WO2018056735A1 - Catalyst regenerator, fluid catalytic cracking reaction system and catalyst regeneration method - Google Patents
Catalyst regenerator, fluid catalytic cracking reaction system and catalyst regeneration method Download PDFInfo
- Publication number
- WO2018056735A1 WO2018056735A1 PCT/KR2017/010434 KR2017010434W WO2018056735A1 WO 2018056735 A1 WO2018056735 A1 WO 2018056735A1 KR 2017010434 W KR2017010434 W KR 2017010434W WO 2018056735 A1 WO2018056735 A1 WO 2018056735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- supply
- container
- regenerator
- caulked
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
- C10G11/182—Regeneration
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/10—Catalytic reforming with moving catalysts
- C10G35/14—Catalytic reforming with moving catalysts according to the "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4081—Recycling aspects
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4093—Catalyst stripping
Definitions
- the present invention relates to a catalyst regenerator, a fluid catalyst cracking reaction system, and a catalyst regeneration method, and more particularly, to continuously regenerate a coked catalyst during the process of producing olefins from refinery and naphtha separating various kinds of oil from petroleum. It relates to a catalyst regenerator, a flow catalyst cracking reaction system and a catalyst regeneration method.
- ethylene is a representative material of basic raw materials in petrochemical.
- the petrochemical process produces various materials through various processes based on olefin compounds such as ethylene and propylene.
- Olefin is obtained by decomposing naphtha (naphtha) or is obtained from ethane. In our country, mainly produced naphtha to produce olefin compounds such as ethylene.
- the method for producing olefins from naphtha is conventionally performed at a high temperature of 1000 ° C. or more using a pyrolysis process (naphtha cracking center (naphtha cracking center) naphtha cracking process).
- naphtha is fed together with steam to the bottom of the riser, and the regenerated catalyst which is pushed out of the catalyst regenerator is fed back to the bottom of the riser, and the naphtha is mixed with the naphtha and the catalyst to rise up the riser Decomposes to produce olefins.
- the catalyst is coked by cracking naphtha in the riser. That is, carbon particles cover the surface of the catalyst.
- the riser is connected to a cyclone provided on top of the catalyst regenerator.
- the olefin gas thus formed is separated in the cyclone and exited from the stripper vessel and sent to the FCC (fluid catalytic cracking) main column, and the caulked catalyst is separated from the cyclone and falls down.
- Fuel gas is supplied to the waste heat boiler.
- the conventional pyrolysis process also uses a catalyst. At this time, naphtha decomposes at a high temperature to generate a considerable amount of coke around 7% of the weight of the catalyst. That is, carbon particles cover the surface of the catalyst.
- the caulked catalyst must be recycled, sent back to the riser, mixed with naphtha and subjected to a cycle used for the decomposition reaction of naphtha.
- a cycle used for the decomposition reaction of naphtha it is difficult for the decomposition reaction of naphtha to be smooth.
- the caulked catalyst dropped to the bottom of the catalyst regenerator is regenerated. In other words, regeneration burns off coke attached to the catalyst.
- the catalyst When the amount of catalyst used is high, the catalyst forms a fluidized bed type with a high density. That is, the catalyst is accumulated in the center wall provided at the lower end of the stand pipe to guide the catalyst. In order to prevent this, hot air and steam are injected toward the catalyst falling from the inner lower side of the center wall together with the fuel for catalyst regeneration. Hot air and steam injected upwards assist in catalyst regeneration and at the same time prevent the catalyst fluidized bed from increasing in density.
- Such a catalyst regenerator is not suitable for application to a catalyst regenerator having a low amount of catalyst.
- a catalyst regenerator for regenerating a heavy catalyst has a stand pipe and a center wall therein, and requires a configuration for supplying hot air and steam to the inside of the center wall.
- One aspect of the present invention is a catalyst regenerator, a flow catalyst cracking to continuously regenerate the coked catalyst in a simple configuration when the amount of the catalyst is small during the process of producing olefins from the refinery and naphtha to separate various types of oil from petroleum It is to provide a reaction system, and a catalyst regeneration method.
- the catalyst regenerator according to an embodiment of the present invention is formed in a vessel having a catalyst inlet through which a coked catalyst is introduced and a catalyst outlet through which the regenerated catalyst is discharged, and formed below the catalyst inlet, and a caulked catalyst introduced into the container. And a first supply unit for supplying a synthesis gas containing solid carbon to the second supply unit, and a second supply unit formed below the first supply unit and supplying hot air into the container.
- the catalyst inlet can be disposed above the vessel and the catalyst outlet can be disposed below the vessel.
- the first supply unit may include a first nozzle assembly for supplying the syngas
- the second supply unit may include a second nozzle assembly for supplying the hot air.
- the second nozzle assembly is spaced apart from the first nozzle assembly by a first distance L1, spaced apart from the catalyst outlet by a second distance L2, and the first distance L1 is a flow rate of the caulked catalyst.
- the vessel may set a caulking volume corresponding to the first distance L1, and the caulking volume may be set to a size that allows the caulked catalyst to be additionally caulked by syngas.
- the vessel sets a combustion volume corresponding to the second distance L2, and the combustion volume may be set to a size capable of further burning the coked catalyst with hot air.
- the first nozzle assembly includes a first donut tube corresponding to a horizontal cross-sectional shape of the cylinder of the container, and a first supply tube installed in the container and connected to the first donut tube to supply a synthesis gas.
- the first donut tube body may include a first mixed gas nozzle and a second mixed gas nozzle that form a spraying direction at an angle set to 90 degrees or less with respect to a reference line passing through a center in the vertical direction in a circular cross section in the vertical direction.
- the second nozzle assembly includes a second donut tube corresponding to the horizontal cross-sectional shape of the cylinder of the container, and a second supply tube installed in the container and connected to the second donut tube to supply hot air.
- the second donut tube may include a first air nozzle and a second air nozzle forming an injection direction at an angle set to 90 degrees or less with respect to a reference line passing through a center in the vertical direction in a circular cross section in the vertical direction.
- the first supply unit may be connected to a plasma burner that forms a rotating arc to generate syngas through a partial oxidation reaction.
- At least one of the first supply unit and the second supply unit may include a supply pipe connected to an outer circumferential side of the container.
- At least one of the first supply unit and the second supply unit may include a supply chamber formed along an outer periphery of the container and connected to a supply port formed in the container, and a supply pipe externally connected to the supply chamber.
- the catalyst inlet can be disposed above the vessel and the catalyst outlet can be disposed laterally of the vessel.
- the catalyst inlet may include a plurality of catalyst pipes arranged long downward in the interior of the vessel to guide the inflow of the caulked catalyst, and the catalyst outlet may be formed at a position higher than a lower end of the catalyst pipe.
- the first supply portion may be formed on the side of the vessel at a position lower than the lower end of the catalyst pipe, and the second supply portion may be formed below the vessel at a position lower than the first supply portion.
- a reaction part causing decomposition reaction by mixing a catalyst with petroleum or naphtha, and a separation part separating the reaction product generated in the reaction part from the catalyst according to the properties and characteristics
- the catalyst regenerator regenerating the caulked catalyst introduced from the separation unit and supplying the catalyst to the reaction unit.
- Catalyst regeneration method the catalyst supply step of supplying a coked catalyst, an additional coking step of further coking the coked catalyst with a high temperature synthesis gas, a regeneration step of regenerating the additional coked catalyst, and An evacuation step of evacuating the regenerated catalyst.
- the catalyst supplying step may supply the coked catalyst from a fluid catalytic cracking (FCC) reaction system.
- FCC fluid catalytic cracking
- the additional coking step may be further coked by feeding hot syngas containing solid carbon to the coked catalyst.
- the regeneration step may supply hot air to regenerate the additional coked catalyst.
- the caulked catalyst supplied in the catalyst feeding step may pass through the further coking step, the regeneration step, and the discharge step while moving from the top to the bottom.
- the first and second supply unit (first, second nozzle assembly) is provided in the interior of the container in order, in the fluid catalytic cracking (FCC (fluid catalytic cracking)) reaction system, Since the high temperature synthesis gas containing the solid carbon and the hot air are sequentially supplied to the catalyst, it is possible to additionally coke the continuously coked catalyst and to regenerate the coked catalyst.
- FCC fluid catalytic cracking
- FIG. 1 is a cross-sectional view of a catalyst regenerator according to a first embodiment of the present invention.
- FIG. 2 is a diagram illustrating an operation of supplying a high temperature syngas containing solid carbon to a coked catalyst in the first nozzle assembly of FIG. 1.
- FIG. 3 is a bottom view of the first nozzle assembly shown in FIG. 2.
- FIG. 4 is a diagram illustrating an operation of supplying hot air to a mixture of hot syngas and a caulked catalyst formed under the first nozzle assembly in the second nozzle assembly of FIG. 1.
- FIG. 5 is a cross-sectional view of the (first, second) supply unit applied to the catalyst regenerator according to the second embodiment of the present invention.
- FIG. 6 is a cross-sectional view of the (first, second) supply unit applied to the catalyst regenerator according to the third embodiment of the present invention.
- FIG. 7 is a sectional view of a catalyst regenerator according to a fourth embodiment of the present invention.
- FIG. 8 is a block diagram of a flow catalyst cracking reaction system according to an embodiment of the present invention.
- FIG. 9 is a flowchart of a catalyst regeneration method according to an embodiment of the present invention.
- reaction unit eg, an overheated target material injected with steam
- a high temperature catalyst e.g., an overheated target material injected with steam
- the target material eg naphtha continues to catalyze and decompose as it rises along the reaction section.
- a separation unit eg cyclone
- the separated reaction product eg olefin
- the separated reaction product is sent to the main column (not shown) of the FCC in a fluid catalytic cracking (FCC) reaction system, and the coked catalyst is regenerated off into a catalyst regenerator.
- FCC fluid catalytic cracking
- FIG. 1 is a cross-sectional view of a catalyst regenerator according to a first embodiment of the present invention.
- Figure 1 will be described by taking the cracked naphtha, after the regeneration of the caulked catalyst as an example.
- Carbon or carbon and gaseous HC are supplied in a gaseous flow through the catalyst regenerator 1 so as to be deposited or coked on the catalyst, and separately supplied with an oxidant (combustion air) to coking.
- the burned carbon is then burned to compensate for the reduced flow temperature during the decomposition reaction and to regenerate the catalyst.
- the catalyst regenerator 1 of the first embodiment is configured to regenerate a caulked catalyst introduced after a naphtha decomposition reaction, and the vessel 30 through which the caulked catalyst flows, the interior of the vessel 30. And a first supply part (for example, a first nozzle assembly) 10 and a second supply part (for example, a second nozzle assembly) 20 to be installed therein.
- a first supply part for example, a first nozzle assembly
- a second supply part for example, a second nozzle assembly
- the vessel 30 has a catalyst inlet 31 above and a catalyst outlet 32 below.
- the container 30 may be formed in a cylindrical body.
- the caulked catalyst produced by the decomposition reaction of naphtha in the riser is introduced into the upper portion of the vessel 30 through the catalyst inlet 31, is regenerated downward from the interior of the vessel 30, and then discharged to the catalyst outlet 32. .
- the vessel 30 has a distributor 33 above via the catalyst inlet 31.
- the distributor 33 uniformly distributes the caulked catalyst introduced through the catalyst inlet 31 and falling from above to the bottom in the horizontal direction of the vessel 30.
- the caulked catalyst via the distributor 33 may fall into a uniform distribution in the horizontal direction toward the first supply, that is, the first nozzle assembly 10.
- the first nozzle assembly 10 is installed below the catalyst inlet 31 and the distributor 33, the second nozzle assembly 20 It is installed below the first nozzle assembly 10.
- the catalyst outlet 32 is provided below the second nozzle assembly 20.
- the first nozzle assembly 10 sprays and supplies a high temperature syngas containing solid carbon to the caulked catalyst. That is, the first nozzle assembly 10 may supply carbon or carbon and HC, and may be supplied through partial oxidation of fuel.
- the second nozzle assembly 20 supplies hot air to the mixture of the coked catalyst and the hot syngas via the first nozzle assembly 10.
- the first nozzle assembly 10 and the second nozzle assembly 20 are spaced apart at a first distance L1.
- the first distance L1 is set to be equal to or more than a distance at which the coked catalyst passed through the first nozzle assembly 10 and the high temperature syngas injected from the first nozzle assembly 10 are sufficiently mixed.
- the first distance L1 may be set as a product of the flow rate Vc of the caulked catalyst and the time Tm at which the caulked catalyst and the high temperature syngas are mixed.
- the container 30 sets the caulking volume corresponding to the first distance L1.
- the caulking volume in the vessel 30 is set in the flow direction of the caulked catalyst to a size that allows the caulked catalyst to be further caulked by the hot syngas supplied from the first nozzle assembly 10. .
- the second nozzle assembly 20 and the catalyst outlet 32 are spaced apart by a second distance L2.
- the second distance L2 is set to be equal to or more than a distance for sufficiently burning the catalyst further coked through the first distance L1 with the hot air injected from the second nozzle assembly 20.
- the second distance L2 is set to a product of or equal to the product of the flow rate Vcc of the additionally coked catalyst and the time Tb at which the additionally coked catalyst can be combusted by the syngas. .
- the container 30 sets the combustion volume corresponding to the second distance L2.
- the combustion volume in the vessel 30 is set to a size capable of further burning the coked catalyst with hot air, thereby further burning the coked catalyst with the hot air supplied from the second nozzle assembly 20. It is set to a size that allows it.
- FIG. 2 is an operating state diagram of supplying a high temperature syngas containing solid carbon to a coked catalyst in the first nozzle assembly of FIG. 1, and FIG. 3 is a view of the first nozzle assembly of FIG. 2. Bottom view.
- the first nozzle assembly 10 is disposed above the inside of the container 30 to provide solid carbon to the caulked catalyst C1 flowing out from the catalyst inlet 31. It is configured to supply a hot syngas containing.
- the first nozzle assembly 10 is connected to a partial oxidation burner 40.
- Partial oxidation burner 40 is configured to produce hot gases containing solid carbon, ie syngas (partial oxidation product).
- the partial oxidation burner 40 may be formed as a plasma burner that partially oxidizes hydrocarbon fuel oil.
- the plasma burner includes an electrode to which a high voltage is applied, a ground electrode forming a discharge gap with the high voltage electrode, and an oxidant supply part and a fuel supply part supplying an oxidant (air) and fuel to cause a discharge between the electrode and the ground electrode.
- a nozzle For example, a nozzle.
- the plasma burner may form a rotation arc by forming the supply direction of the oxidant (air) in the rotation direction.
- Partial oxidation reactions produce hydrogen, carbon monoxide, low carbon number hydrocarbons, solid carbon, carbon dioxide, and water.
- the partial oxidation burner 40 generates a high temperature synthesis gas containing solid carbon by plasma reaction by the supplied hydrocarbon fuel and air.
- a typical burner can achieve partial oxidation within the combustible range of very limited air-fuel ratios. However, when a typical burner is applied to a partial oxidation burner, solid carbon can be produced and supplied only within a limited flammable range (that is, when the temperature is relatively high).
- the partial oxidation burner 40 may generate and supply solid carbon in a combustible range having a very wide air-fuel ratio.
- the partial oxidation burner 40 can maintain the partial oxidation reaction while controlling the amount of solid carbon generated.
- partial oxidation with low air-fuel ratio generates a large amount of hydrogen and solid carbon
- partial oxidation (close to complete combustion) with high air-fuel ratio produces a higher amount of hydrogen and solid carbon with higher temperature.
- the partial oxidation burner 40 when the air-fuel ratio increases in the low air-fuel ratio section, when the temperature of the synthesis gas generated and discharged from the partial oxidation burner 40, that is, the partial oxidation product increases, and the air-fuel ratio increases after the highest temperature, the partial oxidation burner 40 The temperature of the syngas generated and supplied at) decreases.
- the first nozzle assembly 10 includes a first donut tube 13, a first supply tube 14, a first mixed gas nozzle 11, and a second mixed gas nozzle 12.
- the first donut tube 13 is disposed in the cylindrical container 30 so as to correspond to the horizontal cross-sectional shape.
- the first supply pipe 14 is connected to the partial oxidation burner 40 and is installed through the wall of the container 30, and connects the first donut pipe 13 to the inner end, so that the solid carbon produced by the partial oxidation
- the hot syngas containing solid carbon may be supplied into the first donut tube 13 and the vessel 30.
- the first donut tube body 13 includes first and second mixed gas nozzles 11 and 12 for injecting a mixed gas.
- the first and second mixed gas nozzles 11 and 12 form an injection direction at angles ⁇ 1 and ⁇ 2 set inward and outward with respect to the reference line BL1 in the vertical direction in the first donut tube body 13.
- the reference line BL1 is set in the first donut tube 13 through a cross section in the vertical direction, that is, a center in the vertical direction in the vertical direction.
- the first and second mixed gas nozzles 11 and 12 contain solid carbon supplied from the partial oxidation burner 40 via the first supply pipe 14 and the first donut pipe 13.
- the high temperature synthesis gas is injected at the set angles ⁇ 1 and ⁇ 2 in the inner and outer directions of the first donut tube body 13.
- the angles ⁇ 1 and ⁇ 2 are set to 90 degrees or less with respect to the reference line BL1. That is, the angles ⁇ 1 and ⁇ 2 prevent high temperature syngas from being injected upward in the container 30.
- the first and second mixed gas nozzles 11 and 12 are respectively installed inside and outside the center line at the bottom of the first donut tube body 13 to uniformly inject the syngas into the container 30 so that the first donut tube body From below (13), hot syngas can be uniformly sprayed onto the dropped caulked catalyst C1 at angles ⁇ 1 and ⁇ 2 set to the inside and the outside.
- the injected hot syngas is mixed with the caulked catalyst (C1) falling from the catalyst inlet (31), and the caulked catalyst (C1) is the first distance (L1) between the first and second nozzle assemblies (10, 20) Caulking additionally via). That is, the catalyst falling into the second nozzle assembly 20 via the first distance L1 is the catalyst C2 further coked by a high temperature synthesis gas containing solid carbon.
- the second nozzle assembly 20 includes a second donut tube 23, a second supply tube 24, a first air nozzle 21, and a second air nozzle 22.
- the second donut tube 23 is disposed in the cylindrical container 30 and formed to correspond to the horizontal cross-sectional shape.
- the second supply pipe 24 is installed through the wall of the container 30, and connects the second donut pipe 23 to the inner end to supply hot air to the second donut pipe 23 and the inside of the container 30. Can be supplied as
- the second donut tube body 23 includes first and second air nozzles 21 and 22 for blowing hot air.
- the 1st, 2nd air nozzles 21 and 22 form the injection direction in the 2nd donut tube body 23 with the angle (theta) 3 and (theta) 4 set inward and outward with respect to the reference line BL2 of the up-down direction.
- the reference line BL2 is set in the second donut tube body 23 through a vertical cross section, that is, a circle through a center in the vertical direction.
- the first and second air nozzles 21 and 22 carry hot air supplied through the second supply pipe 24 and the second donut pipe 23 to the inside and the outside of the second donut pipe 23. Spray at the set angle ( ⁇ 3, ⁇ 4). Angles (theta) 3 and (theta) 4 are set to 90 degrees or less with respect to reference line BL2. That is, the angles ⁇ 3 and ⁇ 4 prevent hot air from being blown upward in the container 30.
- the first and second air nozzles 21 and 22 are respectively installed inside and outside the center line at the bottom of the second donut tube body 23, so that the hot air is uniformly injected into the container 30, so that the second donut tube body Under (23), hot air can be uniformly sprayed on the additionally caulked catalyst C2 which is further caulked at angles ⁇ 3 and ⁇ 4 set inward and outward.
- the injected hot air is mixed with the additionally coked catalyst C2 falling via the first nozzle assembly 10 and the first distance L1, and the further coked catalyst C2 is added to the second nozzle assembly 20.
- the regenerated catalyst C3 is discharged to the catalyst outlet 32 of the vessel 30 and supplied back to the riser connected to the catalyst outlet 32. It is mixed with naphtha and used for the decomposition reaction of naphtha.
- FIG. 5 is a cross-sectional view of the (first, second) supply unit applied to the catalyst regenerator according to the second embodiment of the present invention.
- the catalyst regenerator 2 according to the second embodiment at least one of the first supply part and the second supply part is formed of a supply pipe 51 connected to an outer circumferential side of the container 30.
- the supply pipe 51 may be directly connected to the outer circumference of the container 30 and applied to the first supply part and the second supply part.
- the supply pipe 51 supplies a synthesis gas containing solid carbon into the container 30 to further coke the coked catalyst.
- the supply pipe 51 supplies hot air into the vessel 30 to regenerate the additional coked catalyst.
- the supply pipe 51 simplifies the supply structure of the syngas and the hot air.
- FIG. 6 is a cross-sectional view of the (first, second) supply unit applied to the catalyst regenerator according to the third embodiment of the present invention.
- at least one of the first supply part and the second supply part includes a supply chamber 62 and a supply pipe 61.
- the supply chamber 62 is formed along the outer circumference of the container 30 so as to be connected to the supply port 34 formed in the container 30.
- the supply pipe 61 is connected to the supply chamber 62 to the outside.
- the supply pipe 61 and the supply chamber 62 may be connected to the outer circumference of the container 30 and applied to the first supply part and the second supply part.
- the supply pipe 61, the supply chamber 62, and the supply port 34 supply the syngas containing solid carbon into the container 30 to further coke the caulked catalyst.
- feed tube 61 and feed chamber 62 and feed port 34 supply hot air into vessel 30 to regenerate the additional coked catalyst.
- the supply chamber 62 and the supply pipe 61 make it possible to uniformly supply syngas and hot air in the circumferential direction of the container 30.
- the vessel 70 includes a catalyst inlet 71 for introducing a caulked catalyst and a catalyst outlet 72 for discharging the regenerated catalyst.
- the first supply unit 73 supplies a synthesis gas containing solid carbon to the caulked catalyst introduced into the catalyst inlet 71.
- the second supply part 74 supplies hot air into the container 70.
- the catalyst inlet 71 may be provided above the vessel 70, and the catalyst outlet 72 may be provided below or to the side of the vessel 70.
- the catalyst outlet 72 is provided on the side of the vessel 70.
- the catalyst inlet 71 includes a plurality of catalyst pipes 71 arranged long downward in the interior of the vessel 70 to guide the inflow of the caulked catalyst.
- the catalyst outlet 72 is formed on the side of the vessel 70 at a position ⁇ H higher than the lower end of the catalyst pipe 71. The height difference ⁇ H thus prevents the caulked catalyst from being discharged into the catalyst outlet 72 without being regenerated in the vessel 70.
- the first supply portion 73 is formed on the side of the vessel 70 at a lower position than the lower end of the catalyst pipe 71, and supplies a high temperature synthesis gas containing solid carbon into the vessel 70 to add a caulked catalyst. Caulk.
- the second supply portion 74 is formed below the vessel 70 at a lower position than the first supply portion 73 to supply hot air to regenerate the additional coked catalyst.
- a fluid catalytic cracking (FCC) reaction system of one embodiment includes a reaction unit 100, a separation unit 200, and a catalyst regenerator 300.
- the reaction unit 100 generates a reaction product (eg, olefin) by causing a decomposition reaction by mixing a catalyst with a target material (eg, naphtha) to be supplied.
- a reaction product eg, olefin
- a target material eg, naphtha
- the reaction unit 100 performs a refinery process for separating various kinds of oil from petroleum, a process for producing olefins from naphtha, propane dehydrogenation (PDH), and the like.
- PDH propane dehydrogenation
- Separation unit 200 separates the reaction product generated in the reaction unit 100 with the catalyst caulked during the decomposition reaction according to the properties and characteristics.
- the separation unit 200 may include a separation device (not shown) or a cyclone 210 to separate the reaction product and the caulked catalyst after the decomposition reaction.
- the reaction product is fed to the next process, and the caulked catalyst is fed to the catalyst regenerator 300 below.
- the catalyst regenerator 300 is configured as described with reference to FIGS. 1 to 4, and regenerates the caulked catalyst flowing into the catalyst inlet 31 from the separation unit 200, and through the catalyst outlet 32, the reaction unit ( Feed back to 100). To this end, the catalyst inlet 31 of the catalyst regenerator 300 is connected to the separation unit 200, the catalyst outlet 32 is connected to the reaction unit 100.
- FIG. 9 is a flowchart of a catalyst regeneration method according to an embodiment of the present invention.
- the catalyst regeneration method according to an embodiment of the catalyst supply step (ST1) for supplying the coked catalyst, the additional coking step for additional coking the coked catalyst with a high temperature synthesis gas (ST2), a regeneration step (ST3) for regenerating the further coked catalyst, and a discharge step (ST4) for discharging the regenerated catalyst.
- the caulked catalyst supplied in the catalyst supplying step is further coked in the additional coking step, moving further from the top of the catalyst regenerator 300, and further coked, regenerated in the regenerating step, and regenerated after the discharge step. It is discharged via diesel.
- the catalyst supply step ST1 feeds the coked catalyst from the fluid catalytic cracking (FCC) reaction system to the vessel 30 of the catalyst regenerator 300.
- the catalyst supply step ST1 supplies the coked catalyst to the catalyst inlet 31 provided above the vessel 30.
- An additional coking step ST2 is further coked by supplying hot syngas containing solid carbon to the first nozzle assembly 10 to the coked catalyst in the vessel 30.
- the regeneration step ST3 supplies hot air to the third nozzle assembly 20 to regenerate the additional coked catalyst.
- Discharge step ST4 discharges the additional coked catalyst through the catalyst outlet 32 provided below the vessel (30). The additional caulked catalyst is fed back to the reaction section 100 to catalyze.
- first mixed gas nozzle 12 second mixed gas nozzle
- supply port 40 partial oxidation burner
- reaction part 200 separation part
- Tb time that can be burned
- Tm time that can be blended
- Vc, Vcc Flow velocity ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4: Angle
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
A catalyst regenerator according to an embodiment of the present invention comprises: a container provided with a catalyst inlet into which a coked catalyst is introduced and a catalyst outlet from which a regenerated catalyst is discharged; a first supply unit, formed below the catalyst inlet, for supplying a syngas containing solid carbon to the coked catalyst introduced into the container; and a second supply unit, formed below the first supply unit, for supplying hot air into the container.
Description
본 발명은 촉매 재생기, 유동 촉매 크랙킹 반응 시스템 및 촉매 재생 방법에 관한 것으로서, 보다 상세하게는 석유로부터 다양한 종류의 기름을 분리하는 정유 및 납사로부터 올레핀을 생산하는 공정 중, 코킹 된 촉매를 연속적으로 재생하는 촉매 재생기, 유동 촉매 크랙킹 반응 시스템 및 촉매 재생 방법에 관한 것이다.The present invention relates to a catalyst regenerator, a fluid catalyst cracking reaction system, and a catalyst regeneration method, and more particularly, to continuously regenerate a coked catalyst during the process of producing olefins from refinery and naphtha separating various kinds of oil from petroleum. It relates to a catalyst regenerator, a flow catalyst cracking reaction system and a catalyst regeneration method.
일반적으로 에틸렌은 석유화학에서 기초 원료의 대표적인 물질이다. 석유화학 공정은 에틸렌, 프로필렌과 같은 올레핀 화합물을 근간으로 다양한 공정을 통하여 다양한 물질을 생산한다.In general, ethylene is a representative material of basic raw materials in petrochemical. The petrochemical process produces various materials through various processes based on olefin compounds such as ethylene and propylene.
올레핀(olefin)은 납사(naphtha)를 분해하여 얻어지거나, 에탄으로부터 얻어지는데, 우리 나라에서는 주로 납사를 원료로 하여 에틸렌과 같은 올레핀 화합물을 생산하고 있다.Olefin (olefin) is obtained by decomposing naphtha (naphtha) or is obtained from ethane. In our country, mainly produced naphtha to produce olefin compounds such as ethylene.
납사에서 올레핀을 생산하는 방법은 종래에는 납사의 열분해 공정(NCC(naphtha cracking center) 납사 분해 공정)을 이용해서 1000 ℃ 이상의 고온에서 공정을 수행한다.The method for producing olefins from naphtha is conventionally performed at a high temperature of 1000 ° C. or more using a pyrolysis process (naphtha cracking center (naphtha cracking center) naphtha cracking process).
최근에는 촉매를 이용해서 700 ℃ 정도의 보다 낮은 온도에서 납사로부터 올레핀을 생산하는 공정이 상용화 되고 있다.Recently, a process for producing olefins from naphtha at a lower temperature of about 700 ° C. using a catalyst has been commercialized.
촉매를 이용하는 공정은, 납사를 스팀과 함께 라이저(riser)의 하단으로 공급하고, 촉매 재생기로부터 밀려 나오는 재생된 촉매를 라이저의 하단으로 다시 공급하여, 납사와 촉매를 혼합하여 라이저를 타고 상승시키면서 납사를 분해하여 올레핀을 생산한다. 촉매는 라이저에서 납사를 분해하면서 코킹(coking) 된다. 즉 카본(carbon) 입자들이 촉매의 표면을 덮는다.In the process using a catalyst, naphtha is fed together with steam to the bottom of the riser, and the regenerated catalyst which is pushed out of the catalyst regenerator is fed back to the bottom of the riser, and the naphtha is mixed with the naphtha and the catalyst to rise up the riser Decomposes to produce olefins. The catalyst is coked by cracking naphtha in the riser. That is, carbon particles cover the surface of the catalyst.
라이저는 촉매 재생기의 상부에 구비되는 사이클론에 연결된다. 따라서 생성된 올레핀 기체는 사이클론에서 분리되어 스트립퍼 베셀(stripper vessel)로부터 빠져나가 FCC(fluid catalytic cracking) 메인 칼럼으로 보내지고, 코킹 된 촉매는 사이클론에서 분리되어 아래로 떨어진다. 연료 가스는 폐열 보일러로 공급된다.The riser is connected to a cyclone provided on top of the catalyst regenerator. The olefin gas thus formed is separated in the cyclone and exited from the stripper vessel and sent to the FCC (fluid catalytic cracking) main column, and the caulked catalyst is separated from the cyclone and falls down. Fuel gas is supplied to the waste heat boiler.
그리고 종래의 열분해 공정도 촉매를 사용한다. 이때, 납사는 고온에서 분해되면서 촉매의 무게 대비 7% 전후의 상당히 많은 양의 코크스(coke)를 발생시킨다. 즉 카본(carbon) 입자들이 촉매의 표면을 덮는다.The conventional pyrolysis process also uses a catalyst. At this time, naphtha decomposes at a high temperature to generate a considerable amount of coke around 7% of the weight of the catalyst. That is, carbon particles cover the surface of the catalyst.
코킹 된 촉매는 재생 후, 다시 라이저로 보내져 납사와 혼합되어 납사의 분해 반응에 사용되는 순환을 거쳐야 한다. 그런데 촉매가 코킹 되면, 납사의 분해 반응이 원활하기 어렵다. 따라서 촉매 재생기의 바닥으로 떨어진 코킹 된 촉매는 재생된다. 즉 재생은 촉매에 부착된 코크스(coke)를 태워 없애는 것이다.The caulked catalyst must be recycled, sent back to the riser, mixed with naphtha and subjected to a cycle used for the decomposition reaction of naphtha. However, when the catalyst is coked, it is difficult for the decomposition reaction of naphtha to be smooth. Thus, the caulked catalyst dropped to the bottom of the catalyst regenerator is regenerated. In other words, regeneration burns off coke attached to the catalyst.
촉매의 사용량이 많은 경우, 촉매는 밀도가 높은 유동층(fluidized bed type)을 형성한다. 즉 촉매를 유도하는 스탠드 파이프의 하단에 구비되는 센터 월의 내부에 촉매가 쌓이게 된다. 이를 방지하기 위하여, 촉매 재생을 위한 연료와 함께 센터 월의 내부 하측에서 떨어지는 촉매를 향하여 고온의 공기 및 스팀을 분사한다. 상향 분사되는 고온의 공기 및 스팀은 촉매 재생을 도움과 동시에 촉매 유동층의 밀도 상승을 방지한다.When the amount of catalyst used is high, the catalyst forms a fluidized bed type with a high density. That is, the catalyst is accumulated in the center wall provided at the lower end of the stand pipe to guide the catalyst. In order to prevent this, hot air and steam are injected toward the catalyst falling from the inner lower side of the center wall together with the fuel for catalyst regeneration. Hot air and steam injected upwards assist in catalyst regeneration and at the same time prevent the catalyst fluidized bed from increasing in density.
이러한 촉매 재생기는 촉매의 사용량이 적은 촉매 재생기에 적용하기에 적합하지 않다. 즉 사용량이 많은 촉매를 재생하는 촉매 재생기는 내부에 스탠드 파이프 및 센터 월을 구비하고, 센터 월의 내부로 고온의 공기 및 스팀을 공급하기 위한 구성들을 필요로 한다.Such a catalyst regenerator is not suitable for application to a catalyst regenerator having a low amount of catalyst. In other words, a catalyst regenerator for regenerating a heavy catalyst has a stand pipe and a center wall therein, and requires a configuration for supplying hot air and steam to the inside of the center wall.
본 발명의 일 측면은 석유로부터 다양한 종류의 기름을 분리하는 정유 및 납사로부터 올레핀을 생산하는 공정 중, 촉매의 사용량이 적은 경우, 단순한 구성으로 코킹 된 촉매를 연속적으로 재생하는 촉매 재생기, 유동 촉매 크랙킹 반응 시스템, 및 촉매 재생 방법을 제공하는 것이다.One aspect of the present invention is a catalyst regenerator, a flow catalyst cracking to continuously regenerate the coked catalyst in a simple configuration when the amount of the catalyst is small during the process of producing olefins from the refinery and naphtha to separate various types of oil from petroleum It is to provide a reaction system, and a catalyst regeneration method.
본 발명의 일 실시예에 따른 촉매 재생기는, 코킹된 촉매가 유입되는 촉매 유입구와 재생된 촉매가 배출되는 촉매 배출구가 구비된 용기, 상기 촉매 유입구 하방에 형성되며, 상기 용기 내로 유입된 코킹된 촉매에 고체 카본을 함유한 합성가스를 공급하는 제1공급부, 및 상기 제1공급부 하방에 형성되며, 상기 용기 내로 고온 공기를 공급하는 제2공급부를 포함한다.The catalyst regenerator according to an embodiment of the present invention is formed in a vessel having a catalyst inlet through which a coked catalyst is introduced and a catalyst outlet through which the regenerated catalyst is discharged, and formed below the catalyst inlet, and a caulked catalyst introduced into the container. And a first supply unit for supplying a synthesis gas containing solid carbon to the second supply unit, and a second supply unit formed below the first supply unit and supplying hot air into the container.
상기 촉매 유입구는 상기 용기의 상방에 배치되고, 상기 촉매 배출구는 상기 용기의 하방에 배치될 수 있다.The catalyst inlet can be disposed above the vessel and the catalyst outlet can be disposed below the vessel.
상기 제1공급부는 상기 합성가스를 공급하는 제1노즐 조립체를 포함하고, 상기 제2공급부는 상기 고온 공기를 공급하는 제2노즐 조립체를 포함할 수 있다.The first supply unit may include a first nozzle assembly for supplying the syngas, and the second supply unit may include a second nozzle assembly for supplying the hot air.
상기 제2노즐 조립체는 상기 제1노즐 조립체와 제1거리(L1)로 이격되고, 상기 촉매 배출구와 제2거리(L2)로 이격되며, 상기 제1거리(L1)는 코킹 된 촉매의 유동 속도(Vc)와 코킹 된 촉매와 고온의 합성가스가 혼합될 수 있는 시간(Tm)의 곱 크기로 설정(L1= Vc*Tm)될 수 있다.The second nozzle assembly is spaced apart from the first nozzle assembly by a first distance L1, spaced apart from the catalyst outlet by a second distance L2, and the first distance L1 is a flow rate of the caulked catalyst. (Vc) can be set (L1 = Vc * Tm) to the product size of the coking catalyst and the time Tm at which the hot syngas can be mixed.
상기 용기는 상기 제1거리(L1)에 대응하여 코킹 용적을 설정하며, 상기 코킹 용적은 코킹 된 촉매를 합성가스에 의하여 추가로 코킹 할 수 있는 크기로 설정될 수 있다.The vessel may set a caulking volume corresponding to the first distance L1, and the caulking volume may be set to a size that allows the caulked catalyst to be additionally caulked by syngas.
상기 제2거리(L2)는 추가로 코킹 된 촉매의 유동 속도(Vcc)와 합성가스에 의하여 추가로 코킹 된 촉매가 연소될 수 있는 시간(Tb)의 곱 크기로 설정(L2= Vcc*Tb)될 수 있다.The second distance (L2) is set to the product size of the flow rate (Vcc) of the additionally coked catalyst and the time (Tb) that the additionally coked catalyst can be burned by the synthesis gas (L2 = Vcc * Tb) Can be.
상기 용기는 상기 제2거리(L2)에 대응하여 연소 용적을 설정하며, 상기 연소 용적은 추가로 코킹 된 촉매를 고온의 공기로 연소시킬 수 있는 크기로 설정될 수 있다.The vessel sets a combustion volume corresponding to the second distance L2, and the combustion volume may be set to a size capable of further burning the coked catalyst with hot air.
상기 제1노즐 조립체는 상기 용기의 원통의 수평 단면 형상에 대응하는 제1도우넛 관체, 및 상기 용기에 설치되고 상기 제1도우넛 관체에 연결되어 합성가스를 공급하는 제1공급 관체를 포함하며, 상기 제1도우넛 관체는 상하 방향의 단면 원형에서 상하 방향의 중심을 관통하는 기준선에 대하여 90도 이하로 설정된 각도로 분사 방향을 형성하는 제1혼합가스 노즐과 제2혼합가스 노즐을 포함할 수 있다.The first nozzle assembly includes a first donut tube corresponding to a horizontal cross-sectional shape of the cylinder of the container, and a first supply tube installed in the container and connected to the first donut tube to supply a synthesis gas. The first donut tube body may include a first mixed gas nozzle and a second mixed gas nozzle that form a spraying direction at an angle set to 90 degrees or less with respect to a reference line passing through a center in the vertical direction in a circular cross section in the vertical direction.
상기 제2노즐 조립체는 상기 용기의 원통의 수평 단면 형상에 대응하는 제2도우넛 관체, 및 상기 용기에 설치되고 상기 제2도우넛 관체에 연결되어 고온의 공기를 공급하는 제2공급 관체를 포함하며, 상기 제2도우넛 관체는 상하 방향의 단면 원형에서 상하 방향의 중심을 관통하는 기준선에 대하여 90도 이하로 설정된 각도로 분사 방향을 형성하는 제1공기 노즐과 제2공기 노즐을 포함할 수 있다.The second nozzle assembly includes a second donut tube corresponding to the horizontal cross-sectional shape of the cylinder of the container, and a second supply tube installed in the container and connected to the second donut tube to supply hot air. The second donut tube may include a first air nozzle and a second air nozzle forming an injection direction at an angle set to 90 degrees or less with respect to a reference line passing through a center in the vertical direction in a circular cross section in the vertical direction.
상기 제1공급부는 회전 아크를 형성하여 부분 산화 반응으로 합성가스를 생성하는 플라즈마 버너에 연결될 수 있다.The first supply unit may be connected to a plasma burner that forms a rotating arc to generate syngas through a partial oxidation reaction.
상기 제1공급부 및 상기 제2공급부 중 적어도 하나는 상기 용기의 외주 일측에 연결되는 공급관을 포함할 수 있다.At least one of the first supply unit and the second supply unit may include a supply pipe connected to an outer circumferential side of the container.
상기 제1공급부 및 상기 제2공급부 중 적어도 하나는 상기 용기의 외주에 외주를 따라 형성되어 상기 용기에 형성는 공급구에 연결되는 공급 챔버, 및 상기 공급 챔버에 외부로 연결되는 공급관을 포함할 수 있다.At least one of the first supply unit and the second supply unit may include a supply chamber formed along an outer periphery of the container and connected to a supply port formed in the container, and a supply pipe externally connected to the supply chamber. .
상기 촉매 유입구는 상기 용기의 상방에 배치되고, 상기 촉매 배출구는 상기 용기의 측방에 배치될 수 있다.The catalyst inlet can be disposed above the vessel and the catalyst outlet can be disposed laterally of the vessel.
상기 촉매 유입구는 상기 용기의 내부에서 하방으로 길게 배치되어 코킹된 촉매의 유입을 안내하는 복수의 촉매 파이프를 포함하고, 상기 촉매 배출구는 상기 촉매 파이프의 하단보다 높은 위치에 형성될 수 있다.The catalyst inlet may include a plurality of catalyst pipes arranged long downward in the interior of the vessel to guide the inflow of the caulked catalyst, and the catalyst outlet may be formed at a position higher than a lower end of the catalyst pipe.
상기 제1공급부는 상기 촉매 파이프의 하단보다 낮은 위치에서 상기 용기의 측방에 형성되고, 기 제2공급부는 상기 제1공급부보다 낮은 위치에서 상기 용기의 하방에 형성될 수 있다.The first supply portion may be formed on the side of the vessel at a position lower than the lower end of the catalyst pipe, and the second supply portion may be formed below the vessel at a position lower than the first supply portion.
본 발명의 일 실시예에 따른 유동 촉매 크랙킹 반응 시스템은, 석유 또는 납사에 촉매를 혼합하여 분해 반응을 일으키는 반응부, 상기 반응부에서 생성된 반응 생성물을 성상 및 특징에 따라 촉매와 분리하는 분리부, 및 상기 분리부에서 유입되는 코킹 된 촉매를 재생하여 상기 반응부로 공급하는 상기 촉매 재생기를 포함한다.In the fluidized catalyst cracking reaction system according to an embodiment of the present invention, a reaction part causing decomposition reaction by mixing a catalyst with petroleum or naphtha, and a separation part separating the reaction product generated in the reaction part from the catalyst according to the properties and characteristics And the catalyst regenerator regenerating the caulked catalyst introduced from the separation unit and supplying the catalyst to the reaction unit.
본 발명의 일 실시예에 따른 촉매 재생 방법은, 코킹된 촉매를 공급하는 촉매 공급 단계, 코킹 된 촉매를 고온의 합성가스로 추가 코킹 하는 추가 코킹 단계, 추가 코킹된 촉매를 재생하는 재생 단계, 및 재생된 촉매를 배출하는 배출 단계를 포함한다.Catalyst regeneration method according to an embodiment of the present invention, the catalyst supply step of supplying a coked catalyst, an additional coking step of further coking the coked catalyst with a high temperature synthesis gas, a regeneration step of regenerating the additional coked catalyst, and An evacuation step of evacuating the regenerated catalyst.
상기 촉매 공급 단계는 유동 촉매 크랙킹(FCC(fluid catalytic cracking)) 반응 시스템으로부터 코킹 된 촉매를 공급할 수 있다.The catalyst supplying step may supply the coked catalyst from a fluid catalytic cracking (FCC) reaction system.
상기 추가 코킹 단계는 고체 카본(solid carbon)을 함유한 고온의 합성가스를 코킹된 촉매에 공급하여 추가 코킹할 수 있다.The additional coking step may be further coked by feeding hot syngas containing solid carbon to the coked catalyst.
상기 재생 단계는 고온의 공기를 공급하여 추가 코킹된 촉매를 재생할 수 있다.The regeneration step may supply hot air to regenerate the additional coked catalyst.
상기 촉매 공급 단계에서 공급되는 코킹된 촉매는 상방에서 하방으로 이동하면서 상기 추가 코킹 단계, 상기 재생 단계, 및 상기 배출 단계를 경유할 수 있다.The caulked catalyst supplied in the catalyst feeding step may pass through the further coking step, the regeneration step, and the discharge step while moving from the top to the bottom.
본 발명의 일 실시예는, 용기의 내측에 제1, 제2공급부(제1, 제2노즐 조립체)를 순차적으로 구비하여, 유동 촉매 크랙킹(FCC(fluid catalytic cracking)) 반응 시스템에서, 코킹 된 촉매에 고체 카본(solid carbon)을 함유한 고온의 합성가스와 고온의 공기를 순차적으로 공급하므로 연속적으로 코킹 된 촉매를 추가로 코킹 하고, 추가로 코킹 된 촉매를 재생시킬 수 있다.One embodiment of the present invention, the first and second supply unit (first, second nozzle assembly) is provided in the interior of the container in order, in the fluid catalytic cracking (FCC (fluid catalytic cracking)) reaction system, Since the high temperature synthesis gas containing the solid carbon and the hot air are sequentially supplied to the catalyst, it is possible to additionally coke the continuously coked catalyst and to regenerate the coked catalyst.
도 1은 본 발명의 제1실시예에 따른 촉매 재생기의 단면도이다.1 is a cross-sectional view of a catalyst regenerator according to a first embodiment of the present invention.
도 2는 도 1에 적용되는 제1노즐 조립체에서 고체 카본(solid carbon)을 함유한 고온의 합성가스를 코킹 된 촉매에 공급하는 작동 상태도이다.FIG. 2 is a diagram illustrating an operation of supplying a high temperature syngas containing solid carbon to a coked catalyst in the first nozzle assembly of FIG. 1.
도 3은 도 2에 도시된 제1노즐 조립체의 저면도이다.3 is a bottom view of the first nozzle assembly shown in FIG. 2.
도 4는 도 1에 적용되는 제2노즐 조립체에서 고온의 공기를 제1노즐 조립체의 하측에 형성되는 고온의 합성가스와 코킹 된 촉매의 혼합물에 공급하는 작동 상태도이다.FIG. 4 is a diagram illustrating an operation of supplying hot air to a mixture of hot syngas and a caulked catalyst formed under the first nozzle assembly in the second nozzle assembly of FIG. 1.
도 5는 본 발명의 제2실시예에 따른 촉매 재생기에 적용되는 (제1, 제2)공급부의 단면도이다.5 is a cross-sectional view of the (first, second) supply unit applied to the catalyst regenerator according to the second embodiment of the present invention.
도 6은 본 발명의 제3실시예에 따른 촉매 재생기에 적용되는 (제1, 제2)공급부의 단면도이다.6 is a cross-sectional view of the (first, second) supply unit applied to the catalyst regenerator according to the third embodiment of the present invention.
도 7은 본 발명의 제4실시예에 따른 촉매 재생기의 단면도이다.7 is a sectional view of a catalyst regenerator according to a fourth embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 유동 촉매 크랙킹 반응 시스템의 구성도이다.8 is a block diagram of a flow catalyst cracking reaction system according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 촉매 재생 방법의 순서도이다.9 is a flowchart of a catalyst regeneration method according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to the illustrated.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, it includes not only "directly connected", but also "indirectly connected" between other members. In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
명세서 전체에서 층, 막, 영역, 판 등의 부분이 다른 부분 "~위에" 또는 "~상에" 있다고 할 때 이는 다른 부분의 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 그리고 "~상(면)에" 라 함은 대상 부분의 위 또는 아래에 위치하는 것을 의미하며, 반드시 중력 방향을 기준으로 상측에 위치하는 것을 의미하지 않는다.When a part of a layer, a film, an area, a plate, etc. in the specification is said to be "on" or "on" another part, it is not only when it is "right on" the other part but also when there is another part in the middle. Include. And "on the (up)" means to be located above or below the target portion, and does not necessarily mean to be located above the gravity direction.
예를 들어 설명하면, 촉매 이용으로 대상 물질(예를 들면, 납사)을 분해하여 반응 생성물(예를 들면, 올레핀)을 생산하는 공정에서, 반응부는 스팀과 함께 주입되는 과열된 대상 물질(예, 납사)과 고온의 촉매를 혼합하여 대상 물질(예, 납사)의 분해 반응을 일으킨다. 대상 물질(예, 납사)은 반응부를 따라 상승하면서 계속 촉매 반응하여 분해된다.For example, in the process of producing a reaction product (eg, olefin) by decomposing a target material (eg, naphtha) by using a catalyst, the reaction unit (eg, an overheated target material injected with steam) Naphtha) and a high temperature catalyst are mixed to cause decomposition reaction of the target material (eg naphtha). The target material (eg naphtha) continues to catalyze and decompose as it rises along the reaction section.
분리부(예를 들면, 사이클론)는 반응부에서 보내지는 코킹 된 촉매와 생성된 반응 생성물(예, 올레핀)을 분리한다. 분리된 반응 생성물(예, 올레핀)은 유동 촉매 크랙킹(FCC(fluid catalytic cracking)) 반응 시스템에서 FCC의 메인 칼럼(미도시)으로 보내고, 코킹 된 촉매는 촉매 재생기로 떨어져 재생된다.A separation unit (eg cyclone) separates the caulked catalyst sent from the reaction unit and the resulting reaction product (eg olefin). The separated reaction product (eg olefin) is sent to the main column (not shown) of the FCC in a fluid catalytic cracking (FCC) reaction system, and the coked catalyst is regenerated off into a catalyst regenerator.
도 1은 본 발명의 제1실시예에 따른 촉매 재생기의 단면도이다. 편의상, 도1은 납사를 분해한 후, 코킹된 촉매를 재생시키는 것을 예로 들어 설명한다. 촉매 재생기(1)를 통해 카본(Carbon) 또는 카본과 기상의 HC를 기상의 유동으로 공급하여, 촉매 상에 도포(deposition)되거나 코킹(coking)되도록 하고, 별도로 산화제(연소 공기)를 공급하여 코킹된 카본을 연소시키므로 분해 반응 과정에서 저감된 유동의 온도를 보상하고 촉매를 재생시키도록 구성된다.1 is a cross-sectional view of a catalyst regenerator according to a first embodiment of the present invention. For convenience, Figure 1 will be described by taking the cracked naphtha, after the regeneration of the caulked catalyst as an example. Carbon or carbon and gaseous HC are supplied in a gaseous flow through the catalyst regenerator 1 so as to be deposited or coked on the catalyst, and separately supplied with an oxidant (combustion air) to coking. The burned carbon is then burned to compensate for the reduced flow temperature during the decomposition reaction and to regenerate the catalyst.
도 1을 참조하면, 제1실시예의 촉매 재생기(1)는 납사의 분해 반응 후 유입되는 코킹 된 촉매를 재생시키도록 구성되며, 코킹 된 촉매가 유동되는 용기(30), 용기(30)의 내부에 설치되는 제1공급부(일례로써, 제1노즐 조립체)(10) 및 제2공급부(일례로써, 제2노즐 조립체)(20)를 포함한다.Referring to FIG. 1, the catalyst regenerator 1 of the first embodiment is configured to regenerate a caulked catalyst introduced after a naphtha decomposition reaction, and the vessel 30 through which the caulked catalyst flows, the interior of the vessel 30. And a first supply part (for example, a first nozzle assembly) 10 and a second supply part (for example, a second nozzle assembly) 20 to be installed therein.
용기(30)는 상방에 촉매 유입구(31)와 하방에 촉매 배출구(32)를 구비한다. 일례로써, 용기(30)는 원통체로 형성될 수 있다. 라이저에서 납사의 분해 반응으로 생성되는 코킹 된 촉매는 촉매 유입구(31)를 통하여 용기(30)의 상방으로 유입되어 용기(30)의 내부에서 하방으로 떨어져 재생 후, 촉매 배출구(32)로 배출된다.The vessel 30 has a catalyst inlet 31 above and a catalyst outlet 32 below. As an example, the container 30 may be formed in a cylindrical body. The caulked catalyst produced by the decomposition reaction of naphtha in the riser is introduced into the upper portion of the vessel 30 through the catalyst inlet 31, is regenerated downward from the interior of the vessel 30, and then discharged to the catalyst outlet 32. .
용기(30)는 촉매 유입구(31)를 경유한 상방에 디스트리뷰터(33)를 구비한다. 디스트리뷰터(33)는 촉매 유입구(31)를 통하여 유입되어 상방에서 하방으로 떨어지는 코킹 된 촉매를 용기(30)의 수평 방향 단면적에 대하여 균일하게 분산시킨다. 따라서 디스트리뷰터(33)를 경유하는 코킹 된 촉매는 제1공급부, 즉 제1노즐 조립체(10)를 향하여 수평 방향에서 균일한 분포로 떨어질 수 있다.The vessel 30 has a distributor 33 above via the catalyst inlet 31. The distributor 33 uniformly distributes the caulked catalyst introduced through the catalyst inlet 31 and falling from above to the bottom in the horizontal direction of the vessel 30. Thus, the caulked catalyst via the distributor 33 may fall into a uniform distribution in the horizontal direction toward the first supply, that is, the first nozzle assembly 10.
즉 용기(30)의 내부에서 코킹 된 촉매의 연속적인 유동을 위하여, 제1노즐 조립체(10)는 촉매 유입구(31) 및 디스트리뷰터(33)의 하측에 설치되고, 제2노즐 조립체(20)는 제1노즐 조립체(10)의 하측에 설치된다. 촉매 배출구(32)는 제2노즐 조립체(20)의 하측에 구비된다.In other words, for the continuous flow of the catalyst caulked in the interior of the vessel 30, the first nozzle assembly 10 is installed below the catalyst inlet 31 and the distributor 33, the second nozzle assembly 20 It is installed below the first nozzle assembly 10. The catalyst outlet 32 is provided below the second nozzle assembly 20.
제1노즐 조립체(10)는 코킹 된 촉매에 고체 카본(solid carbon)을 함유한 고온의 합성가스를 분사 공급한다. 즉 제1노즐 조립체(10)는 카본 또는 카본과 HC를 공급하며, 연료의 부분 산화를 통해서 공급할 수 있다. 제2노즐 조립체(20)는 제1노즐 조립체(10)를 경유하면서 추가로 코킹 된 촉매와 고온의 합성가스의 혼합물에 고온의 공기를 공급한다.The first nozzle assembly 10 sprays and supplies a high temperature syngas containing solid carbon to the caulked catalyst. That is, the first nozzle assembly 10 may supply carbon or carbon and HC, and may be supplied through partial oxidation of fuel. The second nozzle assembly 20 supplies hot air to the mixture of the coked catalyst and the hot syngas via the first nozzle assembly 10.
제1노즐 조립체(10)와 제2노즐 조립체(20)는 제1거리(L1)로 이격된다. 제1거리(L1)는 제1노즐 조립체(10)를 경유한 코킹 된 촉매와 제1노즐 조립체(10)에서 분사된 고온의 합성가스가 충분히 혼합되는 거리 이상으로 설정된다. 예를 들면, 제1거리(L1)는 코킹 된 촉매의 유동 속도(Vc)와 코킹 된 촉매와 고온의 합성가스가 혼합될 수 있는 시간(Tm)의 곱 또는 그 이상의 크기로 설정될 수 있다.The first nozzle assembly 10 and the second nozzle assembly 20 are spaced apart at a first distance L1. The first distance L1 is set to be equal to or more than a distance at which the coked catalyst passed through the first nozzle assembly 10 and the high temperature syngas injected from the first nozzle assembly 10 are sufficiently mixed. For example, the first distance L1 may be set as a product of the flow rate Vc of the caulked catalyst and the time Tm at which the caulked catalyst and the high temperature syngas are mixed.
용기(30)는 제1거리(L1)에 대응하여 코킹 용적을 설정한다. 용기(30) 내에서 코킹 용적은 코킹 된 촉매의 유동 방향으로 설정되어, 코킹 된 촉매를 제1노즐 조립체(10)에서 공급되는 고온의 합성가스에 의하여 추가로 코킹 될 수 있게 하는 크기로 설정된다.The container 30 sets the caulking volume corresponding to the first distance L1. The caulking volume in the vessel 30 is set in the flow direction of the caulked catalyst to a size that allows the caulked catalyst to be further caulked by the hot syngas supplied from the first nozzle assembly 10. .
제2노즐 조립체(20)와 촉매 배출구(32)는 제2거리(L2)로 이격된다. 제2거리(L2)는 제1거리(L1)를 경유하여 추가로 코킹 된 촉매를 제2노즐 조립체(20)에서 분사된 고온의 공기로 충분히 연소시키는 거리 이상으로 설정된다. 예를 들면, 제2거리(L2)는 추가로 코킹 된 촉매의 유동 속도(Vcc)와 합성가스에 의하여 추가로 코킹 된 촉매가 연소될 수 있는 시간(Tb)의 곱 또는 그 이상의 크기로 설정된다.The second nozzle assembly 20 and the catalyst outlet 32 are spaced apart by a second distance L2. The second distance L2 is set to be equal to or more than a distance for sufficiently burning the catalyst further coked through the first distance L1 with the hot air injected from the second nozzle assembly 20. For example, the second distance L2 is set to a product of or equal to the product of the flow rate Vcc of the additionally coked catalyst and the time Tb at which the additionally coked catalyst can be combusted by the syngas. .
용기(30)는 제2거리(L2)에 대응하여 연소 용적을 설정한다. 용기(30) 내에서 연소 용적은 추가로 코킹 된 촉매를 고온의 공기로 연소시킬 수 있는 크기로 설정되어, 추가로 코킹 된 촉매를 제2노즐 조립체(20)에서 공급되는 고온의 공기에 의하여 연소될 수 있게 하는 크기로 설정된다.The container 30 sets the combustion volume corresponding to the second distance L2. The combustion volume in the vessel 30 is set to a size capable of further burning the coked catalyst with hot air, thereby further burning the coked catalyst with the hot air supplied from the second nozzle assembly 20. It is set to a size that allows it.
도 2는 도 1에 적용되는 제1노즐 조립체에서 고체 카본(solid carbon)을 함유한 고온의 합성가스를 코킹 된 촉매에 공급하는 작동 상태도이고, 도 3은 도 2에 도시된 제1노즐 조립체의 저면도이다.FIG. 2 is an operating state diagram of supplying a high temperature syngas containing solid carbon to a coked catalyst in the first nozzle assembly of FIG. 1, and FIG. 3 is a view of the first nozzle assembly of FIG. 2. Bottom view.
도 1 내지 도 3을 참조하면, 제1노즐 조립체(10)는 용기(30)의 내측 상방에 배치되어 촉매 유입구(31)로부터 유입되어 떨어지는 코킹 된 촉매(C1)에 고체 카본(solid carbon)을 함유한 고온의 합성가스를 공급하도록 구성된다.1 to 3, the first nozzle assembly 10 is disposed above the inside of the container 30 to provide solid carbon to the caulked catalyst C1 flowing out from the catalyst inlet 31. It is configured to supply a hot syngas containing.
제1노즐 조립체(10)는 부분 산화 버너(40)에 연결된다. 부분 산화 버너(40)는 고체 카본(solid carbon)을 함유한 고온의 기체, 즉 합성가스(부분 산화 생성물)를 생성하도록 구성된다. The first nozzle assembly 10 is connected to a partial oxidation burner 40. Partial oxidation burner 40 is configured to produce hot gases containing solid carbon, ie syngas (partial oxidation product).
일례를 들면, 부분 산화 버너(40)는 탄화수소계 연료 오일을 부분 산화시키는 플라즈마 버너로 형성될 수 있다. 도시하지 않았으나, 플라즈마 버너는 고전압이 인가되는 전극, 고전압 전극과 방전갭을 형성하는 접지 전극, 및 전극과 접지 전극 사이로 방전을 일으키도록 산화제(공기)와 연료를 공급하는 산화제 공급부와 연료 공급부(예를 들면, 노즐)를 포함한다. 또한 플라즈마 버너는 산화제(공기)의 공급 방향을 회전 방향으로 형성하여 회전 아크를 형상할 수 있다.For example, the partial oxidation burner 40 may be formed as a plasma burner that partially oxidizes hydrocarbon fuel oil. Although not shown, the plasma burner includes an electrode to which a high voltage is applied, a ground electrode forming a discharge gap with the high voltage electrode, and an oxidant supply part and a fuel supply part supplying an oxidant (air) and fuel to cause a discharge between the electrode and the ground electrode. For example, a nozzle). In addition, the plasma burner may form a rotation arc by forming the supply direction of the oxidant (air) in the rotation direction.
일반적으로, 탄화수소계 연료를 완전 연소하는 완전 산화 반응에서는 물과 이산화탄소가 생성된다. 그러나 완전 연소보다 산소량이 부족하게 공급되면 불완전 연소하는 부분 산화 반응이 일어난다.In general, a complete oxidation reaction that completely burns hydrocarbon-based fuels produces water and carbon dioxide. However, if the amount of oxygen is supplied insufficiently than complete combustion, partial oxidation reaction occurs incompletely.
공연비에 따라 변화하지만 부분 산화 반응에서는 수소, 일산화탄소, 낮은 탄소 수의 탄화수소, 고체 카본(solid carbon), 이산화탄소, 및 물 등이 생성된다. 이와 같이, 부분 산화 버너(40)는 공급되는 탄화수소계 연료와 공기에 의하여, 플라즈마 반응으로 고체 카본(solid carbon)을 함유한 고온의 합성가스를 생성한다.Partial oxidation reactions produce hydrogen, carbon monoxide, low carbon number hydrocarbons, solid carbon, carbon dioxide, and water. In this way, the partial oxidation burner 40 generates a high temperature synthesis gas containing solid carbon by plasma reaction by the supplied hydrocarbon fuel and air.
일반적인 버너는 매우 제한적인 공연비의 가연 범위 내에서 부분 산화를 구현할 수 있다. 그러나 부분 산화 버너에 일반적인 버너를 적용하는 경우, 제한적인 가연 범위 내(즉, 온도가 비교적 높은 경우)에서만 고체 카본(solid carbon)을 생성하여 공급할 수 있게 된다.A typical burner can achieve partial oxidation within the combustible range of very limited air-fuel ratios. However, when a typical burner is applied to a partial oxidation burner, solid carbon can be produced and supplied only within a limited flammable range (that is, when the temperature is relatively high).
이에 비하여, 부분 산화 버너(40)에 플라즈마 버너를 적용하는 경우, 부분 산화 버너(40)는 매우 넓은 공연비의 가연 범위에서 고체 카본을 생성하여 공급할 수 있다. 또한 부분 산화 버너(40)는 발생하는 고체 카본의 양을 제어하면서, 부분 산화 반응을 지속적으로 유지할 수 있다.In contrast, when the plasma burner is applied to the partial oxidation burner 40, the partial oxidation burner 40 may generate and supply solid carbon in a combustible range having a very wide air-fuel ratio. In addition, the partial oxidation burner 40 can maintain the partial oxidation reaction while controlling the amount of solid carbon generated.
즉 공연비가 낮은 부분 산화에서는 수소와 고체 카본의 양이 많이 생성되고, 공연비가 높아지는 부분 산화(완전 연소에 근접하는)에서는 온도가 높아지면서 수소와 고체 카본의 양이 적게 생성된다.In other words, partial oxidation with low air-fuel ratio generates a large amount of hydrogen and solid carbon, and partial oxidation (close to complete combustion) with high air-fuel ratio produces a higher amount of hydrogen and solid carbon with higher temperature.
대체로 낮은 공연비 구간에서 공연비가 상승하는 경우, 부분 산화 버너(40)에서 생성되어 토출되는 합성가스, 즉 부분 산화 생성물의 온도가 상승하고, 최고 온도 이후에는 공연비가 상승하는 경우, 부분 산화 버너(40)에서 생성되어 공급되는 합성가스의 온도가 하강한다.In general, when the air-fuel ratio increases in the low air-fuel ratio section, when the temperature of the synthesis gas generated and discharged from the partial oxidation burner 40, that is, the partial oxidation product increases, and the air-fuel ratio increases after the highest temperature, the partial oxidation burner 40 The temperature of the syngas generated and supplied at) decreases.
제1노즐 조립체(10)는 제1도우넛 관체(13)와 제1공급 관체(14) 및 제1혼합가스 노즐(11)과 제2혼합가스 노즐(12)을 포함한다. 제1도우넛 관체(13)는 원통형 용기(30) 내에 배치되어 수평 단면 형상에 대응하여 형성된다.The first nozzle assembly 10 includes a first donut tube 13, a first supply tube 14, a first mixed gas nozzle 11, and a second mixed gas nozzle 12. The first donut tube 13 is disposed in the cylindrical container 30 so as to correspond to the horizontal cross-sectional shape.
제1공급 관체(14)는 부분 산화 버너(40)에 연결되고 용기(30)의 벽을 관통하여 설치되며, 내측 단부에 제1도우넛 관체(13)를 연결하여, 부분 산화로 생성되는 고체 카본(solid carbon)을 함유한 고온의 합성가스를 제1도우넛 관체(13) 및 용기(30) 내부로 공급할 수 있다.The first supply pipe 14 is connected to the partial oxidation burner 40 and is installed through the wall of the container 30, and connects the first donut pipe 13 to the inner end, so that the solid carbon produced by the partial oxidation The hot syngas containing solid carbon may be supplied into the first donut tube 13 and the vessel 30.
제1도우넛 관체(13)는 혼합가스를 분사하는 제1, 제2혼합가스 노즐(11, 12)을 구비한다. 제1, 제2혼합가스 노즐(11, 12)은 제1도우넛 관체(13)에서 상하 방향의 기준선(BL1)에 대하여, 내측과 외측으로 설정된 각도(θ1, θ2)로 분사 방향을 형성한다. 기준선(BL1)은 제1도우넛 관체(13)에서 상하 방향의 단면, 즉 원형에서 상하 방향의 중심을 관통하여 설정된다.The first donut tube body 13 includes first and second mixed gas nozzles 11 and 12 for injecting a mixed gas. The first and second mixed gas nozzles 11 and 12 form an injection direction at angles θ1 and θ2 set inward and outward with respect to the reference line BL1 in the vertical direction in the first donut tube body 13. The reference line BL1 is set in the first donut tube 13 through a cross section in the vertical direction, that is, a center in the vertical direction in the vertical direction.
제1, 제2혼합가스 노즐(11, 12)은 부분 산화 버너(40)에서 제1공급 관체(14)및 제1도우넛 관체(13)를 경유하여 공급되는 고체 카본(solid carbon)을 함유한 고온의 합성가스를 제1도우넛 관체(13)의 내, 외측 방향의 설정된 각도(θ1, θ2)로 분사한다. 각도(θ1, θ2)는 기준선(BL1)에 대하여 90도 이하로 설정된다. 즉 각도(θ1, θ2)는 고온의 합성가스가 용기(30) 내에서 상방으로 분사되는 것을 방지한다.The first and second mixed gas nozzles 11 and 12 contain solid carbon supplied from the partial oxidation burner 40 via the first supply pipe 14 and the first donut pipe 13. The high temperature synthesis gas is injected at the set angles θ1 and θ2 in the inner and outer directions of the first donut tube body 13. The angles θ1 and θ2 are set to 90 degrees or less with respect to the reference line BL1. That is, the angles θ1 and θ2 prevent high temperature syngas from being injected upward in the container 30.
제1, 제2혼합가스 노즐(11, 12)은 제1도우넛 관체(13)의 저면에서 중심선의 내측과 외측에 각각 설치되어, 합성가스를 용기(30) 내에 균일하게 분사하므로 제1도우넛 관체(13)의 하방에서 내, 외측으로 설정된 각도(θ1, θ2)로 고온의 합성가스를 떨어지는 코킹 된 촉매(C1)에 균일하게 분사할 수 있다.The first and second mixed gas nozzles 11 and 12 are respectively installed inside and outside the center line at the bottom of the first donut tube body 13 to uniformly inject the syngas into the container 30 so that the first donut tube body From below (13), hot syngas can be uniformly sprayed onto the dropped caulked catalyst C1 at angles θ1 and θ2 set to the inside and the outside.
분사된 고온의 합성가스는 촉매 유입구(31)에서 떨어지는 코킹 된 촉매(C1)와 혼합되고, 코킹 된 촉매(C1)는 제1, 제2노즐 조립체(10, 20) 사이의 제1거리(L1)를 경유하면서 추가로 코킹 된다. 즉 제1거리(L1)를 경유하여 제2노즐 조립체(20)로 떨어지는 촉매는 고체 카본(solid carbon)을 함유한 고온의 합성가스에 의하여 추가로 코킹 된 촉매(C2)이다.The injected hot syngas is mixed with the caulked catalyst (C1) falling from the catalyst inlet (31), and the caulked catalyst (C1) is the first distance (L1) between the first and second nozzle assemblies (10, 20) Caulking additionally via). That is, the catalyst falling into the second nozzle assembly 20 via the first distance L1 is the catalyst C2 further coked by a high temperature synthesis gas containing solid carbon.
제2노즐 조립체(20)는 제2도우넛 관체(23)와 제2공급 관체(24) 및 제1공기 노즐(21)과 제2공기 노즐(22)을 포함한다. 제2도우넛 관체(23)는 원통형 용기(30) 내에 배치되어 수평 단면 형상에 대응하여 형성된다.The second nozzle assembly 20 includes a second donut tube 23, a second supply tube 24, a first air nozzle 21, and a second air nozzle 22. The second donut tube 23 is disposed in the cylindrical container 30 and formed to correspond to the horizontal cross-sectional shape.
제2공급 관체(24)는 용기(30) 벽을 관통하여 설치되며, 내측 단부에 제2도우넛 관체(23)를 연결하여, 고온의 공기를 제2도우넛 관체(23) 및 용기(30) 내부로 공급할 수 있다.The second supply pipe 24 is installed through the wall of the container 30, and connects the second donut pipe 23 to the inner end to supply hot air to the second donut pipe 23 and the inside of the container 30. Can be supplied as
제2도우넛 관체(23)는 고온의 공기를 분사하는 제1, 제2공기 노즐(21, 22)을 구비한다. 제1, 제2공기 노즐(21, 22)은 제2도우넛 관체(23)에서 상하 방향의 기준선(BL2)에 대하여, 내측과 외측으로 설정된 각도(θ3, θ4)로 분사 방향을 형성한다. 기준선(BL2)은 제2도우넛 관체(23)에서 상하 방향의 단면, 즉 원형에서 상하 방향의 중심을 관통하여 설정된다.The second donut tube body 23 includes first and second air nozzles 21 and 22 for blowing hot air. The 1st, 2nd air nozzles 21 and 22 form the injection direction in the 2nd donut tube body 23 with the angle (theta) 3 and (theta) 4 set inward and outward with respect to the reference line BL2 of the up-down direction. The reference line BL2 is set in the second donut tube body 23 through a vertical cross section, that is, a circle through a center in the vertical direction.
제1, 제2공기 노즐(21, 22)은 제2공급 관체(24) 및 제2도우넛 관체(23)를 경유하여 공급되는 고온의 공기를 제2도우넛 관체(23)의 내, 외측 방향의 설정된 각도(θ3, θ4)로 분사한다. 각도(θ3, θ4)는 기준선(BL2)에 대하여 90도 이하로 설정된다. 즉 각도(θ3, θ4)는 고온의 공기가 용기(30) 내에서 상방으로 분사되는 것을 방지한다.The first and second air nozzles 21 and 22 carry hot air supplied through the second supply pipe 24 and the second donut pipe 23 to the inside and the outside of the second donut pipe 23. Spray at the set angle (θ3, θ4). Angles (theta) 3 and (theta) 4 are set to 90 degrees or less with respect to reference line BL2. That is, the angles θ3 and θ4 prevent hot air from being blown upward in the container 30.
제1, 제2공기 노즐(21, 22)은 제2도우넛 관체(23)의 저면에서 중심선의 내측과 외측에 각각 설치되어, 고온의 공기를 용기(30) 내에 균일하게 분사하므로 제2도우넛 관체(23)의 하방에서 내, 외측으로 설정된 각도(θ3, θ4)로 고온의 공기를 추가로 코킹 되어 떨어지는 추가로 코킹 된 촉매(C2)에 균일하게 분사할 수 있다.The first and second air nozzles 21 and 22 are respectively installed inside and outside the center line at the bottom of the second donut tube body 23, so that the hot air is uniformly injected into the container 30, so that the second donut tube body Under (23), hot air can be uniformly sprayed on the additionally caulked catalyst C2 which is further caulked at angles θ3 and θ4 set inward and outward.
분사된 고온 공기는 제1노즐 조립체(10)와 제1거리(L1)를 경유하여 떨어지는 추가로 코킹 된 촉매(C2)와 혼합되고, 추가로 코킹 된 촉매(C2)는 제2노즐 조립체(20)와 촉매 배출구(32) 사이의 제2거리(L2)를 경유하면서 고온 공기에 의하여 재생된다. 즉 추가로 코킹 된 촉매(C2)에 부착된 코크스는 제2거리(L2)를 경유하면서 고온의 공기에 의하여 연소된다.The injected hot air is mixed with the additionally coked catalyst C2 falling via the first nozzle assembly 10 and the first distance L1, and the further coked catalyst C2 is added to the second nozzle assembly 20. ) Is regenerated by hot air via the second distance L2 between the catalyst outlet 32 and the catalyst outlet 32. That is, the coke attached to the additionally coked catalyst (C2) is burned by hot air while passing through the second distance (L2).
용기(30)의 제2거리(L2) 영역을 경유하여, 재생된 촉매(C3)는 용기(30)의 촉매 배출구(32)로 배출되어, 촉매 배출구(32)에 연결되는 라이저로 다시 공급되어 납사와 혼합되어 납사의 분해 반응에 사용된다.Via the second distance L2 region of the vessel 30, the regenerated catalyst C3 is discharged to the catalyst outlet 32 of the vessel 30 and supplied back to the riser connected to the catalyst outlet 32. It is mixed with naphtha and used for the decomposition reaction of naphtha.
이하 본 발명의 다양한 실시예에 대하여 설명한다. 제1실시예 및 기 설명된 실시예와 비교하여, 동일한 구성을 생략하고 서로 다른 구성에 대하여 설명한다.Hereinafter, various embodiments of the present invention will be described. Compared with the first embodiment and the previously described embodiment, the same configuration will be omitted and different configurations will be described.
도 5는 본 발명의 제2실시예에 따른 촉매 재생기에 적용되는 (제1, 제2)공급부의 단면도이다. 도 5를 참조하면, 제2실시예에 따른 촉매 재생기(2)에서, 제1공급부 및 상기 제2공급부 중 적어도 하나는 용기(30)의 외주 일측에 연결되는 공급관(51)으로 형성된다.5 is a cross-sectional view of the (first, second) supply unit applied to the catalyst regenerator according to the second embodiment of the present invention. Referring to FIG. 5, in the catalyst regenerator 2 according to the second embodiment, at least one of the first supply part and the second supply part is formed of a supply pipe 51 connected to an outer circumferential side of the container 30.
공급관(51)은 용기(30)의 외주에 직접 연결되어 제1공급부 및 제2공급부에 적용될 수 있다. 제1공급부로 사용되는 경우, 공급관(51)은 고체 카본을 함유한 합성가스를 용기(30) 내로 공급하여, 코킹된 촉매를 추가로 코킹한다. 제2공급부로 사용되는 경우, 공급관(51)은 고온 공기를 용기(30) 내로 공급하여 추가 코킹된 촉매를 재생한다. 공급관(51)은 합성가스 및 고온 공기의 공급 구조를 간단하게 한다.The supply pipe 51 may be directly connected to the outer circumference of the container 30 and applied to the first supply part and the second supply part. When used as the first supply part, the supply pipe 51 supplies a synthesis gas containing solid carbon into the container 30 to further coke the coked catalyst. When used as the second supply, the supply pipe 51 supplies hot air into the vessel 30 to regenerate the additional coked catalyst. The supply pipe 51 simplifies the supply structure of the syngas and the hot air.
도 6은 본 발명의 제3실시예에 따른 촉매 재생기에 적용되는 (제1, 제2)공급부의 단면도이다. 도 6을 참조하면, 제3실시예에 따른 촉매 재생기(3)에서, 제1공급부 및 상기 제2공급부 중 적어도 하나는 공급 챔버(62)와 공급관(61)을 포함한다. 6 is a cross-sectional view of the (first, second) supply unit applied to the catalyst regenerator according to the third embodiment of the present invention. Referring to FIG. 6, in the catalyst regenerator 3 according to the third embodiment, at least one of the first supply part and the second supply part includes a supply chamber 62 and a supply pipe 61.
공급 챔버(62)는 용기(30)의 외주에 외주를 따라 형성되어 용기(30)에 형성는 공급구(34)에 연결된다. 공급관(61)는 공급 챔버(62)에 외부로 연결된다. 공급관(61) 및 공급 챔버(62)은 용기(30)의 외주에 연결되어 제1공급부 및 제2공급부에 적용될 수 있다. The supply chamber 62 is formed along the outer circumference of the container 30 so as to be connected to the supply port 34 formed in the container 30. The supply pipe 61 is connected to the supply chamber 62 to the outside. The supply pipe 61 and the supply chamber 62 may be connected to the outer circumference of the container 30 and applied to the first supply part and the second supply part.
제1공급부로 사용되는 경우, 공급관(61) 및 공급 챔버(62) 및 공급구(34)는 고체 카본을 함유한 합성가스를 용기(30) 내로 공급하여, 코킹된 촉매를 추가로 코킹한다. 제2공급부로 사용되는 경우, 공급관(61) 및 공급 챔버(62) 및 공급구(34)는 고온 공기를 용기(30) 내로 공급하여 추가 코킹된 촉매를 재생한다. 공급 챔버(62)와 공급관(61)은 합성가스 및 고온 공기를 용기(30)의 원주 방향에서 균일하게 공급할 수 있게 한다.When used as the first supply part, the supply pipe 61, the supply chamber 62, and the supply port 34 supply the syngas containing solid carbon into the container 30 to further coke the caulked catalyst. When used as the second feed, feed tube 61 and feed chamber 62 and feed port 34 supply hot air into vessel 30 to regenerate the additional coked catalyst. The supply chamber 62 and the supply pipe 61 make it possible to uniformly supply syngas and hot air in the circumferential direction of the container 30.
도 7은 본 발명의 제4실시예에 따른 촉매 재생기의 단면도이다. 도 7을 참조하면, 제4실시예에 따른 촉매 재생기(4)에서, 용기(70)는 코킹된 촉매를 유입하는 촉매 유입구(71)와 재생된 촉매를 배출하는 촉매 배출구(72)를 구비한다. 제1공급부(73)는 촉매 유입구(71)로 유입된 코킹된 촉매에 고체 카본을 함유한 합성가스를 공급한다. 제2공급부(74)는 용기(70) 내로 고온 공기를 공급한다.7 is a sectional view of a catalyst regenerator according to a fourth embodiment of the present invention. Referring to FIG. 7, in the catalyst regenerator 4 according to the fourth embodiment, the vessel 70 includes a catalyst inlet 71 for introducing a caulked catalyst and a catalyst outlet 72 for discharging the regenerated catalyst. . The first supply unit 73 supplies a synthesis gas containing solid carbon to the caulked catalyst introduced into the catalyst inlet 71. The second supply part 74 supplies hot air into the container 70.
촉매 유입구(71)는 용기(70)의 상방에 구비되고, 촉매 배출구(72)는 용기(70)의 하방 또는 측방에 구비될 수 있다. 편의상, 도 7에서 촉매 배출구(72)는 용기(70)의 측방에 구비되어 있다.The catalyst inlet 71 may be provided above the vessel 70, and the catalyst outlet 72 may be provided below or to the side of the vessel 70. For convenience, in FIG. 7, the catalyst outlet 72 is provided on the side of the vessel 70.
일례로써, 촉매 유입구(71)는 용기(70)의 내부에서 하방으로 길게 배치되어 코킹된 촉매의 유입을 안내하는 복수의 촉매 파이프(71)를 포함한다. 이 경우, 촉매 배출구(72)는 촉매 파이프(71)의 하단보다 높은 위치(ΔH)에서 용기(70)의 측방에 형성된다. 따라서 높이 차이(ΔH)는 코킹된 촉매가 용기(70) 내에서 재생되지 않은 상태로 촉매 배출구(72)로 배출되는 것을 방지한다.As an example, the catalyst inlet 71 includes a plurality of catalyst pipes 71 arranged long downward in the interior of the vessel 70 to guide the inflow of the caulked catalyst. In this case, the catalyst outlet 72 is formed on the side of the vessel 70 at a position ΔH higher than the lower end of the catalyst pipe 71. The height difference ΔH thus prevents the caulked catalyst from being discharged into the catalyst outlet 72 without being regenerated in the vessel 70.
제1공급부(73)는 촉매 파이프(71)의 하단보다 낮은 위치에서 용기(70)의 측방에 형성되어, 용기(70) 내부로 고체 카본을 함유한 고온 합성가스를 공급하여 코킹된 촉매를 추가 코킹한다. 제2공급부(74)는 제1공급부(73)보다 낮은 위치에서 용기(70)의 하방에 형성되어 고온 공기를 공급하여 추가 코킹된 촉매를 재생한다.The first supply portion 73 is formed on the side of the vessel 70 at a lower position than the lower end of the catalyst pipe 71, and supplies a high temperature synthesis gas containing solid carbon into the vessel 70 to add a caulked catalyst. Caulk. The second supply portion 74 is formed below the vessel 70 at a lower position than the first supply portion 73 to supply hot air to regenerate the additional coked catalyst.
도 8은 본 발명의 일 실시예에 따른 유동 촉매 크랙킹 반응 시스템의 구성도이다. 도 8을 참조하면, 일 실시예의 유동 촉매 크랙킹(FCC(fluid catalytic cracking)) 반응 시스템은 반응부(100), 분리부(200) 및 촉매 재생기(300)를 포함한다.8 is a block diagram of a flow catalyst cracking reaction system according to an embodiment of the present invention. Referring to FIG. 8, a fluid catalytic cracking (FCC) reaction system of one embodiment includes a reaction unit 100, a separation unit 200, and a catalyst regenerator 300.
반응부(100)는 공급되는 대상 물질(예를 들면, 납사)에 촉매를 혼합하여 분해 반응을 일으켜 반응 생성물(예를 들면, 올레핀)을 생성한다. 일례를 들면, 반응부(100)는 석유로부터 다양한 종류의 기름을 분리하는 정유 공정 또는 납사로부터 올레핀을 생산하는 공정, 프로판 탈수소화 (PDH, Propane dehydrogenation) 등을 수행한다.The reaction unit 100 generates a reaction product (eg, olefin) by causing a decomposition reaction by mixing a catalyst with a target material (eg, naphtha) to be supplied. For example, the reaction unit 100 performs a refinery process for separating various kinds of oil from petroleum, a process for producing olefins from naphtha, propane dehydrogenation (PDH), and the like.
분리부(200)는 반응부(100)에서 생성된 반응 생성물을 성상 및 특징에 따라 분해 반응 과정에서 코킹된 촉매와 분리한다. 일례를 들면, 분리부(200)는 분리 장치(미도시) 또는 사이클론(210)을 구비하여 분해 반응 후, 반응 생성물과 코킹된 촉매를 분리할 수 있다. 반응 생성물은 다음 공정으로 공급되고, 코킹된 촉매는 하방의 촉매 재생기(300)로 공급된다. Separation unit 200 separates the reaction product generated in the reaction unit 100 with the catalyst caulked during the decomposition reaction according to the properties and characteristics. For example, the separation unit 200 may include a separation device (not shown) or a cyclone 210 to separate the reaction product and the caulked catalyst after the decomposition reaction. The reaction product is fed to the next process, and the caulked catalyst is fed to the catalyst regenerator 300 below.
촉매 재생기(300)는 도 1 내지 도 4에서 설명된 바와 같이 구성되어, 분리부(200)에서 촉매 유입구(31)로 유입되는 코킹된 촉매를 재생하여, 촉매 배출구(32)를 통하여 반응부(100)로 다시 공급한다. 이를 위하여, 촉매 재생기(300)의 촉매 유입구(31)는 분리부(200)에 연결되고, 촉매 배출구(32)는 반응부(100)에 연결된다.The catalyst regenerator 300 is configured as described with reference to FIGS. 1 to 4, and regenerates the caulked catalyst flowing into the catalyst inlet 31 from the separation unit 200, and through the catalyst outlet 32, the reaction unit ( Feed back to 100). To this end, the catalyst inlet 31 of the catalyst regenerator 300 is connected to the separation unit 200, the catalyst outlet 32 is connected to the reaction unit 100.
도 9는 본 발명의 일 실시예에 따른 촉매 재생 방법의 순서도이다. 도 9를 참조하여 촉매 재생 방법을 다시 기재하면, 일 실시예에 따른 촉매 재생 방법은 코킹된 촉매를 공급하는 촉매 공급 단계(ST1), 코킹 된 촉매를 고온의 합성가스로 추가 코킹 하는 추가 코킹 단계(ST2), 추가 코킹된 촉매를 재생하는 재생 단계(ST3), 및 재생된 촉매를 배출하는 배출 단계(ST4)를 포함한다.9 is a flowchart of a catalyst regeneration method according to an embodiment of the present invention. Referring again to the catalyst regeneration method with reference to Figure 9, the catalyst regeneration method according to an embodiment of the catalyst supply step (ST1) for supplying the coked catalyst, the additional coking step for additional coking the coked catalyst with a high temperature synthesis gas (ST2), a regeneration step (ST3) for regenerating the further coked catalyst, and a discharge step (ST4) for discharging the regenerated catalyst.
즉 촉매 공급 단계에서 공급되는 코킹된 촉매는 촉매 재생기(300)의 상방에서 하방으로 이동하면서 추가 코킹 단계에서 추가로 코킹되고, 추가로 코킹된 후 재생 단계에서 재생되며, 및 재생된 후 배출 단계를 경유하여 배출된다.That is, the caulked catalyst supplied in the catalyst supplying step is further coked in the additional coking step, moving further from the top of the catalyst regenerator 300, and further coked, regenerated in the regenerating step, and regenerated after the discharge step. It is discharged via diesel.
촉매 공급 단계(ST1)는 유동 촉매 크랙킹(FCC(fluid catalytic cracking)) 반응 시스템으로부터 코킹 된 촉매를 촉매 재생기(300)의 용기(30)로 공급한다. 촉매 공급 단계(ST1)는 용기(30)의 상방에 구비되는 촉매 유입구(31)로 코킹 된 촉매를 공급한다.The catalyst supply step ST1 feeds the coked catalyst from the fluid catalytic cracking (FCC) reaction system to the vessel 30 of the catalyst regenerator 300. The catalyst supply step ST1 supplies the coked catalyst to the catalyst inlet 31 provided above the vessel 30.
추가 코킹 단계(ST2)는 제1노즐 조립체(10)로 고체 카본(solid carbon)을 함유한 고온의 합성가스를 용기(30) 내의 코킹된 촉매에 공급하여 추가로 코킹한다. 재생 단계(ST3)는 제3노즐 조립체(20)로 고온의 공기를 공급하여 추가 코킹된 촉매를 재생한다.An additional coking step ST2 is further coked by supplying hot syngas containing solid carbon to the first nozzle assembly 10 to the coked catalyst in the vessel 30. The regeneration step ST3 supplies hot air to the third nozzle assembly 20 to regenerate the additional coked catalyst.
배출 단계(ST4)는 용기(30)의 하방에 구비되는 촉매 배출구(32)를 통하여 추가 코킹 된 촉매를 배출한다. 추가 코킹된 촉매는 반응부(100)로 다시 공급되어 촉매 작용한다.Discharge step ST4 discharges the additional coked catalyst through the catalyst outlet 32 provided below the vessel (30). The additional caulked catalyst is fed back to the reaction section 100 to catalyze.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the range of.
본 발명의 권리범위는 상술한 실시예 및 변형례에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiments and modifications, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.
- 부호의 설명 -Description of the sign
1, 2, 3, 4, 300: 촉매 재생기 10: 제1노즐 조립체1, 2, 3, 4, 300: catalyst regenerator 10: first nozzle assembly
11: 제1혼합가스 노즐 12: 제2혼합가스 노즐11: first mixed gas nozzle 12: second mixed gas nozzle
13, 23: 제1, 제2도우넛 관체 14, 24: 제1, 제2공급 관체13, 23: 1st, 2nd donut tube 14, 24: 1st, 2nd supply tube
20: 제2노즐 조립체 21, 22: 제1, 제2공기 노즐20: second nozzle assembly 21, 22: first, second air nozzle
30, 70: 용기 31: 촉매 유입구30, 70: vessel 31: catalyst inlet
32, 72: 촉매 배출구 33: 디스트리뷰터32, 72: catalyst outlet 33: distributor
34: 공급구 40: 부분 산화 버너34: supply port 40: partial oxidation burner
51, 61: 공급관 62: 공급 챔버51, 61: supply pipe 62: supply chamber
71: 촉매 유입구(촉매 파이프) 73, 74: 제1, 제2공급부71: catalyst inlet (catalyst pipe) 73, 74: first, second supply
100: 반응부 200: 분리부100: reaction part 200: separation part
BL1: 기준선 BL2: 기준선BL1: baseline BL2: baseline
C1: 코킹 된 촉매 C2: 추가로 코킹 된 촉매C1: Caulked Catalyst C2: Further Caulked Catalyst
C3: 재생된 촉매 L1, L2: 제1, 제2거리 C3: regenerated catalyst L1, L2: first and second distances
Tb: 연소될 수 있는 시간 Tm: 혼합될 수 있는 시간Tb: time that can be burned Tm: time that can be blended
Vc, Vcc: 유동 속도 θ1, θ2, θ3, θ4: 각도Vc, Vcc: Flow velocity θ1, θ2, θ3, θ4: Angle
Claims (20)
- 코킹된 촉매가 유입되는 촉매 유입구와 재생된 촉매가 배출되는 촉매 배출구가 구비된 용기;A container having a catalyst inlet through which the coked catalyst is introduced and a catalyst outlet through which the regenerated catalyst is discharged;상기 촉매 유입구 하방에 형성되며, 상기 용기 내로 유입된 코킹된 촉매에 고체 카본을 함유한 합성가스를 공급하는 제1공급부; 및A first supply unit formed below the catalyst inlet port and supplying a synthesis gas containing solid carbon to the caulked catalyst introduced into the vessel; And상기 제1공급부 하방에 형성되며, 상기 용기 내로 고온 공기를 공급하는 제2공급부A second supply part formed below the first supply part and supplying hot air into the container를 포함하는 촉매 재생기.Catalyst regenerator comprising a.
- 제1항에 있어서,The method of claim 1,상기 촉매 유입구는 상기 용기의 상방에 배치되고,The catalyst inlet is disposed above the vessel,상기 촉매 배출구는 상기 용기의 하방에 배치되는 촉매 재생기.The catalyst outlet is disposed below the vessel.
- 제2항에 있어서,The method of claim 2,상기 제1공급부는The first supply unit상기 합성가스를 공급하는 제1노즐 조립체를 포함하고,A first nozzle assembly for supplying the syngas;상기 제2공급부는The second supply unit상기 고온 공기를 공급하는 제2노즐 조립체를 포함하는 촉매 재생기.And a second nozzle assembly for supplying the hot air.
- 제3항에 있어서,The method of claim 3,상기 제2노즐 조립체는The second nozzle assembly is상기 제1노즐 조립체와 제1거리(L1)로 이격되고, 상기 촉매 배출구와 제2거리(L2)로 이격되며,Spaced apart from the first nozzle assembly and the first distance (L1), spaced apart from the catalyst outlet and the second distance (L2),상기 제1거리(L1)는The first distance (L1) is코킹 된 촉매의 유동 속도(Vc)와 The flow rate (Vc) of the caulked catalyst코킹 된 촉매와 고온의 합성가스가 혼합될 수 있는 시간(Tm)Time (Tm) that coked catalyst and hot syngas can mix의 곱 크기로 설정(L1= Vc*Tm)되는 촉매 재생기.Catalyst regenerator set to the product size of (L1 = Vc * Tm).
- 제4항에 있어서,The method of claim 4, wherein상기 용기는The container상기 제1거리(L1)에 대응하여 코킹 용적을 설정하며,Setting a caulking volume corresponding to the first distance L1;상기 코킹 용적은The caulking volume is코킹 된 촉매를 합성가스에 의하여 추가로 코킹 할 수 있는 크기로 설정되는 촉매 재생기.A catalyst regenerator is set to a size that can additionally coke the caulked catalyst by the syngas.
- 제4항에 있어서,The method of claim 4, wherein상기 제2거리(L2)는The second distance L2 is추가로 코킹 된 촉매의 유동 속도(Vcc)와 Additionally the flow rate (Vcc) of the caulked catalyst합성가스에 의하여 추가로 코킹 된 촉매가 연소될 수 있는 시간(Tb)The time (Tb) that the additionally coked catalyst can be combusted by the syngas의 곱 크기로 설정(L2= Vcc*Tb)되는 촉매 재생기.Catalyst regenerator set to the product size of (L2 = Vcc * Tb).
- 제6항에 있어서,The method of claim 6,상기 용기는The container상기 제2거리(L2)에 대응하여 연소 용적을 설정하며,Set a combustion volume corresponding to the second distance (L2),상기 연소 용적은The combustion volume is추가로 코킹 된 촉매를 고온의 공기로 연소시킬 수 있는 크기로 설정되는 촉매 재생기.And a catalyst regenerator that is set to a size that can additionally burn the caulked catalyst with hot air.
- 제3항에 있어서,The method of claim 3,상기 제1노즐 조립체는The first nozzle assembly is상기 용기의 원통의 수평 단면 형상에 대응하는 제1도우넛 관체, 및A first donut tube corresponding to the horizontal cross-sectional shape of the cylinder of the container, and상기 용기에 설치되고 상기 제1도우넛 관체에 연결되어 합성가스를 공급하는 제1공급 관체를 포함하며,A first supply pipe installed in the container and connected to the first donut pipe to supply a synthesis gas,상기 제1도우넛 관체는The first donut tube is상하 방향의 단면 원형에서 상하 방향의 중심을 관통하는 기준선에 대하여 90도 이하로 설정된 각도로 분사 방향을 형성하는 제1혼합가스 노즐과 제2혼합가스 노즐을 포함하는 촉매 재생기.A catalyst regenerator comprising a first mixed gas nozzle and a second mixed gas nozzle forming a spraying direction at an angle set at 90 degrees or less with respect to a reference line passing through a center in the vertical direction in a circular cross section in the vertical direction.
- 제3항에 있어서,The method of claim 3,상기 제2노즐 조립체는The second nozzle assembly is상기 용기의 원통의 수평 단면 형상에 대응하는 제2도우넛 관체, 및A second donut tube corresponding to the horizontal cross-sectional shape of the cylinder of the container, and상기 용기에 설치되고 상기 제2도우넛 관체에 연결되어 고온의 공기를 공급하는 제2공급 관체를 포함하며,A second supply tube installed in the container and connected to the second donut tube to supply hot air;상기 제2도우넛 관체는The second donut tube is상하 방향의 단면 원형에서 상하 방향의 중심을 관통하는 기준선에 대하여 90도 이하로 설정된 각도로 분사 방향을 형성하는 제1공기 노즐과 제2공기 노즐을 포함하는 촉매 재생기.A catalyst regenerator comprising a first air nozzle and a second air nozzle forming a spraying direction at an angle set to 90 degrees or less with respect to a reference line passing through a center in the vertical direction in a circular cross section in the vertical direction.
- 제1항에 있어서,The method of claim 1,상기 제1공급부는The first supply unit회전 아크를 형성하여 부분 산화 반응으로 합성가스를 생성하는 플라즈마 버너에 연결되는 촉매 재생기.A catalyst regenerator connected to a plasma burner that forms a rotating arc to produce syngas in a partial oxidation reaction.
- 제1항에 있어서,The method of claim 1,상기 제1공급부 및 상기 제2공급부 중 적어도 하나는At least one of the first supply unit and the second supply unit상기 용기의 외주 일측에 연결되는 공급관을 포함하는 촉매 재생기.Catalyst regenerator comprising a supply pipe connected to the outer peripheral side of the vessel.
- 제1항에 있어서,The method of claim 1,상기 제1공급부 및 상기 제2공급부 중 적어도 하나는At least one of the first supply unit and the second supply unit상기 용기의 외주에 외주를 따라 형성되어, 상기 용기에 형성되는 공급구에 연결되는 공급 챔버, 및A supply chamber formed along an outer circumference of the container and connected to a supply port formed in the container, and상기 공급 챔버에서 외부로 연결되는 공급관을 포함하는 촉매 재생기.Catalytic regenerator comprising a supply pipe connected to the outside from the supply chamber.
- 제1항에 있어서,The method of claim 1,상기 촉매 유입구는The catalyst inlet is상기 용기의 상방에 배치되고,Disposed above the container,상기 촉매 배출구는The catalyst outlet is상기 용기의 측방에 배치되는 촉매 재생기.A catalyst regenerator disposed on the side of the vessel.
- 제13항에 있어서,The method of claim 13,상기 촉매 유입구는The catalyst inlet is상기 용기의 내부에서 하방으로 길게 배치되어 코킹된 촉매의 유입을 안내하는 복수의 촉매 파이프를 포함하고,A plurality of catalyst pipes arranged downwardly in the interior of the vessel to guide the inflow of the caulked catalyst,상기 촉매 배출구는The catalyst outlet is상기 촉매 파이프의 하단보다 높은 위치에 형성되는 촉매 재생기.And a catalyst regenerator formed at a position higher than a lower end of the catalyst pipe.
- 제14항에 있어서,The method of claim 14,상기 제1공급부는The first supply unit상기 촉매 파이프의 하단보다 낮은 위치에서 상기 용기의 측방에 형성되고,Formed on the side of the vessel at a lower position than the lower end of the catalyst pipe,상기 제2공급부는The second supply unit상기 제1공급부보다 낮은 위치에서 상기 용기의 하방에 형성되는 촉매 재생기.And a catalyst regenerator formed below the vessel at a position lower than the first supply portion.
- 석유 또는 납사에 촉매를 혼합하여 분해 반응을 일으키는 반응부;Reaction unit for causing a decomposition reaction by mixing the catalyst in petroleum or naphtha;상기 반응부에서 생성된 반응 생성물을 성상 및 특징에 따라 촉매와 분리하는 분리부; 및 A separation unit separating the reaction product generated in the reaction unit from the catalyst according to the properties and characteristics; And상기 분리부에서 유입되는 코킹 된 촉매를 재생하여 상기 반응부로 공급하는 상기 제1항에 따른 촉매 재생기The catalyst regenerator according to claim 1, which regenerates the caulked catalyst introduced from the separation unit and supplies it to the reaction unit.를 포함하는 유동 촉매 크랙킹 반응 시스템.Flow catalyst cracking reaction system comprising a.
- 코킹된 촉매를 공급하는 촉매 공급 단계;A catalyst supplying step of supplying a caulked catalyst;코킹 된 촉매를 고온의 합성가스로 추가 코킹 하는 추가 코킹 단계;An additional coking step of further coking the caulked catalyst with hot syngas;추가 코킹된 촉매를 재생하는 재생 단계; 및A regeneration step of regenerating the further coked catalyst; And재생된 촉매를 배출하는 배출 단계Discharge stage to discharge regenerated catalyst를 포함하는 촉매 재생 방법.Catalyst regeneration method comprising a.
- 제17항에 있어서,The method of claim 17,상기 추가 코킹 단계는The additional caulking step고체 카본(solid carbon)을 함유한 고온의 합성가스를 코킹된 촉매에 공급하여 추가 코킹하는 촉매 재생 방법.A method for regenerating a catalyst in which a high temperature syngas containing solid carbon is fed to a coked catalyst for further coking.
- 제17항에 있어서,The method of claim 17,상기 재생 단계는The regeneration step고온의 공기를 공급하여 추가 코킹된 촉매를 재생하는 촉매 재생 방법.A catalyst regeneration method for regenerating additional coked catalyst by supplying hot air.
- 제17항에 있어서,The method of claim 17,상기 촉매 공급 단계에서 공급되는 코킹된 촉매는The caulked catalyst supplied in the catalyst feeding step is상방에서 하방으로 이동하면서 상기 추가 코킹 단계, 상기 재생 단계, 및 상기 배출 단계를 경유하는 촉매 재생 방법.A method for regenerating a catalyst via said additional coking step, said regeneration step, and said discharge step while moving from above to below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/336,040 US10596564B2 (en) | 2016-09-22 | 2017-09-22 | Catalyst regenerator, fluid catalytic cracking reaction system and catalyst regeneration method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0121753 | 2016-09-22 | ||
KR1020160121753A KR101921696B1 (en) | 2016-09-22 | 2016-09-22 | Catalyst regenerator, fluid catalystic cracking reaction system, and catalyst regeneration method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056735A1 true WO2018056735A1 (en) | 2018-03-29 |
Family
ID=61689637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010434 WO2018056735A1 (en) | 2016-09-22 | 2017-09-22 | Catalyst regenerator, fluid catalytic cracking reaction system and catalyst regeneration method |
Country Status (3)
Country | Link |
---|---|
US (1) | US10596564B2 (en) |
KR (1) | KR101921696B1 (en) |
WO (1) | WO2018056735A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11279885B2 (en) * | 2018-05-10 | 2022-03-22 | Korea Institute Of Machinery & Materials | Catalyst regenerator |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101771163B1 (en) * | 2016-02-01 | 2017-08-24 | 한국기계연구원 | Catalyst regenerator and regenerating method thereof |
KR102098307B1 (en) * | 2018-07-24 | 2020-04-07 | 한국기계연구원 | Catalyst regenerator having liquid fuel reformer |
KR102088414B1 (en) * | 2018-05-10 | 2020-03-12 | 한국기계연구원 | Catalyst regenerator |
KR102232804B1 (en) * | 2018-12-21 | 2021-03-26 | 한국기계연구원 | Fluidized bed catalyst regenerator |
KR102088413B1 (en) * | 2018-05-10 | 2020-03-12 | 한국기계연구원 | Catalyst regenerator |
KR102134390B1 (en) * | 2018-07-09 | 2020-07-15 | 한국기계연구원 | Circulation heat exchange type of catalyst regenerator and regeneration method thereof |
KR102121986B1 (en) * | 2018-07-11 | 2020-06-26 | 한국기계연구원 | Multistage combustion type of catalyst regenerator and regeneration method thereof |
KR102371679B1 (en) * | 2020-11-11 | 2022-03-07 | 한국기계연구원 | Fluidized bed combustion system |
US20240286106A1 (en) * | 2021-06-23 | 2024-08-29 | Korea Institute Of Machinery & Materials | Apparatus for depolymerizing hydrocarbon-based material |
KR102576188B1 (en) * | 2021-07-20 | 2023-09-07 | 한국기계연구원 | Fluidized bed reactor for combustion |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07103436A (en) * | 1993-09-24 | 1995-04-18 | Texaco Dev Corp | Burner for partial oxidation |
KR100247678B1 (en) * | 1991-11-14 | 2000-03-15 | 엘마레, 알프레드 | Process and apparatus for regenerating cokes deposited- catalyst within flidized layer |
KR20140140542A (en) * | 2012-03-05 | 2014-12-09 | 셰브론 필립스 케미컬 컴퍼니 엘피 | Method of regenerating aromatization catalysts |
KR20160030456A (en) * | 2014-09-10 | 2016-03-18 | 아이에프피 에너지스 누벨 | Regenerator for catalysts |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4610851A (en) * | 1984-11-28 | 1986-09-09 | Colvert James H | Air distributor for FCCU catalyst regenerator |
FR2605643B1 (en) | 1986-10-24 | 1989-08-18 | Total France | METHOD AND DEVICE FOR CATALYTIC CRACKING IN A FLUIDIZED BED OF A HYDROCARBON LOAD |
US6632765B1 (en) * | 2000-06-23 | 2003-10-14 | Chervon U.S.A. Inc. | Catalyst regeneration via reduction with hydrogen |
US6579820B2 (en) * | 2001-03-21 | 2003-06-17 | The Boc Group, Inc. | Reactor modifications for NOx reduction from a fluid catalytic cracking regeneration vessel |
FR2977257B1 (en) * | 2011-06-30 | 2015-01-02 | Total Raffinage Marketing | CATALYTIC CRACKING PROCESS FOR TREATING LOW CARBON CONRADSON CUTTING. |
JP6246136B2 (en) * | 2012-02-14 | 2017-12-13 | リライアンス インダストリーズ リミテッドReliance Industries Ltd. | Process for catalytic conversion of low-valent hydrocarbon streams to light olefins. |
-
2016
- 2016-09-22 KR KR1020160121753A patent/KR101921696B1/en active IP Right Grant
-
2017
- 2017-09-22 WO PCT/KR2017/010434 patent/WO2018056735A1/en active Application Filing
- 2017-09-22 US US16/336,040 patent/US10596564B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100247678B1 (en) * | 1991-11-14 | 2000-03-15 | 엘마레, 알프레드 | Process and apparatus for regenerating cokes deposited- catalyst within flidized layer |
JPH07103436A (en) * | 1993-09-24 | 1995-04-18 | Texaco Dev Corp | Burner for partial oxidation |
KR20140140542A (en) * | 2012-03-05 | 2014-12-09 | 셰브론 필립스 케미컬 컴퍼니 엘피 | Method of regenerating aromatization catalysts |
KR20160030456A (en) * | 2014-09-10 | 2016-03-18 | 아이에프피 에너지스 누벨 | Regenerator for catalysts |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11279885B2 (en) * | 2018-05-10 | 2022-03-22 | Korea Institute Of Machinery & Materials | Catalyst regenerator |
Also Published As
Publication number | Publication date |
---|---|
US20190217284A1 (en) | 2019-07-18 |
KR20180032472A (en) | 2018-03-30 |
KR101921696B1 (en) | 2018-11-23 |
US10596564B2 (en) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018056735A1 (en) | Catalyst regenerator, fluid catalytic cracking reaction system and catalyst regeneration method | |
WO2017135679A1 (en) | Catalyst regenerator and catalyst regeneration method | |
EP2161322B1 (en) | Catalyst recovery from light olefin FCC effluent | |
US6042717A (en) | Horizontal FCC feed injection process | |
CN101668833B (en) | Device for producing a product gas from a fuel, such as biomass | |
US20040069681A1 (en) | Catalyst regenerator with a centerwell | |
KR100214916B1 (en) | Process and device for the preparation of carbonblack from waste tires | |
CZ315095A3 (en) | Process for producing carbon black | |
US5540893A (en) | Upper feed injector for fluidized catalytic cracking unit | |
CN87108363A (en) | Method and apparatus with flame for producing synthetic gas | |
RU2588982C1 (en) | Method and device for distribution of hydrocarbon raw material on flow of catalyst | |
SU508219A3 (en) | The method of thermal cracking of liquid hydrocarbon mixtures | |
US8911673B2 (en) | Process and apparatus for distributing hydrocarbon feed to a catalyst stream | |
WO2016043484A1 (en) | Gasification apparatus and gasification method | |
KR102061284B1 (en) | Catalyst regenerator and regenerating method thereof | |
CN217120297U (en) | Fluidized catalytic cracking regenerator and catalytic cracking system | |
WO2022270958A1 (en) | Apparatus for low-molecularizing hydrocarbon-based material | |
TW202339851A (en) | Fluid catalytic cracking regeneration apparatus, and use thereof | |
WO2022164007A1 (en) | Method for producing synthesis gas | |
EP1058051B1 (en) | Fluidized bed gasification furnace | |
CN116212971A (en) | Catalyst regeneration equipment and regeneration method | |
KR102371679B1 (en) | Fluidized bed combustion system | |
CN213951066U (en) | Device for improving wider particle size distribution of carbon black | |
CN116212974B (en) | Fluid catalytic cracking regenerator and regeneration method | |
KR102088414B1 (en) | Catalyst regenerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17853449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17853449 Country of ref document: EP Kind code of ref document: A1 |