Nothing Special   »   [go: up one dir, main page]

WO2018062770A1 - Lithium-rich antiperovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same - Google Patents

Lithium-rich antiperovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2018062770A1
WO2018062770A1 PCT/KR2017/010415 KR2017010415W WO2018062770A1 WO 2018062770 A1 WO2018062770 A1 WO 2018062770A1 KR 2017010415 W KR2017010415 W KR 2017010415W WO 2018062770 A1 WO2018062770 A1 WO 2018062770A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
formula
secondary battery
hal
compound
Prior art date
Application number
PCT/KR2017/010415
Other languages
French (fr)
Korean (ko)
Inventor
박세호
정찬엽
성다영
장민철
박은경
박창훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170118438A external-priority patent/KR101886003B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17856656.8A priority Critical patent/EP3454406B1/en
Priority to JP2019503183A priority patent/JP6615404B2/en
Priority to CN201780026714.1A priority patent/CN109075390B/en
Priority to US16/093,332 priority patent/US10680282B2/en
Publication of WO2018062770A1 publication Critical patent/WO2018062770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel Li-rich antiperovskite compound having an antiperovskite crystal structure, an electrolyte for a lithium secondary battery comprising the same, and a lithium secondary battery comprising the same.
  • a carbon material is mainly used, and the use of lithium metal, a sulfur compound, etc. is also considered.
  • lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material, and lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium-containing nickel oxide (LiNiO 2). ) Is also being considered.
  • various materials such as a liquid electrolyte, a solid electrolyte, and a polymer electrolyte are used as the electrolyte.
  • the lithium secondary battery has low thermal stability at high temperatures (eg, 90 ° C. or higher), causing internal short circuits, and the battery swells and explodes.
  • high temperatures eg, 90 ° C. or higher
  • leakage of the electrolyte occurs, and a solid electrolyte or a polymer electrolyte has been proposed as an alternative, but satisfactory lithium ion conductivity cannot be obtained.
  • Antiperovskite crystal structure is a structure similar to perovskite, means a structure in which the position between the cation and other constituent elements in the crystal structure.
  • the perovskite structure is usually represented by ABX 3, where A is a monovalent cation, B is a divalent cation, and X is a monovalent anion.
  • the antiperovskite structure is, in ABX 3 , X is a cation such as an alkali metal, and A and B mean anions.
  • X is a cation such as an alkali metal
  • a and B mean anions.
  • There are hundreds of known perovskite and antiperovskite crystal structures depending on which atoms (or functional groups) are present in A, B, and X. Electrical properties vary from conductors to semiconductors and insulators.
  • Li 3 OCl As LiRAP, and the material exhibits a high level of ionic conductivity of 0.85 ⁇ 10 ⁇ 3 S / cm at room temperature, and orthorhombic crystals having tetragonal phases It has been suggested that it can be used as an electrolyte because of its excellent stability at high temperatures due to its structure [Yusheng Zhao et al ., Superionic Conductivity in Lithium-Rich Anti-Perovskites , J. Am. Chem . Soc ., 2012, 134 (36), pp 15042-15047; US 2013-0202971].
  • Patent Document 1 US 2013-0202971 (Aug. 8, 2013), Anti-Perovskite Solid Electrolyte Compositions
  • Non-Patent Document 1 Xujie Lu et al., Li-rich anti-perovskite Li 3 OCl films with enhanced ionic conductivity, Chem. Commun., 2014, 50, 11520
  • Non-Patent Document 2 Yusheng Zhao et al., Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem. Soc., 2012, 134 (36), pp 15042 ⁇ 15047
  • Non-Patent Document 3 M. H. Braga et al., Novel Li 3 ClO based glasses with superionic properties for lithium batteries, J. Mater. Chem. A, 2014, 2, 5470-5480
  • LiRAP compounds such as Li 3 OCl
  • the applicant has designed a structure in which a dopant for substitution is substituted in place of oxygen (O) rather than in place of Cl, and this novel structure is The present invention was completed by predicting that the compound having excellent stability at high temperature with high ionic conductivity.
  • an object of the present invention is to provide a LiRAP compound having a novel structure.
  • Another object of the present invention is to provide a use of the LiRAP compound in a lithium secondary battery.
  • the present invention provides a compound having a lithium rich antiperovskites (LiRAP) crystal structure represented by the following formula (1), (2) or (3).
  • LiRAP lithium rich antiperovskites
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1).
  • M is Na, K, Rb or Cs
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2).
  • M is Mg, Ca, Sr or Ba
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the present invention provides an electrolyte for a lithium secondary battery comprising a compound having a lithium rich antiperovskites (Liithium Rich Antiperovskites, LiRAP) crystal structure represented by the following formula (1), (2) or (3).
  • LiRAP lithium rich antiperovskites
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1).
  • M is Na, K, Rb or Cs
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2).
  • M is Mg, Ca, Sr or Ba
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the present invention provides a lithium secondary battery comprising the electrolyte for a lithium secondary battery.
  • the lithium compound having a novel crystal structure according to the present invention has high ionic conductivity as the dopant is formed by replacing oxygen rather than lithium cations.
  • This lithium compound is used as a solid electrolyte of a lithium secondary battery, and maintains high ionic conductivity even when the battery is driven at a high temperature, and satisfies all characteristics such as an electrochemically stable potential window, low electrical conductivity, high temperature stability, and low toxicity. .
  • the lithium compound may be used as an electrolyte in various secondary battery fields such as a solid oxide battery, an all-solid-state battery, and a lithium-sulfur battery that operate at a high temperature.
  • 1 is a schematic diagram showing the crystal structure of Li 3 OCl.
  • FIG. 2 is a schematic diagram showing a crystal structure in which Li is substituted with a Ba cation.
  • FIG. 3 is a schematic diagram showing a crystal structure in which O is substituted with an F anion.
  • FIG. 4 is a schematic diagram showing a crystal structure in which Li is substituted with Na cation and O is substituted with F anion.
  • FIG. 5 is a schematic diagram showing a crystal structure in which Li is replaced with a Ba cation and O is substituted with an F anion.
  • FIG. 6 is a graph comparing bandgap change results of LiRAP compounds according to dopants.
  • 10 is Li 2 according to an embodiment of the present invention .
  • 926 Na 0 . 037 is a ClO 0 .963 0.037 F of the XRD spectra.
  • the LiRAP ((Lithium Rich Antiperovskites) compound of the present invention is a compound having a lithium rich antiperovskite crystal structure.
  • the LiRAP compound is formed of a dopant on the basic crystal structure of Li 3 OCl to improve ion conductivity. Substituted as a structure in which a dopant is substituted for O, not Cl, as in the prior art, and preferably has a chemical structure represented by the following Chemical Formula 1, Chemical Formula 2, or Chemical Formula 3.
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1).
  • M is Na, K, Rb or Cs
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2).
  • M is Mg, Ca, Sr or Ba
  • Hal is F, Cl, Br or I, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • LiRAP compounds of Formulas 2 and 3 are compounds in which a cation of Li is further substituted.
  • the compounds of Formulas 1, 2 and 3 have an ionic conductivity (25 ° C.) of 10 to 10 ⁇ 10 S / cm, and are excellent in thermal stability to almost maintain the ionic conductivity at high temperature.
  • LiRAP compounds of Formulas 1, 2, and 3 have a structure in which a halogen element of F, Cl, Br, or I as a dopant is partially substituted in place of O, and has a ionic conductivity equal to or higher than that of LiOCl without a conventional dopant substituted And thermal stability.
  • the type of dopant and the molar ratios represented by x and y directly affect the activation energy together with the bandgap described later, and the molar ratio (i.e., the content of the dopant) consequently affects the ionic conductivity. It is desirable to control the content.
  • the molar ratio of the halogen element which is a dopant of O
  • the synergistic effect of the ion conductivity cannot be secured.
  • the amount is too large, the band gap is reduced and the active energy increases, resulting in a decrease in the ion conductivity. Therefore, it uses suitably in the said range.
  • This tendency applies equally to the metal represented by M, which is a substituted metal of Li.
  • Diffusion mechanisms of doping by dopants include substitutional diffusion and interstitial diffusion.
  • the substitutional diffusion is diffusion through a vacancy on the lattice, and means a diffusion in which a valence is pushed out of a substitutional site to a niche location and a dopant enters the position.
  • interstitial diffusion is where the lattice jumps and spreads through interstitial sites, which diffuses and diffuses much faster than alternative diffusions to form deep levels in the semiconductor.
  • the dopants presented in the present invention are doped by a crevice diffusion mechanism.
  • energy must be moved from the gap position to another gap position, and thus, energy of heat treatment is required for such atomic movement.
  • the addition of the dopant results in a change in the electronic state, ie the crystal structure, and consequently the bandgap and activation energy of the material are converted.
  • LiRAP according to the present invention has a certain level of energy level before doping with a dopant, and there is an energy gap (Eg), that is, a bandgap, depending on the interaction and active state of atoms constituting LiRAP.
  • the numerical value of the band gap is changed by the change of the energy level of LiRAP due to the doping of the dopant.
  • the change in the band gap is usually greatly influenced by the type and concentration of the dopant.
  • the band gap is 3.0 eV or more, the insulator has a very low electrical conductivity, and about 5 eV in the case of LiRAP, and the band gap is converted according to the type of dopant.
  • the bandgap tends to be smaller than that of LiRAP, and a smaller tendency of reduction may be considered as a candidate group of the preferred dopant.
  • the band gap change is small, and when Li is substituted in another metal, the band gap change in Na and Ba There was a small tendency.
  • the band gap of the LiRAP compounds of Formula 1, Formula 2, and Formula 3 may be predicted through the following calculation.
  • FIG. 1 is a schematic diagram showing the crystal structure of Li 3 OCl.
  • FIG. 1 is a schematic diagram showing the crystal structure of Li 81 Cl 7 O 27 in a 3 * 3 * 3 supercell crystal structure consisting of 135 atoms. This crystal structure has a large cation (A) at the vertex of the cube unit lattice (8 ⁇ 1/8), and a small cation (B) among them, and an anion (X) at the center of each plane (6 ⁇ 1/2). It's a rescue.
  • FIG. 2 is a schematic diagram which shows the crystal structure which substituted Li by Ba cation.
  • Li 3 OCl having a crystal structure of FIG. 1 and a (Li, M) 3 OCl compound having a crystal structure of FIG. 2 are substituted with a cation shown below and doped with an anion, and the band gap change is compared with that of Li 3 OCl. The calculation is shown in FIG. 3.
  • +1 is: Na, K, Rb, Cs
  • +2 is: Mg, Ca, Sr, Ba
  • +4 is: Si, Ge, Ti, Zr, Hf
  • the cation is an element substituted with Li and the anion is an element substituted with O.
  • VASP version 5.3.5
  • DFT density functional theory
  • the k-point mesh for the supercell calculation was considered only the gamma point and the atomic structure optimization was performed until the interatomic force was ⁇ 0.1 eV / ⁇ A by the conjugate gradient method.
  • the energy gap between the conduction band minimum (CBM) and the valence band maximum (VBM) at the gamma point of the optimized structure corresponds to the band gap.
  • FIG. 6 is a graph comparing bandgap results of LiRAP compounds according to dopants.
  • the GGA-PBE bandgap tends to be underestimated than the actual bandgap.
  • the value is slightly different from the actual case, only the relative comparison with Li 3 OCl is significant rather than a quantitative change.
  • the GGA-PBE bandgap is 3.0 eV or more, it is determined that the insulator has very low electrical conductivity.
  • the band gaps were all smaller than those of the Li 3 ClO.
  • Na, K, Rb, Al, B, La, Ba, Ca, Sr, Mg, F (O substitution), Cl (O substitution), Br (O substitution), I (O substitution ) May be the preferred dopant.
  • the concentration of Li vacancy was high, but the band gap showed a tendency to decrease significantly.
  • Activation energy (Eg) for lithium ion migration is calculated for the change of lithium ion conductivity with the above band gap change.
  • Activation energy was calculated by calculation of judged elastic band (NEB) and between the initial structure before the movement of Li + ion and the final structure after movement to model the movement of Li + ion in the [110] crystal direction. Five images divided by equal intervals were used. NEB calculation was performed using VASP (version 5.3.5), which is a PAW-based DFT calculation code.
  • the activation energy is moved to the interstitial site of Li-O by the dopant, and the required activation energy can be measured by using VASP, which is a code based on density functional theory.
  • Li 3 which is not doped with LiRAP compound doped or substituted with Na (Li substitution), Ba (Li substitution), F (oxygen substitution), Cl (oxygen substitution), Br (oxygen substitution), I (oxygen substitution) It may have a higher ion conductivity than ClO.
  • the preparation of the LiRAP compound of Formula 1, Formula 2 or Formula 3 according to the present invention is not particularly limited.
  • the lithium precursor (3 LiNO), comprising: a mixture of Li Hal synthesize lithium oxyhalides (for example, Li 1 963 O 0 .963 0. 037 F.); And a mixture of LiCl added to the lithium oxy halide through annealing at a high temperature of 180 to 900 ° C.
  • a mixture of Li Hal synthesize lithium oxyhalides for example, Li 1 963 O 0 .963 0. 037 F.
  • LiCl added to the lithium oxy halide through annealing at a high temperature of 180 to 900 ° C.
  • the precursor may be a chloride, nitride, hydroxide, oxyhydroxide, alkoxide, amidate, or the like of the metal, preferably an alkoxide.
  • LiRAP compound of Formula 1, Formula 2 or Formula 3 can be applied to a lithium secondary battery due to high ionic conductivity.
  • the lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte interposed therebetween, wherein a LiRAP compound of Chemical Formula 1, Chemical Formula 2 or Chemical Formula 3 is used as the electrolyte.
  • LiRAP compounds exhibit high lithium ion conductivity compared to conventional Cl-substituted structures while satisfying all of the characteristics such as electrochemically stable potential window, low electrical conductivity, high temperature stability and low toxicity, and are preferably used as electrolytes for batteries. Improve battery performance and thermal stability.
  • the LiRAP compounds of Formula 1, Formula 2 or Formula 3 When used as an electrolyte, the LiRAP compounds of Formula 1, Formula 2 or Formula 3 may be used alone or in combination, respectively, and may be mixed and used to have various combinations of M and X.
  • the electrolyte may further include a material used for this purpose in order to further increase the lithium ion conductivity.
  • the inorganic solid electrolyte is a ceramic-based material, a crystalline or amorphous and crystalline materials can be used, Thio-LISICON (Li 3. 25 Ge 0 .25 P 0.
  • organic solid electrolyte examples include polymer-based materials such as polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohol, and polyvinylidene fluoride. What mixed lithium salt can be used. At this time, these may be used alone or in combination of at least one or more.
  • these LiRAP compounds may be applied as a solid electrolyte through preparation of pellets through compression after preparation in powder form, or may be mixed with known materials such as binders and applied in the form of a thick film through slurry coating. In addition, if necessary, it can be applied as an electrolyte in the form of a thin film through a deposition process such as sputtering.
  • the specific application method to the electrolyte is not particularly limited in the present invention, and may be selected or selected by a method known by those skilled in the art.
  • the lithium secondary battery to which the LiRAP compound of Chemical Formula 1, Chemical Formula 2 or Chemical Formula 3 is applicable as an electrolyte is not limited to a positive electrode or a negative electrode, and particularly, a lithium-air battery, a lithium oxide battery, a lithium-sulfur battery, and a lithium metal that operate at a high temperature. It is applicable to a battery, an all-solid-state battery, and the like.
  • the positive electrode of a lithium secondary battery may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Formula Li 1 + x Mn 2 - x O 4 (0 ⁇ x ⁇ 0.33), LiMnO 3, the lithium manganese oxide such as LiMn 2 O 3, LiMnO 2; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1 - x M x O 2 (M Co, Mn, Al, Cu, Fe, Mg, B or Ga; 0.01 ⁇ x ⁇ 0.3); With the formula LiMn 2 - x M x O 2 (M Co, Ni, Fe, Cr, Zn or Ta; 0.01 ⁇ x ⁇ 0.1) or Li 2 Mn
  • Such a positive electrode active material may be formed on a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • carbon on the surface of aluminum or stainless steel, The surface-treated with nickel, titanium, silver, etc. can be used.
  • the positive electrode current collector may use various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on a surface thereof so as to increase the adhesion with the positive electrode active material.
  • the negative electrode has a negative electrode mixture layer having a negative electrode active material formed on the negative electrode current collector, or uses a negative electrode mixture layer (for example, lithium foil) alone.
  • the type of the negative electrode current collector or the negative electrode mixture layer is not particularly limited in the present invention, and a known material may be used.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, carbon on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel , Surface-treated with nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used.
  • the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on the surface, similar to the positive electrode current collector.
  • the negative electrode active material is one selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, Ketjen black, super-P, graphene, fibrous carbon Carbon-based material, Si-based material, LixFe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Metal composite oxides; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 ,
  • the negative electrode active material is SnxMe 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, group 1, group 2, group 3 elements of the periodic table, Metal composite oxides such as halogen, 0 ⁇ x ⁇ 1, 1 ⁇ y ⁇ 3, 1 ⁇ z ⁇ 8); SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 2 , Bi 2 O 3 , Bi 2 O 4 and An oxide such as Bi 2 O 5 may be used, and a carbon-based negative active material such as crystalline carbon, amorphous carbon or a carbon composite may be used alone or in combination of two or more thereof.
  • a carbon-based negative active material such as crystalline carbon, amorphous carbon or a carbon composite may be used alone or in combination
  • the electrode mixture layer may further include a binder resin, a conductive material, a filler and other additives.
  • the binder resin is used for bonding the electrode active material and the conductive material and the current collector.
  • binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof, and the like.
  • the said conductive material is used in order to improve the electroconductivity of an electrode active material further.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
  • the filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the manufacturing of the electrode for lithium secondary batteries according to the present invention is not particularly limited, and a conventional battery manufacturing process is followed.
  • the electrode mixture layer and the electrode protective layer are sequentially stacked on an electrode current collector.
  • the shape of the lithium secondary battery is not particularly limited and may be in various shapes such as cylindrical, stacked, coin type.
  • the present invention provides a battery module including the lithium secondary battery as a unit cell, and provides a battery pack including the battery module.
  • the battery pack may be used as a power source for medium and large devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium-to-large device include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (Escooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (Escooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Example 2 Li x M y O 3 -y- 1 - x x Hal Cl Preparation of (Li 2 926 Na 0 037 ClO 0 .963 F 0.037..)
  • Example 3 Li x M y O 3 -2y- 1 - x x Hal Cl Preparation of (Li 1 889 Ba 0 037 ClO 0 .6963 F 0.037..)
  • a 3x3x3 supercell is formed by increasing the unit cell of Li 3 ClO three times in the x-axis, y-axis, and z-axis directions, respectively, and then at the (0.5, 0.5, 0.5) position. Oxygen was replaced with F. To charge balance, one of the lithium present around the substituted F was removed to create a lithium vacancy.
  • the structure used in the calculation is shown below and has the chemical formula Li 79 Cl 27 O 26 F 1 .
  • VASP a planewave based density density method code for structural optimization, and the exchange correlation to simulate electron-electron interactions in the calculations is based on Perdew-Burke of Generalized Gradient Approximation (GGA).
  • GGA Generalized Gradient Approximation
  • PBE Ernzerhor
  • the electron kinetic energy cutoff was 400 eV and the energy smearing was Gaussian.
  • the k-point mesh in inverse lattice space for the calculation of the energy (eigenvalue) used a condition involving only gamma points and repeated calculations until the force between all atoms was less than 0.01 eV / ⁇ . Based on this optimized structure, x-ray peak simulation was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a lithium-rich antiperovskite compound and a use thereof, and to: a lithium-rich antiperovskite compound having a novel structure in which a dopant is substituted in a Li3OCl compound, wherein the dopant is substituted at a position of O instead of that of an anion Cl as in a conventional lithium-rich antiperovskite compound; and an electrolyte using the same. The lithium-rich antiperovskite compound has high lithium ion conductivity and excellent thermal stability, and thus can be applied as an electrolyte of a lithium secondary battery driven at a high temperature.

Description

리튬 리치 안티페로브스카이트 화합물, 이를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지Lithium rich antiperovskite compound, electrolyte for lithium secondary battery comprising same and lithium secondary battery comprising same
본 출원은 2016년 9월 30일자 한국 특허 출원 제10-2016-0126258호 및 2017년 9월 15일자 한국 특허 출원 제10-2017-0118438호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 기재된 모든 내용을 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0126258 filed on September 30, 2016 and Korean Patent Application No. 10-2017-0118438 filed on September 15, 2017. All content described in the literature is included as part of this specification.
본 발명은 안티페로브스카이트 결정 구조를 갖는 신규한 Li 리치 안티페로브스카이트 화합물, 이를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a novel Li-rich antiperovskite compound having an antiperovskite crystal structure, an electrolyte for a lithium secondary battery comprising the same, and a lithium secondary battery comprising the same.
최근 환경 문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소 금속 이차 전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압을 가지고 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차 전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.Recently, as interest in environmental problems increases, researches on electric vehicles and hybrid electric vehicles that can replace vehicles using fossil fuel, such as gasoline and diesel vehicles, which are one of the main causes of air pollution, are being conducted. As a power source of such electric vehicles and hybrid electric vehicles, nickel-metal hydride secondary batteries are mainly used. However, researches using lithium secondary batteries with high energy density and discharge voltage and long cycle life and low self-discharge rate have been actively conducted. And is in some stages of commercialization.
이러한 리튬 이차 전지의 음극 활물질로는 탄소재료가 주로 사용되고 있고, 리튬 금속, 황 화합물 등의 사용도 고려되고 있다. 또한, 양극 활물질로는 주로 리튬 함유 코발트 산화물(LiCoO2)이 사용되고 있으며, 그 외에 층상 결정 구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과 리튬 함유 니켈 산화물(LiNiO2) 의 사용도 고려되고 있다. 또한, 전해질로는 액체 전해질, 고체 전해질, 고분자 전해질 등 다양한 재질이 사용되고 있다.As a negative electrode active material of such a lithium secondary battery, a carbon material is mainly used, and the use of lithium metal, a sulfur compound, etc. is also considered. In addition, lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material, and lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium-containing nickel oxide (LiNiO 2). ) Is also being considered. In addition, various materials such as a liquid electrolyte, a solid electrolyte, and a polymer electrolyte are used as the electrolyte.
리튬 이차 전지는 고온(예, 90℃ 이상)에서 열에 대한 안정성이 낮아 내부 단락 현상이 발생하고, 전지가 부풀다가 폭발이 일어난다. 특히, 액체 전해질을 사용할 경우 전해질의 누수가 발생하고, 이를 위해 고체 전해질이나 고분자 전해질이 대안으로 제시되었으나 만족할만한 리튬 이온 전도도를 확보할 수 없었다.  The lithium secondary battery has low thermal stability at high temperatures (eg, 90 ° C. or higher), causing internal short circuits, and the battery swells and explodes. In particular, when a liquid electrolyte is used, leakage of the electrolyte occurs, and a solid electrolyte or a polymer electrolyte has been proposed as an alternative, but satisfactory lithium ion conductivity cannot be obtained.
최근에는 Li3OBr이나 Li3OCl 등의 화학 구조를 갖는 리튬 리치 안티페로브스카이트 결정 구조(Lithium Rich Antiperovskites, 이하 'LiRAP'라 한다)를 갖는 화합물이 제시되었고, 이들 화합물들이 리튬 이온 전도도가 매우 우수할 뿐만 아니라 고온에서 안전하여 차세대 전해질의 대안으로 연구가 진행되고 있다.Recently, compounds having a lithium rich antiperovskite crystal structure (hereinafter referred to as 'LiRAP') having a chemical structure such as Li 3 OBr or Li 3 OCl have been proposed, and these compounds have a lithium ion conductivity. Not only is it excellent, it is safe at high temperatures, and research is being conducted as an alternative to the next-generation electrolyte.
안티페로브스카이트 결정 구조(Antiperovskite crystal structure)는 페로브스카이트와 유사한 구조로서, 결정 구조 내 양이온과 다른 구성 원소간의 위치가 다른 구조를 의미한다. 페로브스카이트 구조는 통상 ABX3로 표시되고, 이때 A는 1가 양이온, B는 2가 양이온, X는 1가 음이온이다. 안티페로브스카이트 구조는 ABX3에서, X가 알칼리 금속과 같은 양이온 이고,A 및 B는 음이온을 의미한다. 페로브스카이트 및 안티페로브스카이트 결정 구조는 A와 B, X에 어떤 원자(또는 작용기)가 있느냐에 따라 수백 가지 종류가 알려져 있고 전기적 특성도 도체에서 반도체, 부도체까지 다양하다.Antiperovskite crystal structure (Antiperovskite crystal structure) is a structure similar to perovskite, means a structure in which the position between the cation and other constituent elements in the crystal structure. The perovskite structure is usually represented by ABX 3, where A is a monovalent cation, B is a divalent cation, and X is a monovalent anion. The antiperovskite structure is, in ABX 3 , X is a cation such as an alkali metal, and A and B mean anions. There are hundreds of known perovskite and antiperovskite crystal structures depending on which atoms (or functional groups) are present in A, B, and X. Electrical properties vary from conductors to semiconductors and insulators.
Xujie Lu 등은 LiRAP로서 Li3OCl를 제시하고, 상기 물질이 상온에서 0.85 X 10-3 S/cm의 높은 수준의 이온 전도도를 나타내고, 정방정 상(tetragonal phases)을 갖는 사방정계(orthorhombic) 결정 구조로 인해 고온에서 안정성이 우수하여 전해질로서 사용 가능함을 제시하고 있다[Yusheng Zhao et al., Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem . Soc., 2012, 134 (36), pp 15042~15047; US 제2013-0202971호].Xujie Lu et al. Present Li 3 OCl as LiRAP, and the material exhibits a high level of ionic conductivity of 0.85 × 10 −3 S / cm at room temperature, and orthorhombic crystals having tetragonal phases It has been suggested that it can be used as an electrolyte because of its excellent stability at high temperatures due to its structure [Yusheng Zhao et al ., Superionic Conductivity in Lithium-Rich Anti-Perovskites , J. Am. Chem . Soc ., 2012, 134 (36), pp 15042-15047; US 2013-0202971].
LiRAP와 같은 결정 구조는 이온 전도도를 높이기 위해 의도적인 불순물인 도펀트(dopant)를 첨가한다. 이와 관련하여 Yusheng Zhao 등은 Br이 도핑된 Li3O(Cl0.5,Br0.5)의 경우 이온 전도도가 10-2 S/cm로서 Li3OCl의 10-3 수치 보다 향상될 수 있으며, 이는 고체 전해질로서 사용 가능하다고 제시하고 있다[Yusheng Zhao et al., Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem. Soc., 2012, 134 (36), pp 15042~15047].Crystal structures such as LiRAP add dopants, which are intentional impurities, to increase ion conductivity. In this regard, Yusheng Zhao et al. Reported that the ion conductivity of Br 3 doped Li 3 O (Cl 0.5 , Br 0.5 ) is 10 −2 S / cm, which is better than the 10 −3 value of Li 3 OCl, which is a solid electrolyte. It is suggested that it can be used as [Yusheng Zhao et al ., Superionic Conductivity in Lithium-Rich Anti-Perovskites , J. Am. Chem. Soc ., 2012, 134 (36), pp 15042-15047].
이와 유사하게, Yusheng Zhao 및 M. H. Braga 등은 리튬 이온을 다른 금속으로 치환한 (Ba, Li)3OCl 구조의 화합물을 제안하면서, 이 물질이 상온에서 이온 전도도를 높일 수 있고, 고온에서 불연성(non-flammable) 특성을 나타내 금속-공기 전지나 전고체 전지 등 고온에서 작동을 요하는 전지에 사용 가능함을 개시하고 있다.Similarly, Yusheng Zhao and MH Braga et al. Proposed a compound of (Ba, Li) 3 OCl structure in which lithium ions were substituted with other metals, which could increase the ionic conductivity at room temperature and non-combustible at high temperature. It has been disclosed that the present invention can be used in a battery that requires high-temperature operation, such as a metal-air battery or an all-solid-state battery.
[특허문헌][Patent Documents]
(특허문헌 1) US 제2013-0202971호 (2013.08.08), Anti-Perovskite Solid Electrolyte Compositions(Patent Document 1) US 2013-0202971 (Aug. 8, 2013), Anti-Perovskite Solid Electrolyte Compositions
[비특허문헌][Non-Patent Documents]
(비특허문헌 1)Xujie Lu et al., Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity, Chem. Commun., 2014, 50, 11520(Non-Patent Document 1) Xujie Lu et al., Li-rich anti-perovskite Li 3 OCl films with enhanced ionic conductivity, Chem. Commun., 2014, 50, 11520
(비특허문헌 2) Yusheng Zhao et al., Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem. Soc., 2012, 134 (36), pp 15042~15047(Non-Patent Document 2) Yusheng Zhao et al., Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem. Soc., 2012, 134 (36), pp 15042 ~ 15047
(비특허문헌 3)M. H. Braga et al., Novel Li3ClO based glasses with superionic properties for lithium batteries, J. Mater. Chem. A, 2014,2, 5470-5480(Non-Patent Document 3) M. H. Braga et al., Novel Li 3 ClO based glasses with superionic properties for lithium batteries, J. Mater. Chem. A, 2014, 2, 5470-5480
이에 본 출원인은 Li3OCl과 같은 LiRAP 화합물에 대한 연구를 수행한 결과, 치환을 위한 도펀트가 Cl의 위치에 치환하는 것이 아닌 산소(O) 자리에 치환하는 구조를 설계하였고, 이러한 신규한 구조를 갖는 화합물이 높은 이온 전도도와 함께 고온에서의 안정성이 우수함을 예측하여 본 발명을 완성하였다.Therefore, as a result of the research of LiRAP compounds such as Li 3 OCl, the applicant has designed a structure in which a dopant for substitution is substituted in place of oxygen (O) rather than in place of Cl, and this novel structure is The present invention was completed by predicting that the compound having excellent stability at high temperature with high ionic conductivity.
따라서, 본 발명의 목적은 신규한 구조의 LiRAP 화합물을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a LiRAP compound having a novel structure.
또한, 본 발명의 다른 목적은 상기 LiRAP 화합물을 리튬 이차 전지에 적용하는 용도를 제공하는 데 있다.Another object of the present invention is to provide a use of the LiRAP compound in a lithium secondary battery.
상기 목적을 달성하기 위해, 본 발명은 하기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 리튬 리치 안티페로브스카이트(Lithium Rich Antiperovskites, LiRAP) 결정 구조를 갖는 화합물을 제공한다.In order to achieve the above object, the present invention provides a compound having a lithium rich antiperovskites (LiRAP) crystal structure represented by the following formula (1), (2) or (3).
[화학식 1][Formula 1]
Li3 - xClO1 - xHalx Li 3 - x ClO 1 - x Hal x
(상기 화학식 1에서, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이다.)(In Formula 1, Hal is F, Cl, Br or I, 0 <x <1).
[화학식 2][Formula 2]
Li3-y-xMyO1-xHalxClLi 3-yx M y O 1-x Hal x Cl
(상기 화학식 2에서, M은 Na, K, Rb 또는 Cs이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<2 이다.)(In Formula 2, M is Na, K, Rb or Cs, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <2).
[화학식 3][Formula 3]
Li3-2y-xMyO1-xHalxClLi 3-2y-x M y O 1-x Hal x Cl
(상기 화학식 3에서, M은 Mg, Ca, Sr 또는 Ba이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<1 이다.)(In Formula 3, M is Mg, Ca, Sr or Ba, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <1).
또한, 본 발명은 하기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 리튬 리치 안티페로브스카이트(Lithium Rich Antiperovskites, LiRAP) 결정 구조를 갖는 화합물을 포함하는 리튬 이차 전지용 전해질을 제공한다.In addition, the present invention provides an electrolyte for a lithium secondary battery comprising a compound having a lithium rich antiperovskites (Liithium Rich Antiperovskites, LiRAP) crystal structure represented by the following formula (1), (2) or (3).
[화학식 1][Formula 1]
Li3-xClO1-xHalx Li 3-x ClO 1-x Hal x
(상기 화학식 1에서, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이다.)(In Formula 1, Hal is F, Cl, Br or I, 0 <x <1).
[화학식 2][Formula 2]
Li3-y-xMyO1-xHalxClLi 3-yx M y O 1-x Hal x Cl
(상기 화학식 2에서, M은 Na, K, Rb 또는 Cs이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<2 이다.)(In Formula 2, M is Na, K, Rb or Cs, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <2).
[화학식 3][Formula 3]
Li3-2y-xMyO1-xHalxClLi 3-2y-x M y O 1-x Hal x Cl
(상기 화학식 3에서, M은 Mg, Ca, Sr 또는 Ba이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<1 이다.)(In Formula 3, M is Mg, Ca, Sr or Ba, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <1).
또한, 본 발명은 상기 리튬 이차 전지용 전해질을 포함하는 것을 특징으로 하는 리튬 이차 전지를 제공한다.In addition, the present invention provides a lithium secondary battery comprising the electrolyte for a lithium secondary battery.
본 발명에 따른 신규한 결정 구조를 갖는 리튬 화합물은 도펀트가 리튬 양이온이 아닌 산소를 대체하여 형성함에 따라 높은 이온 전도도를 갖는다. 이러한 리튬 화합물은 리튬 이차 전지의 고체 전해질로 사용되어, 전지의 고온 구동시에도 높은 이온 전도도를 유지하고, 전기화학적으로 안정한 전위창, 낮은 전기전도도, 고온 안정성, 낮은 독성 등의 특성을 모두 만족시킨다.The lithium compound having a novel crystal structure according to the present invention has high ionic conductivity as the dopant is formed by replacing oxygen rather than lithium cations. This lithium compound is used as a solid electrolyte of a lithium secondary battery, and maintains high ionic conductivity even when the battery is driven at a high temperature, and satisfies all characteristics such as an electrochemically stable potential window, low electrical conductivity, high temperature stability, and low toxicity. .
상기 리튬 화합물은 특히, 고온에서 작동하는 고체산화물 전지, 전고체 전지, 리튬-황 전지 등 다양한 이차 전지 분야에서 전해질로 사용 가능하다.In particular, the lithium compound may be used as an electrolyte in various secondary battery fields such as a solid oxide battery, an all-solid-state battery, and a lithium-sulfur battery that operate at a high temperature.
도 1은 Li3OCl의 결정 구조를 보여주는 모식도이다. 1 is a schematic diagram showing the crystal structure of Li 3 OCl.
도 2는 Li를 Ba 양이온으로 치환한 결정 구조를 보여주는 모식도이다. 2 is a schematic diagram showing a crystal structure in which Li is substituted with a Ba cation.
도 3은 O를 F 음이온으로 치환한 결정 구조를 보여주는 모식도이다. 3 is a schematic diagram showing a crystal structure in which O is substituted with an F anion.
도 4는 Li를 Na 양이온으로, O를 F 음이온으로 치환한 결정 구조를 보여주는 모식도이다. 4 is a schematic diagram showing a crystal structure in which Li is substituted with Na cation and O is substituted with F anion.
도 5는 Li를 Ba 양이온으로, O를 F 음이온으로 치환한 결정 구조를 보여주는 모식도이다.5 is a schematic diagram showing a crystal structure in which Li is replaced with a Ba cation and O is substituted with an F anion.
도 6은 도펀트에 따른 LiRAP 화합물의 밴드갭 변화 결과를 비교한 그래프이다.6 is a graph comparing bandgap change results of LiRAP compounds according to dopants.
도 7는 도펀트에 따른 LiRAP 화합물의 리튬 이온 이동에 대한 활성 에너지 변화 결과를 비교한 그래프이다.7 is a graph comparing the change of activation energy for lithium ion migration of LiRAP compounds according to dopants.
도 8은 본 발명의 실시예에 따른 Li3ClO의 XRD spectra 이다. 8 is an XRD spectra of Li 3 ClO according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 Li2.963ClO0.963F0.037의 XRD spectra 이다. 9 is an XRD spectra of Li 2.963 ClO 0.963 F 0.037 according to an embodiment of the present invention.
도 10은 본 발명에의 실시예 따른 Li2 . 926Na0 . 037ClO0 .963F0.037의 XRD spectra 이다. 10 is Li 2 according to an embodiment of the present invention . 926 Na 0 . 037 is a ClO 0 .963 0.037 F of the XRD spectra.
도 11은 본 발명의 실시예에 따른 Li1 . 889Ba0 . 037ClO0 .963F0.037의 XRD spectra 이다.11 is Li 1 according to an embodiment of the present invention . 889 Ba 0 . 037 is a ClO 0 .963 0.037 F of the XRD spectra.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
LiRAP 화합물LiRAP Compound
본 발명에서 제시하는 LiRAP((Lithium Rich Antiperovskites) 화합물은 리튬 리치 안티페로브스카이트 결정 구조를 갖는 화합물이다. 구체적으로, 상기 LiRAP 화합물은 Li3OCl의 기본 결정 구조에 이온 전도도 향상을 위해 도펀트를 치환하되, 종래와 같이 Cl이 아닌 O에 도펀트가 치환된 구조로서, 바람직하기로 하기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 화학 구조를 갖는다.The LiRAP ((Lithium Rich Antiperovskites) compound of the present invention is a compound having a lithium rich antiperovskite crystal structure. Specifically, the LiRAP compound is formed of a dopant on the basic crystal structure of Li 3 OCl to improve ion conductivity. Substituted as a structure in which a dopant is substituted for O, not Cl, as in the prior art, and preferably has a chemical structure represented by the following Chemical Formula 1, Chemical Formula 2, or Chemical Formula 3.
[화학식 1][Formula 1]
Li3-xClO1-xHalx Li 3-x ClO 1-x Hal x
(상기 화학식 1에서, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이다.)(In Formula 1, Hal is F, Cl, Br or I, 0 <x <1).
[화학식 2][Formula 2]
Li3-y-xMyO1-xHalxClLi 3-yx M y O 1-x Hal x Cl
(상기 화학식 2에서, M은 Na, K, Rb 또는 Cs이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<2 이다.)(In Formula 2, M is Na, K, Rb or Cs, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <2).
[화학식 3][Formula 3]
Li3-2y-xMyO1-xHalxClLi 3-2y-x M y O 1-x Hal x Cl
(상기 화학식 3에서, M은 Mg, Ca, Sr 또는 Ba이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<1 이다.)(In Formula 3, M is Mg, Ca, Sr or Ba, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <1).
상기 화학식 2 및 화학식 3의 LiRAP 화합물은 Li의 양이온이 추가로 치환된 화합물이다.LiRAP compounds of Formulas 2 and 3 are compounds in which a cation of Li is further substituted.
상기 화학식 1, 화학식 2 및 화학식 3의 화합물은 10 내지 10-10 S/cm의 이온 전도도(25℃)를 가지며, 열적 안정성이 우수하여 고온에서 상기 이온 전도도를 거의 유지한다.The compounds of Formulas 1, 2 and 3 have an ionic conductivity (25 ° C.) of 10 to 10 −10 S / cm, and are excellent in thermal stability to almost maintain the ionic conductivity at high temperature.
상기 화학식 1, 화학식 2 및 화학식 3의 LiRAP 화합물은 도펀트인 F, Cl, Br 또는 I의 할로겐 원소가 O의 자리에 일부 치환된 구조로서, 종래 도펀트가 치환되지 않은 LiOCl과 비교하여 동등 이상의 이온 전도도 및 열적 안정성을 갖는다. LiRAP compounds of Formulas 1, 2, and 3 have a structure in which a halogen element of F, Cl, Br, or I as a dopant is partially substituted in place of O, and has a ionic conductivity equal to or higher than that of LiOCl without a conventional dopant substituted And thermal stability.
이때 도펀트의 종류 및 x, y로 표시되는 몰비는 후속에서 설명되는 밴드갭과 함께 활성 에너지에 직접적으로 영향을 주는 것으로, 그 몰비(즉, 도펀트의 함량)은 결과적으로 이온 전도도에 영향을 주므로 그 함량을 제어하는 것이 바람직하다. In this case, the type of dopant and the molar ratios represented by x and y directly affect the activation energy together with the bandgap described later, and the molar ratio (i.e., the content of the dopant) consequently affects the ionic conductivity. It is desirable to control the content.
바람직하기로, O의 도펀트인 할로겐 원소의 몰비가 적으면 이온 전도도의 상승 효과를 확보할 수 없고, 이와 반대로 너무 많게 되면 밴드갭은 줄어들고 활성 에너지는 증가하여 결과적으로 이온 전도도가 저하되는 문제가 발생하므로, 상기 범위에서 적절히 사용한다. 이러한 경향은 Li의 치환 금속인 M으로 표시되는 금속의 경우에서도 동일하게 적용된다.Preferably, if the molar ratio of the halogen element, which is a dopant of O, is small, the synergistic effect of the ion conductivity cannot be secured. On the contrary, if the amount is too large, the band gap is reduced and the active energy increases, resulting in a decrease in the ion conductivity. Therefore, it uses suitably in the said range. This tendency applies equally to the metal represented by M, which is a substituted metal of Li.
도펀트에 의한 도핑의 확산 기구(diffusion mechanism)는 대체위치 확산(substitutional diffusion) 및 틈새위치 확산(interstitial diffusion)이 있다. 상기 대체위치 확산은 격자 상의 빈자리(vacancy)를 통한 확산하는 것으로, 원자가 격자위치(substitutional site)에서 벗어나 틈새 위치로 밀려나 빈자리를 만들고 이 자리에 도펀트가 들어오는 확산을 의미한다. 또한, 틈새위치 확산은 격자가 틈새위치(interstitial site)를 점프하여 확산하는 것으로, 대체위치 확산에 비해 훨씬 빨리 확산하고 깊이 확산하여 반도체 내에 깊은 준위를 형성한다. Diffusion mechanisms of doping by dopants include substitutional diffusion and interstitial diffusion. The substitutional diffusion is diffusion through a vacancy on the lattice, and means a diffusion in which a valence is pushed out of a substitutional site to a niche location and a dopant enters the position. In addition, interstitial diffusion is where the lattice jumps and spreads through interstitial sites, which diffuses and diffuses much faster than alternative diffusions to form deep levels in the semiconductor.
본 발명에서 제시하는 도펀트는 틈새위치 확산 기전에 의해 도핑된다. 틈새위치 확산의 경우 틈새 위치에서 다른 틈새 위치로 이동해야 하므로, 이러한 원자 이동을 위해 열처리라는 에너지가 요구된다. 도펀트의 첨가를 통해 전자 상태, 즉 결정 구조의 변화가 발생하므로, 결과적으로 물질의 밴드갭 및 활성 에너지가 변환된다.The dopants presented in the present invention are doped by a crevice diffusion mechanism. In the case of gap diffusion, energy must be moved from the gap position to another gap position, and thus, energy of heat treatment is required for such atomic movement. The addition of the dopant results in a change in the electronic state, ie the crystal structure, and consequently the bandgap and activation energy of the material are converted.
즉, 본 발명에 따른 LiRAP는 도펀트로 도핑 전 소정 수준의 에너지 준위를 가지며, LiRAP를 구성하는 원자들의 상호작용 및 활성 상태에 따라 에너지갭(Eg), 즉 밴드갭이 존재한다. 상기 밴드갭은 도펀트의 도핑에 의한 LiRAP의 에너지 준위의 변화에 의해 그 수치가 변경된다. 밴드갭의 변화는 통상 도펀트의 종류 및 농도에 크게 영향을 받는다. 통상 밴드갭이 3.0eV 이상인 경우 전기 전도도가 매우 낮은 절연체로, LiRAP의 경우 약 5eV이며, 도펀트의 종류에 따라 밴드갭이 변환된다. That is, LiRAP according to the present invention has a certain level of energy level before doping with a dopant, and there is an energy gap (Eg), that is, a bandgap, depending on the interaction and active state of atoms constituting LiRAP. The numerical value of the band gap is changed by the change of the energy level of LiRAP due to the doping of the dopant. The change in the band gap is usually greatly influenced by the type and concentration of the dopant. In general, when the band gap is 3.0 eV or more, the insulator has a very low electrical conductivity, and about 5 eV in the case of LiRAP, and the band gap is converted according to the type of dopant.
Li 또는 O를 다른 원소로 치환한 경우 밴드갭이 LiRAP 대비 모두 적어지는 경향을 보이며, 그 감소 경향이 적은 것이 바람직한 도펀트의 후보군으로 고려될 수 있다.When Li or O is substituted with another element, the bandgap tends to be smaller than that of LiRAP, and a smaller tendency of reduction may be considered as a candidate group of the preferred dopant.
상기 화학식 1, 화학식 2 및 화학식 3에 나타낸 바의 할로겐 원소와 같은 특정의 도펀트를 사용한 경우 밴드갭의 변화가 적었으며, 추가로 Li를 다른 금속에서 치환한 경우 Na 및 Ba에서 밴드갭의 변화가 적은 경향을 나타내었다. When using a specific dopant, such as the halogen element as shown in the formula (1), (2) and (3), the band gap change is small, and when Li is substituted in another metal, the band gap change in Na and Ba There was a small tendency.
상기 화학식 1, 화학식 2 및 화학식 3의 LiRAP 화합물의 밴드갭은 하기와 같은 계산을 통해 예측이 가능하다. The band gap of the LiRAP compounds of Formula 1, Formula 2, and Formula 3 may be predicted through the following calculation.
도 1은 Li3OCl의 결정 구조를 보여주는 모식도로, 135개의 원자로 이루어진 3*3*3 수퍼셀(supercell) 결정구조의 Li81Cl7O27의 결정 구조 모식도이다. 이러한 결정 구조는 정육면체 단위격자의 꼭짓점에 큰 양이온(A)이 있고(8×1/8) 가운데 작은 양이온(B)이, 각 면 중앙에 음이온(X)이 존재하는(6×1/2) 구조다. FIG. 1 is a schematic diagram showing the crystal structure of Li 3 OCl. FIG. 1 is a schematic diagram showing the crystal structure of Li 81 Cl 7 O 27 in a 3 * 3 * 3 supercell crystal structure consisting of 135 atoms. This crystal structure has a large cation (A) at the vertex of the cube unit lattice (8 × 1/8), and a small cation (B) among them, and an anion (X) at the center of each plane (6 × 1/2). It's a rescue.
또한, 도 2는 Li를 Ba 양이온으로 치환한 결정 구조를 보여주는 모식도이다.2 is a schematic diagram which shows the crystal structure which substituted Li by Ba cation.
도 1의 결정 구조를 갖는 Li3OCl 및 도 2의 결정 구조를 갖는 (Li,M)3OCl 화합물은 하기 제시한 양이온으로 치환, 및 음이온으로 도핑되며, 이때의 밴드갭 변화를 Li3OCl 대비 계산하여 도 3에 나타내었다.Li 3 OCl having a crystal structure of FIG. 1 and a (Li, M) 3 OCl compound having a crystal structure of FIG. 2 are substituted with a cation shown below and doped with an anion, and the band gap change is compared with that of Li 3 OCl. The calculation is shown in FIG. 3.
양이온:Cation:
+1가: Na, K, Rb, Cs+1 is: Na, K, Rb, Cs
+2가: Mg, Ca, Sr, Ba +2 is: Mg, Ca, Sr, Ba
+3가: B, Al, Ga, In, Sc, Y, La+3: B, Al, Ga, In, Sc, Y, La
+4가: Si, Ge, Ti, Zr, Hf+4 is: Si, Ge, Ti, Zr, Hf
음이온:Negative ion:
O 위치: F, Cl, Br, IO position: F, Cl, Br, I
상기 후보에서, 양이온은 Li에 치환되는 원소이며, 음이온은 O에 치환되는 원소이다. In the candidate, the cation is an element substituted with Li and the anion is an element substituted with O.
밴드갭 계산을 위해 PAW(projector augmented wave) 기반의 DFT(density functional theory)코드인 VASP (version 5.3.5)를 사용했으며, 전자의 kinetic energy의 cutoff 는 500 eV, exchange-correlation 함수는 GGA (PBE)를 사용했다.We used VASP (version 5.3.5), a density functional theory (DFT) code based on PAW (projector augmented wave) to calculate the bandgap, and the kinetic energy cutoff of the electron was 500 eV, and the exchange-correlation function was GGA (PBE). )
슈퍼셀 계산을 위한 k-point mesh는 gamma 포인트만 고려했고 conjugate gradient 법으로 원자간의 힘이 ±0.1 eV/ÅA 될 때까지 원자구조 최적화를 수행했다. 최적화된 구조의 gamma point에서의 CBM(conduction band minimum)과 VBM(valence band maximum)의 에너지 차이가 밴드갭에 해당된다.The k-point mesh for the supercell calculation was considered only the gamma point and the atomic structure optimization was performed until the interatomic force was ± 0.1 eV / ÅA by the conjugate gradient method. The energy gap between the conduction band minimum (CBM) and the valence band maximum (VBM) at the gamma point of the optimized structure corresponds to the band gap.
도 6은 도펀트에 따른 LiRAP 화합물의 밴드갭 결과를 비교한 그래프이다. 이때 상기 GGA-PBE 밴드갭의 경우 실제 밴드갭 보다 underestimation 되는 경향이 있다. 도 6에서, 그 수치는 실제인 경우와 약간의 차이가 있으므로, 정량적인 수치 변화보다는 Li3OCl 대비 상대적인 비교만 유의한 것으로 판단한다. 이때, GGA-PBE 밴드갭이 3.0 eV 이상인 경우 전기 전도도가 매우 낮은 절연체라고 판단한다. 6 is a graph comparing bandgap results of LiRAP compounds according to dopants. In this case, the GGA-PBE bandgap tends to be underestimated than the actual bandgap. In FIG. 6, since the value is slightly different from the actual case, only the relative comparison with Li 3 OCl is significant rather than a quantitative change. At this time, when the GGA-PBE bandgap is 3.0 eV or more, it is determined that the insulator has very low electrical conductivity.
도 6을 참조하면, Li을 다른 원소로 치환한 경우 밴드갭이 Li3ClO 대비 모두 작아지는 경향을 나타내었다. 또한, 비교적 밴드갭 감소가 작은 Na, K, Rb, Al, B, La, Ba, Ca, Sr, Mg, F(O치환), Cl(O치환), Br(O치환), I(O치환)가 바람직한 도펀트일 수 있다. 또한, 4가 양이온이 치환된 경우 Li 빈자리(vacancy)의 농도는 높지만 밴드갭은 현저히 감소하는 경향을 나타내었다. Referring to FIG. 6, when the Li was substituted with another element, the band gaps were all smaller than those of the Li 3 ClO. In addition, Na, K, Rb, Al, B, La, Ba, Ca, Sr, Mg, F (O substitution), Cl (O substitution), Br (O substitution), I (O substitution ) May be the preferred dopant. In addition, when the tetravalent cation was substituted, the concentration of Li vacancy was high, but the band gap showed a tendency to decrease significantly.
상기한 밴드갭 변화와 함께 리튬 이온 전도도의 변화를 위해 리튬 이온 이동을 위한 활성 에너지(activation energy, Eg)를 계산한다. Activation energy (Eg) for lithium ion migration is calculated for the change of lithium ion conductivity with the above band gap change.
활성에너지는 NEB (nudged elastic band) 계산을 통해 계산했으며 [110] 결정방향으로 Li+ 이온의 이동을 모델링하기 위해 Li+ 이온의 이동 전 초기 구조(initial structure)와 이동 후 최종구조(final structure) 사이에 등간격으로 나눈 5개 이미지를 사용했다. NEB계산은 PAW기반의 DFT계산 코드인 VASP (version 5.3.5)를 사용하여 수행했다.Activation energy was calculated by calculation of judged elastic band (NEB) and between the initial structure before the movement of Li + ion and the final structure after movement to model the movement of Li + ion in the [110] crystal direction. Five images divided by equal intervals were used. NEB calculation was performed using VASP (version 5.3.5), which is a PAW-based DFT calculation code.
활성 에너지는 도펀트에 의해 Li-O의 인터스티셜 자리(interstitial site)로 이동하게 되고, 이때 필요한 활성 에너지는 범밀도함수론(density functional theory) 기반 코드인 VASP를 사용하여 측정이 가능하다.The activation energy is moved to the interstitial site of Li-O by the dopant, and the required activation energy can be measured by using VASP, which is a code based on density functional theory.
도 7은 도펀트에 따른 LiRAP 화합물의 리튬 이온 이동에 대한 활성 에너지 변화 결과를 비교한 그래프이다.7 is a graph comparing the change of activation energy for lithium ion migration of LiRAP compounds according to dopants.
도 7을 참조하면, Li3ClO 의 경우 Ea = 0.323 eV 를 보여 기존 문헌에 보고된 실험값인 0.36 eV 와 유사한 수준으로 나타났다. Ba, Na, F(O치환), Cl(O치환), Br(O치환), I(O치환) 여섯 가지 경우만 Li3ClO 보다 낮은 에너지를 보였다. Referring to FIG. 7, Li 3 ClO showed Ea = 0.323 eV, which was similar to the experimental value reported in the existing literature, 0.36 eV. Only six cases of Ba, Na, F (Osubstituted), Cl (Osubstituted), Br (Osubstituted) and I (Osubstituted) showed lower energy than Li 3 ClO.
또한, 1가 및 2가 양이온이 Li 자리에 치환된 경우 혹은 1가 음이온이 O 자리에 치환된 경우 Li+ 이동(migration) 에 대한 Ea 가 유사하거나 낮은 경향을 보였다. In addition, when mono and divalent cations were substituted at Li sites or when monovalent anions were substituted at O sites, Ea for Li + migration tended to be similar or low.
따라서, Na (Li 치환), Ba (Li 치환), F (oxygen 치환), Cl (oxygen 치환), Br (oxygen 치환), I (oxygen 치환)으로 도핑 또는 치환된 LiRAP 화합물이 도핑되지 않은 Li3ClO 보다 더 높은 이온전도도를 가질 수 있다.Thus, Li 3 which is not doped with LiRAP compound doped or substituted with Na (Li substitution), Ba (Li substitution), F (oxygen substitution), Cl (oxygen substitution), Br (oxygen substitution), I (oxygen substitution) It may have a higher ion conductivity than ClO.
요약하면, 도 6 및 도 7의 밴드갭 및 리튬 이온 이동 활성 에너지의 결과로부터 LiRAP에서 종래와 같이 Cl이 아닌, 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 음이온의 O 자리에 할로겐 원소, 즉, F, Cl, Br 또는 I가 치환될 경우 높은 밴드갭과 함께 낮은 활성 에너지를 가짐을 알 수 있다. 또한, Li의 양이온의 일부를 Na 또는 Ba의 양이온으로 치환할 경우에도 도핑 전 이하의 활성 에너지를 가짐을 알 수 있다. In summary, from the results of the bandgap and lithium ion transfer activation energy of FIGS. 6 and 7, a halogen element, i.e., at the O site of the anion represented by Formula 1, Formula 2 or Formula 3, which is not Cl in the prior art in LiRAP, It can be seen that when F, Cl, Br or I is substituted, it has a low band energy with a high band gap. In addition, it can be seen that even when a part of Li cation is replaced with a cation of Na or Ba, it has the following active energy before doping.
본 발명에 따른 화학식 1, 화학식 2 또는 화학식 3의 LiRAP 화합물의 제조는 특별히 한정하지 않는다. The preparation of the LiRAP compound of Formula 1, Formula 2 or Formula 3 according to the present invention is not particularly limited.
본 발명의 일 구현예에 따르면, 리튬 전구체 (LiNO3), Li Hal을 혼합하여 리튬 옥시할라이드 (예, Li1 . 963O0 .963F0. 037)을 합성하는 단계; 및 LiCl을 리튬 옥시 할라이드에 추가한 혼합물을 180 내지 900 ℃의 고온에서 어닐링하는 단계를 거쳐 제조한다.According to one embodiment, the lithium precursor (3 LiNO), comprising: a mixture of Li Hal synthesize lithium oxyhalides (for example, Li 1 963 O 0 .963 0. 037 F.); And a mixture of LiCl added to the lithium oxy halide through annealing at a high temperature of 180 to 900 ° C.
이때 화학식 2 또는 화학식3으로 표시되는 화합물의 경우, 금속을 포함하는 전구체를 상기 첫번째 단계에 첨가하여 제조가 가능하다. 상기 전구체는 금속의 염화물, 질화물, 수산화물, 옥시수산화물, 알콕사이드화물, 아미드화물 등일 수 있으며, 바람직하기로 알콕사이드화물이 사용될 수 있다.At this time, in the case of the compound represented by the formula (2) or formula (3), it is possible to manufacture by adding a precursor containing a metal to the first step. The precursor may be a chloride, nitride, hydroxide, oxyhydroxide, alkoxide, amidate, or the like of the metal, preferably an alkoxide.
또한, 금속을 포함하는 전구체를 사용하여 화학식 2 또는 화학식 3의 합성은 합성의 방법을 특별히 한정하지 않는다. In addition, the synthesis of formula (2) or formula (3) using a precursor containing a metal does not particularly limit the method of synthesis.
그 예로서, 상기 금속을 포함하는 전구체를 리튬 옥시할라이드의 합성 단계에서 첨가하거나, 고온 어닐링하는 단계에서 첨가를 하여 화학식 2 또는 화학식 3의 합성을 수행하는 것이 가능하다. As an example, it is possible to carry out the synthesis of the formula (2) or (3) by adding the precursor containing the metal in the synthesis step of the lithium oxyhalide or in the step of high temperature annealing.
본 발명의 다른 구현예에 따르면, Li3OCl 분말에 HX(X=할라이드)와 반응시켜 화학식 1의 LiRAP 화합물을 제조하거나, Li 전구체와 M 전구체를 반응시켜 (Li,M)3OCl을 제조한 후, HX(X=할라이드)와 반응시켜 화학식 2 또는 화학식3의 LiRAP 화합물을 제조할 수 있다.According to another embodiment of the present invention, by reacting Li 3 OCl powder with HX (X = halide) to prepare a LiRAP compound of Formula 1, or by reacting the Li precursor and M precursor (Li, M) 3 OCl Then, reacted with HX (X = halide) to prepare a LiRAP compound of Formula 2 or Formula 3.
리튬 이차 전지Lithium secondary battery
상기 화학식 1, 화학식 2 또는 화학식 3의 LiRAP 화합물은 높은 이온 전도도로 인해 리튬 이차 전지에 적용이 가능하다.LiRAP compound of Formula 1, Formula 2 or Formula 3 can be applied to a lithium secondary battery due to high ionic conductivity.
리튬 이차 전지는 양극, 음극 및 이들 사이에 개제된 전해질을 포함하며, 이때 상기 전해질로 화학식 1, 화학식 2 또는 화학식 3의 LiRAP 화합물을 사용한다.The lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte interposed therebetween, wherein a LiRAP compound of Chemical Formula 1, Chemical Formula 2 or Chemical Formula 3 is used as the electrolyte.
LiRAP 화합물은 전기화학적으로 안정한 전위창, 낮은 전기 전도도, 고온 안정성, 낮은 독성 등의 특성을 모두 만족시키면서도 기존의 Cl을 치환한 구조에 비해 높은 리튬 이온 전도도를 나타내어, 전지의 전해질로서 바람직하게 사용하여 전지의 성능 및 열적 안정성을 개선한다.LiRAP compounds exhibit high lithium ion conductivity compared to conventional Cl-substituted structures while satisfying all of the characteristics such as electrochemically stable potential window, low electrical conductivity, high temperature stability and low toxicity, and are preferably used as electrolytes for batteries. Improve battery performance and thermal stability.
전해질로 사용할 경우, 상기 화학식 1, 화학식 2 또는 화학식 3의 LiRAP 화합물은 각각 단독으로 사용하거나 혼합하여 사용할 수 있으며, M 및 X의 다양한 조합을 갖도록 혼합하여 사용할 수 있다. When used as an electrolyte, the LiRAP compounds of Formula 1, Formula 2 or Formula 3 may be used alone or in combination, respectively, and may be mixed and used to have various combinations of M and X.
더불어, 상기 전해질은 리튬 이온 전도도를 더욱 높이기 위해, 이러한 목적으로 사용되는 물질을 더욱 포함할 수 있다.In addition, the electrolyte may further include a material used for this purpose in order to further increase the lithium ion conductivity.
일례로, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬이미드 등의 리튬염을 더욱 포함할 수 있다.In one example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carbonate, lithium 4-phenylborate, lithiumimide Lithium salts, such as these may further be included.
또한, 무기 고체 전해질 또는 유기 고체 전해질을 더욱 포함한다. 상기 무기고체 전해질은 세라믹 계열의 재료로, 결정성 또는 비결정성 재질이 사용될 수 있으며, Thio-LISICON(Li3 . 25Ge0 .25P0. 75S4), Li2S-SiS2, LiI-Li2S-SiS2, LiI-Li2S-P2S5, LiI-Li2S-P2O5, LiI-Li3PO4-P2S5, Li2S-P2S5, Li3PS4, Li7P3S11, Li2O-B2O3, Li2O-B2O3-P2O5, Li2O-V2O5-SiO2, Li2O-B2O3, Li3PO4, Li2O-Li2WO4-B2O3, LiPON, LiBON, Li2O-SiO2, LiI, Li3N, Li5La3Ta2O12, Li7La3Zr2O12, Li6BaLa2Ta2O12, Li3PO(4-3/2w)Nw (w는 w<1), Li3.6Si0.6P0.4O4 등의 무기 고체 전해질이 가능하다.In addition, it further comprises an inorganic solid electrolyte or an organic solid electrolyte. The inorganic solid electrolyte is a ceramic-based material, a crystalline or amorphous and crystalline materials can be used, Thio-LISICON (Li 3. 25 Ge 0 .25 P 0. 75 S 4), Li 2 S-SiS 2, LiI -Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 , Li 3 PS 4 , Li 7 P 3 S 11 , Li 2 OB 2 O 3 , Li 2 OB 2 O 3 -P 2 O 5 , Li 2 OV 2 O 5 -SiO 2 , Li 2 OB 2 O 3 , Li 3 PO 4 , Li 2 O-Li 2 WO 4 -B 2 O 3 , LiPON, LiBON, Li 2 O-SiO 2 , LiI, Li 3 N, Li 5 La 3 Ta 2 O12, Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Inorganic solid electrolytes such as Ta 2 O 12 , Li 3 PO (4-3 / 2w) Nw (w is w <1) and Li 3.6 Si 0.6 P 0.4 O 4 are possible.
유기 고체 전해질의 예로는 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리 에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴 등의 폴리머 계열의 재료에 리튬염을 혼합한 것을 사용할 수 있다. 이때, 이들은 단독으로 또는 적어도 하나 이상을 조합하여 사용할 수 있다.Examples of the organic solid electrolyte include polymer-based materials such as polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohol, and polyvinylidene fluoride. What mixed lithium salt can be used. At this time, these may be used alone or in combination of at least one or more.
또한, 이들 LiRAP 화합물은 분말 상태로 제조 후 압축을 통한 펠렛을 제조를 통해 고체 전해질로 적용하거나, 바인더 등의 공지의 물질들과 혼합하여 슬러리 코팅을 통한 후막 형태로 적용할 수 있다. 또한, 필요한 경우, 스퍼터링 등의 증착 공정을 통해 박막 형태의 전해질로 적용이 가능하다. In addition, these LiRAP compounds may be applied as a solid electrolyte through preparation of pellets through compression after preparation in powder form, or may be mixed with known materials such as binders and applied in the form of a thick film through slurry coating. In addition, if necessary, it can be applied as an electrolyte in the form of a thin film through a deposition process such as sputtering.
전해질로의 구체적인 적용 방법은 본 발명에서 특별히 한정하지 않으며, 이 분야의 통상의 지식을 가진 자에 의해 공지된 방법을 선정 또는 선택하여 적용할 수 있다.The specific application method to the electrolyte is not particularly limited in the present invention, and may be selected or selected by a method known by those skilled in the art.
상기 화학식 1, 화학식 2 또는 화학식 3의 LiRAP 화합물이 전해질로서 적용 가능한 리튬 이차 전지는 양극 또는 음극의 제한이 없으며, 특히 고온에서 작동하는 리튬-공기 전지, 리튬 산화물 전지, 리튬-황 전지, 리튬 금속 전지, 및 전고체 전지 등에 적용이 가능하다.The lithium secondary battery to which the LiRAP compound of Chemical Formula 1, Chemical Formula 2 or Chemical Formula 3 is applicable as an electrolyte is not limited to a positive electrode or a negative electrode, and particularly, a lithium-air battery, a lithium oxide battery, a lithium-sulfur battery, and a lithium metal that operate at a high temperature. It is applicable to a battery, an all-solid-state battery, and the like.
리튬 이차 전지의 양극은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4 (0≤x≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (M Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga; 0.01≤x≤0.3)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2(M Co, Ni, Fe, Cr, Zn 또는 Ta; 0.01≤x≤0.1) 또는 Li2Mn3MO8 (M Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2 - xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.The positive electrode of a lithium secondary battery may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Formula Li 1 + x Mn 2 - x O 4 (0≤x≤0.33), LiMnO 3, the lithium manganese oxide such as LiMn 2 O 3, LiMnO 2; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1 - x M x O 2 (M Co, Mn, Al, Cu, Fe, Mg, B or Ga; 0.01 ≦ x ≦ 0.3); With the formula LiMn 2 - x M x O 2 (M Co, Ni, Fe, Cr, Zn or Ta; 0.01≤x≤0.1) or Li 2 Mn 3 MO 8 (which is M Fe, Co, Ni, Cu or Zn) Lithium manganese composite oxides represented; Spinel-structure lithium manganese composite oxides represented by LiNi x Mn 2 - x O 4 ; LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 and the like may be included, but is not limited thereto.
이러한 양극 활물질은 양극 집전체 상에 형성될 수 있다. 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.Such a positive electrode active material may be formed on a positive electrode current collector. The positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, carbon, on the surface of aluminum or stainless steel, The surface-treated with nickel, titanium, silver, etc. can be used. In this case, the positive electrode current collector may use various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on a surface thereof so as to increase the adhesion with the positive electrode active material.
또한, 음극은 음극 집전체 상에 음극 활물질을 갖는 음극 합제층이 형성되거나, 음극 합제층(일예로, 리튬 호일)을 단독으로 사용한다. In addition, the negative electrode has a negative electrode mixture layer having a negative electrode active material formed on the negative electrode current collector, or uses a negative electrode mixture layer (for example, lithium foil) alone.
이때 음극 집전체나 음극 합제층의 종류는 본 발명에서 특별히 한정하지 않으며, 공지의 재질이 사용 가능하다.In this case, the type of the negative electrode current collector or the negative electrode mixture layer is not particularly limited in the present invention, and a known material may be used.
또한, 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다In addition, the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, carbon on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel , Surface-treated with nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used. In addition, the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on the surface, similar to the positive electrode current collector.
또한, 음극 활물질은 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼-P, 그래핀(graphene), 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상의 탄소계 물질, Si계 물질, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.In addition, the negative electrode active material is one selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, Ketjen black, super-P, graphene, fibrous carbon Carbon-based material, Si-based material, LixFe 2 O 3 (0≤x≤1), Li x WO 2 (0≤x≤1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 <x≤1;1≤y≤3; 1≤z≤8) Metal composite oxides; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide and the like may be included, but are not limited thereto.
여기에 더하여, 음극 활물질은 SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO22, Bi2O3, Bi2O4 및 Bi2O5 등의 산화물 등을 사용할 수 있고, 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.In addition, the negative electrode active material is SnxMe 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, group 1, group 2, group 3 elements of the periodic table, Metal composite oxides such as halogen, 0 <x ≦ 1, 1 ≦ y ≦ 3, 1 ≦ z ≦ 8); SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 2 , Bi 2 O 3 , Bi 2 O 4 and An oxide such as Bi 2 O 5 may be used, and a carbon-based negative active material such as crystalline carbon, amorphous carbon or a carbon composite may be used alone or in combination of two or more thereof.
이때, 상기 전극 합제층은 바인더 수지, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있다.In this case, the electrode mixture layer may further include a binder resin, a conductive material, a filler and other additives.
상기 바인더 수지는 전극 활물질과 도전재의 결합과 집전체에 대한 결합을 위해 사용한다. 이러한 바인더 수지의 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 하이드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder resin is used for bonding the electrode active material and the conductive material and the current collector. Examples of such binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.The said conductive material is used in order to improve the electroconductivity of an electrode active material further. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. Examples of the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
본 발명에 따른 리튬 이차 전지용 전극의 제조는 특별히 한정하지 않으며, 통상의 전지 제조 공정을 따른다. 일례로, 전극 집전체 상에 상기 전극 합제층 및 전극 보호층을 순차적으로 적층한다.The manufacturing of the electrode for lithium secondary batteries according to the present invention is not particularly limited, and a conventional battery manufacturing process is followed. For example, the electrode mixture layer and the electrode protective layer are sequentially stacked on an electrode current collector.
상기 리튬 이차전지의 형상은 특별히 제한되지 않으며 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.The shape of the lithium secondary battery is not particularly limited and may be in various shapes such as cylindrical, stacked, coin type.
또한, 본 발명은 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.In addition, the present invention provides a battery module including the lithium secondary battery as a unit cell, and provides a battery pack including the battery module.
상기 전지팩은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.The battery pack may be used as a power source for medium and large devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle; EV), 하이브리드 전기자동차(Hybrid Electric Vehicle; HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle; PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(Escooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium-to-large device include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (Escooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
[실시예]EXAMPLE
실시예 1: Li3-xClO1-xHalx의 제조 (Li2.963ClO0.963F0.037)Example 1: Preparation of Li 3-x ClO 1-x Hal x (Li 2.963 ClO 0.963 F 0.037 )
반응 용기에 LiNO3 분말 6.528 g, LiF 분말 0.048 g을 100 ml HNO3 (0.1 M)에 녹인 후 12시간 동안 상온 반응 시킨다. 반응 후, 회전 증발 농축기와 전기 오븐을 사용하여 건조 시킨다. 건조된 파우더는 900 ℃, 3일 동안 소성 과정을 거친 후 3 ℃/min의 속도로 상온으로 떨어트린다. 합성된 파우더는 미반응물 제거를 위해 증류수로 수 차례 씻겨내고 다시 600 ℃, 1시간 동안 공기 중에서 소성시킨다. 합성된 물질을 LiCl 분말 2.1 g과 hand mixing을 하여 grinding된 혼합 분말을 제조 하였다. 상기 혼합 분말에 3 ml H2O를 첨가하여 젤 상태의 혼합물을 제조하였다. 이어서, 산소 분위기 하에 600℃의 오토클레이브에서 2시간 이상 열처리 후, 약 1시간 동안 동일 온도 하에서 건조 시켜 Li2.963ClO0.963F0.037를 제조하였다.6.528 g of LiNO 3 powder and 0.048 g of LiF powder were dissolved in 100 ml HNO 3 (0.1 M) in a reaction vessel and allowed to react at room temperature for 12 hours. After the reaction, it is dried using a rotary evaporator and an electric oven. The dried powder is fired at 900 ° C. for 3 days and then dropped to room temperature at a rate of 3 ° C./min. The synthesized powder is washed several times with distilled water to remove unreacted material, and then calcined in air at 600 ° C. for 1 hour. The synthesized material was ground mixed with 2.1 g of LiCl powder to prepare a ground mixed powder. 3 ml H 2 O was added to the mixed powder to prepare a gel mixture. Subsequently, after annealing for 2 hours or more in an autoclave at 600 ° C. under an oxygen atmosphere, the resultant was dried under the same temperature for about 1 hour to prepare Li 2.963 ClO 0.963 F 0.037 .
실시예 2: Li3 -y- xMyO1 - xHalxCl의 제조 (Li2 . 926Na0 . 037ClO0 .963F0.037)Example 2: Li x M y O 3 -y- 1 - x x Hal Cl Preparation of (Li 2 926 Na 0 037 ClO 0 .963 F 0.037..)
반응 용기에 LiNO3 분말 6.451 g, LiF 분말 0.048 g, Na(CH3COO) 분말 0.15 g을 100 ml HNO3 (0.1 M)에 녹인 후 12시간 동안 상온 반응 시킨다. 반응 후, 회전 증발 농축기와 전기 오븐을 사용하여 건조 시킨다. 건조된 파우더는 900 ℃, 3일 동안 소성 과정을 거친 후 3 ℃/min의 속도로 상온으로 떨어트린다. 합성된 파우더는 미반응물 제거를 위해 증류수로 수 차례 씻겨내고 다시 600 ℃, 1시간 동안 공기 중에서 소성시킨다. 합성된 물질을 LiCl 분말 2.1 g과 hand mixing을 하여 grinding된 혼합 분말을 제조 하였다. 상기 혼합 분말에 3 ml H2O를 첨가하여 젤 상태의 혼합물을 제조하였다. 이어서, 산소 분위기 하에 600℃의 오토클레이브에서 2시간 이상 열처리 후, 약 1시간 동안 동일 온도 하에서 건조 시켜 Li2.926Na0.037ClO0.963F0.037를 제조하였다.6.451 g of LiNO 3 powder, 0.048 g of LiF powder, and 0.15 g of Na (CH 3 COO) powder were dissolved in 100 ml HNO 3 (0.1 M) in a reaction vessel and allowed to react at room temperature for 12 hours. After the reaction, it is dried using a rotary evaporator and an electric oven. The dried powder is fired at 900 ° C. for 3 days and then dropped to room temperature at a rate of 3 ° C./min. The synthesized powder is washed several times with distilled water to remove unreacted material, and then calcined in air at 600 ° C. for 1 hour. The synthesized material was ground mixed with 2.1 g of LiCl powder to prepare a ground mixed powder. 3 ml H 2 O was added to the mixed powder to prepare a gel mixture. Subsequently, heat treatment was performed for 2 hours or more in an autoclave at 600 ° C. under an oxygen atmosphere, followed by drying under the same temperature for about 1 hour to prepare Li 2.926 Na 0.037 ClO 0.963 F 0.037 .
실시예 3: Li3 -2y- xMyO1 - xHalxCl 의 제조 (Li1 . 889Ba0 . 037ClO0 .6963F0.037)Example 3: Li x M y O 3 -2y- 1 - x x Hal Cl Preparation of (Li 1 889 Ba 0 037 ClO 0 .6963 F 0.037..)
반응 용기에 LiNO3 분말 6.325 g, LiF 분말 0.048 g, Ba(CH3COO)2 분말 0.46 g을 100 ml HNO3 (0.1 M)에 녹인 후 12시간 동안 상온 반응 시킨다. 반응 후, 회전 증발 농축기와 전기 오븐을 사용하여 건조 시킨다. 건조된 파우더는 900 ℃, 3일 동안 소성 과정을 거친 후 3 ℃/min의 속도로 상온으로 떨어트린다. 합성된 파우더는 미반응물 제거를 위해 증류수로 수 차례 씻겨내고 다시 600 ℃, 1시간 동안 공기 중에서 소성시킨다. 합성된 물질을 LiCl 분말 2.1 g과 hand mixing을 하여 grinding된 혼합 분말을 제조 하였다. 상기 혼합 분말에 3 ml H2O를 첨가하여 젤 상태의 혼합물을 제조하였다. 이어서, 산소 분위기 하에 600℃의 오토클레이브에서 2시간 이상 열처리 후, 약 1시간 동안 동일 온도 하에서 건조 시켜 Li1.889Ba0.037ClO0.963F0.037를 제조하였다.6.325 g of LiNO 3 powder, 0.048 g of LiF powder, and 0.46 g of Ba (CH 3 COO) 2 powder were dissolved in 100 ml HNO 3 (0.1 M) in a reaction vessel and allowed to react at room temperature for 12 hours. After the reaction, it is dried using a rotary evaporator and an electric oven. The dried powder is fired at 900 ° C. for 3 days and then dropped to room temperature at a rate of 3 ° C./min. The synthesized powder is washed several times with distilled water to remove unreacted material, and then calcined in air at 600 ° C. for 1 hour. The synthesized material was ground mixed with 2.1 g of LiCl powder to prepare a ground mixed powder. 3 ml H 2 O was added to the mixed powder to prepare a gel mixture. Subsequently, after annealing for 2 hours or more in an autoclave at 600 ° C. under an oxygen atmosphere, the resultant was dried under the same temperature for about 1 hour to prepare Li 1.889 Ba 0.037 ClO 0.963 F 0.037 .
실험예 1: X-ray peak 시뮬레이션 분석Experimental Example 1: X-ray peak simulation analysis
F가 O-site에 치환된 물질의 최적구조를 계산하기 위해 범밀도함수론(DFT, density functional theory) 기반의 제일원리계산법을 이용했다. 우선, Li3ClO 의 단위결정격자(unit cell)를 x-축, y-축, z-축 방향으로 각각 3배씩 늘린 3x3x3 슈퍼셀(supercell)을 생성시킨 다음 (0.5, 0.5, 0.5) 위치에 있는 산소를 F로 치환했다. 전하균형을 위해 치환된 F 주변에 존재하는 리튬들 중 한 개를 제거해 리튬 vacancy를 생성했다. 계산에 사용된 구조는 아래 그림과 같으며 Li79Cl27O26F1의 화학식을 갖는다. 구조 최적화를 위해 평면파(planewave) 기반의 범밀도함수 방법 코드인 VASP를 이용했고 계산에서 전자-전자 사이 상호 작용을 모사하기 위한 교환-상관(exchange correlation)은 Generalized Gradient Approximation의(GGA) Perdew-Burke-Ernzerhor(PBE) 함수를 사용했다. 이 때 전자의 kinetic energy cutoff는 400eV, 에너지 smearing은 가우시안법을 사용했다. 전자의 에너지 (eigenvalue) 계산을 위한 역격자 공간에서의 k-point mesh는 감마 포인트만이 포함되는 조건을 사용했고, 모든 원자간에 작용하는 힘이 0.01 eV/Å 보다 작을 때까지 반복 계산을 했다. 이렇게 최적화 된 구조를 기반으로 x-ray peak 시뮬레이션을 했다. 도 8, 9, 10, 11은 상기 방법을 통해 도출해 낸 Li3ClO, Li2 . 963ClO0 .963F0.037, Li2.926Na0.037ClO0.963F0.037, Li1.889Ba0.037ClO0.963F0.037의 XRD peak spectra 이다.In order to calculate the optimal structure of F-substituted O-site, the first-order principle calculation based on density functional theory (DFT) was used. First, a 3x3x3 supercell is formed by increasing the unit cell of Li 3 ClO three times in the x-axis, y-axis, and z-axis directions, respectively, and then at the (0.5, 0.5, 0.5) position. Oxygen was replaced with F. To charge balance, one of the lithium present around the substituted F was removed to create a lithium vacancy. The structure used in the calculation is shown below and has the chemical formula Li 79 Cl 27 O 26 F 1 . We used VASP, a planewave based density density method code for structural optimization, and the exchange correlation to simulate electron-electron interactions in the calculations is based on Perdew-Burke of Generalized Gradient Approximation (GGA). We used the Ernzerhor (PBE) function. The electron kinetic energy cutoff was 400 eV and the energy smearing was Gaussian. The k-point mesh in inverse lattice space for the calculation of the energy (eigenvalue) used a condition involving only gamma points and repeated calculations until the force between all atoms was less than 0.01 eV / Å. Based on this optimized structure, x-ray peak simulation was performed. 8, 9, 10, 11 is Li 3 ClO, Li 2 derived through the above method . 963 ClO 0 .963 F 0.037 , Li 2.926 Na 0.037 ClO 0.963 F 0.037 , XRD peak spectra of Li 1.889 Ba 0.037 ClO 0.963 F 0.037 .

Claims (6)

  1. 하기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 리튬 리치 안티페로브스카이트(Lithium Rich Antiperovskites, LiRAP) 결정 구조를 갖는 화합물:A compound having a lithium rich antiperovskites (LiRAP) crystal structure represented by the following formula (1), (2) or (3):
    [화학식 1][Formula 1]
    Li3-xClO1-xHalx Li 3-x ClO 1-x Hal x
    (상기 화학식 1에서, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이다.)(In Formula 1, Hal is F, Cl, Br or I, 0 <x <1).
    [화학식 2][Formula 2]
    Li3-y-xMyO1-xHalxClLi 3-yx M y O 1-x Hal x Cl
    (상기 화학식 2에서, M은 Na, K, Rb 또는 Cs이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<2 이다.)(In Formula 2, M is Na, K, Rb or Cs, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <2).
    [화학식 3][Formula 3]
    Li3-2y-xMyO1-xHalxClLi 3-2y-x M y O 1-x Hal x Cl
    (상기 화학식 3에서, M은 Mg, Ca, Sr 또는 Ba이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<1 이다.)(In Formula 3, M is Mg, Ca, Sr or Ba, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <1).
  2. 제1항에 있어서, The method of claim 1,
    상기 화합물은 10 내지 10-10 S/cm의 이온 전도도를 갖는 것을 특징으로 하는 화합물.The compound is characterized in that it has an ionic conductivity of 10 to 10 -10 S / cm.
  3. 하기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 리튬 리치 안티페로브스카이트(Lithium Rich Antiperovskites, LiRAP) 결정 구조를 갖는 화합물을 포함하는 리튬 이차 전지용 전해질:An electrolyte for a lithium secondary battery comprising a compound having a lithium rich antiperovskites (Liithium Rich Antiperovskites, LiRAP) crystal structure represented by the following formula (1), (2) or (3):
    [화학식 1][Formula 1]
    Li3-xClO1-xHalx Li 3-x ClO 1-x Hal x
    (상기 화학식 1에서, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이다.)(In Formula 1, Hal is F, Cl, Br or I, 0 <x <1).
    [화학식 2][Formula 2]
    Li3-y-xMyO1-xHalxClLi 3-yx M y O 1-x Hal x Cl
    (상기 화학식 2에서, M은 Na, K, Rb 또는 Cs이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<2 이다.)(In Formula 2, M is Na, K, Rb or Cs, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <2).
    [화학식 3][Formula 3]
    Li3-2y-xMyO1-xHalxClLi 3-2y-x M y O 1-x Hal x Cl
    (상기 화학식 3에서, M은 Mg, Ca, Sr 또는 Ba이고, Hal은 F, Cl, Br 또는 I이고, 0<x<1 이고, 0<y<1 이다.)(In Formula 3, M is Mg, Ca, Sr or Ba, Hal is F, Cl, Br or I, 0 <x <1, 0 <y <1).
  4. 제3항에 있어서, The method of claim 3,
    상기 화합물은 10 내지 10-10 S/cm의 이온 전도도를 갖는 것을 특징으로 하는 리튬 이차 전지용 전해질.The compound is a lithium secondary battery electrolyte, characterized in that it has an ionic conductivity of 10 to 10 -10 S / cm.
  5. 제3항 또는 제4항의 리튬 이차 전지용 전해질을 포함하는 것을 특징으로 하는 리튬 이차 전지.A lithium secondary battery comprising the electrolyte for lithium secondary battery according to claim 3 or 4.
  6. 제5항에 있어서, The method of claim 5,
    상기 리튬 이차 전지는 리튬-공기 전지, 리튬 산화물 전지, 리튬-황 전지, 리튬 금속 전지 또는 전고체 전지 중에서 선택된 1종인 것을 특징으로 하는 리튬 이차 전지.The lithium secondary battery is a lithium secondary battery, characterized in that one selected from lithium-air battery, lithium oxide battery, lithium-sulfur battery, lithium metal battery or all-solid-state battery.
PCT/KR2017/010415 2016-09-30 2017-09-21 Lithium-rich antiperovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same WO2018062770A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17856656.8A EP3454406B1 (en) 2016-09-30 2017-09-21 Lithium-rich antiperovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same
JP2019503183A JP6615404B2 (en) 2016-09-30 2017-09-21 Lithium rich anti-perovskite compound, electrolyte for lithium secondary battery containing the same, and lithium secondary battery containing the same
CN201780026714.1A CN109075390B (en) 2016-09-30 2017-09-21 Lithium-rich anti-perovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same
US16/093,332 US10680282B2 (en) 2016-09-30 2017-09-21 Lithium-rich antiperovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0126258 2016-09-30
KR20160126258 2016-09-30
KR10-2017-0118438 2017-09-15
KR1020170118438A KR101886003B1 (en) 2016-09-30 2017-09-15 Lithium rich antiperovskite compound, electrolyte for lithium secondary battery comprising the same and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2018062770A1 true WO2018062770A1 (en) 2018-04-05

Family

ID=61762879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010415 WO2018062770A1 (en) 2016-09-30 2017-09-21 Lithium-rich antiperovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2018062770A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786822A (en) * 2018-12-28 2019-05-21 南方科技大学 Lithium-rich anti-perovskite oxide composite electrolyte and preparation method and application thereof
WO2020137392A1 (en) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 Solid electrolyte material and cell using same
WO2021002052A1 (en) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
WO2021002053A1 (en) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
CN113410465A (en) * 2021-06-17 2021-09-17 南方科技大学 Lithium-containing anti-perovskite material and application thereof
US20220223742A1 (en) * 2019-05-26 2022-07-14 Universidade Do Porto A one-electrode cell and series of two or more cells as a device
US11575150B2 (en) * 2019-03-22 2023-02-07 Ngk Insulators, Ltd. Lithium ion conductive material, all-solid-state secondary battery, and method of manufacturing solid electrolyte
US12091324B2 (en) 2018-12-26 2024-09-17 Panasonic Intellectual Property Management Co., Ltd. Method for producing halide
US12139414B2 (en) 2018-12-26 2024-11-12 Panasonic Intellectual Property Management Co., Ltd. Method for producing halide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070014141A (en) * 2004-03-06 2007-01-31 베르너 벱프너 Chemically stable solid lithium ion conductors
WO2012112229A2 (en) * 2011-02-14 2012-08-23 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
US20130202971A1 (en) 2011-02-14 2013-08-08 Yusheng Zhao Anti-Perovskite Solid Electrolyte Compositions
US20150364788A1 (en) * 2014-06-11 2015-12-17 Los Alamos National Security, Llc Methods for growth of lithium-rich antiperovskite electrolyte films and use thereof
WO2016131008A1 (en) * 2015-02-12 2016-08-18 The Board Of Regents Of The Nevada System Of Higher Educ. On Behalf Of The Univ. Of Nevada,Las Vegas Transition-metals doped lithium-rich anti-perovskites for cathode applications
KR20160126258A (en) 2015-04-23 2016-11-02 서민호 Tape cutter unit
KR20170118438A (en) 2016-04-15 2017-10-25 주식회사 엘지화학 Alkali-soluble resins and negative photosensitive resin composition comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070014141A (en) * 2004-03-06 2007-01-31 베르너 벱프너 Chemically stable solid lithium ion conductors
WO2012112229A2 (en) * 2011-02-14 2012-08-23 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
US20130202971A1 (en) 2011-02-14 2013-08-08 Yusheng Zhao Anti-Perovskite Solid Electrolyte Compositions
US20150364788A1 (en) * 2014-06-11 2015-12-17 Los Alamos National Security, Llc Methods for growth of lithium-rich antiperovskite electrolyte films and use thereof
WO2016131008A1 (en) * 2015-02-12 2016-08-18 The Board Of Regents Of The Nevada System Of Higher Educ. On Behalf Of The Univ. Of Nevada,Las Vegas Transition-metals doped lithium-rich anti-perovskites for cathode applications
KR20160126258A (en) 2015-04-23 2016-11-02 서민호 Tape cutter unit
KR20170118438A (en) 2016-04-15 2017-10-25 주식회사 엘지화학 Alkali-soluble resins and negative photosensitive resin composition comprising the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DENG, ZHI ET AL.: "Rational Composition Optimization of the Lithium-rich Li3OCl1-xBrx Anti-perovskite Superionic Conductors", CHEMISTRY OF MATERIALS: A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY, vol. 27, no. 10, 2015, pages 3749 - 3755, XP055558025 *
M. H. BRAGA ET AL.: "Novel Li3C10 based glasses with superionic properties for lithium batteries", J. MATER. CHEM. A, vol. 2, 2014, pages 5470 - 5480
See also references of EP3454406A4 *
XUJIE LU ET AL.: "Li-rich anti-perovskite Li30Cl films with enhanced ionic conductivity", CHEM. COMMUN., vol. 50, 2014, pages 11520
YUSHENG ZHAO ET AL.: "Superionic Conductivity in Lithium-Rich Anti-Perovskites", J. AM. CHEM. SOC., vol. 134, no. 36, 2012, pages 15042 - 15047, XP055194964, DOI: doi:10.1021/ja305709z

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137392A1 (en) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 Solid electrolyte material and cell using same
US12139414B2 (en) 2018-12-26 2024-11-12 Panasonic Intellectual Property Management Co., Ltd. Method for producing halide
US12091324B2 (en) 2018-12-26 2024-09-17 Panasonic Intellectual Property Management Co., Ltd. Method for producing halide
US12095030B2 (en) 2018-12-26 2024-09-17 Panasonic Intellectual Property Management Co., Ltd. Solid-electrolyte material and battery including the same
JPWO2020137392A1 (en) * 2018-12-26 2021-11-11 パナソニックIpマネジメント株式会社 Solid electrolyte material and batteries using it
JP7418014B2 (en) 2018-12-26 2024-01-19 パナソニックIpマネジメント株式会社 Solid electrolyte materials and batteries using them
CN109786822A (en) * 2018-12-28 2019-05-21 南方科技大学 Lithium-rich anti-perovskite oxide composite electrolyte and preparation method and application thereof
US11575150B2 (en) * 2019-03-22 2023-02-07 Ngk Insulators, Ltd. Lithium ion conductive material, all-solid-state secondary battery, and method of manufacturing solid electrolyte
US12040398B2 (en) * 2019-05-26 2024-07-16 Universidade Do Porto One-electrode cell and series of two or more cells as a device
US20220223742A1 (en) * 2019-05-26 2022-07-14 Universidade Do Porto A one-electrode cell and series of two or more cells as a device
EP3996166A4 (en) * 2019-07-04 2022-08-03 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery using same
CN113853696A (en) * 2019-07-04 2021-12-28 松下知识产权经营株式会社 Solid electrolyte material and battery using the same
CN113853355A (en) * 2019-07-04 2021-12-28 松下知识产权经营株式会社 Solid electrolyte material and battery using the same
WO2021002053A1 (en) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
US12125972B2 (en) 2019-07-04 2024-10-22 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery using same
WO2021002052A1 (en) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
CN113410465A (en) * 2021-06-17 2021-09-17 南方科技大学 Lithium-containing anti-perovskite material and application thereof

Similar Documents

Publication Publication Date Title
KR101886003B1 (en) Lithium rich antiperovskite compound, electrolyte for lithium secondary battery comprising the same and lithium secondary battery comprising the same
WO2018062770A1 (en) Lithium-rich antiperovskite compound, lithium secondary battery electrolyte comprising same, and lithium secondary battery comprising same
WO2018056650A1 (en) Lithium-rich antiperovskite-coated lco-based lithium composite, method for preparing same, and positive electrode active material and lithium secondary battery comprising same
WO2010101396A2 (en) Positive electrode material having a high energy density, and lithium secondary battery comprising same
WO2019112167A1 (en) Negative electrode for lithium metal battery and lithium metal battery comprising same
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2019168301A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2020080800A1 (en) Method for preparing cathode additive for lithium secondary battery, and cathode additive for lithium secondary battery, prepared thereby
WO2013109038A1 (en) Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2021096265A1 (en) Cathode active material for lithium secondary battery, and method for preparing cathode active material
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019078685A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2023191598A1 (en) Cathode for all-solid-state battery, and all-solid-state battery comprising same
WO2019112399A2 (en) Lithium cobalt-based cathode active material, production method therefor, cathode and secondary battery comprising same
WO2019093869A2 (en) Method for manufacturing positive electrode active material for secondary battery
WO2018124781A1 (en) Positive electrode active material for secondary battery, preparation method therefor, positive electrode comprising same for secondary battery, and secondary battery
WO2021153937A1 (en) Irreversible additive included in cathode material for secondary battery, cathode material comprising same, and secondary battery comprising cathode material
WO2016137287A1 (en) Cathode active material, cathode comprising same, and lithium secondary battery
WO2022114670A1 (en) Additive for positive electrode of lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2021172933A1 (en) Irreversible additive, cathode comprising irreversible additive, and lithium secondary battery comprising cathode
WO2024177333A1 (en) Sulfide-based solid electrolyte, method for preparing sulfide-based solid electrolyte, and all-solid-state battery including sulfide-based solid electrolyte

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019503183

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017856656

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017856656

Country of ref document: EP

Effective date: 20181105

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE