Nothing Special   »   [go: up one dir, main page]

WO2018061774A1 - 情報処理システム、情報処理装置、情報処理方法、及び記憶媒体 - Google Patents

情報処理システム、情報処理装置、情報処理方法、及び記憶媒体 Download PDF

Info

Publication number
WO2018061774A1
WO2018061774A1 PCT/JP2017/033061 JP2017033061W WO2018061774A1 WO 2018061774 A1 WO2018061774 A1 WO 2018061774A1 JP 2017033061 W JP2017033061 W JP 2017033061W WO 2018061774 A1 WO2018061774 A1 WO 2018061774A1
Authority
WO
WIPO (PCT)
Prior art keywords
dialogue
information
user
agent
unit
Prior art date
Application number
PCT/JP2017/033061
Other languages
English (en)
French (fr)
Inventor
祐紀 金子
田中 康成
政久 篠崎
梅木 秀雄
久子 吉田
藍 松井
建良 金谷
啓司 久保田
一穂 井越
元一 岩崎
Original Assignee
株式会社東芝
東芝デジタルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝デジタルソリューションズ株式会社 filed Critical 株式会社東芝
Priority to US16/336,820 priority Critical patent/US10984794B1/en
Priority to CN201780060050.0A priority patent/CN109791551A/zh
Publication of WO2018061774A1 publication Critical patent/WO2018061774A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B7/00Electrically-operated teaching apparatus or devices working with questions and answers
    • G09B7/02Electrically-operated teaching apparatus or devices working with questions and answers of the type wherein the student is expected to construct an answer to the question which is presented or wherein the machine gives an answer to the question presented by a student
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/1822Parsing for meaning understanding

Definitions

  • Embodiments described herein relate generally to an information processing system, an information processing apparatus, an information processing method, and a storage medium.
  • the problem to be solved by the present invention is to provide an information processing system, an information processing apparatus, an information processing method, and a program capable of various responses to a user's utterance.
  • the information processing system of the embodiment includes a storage unit, a plurality of dialogue units, and a selection unit.
  • the storage unit stores rule information indicating a rule for generating a comment in a dialogue.
  • Each of the plurality of dialog units performs a dialog with a user based on the rule information.
  • the selection unit selects a part or all of the plurality of dialogue units to perform a dialogue.
  • the flowchart which shows the flow of the process by the information processing system which concerns on the embodiment.
  • the figure which shows the data structure of the order information classified by scene which concerns on the embodiment The block diagram which shows the structure of the response control apparatus which concerns on 3rd Embodiment.
  • the figure which shows the data structure of the agent attribute information which concerns on the embodiment The figure which shows the data structure of the user information which concerns on the same embodiment.
  • the block diagram which shows the structure of the response control apparatus which concerns on 4th Embodiment The block diagram which shows the structure of the terminal device which concerns on 5th Embodiment.
  • FIG. 1 is a diagram illustrating an overview of an information processing system.
  • the information processing system 1 is a system that returns a statement, an opinion, an option, or the like in accordance with a user's statement.
  • the information processing system 1 returns in response to a user's utterance is referred to as a “response”.
  • the exchange between the user's utterance and the utterance generated by the information processing system 1 is referred to as “dialog”.
  • the utterance from the user input to the information processing system 1 and the response output from the information processing system 1 are not limited to voice but may be text or the like.
  • the information processing system 1 is provided with a configuration for generating a response.
  • a unit of a configuration that can generate a response independently is referred to as an “agent”.
  • the information processing system 1 includes a plurality of agents. Each agent has a different personality.
  • “individuality” refers to an element that affects the response tendency, the content of the response, the method of expressing the response, and the like.
  • the individuality of each agent is used for information used to generate a response (for example, machine learning teaching data, history information described later, user information, etc.), logical expansion in response generation, and response generation. It is determined by factors such as algorithm. Agent personalization may be performed in any manner.
  • the information processing system 1 presents responses generated by a plurality of agents having different personalities, the information processing system 1 can propose various ideas and options to the user and support the user's decision.
  • the first type of agent is an agent that generates a response accompanied by an assertion such as an opinion or an impression.
  • the first type agent is referred to as a “dialog agent”.
  • the second type of agent is an agent that functions as a window in the dialogue between the user and the information processing system 1.
  • the second type agent is referred to as “concierge”.
  • the concierge has a function for enabling an appropriate response to a user's speech. For example, the concierge asks the user a question for clarifying the user's intention to speak, and specifies a scene (scene) of dialogue.
  • a scene is the type of background or aspect of a user's remarks and is also called a situation.
  • the concierge selects a dialog agent that actually responds according to the scene.
  • the concierge changes the dialogue agent that actually responds among the dialogue agents according to the scene.
  • a dialogue agent that actually responds may be referred to as a “response agent”.
  • “Actually responding” means generating a response that is actually presented to the user. That is, the response generated by the response agent is presented to the user.
  • a dialog agent that is not a response agent may not generate a response or may generate a response.
  • a response generated by a dialog agent that is not a response agent is not presented to the user. In this way, the information processing system 1 narrows down the response agents according to the scene, and thus it is easy to present only the response suitable for the scene.
  • FIG. 2 is a block diagram illustrating a configuration of the information processing system 1.
  • the information processing system 1 includes a plurality of terminal devices 10-1, 10-2, ... and a response control device 30.
  • the terminal devices 10-1, 10-2,... are collectively referred to as the terminal device 10 unless otherwise specified.
  • the terminal device 10 and the response control device 30 are communicably connected via a network NW.
  • the terminal device 10 is an electronic device including a computer system. Specifically, the terminal device 10 is a personal computer, a mobile phone, a tablet, a smartphone, a PHS (Personal Handy-phone System) terminal device, a game machine, or the like. The terminal device 10 receives input from the user or presents information to the user.
  • a personal computer a mobile phone, a tablet, a smartphone, a PHS (Personal Handy-phone System) terminal device, a game machine, or the like.
  • the terminal device 10 receives input from the user or presents information to the user.
  • the response control device 30 is an electronic device including a computer system. Specifically, the response control device 30 is a server device or the like.
  • the response control device 30 implements an agent.
  • an agent is a computer system that mimics human intelligent functions such as learning, inference, and judgment.
  • An algorithm for realizing the artificial intelligence may be arbitrary. Specifically, artificial intelligence may be realized by a neural network, case-based reasoning, or the like.
  • the terminal device 10 receives a speech input from the user.
  • the terminal device 10 transmits information indicating the user's speech to the response control device 30.
  • the response control device 30 receives information indicating the user's speech from the terminal device 10.
  • the response control device 30 refers to the information indicating the user's speech and generates information indicating the response according to the user's speech.
  • the response control device 30 transmits information indicating a response to the terminal device 10.
  • the terminal device 10 receives information indicating a response from the response control device 30.
  • the terminal device 10 refers to information indicating the response, and presents the content of the response by display or voice.
  • FIG. 3 is a block diagram illustrating a configuration of the terminal device 10.
  • the terminal device 10 includes a communication unit 11, an input unit 12, a display unit 13, an audio output unit 14, a storage unit 15, and a control unit 16.
  • the communication unit 11 transmits and receives various information to and from other devices connected to the network NW such as the response control device 30.
  • the communication unit 11 includes a communication IC (Integrated Circuit) and the like.
  • the input unit 12 receives input of various information.
  • the input unit 12 accepts input of speech by the user and selection of a conversation scene.
  • the input unit 12 may accept input from the user by any method such as character input, voice input, and pointing.
  • the input unit 12 includes a keyboard, a mouse, a touch sensor, a microphone, and the like.
  • the display unit 13 displays various information. For example, the display unit 13 displays the content of the user's speech, the content of the agent's response, and the like.
  • the display unit 13 includes a liquid crystal display panel, an organic EL (Electro-Luminescence) display panel, and the like.
  • the audio output unit 14 reproduces various sound sources. For example, the audio output unit 14 outputs the response contents and the like as audio.
  • the audio output unit 14 includes a speaker, a woofer, and the like.
  • the storage unit 15 stores various information.
  • the storage unit 15 stores a program that can be executed by a CPU (Central Processing Unit) included in the terminal device 10, information that is referred to by the program, and the like.
  • the storage unit 15 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the control unit 16 controls various configurations included in the terminal device 10.
  • the control unit 16 is realized by a CPU included in the terminal device 10 executing a program stored in the storage unit 15.
  • the control unit 16 includes a dialogue processing unit 161.
  • the dialogue processing unit 161 controls input / output processing for dialogue.
  • the dialogue processing unit 161 executes processing for providing a user interface for dialogue.
  • the dialogue processing unit 161 controls transmission / reception of information indicating a user's speech and information indicating a response to / from the response control device 30.
  • FIG. 4 is a block diagram showing the configuration of the response control device 30.
  • the response control device 30 includes a communication unit 31, a storage unit 32, and a control unit 33.
  • the communication unit 31 transmits / receives various information to / from other devices connected to the network NW such as the terminal device 10.
  • the communication unit 31 includes a communication IC and the like.
  • the storage unit 32 stores various information.
  • the storage unit 32 stores a program that can be executed by a CPU included in the response control device 30, information that is referred to by the program, and the like.
  • the storage unit 32 includes a ROM, a RAM, and the like.
  • the storage unit 32 includes a concierge configuration information storage unit 321, one or more dialog agent configuration information storage units 322-1, 322-2,..., A scene information storage unit 323, and a history information storage unit 324.
  • the dialogue agent configuration information storage units 322-1, 322-2,... are collectively referred to as a dialogue agent configuration information storage unit 322 unless otherwise specified.
  • the concierge configuration information storage unit 321 stores concierge configuration information.
  • the concierge configuration information is information indicating the configuration of the concierge execution unit 34 described later.
  • the concierge configuration information includes information such as parameters of an activation function that varies as a result of machine learning, for example, machine learning.
  • the concierge configuration information is an example of information indicating response generation rules in dialogue.
  • the interactive agent configuration information storage unit 322 stores interactive agent configuration information.
  • the dialogue agent configuration information is information indicating the configuration of the dialogue agent execution unit 35 described later.
  • the dialogue agent configuration information includes information such as parameters of an activation function that varies as a result of machine learning, for example, machine learning.
  • the dialog agent configuration information is an example of information indicating response generation rules in a dialog.
  • the concierge information and the dialogue agent configuration information are, for example, information that uniquely associates a speech and a response to the speech. It's okay.
  • the scene information storage unit 323 stores scene information.
  • the scene information is information that associates a scene with a dialogue agent.
  • FIG. 5 is a diagram showing a data structure of scene information.
  • the scene information includes scene identification information (“scene” in FIG. 5), category information (“category” in FIG. 5), subcategory information (“subcategory” in FIG. 5), and dialogue agent identification information (“ Dialogue agents ”) are associated with each other.
  • Scene identification information is information for uniquely identifying a scene.
  • the category information is information indicating a large classification of scenes.
  • the subcategory information is information indicating a small classification of a scene.
  • the dialogue agent identification information is information for uniquely identifying the dialogue agent.
  • one or more dialog agent identification information may be associated with one scene identification information.
  • the terminal device 10 and the response control device 30 can select a dialogue agent according to the scene by referring to the scene information.
  • the history information storage unit 324 stores history information.
  • the history information is information indicating a history of dialogue between the user and the information processing system 1.
  • the history information may be managed for each user.
  • FIG. 6 is a diagram illustrating a data configuration of history information.
  • the history information includes topic identification information (“topic” in FIG. 6), scene identification information (“scene” in FIG. 6), positive keyword information (“positive keyword” in FIG. 6), and negative keyword information (FIG. 6). And “negative keyword” in FIG.
  • Topic identification information is information for uniquely identifying conversations.
  • the positive keyword information is information indicating a keyword for which the user has shown a positive reaction in the dialogue.
  • the negative keyword information is information indicating a keyword for which the user has reacted negatively in the dialogue.
  • one or more positive keyword information and negative keyword information may be associated with one scene identification information.
  • the history information indicates the history of dialogue. That is, by referring to the history information, it is possible to grasp the tendency of response desired for each user from the history information. Therefore, the terminal device 10 and the response control device 30 can prevent a proposal that is difficult for the user to accept by referring to the history information, or can make a proposal that is easy for the user to accept.
  • the control unit 33 controls various configurations included in the response control device 30.
  • the control unit 33 is realized by a CPU included in the response control device 30 executing a program stored in the storage unit 32.
  • the control unit 33 includes a dialogue processing unit 331, a concierge execution unit 34, and one or more dialogue agent execution units 35-1, 35-2,.
  • the dialogue agent execution units 35-1, 35-2,... are collectively referred to as a dialogue agent execution unit 35 unless otherwise specified.
  • the dialogue processing unit 331 controls input / output processing for dialogue.
  • the dialogue processing unit 331 is configured on the response control device 30 side corresponding to the dialogue processing unit 161 of the terminal device 10.
  • the dialogue processing unit 331 controls transmission / reception of information indicating a user's speech and information indicating a response with the terminal device 10.
  • the concierge execution unit 34 functions as a concierge.
  • the concierge execution unit 34 is realized based on the concierge configuration information.
  • the concierge execution unit 34 includes a dialogue unit 341, a scene determination unit 342, an agent selection unit 343, a learning unit 344, and a history management unit 345.
  • the dialogue unit 341 generates a concierge response to the user's utterance.
  • the scene determination unit 342 determines a dialog scene based on the mode of the dialog start request from the user. For example, the scene determination unit 342 may determine a conversation scene based on a scene selection by the user. In this case, at the start of the dialogue, the display unit 13 may display a scene type so that the user can select the scene type. For example, the scene determination unit 342 may determine a scene based on a user's statement. In this case, information associating the keyword with the scene is prepared in advance. Then, the scene determination unit 342 may determine the scene from the correspondence between the keyword included in the user's statement and the scene.
  • the correspondence relationship between the utterance and the scene may be machine learned in advance, and the scene may be determined based on the result of the machine learning and the user's utterance.
  • the scene determination unit 342 may determine a conversation scene by an arbitrary method.
  • the agent selection unit 343 selects a dialogue agent according to the scene.
  • the agent selection unit 343 refers to the scene information, and specifies the dialogue agent associated with the scene specified by the scene determination unit 342. In other words, the agent selection unit 343 uses the scene determined by the scene determination unit 342 to search for scene information and identify response agent candidates.
  • the agent selection unit 343 selects a response agent from the identified dialog agents. Selection of response agents from candidates may be performed randomly or in a predetermined order. Thereby, the agent selection part 343 can select the dialogue agent according to the scene.
  • the agent selection unit 343 may select a predetermined number of dialogue agents, or may select a number of dialogue agents according to the dialogue.
  • the number of response agents may be preset for each scene, and the number of agents corresponding to the scene may be selected.
  • the designation of the number of dialogue agents may be accepted from the user at the start or during the dialogue, and the number of dialogue agents designated by the user may be selected.
  • the agent selection unit 343 may select a response agent based on the history information. For example, the agent selection unit 343 may preferentially select a dialogue agent in which the user has made a positive statement from the history of dialogue. In this way, the agent selection unit 343 may estimate the compatibility between the user and the dialogue agent with reference to the history information, and select the dialogue agent for compatibility with the user as the response agent.
  • the agent selection unit 343 may select the response agent a plurality of times in one dialog. In other words, the agent selection unit 343 may reselect the response agent. That is, the agent selection unit 343 may select a response agent for each session in one dialog. For example, when a response different from the presented response is requested in the user's speech, the agent selection unit 343 re-uses a dialog agent different from the selected response agent as a new response agent. select.
  • the agent selection unit 343 may reselect the response agent when the dialogue does not result. For example, the agent selecting unit 343 makes a positive utterance from the user when a predetermined number of times have been made since the start of the conversation, when a predetermined time has elapsed since the start of the conversation, or when a response has been presented. If not, it may be determined that the dialogue does not result. For example, the agent selection unit 343 may reselect the response agent when the conversation scene is switched. As described above, by enabling reselection of the response agent, the information processing system 1 can present various responses.
  • the agent selection unit 343 may select, as the response agent, a conversation agent that is not associated with the scene determined by the scene determination unit 342 in the scene information. That is, the agent selection unit 343 may select a dialogue agent that does not correspond to a scene. For example, the agent selection unit 343 selects a dialog agent that does not correspond to one or two scenes as a response agent.
  • Such a dialogue agent may give a response that does not match the scene, but on the other hand, there is a possibility that it can make a response that is significantly different from other response agents.
  • the agent selection unit 343 sets some response agents as dialog agents according to the scene, and sets other response agents as dialog agents not related to the scene. Thereby, the information processing system 1 can present responses that are easily accepted by the user and diversify the responses.
  • the learning unit 344 performs machine learning for realizing the function of the concierge execution unit 34.
  • the learning unit 344 can execute two types of machine learning: machine learning performed before the start of use by the user and machine learning based on user evaluation in a dialogue.
  • the result of machine learning by the learning unit 344 is reflected in the concierge configuration information.
  • “evaluation” is described as an index representing the accuracy and accuracy of response for the user.
  • Teacher data used for machine learning by the learning unit 344 may be prepared for each concierge function.
  • the teacher data is data in which a user's speech, a response, and an evaluation are associated with each other.
  • teacher data is data in which a user's speech, a scene, and an evaluation are associated with each other.
  • teacher data is data in which a scene, a dialogue agent, and an evaluation are associated with each other.
  • the history management unit 345 manages history information. For example, when a positive statement is included in the user's statement, the history management unit 345 identifies a keyword of the user's statement or a response keyword corresponding to the statement, and registers the keyword in the positive keyword information. For example, when a negative message is included in the user's statement, the history management unit 345 identifies a keyword of the user's statement or a response keyword corresponding to the statement and registers it in the negative keyword information. As described above, the history management unit 345 adds, edits, and deletes history information in accordance with the data configuration of the history information.
  • the dialogue agent execution units 35-1, 35-2,... Function as different dialogue agents.
  • the dialogue agent execution units 35-1, 35-2,... are realized based on the dialogue agent configuration information stored in the dialogue agent configuration information storage units 322-1, 322-2,.
  • the dialogue agent execution units 35-1, 35-2,... include dialogue units 351-1, 351-2,... And learning units 352-1, 352-2,.
  • the dialogue units 351-1, 351-2,... are collectively referred to as the dialogue unit 351.
  • the learning units 352-1, 352-2,... are collectively referred to as a learning unit 352.
  • the dialogue unit 351 generates a response of the dialogue agent to the user's utterance.
  • the learning unit 352 performs machine learning for realizing the function of the dialogue agent execution unit 35.
  • the learning unit 352 can execute two types of machine learning: machine learning performed before the start of use by the user and machine learning based on user evaluation in a dialog. The result of machine learning by the learning unit 352 is reflected in the dialogue agent configuration information.
  • Teacher data used for machine learning by the learning unit 352 is data in which a user's speech, response, and evaluation are associated with each other. By repeating learning using such teaching data, the dialogue unit 351 can generate a response according to the user's remarks.
  • FIG. 7 is a flowchart showing the flow of processing by the information processing system 1.
  • the response control device 30 determines a scene based on, for example, selection of a scene by the user. Thereafter, the information processing system 1 advances the processing to step S102.
  • the response control device 30 selects a response agent based on the scene determination result in step S100. Thereafter, the information processing system 1 advances the processing to step S104.
  • Step S104 The information processing system 1 interacts with the user by using the response agent.
  • the response control device 30 generates a response to the user's utterance by the response agent.
  • the terminal device 10 presents the user's utterance and the response generated by the response agent in response to the utterance to the user. Thereafter, the information processing system 1 advances the processing to step S106.
  • Step S106 The response control device 30 performs machine learning of the concierge and the dialogue agent based on the dialogue result.
  • the dialogue result is a user's response to the presented response, a summary of the dialogue, and the like, and indicates selection of a response agent and evaluation of the response agent's response. Thereafter, the information processing system 1 ends the process shown in FIG.
  • the user's evaluation for machine learning in step S106 may be specified from the user's remarks or may be input by the user after the dialogue.
  • the evaluation may be input as a binary value of affirmation and negative, may be input as a value of three or more levels, or may be converted from a natural sentence to a value.
  • the evaluation may be performed based on dialogue. For example, the number of user utterances, the number of responses, the length of the dialogue, etc. in the dialogue indicates that the dialogue was active. Therefore, the number of user utterances, the number of responses, and the length of the dialogue in the dialogue may be used as evaluation indexes.
  • the evaluation target may be all agents or a part of agents.
  • the evaluation of the entire dialogue may be reflected on all agents who participated in the dialogue.
  • the evaluation of the response may be reflected only on the agent that made the response.
  • Evaluation may be reflected only for some functions of the concierge. For example, in the concierge function, the evaluation may be reflected only for the scene determination, or the evaluation may be reflected only for the selection of the dialogue agent.
  • the processing shown in FIG. 7 may be performed in an order different from the order shown in FIG.
  • the processes of steps S100, S102, and S106 may be performed as part of the process of step S104.
  • the concierge responds to the user's statement at the beginning of the dialogue, and the processing of steps S100 and S102 may be performed in the dialogue.
  • the information processing system 1 may omit the process of step S106.
  • FIG. 8 is a diagram illustrating an example of presentation of a response by the information processing system 1.
  • the information processing system 1 determines that the scene is “medical consultation” based on the keyword “hot” in the user's comment “what is hot”. Then, the information processing system 1 selects four interaction agents a1 to a4 corresponding to the “medical consultation” scene as response agents. Each response agent generates an independent response to the statement “It's hot ...”.
  • the terminal device 10 displays the responses of the response agents side by side, and displays the response agent attributes in association with the responses. Thereby, the user can confirm the response agent and the response generated by the response agent at a time.
  • the information processing system 1 (an example of an information processing system) according to the present embodiment includes a storage unit 32 (an example of a storage unit), a plurality of interaction units 351 (an example of an interaction unit), and agent selection.
  • Unit 343 (an example of a selection unit).
  • the storage unit 32 stores dialogue agent configuration information (an example of rule information) indicating a rule for generating a statement in a dialogue.
  • Each of the dialog units 351 performs a dialog with the user based on the dialog agent configuration information.
  • the agent selection unit 343 selects some or all of the plurality of dialogue units 351 and causes the dialogue to be performed.
  • the information processing system 1 generates a remark by the selected dialogue unit 351 among the plurality of dialogue units 351 and performs a dialogue. For example, the information processing system 1 generates a plurality of responses in parallel with respect to one utterance of the user. Therefore, the information processing system 1 can make various responses to the user's comments.
  • the information processing system 1 includes a scene determination unit 342 (an example of a scene determination unit).
  • the scene determination unit 342 determines a dialog scene based on a mode of a dialog start request for one session from the user.
  • the agent selection unit 343 uses the scene determined by the scene determination unit 342 to search for scene information (an example of scene-specific correspondence information) in which a scene is associated with one or more dialog units 351, and a plurality of dialog units 351. Select some or all of.
  • the information processing system 1 selects the dialogue unit 351 in accordance with the dialogue scene. That is, the information processing system 1 switches the dialogue unit 351 that performs a response for each scene. Therefore, the information processing system 1 can make an appropriate response according to the scene in response to the user's statement.
  • the dialogue unit 351 can generate a statement by referring to a history of dialogues that have been performed with the user in the past.
  • the information processing system 1 generates a statement based on the past dialogue. For example, the information processing system 1 can confirm a message rejected by the user or confirm a message preferred by the user from the history of the conversation. Therefore, the information processing system 1 can make an appropriate response according to the user in response to the user's remarks.
  • the information processing system 1A (not shown) according to the second embodiment is a system that responds by a plurality of dialogue agents. However, the information processing system 1 selects the response agent based on a predetermined correspondence between the scene and the dialogue agent, whereas the information processing system 1A is based on the evaluation of the dialogue agent for each scene. The difference is that a response agent is selected.
  • the information processing system 1A includes a response control device 30A instead of the response control device 30 included in the information processing system 1.
  • FIG. 9 is a block diagram showing a configuration of the response control device 30A.
  • the storage unit 32 of the response control device 30A includes a scene order information storage unit 325A.
  • the concierge execution unit 34 of the response control device 30A includes an evaluation management unit 346A.
  • the concierge execution unit 34 of the response control device 30A includes an agent selection unit 343A instead of the agent selection unit 343 included in the concierge execution unit 34 of the response control device 30.
  • the scene-specific order information storage unit 325A stores scene-specific order information.
  • the scene order information is information indicating the evaluation of the dialogue agent for each scene.
  • the scene order information is managed for each scene.
  • FIG. 10 is a diagram illustrating a data configuration of the order information for each scene.
  • the scene-specific rank information corresponds to rank information ("rank" in FIG. 10), dialog agent identification information ("dialog agent” in FIG. 10), and evaluation value information ("evaluation value” in FIG. 10).
  • rank in FIG. 10
  • dialog agent dialog agent
  • evaluation value evaluation value
  • the order information is information indicating the priority order of the conversation agents in selecting the response agent.
  • the evaluation value information is information indicating the evaluation value of the dialogue agent. In the example shown in FIG. 10, the higher the evaluation value, the higher the priority order of the conversation agent is set.
  • the priority order in selecting the response agent and the dialogue agent are associated with each scene. Accordingly, the terminal device 10 and the response control device 30 can select a dialogue agent having a high evaluation in each scene as a response agent by referring to the scene order information.
  • the evaluation management unit 346A manages the order information for each scene. For example, the evaluation management unit 346A may increase or decrease the evaluation value of the response agent in the scene order information based on the user's evaluation of the dialogue. For example, the evaluation management unit 346A may increase or decrease the evaluation value of the response agent in the rank order information based on the user's comments in the conversation.
  • the evaluation value of the response agent may be increased by a predetermined amount.
  • the evaluation management unit 346A may decrease the evaluation value of the response agent by a predetermined amount. Then, the evaluation management unit 346A updates the correspondence relationship between the priority order and the dialogue agent according to the increase or decrease of the evaluation value.
  • the agent selection unit 343A selects a response agent from among the conversation agents in the same manner as the agent selection unit 343.
  • the agent selection unit 343A is different from the agent selection unit 343 in that the agent selection unit 343A can select a response agent with reference to the scene order information.
  • the agent selection unit 343A may select the dialogue agents in descending order of priority in the scene order information.
  • the agent selection unit 343A may group the dialog agents according to the priority order, and select a predetermined number of dialog agents from each group as response agents.
  • the method for selecting the response agent with reference to the scene order information may be arbitrary.
  • the information processing system 1A includes the evaluation management unit 346A (an example of an evaluation unit).
  • the evaluation management unit 346A performs evaluation for each scene with respect to the plurality of dialogue units 351.
  • the agent selection unit 343A (an example of a selection unit) is a part of the plurality of dialogue units 351 based on scene order information (an example of scene-specific evaluation information) indicating evaluation for each of the plurality of dialogue units 351. Or select all.
  • the information processing system 1A selects the dialogue unit 351 based on the evaluation for each scene. For example, the information processing system 1A preferentially selects the dialogue unit 351 highly evaluated in each scene. Therefore, the information processing system 1A can perform an appropriate response according to the scene in response to the user's statement.
  • An information processing system 1 ⁇ / b> B (not shown) according to the third embodiment is a system that performs a response by a plurality of dialogue agents in the same manner as the information processing system 1. However, the information processing system 1 selects the response agent based on a predetermined correspondence between the scene and the dialogue agent, whereas the information processing system 1B is based on the relationship between the user and the dialogue agent. The difference is that the response agent is selected.
  • the information processing system 1B includes a response control device 30B instead of the response control device 30 included in the information processing system 1.
  • FIG. 11 is a block diagram showing a configuration of the response control device 30B.
  • the storage unit 32 of the response control device 30B includes an agent attribute information storage unit 326B and a user information storage unit 327B.
  • the concierge execution unit 34 of the response control device 30B includes an agent selection unit 343B instead of the agent selection unit 343 included in the concierge execution unit 34 of the response control device 30.
  • the agent attribute information storage unit 326B stores agent attribute information.
  • the agent attribute information is information indicating the attribute of the dialog agent.
  • FIG. 12 is a diagram illustrating a data configuration of agent attribute information.
  • the agent attribute information includes dialogue agent identification information (“conversation agent” in FIG. 12), dialogue agent category information (“category” in FIG. 12), dialogue agent subcategory information (“subcategory” in FIG. 12), and dialogue agent.
  • Personality information (“personality" in FIG. 12) is associated with each other.
  • Dialogue agent category information is information indicating the major classification of dialogue agents.
  • the dialogue agent subcategory information is information indicating a small classification of the dialogue agent.
  • the dialogue agent personality information is the personality of the dialogue agent, which is information indicating the tendency of speech.
  • the dialog agent is associated with the attribute.
  • the agent attribute information indicates the personality of the dialogue agent. Therefore, the terminal device 10 and the response control device 30 can confirm the individuality of the dialog agent by referring to the agent attribute information.
  • the user information storage unit 327B stores user information.
  • the user information is information indicating user attributes.
  • FIG. 13 is a diagram illustrating a data configuration of user information.
  • User information includes user identification information (“user” in FIG. 13), age information (“age” in FIG. 13), gender information (“sex” in FIG. 13), and preference information (“preference” in FIG. 13).
  • user personality information (“personality” in FIG. 13) are associated with each other.
  • User identification information is information for uniquely identifying a user.
  • Age information is information indicating the age of the user.
  • Gender information is information indicating the gender of the user.
  • the preference information is information indicating the user's preference.
  • the user personality information is information indicating the personality of the user.
  • the user is associated with the attribute.
  • the user information indicates the individuality of the user. Therefore, the terminal device 10 and the response control device 30 can confirm the individuality of the user by referring to the user information.
  • the agent selection unit 343B selects a response agent from the conversation agents.
  • the agent selection unit 343B is different from the agent selection unit 343 in that the agent selection unit 343B can select a response agent by referring to the agent attribute information and the user information.
  • the agent selection unit 343B may select a response agent based on the relationship between the agent attribute information and the user information.
  • the agent selection unit 343B may refer to the agent attribute information and the user information, and select a dialog agent close to the user's personality as a response agent.
  • the personality of the user and the personality of the response agent can be matched, so that it is possible to select a response agent that makes a proposal that is easy for the user to accept.
  • the agent selection unit 343 may select a response agent based on the diversity of agent attribute information and user information.
  • the agent selection unit 343B may refer to the agent attribute information and the user information, and select a dialog agent having personality different from that of the user as a response agent. This makes it possible to select a response agent that makes a proposal that is difficult for the user to come up with.
  • the method for selecting the response agent with reference to the agent attribute information and the user information may be arbitrary. Information indicating the correspondence between attributes, that is, the distance between the user's personality and the personality of the dialog agent, may be determined in advance.
  • the agent selection unit 343B may select the response agent with reference to the scene information, or may select the response agent without referring to the scene information. When referring to the scene information, the agent selection unit 343B may select a conversation agent having personality close to the user or different personality from the user among the interaction agents associated with the scene in the scene information. .
  • the agent selection unit 343B (an example of a selection unit) includes user information (an example of user attribute information) that indicates an attribute of a user who performs a conversation, Some or all of the plurality of dialogue units 351 are selected based on the relevance and diversity of agent attribute information (an example of dialogue unit attribute information) indicating the attributes of the dialogue unit 351.
  • the information processing system 1B selects the dialogue unit 351 based on the user attribute and the dialogue unit 351 attribute. That is, the information processing system 1B selects the dialogue unit 351 by distinguishing between the dialogue units 351 whose attributes are similar to or different from those of the user. In other words, the information processing system 1B selects the dialogue unit 351 based on the relationship between the user and the dialogue unit 351. Therefore, the information processing system 1B can make an appropriate response according to the user.
  • Each of the concierge execution unit 34 and the dialogue agent execution unit 35 may refer to the user information when responding. Thereby, even if it is a response with respect to the same statement, the concierge execution part 34 and the dialogue agent execution part 35 can produce
  • User information may be referred to only by a predetermined concierge execution unit 34 and dialog agent execution unit 35.
  • a part of the plurality of dialogue units 341 and dialogue units 351 may be restricted from referring to user information. That is, only a part of the dialogue units 341 and the dialogue unit 351 may be able to generate a response with reference to the user information.
  • the dialog agent execution unit 35 when used for responses to a plurality of users, the result of machine learning for other users is reflected in the response to a certain user. If the machine learning includes personal information of other users, the generated response may include personal information and the user's personal information may be leaked. In this regard, by limiting the reference to user information, personal information is not included in the response. As described above, the use of arbitrary information described in the embodiment may be limited by designation from the user or initial setting.
  • An information processing system 1 ⁇ / b> C (not shown) according to the fourth embodiment is a system that performs a response by a plurality of dialogue agents, similarly to the information processing system 1.
  • the information processing system 1 selects the response agent based on a predetermined correspondence between the scene and the dialogue agent, whereas the information processing system 1C is based on the evaluation of the dialogue agent for each user. The difference is that a response agent is selected. In other words, the information processing system 1C selects the response agent based on the high affinity between the user and the dialogue agent.
  • the information processing system 1C includes a response control device 30C instead of the response control device 30 included in the information processing system 1.
  • FIG. 14 is a block diagram showing a configuration of the response control device 30C.
  • the storage unit 32 of the response control device 30C includes an order information storage unit 328C for each user.
  • the concierge execution unit 34 of the response control device 30C includes an evaluation management unit 346C.
  • the concierge execution unit 34 of the response control device 30C includes an agent selection unit 343C instead of the agent selection unit 343 included in the concierge execution unit 34 of the response control device 30.
  • the user-specific rank information storage unit 328C stores user-specific rank information.
  • the user order information is information indicating the evaluation of the dialog agent for each user.
  • the ranking information for each user is managed for each user.
  • the ranking information for each user may be managed for each scene in addition to each user.
  • the data configuration of the order information for each user may be the same as the data configuration of the order information for each scene described with reference to FIG.
  • the terminal device 10 and the response control device 30 can select a dialogue agent having a high evaluation from each user as a response agent by referring to the ranking information for each user.
  • the evaluation management unit 346C manages the ranking information for each user. For example, the evaluation management unit 346C may increase / decrease the evaluation value of the response agent in the ranking information for each user based on the user's evaluation for the dialogue. For example, the evaluation management unit 346C may increase or decrease the evaluation value of the response agent in the ranking information for each user based on the user's comments in the dialogue. Specifically, when the user makes a positive comment on the response of the response agent, the evaluation value of the response agent may be increased. The evaluation management unit 346C may decrease the evaluation value of the response agent when the user makes a negative remark with respect to the response of the response agent. Then, the evaluation management unit 346C updates the correspondence relationship between the priority order and the dialogue agent according to the increase / decrease of the evaluation value.
  • the agent selection unit 343C selects a response agent from among the conversation agents in the same manner as the agent selection unit 343.
  • the agent selecting unit 343C is different from the agent selecting unit 343 in that the agent for response can be selected by referring to the ranking information for each user.
  • the agent selection unit 343C may select the dialogue agents in descending order of priority in the user order information.
  • the agent selection unit 343C may group the dialog agents according to the priority order, and select a predetermined number of dialog agents from each group as response agents.
  • the method for selecting the response agent with reference to the ranking information for each user may be arbitrary.
  • the agent selection unit 343C may select the response agent with reference to the scene information, or may select the response agent without referring to the scene information. When referring to the scene information, the agent selection unit 343C may select the interaction agents in descending order of priority in the user-specific order information from among the interaction agents associated with the scene in the scene information.
  • the information processing system 1C includes the evaluation management unit 346C (an example of an evaluation unit).
  • the evaluation management unit 346C performs evaluation for each of the plurality of dialogue units 351 for each user.
  • the agent selection unit 343C (an example of a selection unit) has a plurality of user-based ranking information (an example of user-specific evaluation information) indicating evaluation for each user of a plurality of dialogue agent execution units 35 (an example of a dialogue unit). A part or all of the dialogue agent execution unit 35 is selected.
  • the information processing system 1C selects the dialogue unit 351 based on the evaluation for each user. For example, the information processing system 1A preferentially selects the dialogue unit 351 highly evaluated by the user who made a statement. Accordingly, the information processing system 1C can make an appropriate response according to the user.
  • An information processing system 1 ⁇ / b> D (not shown) according to the fifth embodiment is a system that performs a response by a plurality of dialogue agents, similarly to the information processing system 1.
  • the response control device 30 is provided with a concierge function
  • the information processing system 1D is different in that the user terminal device side is provided with a concierge function.
  • the information processing system 1D includes a terminal device 10D and a response control device 30D instead of the terminal device 10 and the response control device 30 included in the information processing system 1.
  • FIG. 15 is a block diagram illustrating a configuration of the terminal device 10D.
  • the storage unit 15 of the terminal device 10D includes a concierge configuration information storage unit 151D, a scene information storage unit 152D, and a history information storage unit 153D.
  • the control unit 16 of the terminal device 10D includes a concierge execution unit 17D.
  • the concierge execution unit 17D includes a dialogue unit 171D, a scene determination unit 172D, an agent selection unit 173D, a learning unit 174D, and a history management unit 175D.
  • the concierge configuration information storage unit 151D has the same configuration as the concierge configuration information storage unit 321.
  • the scene information storage unit 152D has the same configuration as the scene information storage unit 323.
  • the history information storage unit 153D has the same configuration as the history information storage unit 324.
  • the concierge execution unit 17D has the same configuration as the concierge execution unit 34.
  • the concierge execution unit 17D has the same configuration as the concierge execution unit 34.
  • the dialogue unit 171D has the same configuration as the dialogue unit 341.
  • the scene determination unit 172D has the same configuration as the scene determination unit 342.
  • the agent selection unit 173D has the same configuration as the agent selection unit 343.
  • the learning unit 174D has the same configuration as the learning unit 344.
  • the history management unit 175D has the same configuration as the history management unit 345.
  • FIG. 16 is a block diagram showing a configuration of the response control device 30D.
  • the storage unit 32 of the response control device 30D does not include the concierge configuration information storage unit 321 and the scene information storage unit 323 included in the storage unit 32 of the response control device 30.
  • the control unit 33 of the response control device 30D does not include the concierge execution unit 34.
  • the terminal device 10D includes the concierge execution unit 17D.
  • the arbitrary configurations in the above-described embodiments may be separately provided in a separate device or may be combined.
  • the data structure of various information is not limited to the above.
  • the association of each information may be performed directly or indirectly.
  • Information that is not essential for processing may be omitted, or similar information may be added to perform processing.
  • the user's whereabouts and occupation may be included as user information.
  • the history information may be information that records the dialogue itself, instead of collecting the content of the dialogue as in the above embodiment.
  • the response presentation mode is not limited to that described above.
  • each statement may be presented in time series.
  • the response may be presented without clarifying the response agent that made the response.
  • the control unit 16 and the control unit 33 are software function units, but may be hardware function units such as an LSI (Large Scale Integration).
  • various responses can be made by having a plurality of dialogue units 351.
  • a program for realizing the functions of the terminal devices 10 and 10D and the response control devices 30 and 30A to 30D is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system.
  • the processing as the terminal devices 10 and 10D and the response control devices 30 and 30A to 30D may be performed by executing them.
  • “loading and executing a program recorded on a recording medium into a computer system” includes installing the program in the computer system.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer system” may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and dedicated line.
  • Computer-readable recording medium refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • the recording medium storing the program may be a non-transitory recording medium such as a CD-ROM.
  • the recording medium also includes an internal or external recording medium that can be accessed from a distribution server in order to distribute the program.
  • the code of the program stored in the recording medium of the distribution server may be different from the code of the program that can be executed by the terminal device. That is, the format stored in the distribution server is not limited as long as it can be downloaded from the distribution server and installed in a form that can be executed by the terminal device.
  • the program may be divided into a plurality of parts, downloaded at different timings, and combined in the terminal device, or the distribution server that distributes each of the divided programs may be different.
  • the “computer-readable recording medium” holds a program for a certain period of time, such as a volatile memory (RAM) inside a computer system that becomes a server or a client when the program is transmitted via a network.
  • the program may be for realizing a part of the functions described above.
  • achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.
  • a part or all of the functions of the terminal devices 10 and 10D and the response control devices 30 and 30A to 30D may be realized as an integrated circuit such as an LSI.
  • Each function described above may be individually made into a processor, or a part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. When integrated circuit technology that replaces LSI emerges due to advances in semiconductor technology, an integrated circuit based on this technology may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Electrically Operated Instructional Devices (AREA)

Abstract

実施形態の情報処理システムは、記憶部と、複数の対話部と、選択部とを持つ。前記記憶部は、対話における発言の生成規則を示す規則情報を記憶する。前記複数の対話部は、前記規則情報に基づいて、それぞれが、ユーザとの対話を行う。前記選択部は、前記複数の対話部のうち一部又は全部を選択して対話を行わせる。

Description

情報処理システム、情報処理装置、情報処理方法、及び記憶媒体
 本発明の実施形態は、情報処理システム、情報処理装置、情報処理方法、及び記憶媒体に関する。
 情報処理技術を用いて、ユーザからの問いかけに対する解を探索し、ユーザに提示するシステムが存在する。しかしながら、従来の技術では、問いかけに対して明確な解がない場合やシステムから提案をして欲しい場合等において、画一的な最適解や提案のみしか行えない場合があった。
特表2008-512789号公報
 本発明が解決しようとする課題は、ユーザの発言に対して多様な応答をすることができる情報処理システム、情報処理装置、情報処理方法、及びプログラムを提供することである。
 実施形態の情報処理システムは、記憶部と、複数の対話部と、選択部とを持つ。前記記憶部は、対話における発言の生成規則を示す規則情報を記憶する。前記複数の対話部は、前記規則情報に基づいて、それぞれが、ユーザとの対話を行う。前記選択部は、前記複数の対話部のうち一部又は全部を選択して対話を行わせる。
第1の実施形態に係る情報処理システムの概要を示す図。 同実施形態に係る情報処理システムの構成を示すブロック図。 同実施形態に係る端末装置の構成を示すブロック図。 同実施形態に係る応答制御装置の構成を示す図。 同実施形態に係るシーン情報のデータ構成を示す図。 同実施形態に係る履歴情報のデータ構成を示す図。 同実施形態に係る情報処理システムによる処理の流れを示すフローチャート。 同実施形態に係る情報処理システムによる応答の提示例を示す図。 第2の実施形態に係る応答制御装置の構成を示すブロック図。 同実施形態に係るシーン別順位情報のデータ構成を示す図。 第3の実施形態に係る応答制御装置の構成を示すブロック図。 同実施形態に係るエージェント属性情報のデータ構成を示す図。 同実施形態に係るユーザ情報のデータ構成を示す図。 第4の実施形態に係る応答制御装置の構成を示すブロック図。 第5の実施形態に係る端末装置の構成を示すブロック図。 同実施形態に係る応答制御装置の構成を示すブロック図。
 以下、実施形態の情報処理システム、情報処理装置、情報処理方法、及びプログラムを、図面を参照して説明する。
 (第1の実施形態)
 第1の実施形態に係る情報処理システム1の概要について説明する。
 図1は、情報処理システムの概要を示す図である。
 図1に示すように、情報処理システム1は、ユーザの発言に応じて発言や意見、選択肢などを返すシステムである。以下では、ユーザの発言に対して、情報処理システム1が返すものを「応答」と称する。以下では、ユーザの発言と情報処理システム1が生成する発言とのやり取りを、「対話」と称する。情報処理システム1に入力されるユーザからの発言や、情報処理システム1から出力される応答は、音声に限らずテキストなどでもよい。
 情報処理システム1には、応答を生成するための構成が設けられている。以下では、独立して応答を生成可能な構成の単位を「エージェント」と称する。情報処理システム1は、複数のエージェントを備える。各エージェントは、異なる個性を有する。以下では、「個性」とは、応答の傾向、応答の内容、応答の表現方法等に影響する要素をいう。例えば、各エージェントの個性は、応答を生成するために用いられる情報(例えば、機械学習の教示データ、後述する履歴情報、ユーザ情報等)の内容、応答の生成における論理展開、応答の生成に用いられるアルゴリズム等の要素により定められる。エージェントの個性付けは、任意の方法で行われてよい。このように、情報処理システム1は、個性が異なる複数のエージェントにより生成された応答を提示するため、ユーザに対して多様な考え方や選択肢を提案し、ユーザの決断を支援することができる。
 本実施形態では、一例として、2種類のエージェントがあるものとする。
 第1種のエージェントは、意見や感想等の主張を伴う応答を生成するエージェントである。以下では、第1種のエージェントを、「対話エージェント」と称する。
 第2種のエージェントは、ユーザと情報処理システム1との間の対話において、窓口として機能するエージェントである。以下では、第2種のエージェントを、「コンシェルジュ」と称する。コンシェルジュは、ユーザの発言に対して適切な応答が行えるようにするための機能を備える。例えば、コンシェルジュは、ユーザの発言意図を明確にするための質問をユーザに対して行ったり、対話のシーン(場面)を特定したりする。シーンとは、ユーザの発言の背景や局面の種類であり、シチュエーションともいう。
 コンシェルジュは、実際に応答を行う対話エージェントを、シーンに応じて選択する。
換言すると、コンシェルジュは、対話エージェントのうち、実際に応答を行う対話エージェントを、シーンに応じて変更する。以下では、対話エージェントのうち、実際に応答を行う対話エージェントを、「応答用エージェント」と称することがある。「実際に応答を行う」とは、実際にユーザに提示される応答を生成することである。つまり、応答用エージェントが生成した応答は、ユーザに提示される。これに対して、応答用エージェントではない対話エージェントは、応答を生成しなくてもよいし、応答を生成してもよい。応答用エージェントではない対話エージェントが生成した応答は、ユーザに提示されない。このように、情報処理システム1は、応答用エージェントをシーンに応じて絞り込むため、シーンに適した応答のみを提示しやすい。
 次に、情報処理システム1の構成について説明する。
 図2は、情報処理システム1の構成を示すブロック図である。
 情報処理システム1は、複数の端末装置10-1、10-2、…と、応答制御装置30とを備える。以下では、特に区別しない限り、複数の端末装置10-1、10-2、…を、端末装置10と総称する。端末装置10と、応答制御装置30とは、ネットワークNWを介して通信可能に接続されている。
 端末装置10は、コンピュータシステムを備える電子機器である。具体的には、端末装置10は、パーソナルコンピュータ、携帯電話、タブレット、スマートフォン、PHS(Personal Handy-phone System)端末装置、ゲーム機等である。端末装置10は、ユーザからの入力を受け付けたり、ユーザに対して情報の提示を行ったりする。
 応答制御装置30は、コンピュータシステムを備える電子機器である。具体的には、応答制御装置30は、サーバ装置等である。応答制御装置30は、エージェントを実装する。本実施形態では、一例として、エージェントが人工知能により実現される場合について説明する。人工知能とは、学習、推論、判断等の人間の知的な機能を模倣するコンピュータシステムである。人工知能を実現するためのアルゴリズムは、任意であってよい。具体的には、人工知能は、ニューラルネットワーク、事例ベース推論等により実現されてよい。
 ここで、情報処理システム1による処理の流れの概要について説明する。
 端末装置10は、ユーザから発言の入力を受け付ける。端末装置10は、ユーザの発言を示す情報を、応答制御装置30に送信する。応答制御装置30は、ユーザの発言を示す情報を、端末装置10から受信する。応答制御装置30は、ユーザの発言を示す情報を参照し、ユーザの発言に応じた応答を示す情報を生成する。応答制御装置30は、応答を示す情報を端末装置10に送信する。端末装置10は、応答を示す情報を、応答制御装置30から受信する。端末装置10は、応答を示す情報を参照し、応答の内容を、表示や音声により提示する。
 次に、端末装置10の構成について説明する。
 図3は、端末装置10の構成を示すブロック図である。
 端末装置10は、通信部11と、入力部12と、表示部13と、音声出力部14と、記憶部15と、制御部16と、を備える。
 通信部11は、応答制御装置30等のネットワークNWに接続する他の装置と、各種情報を送受信する。通信部11は、通信用IC(Integrated Circuit)等を含む。
 入力部12は、各種情報の入力を受け付ける。例えば、入力部12は、ユーザによる発言の入力、対話のシーンの選択を受け付ける。入力部12は、文字入力、音声入力、ポインティング等の任意の方法により、ユーザからの入力を受け付けてよい。入力部12は、キーボード、マウス、タッチセンサ、マイク等を含む。
 表示部13は、各種情報を表示する。例えば、表示部13は、ユーザの発言の内容、エージェントの応答の内容等を表示する。表示部13は、液晶ディスプレイパネル、有機EL(Electro-Luminescence)ディスプレイパネル等を含む。
 音声出力部14は、各種音源を再生する。例えば、音声出力部14は、応答の内容等を音声出力する。音声出力部14は、スピーカ、ウーファー等を含む。
 記憶部15は、各種情報を記憶する。例えば、記憶部15は、端末装置10が備えるCPU(Central Processing Unit)により実行可能なプログラムや、当該プログラムが参照する情報等を記憶する。記憶部15は、ROM(Read Only Memory)、RAM(Random Access Memory)等を含む。
 制御部16は、端末装置10が備える各種構成を制御する。例えば、制御部16は、端末装置10が備えるCPUが、記憶部15に記憶されたプログラムを実行することにより実現される。制御部16は、対話処理部161を備える。
 対話処理部161は、対話のための入出力処理を制御する。例えば、対話処理部161は、対話のためのユーザインタフェースを提供するための処理を実行する。例えば、対話処理部161は、応答制御装置30との間におけるユーザの発言を示す情報や応答を示す情報の送受信を制御する。
 次に、応答制御装置30の構成について説明する。
 図4は、応答制御装置30の構成を示すブロック図である。
 応答制御装置30は、通信部31と、記憶部32と、制御部33と、を備える。
 通信部31は、端末装置10等のネットワークNWに接続する他の装置と、各種情報を送受信する。通信部31は、通信用IC等を含む。
 記憶部32は、各種情報を記憶する。例えば、記憶部32は、応答制御装置30が備えるCPUにより実行可能なプログラムや、当該プログラムが参照する情報等を記憶する。
記憶部32は、ROM、RAM等を含む。記憶部32は、コンシェルジュ構成情報記憶部321と、1以上の対話エージェント構成情報記憶部322-1、322-2、…と、シーン情報記憶部323と、履歴情報記憶部324と、を備える。以下では、特に区別しない限り、対話エージェント構成情報記憶部322-1、322-2、…を、対話エージェント構成情報記憶部322と総称する。
 コンシェルジュ構成情報記憶部321は、コンシェルジュ構成情報を記憶する。コンシェルジュ構成情報とは、後述するコンシェルジュ実行部34の構成を示す情報である。例えば、コンシェルジュ実行部34がニューラルネットワークにより実現される場合、コンシェルジュ構成情報は、機械学習の結果、例えば機械学習により変動する活性化関数のパラメータ等の情報を含む。コンシェルジュ構成情報は、対話における応答の生成規則を示す情報の一例である。
 対話エージェント構成情報記憶部322は、対話エージェント構成情報を記憶する。対話エージェント構成情報とは、後述する対話エージェント実行部35の構成を示す情報である。例えば、対話エージェント実行部35がニューラルネットワークにより実現される場合、対話エージェント構成情報は、機械学習の結果、例えば機械学習により変動する活性化関数のパラメータ等の情報を含む。対話エージェント構成情報は、対話における応答の生成規則を示す情報の一例である。
 コンシェルジュ実行部34や対話エージェント実行部35が人工知能以外で実現される場合、コンシェルジュ情報、対話エージェント構成情報は、例えば、発言と、発言に対する応答と、を一義的に対応付けた情報等であってよい。
 シーン情報記憶部323は、シーン情報を記憶する。シーン情報とは、シーンと対話エージェントとを対応付ける情報である。
 ここで、シーン情報のデータ構成の例について説明する。
 図5は、シーン情報のデータ構成を示す図である。
 シーン情報は、シーン識別情報(図5における「シーン」)と、カテゴリ情報(図5における「カテゴリ」)と、サブカテゴリ情報(図5における「サブカテゴリ」)と、対話エージェント識別情報(図5における「対話エージェント」)と、を互いに対応付けた情報である。
 シーン識別情報とは、シーンを一意に識別するための情報である。カテゴリ情報とは、シーンの大分類を示す情報である。サブカテゴリ情報とは、シーンの小分類を示す情報である。対話エージェント識別情報とは、対話エージェントを一意に識別するための情報である。シーン情報では、1つのシーン識別情報に対して、1以上の対話エージェント識別情報が対応付けられてよい。
 このように、シーン情報では、シーンと対話エージェントとが対応付けられている。従って、端末装置10と応答制御装置30とは、シーン情報を参照することにより、シーンに応じた対話エージェントを選択することができる。
 図4に戻り、応答制御装置30の構成について、説明を続ける。
 履歴情報記憶部324は、履歴情報を記憶する。履歴情報とは、ユーザと情報処理システム1との間における対話の履歴を示す情報である。履歴情報は、ユーザごとに管理されてよい。
 ここで、履歴情報のデータ構成の例について説明する。
 図6は、履歴情報のデータ構成を示す図である。
 履歴情報は、トピック識別情報(図6における「トピック」)と、シーン識別情報(図6における「シーン」)と、肯定キーワード情報(図6における「肯定キーワード」)と、否定キーワード情報(図6における「否定キーワード」)と、を互いに対応付けた情報である。
 トピック識別情報とは、対話を一意に識別するための情報である。肯定キーワード情報とは、対話において、ユーザが肯定的な反応を示したキーワードを示す情報である。否定キーワード情報とは、対話において、ユーザが否定的な反応を示したキーワードを示す情報である。履歴情報では、1つのシーン識別情報に対して、1以上の肯定キーワード情報、否定キーワード情報が対応付けられてよい。
 このように、履歴情報は、対話の履歴を示す。つまり、履歴情報を参照することにより、各ユーザにとって望ましい応答の傾向を、履歴情報から把握することができる。従って、端末装置10と応答制御装置30とは、履歴情報を参照することにより、ユーザが受け入れにくい提案を行うことを防いだり、ユーザが受け入れやすい提案を行ったりすることができる。
 図4に戻り、応答制御装置30の構成について、説明を続ける。
 制御部33は、応答制御装置30が備える各種構成を制御する。例えば、制御部33は、応答制御装置30が備えるCPUが、記憶部32に記憶されたプログラムを実行することにより実現される。制御部33は、対話処理部331と、コンシェルジュ実行部34と、1以上の対話エージェント実行部35-1、35-2、…とを備える。以下では、特に区別しない限り、対話エージェント実行部35-1、35-2、…を、対話エージェント実行部35と総称する。
 対話処理部331は、対話のための入出力処理を制御する。対話処理部331は、端末装置10の対話処理部161に対応する応答制御装置30側の構成である。例えば、対話処理部331は、端末装置10との間におけるユーザの発言を示す情報や応答を示す情報の送受信を制御する。
 コンシェルジュ実行部34は、コンシェルジュとして機能する。コンシェルジュ実行部34は、コンシェルジュ構成情報に基づいて実現される。コンシェルジュ実行部34は、対話部341と、シーン判定部342と、エージェント選択部343と、学習部344と、履歴管理部345と、を備える。
 対話部341は、ユーザの発言に対するコンシェルジュの応答を生成する。
 シーン判定部342は、ユーザからの対話開始要求の態様に基づいて対話のシーンを判定する。例えば、シーン判定部342は、ユーザによるシーンの選択に基づいて、対話のシーンを判定してよい。この場合、対話の開始時において、表示部13に、シーンの種類を選択可能に表示しておき、ユーザからシーンの選択を受け付けるようにしてよい。例えば、シーン判定部342は、ユーザの発言に基づいてシーンを判定してもよい。この場合、キーワードとシーンとを対応付けた情報を予め用意しておく。そして、シーン判定部342は、ユーザの発言に含まれるキーワードと、シーンとの対応関係から、シーンを判定してよい。コンシェルジュ実行部34において、発言とシーンとの対応関係を予め機械学習させておき、当該機械学習の結果とユーザの発言とに基づいてシーンを判定してもよい。このように、シーン判定部342は、任意の方法により、対話のシーンを判定してよい。
 エージェント選択部343は、シーンに応じた対話エージェントを選択する。エージェント選択部343は、シーン情報を参照し、シーン判定部342により特定されたシーンに対応付けられている対話エージェントを特定する。換言すると、エージェント選択部343は、シーン判定部342が判定したシーンを用いて、シーン情報を検索して、応答用エージェントの候補を特定する。エージェント選択部343は、特定した対話エージェントの中から、応答用エージェントを選択する。候補からの応答用エージェントの選択は、無作為に行われてもよいし、所定の順序で行われてもよい。これにより、エージェント選択部343は、シーンに応じた対話エージェントを選択することができる。
 ここで、エージェント選択部343は、所定数の対話エージェントを選択してもよいし、対話に応じた数の対話エージェントを選択してもよい。例えば、シーン情報において、応答用エージェントの数を、シーンごとに予め設定しておき、シーンに応じた数のエージェントを選択するようにしてよい。例えば、対話の開始時や対話中に、ユーザから対話エージェントの数の指定を受け付けるようにしておき、ユーザに指定された数の対話エージェントを選択するようにしてもよい。
 エージェント選択部343は、履歴情報に基づいて応答用エージェントを選択してもよい。例えば、エージェント選択部343は、対話の履歴から、ユーザが肯定的な発言を行った対話エージェントを、優先的に選択してよい。このように、エージェント選択部343は、履歴情報を参照して、ユーザと対話エージェントとの相性を推定し、ユーザと相性の用対話エージェントを応答用エージェントとして選択してもよい。
 エージェント選択部343は、1つの対話において、応答用エージェントを、複数回選択してもよい。換言すると、エージェント選択部343は、応答用エージェントを再選択してもよい。つまり、エージェント選択部343は、1つの対話の中のセッションごとに応答用エージェントを選択してよい。例えば、エージェント選択部343は、ユーザの発言において、提示済みの応答とは別の応答が要求された場合には、選択済みの応答用エージェントとは異なる対話エージェントを、新たに応答用エージェントとして再選択する。
 例えば、エージェント選択部343は、対話が帰結しない場合に、応答用エージェントを再選択してよい。例えば、エージェント選択部343は、対話の開始から所定回数の発言が行われた場合、対話の開始から所定時間経過した場合、又は、提示済みの応答に対してユーザから肯定的な発言が行われない場合に、対話が帰結しないと判定してよい。例えば、エージェント選択部343は、対話のシーンが切り替わった場合に、応答用エージェントを再選択してよい。このように、応答用エージェントの再選択を可能とすることにより、情報処理システム1は、さらに多様な応答を提示することができる。
 エージェント選択部343は、シーン情報において、シーン判定部342が判定したシーンと対応付けられていない対話エージェントを、応答用エージェントとして選択してもよい。つまり、エージェント選択部343は、シーンに対応しない対話エージェントを選択してもよい。例えば、エージェント選択部343は、1つ乃至は2つ程度のシーンに対応しない対話エージェントを、応答用エージェントとして選択する。
 このような対話エージェントは、シーンにそぐわない応答を行ってしまう可能性はあるが、その反面、他の応答用エージェントとは、大きく異なる応答を行える可能性がある。
このように、エージェント選択部343は、一部の応答用エージェントを、シーンに応じた対話エージェントとし、その他の応答用エージェントを、シーンに関係のない対話エージェントとする。これにより、情報処理システム1は、ユーザに受け入れられやすい応答を提示するとともに、応答を多様化させることができる。
 学習部344は、コンシェルジュ実行部34の機能を実現するための機械学習を行う。
学習部344は、ユーザの利用開始前に行なわれる機械学習と、対話におけるユーザの評価による機械学習との2種類の機械学習を実行可能である。学習部344による機械学習の結果は、コンシェルジュ構成情報に反映される。以下では、「評価」とは、ユーザにとっての応答の精度や的確さを表す指標であるとして説明する。
 学習部344による機械学習に用いられる教師データは、コンシェルジュの機能ごとに用意されてよい。例えば、応答の生成のための機械学習では、教師データは、ユーザの発言と、応答と、評価と、を対応付けたデータである。例えば、シーンの判別のための機械学習では、教師データは、ユーザの発言と、シーンと、評価と、を対応付けたデータである。例えば、対話エージェントの選択のための機械学習では、教師データは、シーンと、対話エージェントと、評価と、を対応付けたデータである。このような教示データを用いて学習を重ねることにより、コンシェルジュ実行部34は、応答を生成したり、シーンを判別したり、対話エージェントを選択したりすることが可能になる。
 履歴管理部345は、履歴情報を管理する。例えば、履歴管理部345は、ユーザの発言に肯定的な文言が含まれている場合、その文言に対応するユーザの発言のキーワード、又は、応答のキーワードを特定し、肯定キーワード情報に登録する。例えば、履歴管理部345は、ユーザの発言に否定的な文言が含まれている場合、その文言に対応するユーザの発言のキーワード、又は、応答のキーワードを特定し、否定キーワード情報に登録する。このように、履歴管理部345は、履歴情報のデータ構成に合せて、履歴情報の追記、編集、削除等を行う。
 対話エージェント実行部35-1、35-2、…は、それぞれが、異なる対話エージェントとして機能する。対話エージェント実行部35-1、35-2、…は、対話エージェント構成情報記憶部322-1、322-2、…に記憶される対話エージェント構成情報に基づいて実現される。対話エージェント実行部35-1、35-2、…は、対話部351-1、351-2、…と、学習部352-1、352-2、…とを備える。以下では、対話部351-1、351-2、…を、対話部351と総称する。以下では、学習部352-1、352-2、…を、学習部352と総称する。
 対話部351は、ユーザの発言に対する対話エージェントの応答を生成する。
 学習部352は、対話エージェント実行部35の機能を実現するための機械学習を行う。学習部352は、ユーザの利用開始前に行なわれる機械学習と、対話におけるユーザの評価による機械学習との2種類の機械学習を実行可能である。学習部352による機械学習の結果は、対話エージェント構成情報に反映される。
 学習部352による機械学習に用いられる教師データは、ユーザの発言と、応答と、評価と、を対応付けたデータである。このような教示データを用いて学習を重ねることにより、対話部351は、ユーザの発言に応じた応答を生成可能になる。
 次に、情報処理システム1の動作について説明する。
 図7は、情報処理システム1による処理の流れを示すフローチャートである。
(ステップS100)応答制御装置30は、例えばユーザによるシーンの選択に基づいて、シーンを判定する。その後、情報処理システム1は、ステップS102に処理を進める。
(ステップS102)応答制御装置30は、ステップS100におけるシーンの判定結果に基づいて、応答用エージェントを選択する。その後、情報処理システム1は、ステップS104に処理を進める。
(ステップS104)情報処理システム1は、応答用エージェントにより、ユーザと対話を行う。応答制御装置30は、応答用エージェントにより、ユーザの発言に対する応答を生成する。端末装置10は、ユーザの発言と、当該発言に応じて応答用エージェントが生成した応答とを、ユーザに提示する。その後、情報処理システム1は、ステップS106に処理を進める。
(ステップS106)応答制御装置30は、対話結果に基づいてコンシェルジュ及び対話エージェントの機械学習を行う。対話結果とは、提示された応答に対するユーザの反応や対話の総括等であり、応答用エージェントの選択や応答用エージェントの応答に対する評価を示す。その後、情報処理システム1は、図7に示す処理を終了する。
 ステップS106における機械学習のためのユーザの評価は、ユーザの発言から特定してもよいし、対話後にユーザに入力させてもよい。評価は、肯定と否定との2値で入力されてもよいし、3段階以上の値で入力されてもよいし、自然文から値に変換されてもよい。評価は、対話に基づいて行われてもよい。例えば、対話におけるユーザの発言の数、応答の数、対話の長さ等は、対話が活発であったことを示す。そこで、対話におけるユーザの発言の数、応答の数、対話の長さを、評価の指標としてもよい。
 評価対象は、全てのエージェントであってもよいし、エージェントの一部であってもよい。例えば、対話全体に対する評価は、対話に参加した全てのエージェントに反映されてよい。応答に対する評価は、その応答を行ったエージェントにのみ反映されてよい。コンシェルジュの一部の機能に対してのみ評価が反映されてもよい。例えば、コンシェルジュの機能のうち、シーンの判定についてのみ評価が反映されてもよいし、対話エージェントの選択についてのみ評価が反映されてもよい。
 図7に示す処理は、図7に示す順序とは異なる順序で行われてもよい。例えば、ステップS100、S102、S106の処理は、ステップS104の処理の一部として行われてもよい。この場合、対話の始めでは、ユーザの発言に対してコンシェルジュが応答し、この対話の中で、ステップS100、S102の処理を行うようにしてよい。情報処理システム1は、ステップS106の処理を省略してもよい。
 次に、対話における応答の提示態様について説明する。
 図8は、情報処理システム1による応答の提示例を示す図である。
 図8に示す例では、情報処理システム1は、ユーザの「熱っぽいなぁ…」という発言の「熱っぽい」というキーワードから、シーンが「医療相談」であると判定している。そして、情報処理システム1は、「医療相談」のシーンに対応する4つの対話エージェントa1~a4を、応答用エージェントとして選択している。各応答用エージェントは、「熱っぽいなぁ…」という発言に対して、それぞれが、独立した応答を生成している。そして、端末装置10は、各応答用エージェントの応答を並べて表示するとともに、各応答に応答用エージェントの属性を対応付けて表示する。これにより、ユーザは、応答用エージェントと、当該応答用エージェントが生成した応答とを、一度に確認することができる。
 以上説明したように、本実施形態に係る情報処理システム1(情報処理システムの一例)は、記憶部32(記憶部の一例)と、複数の対話部351(対話部の一例)と、エージェント選択部343(選択部の一例)と、を備える。記憶部32は、対話における発言の生成規則を示す対話エージェント構成情報(規則情報の一例)を記憶する。対話部351は、対話エージェント構成情報に基づいて、それぞれが、ユーザとの対話を行う。エージェント選択部343は、複数の対話部351のうちの一部又は全部を選択して対話を行わせる。
 これにより、情報処理システム1は、複数の対話部351のうち、選択された対話部351により発言を生成し、対話を行う。例えば、情報処理システム1は、ユーザの1つの発言に対して、並列に複数の応答を生成する。従って、情報処理システム1は、ユーザの発言に対して多様な応答をすることができる。
 情報処理システム1は、シーン判定部342(場面判定部の一例)を備える。シーン判定部342は、ユーザからの1セッションの対話開始要求の態様に基づいて、対話の場面を判定する。エージェント選択部343は、シーン判定部342が判定した場面を用いて、場面と1以上の対話部351とを対応付けたシーン情報(場面別対応情報の一例)を検索し、複数の対話部351のうちの一部又は全部を選択する。
 これにより、情報処理システム1は、対話の場面に応じて対話部351を選択する。つまり、情報処理システム1は、場面ごとに応答を行う対話部351を切り替える。従って、情報処理システム1は、ユーザの発言に対して、場面に応じた適切な応答を行うことができる。
 情報処理システム1において、対話部351は、ユーザとの間で過去に行われた対話の履歴を参照して発言を生成可能である。
 これにより、情報処理システム1は、過去の対話に基づいて発言を生成する。例えば、情報処理システム1は、対話の履歴から、ユーザが拒否した発言を確認したり、ユーザが好む発言を確認したりすることが可能である。従って、情報処理システム1は、ユーザの発言に対して、ユーザに応じた適切な応答を行うことができる。
(第2の実施形態)
 第2の実施形態について説明する。本実施形態では、上述した構成と同様の構成については、同一の符号を付し、説明を援用する。
 第2の実施形態に係る情報処理システム1A(不図示)は、情報処理システム1と同様に、複数の対話エージェントによる応答を行うシステムである。ただし、情報処理システム1は、シーンと対話エージェントとの予め定められた対応関係に基づいて応答用エージェントを選択したのに対して、情報処理システム1Aは、シーンごとの対話エージェントの評価に基づいて応答用エージェントを選択する点が異なる。
 情報処理システム1Aの構成について説明する。
 情報処理システム1Aは、情報処理システム1が備える応答制御装置30に代えて、応答制御装置30Aを備える。
 図9は、応答制御装置30Aの構成を示すブロック図である。
 応答制御装置30Aの記憶部32は、シーン別順位情報記憶部325Aを備える。応答制御装置30Aのコンシェルジュ実行部34は、評価管理部346Aを備える。応答制御装置30Aのコンシェルジュ実行部34は、応答制御装置30のコンシェルジュ実行部34が備えるエージェント選択部343に代えて、エージェント選択部343Aを備える。
 シーン別順位情報記憶部325Aは、シーン別順位情報を記憶する。シーン別順位情報とは、シーンごとの対話エージェントの評価を示す情報である。シーン別順位情報は、シーンごとに管理される。
 ここで、シーン別順位情報のデータ構成の例について説明する。
 図10は、シーン別順位情報のデータ構成を示す図である。
 シーン別順位情報は、順位情報(図10における「順位」)と、対話エージェント識別情報(図10における「対話エージェント」)と、評価値情報(図10における「評価値」)と、を互いに対応付けた情報である。
 順位情報とは、応答用エージェントの選択における対話エージェントの優先順位を示す情報である。評価値情報とは、対話エージェントの評価値を示す情報である。図10に示す例では、評価値が高い程、対話エージェントの優先順位が高くなるように設定されている。
 このように、シーン別順位情報では、応答用エージェントの選択における優先順位と、対話エージェントとが、シーンごとに対応付けられている。従って、端末装置10と応答制御装置30とは、シーン別順位情報を参照することにより、各シーンにおいて評価の高い対話エージェントを、応答用エージェントとして選択することができる。
 図9に戻り、応答制御装置30Aの構成について、説明を続ける。
 評価管理部346Aは、シーン別順位情報を管理する。例えば、評価管理部346Aは、対話に対するユーザの評価に基づいて、シーン別順位情報における応答用エージェントの評価値を増減させてよい。例えば、評価管理部346Aは、対話におけるユーザの発言に基づいて、シーン別順位情報における応答用エージェントの評価値を増減させてもよい。
 具体的には、応答用エージェントの応答に対してユーザが肯定的な発言を行った場合には、当該応答用エージェントの評価値を所定量増加させてもよい。評価管理部346Aは、応答用エージェントの応答に対してユーザが否定的な発言を行った場合には、当該応答用エージェントの評価値を所定量減少させてもよい。そして、評価管理部346Aは、評価値の増減に応じて、優先順位と対話エージェントとの対応関係を更新する。
 エージェント選択部343Aは、エージェント選択部343と同様に、対話エージェントの中から応答用エージェントを選択する。ただし、エージェント選択部343Aは、シーン別順位情報を参照して、応答用エージェントを選択可能である点が、エージェント選択部343とは異なる。例えば、エージェント選択部343Aは、シーン別順位情報における優先順位が高い順に、対話エージェントを選択してよい。例えば、エージェント選択部343Aは、優先順位に応じて対話エージェントをグループ分けし、各グループから所定数の対話エージェントを、応答用エージェントとして選択してもよい。このように、シーン別順位情報を参照した応答用エージェントの選択方法は、任意であってよい。
 以上説明したように、情報処理システム1A(情報処理システムの一例)は、評価管理部346A(評価部の一例)を備える。評価管理部346Aは、複数の対話部351に対する場面ごとの評価を行う。エージェント選択部343A(選択部の一例)は、複数の対話部351に対する場面ごとの評価を示すシーン別順位情報(場面別評価情報の一例)に基づいて、複数の対話部351のうちの一部又は全部を選択する。
 これにより、情報処理システム1Aは、場面ごとの評価に基づいて対話部351を選択する。例えば、情報処理システム1Aは、各場面において高く評価された対話部351を優先的に選択する。従って、情報処理システム1Aは、ユーザの発言に対して、場面に応じた適切な応答を行うことができる。
(第3の実施形態)
 第3の実施形態について説明する。本実施形態では、上述した構成と同様の構成については、同一の符号を付し、説明を援用する。
 第3の実施形態に係る情報処理システム1B(不図示)は、情報処理システム1と同様に、複数の対話エージェントによる応答を行うシステムである。ただし、情報処理システム1は、シーンと対話エージェントとの予め定められた対応関係に基づいて応答用エージェントを選択したのに対して、情報処理システム1Bは、ユーザと対話エージェントとの関係性に基づいて応答用エージェントを選択する点が異なる。
 次に、情報処理システム1Bの構成について説明する。
 情報処理システム1Bは、情報処理システム1が備える応答制御装置30に代えて、応答制御装置30Bを備える。
 図11は、応答制御装置30Bの構成を示すブロック図である。
 応答制御装置30Bの記憶部32は、エージェント属性情報記憶部326Bと、ユーザ情報記憶部327Bと、を備える。応答制御装置30Bのコンシェルジュ実行部34は、応答制御装置30のコンシェルジュ実行部34が備えるエージェント選択部343に代えて、エージェント選択部343Bを備える。
 エージェント属性情報記憶部326Bは、エージェント属性情報を記憶する。エージェント属性情報とは、対話エージェントの属性を示す情報である。
 ここで、エージェント属性情報のデータ構成の例について説明する。
 図12は、エージェント属性情報のデータ構成を示す図である。
 エージェント属性情報は、対話エージェント識別情報(図12における「対話エージェント」)と、対話エージェントカテゴリ情報(図12における「カテゴリ」)と、対話エージェントサブカテゴリ情報(図12における「サブカテゴリ」)と、対話エージェント性格情報(図12における「性格」)と、を互いに対応付けた情報である。
 対話エージェントカテゴリ情報とは、対話エージェントの大分類を示す情報である。対話エージェントサブカテゴリ情報とは、対話エージェントの小分類を示す情報である。対話エージェント性格情報とは、対話エージェントの性格であり、いわば発言の傾向を示す情報である。
 このように、エージェント属性情報では、対話エージェントと、その属性とが対応付けられている。換言すると、エージェント属性情報は、対話エージェントの個性を示す。従って、端末装置10と応答制御装置30とは、エージェント属性情報を参照することにより、対話エージェントの個性を確認することができる。
 図11に戻り、応答制御装置30Bの構成について、説明を続ける。
 ユーザ情報記憶部327Bは、ユーザ情報を記憶する。ユーザ情報とは、ユーザの属性を示す情報である。
 ここで、ユーザ情報のデータ構成の例について説明する。
 図13は、ユーザ情報のデータ構成を示す図である。
 ユーザ情報は、ユーザ識別情報(図13における「ユーザ」)と、年齢情報(図13における「年齢」)と、性別情報(図13における「性別」)と、嗜好情報(図13における「嗜好」)と、ユーザ性格情報(図13における「性格」)と、を互いに対応付けた情報である。
 ユーザ識別情報とは、ユーザを一意に識別するための情報である。年齢情報とは、ユーザの年齢を示す情報である。性別情報とは、ユーザの性別を示す情報である。嗜好情報とは、ユーザの嗜好を示す情報である。ユーザ性格情報とは、ユーザの性格を示す情報である。
 このように、ユーザ情報では、ユーザと、その属性とが対応付けられている。換言すると、ユーザ情報は、ユーザの個性を示す。従って、端末装置10と応答制御装置30とは、ユーザ情報を参照することにより、ユーザの個性を確認することができる。
 図11に戻り、応答制御装置30Bの構成について、説明を続ける。
 エージェント選択部343Bは、エージェント選択部343と同様に、対話エージェントの中から応答用エージェントを選択する。ただし、エージェント選択部343Bは、エージェント属性情報とユーザ情報とを参照して、応答用エージェントを選択可能である点が、エージェント選択部343とは異なる。
 エージェント選択部343Bは、エージェント属性情報と、ユーザ情報との関連性に基づいて応答用エージェントを選択してよい。例えば、エージェント選択部343Bは、エージェント属性情報とユーザ情報とを参照し、ユーザの個性に近い対話エージェントを、応答用エージェントとして選択してよい。これにより、ユーザの個性と応答用エージェントとの個性を整合させられるため、ユーザが受け入れやすい提案を行う応答用エージェントを選択することができる。
 エージェント選択部343は、エージェント属性情報と、ユーザ情報との多様性に基づいて応答用エージェントを選択してよい。例えば、エージェント選択部343Bは、エージェント属性情報とユーザ情報とを参照し、ユーザとは異なる個性を有する対話エージェントを、応答用エージェントとして選択してもよい。これにより、ユーザが思い付きにくい提案を行う応答用エージェントを選択することができる。
 このように、エージェント属性情報とユーザ情報とを参照した応答用エージェントの選択方法は、任意であってよい。
 ユーザの個性と対話エージェントの個性との遠近、すなわち属性の対応関係を示す情報は、予め定められていてよい。
 エージェント選択部343Bは、シーン情報を参照して応答用エージェントを選択してもよいし、シーン情報を参照せずに応答用エージェントを選択してもよい。シーン情報を参照する場合には、エージェント選択部343Bは、シーン情報においてシーンに対応付けられている対話エージェントのうち、ユーザと個性が近い、又は、ユーザと個性が異なる対話エージェントを選択してよい。
 以上説明したように、情報処理システム1B(情報処理システムの一例)において、エージェント選択部343B(選択部の一例)は、対話を行うユーザの属性を示すユーザ情報(ユーザ属性情報の一例)と、対話部351の属性を示すエージェント属性情報(対話部属性情報の一例)と、の関連性、多様性に基づいて、複数の対話部351のうちの一部又は全部を選択する。
 これにより、情報処理システム1Bは、ユーザの属性と対話部351の属性とに基づいて、対話部351を選択する。つまり、情報処理システム1Bは、ユーザと属性が近い又は異なる対話部351を区別して、対話部351を選択する。換言すると、情報処理システム1Bは、ユーザと対話部351との関係性に基づいて、対話部351を選択する。従って、情報処理システム1Bは、ユーザに応じた適切な応答を行うことができる。
 コンシェルジュ実行部34と対話エージェント実行部35とは、それぞれが、応答時に、ユーザ情報を参照してもよい。これにより、コンシェルジュ実行部34と対話エージェント実行部35とは、同じ発言に対する応答であっても、ユーザごとに異なる応答を生成することができる。
 ユーザ情報(ユーザ属性情報の一例)は、所定のコンシェルジュ実行部34及び対話エージェント実行部35のみ参照可能としてもよい。換言すると、複数の対話部341及び対話部351のうちの一部は、ユーザ情報の参照が制限されてよい。つまり、複数の対話部341及び対話部351のうちの一部の対話部のみが、ユーザ情報を参照して応答を生成可能であってもよい。
 特に、対話エージェント実行部35を複数のユーザへの応答に利用する場合は、あるユーザへの応答において、他のユーザへの機械学習の結果が反映される。この機械学習に他のユーザの個人情報が含まれると、生成された応答に個人情報が含まれて、ユーザの個人情報が流出してしまう恐れがある。この点、ユーザ情報の参照を制限することにより、応答に個人情報が含まれることがなくなる。このように、実施形態で説明した任意の情報の利用は、ユーザからの指定や初期設定で制限されてよい。
(第4の実施形態)
 第4の実施形態について説明する。本実施形態では、上述した構成と同様の構成については、同一の符号を付し、説明を援用する。
 第4の実施形態に係る情報処理システム1C(不図示)は、情報処理システム1と同様に、複数の対話エージェントによる応答を行うシステムである。ただし、情報処理システム1は、シーンと対話エージェントとの予め定められた対応関係に基づいて応答用エージェントを選択したのに対して、情報処理システム1Cは、ユーザごとの対話エージェントの評価に基づいて応答用エージェントを選択する点が異なる。換言すると、情報処理システム1Cは、ユーザと対話エージェントとの親和性の高さに基づいて、応答用エージェントを選択する。
 次に、情報処理システム1Cの構成について説明する。
 情報処理システム1Cは、情報処理システム1が備える応答制御装置30に代えて、応答制御装置30Cを備える。
 図14は、応答制御装置30Cの構成を示すブロック図である。
 応答制御装置30Cの記憶部32は、ユーザ別順位情報記憶部328Cを備える。応答制御装置30Cのコンシェルジュ実行部34は、評価管理部346Cを備える。応答制御装置30Cのコンシェルジュ実行部34は、応答制御装置30のコンシェルジュ実行部34が備えるエージェント選択部343に代えて、エージェント選択部343Cを備える。
 ユーザ別順位情報記憶部328Cは、ユーザ別順位情報を記憶する。ユーザ別順位情報とは、ユーザごとの対話エージェントの評価を示す情報である。ユーザ別順位情報は、ユーザごとに管理される。ユーザ別順位情報は、ユーザごとに加え、シーンごとに管理されてもよい。ユーザ別順位情報のデータ構成は、例えば、図10を用いて説明したシーン別順情報のデータ構成と同様であってよい。
 このようにユーザ別順位情報を構成することで、ユーザ別順位情報により、応答用エージェントの選択における優先順位と対話エージェントとを、ユーザごとに対応付けることができる。従って、端末装置10と応答制御装置30とは、ユーザ別順位情報を参照することにより、各ユーザからの評価が高い対話エージェントを、応答用エージェントとして選択することができる。
 評価管理部346Cは、ユーザ別順位情報を管理する。例えば、評価管理部346Cは、対話に対するユーザの評価に基づいて、ユーザ別順位情報における応答用エージェントの評価値を増減させてよい。例えば、評価管理部346Cは、対話におけるユーザの発言に基づいて、ユーザ別順位情報における応答用エージェントの評価値を増減させてもよい。具体的には、応答用エージェントの応答に対してユーザが肯定的な発言を行った場合には、当該応答用エージェントの評価値を増加させてもよい。評価管理部346Cは、応答用エージェントの応答に対してユーザが否定的な発言を行った場合には、当該応答用エージェントの評価値を減少させてもよい。そして、評価管理部346Cは、評価値の増減に応じて、優先順位と対話エージェントとの対応関係を更新する。
 エージェント選択部343Cは、エージェント選択部343と同様に、対話エージェントの中から応答用エージェントを選択する。ただし、エージェント選択部343Cは、ユーザ別順位情報を参照して、応答用エージェントを選択可能である点が、エージェント選択部343とは異なる。例えば、エージェント選択部343Cは、ユーザ別順位情報における優先順位が高い順に、対話エージェントを選択してよい。例えば、エージェント選択部343Cは、優先順位に応じて対話エージェントをグループ分けし、各グループから所定数の対話エージェントを、応答用エージェントとして選択してもよい。このように、ユーザ別順位情報を参照した応答用エージェントの選択方法は、任意であってよい。
 エージェント選択部343Cは、シーン情報を参照して応答用エージェントを選択してもよいし、シーン情報を参照せずに応答用エージェントを選択してもよい。シーン情報を参照する場合には、エージェント選択部343Cは、シーン情報においてシーンに対応付けられている対話エージェントの中から、ユーザ別順位情報における優先順位が高い順に対話エージェントを選択してよい。
 以上説明したように、情報処理システム1C(情報処理システムの一例)は、評価管理部346C(評価部の一例)を備える。評価管理部346Cは、複数の対話部351に対するユーザごとの評価を行う。エージェント選択部343C(選択部の一例)は、複数の対話エージェント実行部35(対話部の一例)のユーザごとの評価を示すユーザ別順位情報(ユーザ別評価情報の一例)に基づいて、複数の対話エージェント実行部35のうちの一部又は全部を選択する。
 これにより、情報処理システム1Cは、ユーザごとの評価に基づいて対話部351を選択する。例えば、情報処理システム1Aは、発言を行ったユーザにより高く評価された対話部351を優先的に選択する。従って、情報処理システム1Cは、ユーザに応じた適切な応答を行うことができる。
(第5の実施形態)
 第5の実施形態について説明する。本実施形態では、上述した構成と同様の構成については、同一の符号を付し、説明を援用する。
 第5の実施形態に係る情報処理システム1D(不図示)は、情報処理システム1と同様に、複数の対話エージェントによる応答を行うシステムである。ただし、情報処理システム1では、応答制御装置30にコンシェルジュの機能を持たせたのに対して、情報処理システム1Dでは、ユーザの端末装置側にコンシェルジュの機能を持たせた点が異なる。
 情報処理システム1Dの構成について説明する。
 情報処理システム1Dは、情報処理システム1が備える端末装置10と応答制御装置30とに代えて、端末装置10Dと応答制御装置30Dを備える。
 図15は、端末装置10Dの構成を示すブロック図である。
 端末装置10Dの記憶部15は、コンシェルジュ構成情報記憶部151Dと、シーン情報記憶部152Dと、履歴情報記憶部153Dと、を備える。端末装置10Dの制御部16は、コンシェルジュ実行部17Dを備える。コンシェルジュ実行部17Dは、対話部171Dと、シーン判定部172Dと、エージェント選択部173Dと、学習部174Dと、履歴管理部175Dと、を備える。
 コンシェルジュ構成情報記憶部151Dは、コンシェルジュ構成情報記憶部321と同様の構成である。シーン情報記憶部152Dは、シーン情報記憶部323と同様の構成である。履歴情報記憶部153Dは、履歴情報記憶部324と同様の構成である。コンシェルジュ実行部17Dは、コンシェルジュ実行部34と同様の構成である。
 コンシェルジュ実行部17Dは、コンシェルジュ実行部34と同様の構成である。対話部171Dは、対話部341と同様の構成である。シーン判定部172Dは、シーン判定部342と同様の構成である。エージェント選択部173Dは、エージェント選択部343と同様の構成である。学習部174Dは、学習部344と同様の構成である。履歴管理部175Dは、履歴管理部345と同様の構成である。
 図16は、応答制御装置30Dの構成を示すブロック図である。
 応答制御装置30Dの記憶部32は、応答制御装置30の記憶部32が備えるコンシェルジュ構成情報記憶部321と、シーン情報記憶部323と、を備えない。応答制御装置30Dの制御部33は、コンシェルジュ実行部34を備えない。
 以上説明したように、情報処理システム1D(情報処理システムの一例)では、端末装置10Dがコンシェルジュ実行部17Dを備える。このように、上述した各実施形態における任意の構成は、別体の装置に分離して備えられてよいし、組み合わされてもよい。
 上記実施形態において、各種情報のデータ構成は、上述したものに限られない。
各情報の対応付けは、直接的に行われてもよいし、間接的に行われてもよい。処理に必須ではない情報を省略してもよいし、類似の情報を追加して処理を行ってもよい。例えば、ユーザ情報として、ユーザの居所や職業等を含めてもよい。例えば、履歴情報は、上記実施形態のように、対話の内容を集約したものでなく、対話そのものを記録した情報であってもよい。
 上記実施形態において、応答の提示態様は、上述したものに限られない。例えば、各発言は、時系列に提示されてもよい。例えば、応答を行った応答用エージェントを明確にすることなく応答を提示してもよい。
 上記各実施形態では、制御部16、制御部33はソフトウェア機能部であるものとしたが、LSI(Large Scale Integration)等のハードウェア機能部であってもよい。
 以上説明した少なくともひとつの実施形態によれば、複数の対話部351を持つことにより、多様な応答をすることができる。
 上述の端末装置10、10D、応答制御装置30、30A~30Dの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより端末装置10、10D、応答制御装置30、30A~30Dとしての処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。
「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部または外部に設けられた記録媒体も含まれる。配信サーバの記録媒体に記憶されるプログラムのコードは、端末装置で実行可能な形式のプログラムのコードと異なるものでもよい。すなわち、配信サーバからダウンロードされて端末装置で実行可能な形でインストールができるものであれば、配信サーバで記憶される形式は問わない。プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に端末装置で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 上述した端末装置10、10D、応答制御装置30、30A~30Dの機能の一部または全部を、LSI等の集積回路として実現してもよい。上述した各機能は個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。
半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (10)

  1.  対話における発言の生成規則を示す規則情報を記憶する記憶部と、
     前記規則情報に基づいて、それぞれが、ユーザとの対話を行う複数の対話部と、
     前記複数の対話部のうち一部又は全部を選択して対話を行わせる選択部と、
     を備える情報処理システム。
  2.  前記ユーザからの1セッションの対話開始要求の態様に基づいて、対話の場面を判定する場面判定部、を更に備え、
     前記選択部は、前記場面判定部が判定した場面を用いて、場面と1以上の前記対話部とを対応付けた場面別対応情報を検索し、前記複数の対話部のうち一部又は全部を選択する
     請求項1に記載の情報処理システム。
  3.  前記複数の対話部を場面ごとに評価する評価部、を更に備え、
     前記選択部は、前記複数の対話部を場面ごとに評価した場面別評価情報に基づいて、前記複数の対話部のうちの一部又は全部を選択する
     請求項1又は請求項2に記載の情報処理システム。
  4.  前記複数の対話部をユーザごとに評価する評価部、を更に備え、
     前記選択部は、前記複数の対話部をユーザごとに評価したユーザ別評価情報に基づいて、前記複数の対話部のうち一部又は全部を選択する
     請求項1又は請求項2に記載の情報処理システム。
  5.  前記選択部は、前記対話を行うユーザの属性を示すユーザ属性情報と、前記対話部の属性を示す対話部属性情報との関連性に基づいて、前記複数の対話部のうち一部又は全部を選択する
     請求項1に記載の情報処理システム。
  6.  前記選択部は、前記対話を行うユーザの属性を示すユーザ属性情報と、前記対話部の属性を示す対話部属性情報との間の多様性に基づいて、前記複数の対話部のうち一部又は全部を選択する
     請求項1に記載の情報処理システム。
  7.  前記複数の対話部のうち一部の対話部は、前記ユーザ属性情報の参照が制限された対話部である
     請求項5に記載の情報処理システム。
  8.  記憶部に予め記憶された規則情報であって、対話における発言の生成規則を示す規則情報に基づいて、それぞれが、ユーザとの対話を行う複数の対話部と、
     前記複数の対話部のうち一部又は全部を選択して対話を行わせる選択部と、
     を備える情報処理装置。
  9.  対話における発言の生成規則を示す規則情報を記憶する記憶部と、前記規則情報に基づいて、それぞれが、ユーザとの対話を行う複数の対話部と、を備える情報処理システムにおける情報処理方法であって、
     前記情報処理システムが、前記複数の対話部のうち一部又は全部を選択して対話を行わせるステップ、
     を含む情報処理方法。
  10.  コンピュータを、
     記憶部に予め記憶された規則情報であって、対話における発言の生成規則を示す規則情報に基づいて、それぞれが、ユーザとの対話を行う複数の対話部と、
     前記複数の対話部のうち一部又は全部を選択して対話を行わせる選択部と、
     として機能させるためのプログラムを記憶した記憶媒体。
PCT/JP2017/033061 2016-09-28 2017-09-13 情報処理システム、情報処理装置、情報処理方法、及び記憶媒体 WO2018061774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/336,820 US10984794B1 (en) 2016-09-28 2017-09-13 Information processing system, information processing apparatus, information processing method, and recording medium
CN201780060050.0A CN109791551A (zh) 2016-09-28 2017-09-13 信息处理系统、信息处理装置、信息处理方法、及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-190399 2016-09-28
JP2016190399A JP2018054850A (ja) 2016-09-28 2016-09-28 情報処理システム、情報処理装置、情報処理方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2018061774A1 true WO2018061774A1 (ja) 2018-04-05

Family

ID=61760638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033061 WO2018061774A1 (ja) 2016-09-28 2017-09-13 情報処理システム、情報処理装置、情報処理方法、及び記憶媒体

Country Status (4)

Country Link
US (1) US10984794B1 (ja)
JP (1) JP2018054850A (ja)
CN (1) CN109791551A (ja)
WO (1) WO2018061774A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111028837A (zh) * 2019-12-16 2020-04-17 深圳云之家网络有限公司 语音会话方法、语音识别系统及计算机存储介质
CN111798843A (zh) * 2019-04-02 2020-10-20 现代自动车株式会社 对话处理装置、具有它的车辆和对话处理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026460A1 (ja) * 2018-08-03 2020-02-06 日本電気株式会社 情報処理装置、情報処理方法および情報処理プログラム
CN110874201B (zh) * 2018-08-29 2023-06-23 斑马智行网络(香港)有限公司 交互方法、设备、存储介质和操作系统
JP7135887B2 (ja) * 2019-01-24 2022-09-13 トヨタ自動車株式会社 促し発話装置、促し発話方法及びプログラム
JP2020119412A (ja) * 2019-01-28 2020-08-06 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
JP7175221B2 (ja) * 2019-03-06 2022-11-18 本田技研工業株式会社 エージェント装置、エージェント装置の制御方法、およびプログラム
JP7245695B2 (ja) * 2019-03-27 2023-03-24 本田技研工業株式会社 サーバ装置、情報提供システム、および情報提供方法
US20220229994A1 (en) * 2021-01-21 2022-07-21 Servicenow, Inc. Operational modeling and optimization system for a natural language understanding (nlu) framework

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056225A (ja) * 1999-08-17 2001-02-27 Equos Research Co Ltd エージェント装置
JP2002268901A (ja) * 2001-03-06 2002-09-20 Sony Corp エージェントシステム、エージェント取り扱い方法及び情報提供装置及びプログラム並びに情報記録媒体
JP2002312377A (ja) * 2001-04-18 2002-10-25 Nec Corp 検索装置、検索用サーバ、検索システム、検索方法およびそのプログラム
JP2014086088A (ja) * 2012-10-19 2014-05-12 Samsung Electronics Co Ltd ディスプレイ装置、ディスプレイ装置制御方法及びディスプレイ装置の制御のための情報処理装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188784A (ja) * 1999-12-28 2001-07-10 Sony Corp 会話処理装置および方法、並びに記録媒体
JP2002358092A (ja) * 2001-06-01 2002-12-13 Sony Corp 音声合成システム
US7606714B2 (en) 2003-02-11 2009-10-20 Microsoft Corporation Natural language classification within an automated response system
JP2005003926A (ja) * 2003-06-11 2005-01-06 Sony Corp 情報処理装置および方法、並びにプログラム
JP3962767B2 (ja) * 2004-10-08 2007-08-22 松下電器産業株式会社 対話支援装置
US7640160B2 (en) * 2005-08-05 2009-12-29 Voicebox Technologies, Inc. Systems and methods for responding to natural language speech utterance
US8265939B2 (en) * 2005-08-31 2012-09-11 Nuance Communications, Inc. Hierarchical methods and apparatus for extracting user intent from spoken utterances
KR100755677B1 (ko) * 2005-11-02 2007-09-05 삼성전자주식회사 주제 영역 검출을 이용한 대화체 음성 인식 장치 및 방법
US9318108B2 (en) * 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
JP2008090545A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 音声対話装置および音声対話方法
US8073681B2 (en) * 2006-10-16 2011-12-06 Voicebox Technologies, Inc. System and method for a cooperative conversational voice user interface
JP2009193448A (ja) * 2008-02-15 2009-08-27 Oki Electric Ind Co Ltd 対話システム、方法及びプログラム
JP5128514B2 (ja) * 2009-02-10 2013-01-23 日本電信電話株式会社 多人数思考喚起型対話装置、多人数思考喚起型対話方法、多人数思考喚起型対話プログラム並びにそのプログラムを記録したコンピュータ読み取り可能な記録媒体
US20120185275A1 (en) * 2011-01-15 2012-07-19 Masoud Loghmani System and method of automated data analysis for implementing health records personal assistant with automated correlation of medical services to insurance and tax benefits for improved personal health cost management
CN103460281B (zh) * 2011-10-25 2015-12-23 奥林巴斯株式会社 内窥镜手术系统
KR102081925B1 (ko) * 2012-08-29 2020-02-26 엘지전자 주식회사 디스플레이 디바이스 및 스피치 검색 방법
US9230560B2 (en) * 2012-10-08 2016-01-05 Nant Holdings Ip, Llc Smart home automation systems and methods
US20140142948A1 (en) * 2012-11-21 2014-05-22 Somya Rathi Systems and methods for in-vehicle context formation
KR102072826B1 (ko) * 2013-01-31 2020-02-03 삼성전자주식회사 음성 인식 장치 및 응답 정보 제공 방법
US20130326375A1 (en) * 2013-08-07 2013-12-05 Liveperson, Inc. Method and System for Engaging Real-Time-Human Interaction into Media Presented Online
US10181322B2 (en) * 2013-12-20 2019-01-15 Microsoft Technology Licensing, Llc Multi-user, multi-domain dialog system
US20160203523A1 (en) * 2014-02-21 2016-07-14 Lithium Technologies, Inc. Domain generic large scale topic expertise and interest mining across multiple online social networks
JP6302707B2 (ja) * 2014-03-06 2018-03-28 クラリオン株式会社 対話履歴管理装置、対話装置および対話履歴管理方法
WO2016044321A1 (en) * 2014-09-16 2016-03-24 Min Tang Integration of domain information into state transitions of a finite state transducer for natural language processing
US10614799B2 (en) * 2014-11-26 2020-04-07 Voicebox Technologies Corporation System and method of providing intent predictions for an utterance prior to a system detection of an end of the utterance
US10431214B2 (en) * 2014-11-26 2019-10-01 Voicebox Technologies Corporation System and method of determining a domain and/or an action related to a natural language input
US20180190266A1 (en) * 2015-02-03 2018-07-05 Dolby Laboratories Licensing Corporation Conference word cloud
US9953648B2 (en) * 2015-05-11 2018-04-24 Samsung Electronics Co., Ltd. Electronic device and method for controlling the same
US10331784B2 (en) * 2016-07-29 2019-06-25 Voicebox Technologies Corporation System and method of disambiguating natural language processing requests
US10559309B2 (en) * 2016-12-22 2020-02-11 Google Llc Collaborative voice controlled devices
US10699708B2 (en) * 2018-04-24 2020-06-30 Accenture Global Solutions Limited Robotic agent conversation escalation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056225A (ja) * 1999-08-17 2001-02-27 Equos Research Co Ltd エージェント装置
JP2002268901A (ja) * 2001-03-06 2002-09-20 Sony Corp エージェントシステム、エージェント取り扱い方法及び情報提供装置及びプログラム並びに情報記録媒体
JP2002312377A (ja) * 2001-04-18 2002-10-25 Nec Corp 検索装置、検索用サーバ、検索システム、検索方法およびそのプログラム
JP2014086088A (ja) * 2012-10-19 2014-05-12 Samsung Electronics Co Ltd ディスプレイ装置、ディスプレイ装置制御方法及びディスプレイ装置の制御のための情報処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111798843A (zh) * 2019-04-02 2020-10-20 现代自动车株式会社 对话处理装置、具有它的车辆和对话处理方法
CN111028837A (zh) * 2019-12-16 2020-04-17 深圳云之家网络有限公司 语音会话方法、语音识别系统及计算机存储介质
CN111028837B (zh) * 2019-12-16 2022-10-04 深圳云之家网络有限公司 语音会话方法、语音识别系统及计算机存储介质

Also Published As

Publication number Publication date
CN109791551A (zh) 2019-05-21
JP2018054850A (ja) 2018-04-05
US10984794B1 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2018061774A1 (ja) 情報処理システム、情報処理装置、情報処理方法、及び記憶媒体
JP7095000B2 (ja) 会話型インターフェースの一部として動的に適用されるフィルタリングオペレータを伴う適応会話状態管理のための方法
KR102373905B1 (ko) 어시스턴트 애플리케이션을 위한 음성 사용자 인터페이스 단축
US10217463B2 (en) Hybridized client-server speech recognition
US10885278B2 (en) Auto tele-interview solution
US10796696B2 (en) Tailoring an interactive dialog application based on creator provided content
CN108319599B (zh) 一种人机对话的方法和装置
JP2021144228A (ja) ユーザプログラマブル自動アシスタント
US20140317030A1 (en) Method and apparatus for customizing conversation agents based on user characteristics
WO2018061776A1 (ja) 情報処理システム、情報処理装置、情報処理方法、及び記憶媒体
WO2013173352A2 (en) Crowd sourcing information to fulfill user requests
US10979242B2 (en) Intelligent personal assistant controller where a voice command specifies a target appliance based on a confidence score without requiring uttering of a wake-word
JP7524896B2 (ja) 情報処理システム、情報処理方法、及びプログラム
JP6450138B2 (ja) 情報処理装置及び発話内容出力方法
CN111542814A (zh) 改变应答以提供表现丰富的自然语言对话的方法、计算机装置及计算机可读存储介质
Cowley et al. Evolution, lineages and human language
JP2021096847A (ja) ユーザの発言に基づくマルチメディア推奨
CN111557001B (zh) 提供自然语言对话的方法、计算机装置及计算机可读存储介质
JP2015125198A (ja) 対話シナリオに対する動的対話ノードの挿入行動を制御する対話プログラム、サーバ及び方法
CN111556999B (zh) 通过即时提供实质性回答以提供自然语言对话的方法、计算机装置及计算机可读存储介质
Vineeth et al. A proposed chatbot Psykh your personal therapist and stress buster using RASA open-source framework
Schneider Voice assistants are social actors–An empirical analysis of media equation effects in human-voice assistant interaction
US20240226755A9 (en) Apparatus for Providing Conversation Services and Method Thereof
CN108520745A (zh) 设备画像信息的操作方法及装置
Singh Analysis of Currently Open and Closed-source Software for the Creation of an AI Personal Assistant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855730

Country of ref document: EP

Kind code of ref document: A1