 형태로 사용 할 수 있다. At this time, the material of the oxygen inclusion structure is not particularly limited and may be used in the form of one or more selected from the group consisting of metals, metal oxides, glass, carbon materials and polymers, or two or more kinds thereof.
금속 재질로는 경화성 조성물의 용매로 물이 사용되고 산소를 포접하여야 하므로, 상기 물 및 산소에 대한 부식성이 없는 재질이 바람직 할 수 있으나, 특별히 한정하지는 않는다. 하다. 일례로 W, Mo, V, Ti, Al, Be, Zr, Au, Pt, Cu, Cr, Zn, Mo, Ag, Rh, Pa, La, Ir, Kr, Nd, Nb, Se, Sc, Ru, In, Y, Z 및 스테인리스 강으로 이루어진 군에서 선택된 1종 이상 또는 이들로 이루어진 2종 이상의 혼합물 중 어느 하나 일 수 있으며, 바람직하기로는 Ti를 사용한다.As a metal material, since water is used as a solvent of the curable composition and should include oxygen, a material that is not corrosive to water and oxygen may be preferable, but is not particularly limited. Do. For example, W, Mo, V, Ti, Al, Be, Zr, Au, Pt, Cu, Cr, Zn, Mo, Ag, Rh, Pa, La, Ir, Kr, Nd, Nb, Se, Sc, Ru, At least one selected from the group consisting of In, Y, Z, and stainless steel, or a mixture of two or more thereof, and preferably Ti.
금속 산화물로는 SiO2, TiO2, ZrO2, CeO2, Al2O3, B2O3, ZnO, BaO, MgO, CaO, 및 BaCa(CO3)2로 이루어진 군에서 선택된 1종 이상의 화합물로 이루어질 수 있으며, 바람직하기로 SiO2를 사용한다.As the metal oxide, at least one compound selected from the group consisting of SiO 2 , TiO 2 , ZrO 2 , CeO 2 , Al 2 O 3 , B 2 O 3 , ZnO, BaO, MgO, CaO, and BaCa (CO 3 ) 2 It may be made of, preferably SiO 2 is used.
유리는 소다석회 유리, 칼슘석회 유리, 납유리, 바륨유리, 규산 유리 등 공지의 유리가 사용될 수 있으며, 본 발명에서 특별히 한정하지 않는다.As glass, well-known glass, such as a soda lime glass, calcium lime glass, lead glass, barium glass, and a silicate glass, can be used, It does not specifically limit in this invention.
탄소재료는 탄소섬유, 카본 블랙, 카본 나노튜브(CNT), 흑연, 그래핀, 활성 탄소 등이 사용될수 있으며, 본 발명에서 특별히 한정하지 않는다.The carbon material may be carbon fiber, carbon black, carbon nanotubes (CNT), graphite, graphene, activated carbon, and the like, and is not particularly limited in the present invention.
고분자 재질로는 천연 고분자 및 합성 고분자 모두가 가능하며, 상기 합성 고분자로는 열가소성 수지와 열경화성 수지 모두가 사용 가능하다. 일례로, 열가소성 수지로는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리스타이렌, 폴리아크릴레이트, 나일론, 폴리에스테르, 폴리비닐알코올, 폴리아마이드, 폴리이미드, 폴리아세탈, 폴리설폰, 폴리에테르설폰, 폴리케톤 등이 있으며, 열경화성 수지로는 페놀 수지, 멜라민 수지, 에폭시 수지, 불포화 폴리에스터 수지 등이 가능하다. 이 외에도, 공지의 다양한 고분자 재질이 사용될 수 있으며, 본 발명에서 특별히 한정하지 않는다.The polymer material may be both a natural polymer and a synthetic polymer, and the synthetic polymer may be both a thermoplastic resin and a thermosetting resin. For example, thermoplastic resins include polyethylene, polypropylene, polycarbonate, polystyrene, polyacrylate, nylon, polyester, polyvinyl alcohol, polyamide, polyimide, polyacetal, polysulfone, polyethersulfone, polyketone, and the like. The thermosetting resin may be a phenol resin, melamine resin, epoxy resin, unsaturated polyester resin, or the like. In addition to this, a variety of known polymer materials may be used, and are not particularly limited in the present invention.
바람직하기로, 본 발명에서 제시하는 산소 포접 구조체는 재질 및 성상 모두를 고려하여 볼 때 활성탄, 활성탄소섬유, TiO2 할로우스피어, 글라스웹, 실리카 에어로겔, 퓸실리카 나노입자, SiO2 중공 입자, TiO2 중공입자, 실리카 나노튜브 및 카본나노튜브 등이 가능하다Preferably, the oxygen inclusion structure proposed in the present invention is activated carbon, activated carbon fiber, TiO 2 halosphere, glass web, silica aerogel, fume silica nanoparticles, SiO 2 hollow particles, TiO in consideration of both material and properties 2 hollow particles, silica nanotubes and carbon nanotubes are possible
이러한 산소 포접 구조체는 산소 포접율에 따라 달라지나 고형분 함량 기준 경화성 조성물 내 1 내지 99 중량%, 바람직하기로 2 내지 99 중량%로 사용한다. 만약 그 함량이 상기 범위 미만이면 경화막 내부가 미경화될 수 있으며, 상기 범위를 초과할 경우 경화막의 물성이 저하될 우려가 있으므로, 상기 범위 내에서 적절히 사용하는 것이 바람직하다.Such oxygen inclusion structure depends on the oxygen inclusion ratio but is used in the range of 1 to 99% by weight, preferably 2 to 99% by weight in the curable composition based on the solid content. If the content is less than the above range, the inside of the cured film may be uncured. If the content exceeds the above range, the physical properties of the cured film may be deteriorated. Therefore, it is preferable to use the cured film appropriately within the above range.
산소 포접 구조체의 형상이 웹, 시트, 폼의 경우에는 고형분 함량기준 경화성 조성물 내 10 내지 99 중량%가 바람직하고, 15 내지 99 중량%가 더욱 바람직하게 사용될 수 있다. 즉, 웹, 시트, 폼의 경우 고분자 자체가 이들에 코팅이되므로 산소 포접 구조체의 고형분 기준 함량이 상대적으로 높을 수 밖에 없음)In the case of a web, a sheet, or a foam, the oxygen inclusion structure is preferably 10 to 99% by weight, more preferably 15 to 99% by weight in the curable composition based on the solid content. In other words, since the polymer itself is coated on the web, sheet, and foam, the solid content of the oxygen inclusion structure must be relatively high.)
산소 포접 구조체의 형상이 에어로겔, 스피어, 튜브, 격자 구조체, 고분자 섬유의 경우에는 고형분 함량기준 경화성 조성물 내 1 내지 50 중량%가 바람직하고, 1 내지 20 중량%가 더욱 바람직하게 사용될 수 있다.The shape of the oxygen inclusion structure is preferably 1 to 50% by weight, more preferably 1 to 20% by weight in the curable composition based on the solid content in the case of aerogel, sphere, tube, lattice structure, and polymer fiber.
본 발명에 따른 경화성 조성물은 이미 언급한 바와 같이 퀴논 경화를 위해 카테콜계 유기 화합물 및 아민계 고분자 화합물을 포함한다. The curable composition according to the present invention, as already mentioned, comprises a catechol-based organic compound and an amine-based high molecular compound for quinone curing.
카테콜계 유기 화합물은 벤젠 고리에 두 개의 히드록시기가 연결된 구조를 갖는 화합물을 의미하며, 산소와의 반응을 통하여 퀴논상태로 산화될 수 있는 특징을 갖는 화합물이면 이에 해당 가능하며, 히드록시기가 연결되지 않은 탄소에 여러 가지 다양한 작용기를 가질 수 있다. 상기 카테콜계 유기 화합물로는 하기 화학식들로 L-도파(L-Dopa), 피로갈롤(Pyrogallol), 도파민(Dopamine), 피로카테콜(Pyrocatechol), 노르에피네프린(norepinephrine) 및 3,4-디히드록시 신남산(3,4-dihydroxycinnamic acid, DHCA)로 이루어진 군에서 선택된 1종 이상 일 수 있으며, 바람직하기로는 산소에 의한 산화특성이 빠른 피로갈롤일 수 있다.The catechol-based organic compound means a compound having a structure in which two hydroxy groups are linked to a benzene ring, and a compound having a characteristic capable of being oxidized to a quinone state through reaction with oxygen is applicable thereto. It can have many different functional groups. The catechol-based organic compounds include L-Dopa, Pyrogallol, Dopamine, Pyrocatechol, norepinephrine, and 3,4-dihydride in the following formulas: It may be at least one selected from the group consisting of oxycinnamic acid (3,4-dihydroxycinnamic acid, DHCA), preferably may be pyrogalol fast oxidation characteristics by oxygen.
상기 카테콜 함유 화합물은 상기 단일 화합물일 수 있으나, 이들이 분자 구조 내 존재하는 것이면 그 어떤 형태의 화합물이라도 가능하다. 일례로, 고분자의 주쇄 또는 측쇄에 카테콜계 유기 화합물이 관능기로 부착된 형태를 가질 수 있다.The catechol-containing compound may be the single compound, but may be any type of compound as long as they are present in the molecular structure. For example, the catechol-based organic compound may have a form attached to a functional group in the main chain or the side chain of the polymer.
상기 카테콜계 유기 화합물의 함량은 최종 얻어지는 경화막의 물성이나 용도에 따라 달라질 수 있으며, 고형분 함량 기준 경화성 조성물 내 3 내지 90 중량%, 바람직하기로 5 내지 50 중량%로 사용한다. 만약 그 함량이 상기 범위 미만이면 퀴논 경화가 충분히 일어나지 않아 경화막의 물성(강도 및 접착력 등)이 저하되고, 이와 반대로 상기 범위를 초과할 경우 상대적으로 다른 조성의 함량이 줄어들어 이 또한 경화막의 물성이 저하될 우려가 있으므로, 상기 범위 내에서 적절히 사용한다. The content of the catechol-based organic compound may vary depending on the properties or the purpose of the final cured film to be obtained, it is used in 3 to 90% by weight, preferably 5 to 50% by weight in the curable composition based on the solid content. If the content is less than the above range, the quinone hardening does not occur sufficiently and the properties of the cured film (strength and adhesive strength, etc.) are lowered. On the contrary, if the content is exceeded, the content of the other composition is relatively reduced, which also lowers the properties of the cured film. Since it may become, it uses suitably within the said range.
아민계 고분자 화합물은 분자 구조 내 아민기를 포함하는 물질로서, 상기 아민기가 반응식 1에 나타낸 바와 같이 산화된 카테콜계 유기 화합물의 퀴논과 화학 결합을 통해 경화가 이루어진다. The amine-based high molecular compound is a material containing an amine group in the molecular structure, the amine group is cured through a chemical bond with the quinone of the catechol-based organic compound oxidized as shown in Scheme 1.
이때 경화막 형성을 위해 바람직하기로 주쇄, 측쇄 또는 말단에 아민기를 갖는 아민계 고분자가 사용되며, 대표적인 아민계 고분자로는 본 발명에서 한정하지 않으며, 공지된 바의 모든 고분자가 사용 가능하다. 바람직하기로, 상기 아민계 고분자로는 폴리에틸렌이민(polyethyleneimine), 폴리아민(polyamines), 폴리아미드아민(polyamideamine), 폴리비닐아민(polyvinylamine), 폴리아미도이민(polyamidoimine), 폴리알릴아민(polyallylamine), 폴리라이신(poly-L-lysine), 키토산(chitosan) 단독, 이들의 공중합체, 이들의 블렌드 중에서 선택된 1종이 가능하며, 바람직하기로 폴리이민계 고분자인 폴리에틸렌이민(polyethyleneimine), 폴리아민계 고분자인 폴리에틸렌아민, 폴리에틸렌디아민, 폴리디아민프로판, 폴리헥사메틸렌디아민 등이 가능하며, 더욱 바람직하기로는 폴리에틸렌이민이 가능하다In this case, an amine polymer having an amine group in the main chain, the side chain, or the terminal is preferably used for forming a cured film, and the representative amine polymer is not limited in the present invention, and all polymers known in the art may be used. Preferably, the amine-based polymer is polyethyleneimine, polyamines, polyamideamine, polyvinylamine, polyamidoimine, polyallylamine, polyallylamine, poly Lysine (poly-L-lysine), chitosan (chitosan) alone, copolymers thereof, one selected from a blend thereof is possible, preferably polyimine-based polymer (polyethyleneimine), polyamine-based polyethyleneamine , Polyethylenediamine, polydiaminepropane, polyhexamethylenediamine, and the like, and more preferably polyethyleneimine.
상기 아민계 고분자 화합물의 함량은 최종 얻어지는 경화막의 물성이나 용도에 따라 달라질 수 있으며, 고형분 함량 기준 경화성 조성물 내 3 내지 90 중량%, 바람직하기로 60 내지 90 중량%로 사용한다. 만약 그 함량이 상기 범위 미만이면 경화막 형성이 어려울 수 있고, 이와 반대로 상기 범위를 초과할 경우 상대적으로 다른 조성의 함량이 줄어들어 이 또한 경화막의 물성이 저하될 우려가 있으므로, 상기 범위 내에서 적절히 사용한다.The content of the amine-based polymer compound may vary depending on the physical properties and the purpose of the final cured film to be obtained, it is used in 3 to 90% by weight, preferably 60 to 90% by weight in the curable composition based on the solid content. If the content is less than the above range, it may be difficult to form a cured film. On the contrary, if the content exceeds the above range, the content of other compositions may be reduced, which may lower the physical properties of the cured film. do.
전술한 바의 산소 포접 구조체, 카테콜계 유기 화합물 및 아민계 고분자 화합물을 포함하는 경화성 조성물은 그 용도에 따라 달라지나 다양한 분야에서 공지된 바의 첨가제를 더욱 포함할 수 있다. The curable composition comprising the oxygen inclusion structure, the catechol-based organic compound, and the amine-based high molecular compound as described above may further include additives as known in various fields depending on the use thereof.
사용 가능한 첨가제로는 가소제, 착색제, 방부제, 열분산제, 생체적합제, 방부제, 안정화제 등이 있으며, 특별히 이를 한정하지 않는다. 이때 첨가제의 함량은 경화에 영향을 미치지 않는 범위 내에서 첨가되며, 바람직하기로 전체 조성물 내 10 중량% 이하로 사용한다. The additives that can be used include plasticizers, colorants, preservatives, heat dispersants, biocompatible agents, preservatives, stabilizers, and the like, but are not particularly limited thereto. At this time, the content of the additive is added within a range that does not affect the curing, preferably 10% by weight or less in the total composition.
전술한 바의 경화성 조성물은 카테콜 유도체의 산화에 의해 퀴논으로 전환되고, 이들이 아민계 고분자 화합물과 경화 반응을 일으켜 경화막이 제조된다.The curable composition as described above is converted to quinone by oxidation of the catechol derivative, and they cause a curing reaction with the amine polymer compound to produce a cured film.
상기 경화막은 표면뿐만 아니라 내부 경화가 일어나 접착력, 응집력, 강도, 내구성 우수하고, 경화 시간 또한 크게 단축되는 이점이 있다. 이에 경화막을 형성할 수 있는 분야면 어느 분야라도 이용 가능하며, 본 발명에서 특별히 한정하지 않는다.The cured film has an advantage in that not only the surface but also internal hardening occurs, thereby providing excellent adhesion, cohesion, strength, durability, and curing time. Any field can be used as long as it can form a cured film, and the present invention is not particularly limited.
일례로, 각종 접착을 위한 접착제, 코팅제, 기체나 액체를 선택적으로 투과 시킬 수 있는 분리막에 적용 가능하며, 바이오 의료 분야에서 단백질 및 세포를 내포하는 생촉매, 출혈을 멈추거나 출혈을 예방하기 위한 지혈제, 수분을 차단하는 배리어(Barrier), 조직 구축을 위한 스캐폴드(scaffold) 등에 적용 가능하다. 또한, 산업적인 용도로서 종이, 금속, 섬유, 목재, 플라스틱, 유리, 세라믹스 등 광범위한 피착재의 접착이 가능하여, 범용적인 용도와 함께 항공기, 자동차, 선박, 로켓, 열기구, 기계 부품, 전자 기기, 전자 부품, 광섬유, 렌즈 등 기능성 접착제로도 사용이 가능하다. For example, it can be applied to adhesives, coatings for various adhesives, separators that can selectively permeate gas or liquid, biocatalysts containing proteins and cells in the biomedical field, hemostatic agents to stop bleeding or prevent bleeding It can be applied to a barrier to block moisture, a scaffold for tissue construction, and the like. In addition, it is possible to bond a wide range of adherends such as paper, metal, fiber, wood, plastic, glass, ceramics, etc. as industrial use. It can also be used as a functional adhesive for parts, optical fibers, and lenses.
일례로, 본 발명에 따른 경화성 조성물은 접착제로서 사용 가능하다. In one example, the curable composition according to the invention can be used as an adhesive.
접착제란 물체와 물체를 접합하는 특수한 성질을 가진 것으로, 접착제로서의 역할을 하려면, 첫째 접착하려고 하는 물체에 잘 밀착해야 하고, 둘째 접착 후 접착제 자신이 적당한 강도로 되어야 할 것 등의 성질이 필요하다. 본 발명에 따른 경화성 조성물은 카테콜의 퀴논화 및 이와 아민과의 반응에 의해 순간적으로 반응이 일어나 접착이 진행되며, 높은 접착 강도로 피착물 간의 접착력을 높인다. An adhesive has a special property of bonding an object to an object, and in order to serve as an adhesive, first, the adhesive needs to be in close contact with the object to be bonded, and secondly, the adhesive itself must be of an appropriate strength after bonding. The curable composition according to the present invention is instantaneously reacted by the quinonation of the catechol and the reaction with the amine, thereby adhering and increasing the adhesion between the adherends with high adhesive strength.
이때 상기 피착물은 본 발명에서 그 재질을 한정하지 않으며, 일례로 금속, 종이, 섬유, 실리콘 기판, 유리 등 다양한 곳에 적용이 가능하며, 본 발명에 따른 경화성 조성물의 도포 후 형성된 경화막은 높은 수준의 전단 강도를 가져 접착력이 우수함을 알 수 있다(실험예 2 내지 4 참조).At this time, the adherend is not limited to the material in the present invention, for example, can be applied to various places such as metal, paper, fiber, silicon substrate, glass, the cured film formed after the application of the curable composition according to the present invention is a high level It can be seen that the adhesive strength is excellent due to the shear strength (see Experimental Examples 2 to 4).
본 발명에 따른 경화성 조성물은 접착제 중에서도 의료용 접착제로서 바람직하게 사용 가능하다.The curable composition concerning this invention can be used suitably as a medical adhesive agent also in an adhesive agent.
의료용 접착제는 피부나 조직에 직접 접촉해야하므로 엄격한 조건으로 독성과 위해성이 없어야 하며, 보다 엄밀한 생체적합성과 생분해성이 필요하다. 현재 실용화되고 있는 의료용 접착제는 시아노아크릴레이트 순간접착제, 피브린 글루, 젤라틴 글루 및 폴리우레탄계 접착제 등이 있으나 상기 조건을 충분히 만족시키지 못한다. 이에 최근에 폴리에틸렌이민계(PEI) 접착제가 제시되고 있는데, 이 재질의 접착제는 의료용으로 사용하기에는 독성이 있다는 문제를 안고 있다.Medical adhesives must be in direct contact with skin or tissues, so they must be toxic and non-hazardous under strict conditions and require more rigorous biocompatibility and biodegradability. Medical adhesives currently in use include cyanoacrylate instant adhesives, fibrin glues, gelatin glues, and polyurethane-based adhesives, but do not sufficiently satisfy the above conditions. Recently, polyethyleneimine-based (PEI) adhesives have been proposed, which has a problem that the adhesive is toxic for medical use.
이에 본 발명의 경화성 조성물은 아민계 고분자 화합물과 카테콜계 유기 화합물의 사용에 의해 종래 의료용 접착제의 대체 재질로서 바람직하게 사용 가능하다. Thus, the curable composition of the present invention can be suitably used as a substitute material for a conventional medical adhesive by the use of an amine polymer compound and a catechol-based organic compound.
특히, 의료용 접착제 중에서도 조직 재접합에 사용 가능하다. 손상된 조직의 재접합은 봉합사, 스테이플러, 와이어 등 기계적 접합재를 이용하여 수행하였으나, 본 발명에 따른 경화성 조성물을 사용할 경우 상처 부위에 쉽게 적용할 수 있다. 그 결과, 봉합사나 스테이플러와 비교하여 이차적인 상처가 적고, 통증이 적으며 봉합사 등의 제거가 필요하지 않고, 지혈 효과, 공기 유출 방지 효과가 뛰어난 이점이 있다.In particular, it can be used for tissue rebonding among medical adhesives. Rebonding of the damaged tissue was performed using a mechanical bonding material such as sutures, staplers, wires, etc., but when using the curable composition according to the present invention can be easily applied to the wound site. As a result, compared with sutures and staplers, there are fewer secondary wounds, fewer pains, no need to remove sutures, and hemostatic effect and air leakage prevention effect.
이때 의료용 접착제로 사용을 위해선 치료용 약물을 더욱 포함할 수 있다. 상기 치료용 약물로는 난용성 약물, 치료용 펩티드, 단백질 또는 항체를 포함하는 약물로써 인간성장호르몬, 에리트로포이에틴, 인터페론, 인슐린, 인터류킨, 칼시토닌, 성장인자(G-CSF), 안지오프로테인, VEGF-Trap, 단일클론 항체, 항체단편을 포함할 수 있고, 지혈단백질, 항생제, 진통제가 경화성 조성물에 더 포함될 수 있으며, 혀 밑으로 응급투여가 필요한 협심증치료제, 천식 및 알러지 비염 설하 면역 치료로 사용되는 알러젠 추출물(allergen extract), 항히스타민, 항알러지제 등을 포함할 수있으며, 특별히 한정하지는 않는다 At this time, for use as a medical adhesive may further comprise a therapeutic drug. The therapeutic drug may include a poorly soluble drug, a therapeutic peptide, a protein or an antibody, and human growth hormone, erythropoietin, interferon, insulin, interleukin, calcitonin, growth factor (G-CSF), angiotropin, VEGF-Trap, monoclonal antibodies, antibody fragments may be included, hemostatic proteins, antibiotics, analgesics may be further included in the curable composition, used for sublingual immunotherapy for angina, asthma and allergic rhinitis Allergen extract (allergen extract), antihistamine, may include anti-allergic agents, etc., is not particularly limited
이하 본 발명의 바람직한 실시예 및 비교예를 설명한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일뿐, 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention will be described. However, the following examples are only preferred embodiments of the present invention, and the present invention is not limited to the following examples.
[실시예]EXAMPLE
실험예 1 : 산소 포접 구조체에 따른 용존 산소 변화 분석Experimental Example 1 Analysis of Dissolved Oxygen Change According to Oxygen Inclusion Structure
산소 포접 구조체에 의한 용존 산소량의 변화를 확인하기 위하여, 에어로겔(주재 실리카, 기공도 90% 이상, 친수성, Guangdong Alison High-tech社)을 15mL 물에 10, 20, 30 mg/mL의 농도로 분산하여 용존 산소량을 분석하였다. In order to confirm the change of dissolved oxygen amount by the oxygen inclusion structure, the airgel (main silica, porosity of 90% or more, hydrophilicity, Guangdong Alison High-tech Co., Ltd.) was dispersed in 15 mL water at concentrations of 10, 20 and 30 mg / mL. The amount of dissolved oxygen was analyzed.
하기 도 1은 온도 25.6±0.2 ℃ 의 물에 녹아 있는 용존 산소량을 측정한 결과이다. 도 1을 참조하면, 산소 포접 구조체를 사용하지 않은 물에는 6.6 ppm의 산소가 녹아있지만, 산소 포접 구조체를 각각 10, 20, 30 mg/mL의 농도로 함유하고 있을 경우, 6.9, 7.1, 7.2 ppm의 용존 산소량을 보여주었다. 1 is a result of measuring the amount of dissolved oxygen dissolved in water at a temperature of 25.6 ± 0.2 ℃. Referring to FIG. 1, 6.6 ppm of oxygen is dissolved in water without using the oxygen inclusion structure, but when the oxygen inclusion structure is contained at concentrations of 10, 20, and 30 mg / mL, respectively, 6.9, 7.1, and 7.2 ppm Showed the amount of dissolved oxygen.
상기 도 1 에서 보여주듯이, 산소 포접체를 함유하고, 이의 농도가 높아질수록 물의 용존 산소량이 증가하였으며, 이를 통하여 산소 포접 구조체로 하여금 산소를 제공할 수 있다는 것을 확인 할 수 있었다. As shown in FIG. 1, the oxygen inclusions contained in the oxygen inclusions were increased, and the dissolved oxygen content of the water increased as the concentration thereof increased. As a result, it was confirmed that the oxygen inclusion structures could provide oxygen.
실험예Experimental Example
2 : 산소 2: oxygen
포접Inclusion
구조체의 사용 여부에 따른 카테콜 화합물의 Of catechol compounds with or without structure
산화촉진여부Oxidation Promotion
산소 포접 구조체의 사용 여부에 따른 카테콜 화합물의 산화 촉진 여부를 확인하기 위하여 4개의 튜브를 준비하고 각 튜브마다 산소 포접 구조체의 함량을 달리하여 용액의 산화 정도(색변화)를 비교하였다. 퀴논 유기 화합물의 경우, 진갈색을 띄며, 카테콜 유기 화합물의 색이 갈색으로 변할수록 산화가 진행되었음을 나타낸다.In order to confirm the oxidation of the catechol compound according to the use of the oxygen clathrate structure, four tubes were prepared and the degree of oxidation (color change) of the solution was compared by varying the content of the oxygen clathrate structure for each tube. In the case of the quinone organic compound, the color is dark brown, indicating that oxidation proceeds as the color of the catechol organic compound turns brown.
산소 포접 구조체 중에서는 에어로겔(주재 실리카, 기공도 90% 이상, 친수성, Guangdong Alison High-tech社)을 선택하였고, 물 1L에 피로갈롤 25.2g을 넣어 피로갈롤 용액(0.2M)을 제작하였다. 각 튜브에 산소 포접 구조체를 각 0 (제조예 1), 10, 20, 30 mg (제조예 2, 3, 4) 씩 넣어주었다. 각 튜브에 0.2 M 피로갈롤 용액 1 mL를 넣어 피로갈롤/에어로겔 혼합 용액을 제조하였으며, 고른 혼합을 위하여 30초간 교반(vortexing)한 직후와 24시간 이후의 색변화를 확인하였다. 카테콜 화합물의 산화 정도를 비교한 사진을 하기 도 2에 나타내었다.Among the oxygen inclusion structures, an airgel (preferred silica, porosity of 90% or more, hydrophilicity, Guangdong Alison High-tech Co., Ltd.) was selected, and pyrogalol solution (0.2M) was prepared by putting 25.2 g of pyrogallol in 1L of water. Oxygen inclusion structure was put into each tube by 0 (Preparation Example 1), 10, 20 and 30 mg (Preparation Examples 2, 3 and 4), respectively. 1 mL of 0.2 M pyrogallol solution was added to each tube to prepare a pyrogallol / aerogel mixed solution. The color change was confirmed immediately after vortexing for 30 seconds and even after 24 hours for even mixing. A photograph comparing the oxidation degree of the catechol compound is shown in FIG. 2.
도 2의 (a)는 에어로겔을 섞어준 후 30초 교반 직후의 사진이고, (b)는 24시간 이후의 사진으로, 이때 Only PG는 제조예 1의 피로갈롤 용액, 10 mg/mL, 20mg/mL, 및 30 mg/mL 각각은 피로갈롤/에어로겔 혼합 용액이다. Figure 2 (a) is a photograph immediately after stirring 30 seconds after mixing the airgel, (b) is a photograph after 24 hours, wherein Only PG is a pyrogallol solution of Preparation Example 1, 10 mg / mL, 20 mg / mL, and 30 mg / mL each are pyrogallol / aerogel mixed solution.
도 2의 (a)는 비교예 1인 'Only PG'는 카테콜 화합물의 산화가 천천히 이뤄지기 때문에 섞은 직후에는 투명한 색을 유지하였다. 이와 비교하여, 에어로겔을 포함한 피로갈롤/에어로겔 혼합 용액은 에어로겔의 기공을 통해서 용액 내부에서 산소를 공급함으로써, 카테콜 유도체가 빠르게 산화됨을 확인하였다.2 (a) shows that 'Only PG' of Comparative Example 1 maintained a transparent color immediately after mixing because the oxidation of the catechol compound was slow. In comparison, the pyrogallol / aerogel mixed solution including the aerogel was confirmed to rapidly oxidize the catechol derivative by supplying oxygen inside the solution through the pores of the aerogel.
도 2의 (b)는 24시간 이후의 산화를 보여주는 사진으로 피로갈롤 용액은 연노란색으로 옅게 변한 것을 확인할 수 있으며, 에어로겔을 포함한 피로갈롤/에어로겔 혼합 용액은 공기/액체 계면뿐만 아니라 가라앉은 에어로겔 윗부분에서도 특이적으로 산화가 더 진행된 것을 보여준다. Figure 2 (b) is a photo showing the oxidation after 24 hours can be seen that the pyrogallol solution turned pale yellow light, the pyrogallol / aerogel mixed solution including the airgel is not only the air / liquid interface but also the top of the submerged airgel Also shows that the oxidation proceeds more specifically.
도 2의 (a) 및 (b)의 결과를 통해 본 발명에 따라 산소 포접 구조체를 사용할 경우, 공기/액체 계면 뿐만 아니라 산소 포접 구조체 주변에서도 산소를 공급받아 카테콜 유도체의 산화가 촉진되는 것을 확인 할 수 있었다.When using the oxygen inclusion structure according to the present invention through the results of (a) and (b) of Figure 2, it is confirmed that the oxidation of catechol derivatives is promoted by receiving oxygen from the oxygen inclusion structure as well as the air / liquid interface Could.
실험예 3: 산소 포접 구조체의 종류에 따른 금속 시편의 접착력 분석Experimental Example 3 Analysis of Adhesion of Metal Specimens According to Types of Oxygen Inclusion Structures
(1) 경화성 조성물(1) curable composition
물을 용매로 이용하여 PEI(폴리에틸렌이민, Mw: 750 kDa) 20 wt/vol % 용액을 제조하였다. 물을 용매로 이용하여 피로갈롤 0.2M 용액을 제조하였다. 다양한 산소 포접 구조체을 하기 표 1과 같이 피로갈롤 용액과 PEI 용액과 혼합하여 경화성 조성물을 제조하였다. A 20 wt / vol% solution of PEI (polyethylenimine, Mw: 750 kDa) was prepared using water as a solvent. 0.2 g solution of pyrogallol was prepared using water as a solvent. Various oxygen inclusion structures were mixed with a pyrogallol solution and a PEI solution to prepare a curable composition as shown in Table 1 below.
산소포접구조체는 에어로겔(주재 실리카, 친수성, 기공도 90% 이상, Guangdong Alison High-tech社), 퓸실리카 나노입자(주재 실리카, 친수성, 에보닉社, AEROSIL® 200), 실리카 중공입자(주재 실리카, 친수성, 직경 80nm, RS, 고려이노테크社), 실리카 나노튜브(주재 실리카, 친수성, 직경 100nm, SNT, 고려이노테크社), 및 글라스웹(주재 실리카, 친수성, 1035MS, Asahikasei社)을 채용 평가하였다.Oxygen clathrates include aerogels (silicate silica, hydrophilicity, 90% or more porosity, Guangdong Alison High-tech), fume silica nanoparticles (silica, hydrophilic, Evonik, AEROSIL® 200), silica hollow particles (silicate silica , Hydrophilicity, diameter 80nm, RS, Korea Innotech Co., Ltd., silica nanotubes (preferred silica, hydrophilicity, diameter 100nm, SNT, Korea Innotech Co., Ltd.), and glass web (presence silica, hydrophilicity, 1035MS, Asahikasei) Evaluated.
(2) 접착력 측정(2) adhesive force measurement
접착성 확인을 위해 두개의 Cu Plate(두께 1.2mm)을 30 x 15 mm2 크기로 준비한 후, 한 개의 시편에 10 x 15 mm2 넓이에 준비된 용액을 20 uL씩 얇게 발라 두개의 시편을 접착하여 50℃에서 5시간 동안 방치하여 퀴논 경화를 유도 하였다.Prepare two Cu Plates (thickness 1.2mm) in the size of 30 x 15 mm 2 to confirm the adhesion, and then apply two thin plates of 10 x 15 mm 2 to each specimen and thinly apply them. It was left for 5 hours at 50 ℃ to induce quinone curing.
글라스웹을 산소포접구조체로 사용한 예(실시예5)의 경우, 글라스웹을 접착 시편 면적크기인 10 x 15 mm2 로 잘라서 사용하였다.In the case of using the glass web as an oxygen cladding structure (Example 5), the glass web was cut into an adhesive specimen area size of 10 × 15 mm 2 .
만능시험기(Universal Testing Machine, INSTRON 5583)을 이용하여 상기 실시예 및 비교예에서 제조된 기판에 5 mm/min의 속도로 인장력을 가하여 전단 강도를 측정하였다. 이때 결과는 5개의 샘플을 측정하여 평균값을 나타내었으며, 그 수치가 높을수록 접착력이 우수함을 의미한다.Shear strength was measured by applying tensile force at a rate of 5 mm / min to the substrates prepared in Examples and Comparative Examples using a universal testing machine (INSTRON 5583). At this time, the result was measured by the average of five samples, the higher the value means that the adhesion is excellent.
(3) 결과(3) results
하기 표 1에 경화성 조성물의 조성 및 이에 따른 전단 강도에 대한 결과를 나타내었다. 이때 비교예 1은 산소 포접 구조체를 사용하지 않은 것이고, 비교예 2는 시판되는 접착제(시아노아크릴레이트)를 사용한 것을 의미한다.Table 1 shows the results of the composition of the curable composition and thus the shear strength. At this time, Comparative Example 1 does not use an oxygen inclusion structure, Comparative Example 2 means that a commercial adhesive (cyanoacrylate) was used.
구분division | PEI 용액(20 wt/vol%)PEI solution (20 wt / vol%) | 피로갈롤 용액(0.2M)Pyrogallol Solution (0.2M) | 산소 포접 구조체Oxygen inclusion structure | 전단 강도(MPa)Shear strength (MPa) | |
종류Kinds | 함량content | ||||
실시예 1Example 1 | 1 ml1 ml | 1 ml1 ml | 에어로겔Airgel | 60 mg60 mg | 0.990.99 |
실시예2Example 2 | 1 ml1 ml | 1 ml1 ml | 퓸실리카 나노입자Fume Silica Nanoparticles | 60 mg60 mg | 0.980.98 |
실시예 3Example 3 | 1 ml1 ml | 1 ml1 ml | 실리카중공입자Silica hollow particles | 60 mg60 mg | 0.650.65 |
실시예 4Example 4 | 1 ml1 ml | 1 ml1 ml | 실리카나노튜브Silica nanotubes | 60 mg60 mg | 0.710.71 |
실시예 5Example 5 | 1 ml1 ml | 1 ml1 ml | 글라스웹Glass web | 4.6 mg(크기 10X15 mm2)4.6 mg (Size 10X15 mm 2 ) | 0.950.95 |
비교예 1Comparative Example 1 | 1 ml1 ml | 1 ml1 ml | -- | -- | 0.420.42 |
비교예 2Comparative Example 2 | -- | -- | -- | -- | 1.151.15 |
상기 표 1을 참조하면, 본 발명에 따라 산소 포접 구조체를 사용한 실시예 1 내지 5에서 제조된 경화막의 경우 전단 강도가 우수함을 알 수 있다.Referring to Table 1, the cured film prepared in Examples 1 to 5 using the oxygen inclusion structure according to the present invention can be seen that the shear strength is excellent.
도 3의 (a)는 에어로겔을 포함하지 않은 비교예 1의 접착 단면을 보여주는 사진이고, 모서리 부분은 산소에 의해 경화가 이뤄졌지만 내부는 공기가 차단되어 경화가 이뤄지지 않았음을 의미한다. Figure 3 (a) is a photograph showing an adhesive cross section of Comparative Example 1 does not include an airgel, the edge portion means that the curing was made by oxygen but the inside is not cured because the air is blocked.
도 3의 (b)는 에어로겔을 포함하는 실시예 1의 접착 단면을 보여주는 이미지로 (a)와 비교하였을 때, 색이 고르게 변한 것으로 안쪽까지 경화가 이뤄졌음을 의미한다. Figure 3 (b) is an image showing the adhesive cross section of Example 1 including an airgel, compared with (a), the color is changed evenly means that the curing was made to the inside.
도 3의 (c)는 비교예 1에 대한 단면 주사 현미경 이미지이며, (d)는 실시예 1의 단면 주사 현미경 이미지이다. (c)와 (d)를 비교함으로써, 매끈한 표면을 보여주는 (c)에 비해 (d)는 입자를 포함하고 있는 표면을 보여줌으로써, 에어로겔의 존재를 확인할 수 있다.3C is a cross-sectional scanning microscope image of Comparative Example 1, and (d) is a cross-sectional scanning microscope image of Example 1. FIG. By comparing (c) and (d), (d) shows the surface containing particles compared to (c) showing a smooth surface, thereby confirming the presence of the airgel.
Claims (15)
- (a) 산화에 의해 퀴논으로 변성이 가능한 카테콜계 유기 화합물; (a) a catechol organic compound capable of being denatured to quinone by oxidation;(b) 아민계 고분자 화합물; 및(b) amine polymer compounds; And(c) 산소 포접 구조체를 포함하는 것을 특징으로 하는 경화성 조성물.(c) A curable composition comprising an oxygen inclusion structure.
- 제1항에 있어서, The method of claim 1,상기 산소 포접 구조체는 전체 경화성 조성물 내에 1 내지 99 중량%로 포함되는 것을 특징으로 하는 경화성 조성물.The oxygen inclusion structure is curable composition, characterized in that contained in 1 to 99% by weight in the total curable composition.
- 제1항에 있어서, The method of claim 1,상기 카테콜계 유기 화합물은 벤젠 고리에 2개 이상의 히드록시기의 관능기를 포함하며, 산소에 의해 산화 가능한 화합물인 것을 특징으로 하는 경화성 조성물.The catechol-based organic compound includes a functional group of two or more hydroxy groups in the benzene ring, the curable composition, characterized in that the compound oxidizable by oxygen.
- 제3항에 있어서, The method of claim 3,상기 카테콜계 유기 화합물은 L-도파(L-Dopa), 피로갈롤(Pyrogallol), 도파민(Dopamine), 피로카테콜(Pyrocatechol), 노르에피네프린(norepinephrine) 및 3,4-디히드록시 신남산(3,4-dihydroxycinnamic acid, DHCA)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 경화성 조성물.The catechol-based organic compounds include L-Dopa, L-Dopa, pyrogallol, dopamine, pyrocatechol, pyrecatechol, norepinephrine and 3,4-dihydroxy cinnamic acid (3). , 4-dihydroxycinnamic acid, DHCA) at least one member selected from the group consisting of.
- 제1항에 있어서, The method of claim 1,상기 아민계 고분자 화합물은 분자 구조 내 아민기를 갖는 고분자인 것을 특징으로 하는 경화성 조성물.The amine-based polymer compound is a curable composition, characterized in that the polymer having an amine group in the molecular structure.
- 제5항에 있어서, The method of claim 5,상기 아민기를 갖는 고분자는 폴리에틸렌이민, 폴리아민, 폴리아미드아민, 폴리비닐아민, 폴리아미도이민, 폴리알릴아민, 폴리라이신 및 키토산으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 경화성 조성물.The polymer having an amine group is a curable composition, characterized in that at least one selected from the group consisting of polyethyleneimine, polyamine, polyamideamine, polyvinylamine, polyamidoimine, polyallylamine, polylysine and chitosan.
- 제1항에 있어서, The method of claim 1,상기 산소 포접 구조체는 에어로겔, 웹, 시트, 폼, 스피어, 튜브, 다공성 구조체 및 격자 구조체로 이루어진 군에서 선택된 1종 이상의 형상을 갖는 것을 특징으로 하는 경화성 조성물.The oxygen inclusion structure is a curable composition characterized in that it has at least one shape selected from the group consisting of aerogel, web, sheet, foam, sphere, tube, porous structure and lattice structure.
- 제1항에 있어서, The method of claim 1,상기 산소 포접 구조체는 활성탄, 활성탄소섬유, TiO2 할로우스피어, 글라스웹, 실리카 에어로겔, 퓸실리카 나노입자, SiO2 중공 입자, TiO2 중공입자, 실리카 나노튜브 및 카본 나노튜브로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 경화성 조성물. The oxygen inclusion structure is selected from the group consisting of activated carbon, activated carbon fiber, TiO 2 halosphere, glass web, silica aerogel, fume silica nanoparticles, SiO 2 hollow particles, TiO 2 hollow particles, silica nanotubes and carbon nanotubes Curable composition characterized by the above-mentioned.
- 제1항에 있어서, The method of claim 1,상기 산소 포접 구조체는 산소 포접량이 1 내지 99%인 것을 특징으로 하는 경화성 조성물.The oxygen inclusion structure is a curable composition, characterized in that the oxygen inclusion amount of 1 to 99%.
- 제1항에 있어서,The method of claim 1,상기 산소 포접 구조체는 기공도가 10 내지 99%인 것을 특징으로 하는 경화성 조성물.The oxygen inclusion structure has a porosity of 10 to 99% curable composition.
- 제1항에 있어서,The method of claim 1,상기 산소 포접 구조체는 재질이 금속, 금속 산화물, 유리, 탄소재료 및 고분자로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 경화성 조성물.The oxygen inclusion structure is a curable composition, characterized in that the material is at least one selected from the group consisting of metals, metal oxides, glass, carbon materials and polymers.
- 제1항에 있어서,The method of claim 1,상기 경화성 조성물은 산소 존재 하에 경화가 이루어지는 것을 특징으로 하는 경화성 조성물.The curable composition is curable composition, characterized in that the curing in the presence of oxygen.
- 제1항에 있어서,The method of claim 1,상기 경화성 조성물은 산소 포접 구조체로 하여금 제공된 산소로부터 내부 경화가 이루어지는 것을 특징으로 하는 경화성 조성물.Wherein the curable composition is internally cured from oxygen provided by the oxygen inclusion structure.
- 제1항 내지 제13항 중 어느 한 항에 따른 경화성 조성물을 포함하는 접착제 조성물. An adhesive composition comprising the curable composition of claim 1.
- 제1항 내지 제13항 중 어느 한 항에 따른 경화성 조성물을 포함하는 코팅 조성물.A coating composition comprising the curable composition according to claim 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780068202.1A CN109906248B (en) | 2016-09-28 | 2017-09-27 | Quinone curable compositions and adhesive compositions comprising the same |
US16/337,179 US11001683B2 (en) | 2016-09-28 | 2017-09-27 | Quinone curable compositions and adhesive compositions comprising same |
JP2019516205A JP6831007B2 (en) | 2016-09-28 | 2017-09-27 | Quinone curable composition and adhesive composition containing it |
EP17856721.0A EP3521372B1 (en) | 2016-09-28 | 2017-09-27 | Quinone curable compositions and adhesive compositions comprising same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160124795 | 2016-09-28 | ||
KR10-2016-0124795 | 2016-09-28 | ||
KR10-2017-0123517 | 2017-09-25 | ||
KR1020170123517A KR102283811B1 (en) | 2016-09-28 | 2017-09-25 | Quinone-type curing composition and additive composition using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018062835A1 true WO2018062835A1 (en) | 2018-04-05 |
Family
ID=61759961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010695 WO2018062835A1 (en) | 2016-09-28 | 2017-09-27 | Quinone curable compositions and adhesive compositions comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018062835A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190390090A1 (en) * | 2018-06-26 | 2019-12-26 | Samsung Electronics Co., Ltd. | Adhesive for pellicle, pellicle for photo mask and method for manufacturing the same |
CN111978856A (en) * | 2020-07-20 | 2020-11-24 | 华南理工大学 | Super-hydrophilic/underwater super-oleophobic copper mesh, preparation method thereof and application of copper mesh in separation of emulsified oil-in-water |
US20220135855A1 (en) * | 2020-11-02 | 2022-05-05 | Samsung Electronics Co., Ltd. | Adhesive composition, method for preparing the same, reticle assembly including the same, and method for fabricating reticle assembly including the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010034195A (en) * | 1998-01-16 | 2001-04-25 | 조이스 엘. 모리슨 | Adhesives and Resins, and Processes for their Production |
KR20130033996A (en) * | 2011-09-27 | 2013-04-04 | 포항공과대학교 산학협력단 | Chitosan and/or chitin composite having improved mechanical properties, and use thereof |
KR20130055847A (en) * | 2011-11-21 | 2013-05-29 | 한국과학기술원 | Methods to prepare hemostatic adhesive hydrogels for medical use by catechol-containing chitosan or related polyamines and thiol-conjugated polaxomers |
KR20150144846A (en) * | 2014-06-17 | 2015-12-29 | 한국과학기술원 | Catecholamine-based versatility film and a preparation method thereof |
WO2016000905A1 (en) * | 2014-06-30 | 2016-01-07 | Siemens Aktiengesellschaft | Method for operating a rail vehicle |
-
2017
- 2017-09-27 WO PCT/KR2017/010695 patent/WO2018062835A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010034195A (en) * | 1998-01-16 | 2001-04-25 | 조이스 엘. 모리슨 | Adhesives and Resins, and Processes for their Production |
KR20130033996A (en) * | 2011-09-27 | 2013-04-04 | 포항공과대학교 산학협력단 | Chitosan and/or chitin composite having improved mechanical properties, and use thereof |
KR20130055847A (en) * | 2011-11-21 | 2013-05-29 | 한국과학기술원 | Methods to prepare hemostatic adhesive hydrogels for medical use by catechol-containing chitosan or related polyamines and thiol-conjugated polaxomers |
KR20150144846A (en) * | 2014-06-17 | 2015-12-29 | 한국과학기술원 | Catecholamine-based versatility film and a preparation method thereof |
WO2016000905A1 (en) * | 2014-06-30 | 2016-01-07 | Siemens Aktiengesellschaft | Method for operating a rail vehicle |
Non-Patent Citations (1)
Title |
---|
See also references of EP3521372A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190390090A1 (en) * | 2018-06-26 | 2019-12-26 | Samsung Electronics Co., Ltd. | Adhesive for pellicle, pellicle for photo mask and method for manufacturing the same |
CN111978856A (en) * | 2020-07-20 | 2020-11-24 | 华南理工大学 | Super-hydrophilic/underwater super-oleophobic copper mesh, preparation method thereof and application of copper mesh in separation of emulsified oil-in-water |
CN111978856B (en) * | 2020-07-20 | 2021-12-17 | 华南理工大学 | Super-hydrophilic/underwater super-oleophobic copper mesh, preparation method thereof and application of copper mesh in separation of emulsified oil-in-water |
US20220135855A1 (en) * | 2020-11-02 | 2022-05-05 | Samsung Electronics Co., Ltd. | Adhesive composition, method for preparing the same, reticle assembly including the same, and method for fabricating reticle assembly including the same |
US12018183B2 (en) * | 2020-11-02 | 2024-06-25 | Samsung Electronics Co., Ltd. | Adhesive composition, method for preparing the same, reticle assembly including the same, and method for fabricating reticle assembly including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102283811B1 (en) | Quinone-type curing composition and additive composition using the same | |
WO2018062835A1 (en) | Quinone curable compositions and adhesive compositions comprising same | |
Fan et al. | Mussel foot protein inspired tough tissue-selective underwater adhesive hydrogel | |
KR100599891B1 (en) | Antistatic Ceramer Hardcoat Composition With Improved Antistatic Characteristics | |
US20090202806A1 (en) | Film made from denatured clay | |
JP2007512428A (en) | Adhesive system and sealing system | |
EP1832553A1 (en) | Clay film product | |
CN110551299A (en) | Self-adhesive polyacrylamide composite hydrogel and preparation method and application thereof | |
Kaur et al. | Polymer–ceramic nanohybrid materials | |
CN106046899B (en) | Graphene powder-based road reflective coating and preparation method thereof | |
CN1289812A (en) | Process for preparing sealing adhesive tape of colour butyl rubber | |
Zhang et al. | Layer-by-layer assembled highly adhesive microgel films | |
CN104016595A (en) | Method of preparing glass with surface solvent response property by photopolymerization | |
Chen et al. | Application of epoxy resin in cultural relics protection | |
CN109260519B (en) | Adhesive type hydrogel and preparation method and application thereof | |
CN114250053B (en) | Preparation and use method of polyphenol-polyethylene glycol-based eutectic adhesive | |
KR20180107915A (en) | An eco-friendly and water-soluble hybrid multipurpose primer compositions and an organic-inorganic floor coating using the same | |
US20140364533A1 (en) | Resin composite, dental material, bone substitute material and method for manufacturing resin composite | |
WO2012060620A2 (en) | Anti-biofouling ssq/peg network and preparation method thereof | |
WO2022045053A1 (en) | Adhesive substrate, assembly, multilayer assembly, and bonding method | |
JPH11255544A (en) | Reinforcing fiber for cement material and formed cement produced by using the fiber | |
CN109867845A (en) | A kind of plastics and preparation method thereof of anti-aging antistatic | |
JP3555243B2 (en) | Method for producing composite of organic polymer and metal oxide | |
JP2006077089A (en) | Gas barrier composition precursor, composition, and gas barrier film | |
CN113717683B (en) | Photo-curing underwater bio-based antibacterial adhesive and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17856721 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019516205 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017856721 Country of ref document: EP Effective date: 20190429 |