WO2018056378A1 - Tube unit and transport device - Google Patents
Tube unit and transport device Download PDFInfo
- Publication number
- WO2018056378A1 WO2018056378A1 PCT/JP2017/034165 JP2017034165W WO2018056378A1 WO 2018056378 A1 WO2018056378 A1 WO 2018056378A1 JP 2017034165 W JP2017034165 W JP 2017034165W WO 2018056378 A1 WO2018056378 A1 WO 2018056378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- shape
- inner cylinder
- cylinder unit
- axial direction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/12—Machines, pumps, or pumping installations having flexible working members having peristaltic action
Definitions
- the present disclosure relates to a cylinder unit and a conveyance device.
- a cylinder unit for a transfer device for transferring an object to be transferred such as a liquid, a gas-liquid mixture or a solid-liquid mixture
- an inner cylinder that is elastically deformable and has a cylindrical shape, and an outer peripheral surface of the inner cylinder
- a pressurization space forming part that forms a pressurization space in contact with the outer peripheral surface is known (for example, see Patent Documents 1 and 2).
- the inner cylinder has a minimum pressure state in which the internal pressure of the pressurizing space is minimized by discharging the pressurized medium, and the internal pressure is maximized by supplying the pressurized medium, and the minimum pressure
- the inner cylinder is inflated and deformed radially inward by the increase of the internal pressure from the state, and the inner space formed by the inner peripheral surface of the inner cylinder is contracted, and is configured to operate between the maximum pressure state.
- the conveyance device can convey the object to be conveyed from the inside space to the outside by contracting the inside space by setting the inner cylinder to the maximum pressure state by the pressure control unit.
- the inner cylinder is elastically deformed radially inward by inducing buckling at a predetermined position on the circumference of the cylindrical inner cylinder.
- the inner cylinder is elastically deformed radially inward by inducing buckling at a predetermined position on the circumference of the cylindrical inner cylinder.
- local protrusions or grooves are provided in the inner cylinder.
- the present invention has a first object to provide a cylinder unit and a transport device that can realize stable elastic deformation of an inner cylinder.
- the conventional cylinder unit as described in Patent Documents 1 and 2 induces buckling at a predetermined position on the circumference of the inner cylinder, for example, and aims to stably expand and deform the inner cylinder in the radial direction. Therefore, the optimum shape and the like required for the inner cylinder in the minimum pressure state differ depending on the purpose and application. However, it is not preferable from the viewpoint of manufacturing efficiency to manufacture inner cylinders having different shapes and structures for each cylinder unit having different purposes and uses.
- the present invention provides a cylinder unit and a transport device that can make a desired shape of the inner cylinder during operation without depending on the shape or structure of the inner cylinder itself. Second purpose.
- a third object of the present invention is to provide a transport device that can improve the transport efficiency of transported objects.
- the cylinder unit as one aspect of the present invention is An inner cylinder that is elastically deformable and has a cylindrical shape; A pressurizing space forming part that forms a pressurizing space in contact with the outer peripheral surface between the outer peripheral surface of the inner cylinder, and The inner cylinder has a minimum pressure state in which the internal pressure of the pressurized space is minimized by discharging the pressurized medium, and the internal pressure is maximized by the supply of the pressurized medium, and from the minimum pressure state.
- the inner cylinder is inflated and deformed radially inward by the increase in the internal pressure, and the inner space formed by the inner peripheral surface of the inner cylinder is contracted, and is operable between a maximum pressure state and
- the inner cylinder has a noncircular cross-sectional shape perpendicular to the axial direction in the minimum pressure state.
- the non-circular shape is a substantially triangular shape or a star shape.
- the cylinder unit has a contact portion that comes into contact with the inner cylinder at least in the minimum pressure state, and the shape of the inner cylinder is changed to the non-circular shape by the contact portion in the minimum pressure state.
- a shape restricting section that changes the shape is further provided.
- the shape restricting portion is configured by a ring portion having a plate shape having an opening into which the inner cylinder is inserted,
- the contact portion is included in the outer peripheral edge of the opening.
- the ring portion is disposed between both axial end portions of the inner cylinder in the pressurizing space.
- the ring portion is disposed on at least one of both end portions in the axial direction of the inner cylinder in the pressure space,
- the opening of the ring part is joined to the outer peripheral surface of the inner cylinder over the entire circumference.
- the pressurizing space forming part forms a plurality of pressurizing spaces separated from each other, Each portion surrounded by the plurality of pressure spaces in the inner cylinder is operable between the minimum pressure state and the maximum pressure state,
- the shape restricting portion has the contact portion that contacts the respective portions at least in the minimum pressure state, and changes the shape of the respective portions to the non-circular shape by the contact portion in the minimum pressure state. It is.
- the pressurizing space forming part has an outer cylinder that forms the pressurizing space between the outer peripheral surface of the inner cylinder,
- the inner cylinder has a movable cylinder portion that is an axial length portion in contact with the pressure space,
- the movable cylinder portion is formed such that a cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface thereof forms the noncircular shape.
- the movable cylinder portion is formed such that the non-circular cross-sectional shape forms a constant non-circular shape over the entire length in the axial direction.
- the movable cylinder portion is formed so that the non-circular cross-sectional shape has a constant size over the entire length in the axial direction.
- the movable cylindrical portion is formed such that the non-circular cross-sectional shape rotates in the circumferential direction in accordance with a change in the axial position.
- the movable cylindrical portion is formed such that the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position. .
- a plurality of sets of the pressurizing space and the movable cylinder portion are provided.
- the non-circular shape is a substantially triangular shape.
- the substantially triangular shape is a substantially equilateral triangular shape.
- the non-circular shape is a star shape.
- the inner cylinder is an extruded product.
- the outer cylinder can be bent and deformed in a direction perpendicular to its central axis.
- the inner peripheral surface of the outer cylinder and the outer peripheral surface of the movable cylinder portion are similar in cross-sectional shape perpendicular to the axial direction over the entire length in the axial direction. ing.
- the transport apparatus as one aspect of the present invention is A cylinder unit according to the present invention; A pressure control unit that controls supply and discharge of the pressurized medium to and from the pressurized space in the cylinder unit.
- the transport device comprises: A cylindrical expansion body connected to the cylinder unit and extending or contracting in the axial direction; Drive means for expanding and contracting the stretchable body,
- the said pressurization space formation part of the said cylinder unit has an outer cylinder which forms the said pressurization space between the outer peripheral surfaces of the said inner cylinder.
- the conveyed product can be pushed out in the contracting direction or the extending direction by contracting or extending the expansion body in the state in which the cylinder unit is expanded, thereby improving the transport efficiency. be able to.
- the outer cylinder is restricted from extending in the axial direction, and expands radially outward by the supply of the pressurizing medium into the pressurizing space. It is configured to be shrinkable.
- the conveyance object can be further moved by the contraction in the axial direction. Further, the conveyance efficiency of the conveyed product can be further improved.
- the telescopic body includes an outer cylinder and an inner cylinder provided on the inner peripheral side of the outer cylinder, and the telescopic body includes the driving means, the outer cylinder and the inner cylinder. It expands and contracts by compressing and expanding in the axial direction in synchronization with the cylinder.
- the telescopic body includes an outer cylinder and an inner cylinder provided on the inner peripheral side of the outer cylinder, and the telescopic body includes the driving means, the outer cylinder and the inner cylinder. It expands and contracts by moving the cylinder relative to the axial direction.
- the elastic body includes an air chamber partitioned by an outer cylinder and an inner cylinder, and expands and contracts by supplying and discharging fluid to the air chamber.
- the fluid used for the cylinder unit and the fluid used for expansion / contraction of the expansion / contraction body can be made common.
- the stretchable bodies are arranged in series in the cylinder unit.
- the conveyed product can be pushed out in the contracting direction or the extending direction by contracting or extending the expansion body in the state in which the cylinder unit is expanded, thereby improving the transport efficiency. be able to.
- a plurality of the stretchable bodies are arranged on the outer periphery of the tube unit, and each end of each stretchable body is connected to each end of the tube unit.
- the inner cylinder can be expanded inward in the radial direction by contracting each expansion and contraction in a state where the cylinder unit is expanded, so that a larger amount of the conveyed product is conveyed from the inner cylinder. be able to.
- the cylinder unit is provided on the inner peripheral side of the stretchable body, and the end of the cylinder unit and the end of the stretchable body are connected.
- the inner cylinder can be expanded radially inward by contracting the cylinder unit in a state where the cylinder unit is expanded, so that a larger amount of the conveyed product can be conveyed from the inner cylinder. Can do.
- FIG. 1A It is a longitudinal cross-sectional view which shows the cylinder unit and conveyance apparatus which concern on 1st Embodiment of this invention. It is a perspective view which shows the inner side member of the cylinder unit shown to FIG. 1A. It is a perspective view which shows the outer side member of the cylinder unit shown to FIG. 1A. It is AA sectional drawing of FIG. 1A. It is sectional drawing which shows the modification of the cylinder unit shown to FIG. 1A according to FIG. 2A. It is sectional drawing which shows the modification of the cylinder unit shown to FIG. 1A according to FIG. 2A. It is sectional drawing which shows the modification of the cylinder unit shown to FIG. 1A according to FIG. 2A. It is sectional drawing which shows the modification of the cylinder unit shown to FIG. 1A according to FIG. 2A.
- FIG. 3B is a sectional view taken along line BB in FIG. 3A. It is a top view of the ring part shown to FIG. 3A. It is a top view which shows the modification of the ring part shown to FIG. 4A. It is a top view which shows the modification of the ring part shown to FIG. 4A. It is a top view which shows the modification of the ring part shown to FIG. 4A. It is a top view which shows the modification of the ring part shown to FIG. 4A.
- FIG. 5A It is a partial cross section side view which shows the cylinder unit which concerns on 3rd Embodiment of this invention partially. It is CC sectional drawing of FIG. 5A. It is a perspective view which shows the elastic cylinder shown to FIG. 5B. It is a longitudinal cross-sectional view which shows the cylinder unit and conveyance apparatus which concern on 4th Embodiment of this invention.
- FIG. 6B is a DD cross-sectional view of FIG. 6A. It is a perspective view of the cylinder unit shown to FIG. 6A.
- FIG. 7A is a longitudinal sectional view showing a pump device configured using the single cylinder unit shown in FIG. 1A. It is a longitudinal cross-sectional view which shows the pump apparatus comprised using two or more cylinder units shown to FIG.
- FIG. 1A It is a longitudinal cross-sectional view which shows the cylinder unit and conveying apparatus which concern on 5th Embodiment of this invention. It is a longitudinal cross-sectional view which shows the cylinder unit and conveyance apparatus which concern on 6th Embodiment of this invention. It is a perspective view which shows the inner cylinder shown to FIG. 9A. It is a perspective view which shows the pressurization space formation part shown to FIG. 9A. It is a longitudinal cross-sectional view which shows the cylinder unit and conveyance apparatus which concern on 7th Embodiment of this invention. It is AA sectional drawing of FIG. 10A. It is a perspective view which shows the cylinder unit shown to FIG. 10A.
- FIG. 15B is a sectional view taken along line BB in FIG. 15A. It is CC sectional drawing of FIG.
- FIG. 15A It is a longitudinal cross-sectional view which shows the cylinder unit and conveying apparatus which concern on 10th Embodiment of this invention. It is DD sectional drawing of FIG. 16A. It is a perspective view which shows the cylinder unit shown to FIG. 16A. It is a longitudinal cross-sectional view which shows the cylinder unit and conveyance apparatus which concern on 11th Embodiment of this invention. It is EE sectional drawing of FIG. 17A. It is FF sectional drawing of FIG. 17A. It is GG sectional drawing of FIG. 17A. It is a longitudinal cross-sectional view which shows the cylinder unit and conveying apparatus which concern on 12th Embodiment of this invention. It is HH sectional drawing of FIG. 18A.
- FIG. 18A It is a perspective view which shows the cylinder unit shown to FIG. 18A. It is a longitudinal cross-sectional view which shows the cylinder unit and conveyance apparatus which concern on 13th Embodiment of this invention. It is II sectional drawing of FIG. 19A. It is JJ sectional drawing of FIG. 19A. It is a longitudinal cross-sectional view which shows the cylinder unit and conveyance apparatus which concern on 14th Embodiment of this invention.
- FIG. 20B is a sectional view taken along the line KK of FIG. 20A. It is a perspective view which shows the cylinder unit shown to FIG. 20A. It is a longitudinal cross-sectional view which shows the cylinder unit and conveying apparatus which concern on 15th Embodiment of this invention.
- FIG. 21A It is LL sectional drawing of FIG. 21A. It is MM sectional drawing of FIG. 21A. It is NN sectional drawing of FIG. 21A. It is a longitudinal cross-sectional view which shows the cylinder unit and conveying apparatus which concern on 16th Embodiment of this invention. It is PP sectional drawing of FIG. 22A. It is a perspective view which shows the cylinder unit shown to FIG. 22A. It is a figure which shows the structural example of a conveying apparatus. It is a schematic block diagram of a cylinder unit. It is a schematic block diagram of a cylinder unit. It is a schematic block diagram of a cylinder unit. It is a schematic block diagram of a cylinder unit. It is a schematic block diagram of an expansion-contraction body.
- the axial direction of the inner cylinder means a direction along the central axis of the inner cylinder.
- the axial direction of the outer cylinder means a direction along the central axis of the outer cylinder.
- the central axis of the inner cylinder and the central axis of the outer cylinder coincide with each other, but these central axes may not coincide with each other.
- “joining” is not limited to bonding by an adhesive or the like, or fixing by welding or the like, but also includes fixing by screws, bolts, nuts, rivets, etc., and fixing by fitting.
- the cylinder unit 1a includes an inner cylinder 2 that is elastically deformable and has a cylindrical shape.
- the inner cylinder 2 is not limited to a cylindrical shape, and may be a cylindrical shape.
- the cylinder unit 1 a includes a pressurizing space forming portion 6 that forms a pressurizing space 5 in contact with the outer peripheral surface 4 between the outer peripheral surface 4 of the inner cylinder 2.
- the pressurizing space 5 is in contact with the outer peripheral surface 4 of the inner cylinder 2 over the entire circumference.
- the pressurizing space 5 may be in contact with the outer peripheral surface 4 over only a part of the entire circumference.
- the cylinder unit 1a is made of an elastic material such as rubber or a soft synthetic resin in which a pair of flange parts 7 are integrally formed at both axial ends of the inner cylinder 2.
- An inner member 8 and an outer member 9 having a cylindrical outer tube 3 and made of a rigid material such as hard synthetic resin or metal are provided.
- the pair of flange portions 7 and the outer cylinder 3 are fluid-tightly joined to each other, for example, fixed. Therefore, the pressurizing space forming portion 6 is composed of a pair of flange portions 7 of the inner member 8 and the outer cylinder 3 of the outer member 9.
- the pair of flange portions 7 and the inner cylinder 2 may be configured as separate members.
- the pair of flange portions 7 may be formed integrally with the outer member 9, and may be formed of the same rigid material as the outer member 9.
- the outer member 9 may be made of an elastic material such as rubber or soft synthetic resin.
- you may comprise the cylinder unit 1a by joining the outer cylinder 3 and the inner cylinder 2 so that it may mutually contact
- the pressurizing space forming unit 6 is configured by the outer cylinder 3.
- the outer cylinder 3 is not limited to a cylindrical shape, and may be a cylindrical shape.
- the outer cylinder 3 has a radial rigidity that does not substantially expand and deform radially outward when the pressurized medium is supplied to the pressurized space 5.
- the outer cylinder 3 may be comprised so that bending deformation is possible in the direction orthogonal to the center axis line O2.
- the outer cylinder 3 can be configured such that a fiber cord knitted into a sleeve shape is embedded in an elastic material such as rubber or soft synthetic resin. According to such a structure, the conveyance direction of a to-be-conveyed object can be bent in a desired direction.
- the inner cylinder 2 has a minimum pressure state in which the internal pressure of the pressurizing space 5 is minimized by discharging the pressurized medium, and the internal pressure from the minimum pressure state in which the internal pressure is maximized by supplying the pressurized medium.
- the inner cylinder 2 is inflated and deformed radially inward by the increase in pressure (see the inner cylinder 2 shown by a two-dot chain line in FIG. 1A), and the inner space 11 formed by the inner peripheral surface of the inner cylinder 2 is contracted. It is possible to operate between the maximum pressure state.
- the state in which the internal pressure of the pressurizing space 5 is minimized when the inner cylinder 2 is operated is the minimum pressure state, and the magnitude of the internal pressure in the minimum pressure state can be set as appropriate. .
- the state in which the internal pressure of the pressurizing space 5 becomes maximum when the inner cylinder 2 operates is the maximum pressure state, and the magnitude of the internal pressure in the maximum pressure state can also be set as appropriate.
- the pressurizing medium an arbitrary fluid such as a gas such as air or carbon dioxide, or a liquid such as water or oil may be used.
- the cylinder unit 1a and the pressure control unit 10 constitute a transfer device 1A.
- the pressure controller 10 supplies the pressurized medium to the pressurized space 5 (see the downward arrow in FIG. 1A) and discharges the pressurized medium from the pressurized space 5 (see the upward arrow in FIG. 1A).
- the pressure control part 10 can be comprised by pressure generation sources, such as a compressor, flow-path formation parts, such as piping, and a flow-path switching valve, for example.
- the cylinder unit 1 a includes a shape restricting portion 12.
- the shape restricting portion 12 has a contact portion 13 that comes into contact with the inner cylinder 2 at least in the minimum pressure state, and is configured to change the shape of the inner cylinder 2 to a predetermined shape by the contact portion 13 in the minimum pressure state.
- “changing” the shape of the inner cylinder 2 by the contact portion 13 means “changing the shape of the inner cylinder 2 when the contact portion 13 is not in contact with the inner cylinder 2”.
- the “predetermined shape” is preferably a non-cylindrical shape.
- the shape restricting portion 12 is constituted by four convex portions 14 provided in the pressurized space forming portion 6.
- the four convex portions 14 are arranged at equal intervals in the circumferential direction of the outer cylinder 3 and project from the inner circumferential surface of the outer cylinder 3 toward the radially inner side of the outer cylinder 3.
- the four convex portions 14 are formed integrally with the outer cylinder 3.
- tip parts contacts the outer peripheral surface 4 of the inner cylinder 2 in a minimum pressure state. As shown in FIG.
- the inner cylinder 2 having a cylindrical shape in a natural state before being deformed by the contact portion 13 has a cylindrical shape including a star-shaped cross-sectional shape, as shown in FIG. It is elastically deformed as it is. That is, in the minimum pressure state, the inner cylinder 2 has a circular cross-sectional shape at both end portions in the axial direction and is gradually smoothed so that the cross-sectional shape gradually becomes a star shape toward a predetermined position between the both end portions in the axial direction. Is deformed. Therefore, by changing from the minimum pressure state to the maximum pressure state, the inner cylinder 2 has four fold lines positioned between the contact portions 13 adjacent to each other in the circumferential direction, as indicated by a two-dot chain line in FIG. 2A. It can be expanded and deformed as a starting point.
- the shape restricting portion 12 is not limited to the one constituted by the four convex portions 14 as shown in FIGS. 1C and 2A.
- it may be constituted by three convex portions 15, may be constituted by two convex portions 16 as shown in FIG. 2C, or as shown in FIG. You may comprise by the one convex part 17, and you may comprise by four or more convex parts.
- 2B to 2D indicate the shapes of the inner cylinder 2 in the maximum pressure state, respectively.
- the shape restricting portion 12 is constituted by a plurality of convex portions, it is preferable that the plurality of convex portions are arranged at equal intervals in the circumferential direction of the outer cylinder 3.
- the shape control part 12 when the shape control part 12 is comprised with a several or single convex part, the shape of a convex part can be changed suitably. Moreover, the material and structure of a convex part can also be changed suitably.
- the convex portion is made of the same material integrally with the outer member 9, and thus made of a rigid material, but may be made of an elastic material. Further, for example, a coil spring may be disposed at a radial intermediate portion of the outer cylinder 3 in the convex portion, and the contact portion 13 may be urged radially inward. Further, for example, a coil spring may be arranged instead of the convex portion.
- the shape restricting portion 12 is not limited to a rigid body, and may be composed of an elastic body.
- the shape restricting portion 12 is not limited to the one constituted by such a convex portion.
- the shape restricting portion 12 is constituted by a ring portion 18.
- the ring portion 18 has a plate shape having an opening 19 into which the inner cylinder 2 is inserted.
- a contact portion 20 is included in the outer peripheral edge of the opening 19.
- the contact part 20 contacts the outer peripheral surface 4 of the inner cylinder 2 in the minimum pressure state.
- the contact part 20 contains the part spaced apart from the outer peripheral surface 4 of the inner cylinder 2 in a maximum pressure state.
- 3A indicates the shape of the inner cylinder 2 in the maximum pressure state.
- the ring portion 18 is disposed between both end portions of the inner cylinder 2 in the axial direction.
- the shape of the opening 19 of the ring portion 18 is not limited to the star shape as shown in FIGS. 3B, 3C, and 4A, and may be, for example, the shape as shown in FIGS. 4B to 4C, and can be changed as appropriate. It is.
- the ring portion 18 is made of a rigid material such as hard synthetic resin or metal, but may be made of an elastic material such as rubber or soft synthetic resin.
- the ring portion 18 is configured as a separate member from the inner cylinder 2 and the outer cylinder 3, but may be provided integrally with the outer cylinder 3, for example. In this case, the ring portion 18 is preferably provided with a through hole through which the pressurized medium can pass as appropriate. Further, instead of such a ring portion 18, for example, a plurality of ball-shaped members arranged at intervals (for example, equal intervals) in the circumferential direction of the inner cylinder 2, and the plurality of ball-shaped members are penetrated.
- the shape restricting portion 12 may be configured by an annular member that forms an annular shape and presses the plurality of ball-shaped members against the inner cylinder 2 at least in a minimum pressure state.
- the annular member may be stretchable in the circumferential direction like a rubber band, for example, or may not have such stretchability.
- the shape restricting portion 12 is constituted by an elastic cylinder 21 made of an elastic material such as rubber or soft synthetic resin.
- the elastic cylinder body 21 provided in the cylinder unit 1c according to the present embodiment has a contact portion 22 that comes into contact with the inner peripheral surface of the inner cylinder 2 at least in the minimum pressure state, and the contact portion 22 in the minimum pressure state causes the The shape is changed to a predetermined shape (in this example, so as to form a cylindrical shape including a star-shaped cross-sectional shape).
- the elastic cylinder 21 can be elastically deformed together with the inner cylinder 2 due to an increase in the internal pressure of the pressurizing space 5, and the inner space 11 can be contracted.
- the shape, size, elasticity, and the like of the elastic cylinder 21 can be appropriately set according to the shape required for the inner cylinder 2.
- the elastic cylinder 21 can be joined to the inner peripheral surface of the inner cylinder 2 through the contact portion 22 over the entire circumference or over only a part of the entire circumference. Moreover, joining may be abbreviate
- the elastic cylinder 21 may be assembled to the outer peripheral surface 4 of the inner cylinder 2. Also in this case, the elastic cylinder 21 may be joined to the inner cylinder 2 as necessary.
- the dashed-two dotted line in FIG. 5B shows the shape of the inner cylinder 2 in a natural state.
- the inner cylinder 2 formed in a highly versatile cylindrical shape is in a minimum pressure state.
- the cross-sectional shape of both end portions in the axial direction (cross-sectional shape by a plane perpendicular to the central axis) is circular, and the cross-sectional shape gradually becomes non-circular toward a predetermined position between both end portions in the axial direction. It can be elastically deformed to form a deformed cylindrical shape that is smoothly deformed.
- the inner cylinder 2 By deforming the inner cylinder 2 into such a deformed cylindrical shape, the inner cylinder 2 can be easily expanded and deformed so as to contract the inner space 11 by increasing the internal pressure of the pressurizing space 5.
- both end portions in the axial direction of the inner cylinder 2 have a circular cross-sectional shape, it can be used by directly connecting to a pipe having a generally cylindrical shape, thereby ensuring convenience. it can.
- the shape of the inner cylinder 2 at the time of operation can be made desired regardless of the shape and structure of the inner cylinder 2 itself.
- the configuration of the shape regulating portion 12 with respect to the inner cylinder 2 can be facilitated by configuring the shape regulating portion 12 with the ring portion 18 as described above.
- the inner cylinder 2 is not limited to a cylindrical shape in a natural state before being deformed by the contact portion 13 of the shape regulating portion 12. Further, the inner cylinder 2 may have a cylindrical shape or other cylindrical shape in a natural state, and may have a shape provided with a convex portion (not shown) that protrudes radially inward locally. For example, by arranging such a convex portion at each circumferential position that protrudes most radially inward when the inner cylinder 2 is inflated and deformed so that the inner space 11 contracts, When the pressure state is reached, the central portion of the inner space 11 can be easily closed by these convex portions. Moreover, the inner cylinder 2 may have a groove
- FIGS. 6A to 6C show a cylinder unit 1d according to a fourth embodiment of the present invention.
- the shape restricting portions 12 are provided at both end portions in the axial direction of the inner cylinder 2 in the pressurizing space 5, and have the same configuration as the ring portion 18 described above. It has become. That is, a pair of ring portions 23 as shown in FIGS. 6A to 6C are provided instead of the pair of flange portions 7 provided at both end portions of the inner cylinder 2 in the axial direction.
- Each of the pair of ring portions 23 has an opening 24 into which the inner cylinder 2 is inserted.
- a contact portion 25 is included in each outer peripheral edge of the opening 24 of the pair of ring portions 23.
- the contact portions 25 of the pair of ring portions 23 are joined, for example, firmly, fluid-tightly over the outer peripheral surface 4 and the entire circumference of the inner cylinder 2.
- the pair of ring portions 23 are formed integrally with the outer cylinder 3 in this example.
- the shape of the opening 24 of the pair of ring portions 23 is not limited to the star shape as shown in FIG. 6B, but may be the shape as shown in FIGS. 4B to 4D, and can be changed as appropriate.
- the pair of ring portions 23 are made of a rigid material such as hard synthetic resin or metal, but may be made of an elastic material such as rubber or soft synthetic resin.
- the shape restricting portion 12 may be provided only on one of both end portions in the axial direction of the inner cylinder 2 in the pressurizing space 5.
- the shape restricting portion 12 can be constituted by the ring portion 23. Further, the shape restricting portion 12 may have a shape different between one end of the axial direction of the inner cylinder 2 in the pressurizing space 5 and the other (for example, one is a substantially triangular shape and the other is a star). Shape etc.). Even when the shape restricting portions 12 are provided at both ends in the axial direction of the inner cylinder 2 in the pressurized space 5 as in the present embodiment, the inner cylinder during operation is independent of the shape and structure of the inner cylinder 2 itself. The shape of 2 can be made as desired. In the present embodiment, a support portion that supports the axial intermediate portion of the inner cylinder 2 may be provided in the outer cylinder 3.
- prescribed shape by providing such a support part continuously or intermittently over the perimeter (namely, such as A configuration in which a simple support portion is provided as an additional shape restricting portion).
- the shape of the support portion is not particularly limited, and may be, for example, a protrusion extending in the axial direction or the circumferential direction, or a protrusion extending inward in the radial direction.
- a rod-like member such as a shaft
- a rod-like member extending in the axial direction
- a rod-like member not only on the bottom surface side of the inner cylinder 2, for example, a rod-like member (such as a shaft) extending in the axial direction is provided as a shape restricting portion at any one or more locations in the circumferential direction, and the shape of the inner cylinder 2 during operation is desired. It is good also as a structure made into.
- a rod-shaped member may extend in a spiral shape, for example.
- the cylinder units 1a, 1b, 1c, 1d and the like as described above can be used, for example, to configure a pump device or a mixing device.
- cylinder unit 1a etc. tube ends T serving as passages for the objects to be conveyed are connected to both ends in the axial direction of the inner space 11 such as the cylinder unit 1 a, respectively.
- a check valve V that allows passage of an object to be conveyed to one side in the axial direction and prevents passage to the other side, a pump device can be configured.
- the inner cylinder 2 such as the cylinder unit 1a is deformed so that the inner space 11 contracts by pressurization by the pressure control unit 10, so that the object to be conveyed can be conveyed to one side in the axial direction.
- the inner space 11 contracts by pressurization by the pressure control unit 10, so that the object to be conveyed can be conveyed to one side in the axial direction.
- FIG. 7B by preparing a plurality of cylinder units 1a, etc., connecting them in the axial direction, and sequentially applying pressure by providing a time difference between adjacent cylinder units 1a, etc.
- the inner space 11 can be contracted sequentially to transport the object to be transported. According to the conveyance by such a peristaltic motion, it becomes possible to smoothly convey a solid-liquid mixture such as slurry or powder.
- both end faces in the axial direction of the cylinder unit 1a and the like may be inclined with respect to the central axis O1 and O2, and by using the inclined cylinder unit 1a and the like connected in this manner, A conveying path having a shape can be formed.
- the shape of the shape restricting portion 12 may be different between the connected cylinder units 1a and the like (for example, one is substantially triangular and the other is star-shaped).
- the pump device configured as described above can exhibit a function as a mixing device because the transported object is crushed as the transported object is transported. That is, when using, for example, a solid-liquid mixture as an object to be transported, mixing of solid and liquid can be promoted, and also when using a plurality of types of liquid, solid-liquid mixture, powder, Can promote their mixing.
- the mixing apparatus is configured by the cylinder unit 1a and the like as described above, it is preferable that the flow path of the transported object is formed in an annular shape (that is, so as to form a circulation path).
- both ends of the flow path of the object to be transported that penetrates the plurality of interconnected cylinder units 1a and the like can be closed, and in a state where these both ends are closed, the object to be transported is connected to one end of the flow path and the like. You may convey so that it may reciprocate between edge parts.
- the substance in the inner space 11 may be mixed by operating the inner cylinder 2 in a state in which both ends in the axial direction of the inner cylinder 2 are closed using a single cylinder unit 1a and the like.
- Examples of the object to be conveyed to the cylinder unit 1a and the like as described above include fluid substances such as liquid, gas-liquid mixture, solid-liquid mixture, and powder.
- the cylinder unit 1a and the like can also be configured so that a rod-shaped object having a length exceeding the length of the inner space 11 can be conveyed.
- the inner cylinder 2 is radially inward so that both the inner cylinder 2 and the outer cylinder 3 are contractible in the axial direction, that is, by pressurizing the pressurizing space 5.
- the inner cylinder 2 and the outer cylinder 3 may both be contracted and deformed in the axial direction as the outer cylinder 3 expands and deforms toward the outside in the radial direction.
- a cylinder unit 1e according to a fifth embodiment of the present invention is shown in FIG.
- the axial length of the cylinder unit 1e can be contracted as shown by a two-dot chain line in FIG. If one end of the cylinder unit 1e in the axial direction is fixed, even the rod-shaped object as described above can be conveyed from one end in the axial direction of the cylinder unit 1e to the other end. . Further, in the cylinder unit 1a and the like as described above, when both the inner cylinder 2 and the outer cylinder 3 are configured to be contractible in the axial direction, a highly viscous liquid is transported particularly advantageously. Can do.
- one of the outer cylinder 3 and the inner cylinder 2 is provided with a plurality of fiber cords extending in the axial direction of the elastic cylindrical body inside the elastic cylindrical body. Is formed of an axial fiber-reinforced elastic cylindrical body, while the other of the outer cylinder 3 and the inner cylinder 2 is formed of an elastic cylindrical body having no such fiber-reinforced structure. . In addition, you may comprise both the outer cylinder 3 and the inner cylinder 2 with the axial direction fiber reinforcement type elastic cylindrical body.
- the inner cylinder 2 and the outer cylinder 3 is covered with a fiber cord in which the outer side of the elastic cylindrical body is knitted into a sleeve shape instead of such an axial fiber-reinforced elastic cylindrical body.
- it may be formed of a sleeve-like fiber reinforced elastic cylindrical body.
- the inner cylinder 2 may be formed of an elastic cylindrical body having no fiber reinforced structure.
- the axial fiber reinforced elastic cylindrical body or the sleeve-shaped fiber reinforced elastic cylinder as described above may be used. You may comprise by a shape body.
- the cylinder units 1a, 1b, 1c, 1d, and 1e as described above may have a plurality of pressurizing spaces 5.
- the pressurizing space forming unit 26 provided in the cylinder unit 1f according to the sixth embodiment of the present invention forms a plurality (two in the illustrated case) of pressurizing spaces 5.
- the respective portions of the inner cylinder 2 surrounded by the plurality of pressurizing spaces 5 are operable between the minimum pressure state and the maximum pressure state.
- the pressure control unit 27 can operate the inner cylinder 2 between the minimum pressure state and the maximum pressure state by controlling the internal pressures of the plurality of pressurizing spaces 5 respectively.
- the shape restricting portion 28 has a contact portion 29 that contacts at least the respective portions in the minimum pressure state, and changes the shape of each portion to a predetermined shape by the contact portion 29 in the minimum pressure state. is there.
- the pressurizing space forming part 26 is provided between the cylindrical outer cylinder 3, the pair of flange parts 7 provided at both axial ends of the outer cylinder 3, and the pair of flange parts 7.
- the partition part 30 was provided.
- the pair of flange portions 7 and partition walls 30 may be formed integrally with the outer cylinder 3.
- the pair of flange portions 7 and the partition wall portion 30 are fluid-tightly joined, for example, fixed to the inner cylinder 2.
- the object to be conveyed can be conveyed in the same manner as in the case of the pump apparatus including the plurality of cylinder units 1a shown in FIG. 7B. 9A to 9C, the convex portion 14 is shown as the shape restricting portion 28.
- the convex portion 14 instead of the convex portion 14, the convex portions 15, 16, 17 described above, the ring portion 18, and the elastic cylindrical body are used. 21 etc. may be used.
- the shape restricting portion 28 may be disposed between the both end portions in the axial direction as shown in FIG. 9A or may be disposed at both end portions in the axial direction with respect to the respective portions.
- both the inner cylinder 2 and the outer cylinder 3 may be configured to have contractibility in the axial direction also in the cylinder unit 1f.
- the shape restricting portion may be provided between both end portions in the axial direction in the pressurizing space and at least one end portion in the axial direction in the pressurizing space.
- 2A to 2D, 4A to 4D, and the like various shapes of the shape restricting portions that deform the inner cylinder in the minimum pressure state are shown.
- these are not necessarily rigid bodies. Good.
- the inner cylinder in the radial direction during pressurization to the pressurizing space is maintained by maintaining a state in which a force is applied from outside in the radial direction although the inner cylinder is apparently hardly deformed.
- the way of expansion and deformation (the shape at the time of deformation) can be changed, as well as keeping the inner space wide in the minimum pressure state, and the efficiency of conveyance and mixing Can be increased. Further, the shape and size of the pressurizing space in the minimum pressure state can be variously changed.
- the shape of the inner peripheral surface of the outer cylinder may be configured to follow the shape of the outer peripheral surface of the inner cylinder.
- the outer shape of the ring portion and the surrounding outer cylinder also have a substantially triangular shape. You may comprise.
- a plurality of shape regulating portions shown in FIGS. 4A and 4B may be arranged with different phases.
- the shape restricting portions illustrated in FIG. 4A may be configured to be arranged in adjacent pressurizing spaces with a phase difference of 45 ° from each other. According to such a configuration, the inner cylinder 2 can be effectively deformed, and the conveyance efficiency can be improved.
- the shape restricting portion shown in FIG. 4B is used instead of the shape restricting portion shown in FIG.
- the powder conveyance speed can be improved particularly.
- the phase of the shape restricting portion on one end side in the axial direction and the shape restricting portion on the other end side may be shifted by 45 ° from each other.
- the shape restricting portion has a star shape. However, the shape restricting portion is changed to a substantially triangular shape as shown in FIG. It is good also as a structure.
- the cylinder unit 101a and the transport device 102a according to the first embodiment of the present invention will be described in detail.
- the cylinder unit 101a according to this embodiment includes an inner cylinder 103a that is elastically deformable and has a cylindrical shape.
- the cylinder unit 101a is in contact with the outer peripheral surface of the inner cylinder 103a and pressurizes a space 104a that expands and contracts by elastically deforming the inner cylinder 103a in accordance with supply / discharge of the pressurized medium.
- the outer cylinder 105a is formed.
- FIGS. 10A to 10B A state when the pressurizing space 104a expands and the inner cylinder 103a expands and deforms radially inward is shown by a two-dot chain line in FIGS. 10A to 10B.
- the inner cylinder 103a has a movable cylinder part 106a which is an axial length part in contact with the pressurizing space 104a.
- the movable cylindrical portion 106a is formed such that the cross-sectional shape perpendicular to the axial direction on the outer peripheral surface and the inner peripheral surface forms a constant non-circular shape over the entire length in the axial direction.
- the cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface of the movable cylinder portion 106a may be a non-circular configuration.
- the cross-sectional shape orthogonal to the axial direction on the outer peripheral surface and the inner peripheral surface of the movable tube portion 106a is substantially triangular as shown in FIG. 10B at one end portion in the axial direction of the movable tube portion 106a. It is good also as a structure which is a star shape as shown to FIG. 22B in an edge part.
- the cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface of the movable cylinder portion 106a may be a non-circular shape that is constant over the entire length in the axial direction.
- the non-circular shape is a substantially triangular shape, and more specifically, a substantially equilateral triangular shape.
- the vertices of the substantially triangular shape and the substantially equilateral triangular shape may be curved as shown in FIG. 10A.
- the non-circular shape can be appropriately changed to an optimal substantially triangular shape according to the type of the conveyed object.
- the movable cylinder portion 106a is formed such that the non-circular cross-sectional shape has a constant size over the entire length in the axial direction.
- the size of the non-circular cross-sectional shape of the outer peripheral surface of the movable cylindrical portion 106a may be changed according to a change in the position in the axial direction, or the inner periphery of the movable cylindrical portion 106a.
- the size of the cross-sectional shape forming the non-circular shape of the surface may be changed according to a change in the position in the axial direction, or the cross-section forming the non-circular shape of the outer peripheral surface of the movable cylinder portion 106a.
- Both the size of the shape and the size of the non-circular cross-sectional shape of the inner peripheral surface of the movable cylinder portion 106a may be changed according to the change in the position in the axial direction.
- the movable cylinder portion 106a is formed such that the non-circular cross-sectional shape does not rotate in the circumferential direction over the entire length in the axial direction.
- the movable cylindrical portion 106a may be formed such that the non-circular cross-sectional shape rotates in the circumferential direction in accordance with the change in the axial position.
- An example of such a configuration is described in the third embodiment. It will be described later as a form.
- the inner cylinder 103a is an extruded product made of an elastic material such as rubber or soft synthetic resin.
- the material of the inner cylinder 3a is not limited to an elastic material, and the inner cylinder 103a is not limited to an extruded product.
- the pressurizing space 104a expands and contracts by elastically deforming only the inner cylinder 103a with the supply / discharge of the pressurizing medium. That is, the outer cylinder 105a has a radial rigidity that does not substantially expand and deform radially outward when the pressurized medium is supplied to the pressurized space 104a.
- the outer cylinder 105a may be configured to be able to be bent and deformed in a direction orthogonal to the central axis O2.
- the outer cylinder 105a can be configured such that a fiber cord knitted into a sleeve shape is embedded in an elastic material such as rubber or soft synthetic resin. According to such a structure, the conveyance direction of a to-be-conveyed object can be bent in a desired direction.
- the inner peripheral surface of the outer cylinder 105a and the outer peripheral surface of the movable cylinder part 106a have a similar shape in which the cross-sectional shapes orthogonal to the axial direction are aligned in the circumferential direction over the entire length in the axial direction. There is no. According to such a configuration, when a compressible fluid such as gas is used as the pressurizing medium, the response speed of the elastic deformation of the inner cylinder 103a due to the supply / discharge of the pressurizing medium is increased to increase the transport speed of the object to be transported. In addition, the required flow rate of the pressurized medium can be reduced.
- Such an effect (that is, a response speed of elastic deformation of the inner cylinder 103a due to supply / discharge of the pressurized medium) is obtained by aligning the inner peripheral surface of the outer cylinder 105a and the outer peripheral surface of the movable cylinder portion 106a as much as possible.
- the inner cylinder 103a has an immovable cylinder portion 107a at both axial ends, which is an axial length portion that does not contact the pressurizing space 104a.
- the stationary cylinder portion 107a is fluid-tightly joined to the inner peripheral surface of the outer cylinder 105a over the entire circumference.
- a circumferential groove 108a extending in the circumferential direction over the entire circumference is formed on the inner circumferential surface of the outer cylinder 105a.
- the circumferential groove 108a forms a space with the outer peripheral surface of the movable cylinder portion 106a even when the pressurizing space 104a is contracted.
- the portion of the inner peripheral surface of the outer cylinder 105a facing the movable cylinder portion 106a comes into contact with the movable cylinder portion 106a when the pressurizing space 104a contracts and the entire surface excluding the portion of the circumferential groove 108a.
- the circumferential groove 108a is arrange
- the position of the circumferential groove 108a in the axial direction can be changed as appropriate.
- circumferential groove 108a By providing such a circumferential groove 108a, it is possible to improve the conveyance speed of the object to be conveyed, particularly in a high-speed operation cycle (pressure medium supply / discharge cycle), compared to the case where the circumferential groove 108a is not provided. it can. It should be noted that, without providing the circumferential groove 108a, the entire surface of the inner peripheral surface of the outer cylinder 105a facing the movable cylinder part 106a is configured to contact the movable cylinder part 106a when the pressurizing space 104a contracts. Is also possible.
- the pressurizing space 104a is continuously formed over the entire circumference. Therefore, it is only necessary to supply and discharge the pressurized medium at one place in the circumferential direction, so that the configuration can be simplified. In addition, it is good also as a structure which forms the pressurization space 104a intermittently over the perimeter. Or it is good also as a structure which forms the pressurization space 104a in only one place of the circumferential direction (for example, only the substantially triangular bottom face part). However, in order to ensure a high conveyance speed of the object to be conveyed, it is preferable to form the pressurized space 104a continuously or intermittently over the entire circumference.
- the outer peripheral surface of the movable tube portion 106a, the inner peripheral surface of the outer tube 105a, and the outer peripheral surface of the outer tube 105a have a cross-sectional shape orthogonal to the axial direction, and are circumferentially extending over the entire length in the axial direction. It has a similar shape with aligned directions. According to such a configuration, when a plurality of transfer devices 102a using the cylinder unit 101a are arranged in parallel, the outer cylinders 105a are more densely connected than when the outer peripheral surface of the outer cylinder 105a is circular. Therefore, space saving can be achieved.
- the transport apparatus 102a includes the above-described cylinder unit 101a and a pressure control unit 109a that controls supply / discharge of the pressurized medium in the cylinder unit 101a.
- the pressure control unit 109a supplies the pressurized medium to the pressurized space 104a (see the upward arrow in FIG. 10A) and discharges the pressurized medium from the pressurized space 104a (see the downward arrow in FIG. 10A). Can be controlled.
- the pressure control unit 109a can be configured by, for example, a pressure generation source such as a compressor, a flow path forming unit such as piping, and a flow path switching valve (such as a solenoid valve).
- any fluid can be used as the pressurizing medium, for example, a gas such as air or carbon dioxide is preferable, and a liquid such as oil or water may be used.
- the cylinder unit 101a having such a configuration can be used, for example, to configure a pump device or a mixing device.
- a pump device for example, as shown in FIG. 11, pipes T serving as passages for the objects to be conveyed are connected to both ends in the axial direction of the inner cylinder 103a, respectively, and both pipes T are respectively connected to one axial side.
- a check valve V that allows passage of the object to be conveyed to the other side and prevents passage to the other side
- a pump device can be configured.
- the object to be conveyed can be conveyed to one side in the axial direction by elastically deforming the inner cylinder 103a of the cylinder unit 101a by pressurization by the pressure control unit 109a.
- examples of the object to be transported to the cylinder unit 101a include fluid substances such as liquid, gas-liquid mixture, solid-liquid mixture, and powder.
- the inner cylinder 103a can be elastically deformed in order to convey the object to be conveyed. According to the conveyance by such a peristaltic motion, it becomes possible to smoothly convey a solid-liquid mixture such as slurry or powder.
- the inner cylinder 103a since the inner cylinder 103a has a substantially triangular shape, it is possible to secure a wide area of the bottom surface that expands and deforms, and in particular, it is possible to improve the powder conveyance speed.
- the outer peripheral surface of the outer cylinder 105a has a substantially triangular cross section perpendicular to the axial direction.
- the outer cylinder 105a Compared to the case where the outer peripheral surface has a circular cross-sectional shape, the outer cylinders 105a can be arranged more densely, and space saving can be achieved.
- the outer peripheral surface of the outer cylinder 105a may be another substantially polygonal shape instead of the substantially triangular shape. It should be noted that at least one of both end faces in the axial direction of the cylinder unit 101a may be inclined with respect to the central axis O1, O2, and various shapes can be obtained by connecting and using the inclined cylinder unit 101a.
- a conveyance path can be formed.
- the cross-sectional shape of the movable cylinder part 106a may differ between the cylinder units 101a to be connected (for example, one is substantially triangular and the other is star-shaped).
- the direction of the circumferential direction of the cross-sectional shape of the movable cylinder portion 106a may be different between the cylinder units 101a to be connected (for example, one is a substantially triangular shape with one upward and the other is a substantially triangular shape with the other facing downward).
- the pump device configured as described above can exhibit a function as a mixing device because the transported object is crushed as the transported object is transported. That is, when using, for example, a solid-liquid mixture as an object to be transported, mixing of solid and liquid can be promoted, and also when using a plurality of types of liquid, solid-liquid mixture, powder, Can promote their mixing.
- the mixing device is configured by the cylinder unit 101a, for example, as illustrated in FIG. 13, it is preferable that the channel of the transported object has an annular shape (that is, forms a circulation path). Note that the thin line arrows shown in FIG. 13 represent the conveyed object supplied to the circulation path at an appropriate timing and the conveyed object discharged from the circulation path at an appropriate timing.
- both ends of the flow path of the object to be conveyed that penetrates the plurality of interconnected cylinder units 101a are configured to be occluded, and the objects to be conveyed are in a state where these both ends are blocked. May be conveyed so as to reciprocate between one end and the other end of the flow path.
- the inner cylinder 103a is operated in a state in which both end portions in the axial direction of the inner cylinder 103a are closed to mix substances in the space inside the inner cylinder 103a in the radial direction. May be.
- the above-described various pump devices (mixing devices) using the cylinder unit 101a can be used not only for conveyance in the horizontal direction but also for conveyance in the inclined direction and further upward in the vertical direction.
- the movable cylinder portion 106a of the inner cylinder 103a is directed from the three directions toward the central axis O1 during expansion deformation due to pressurization of the pressurization space 104a. It is preferable that the radially inner space of the inner cylinder 103a is closed as much as possible by the portions that are close to each other.
- a configuration for example, a configuration in which the amount of the pressurizing medium supplied to the pressurizing space 104a is set to be large to increase the amount of expansion and deformation of the movable cylindrical portion 106a.
- the cross-sectional shape orthogonal to the axial direction of the inner cylinder 103a may be set to a shape that promotes such blockage.
- the cross-sectional shape orthogonal to the axial direction on at least one (more specifically, both) of the outer peripheral surface and the inner peripheral surface of the movable cylindrical portion 106a has an axial direction. Therefore, a stable elastic deformation (expansion deformation) of the inner cylinder portion 103a can be realized.
- the cylinder unit 101a according to the first embodiment described above has a configuration in which both the inner cylinder 103a and the outer cylinder 105a are not contractible in the axial direction, but the cylinder unit 101b according to the present embodiment. Is configured to have such contractility.
- the cylinder unit 101b includes an inner cylinder 103b so that both the inner cylinder 103b and the outer cylinder 105b are contractible in the axial direction, that is, by pressurizing the pressurizing space 104b.
- both the inner cylinder 103b and the outer cylinder 105b are contracted and deformed in the axial direction.
- Other configurations are the same as those in the case of the cylinder unit 101a and the transfer device 102a.
- a pump device, a mixing device, and the like can be configured as in the case of the cylinder unit 101a described above.
- the axial length of the cylinder unit 101b can be contracted as shown by a two-dot chain line in FIG. 14 when the pressure is applied to the pressure space 104b. Therefore, for example, by fixing one end portion of the cylindrical unit 101b in the axial direction, a rod-like object having a length exceeding the axial length of the movable cylindrical portion 106b can be converted into one end portion of the cylindrical unit 101b in the axial direction. It can be conveyed from the side to the other end side. Moreover, according to the cylinder unit 101b, a liquid with a high viscosity can be conveyed especially advantageously.
- a plurality of fiber cords in which one of the outer cylinder 105b and the inner cylinder 103b extends in the axial direction of the elastic cylindrical body inside the elastic cylindrical body. Is formed of an axial fiber reinforced elastic cylindrical body, while the other of the outer cylinder 105b and the inner cylinder 103b is formed of an elastic cylindrical body having no such fiber reinforced structure. .
- both the outer cylinder 105b and the inner cylinder 103b may be formed of an axial fiber-reinforced elastic cylindrical body.
- the outer cylinder 105b is replaced with such an axial fiber reinforced elastic cylindrical body, and the outer cylindrical body is covered with a fiber cord knitted in a sleeve shape. You may comprise with an elastic cylinder.
- the configuration does not have the contractibility as described above, like the above-described cylinder unit 101a, the powder can be transported particularly advantageously.
- the movable cylinder portion 106a is configured so that the non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof does not rotate in the circumferential direction over the entire length in the axial direction.
- the movable cylinder portion 106c has a cross-sectional shape that forms the non-circular shape (substantially equilateral triangular shape) on the outer peripheral surface and the inner peripheral surface thereof.
- the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position.
- the rotation angle ⁇ between both end portions in the axial direction of the movable cylinder portion 106c is 60 °.
- the rotation angle ⁇ can be changed to an arbitrary angle such as 30 °.
- the movable cylindrical portion 106c may be formed so that the non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof rotates in the circumferential direction at a non-constant ratio with respect to the change in the axial position. Good.
- the outer cylinder 105c is formed such that the cross-sectional shape of the inner peripheral surface and the outer peripheral surface thereof rotates in accordance with the rotation of the cross-sectional shape of the inner cylinder 103c according to the change in the axial position.
- Other configurations are the same as those in the case of the cylinder unit 101a and the transfer device 102a.
- a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101a described above.
- the conveyance speed and / or mixing efficiency at the time of conveying a to-be-conveyed object can be improved.
- the cylinder unit 101a according to the first embodiment described above has a configuration including one set of the pressure space 104a and the movable cylinder portion 106a.
- the cylinder unit 101a according to the present embodiment is configured.
- the unit 101d is configured to include a plurality of sets, more specifically two sets, of the pressurizing space 104d and the movable cylindrical portion 106d.
- it is good also as a structure provided not only with 2 sets but 3 sets or more.
- Other configurations are the same as those in the case of the cylinder unit 101a and the transfer device 102a.
- a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101a described above.
- each of the plurality of movable cylinder portions 106d has a non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof in the circumferential direction over the entire length in the axial direction.
- the plurality of movable cylinder portions 106e have the non-circular shape (substantially) on the outer peripheral surface and the inner peripheral surface, respectively.
- the cross-sectional shape forming an equilateral triangle shape is formed so as to rotate in the circumferential direction in accordance with a change in the position in the axial direction. More specifically, in the present embodiment, the non-circular cross-sectional shapes of the plurality of movable cylinder portions 106e are each rotated in the circumferential direction at a constant rate with respect to the change in the axial position. . In the present embodiment, in each of the plurality of movable tube portions 106e, the rotation angle ⁇ between both end portions in the axial direction is 60 °. Other configurations are the same as those of the cylinder unit 101d and the transfer device 102d described above. The rotation angle ⁇ can be changed to an arbitrary angle such as 30 °.
- the inner cylinder 103e is a molded product such as an extrusion-molded product that is formed into a shape with a circumferential twist as described above.
- the inner cylinder 103e is not limited to a molded product formed into a shape with a twist in the circumferential direction. That is, it is good also as a structure which twisted and arrange
- the cylinder unit 101f and the transport device 102f according to the sixth embodiment of the present invention will be described in detail as examples.
- the cross-sectional shapes of the inner peripheral surface and the outer peripheral surface of the outer cylinder 105a are substantially equilateral triangles.
- the cross-sectional shape of the portion in contact with the pressurizing space 104f on the inner peripheral surface of the outer cylinder 105f is circular.
- the cross-sectional shape of the outer peripheral surface of the outer cylinder 105f is also circular.
- the outer cylinder 105f includes a cylindrical outer peripheral member 110f and a pair of support members 111f having a ring shape.
- the outer peripheral member 110f and the pair of support members 111f are joined to each other in a fluid-tight manner.
- the outer cylinder 105f may be constituted by a single molded part obtained by integrally molding the outer peripheral member 110f and the pair of support members 111f.
- the pair of support members 111f have a substantially equilateral triangular cross-sectional shape on the inner peripheral surface, and are fluid-tightly joined to the outer peripheral surfaces of both end portions (non-moving cylindrical portion 107f) of the inner cylinder 103f over the entire circumference. .
- a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101a described above.
- a support portion that supports the intermediate portion in the axial direction of the movable cylinder portion 106f may be provided in the outer cylinder 105f. For example, by providing such a support portion on the bottom surface side of the movable cylinder portion 6f, it is possible to suppress the occurrence of sagging of the movable cylinder portion 106f due to the weight of the conveyed object.
- the cross-sectional shape orthogonal to the axial direction at the time of contraction deformation of the axial intermediate portion of the movable cylinder portion 106f is maintained in a desired shape. It is good also as composition to do.
- the movable cylinder portion 106f is configured such that the non-circular cross-sectional shape of the outer peripheral surface and the inner peripheral surface thereof does not rotate in the circumferential direction over the entire length in the axial direction.
- the movable cylindrical portion 106g has a cross-sectional shape that forms the non-circular shape (substantially equilateral triangular shape) on the outer peripheral surface and the inner peripheral surface thereof. Is configured to rotate in the circumferential direction in accordance with a change in the axial position.
- the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position.
- the rotation angle ⁇ between both end portions in the axial direction of the movable cylinder portion 106g is 60 °.
- the rotation angle between the pair of support members 111g is also 60 °.
- the rotation angle ⁇ can be changed to an arbitrary angle such as 30 °.
- the movable cylinder portion 6g may be formed so that the non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof rotates in the circumferential direction at a non-constant ratio with respect to the change in the axial position. Good.
- a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101f described above.
- the cylinder unit 101f according to the sixth embodiment described above has a configuration including one set of the pressurizing space 104f and the movable cylinder part 106f.
- the unit 101h includes a plurality of sets, more specifically two sets, of the pressurizing space 104h and the movable cylinder portion 106h.
- it is good also as a structure provided not only with 2 sets but 3 sets or more.
- Other configurations are the same as those of the cylinder unit 101f and the transport device 102f described above.
- a pump device, a mixing device, and the like can be configured as in the case of the cylinder unit 101f described above.
- each of the plurality of movable cylinder portions 106h has the non-circular cross-sectional shape on the outer circumferential surface and the inner circumferential surface thereof extending in the circumferential direction over the entire axial length.
- the plurality of movable cylindrical portions 106i are each provided with the non-circular shape (substantially positive on the outer peripheral surface and the inner peripheral surface thereof, respectively.
- a triangular cross-sectional shape is formed so as to rotate in the circumferential direction in accordance with a change in axial position. More specifically, in the present embodiment, the non-circular cross-sectional shapes of the plurality of movable cylinder portions 106i are each rotated in the circumferential direction at a constant rate with respect to the change in the axial position. . In the present embodiment, in each of the plurality of movable tube portions 106i, the rotation angle ⁇ between both end portions in the axial direction is 60 °. Other configurations are the same as those of the cylinder unit 101h and the transfer device 102h described above. The rotation angle between a pair of adjacent support members 111i is also 60 °.
- the rotation angle ⁇ can be changed to an arbitrary angle such as 30 °.
- a pump device, a mixing device, and the like can be configured as in the case of the cylinder unit 101h described above.
- the movable cylinder portion 106a has a substantially equilateral triangular shape in which the cross-sectional shape orthogonal to the axial direction on the outer peripheral surface and the inner peripheral surface is constant over the entire length in the axial direction.
- the movable cylindrical portion 106j has a cross-sectional shape perpendicular to the axial direction on the outer peripheral surface and the inner peripheral surface thereof, which is the total length in the axial direction. It is formed so as to form a constant star shape.
- a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101a described above.
- the movable cylinder portion 106j is arranged on the outer peripheral surface and the inner peripheral surface as in the case of the cylinder unit 101c according to the third embodiment shown in FIGS. 15A to 15C. It is good also as a structure formed so that the cross-sectional shape which makes a shape might rotate in the circumferential direction according to the change of the position of an axial direction.
- the rotation angle ⁇ between the axial end portions of the movable cylinder portion 106j is preferably 45 °.
- the cylinder unit 101j of the present embodiment can be variously modified as in the example shown in FIGS. 16A to 17D.
- the seventh to sixteenth embodiments of the present invention and the modifications thereof have been described above with reference to FIGS. 10A to 22C.
- the above description only shows an example of the embodiments of the present invention. It goes without saying that various changes may be made without departing from the gist of the invention.
- the cylindrical units according to the seventh to sixteenth embodiments may be configured to use the shape restricting portion or the ring portion shown in the first to fifteenth embodiments.
- FIG. 23 is a diagram illustrating a configuration example of the transport device 202.
- the transfer device 202 is provided in the middle of existing piping (not shown) or at the end of the carry-in side. As shown in FIG. 23, the transport device 202 is configured by connecting a cylinder unit 205 and a stretchable body 250.
- FIGS. 24A to 24D are an axial sectional view and a radial sectional view showing an example of the configuration of the cylinder unit 205.
- the cylinder unit 205 includes an inner cylinder 211, an outer cylinder 212 provided coaxially along the outer peripheral surface of the inner cylinder 211, and a pair of end plates 215 and 215. Yes.
- the cylinder unit 205 is provided with an inner cylinder 211 along the inner peripheral surface of the outer cylinder 212, and both ends of the outer cylinder 212 and the inner cylinder 211 are closed by a pair of end plates 215;
- the inner cylinder 211 is configured by, for example, molding a stretchable matrix material such as rubber or elastomer having a thickness of about 0.2 to 5 mm into a cylindrical shape.
- a plurality (four in this embodiment) of restraints 213 extending from one end to the other end along the axial direction are embedded in the inner cylinder 211.
- four restraining bodies 213 are embedded every 90 ° at equal intervals in the circumferential direction.
- the inner cylinder 211 is formed by applying latex rubber to the outer periphery of a cylindrical mold material, then distributing the restraining body 213, further applying latex rubber thereon, cross-linking, and then releasing the cylinder. It is formed into a shape.
- the restraining body 213 can be formed of a matrix material which is a base material of the inner cylinder 211 in addition to separately providing a fibrous material.
- the outer cylinder 212 is composed of a cylinder made of a material that is not deformed by air pressure or the like such as metal or hard synthetic resin.
- the outer cylinder 212 includes a groove 208 that circulates in the circumferential direction at the center in the axial direction of the inner peripheral surface, and a hole 230 that penetrates from the groove 208 to the outer peripheral surface.
- the above-described inner cylinder 211 is provided along the inner periphery of the outer cylinder 212, and both axial ends are fixed to the outer cylinder 212. Specifically, the inner cylinder 211 is fixed by being bent at an end portion in the diameter increasing direction and sandwiched between the annular end plate 215; 215 and the end surface of the outer cylinder 212.
- both end portions of the cylindrical inner cylinder 211 are pressed against the inner peripheral surface of the outer cylinder 212 from the inner peripheral side by a pressing ring. It may be fixed.
- Each end plate 215 is formed of a flat ring-shaped body, and is fixed to the end surface of the outer cylinder 212 by a fixing means such as a bolt (not shown). Note that the method of fixing the end plate 215; 215 to the outer cylinder 212 is not limited to this. It may be fixed.
- Each end plate 215 is provided with a plurality of holes 218 penetrating in the axial direction at equal intervals on the same circumference for connecting the cylinder unit 205 to the other cylinder unit 205 and the elastic body 250.
- the cylinder unit 205 supplies air (pressurized medium) to the groove 208 through the hole 230 described above, so that air flows between the inner cylinder 211 and the outer cylinder 212.
- the inner cylinder 211 expands radially inward. That is, the groove 208 forms an annular air chamber (pressurized space) formed between the inner cylinder 211 and the outer cylinder 212.
- the expansion of the inner cylinder 211 causes the portion between the restraining bodies 213 in the inner cylinder 211 to expand radially inward by restraint of each restraining body 213, and returns to the original cylindrical shape by discharging the supplied air. .
- FIG. 24D for convenience of explanation to show a state in which the inner cylinder 211 is expanded radially inward, the gap z is shown in the drawing. However, when the inner cylinder 211 is expanded most, The portions between the restraining bodies 213 are in close contact with each other, and the gap z becomes zero.
- 25A to 25C are an axial cross-sectional view and a radial cross-sectional view showing an example of the configuration of the stretchable body 250, respectively.
- the elastic body 250 includes, for example, an outer cylinder 237 as an outer elastic body having a bellows structure that can expand and contract in the axial direction, an inner cylinder 238 as an inner elastic body that is configured to expand and contract in the axial direction, End members 236; 236.
- the end member 236; 236 is made of, for example, an annular body made of resin, hard rubber, metal, or the like, and includes a cylindrical tube portion 236A and a flat plate-shaped annular flange portion 236B.
- the cylindrical portion 236A and the two flange portions 36B are fixed by, for example, screwing so as to be coaxial.
- One end member 236 includes a through-hole 245 that extends from the outer periphery of the tube portion 236A to the inside of the tube portion 236A and opens to the end surface 236t that is a facing surface between the tube portions 236A and 236A.
- the through hole 245 is a hole for supplying air to an air chamber S50, which will be described later, formed in the stretchable body 250, or discharging air from the air chamber S50.
- Each flange portion 236B is provided with a plurality of through holes 233 penetrating along the axial direction at equal intervals on the same circumference.
- the through holes 233 provided in each flange portion 236 ⁇ / b> B correspond to the holes 218 provided in the end plate 215 of the cylinder unit 205, and can be connected to the cylinder unit 205 or to another stretchable body 250.
- the inner cylinder 238 includes a coil spring 239 and a cover 244 that covers the inner periphery of the coil spring 239.
- a compression spring is applied to the coil spring 239 of this embodiment. That is, it is a spring that generates an urging force outward in the axial direction so as to separate the end members 236; 236 from each other.
- the covering body 244 is configured by, for example, forming a cylindrical material such as latex rubber that can expand and contract and does not allow fluid or permeation of fluid such as air or liquid.
- the inner tube 238 is fixed to the inner periphery of the tube portion 236A of each end member 236 in a state where the outer periphery of the covering 244 is covered with the coil spring 239. According to the inner cylinder 238 of this configuration, the cylindrical shape of the covering 244 serving as a conveyance path is maintained by the coil spring 239.
- a groove such as a thread is formed on the inner periphery of the cylinder portion 236A, and the coil spring 239 can be screwed into the groove to fix the coil spring 239 to the cylinder portion 236A.
- the covering body 244 is inserted into the inner peripheral side of the coil spring 239, the end portion of the covering body 244 is bent in the diameter increasing direction, and the cylindrical portion 236A and the flange portion 236B. It is fixed by inserting between the two.
- the fixing method to the edge member 236 of the coil spring 239 and the cover 244 is not limited to this.
- the cylindrical portion 236A may be fixed by a fixing means such as an adhesive, the urging force of the coil spring 239 acts on the pair of end members 236, and further between the pair of end members 236; 236
- the covering body 244 may be fixed so as to form an airtight state.
- the inner cylinder 238 is configured by providing the cover 244 on the inner peripheral side of the coil spring 239.
- the present invention is not limited to this.
- the covering body 244 may be provided on the outer peripheral side of the coil spring 239, or the inner cylinder 238 may be configured such that the covering body is provided on the inner peripheral side and the outer peripheral side of the coil spring 239.
- the inner cylinder 238 may be configured by providing coil springs on both the inner peripheral side and the outer peripheral side of the covering 244.
- covering body 244 it cannot be overemphasized that the biasing direction of each spring uses the same thing.
- the outer cylinder 237 is a cylinder having a bellows structure that allows expansion and contraction in the axial direction and does not allow expansion and contraction (expansion) in the radial direction (radially outward).
- the outer cylinder 237 is fixed so that each end in the axial direction maintains airtightness on the outer periphery of the cylinder 236A.
- the outer cylinder 237 is firmly fixed by a retaining ring 231 so as to form an airtight seal on the outer periphery of the cylinder part 236A.
- the stretchable body 250 is surrounded by the inner cylinder 238, the outer cylinder 237, and the pair of end members 236; 236, and a partitioned air chamber S50 is formed. Is done. Since the coil spring 239 that constitutes the inner cylinder 238 is biased outward in the axial direction, the elastic body 250 contracts by discharging the air in the air chamber S50, and supplies air to the air chamber S50. Elongate. Specifically, by discharging air from the air chamber S50, the internal pressure of the air chamber S50 is made negative, and by overcoming the outward biasing force of the negative pressure coil spring 239, as shown in FIG. Shrink in the direction. The stretchable body 250 extends in the axial direction by the biasing force of the coil spring 239 by supplying air to the air chamber S50.
- the cylinder unit 205 and the expansion / contraction body 250 are connected so that their axes are coaxial. Specifically, the bolt B1 is passed through the hole 218 of the end plate 215 of the cylinder unit 205 and the through hole 233 of the flange portion 236B of the expansion / contraction body 250, and the nut B2 is tightened. Thereby, the inner cylinder 211 of the cylinder unit 205 and the inner cylinder 238 of the expansion / contraction body 250 communicate with each other, and a conveyance path for conveying a conveyed product is formed.
- the cylinder unit 205 and the expansion / contraction body 250 are controlled by a driving device (pressure control unit) 209.
- the drive device 209 according to this embodiment includes an air supply unit 241, a control valve 242, an air discharge unit 249, a control valve 246, and a control unit 243.
- the air supply means 241 includes, for example, an air compressor that can supply compressed air or an air tank that stores compressed air.
- the stored compressed air is supplied to the groove 208 of the cylinder unit 205 and the air chamber S50 of the expandable body 250.
- the control valve 242 is connected to the air supply means 241 by the tube 254 and the groove 208 by the tube 245.
- the control valve 242 includes a supply valve that controls the supply of compressed air from the air supply means 241 to the groove 208 and an exhaust valve that exhausts the air in the groove 208.
- the supply valve and the exhaust valve are electrically connected to the control unit, respectively, and control the supply of compressed air from the air supply means 241 to the groove 208 and the exhaust of air from the groove 208.
- the supply valve and the exhaust valve are provided as a pair in one cylinder unit 205.
- the control valve 242 is provided with at least a pair of supply valves and exhaust valves corresponding to the quantity of the cylinder units 205.
- the air discharge means 249 is constituted by, for example, a negative pressure pump capable of sucking air, and discharges air from the air chamber S50 of the expansion and contraction body 250.
- the control valve 246 is connected to the air discharge means 249 by the tube 247 and the air chamber S50 by the tube 248.
- the control valve 246 includes a discharge valve that discharges air from the air chamber S50 by the air discharge unit 249, and an air release valve that supplies air to the air chamber S50.
- the discharge valve and the atmosphere release valve are electrically connected to the control unit, respectively, and control the discharge of air from the air chamber S50 by the air discharge means 249 and the supply of air by communication with the air in the air chamber S50.
- a discharge valve and an air release valve are provided in a pair on one elastic body 250.
- the control valve 246 is provided with at least a pair of discharge valves and atmospheric release valves corresponding to the number of expansion bodies 250.
- Each tube 245; 247; 248; 254 preferably has pressure resistance and flexibility.
- the control unit 243 includes a microcomputer including a CPU as a calculation unit and a storage unit such as a ROM for storing a program for controlling the operation of the transport device 202.
- the control unit 243 controls signals output to the supply valve and the exhaust valve of the control valve 242, the discharge valve and the atmosphere release valve of the control valve 246 according to the command input from the input means.
- the control unit 243 stores, for example, a program that defines the order in which the cylinder unit 205 constituting the transport device 202 is expanded and contracted and the expansion and contraction body 250 is expanded and contracted in the storage unit. For example, a transport mode in which the transport unit is moved in one direction by operating the cylinder unit 205 and the expansion body 250, or a stirring mode in which the transport unit is reciprocated from one end side to the other end by operating the tube unit 205 and the expansion body 250. Etc. are stored.
- FIG. 26A to FIG. 26G show the operation when the cylindrical unit 205 and the expansion / contraction body 250 are alternately provided to constitute the transport device 202, and the transport device 202 is operated as a pump to transport the transported material in one direction.
- FIG. In the following description, the cylinder units 205A; 205B; 205C, the expansion bodies 250A; 250B; Further, the description will be made assuming that the conveyed product is carried in from the cylinder unit 205A side.
- FIG. 26A shows an initial state in which the transfer device 202 is installed. That is, the cylinder units 205A; 205B; 205C are in a state in which the inner cylinder 211 is contracted, and the stretchable bodies 250A; 250B;
- the air in the air chamber S50 of the expandable body 250A is discharged and contracted in the axial direction. Due to the contraction in the axial direction of the expansion / contraction body 250A, the inner cylinder 211 of the cylinder unit 205A in an expanded state serves as a wall to push the conveyed product toward the cylinder unit 205B.
- compressed air is supplied to the groove 208 of the cylinder unit 205B while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205A and the contracted state of the stretchable body 250A to expand the inner cylinder 211.
- the conveyed product in the cylinder unit 205B is pushed out to the elastic body 250B side.
- the wall surfaces of the inner cylinder 211 expanded by the expansion of the inner cylinder 211 of the cylinder unit 205B are in contact with each other, so that the conveyance path is closed and partitioned into an upstream side and a downstream side.
- the air in the air chamber S50 of the expansion body 250B is discharged, and the expansion body 250B is contracted in the axial direction.
- the inner cylinder 211 of the cylinder unit 205B in the expanded state serves as a wall to push the conveyed product to the cylinder unit 205C side.
- compressed air is supplied to the groove 208 of the cylinder unit 205C while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205B and the contracted state of the elastic body 250B.
- the cylinder 211 is expanded. Thereby, the conveyed product in the cylinder unit 205 ⁇ / b> C is pushed out to the elastic body 250 ⁇ / b> C side. Then, due to the expansion of the inner cylinder 211 of the cylinder unit 205C, the wall surfaces of the expanded inner cylinder 211 come into contact with each other, so that the conveyance path is closed and partitioned into an upstream side and a downstream side.
- the inner cylinder 211 of the cylinder unit 205C in an expanded state serves as a wall to push the conveyed product downstream from the expansion / contraction body 250C.
- air is exhausted from the groove 208 of the expanded cylinder unit 205B to contract the inner cylinder 211 of the cylinder unit 205B, and the air chamber S50 of the contracted expandable body 250B
- the stretchable body 250B is extended in the axial direction by introducing (supplying) air into the air chamber S50 through communication.
- the said embodiment demonstrated as what comprises the conveyance apparatus 202 by alternately providing the three cylinder units 205 and the expansion-contraction body 250
- the quantity of the cylinder units 205 and expansion-contraction bodies 250 which comprise the conveyance apparatus 202 is as follows.
- the present invention is not limited to this, and the pump can be operated as a pump for moving a conveyed product by including at least one cylinder unit 205 and one elastic body 250.
- FIGS. 27A to 27E are diagrams showing other operations in the transfer device 202.
- FIG. 26A to 26G show the transport operation when transporting the transported material in one direction, but for example, as shown in FIGS. 27A to 27E, a stirring operation can be performed during the transport.
- 27A to 27E show the cylinder units 205A; 205B and the stretchable bodies 250A; 250B extracted from the conveying device 202 shown in FIGS. 26A to 26G.
- 28A to 28F are diagrams showing another operation of the transport device 202.
- the transport device 202 is operated as a pump that pumps up a fluid such as water.
- the conveying apparatus 202 according to the present embodiment is configured by two cylinder units 205A; 205B and one stretchable body 250 between the cylinder units 205A; 205B.
- the cylinder unit 205B is fixed by fixing means (not shown) so that the cylinder unit 205A is submerged and the liquid level E is located at about half the height of the expansion / contraction body 250. ing.
- the expansion / contraction body 250 is contracted in the axial direction while maintaining the expanded state of the cylinder unit 205A.
- the liquid level F in the transport device 202 rises from the liquid level E by ⁇ E2.
- the cylinder unit 205B is expanded while maintaining the expanded state of the cylinder unit 205A and the contracted state of the stretchable body 250.
- the liquid level in the transfer device 202 rises by ⁇ E3 from the liquid level E.
- the cylinder unit 205A is contracted and the telescopic body 250 is expanded simultaneously while maintaining the expanded state of the cylinder unit 205B.
- fluid flows into the transfer device 202 from the opening of the cylinder unit 205A.
- the cylindrical unit 205A is expanded while maintaining the expanded state of the cylindrical unit 205B and the expanded state of the stretchable body 250.
- the expansion / contraction body 250 is contracted in the axial direction simultaneously with the contraction of the cylinder unit 205B while maintaining the expanded state of the cylinder unit 205A. Thereby, the fluid in the conveying apparatus 202 is pumped up rather than the cylinder unit 205B.
- the liquid can be continuously pumped up by repeating the steps of FIGS. 28C to 28F.
- pretreatment such as priming water as in a conventional pump becomes unnecessary.
- FIG. 29 is a diagram illustrating another configuration example of the transport device 202.
- the coil spring 239 constituting the inner cylinder 238 of the expansion / contraction body 250 has been described as being constituted by a compression spring, but may be constituted by a tension spring. That is, the end member 236 is a spring that generates an urging force inward in the axial direction so as to bring the end members 236 close to each other.
- the driving device 209 is configured as shown in FIG.
- the drive device 209 controls the air supply means 241 that stores compressed air supplied to the groove 208 of the cylinder unit 205 and the air chamber S50 of the expansion body 250, and the supply and exhaust of air to the groove 208.
- a control valve 242, a control valve 246 that controls the supply and exhaust of air to the air chamber S 50, and a control unit 243 that controls the operation of the control valve 242 and the control valve 246 may be provided.
- the air supply means 241 includes, for example, an air compressor that can supply compressed air or an air tank that stores compressed air.
- the control valve 242 is connected to the air supply means 241 by the tube 254 and the groove 8 by the tube 245.
- the control valve 242 includes a supply valve that controls the supply of compressed air from the air supply means 241 to the groove 208 and an exhaust valve that exhausts the air in the groove 208.
- the supply valve and the exhaust valve are electrically connected to the control unit, respectively, and control the supply of compressed air from the air supply means 241 to the groove 208 and the exhaust of air from the groove 208.
- the supply valve and the exhaust valve are provided as a pair in one cylinder unit 205.
- the control valve 242 is provided with at least a pair of supply valves and exhaust valves corresponding to the quantity of the cylinder units 205.
- the control valve 246 is connected to the air supply means 241 by the tube 247 and the air chamber S50 by the tube 248.
- the control valve 246 includes a supply valve that controls the supply of compressed air from the air supply unit 241 to the air chamber S50, and an exhaust valve that exhausts the air in the air chamber S50.
- the supply valve and the exhaust valve are electrically connected to the control unit, respectively, and control the supply of compressed air from the air supply means 241 to the air chamber S50 and the exhaust of air from the air chamber S50.
- the supply valve and the exhaust valve are provided in a pair on one elastic body 250.
- control valve 246 is provided with at least a pair of supply valves and exhaust valves corresponding to the number of the expansion bodies 250.
- the control unit 243 controls the operation of the supply valve and exhaust valve of the control valve 242, and the supply valve and exhaust valve of the control valve 246.
- FIG. 30A to 30B are diagrams showing other forms of the stretchable body 250.
- the inner cylinder 238 of the expansion / contraction body 250 has been described as being configured by the coil spring 239 and the covering body 244 that covers the inner periphery of the coil spring 239.
- You may comprise by the cylinder which has a bellows structure which can be expanded-contracted along. In this case, by supplying and discharging air to and from the air chamber S50 defined by the inner cylinder 238 and the outer cylinder 237, the inner cylinder 238 and the outer cylinder 237 are expanded and contracted in the axial direction. Can be expanded and contracted.
- FIGS. 31A to 31B are diagrams showing other forms of the stretchable body 250.
- the inner cylinder and the outer cylinder can be formed of a cylinder made of a material that is not deformed by the pressure of air, such as metal or hard synthetic resin.
- the inner cylinder 238 includes a pair of cylinders 238A and 238B configured to be slidable with respect to each other, and the outer cylinder 237 is configured to be slidable with respect to each other like the inner cylinder. You may comprise only one set of cylinders 237A; 237B.
- One cylinder 238A constituting the inner cylinder 238 and the other cylinder 238B are maintained in a sealed state via a seal portion, and one cylinder 237A and the other cylinder 237B constituting the outer cylinder 237 are:
- the sealed state is maintained through the seal portions.
- the volume of the air chamber S50 is changed by supplying and discharging air to and from the air chamber S50 defined by the inner cylinder 238 and the outer cylinder 237.
- the elastic body 250 can be expanded and contracted by moving in the direction.
- 30A to 30B and 31A to 31B are provided with a biasing means such as a coil spring or a spiral spring so that the end members 236 and 236 are brought close to or away from each other.
- a biasing means such as a coil spring or a spiral spring so that the end members 236 and 236 are brought close to or away from each other. The operation time during expansion and contraction can be shortened to improve the conveyance efficiency.
- FIG. 32A to 32B are diagrams showing other forms of the cylinder unit 205.
- the outer cylinder 212 of the cylinder unit 205 has been described as being configured by a cylinder made of a material that is not deformed by the pressure of air such as metal or hard synthetic resin. You may comprise by the cylinder which orient
- assigned highly elastic fibers such as carbon roving
- the configuration for contracting the cylinder unit 205 in the axial direction when the inner cylinder 211 is expanded is not limited to restricting the extension in the axial direction by the fiber layer, as described above.
- a so-called McKibben type configuration in which the extension in the axial direction is restricted by covering the annular rubber with a fiber cord may be employed.
- the cylindrical unit 205 and the expansion / contraction body 250 are arranged in series.
- the sizes of the cylinder unit 205 and the stretchable body 250 can be changed as appropriate.
- the conveyance device 202 is configured by changing the sizes of the cylinder unit 205 and the expansion and contraction body 250 will be described.
- FIG. 33A to 33C are diagrams showing another configuration example of the transport device 202.
- FIG. 33A to 33C are diagrams showing another configuration example of the transport device 202.
- the conveying device 202 can be configured as shown in FIGS. 33A to 33C.
- the cylinder unit 205 is disposed on the inner peripheral side of the cylinder 214 that is extendable in the axial direction, and the end portion of the cylinder 214 is closed by the end plates 215 and 215 constituting the cylinder unit 205. It is constituted by. That is, the inner cylinder 211 and the outer cylinder 212 constitute a cylinder unit 205, and the outer cylinder 212 and the cylinder 214 constitute an extendable body 250 '.
- the transfer device 202 supplies compressed air to an air chamber (pressurized space) S ⁇ b> 5 formed by the inner cylinder 211 and the outer cylinder 212 to expand the inner cylinder 211. , Contracted in the x1 axis direction from the extended state shown in FIG. 33A.
- the cylinder unit 205 is further contracted in the x2 axis direction.
- the expansion rate here refers to the axial length of the cylinder unit 205 when the inner cylinder 211 expands to the volume when the inner cylinder 211 expands as shown in FIG. 33B. This is the ratio when the diameter of the previous inner cylinder 211 is divided by the multiplied volume.
- the volume of the space indicated by arrow J in the figure increases. In other words, since the expansion rate of the inner cylinder 211 of the cylinder unit 205 is increased, the volume of the space indicated by the arrow J is reduced, and the conveyed item in the cylindrical unit 205 can be moved more in the conveying direction. The conveyance efficiency can be improved.
- the bellows-shaped outer cylinder 237 shown in FIGS. 25A to 25C and FIGS. 31A to 31B and the cylinders 237A and 237B shown in FIGS. 32A to 32B may be used. it can.
- the telescopic body 250 has a smaller diameter than the inner cylinder 211 of the cylinder unit 205. It is also possible to form and connect a plurality of stretchable bodies 250 to one end plate 205 of the cylinder unit 205 in parallel. That is, a plurality of elastic bodies 250 are arranged on the outer peripheral side of the cylinder unit 205 in parallel with the axis of the cylinder unit 205, and the end member 236 of each elastic body 250 is fixed to the end plate 215 constituting the cylinder unit 205 and conveyed.
- the apparatus 202 may be configured.
- the expansion cylinder 250 is contracted after the inner cylinder 211 of the cylinder unit 205 is expanded, and thereby the expansion rate of the inner cylinder 211 of the cylinder unit 205 is increased.
- the conveyance efficiency of things can be improved.
- the expansion / contraction body 250 is not necessarily a double tube structure of the inner tube 238 and the outer tube 237, but is simply a tube that can be expanded and contracted in the axial direction, for example, a bellows structure, and an outer tube of the tube unit 205.
- the air chamber S50 may be formed between the air chamber 212 and the air chamber 212.
- the tubular unit 205 is formed to have a smaller diameter than the inner tube 238 of the stretchable body 250, and is attached to one end member 236 of the stretchable body 250.
- a plurality of cylinder units 205 may be connected in parallel.
- the structure of the conveying apparatus 202 shown in each said embodiment is an example, Comprising: What is necessary is just to set suitably about the connection order and the number of connections of the cylinder unit 205 and the expansion-contraction body 250.
- the transport device 202 is configured as a basic configuration in which at least one cylinder unit 205 and one stretchable body 250 are connected to each other, and is provided between existing pipes according to the transported object. By constructing everything by the conveying device 202 in place of the pipe, it can be efficiently conveyed.
- the expansion cylinder 250 is contracted in the axial direction after the inner cylinder 211 of the cylinder unit 205 is expanded.
- the present invention is not limited to this, and the expansion of the inner cylinder 211 of the cylinder unit 205 is performed.
- the timing which the expansion-contraction body 250 contracts should just be set suitably.
- the timing such as “expand the bellows at the same time as expanding the expansion body” according to the viscosity or compressibility.
- the expansion chamber 250 is provided with the air chamber S50, and the expansion and contraction body 250 is expanded and contracted by supplying and discharging air from the drive device 209 that is common to the driving of the cylinder unit 205.
- an air cylinder may be connected as a driving means between the end members 236 and 236, and the air in the air cylinder may be supplied and discharged by the driving device 209.
- a linear drive mechanism such as a mechanical ball screw mechanism is provided as a drive means between the end members 236 and 236, and a control device for controlling the linear drive mechanism is provided separately from the drive device 209, and the linear drive mechanism By controlling the advancing / retreating operation by the control device, the end member 236;
- the elastic body 250 When the elastic body 250 is mechanically expanded and contracted in this way, the elastic body 250 can be configured as a cylinder having, for example, a bellows structure that can expand and contract in the axial direction.
- the transport device 202 is suitable for transporting powders, high-viscosity fluids, gas-liquid mixtures, and continuums (such as rods).
- Example 10 As an example of the present invention, the pump device shown in FIG. 12 using the cylinder unit 1a shown in FIGS. 10A to 10C was manufactured, and a powder conveyance experiment was conducted.
- the dimensions and operating conditions of the pump device were as follows. -Circumference of the inner peripheral surface of the inner cylinder 2a: 100.6 mm ⁇ Thickness of inner cylinder 2a: 1.1 mm -Length in the axial direction of the movable cylinder part 6a (length per cylinder unit): 25 mm -Operation cycle (pressure medium supply / discharge cycle): 20 ms ⁇ Pressure medium: Air
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Actuator (AREA)
- Reciprocating Pumps (AREA)
Abstract
A tube unit (1a) comprises: an inner tube (2) which can be elastically deformed and is formed in a tube shape; and a pressurized space forming unit (6) which forms a pressurized space (5) with an outer circumferential surface (4) of the inner tube (2), wherein the pressurized space (5) contacts said outer circumferential surface (4). The inner tube (2) can be operated between a minimum pressure state and a maximum pressure state. In the minimum pressure state, the inner tube (2) has a non-circular cross-section perpendicular to the axial direction. A transport device (1A) is provided with the tube unit (1a) and a pressure control unit (10).
Description
本開示は、筒ユニット及び搬送装置に関する。
The present disclosure relates to a cylinder unit and a conveyance device.
従来、液体、気液混合体又は固液混合体などの被搬送物を搬送する搬送装置のための筒ユニットとして、弾性変形可能であるとともに筒状をなす、内筒と、内筒の外周面との間に、該外周面と接する加圧空間を形成する、加圧空間形成部と、を備えたものが知られている(例えば、特許文献1及び2参照)。このような筒ユニットは、内筒が、加圧空間の内部圧力が加圧媒体の排出によって最小となる、最小圧状態と、前記内部圧力が加圧媒体の供給によって最大となり、且つ、最小圧状態からの前記内部圧力の上昇によって内筒がその径方向内側へ膨張変形し、内筒の内周面によって形成された内側空間が収縮した、最大圧状態と、の間で動作可能に構成されている。搬送装置は、圧力制御部によって内筒を最大圧状態とすることにより、内側空間を収縮させて、被搬送物を内側空間内から外部へ搬送することができる。
Conventionally, as a cylinder unit for a transfer device for transferring an object to be transferred such as a liquid, a gas-liquid mixture or a solid-liquid mixture, an inner cylinder that is elastically deformable and has a cylindrical shape, and an outer peripheral surface of the inner cylinder A pressurization space forming part that forms a pressurization space in contact with the outer peripheral surface is known (for example, see Patent Documents 1 and 2). In such a cylinder unit, the inner cylinder has a minimum pressure state in which the internal pressure of the pressurizing space is minimized by discharging the pressurized medium, and the internal pressure is maximized by supplying the pressurized medium, and the minimum pressure The inner cylinder is inflated and deformed radially inward by the increase of the internal pressure from the state, and the inner space formed by the inner peripheral surface of the inner cylinder is contracted, and is configured to operate between the maximum pressure state. ing. The conveyance device can convey the object to be conveyed from the inside space to the outside by contracting the inside space by setting the inner cylinder to the maximum pressure state by the pressure control unit.
しかしながら、特許文献1及び2に記載されるような従来の筒ユニットでは、例えば、円筒状の内筒の周上の所定位置における座屈を誘発して内筒を径方向内側へ弾性変形させるため等の目的で、内筒に局所的な突起又は溝等が設けられていた。しかしながら、より安定した内筒の弾性変形を実現できれば望ましい。
However, in the conventional cylinder unit as described in Patent Documents 1 and 2, for example, the inner cylinder is elastically deformed radially inward by inducing buckling at a predetermined position on the circumference of the cylindrical inner cylinder. For this purpose, local protrusions or grooves are provided in the inner cylinder. However, it is desirable if more stable elastic deformation of the inner cylinder can be realized.
本発明は、このような点に鑑み、内筒の安定した弾性変形を実現できる筒ユニット及び搬送装置を提供することを第1の目的とする。
In view of the above, the present invention has a first object to provide a cylinder unit and a transport device that can realize stable elastic deformation of an inner cylinder.
特許文献1及び2に記載されるような従来の筒ユニットは、例えば、内筒の周上の所定位置での座屈を誘発して内筒の安定的な径方向内側への膨張変形を図るため等、その目的や用途などにより、最小圧状態での内筒に求められる最適な形状等は異なったものとなる。しかしながら、目的や用途などが異なる筒ユニットごとに、異なる形状や構造の内筒を製造することは、製造効率の観点から好ましくなかった。
The conventional cylinder unit as described in Patent Documents 1 and 2 induces buckling at a predetermined position on the circumference of the inner cylinder, for example, and aims to stably expand and deform the inner cylinder in the radial direction. Therefore, the optimum shape and the like required for the inner cylinder in the minimum pressure state differ depending on the purpose and application. However, it is not preferable from the viewpoint of manufacturing efficiency to manufacture inner cylinders having different shapes and structures for each cylinder unit having different purposes and uses.
本発明は、このような点に鑑み、内筒自体の形状や構造によらずに、動作時の内筒の形状を所望のものとすることができる、筒ユニット及び搬送装置を提供することを第2の目的とする。
In view of such a point, the present invention provides a cylinder unit and a transport device that can make a desired shape of the inner cylinder during operation without depending on the shape or structure of the inner cylinder itself. Second purpose.
特許文献1及び2に記載されるような従来の筒ユニットを複数連結して得られる搬送装置では、蠕動運動を模すように、連結された各筒ユニットの内筒を径方向内側に膨張させる工程を上流側から下流側へと順次繰り返すことにより、搬送物を下流側へと押し出すように搬送しているため、搬送速度の向上に限界があるという問題がある。
In a transfer device obtained by connecting a plurality of conventional cylinder units as described in Patent Documents 1 and 2, the inner cylinder of each connected cylinder unit is expanded radially inward so as to simulate a peristaltic motion. By sequentially repeating the process from the upstream side to the downstream side, the conveyed product is conveyed so as to be pushed out to the downstream side, and thus there is a problem that there is a limit in improving the conveyance speed.
本発明は、このような点に鑑み、搬送物の搬送効率を向上可能な搬送装置を提供することを第3の目的とする。
In view of these points, a third object of the present invention is to provide a transport device that can improve the transport efficiency of transported objects.
本発明の一態様としての筒ユニットは、
弾性変形可能であるとともに筒状をなす、内筒と、
前記内筒の外周面との間に、該外周面と接する加圧空間を形成する、加圧空間形成部と、を備え、
前記内筒は、前記加圧空間の内部圧力が加圧媒体の排出によって最小となる、最小圧状態と、前記内部圧力が前記加圧媒体の供給によって最大となり、且つ、前記最小圧状態からの前記内部圧力の上昇によって前記内筒がその径方向内側へ膨張変形し、前記内筒の内周面によって形成された内側空間が収縮した、最大圧状態と、の間で動作可能であり、
前記内筒は、前記最小圧状態において、軸方向と直交する断面形状が非円形状をなしている。 The cylinder unit as one aspect of the present invention is
An inner cylinder that is elastically deformable and has a cylindrical shape;
A pressurizing space forming part that forms a pressurizing space in contact with the outer peripheral surface between the outer peripheral surface of the inner cylinder, and
The inner cylinder has a minimum pressure state in which the internal pressure of the pressurized space is minimized by discharging the pressurized medium, and the internal pressure is maximized by the supply of the pressurized medium, and from the minimum pressure state. The inner cylinder is inflated and deformed radially inward by the increase in the internal pressure, and the inner space formed by the inner peripheral surface of the inner cylinder is contracted, and is operable between a maximum pressure state and
The inner cylinder has a noncircular cross-sectional shape perpendicular to the axial direction in the minimum pressure state.
弾性変形可能であるとともに筒状をなす、内筒と、
前記内筒の外周面との間に、該外周面と接する加圧空間を形成する、加圧空間形成部と、を備え、
前記内筒は、前記加圧空間の内部圧力が加圧媒体の排出によって最小となる、最小圧状態と、前記内部圧力が前記加圧媒体の供給によって最大となり、且つ、前記最小圧状態からの前記内部圧力の上昇によって前記内筒がその径方向内側へ膨張変形し、前記内筒の内周面によって形成された内側空間が収縮した、最大圧状態と、の間で動作可能であり、
前記内筒は、前記最小圧状態において、軸方向と直交する断面形状が非円形状をなしている。 The cylinder unit as one aspect of the present invention is
An inner cylinder that is elastically deformable and has a cylindrical shape;
A pressurizing space forming part that forms a pressurizing space in contact with the outer peripheral surface between the outer peripheral surface of the inner cylinder, and
The inner cylinder has a minimum pressure state in which the internal pressure of the pressurized space is minimized by discharging the pressurized medium, and the internal pressure is maximized by the supply of the pressurized medium, and from the minimum pressure state. The inner cylinder is inflated and deformed radially inward by the increase in the internal pressure, and the inner space formed by the inner peripheral surface of the inner cylinder is contracted, and is operable between a maximum pressure state and
The inner cylinder has a noncircular cross-sectional shape perpendicular to the axial direction in the minimum pressure state.
このような構成によれば、内筒の安定した弾性変形を実現できる筒ユニットを提供することができる。
According to such a configuration, it is possible to provide a cylinder unit capable of realizing stable elastic deformation of the inner cylinder.
本発明の1つの実施形態として、前記非円形状は、略三角形状又は星形形状である。
As one embodiment of the present invention, the non-circular shape is a substantially triangular shape or a star shape.
本発明の1つの実施形態として、前記筒ユニットは、少なくとも前記最小圧状態において前記内筒と接触する接触部を有するとともに、前記最小圧状態において前記接触部によって前記内筒の形状を前記非円形状に変化させる、形状規制部をさらに備える。
As one embodiment of the present invention, the cylinder unit has a contact portion that comes into contact with the inner cylinder at least in the minimum pressure state, and the shape of the inner cylinder is changed to the non-circular shape by the contact portion in the minimum pressure state. A shape restricting section that changes the shape is further provided.
このような構成によれば、内筒自体の形状や構造によらずに、動作時の内筒の形状を所望のものとすることができる、筒ユニットを提供することができる。
According to such a configuration, it is possible to provide a cylinder unit that can have a desired shape of the inner cylinder during operation without depending on the shape or structure of the inner cylinder itself.
本発明の1つの実施形態として、
前記形状規制部は、前記内筒が挿入される開口部を有する板状をなす、リング部によって構成されており、
前記開口部の外周縁には、前記接触部が含まれる。 As one embodiment of the present invention,
The shape restricting portion is configured by a ring portion having a plate shape having an opening into which the inner cylinder is inserted,
The contact portion is included in the outer peripheral edge of the opening.
前記形状規制部は、前記内筒が挿入される開口部を有する板状をなす、リング部によって構成されており、
前記開口部の外周縁には、前記接触部が含まれる。 As one embodiment of the present invention,
The shape restricting portion is configured by a ring portion having a plate shape having an opening into which the inner cylinder is inserted,
The contact portion is included in the outer peripheral edge of the opening.
本発明の1つの実施形態として、前記リング部は、前記加圧空間における前記内筒の軸方向の両端部間に配置されている。
As one embodiment of the present invention, the ring portion is disposed between both axial end portions of the inner cylinder in the pressurizing space.
本発明の1つの実施形態として、
前記リング部は、前記加圧空間における前記内筒の軸方向の両端部の少なくとも一方に配置されており、
前記リング部の前記開口部は、前記内筒の前記外周面と全周に亘って接合されている。 As one embodiment of the present invention,
The ring portion is disposed on at least one of both end portions in the axial direction of the inner cylinder in the pressure space,
The opening of the ring part is joined to the outer peripheral surface of the inner cylinder over the entire circumference.
前記リング部は、前記加圧空間における前記内筒の軸方向の両端部の少なくとも一方に配置されており、
前記リング部の前記開口部は、前記内筒の前記外周面と全周に亘って接合されている。 As one embodiment of the present invention,
The ring portion is disposed on at least one of both end portions in the axial direction of the inner cylinder in the pressure space,
The opening of the ring part is joined to the outer peripheral surface of the inner cylinder over the entire circumference.
本発明の1つの実施形態として、
前記加圧空間形成部は、複数の互いに分離した前記加圧空間を形成しており、
前記内筒における前記複数の加圧空間に包囲されたそれぞれの部分は、前記最小圧状態と前記最大圧状態との間で動作可能であり、
前記形状規制部は、少なくとも前記最小圧状態において前記それぞれの部分に接触する前記接触部を有するとともに、前記最小圧状態において前記接触部によって前記それぞれの部分の形状を前記非円形状に変化させるものである。 As one embodiment of the present invention,
The pressurizing space forming part forms a plurality of pressurizing spaces separated from each other,
Each portion surrounded by the plurality of pressure spaces in the inner cylinder is operable between the minimum pressure state and the maximum pressure state,
The shape restricting portion has the contact portion that contacts the respective portions at least in the minimum pressure state, and changes the shape of the respective portions to the non-circular shape by the contact portion in the minimum pressure state. It is.
前記加圧空間形成部は、複数の互いに分離した前記加圧空間を形成しており、
前記内筒における前記複数の加圧空間に包囲されたそれぞれの部分は、前記最小圧状態と前記最大圧状態との間で動作可能であり、
前記形状規制部は、少なくとも前記最小圧状態において前記それぞれの部分に接触する前記接触部を有するとともに、前記最小圧状態において前記接触部によって前記それぞれの部分の形状を前記非円形状に変化させるものである。 As one embodiment of the present invention,
The pressurizing space forming part forms a plurality of pressurizing spaces separated from each other,
Each portion surrounded by the plurality of pressure spaces in the inner cylinder is operable between the minimum pressure state and the maximum pressure state,
The shape restricting portion has the contact portion that contacts the respective portions at least in the minimum pressure state, and changes the shape of the respective portions to the non-circular shape by the contact portion in the minimum pressure state. It is.
本発明の1つの実施形態として、
前記加圧空間形成部は、前記内筒の外周面との間に前記加圧空間を形成する、外筒を有し、
前記内筒は、前記加圧空間に接する軸方向の長さ部分である、可動筒部を有し、
前記可動筒部は、その外周面及び内周面の少なくとも一方における前記軸方向と直交する断面形状が前記非円形状をなすように形成されている。 As one embodiment of the present invention,
The pressurizing space forming part has an outer cylinder that forms the pressurizing space between the outer peripheral surface of the inner cylinder,
The inner cylinder has a movable cylinder portion that is an axial length portion in contact with the pressure space,
The movable cylinder portion is formed such that a cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface thereof forms the noncircular shape.
前記加圧空間形成部は、前記内筒の外周面との間に前記加圧空間を形成する、外筒を有し、
前記内筒は、前記加圧空間に接する軸方向の長さ部分である、可動筒部を有し、
前記可動筒部は、その外周面及び内周面の少なくとも一方における前記軸方向と直交する断面形状が前記非円形状をなすように形成されている。 As one embodiment of the present invention,
The pressurizing space forming part has an outer cylinder that forms the pressurizing space between the outer peripheral surface of the inner cylinder,
The inner cylinder has a movable cylinder portion that is an axial length portion in contact with the pressure space,
The movable cylinder portion is formed such that a cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface thereof forms the noncircular shape.
本発明の1つの実施形態として、前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の全長に亘って一定の非円形状をなすように形成されている。
As one embodiment of the present invention, the movable cylinder portion is formed such that the non-circular cross-sectional shape forms a constant non-circular shape over the entire length in the axial direction.
本発明の1つの実施形態として、前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の全長に亘って一定の大きさとなるように形成されている。
As one embodiment of the present invention, the movable cylinder portion is formed so that the non-circular cross-sectional shape has a constant size over the entire length in the axial direction.
本発明の1つの実施形態として、前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に応じて周方向に回転するように形成されている。
As one embodiment of the present invention, the movable cylindrical portion is formed such that the non-circular cross-sectional shape rotates in the circumferential direction in accordance with a change in the axial position.
本発明の1つの実施形態として、前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に対して一定の割合で周方向に回転するように形成されている。
As one embodiment of the present invention, the movable cylindrical portion is formed such that the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position. .
本発明の1つの実施形態として、前記加圧空間及び前記可動筒部を複数組備える。
As one embodiment of the present invention, a plurality of sets of the pressurizing space and the movable cylinder portion are provided.
本発明の1つの実施形態として、前記非円形状は、略三角形状である。
As one embodiment of the present invention, the non-circular shape is a substantially triangular shape.
本発明の1つの実施形態として、前記略三角形状は、略正三角形状である。
As one embodiment of the present invention, the substantially triangular shape is a substantially equilateral triangular shape.
本発明の1つの実施形態として、前記非円形状は、星形形状である。
As one embodiment of the present invention, the non-circular shape is a star shape.
本発明の1つの実施形態として、前記内筒は押出し成形品である。
As one embodiment of the present invention, the inner cylinder is an extruded product.
本発明の1つの実施形態として、前記外筒は、その中心軸線に直交する方向に曲げ変形可能である。
As one embodiment of the present invention, the outer cylinder can be bent and deformed in a direction perpendicular to its central axis.
本発明の1つの実施形態として、前記外筒の内周面と前記可動筒部の外周面とは、前記軸方向と直交する断面形状が、互いに前記軸方向の全長に亘って相似形状をなしている。
As one embodiment of the present invention, the inner peripheral surface of the outer cylinder and the outer peripheral surface of the movable cylinder portion are similar in cross-sectional shape perpendicular to the axial direction over the entire length in the axial direction. ing.
また、本発明の一態様としての搬送装置は、
本発明に係る筒ユニットと、
前記筒ユニットにおける前記加圧空間への前記加圧媒体の供給・排出を制御する、圧力制御部と、を備える。 Moreover, the transport apparatus as one aspect of the present invention is
A cylinder unit according to the present invention;
A pressure control unit that controls supply and discharge of the pressurized medium to and from the pressurized space in the cylinder unit.
本発明に係る筒ユニットと、
前記筒ユニットにおける前記加圧空間への前記加圧媒体の供給・排出を制御する、圧力制御部と、を備える。 Moreover, the transport apparatus as one aspect of the present invention is
A cylinder unit according to the present invention;
A pressure control unit that controls supply and discharge of the pressurized medium to and from the pressurized space in the cylinder unit.
本発明の1つの実施形態として、前記搬送装置は、
前記筒ユニットに連結され、軸方向に伸縮する筒状の伸縮体と、
前記伸縮体を伸縮させる駆動手段と、をさらに備え、
前記筒ユニットの前記加圧空間形成部は、前記内筒の外周面との間に前記加圧空間を形成する、外筒を有する。 As one embodiment of the present invention, the transport device comprises:
A cylindrical expansion body connected to the cylinder unit and extending or contracting in the axial direction;
Drive means for expanding and contracting the stretchable body,
The said pressurization space formation part of the said cylinder unit has an outer cylinder which forms the said pressurization space between the outer peripheral surfaces of the said inner cylinder.
前記筒ユニットに連結され、軸方向に伸縮する筒状の伸縮体と、
前記伸縮体を伸縮させる駆動手段と、をさらに備え、
前記筒ユニットの前記加圧空間形成部は、前記内筒の外周面との間に前記加圧空間を形成する、外筒を有する。 As one embodiment of the present invention, the transport device comprises:
A cylindrical expansion body connected to the cylinder unit and extending or contracting in the axial direction;
Drive means for expanding and contracting the stretchable body,
The said pressurization space formation part of the said cylinder unit has an outer cylinder which forms the said pressurization space between the outer peripheral surfaces of the said inner cylinder.
このような構成によれば、筒ユニットを膨張させた状態で伸縮体を収縮、或は伸長させることにより、搬送物を収縮方向、或は伸長方向に押し出すことができるので、搬送効率を向上させることができる。
According to such a configuration, the conveyed product can be pushed out in the contracting direction or the extending direction by contracting or extending the expansion body in the state in which the cylinder unit is expanded, thereby improving the transport efficiency. be able to.
本発明の1つの実施形態として、前記外筒は、軸方向への伸長が規制され、前記加圧空間内への前記加圧媒体の供給により径方向外側に膨張し、筒ユニットを軸方向に収縮可能に構成されている。
As one embodiment of the present invention, the outer cylinder is restricted from extending in the axial direction, and expands radially outward by the supply of the pressurizing medium into the pressurizing space. It is configured to be shrinkable.
このような構成によれば、筒ユニットの膨張にともない軸方向に収縮するため、筒ユニットの膨張による搬送物の移動に加えて、軸方向への収縮分さらに搬送物を移動させることができるので、搬送物の搬送効率をより向上させることができる。
According to such a configuration, since the cylinder unit contracts in the axial direction as the cylinder unit expands, in addition to the movement of the conveyance object due to the expansion of the cylinder unit, the conveyance object can be further moved by the contraction in the axial direction. Further, the conveyance efficiency of the conveyed product can be further improved.
本発明の1つの実施形態として、前記伸縮体は、外側筒と、外側筒の内周側に設けられた内側筒とを備え、前記伸縮体は、前記駆動手段が、前記外側筒と前記内側筒とを同期して軸方向に圧縮・伸長させることにより伸縮する。
As one embodiment of the present invention, the telescopic body includes an outer cylinder and an inner cylinder provided on the inner peripheral side of the outer cylinder, and the telescopic body includes the driving means, the outer cylinder and the inner cylinder. It expands and contracts by compressing and expanding in the axial direction in synchronization with the cylinder.
本発明の1つの実施形態として、前記伸縮体は、外側筒と、外側筒の内周側に設けられた内側筒とを備え、前記伸縮体は、前記駆動手段が、前記外側筒と前記内側筒とを相対的に軸方向に移動させることにより伸縮する。
As one embodiment of the present invention, the telescopic body includes an outer cylinder and an inner cylinder provided on the inner peripheral side of the outer cylinder, and the telescopic body includes the driving means, the outer cylinder and the inner cylinder. It expands and contracts by moving the cylinder relative to the axial direction.
本発明の1つの実施形態として、前記伸縮体は、外側筒と内側筒とで区画される気室を備え、前記気室への流体の給排により伸縮する。
As one embodiment of the present invention, the elastic body includes an air chamber partitioned by an outer cylinder and an inner cylinder, and expands and contracts by supplying and discharging fluid to the air chamber.
このような構成によれば、筒ユニットに用いる流体と伸縮体の伸縮に用いる流体を共通化することができる。
According to such a configuration, the fluid used for the cylinder unit and the fluid used for expansion / contraction of the expansion / contraction body can be made common.
本発明の1つの実施形態として、前記伸縮体を前記筒ユニットに直列に配列した。
As one embodiment of the present invention, the stretchable bodies are arranged in series in the cylinder unit.
このような構成によれば、筒ユニットを膨張させた状態で伸縮体を収縮、或は伸長させることにより、搬送物を収縮方向、或は伸長方向に押し出すことができるので、搬送効率を向上させることができる。
According to such a configuration, the conveyed product can be pushed out in the contracting direction or the extending direction by contracting or extending the expansion body in the state in which the cylinder unit is expanded, thereby improving the transport efficiency. be able to.
本発明の1つの実施形態として、前記伸縮体を前記筒ユニットの外周に複数配列し、各伸縮体の各端部を筒ユニットの各端部と連結した。
As one embodiment of the present invention, a plurality of the stretchable bodies are arranged on the outer periphery of the tube unit, and each end of each stretchable body is connected to each end of the tube unit.
このような構成によれば、筒ユニットを膨張させた状態で各伸縮体を収縮させることにより、内筒を径方向内側により膨張させることができるので、内筒内から搬送物をより多く搬送させることができる。
According to such a configuration, the inner cylinder can be expanded inward in the radial direction by contracting each expansion and contraction in a state where the cylinder unit is expanded, so that a larger amount of the conveyed product is conveyed from the inner cylinder. be able to.
本発明の1つの実施形態として、前記伸縮体の内周側に前記筒ユニットが設けられ、該筒ユニットの端部と該伸縮体の端部とを連結した。
As one embodiment of the present invention, the cylinder unit is provided on the inner peripheral side of the stretchable body, and the end of the cylinder unit and the end of the stretchable body are connected.
このような構成によれば、筒ユニットを膨張させた状態で筒ユニットを収縮させることにより、内筒を径方向内側により膨張させることができるので、内筒内から搬送物をより多く搬送させることができる。
According to such a configuration, the inner cylinder can be expanded radially inward by contracting the cylinder unit in a state where the cylinder unit is expanded, so that a larger amount of the conveyed product can be conveyed from the inner cylinder. Can do.
本開示によれば、内筒の安定した弾性変形を実現できる筒ユニット及び搬送装置を提供することができる。
According to the present disclosure, it is possible to provide a cylinder unit and a transport device that can realize stable elastic deformation of the inner cylinder.
本開示によれば、内筒自体の形状や構造によらずに、動作時の内筒の形状を所望のものとすることができる、筒ユニット及び搬送装置を提供することができる。
According to the present disclosure, it is possible to provide a cylinder unit and a transport device that can make the shape of the inner cylinder during operation desired, regardless of the shape and structure of the inner cylinder itself.
本開示によれば、搬送物の搬送効率を向上可能な搬送装置を提供することができる。
According to the present disclosure, it is possible to provide a transfer device that can improve the transfer efficiency of a transfer object.
以下、図面を参照して、本発明の様々な実施形態に係る筒ユニット及び搬送装置について、詳細に例示説明する。なお、本明細書において、内筒の軸方向とは、内筒の中心軸線に沿う方向を意味する。また、外筒の軸方向とは、外筒の中心軸線に沿う方向を意味する。なお、各実施形態において、内筒の中心軸線と外筒の中心軸線とは一致しているが、これらの中心軸線は一致していなくてもよい。また、「接合」とは、接着剤等による接着や、溶着等による固定に限られず、ねじ、ボルト、ナット、リベットなどによる固定、嵌合等による固定も含むものとする。
Hereinafter, with reference to the drawings, a cylinder unit and a transport apparatus according to various embodiments of the present invention will be described in detail as examples. In the present specification, the axial direction of the inner cylinder means a direction along the central axis of the inner cylinder. Further, the axial direction of the outer cylinder means a direction along the central axis of the outer cylinder. In each embodiment, the central axis of the inner cylinder and the central axis of the outer cylinder coincide with each other, but these central axes may not coincide with each other. In addition, “joining” is not limited to bonding by an adhesive or the like, or fixing by welding or the like, but also includes fixing by screws, bolts, nuts, rivets, etc., and fixing by fitting.
まず、図1A~図2Dを参照して、本発明の第1実施形態に係る筒ユニット1a及び搬送装置1Aについて、詳細に例示説明する。図1Aに示すように、本実施形態に係る筒ユニット1aは、弾性変形可能であるとともに円筒状をなす、内筒2を備える。なお、内筒2は円筒状に限られず、筒状であればよい。また、筒ユニット1aは、内筒2の外周面4との間に、該外周面4と接する加圧空間5を形成する、加圧空間形成部6を備える。また、加圧空間5は、内筒2の外周面4と全周に亘って接するものとなっている。しかしながら、加圧空間5は、外周面4と全周の一部のみに亘って接するものとしてもよい。
First, with reference to FIGS. 1A to 2D, the cylinder unit 1a and the transfer apparatus 1A according to the first embodiment of the present invention will be described in detail as examples. As shown in FIG. 1A, the cylinder unit 1a according to the present embodiment includes an inner cylinder 2 that is elastically deformable and has a cylindrical shape. The inner cylinder 2 is not limited to a cylindrical shape, and may be a cylindrical shape. Further, the cylinder unit 1 a includes a pressurizing space forming portion 6 that forms a pressurizing space 5 in contact with the outer peripheral surface 4 between the outer peripheral surface 4 of the inner cylinder 2. The pressurizing space 5 is in contact with the outer peripheral surface 4 of the inner cylinder 2 over the entire circumference. However, the pressurizing space 5 may be in contact with the outer peripheral surface 4 over only a part of the entire circumference.
図1B~図1Cに示すように、筒ユニット1aは、内筒2の軸方向の両端部に一対のフランジ部7が一体に形成された、例えばゴム又は軟質の合成樹脂等の弾性材料からなる内側部材8と、円筒状の外筒3を有する、硬質の合成樹脂又は金属等の剛性材料からなる外側部材9と、を備える。図1Aに示したように、一対のフランジ部7と外筒3とは互いに流体密に接合、例えば固着されている。したがって、加圧空間形成部6は、内側部材8の一対のフランジ部7と、外側部材9の外筒3とで構成されている。
As shown in FIGS. 1B to 1C, the cylinder unit 1a is made of an elastic material such as rubber or a soft synthetic resin in which a pair of flange parts 7 are integrally formed at both axial ends of the inner cylinder 2. An inner member 8 and an outer member 9 having a cylindrical outer tube 3 and made of a rigid material such as hard synthetic resin or metal are provided. As shown in FIG. 1A, the pair of flange portions 7 and the outer cylinder 3 are fluid-tightly joined to each other, for example, fixed. Therefore, the pressurizing space forming portion 6 is composed of a pair of flange portions 7 of the inner member 8 and the outer cylinder 3 of the outer member 9.
なお、筒ユニット1aを、このような内側部材8と外側部材9とによって構成することは、必須ではない。例えば、一対のフランジ部7と、内筒2とを別部材として構成してもよい。また、一対のフランジ部7を外側部材9と一体に形成してもよく、さらには外側部材9と同じ剛性材料で形成してもよい。また、外側部材9は、例えばゴム又は軟質の合成樹脂等の弾性材料で構成してもよい。さらに、一対のフランジ部7を設けることなく、外筒3と内筒2とをこれらの軸方向の両端部において互いに密着するように接合することによって、筒ユニット1aを構成してもよい。この場合、加圧空間形成部6は、外筒3で構成される。また、この場合、外筒3の内周面に、全周に亘って連続する周溝を設けることが好ましく、このような周溝を設けることによって内筒2の加圧媒体による動作速度を高めることができる。また、この場合、外筒3は円筒状に限られず、筒状であればよい。なお、本実施形態では、外筒3は、加圧空間5への加圧媒体の供給時に径方向外側へ実質的に膨張変形しない程度の径方向の剛性を有している。なお、外筒3は、その中心軸線O2に直交する方向に曲げ変形可能に構成されていてもよい。例えば、外筒3を、スリーブ状に編み込んだ繊維コードをゴム又は軟質の合成樹脂等の弾性材料中に埋設させた構成とすることができる。このような構成によれば、被搬送物の搬送方向を所望の方向へ曲げることができる。
In addition, it is not essential to configure the cylinder unit 1a with the inner member 8 and the outer member 9 as described above. For example, the pair of flange portions 7 and the inner cylinder 2 may be configured as separate members. Further, the pair of flange portions 7 may be formed integrally with the outer member 9, and may be formed of the same rigid material as the outer member 9. The outer member 9 may be made of an elastic material such as rubber or soft synthetic resin. Furthermore, you may comprise the cylinder unit 1a by joining the outer cylinder 3 and the inner cylinder 2 so that it may mutually contact | adhere in the both ends of these axial directions, without providing a pair of flange part 7. FIG. In this case, the pressurizing space forming unit 6 is configured by the outer cylinder 3. Further, in this case, it is preferable to provide a circumferential groove continuous over the entire circumference on the inner circumferential surface of the outer cylinder 3, and by providing such a circumferential groove, the operating speed of the inner cylinder 2 by the pressurized medium is increased. be able to. In this case, the outer cylinder 3 is not limited to a cylindrical shape, and may be a cylindrical shape. In the present embodiment, the outer cylinder 3 has a radial rigidity that does not substantially expand and deform radially outward when the pressurized medium is supplied to the pressurized space 5. In addition, the outer cylinder 3 may be comprised so that bending deformation is possible in the direction orthogonal to the center axis line O2. For example, the outer cylinder 3 can be configured such that a fiber cord knitted into a sleeve shape is embedded in an elastic material such as rubber or soft synthetic resin. According to such a structure, the conveyance direction of a to-be-conveyed object can be bent in a desired direction.
内筒2は、加圧空間5の内部圧力が加圧媒体の排出によって最小となる、最小圧状態と、前記内部圧力が加圧媒体の供給によって最大となり、且つ、最小圧状態からの前記内部圧力の上昇によって内筒2がその径方向内側へ膨張変形し(図1A中の二点鎖線で示す内筒2参照)、内筒2の内周面によって形成された内側空間11が収縮した、最大圧状態と、の間で動作可能である。ここで、内筒2が動作する際に加圧空間5の内部圧力が最小となった状態が最小圧状態であり、この最小圧状態での前記内部圧力の大きさは適宜設定することができる。また、内筒2が動作する際に加圧空間5の内部圧力が最大となった状態が最大圧状態であり、この最大圧状態での前記内部圧力の大きさも、適宜設定することができる。なお、加圧媒体としては、空気、二酸化炭素等の気体や、水、油等の液体など、任意の流体を用いてよい。
The inner cylinder 2 has a minimum pressure state in which the internal pressure of the pressurizing space 5 is minimized by discharging the pressurized medium, and the internal pressure from the minimum pressure state in which the internal pressure is maximized by supplying the pressurized medium. The inner cylinder 2 is inflated and deformed radially inward by the increase in pressure (see the inner cylinder 2 shown by a two-dot chain line in FIG. 1A), and the inner space 11 formed by the inner peripheral surface of the inner cylinder 2 is contracted. It is possible to operate between the maximum pressure state. Here, the state in which the internal pressure of the pressurizing space 5 is minimized when the inner cylinder 2 is operated is the minimum pressure state, and the magnitude of the internal pressure in the minimum pressure state can be set as appropriate. . Further, the state in which the internal pressure of the pressurizing space 5 becomes maximum when the inner cylinder 2 operates is the maximum pressure state, and the magnitude of the internal pressure in the maximum pressure state can also be set as appropriate. As the pressurizing medium, an arbitrary fluid such as a gas such as air or carbon dioxide, or a liquid such as water or oil may be used.
筒ユニット1aと、圧力制御部10と、によって搬送装置1Aが構成されている。圧力制御部10は、加圧空間5への加圧媒体の供給(図1A中の下向き矢印参照)と、加圧空間5からの加圧媒体の排出(図1A中の上向き矢印参照)とを制御することができる。また、圧力制御部10は、例えば、コンプレッサ等の圧力発生源と、配管などの流路形成部と、流路切替弁と、によって構成することができる。
The cylinder unit 1a and the pressure control unit 10 constitute a transfer device 1A. The pressure controller 10 supplies the pressurized medium to the pressurized space 5 (see the downward arrow in FIG. 1A) and discharges the pressurized medium from the pressurized space 5 (see the upward arrow in FIG. 1A). Can be controlled. Moreover, the pressure control part 10 can be comprised by pressure generation sources, such as a compressor, flow-path formation parts, such as piping, and a flow-path switching valve, for example.
さらに、筒ユニット1aは、形状規制部12を備える。形状規制部12は、少なくとも最小圧状態において内筒2と接触する接触部13を有するとともに、最小圧状態において接触部13によって内筒2の形状を所定の形状に変化させるように構成されている。ここで、接触部13によって内筒2の形状を「変化させる」とは、「接触部13が内筒2と接触していないときの内筒2の形状に対して」、変化させることを意味する。また、「所定の形状」とは、非円筒形状であることが好ましい。
Furthermore, the cylinder unit 1 a includes a shape restricting portion 12. The shape restricting portion 12 has a contact portion 13 that comes into contact with the inner cylinder 2 at least in the minimum pressure state, and is configured to change the shape of the inner cylinder 2 to a predetermined shape by the contact portion 13 in the minimum pressure state. . Here, “changing” the shape of the inner cylinder 2 by the contact portion 13 means “changing the shape of the inner cylinder 2 when the contact portion 13 is not in contact with the inner cylinder 2”. To do. The “predetermined shape” is preferably a non-cylindrical shape.
本実施形態では、形状規制部12は、加圧空間形成部6に設けられた4つの凸部14によって構成されている。4つの凸部14は、外筒3の周方向に等間隔を空けて配置されるとともに、それぞれ、外筒3の内周面から、外筒3の径方向内側に向けて突出している。本例では、4つの凸部14は外筒3と一体に形成されている。そして、それらの先端部で構成される接触部13は、最小圧状態において内筒2の外周面4に接触するものとなっている。接触部13によって変形させられる前の自然状態において円筒状をなす内筒2は、最小圧状態において、この形状規制部12により、図2Aに示すように、星形の断面形状を含む筒状をなすように弾性変形させられる。すなわち、最小圧状態において、内筒2は、軸方向の両端部の断面形状が円形をなすとともに、軸方向の両端部間の所定位置に向けて漸次、断面形状が星形となるように滑らかに変形している。したがって、最小圧状態から最大圧状態にすることにより、内筒2を、図2A中に二点鎖線で示すように、それぞれ周方向に隣り合う接触部13の間に位置する、4つの折り目を起点として膨張変形させることができる。
In the present embodiment, the shape restricting portion 12 is constituted by four convex portions 14 provided in the pressurized space forming portion 6. The four convex portions 14 are arranged at equal intervals in the circumferential direction of the outer cylinder 3 and project from the inner circumferential surface of the outer cylinder 3 toward the radially inner side of the outer cylinder 3. In this example, the four convex portions 14 are formed integrally with the outer cylinder 3. And the contact part 13 comprised by those front-end | tip parts contacts the outer peripheral surface 4 of the inner cylinder 2 in a minimum pressure state. As shown in FIG. 2A, the inner cylinder 2 having a cylindrical shape in a natural state before being deformed by the contact portion 13 has a cylindrical shape including a star-shaped cross-sectional shape, as shown in FIG. It is elastically deformed as it is. That is, in the minimum pressure state, the inner cylinder 2 has a circular cross-sectional shape at both end portions in the axial direction and is gradually smoothed so that the cross-sectional shape gradually becomes a star shape toward a predetermined position between the both end portions in the axial direction. Is deformed. Therefore, by changing from the minimum pressure state to the maximum pressure state, the inner cylinder 2 has four fold lines positioned between the contact portions 13 adjacent to each other in the circumferential direction, as indicated by a two-dot chain line in FIG. 2A. It can be expanded and deformed as a starting point.
形状規制部12は、図1C、図2Aに示したような4つの凸部14によって構成するものに限られない。例えば、図2Cに示すように、3つの凸部15によって構成してもよいし、図2Cに示すように、2つの凸部16によって構成してもよいし、図2Cに示すように、1つの凸部17によって構成してもよいし、4つ以上の凸部によって構成してもよい。なお、図2B~図2Dに示す二点鎖線は、それぞれ、内筒2の最大圧状態における形状を示している。形状規制部12を複数の凸部で構成する場合には、これら複数の凸部は、外筒3の周方向に等間隔を空けて配置することが好ましい。また、形状規制部12を複数又は単一の凸部で構成する場合、凸部の形状は適宜変更が可能である。また、凸部の材質や構造も適宜変更が可能である。凸部は、外側部材9と一体に同一材料で構成されており、従って、剛性材料で構成されているが、弾性材料で構成してもよい。また、例えば、凸部における外筒3の径方向の中間部分にコイルスプリングを配置して、接触部13を径方向内側へ付勢する構成としてもよい。また、凸部に代えて、例えばコイルスプリングを配置してもよい。このように、形状規制部12は、剛体に限らず、弾性体で構成してもよい。
The shape restricting portion 12 is not limited to the one constituted by the four convex portions 14 as shown in FIGS. 1C and 2A. For example, as shown in FIG. 2C, it may be constituted by three convex portions 15, may be constituted by two convex portions 16 as shown in FIG. 2C, or as shown in FIG. You may comprise by the one convex part 17, and you may comprise by four or more convex parts. 2B to 2D indicate the shapes of the inner cylinder 2 in the maximum pressure state, respectively. When the shape restricting portion 12 is constituted by a plurality of convex portions, it is preferable that the plurality of convex portions are arranged at equal intervals in the circumferential direction of the outer cylinder 3. Moreover, when the shape control part 12 is comprised with a several or single convex part, the shape of a convex part can be changed suitably. Moreover, the material and structure of a convex part can also be changed suitably. The convex portion is made of the same material integrally with the outer member 9, and thus made of a rigid material, but may be made of an elastic material. Further, for example, a coil spring may be disposed at a radial intermediate portion of the outer cylinder 3 in the convex portion, and the contact portion 13 may be urged radially inward. Further, for example, a coil spring may be arranged instead of the convex portion. As described above, the shape restricting portion 12 is not limited to a rigid body, and may be composed of an elastic body.
また、形状規制部12は、このような凸部によって構成するものに限られない。例えば、図3A~図3C及び図4Aに示すように、本発明の第2実施形態に係る筒ユニット1bでは、形状規制部12をリング部18で構成している。リング部18は、内筒2が挿入される開口部19を有する板状をなしている。開口部19の外周縁には、接触部20が含まれる。接触部20は、最小圧状態において内筒2の外周面4に接触するものとなっている。また、図3Aに示すように、接触部20は、最大圧状態において内筒2の外周面4から離間する部分を含む。なお、図3Aに示す二点鎖線は、内筒2の最大圧状態における形状を示している。図3A~図3Cに示すように、リング部18は、内筒2における軸方向の両端部間に配置されている。リング部18の開口部19の形状は、図3B、図3C及び図4Aに示したような星形に限らず、例えば、図4B~図4Cに示すような形状としてもよく、適宜変更が可能である。リング部18は、硬質の合成樹脂又は金属等の剛性材料からなっているが、例えばゴム又は軟質の合成樹脂等の弾性材料からなるものとしてもよい。リング部18は、内筒2及び外筒3とは別体の部材として構成されているが、例えば外筒3と一体に設けてもよい。この場合、リング部18には、加圧媒体が通過可能な貫通孔を適宜設けることが好ましい。また、このようなリング部18に代えて、例えば、内筒2の周方向に間隔(例えば等間隔)を空けて配置された、複数の玉状部材と、これら複数の玉状部材を貫通する環状をなすとともに、少なくとも最小圧状態において、これら複数の玉状部材を内筒2に押し付ける、環状部材と、によって形状規制部12を構成してもよい。環状部材は、例えばゴムバンドのように周方向に伸縮可能であってもよいし、そのような伸縮性を有さなくてもよい。
Further, the shape restricting portion 12 is not limited to the one constituted by such a convex portion. For example, as shown in FIGS. 3A to 3C and 4A, in the cylinder unit 1b according to the second embodiment of the present invention, the shape restricting portion 12 is constituted by a ring portion 18. The ring portion 18 has a plate shape having an opening 19 into which the inner cylinder 2 is inserted. A contact portion 20 is included in the outer peripheral edge of the opening 19. The contact part 20 contacts the outer peripheral surface 4 of the inner cylinder 2 in the minimum pressure state. Moreover, as shown to FIG. 3A, the contact part 20 contains the part spaced apart from the outer peripheral surface 4 of the inner cylinder 2 in a maximum pressure state. 3A indicates the shape of the inner cylinder 2 in the maximum pressure state. As shown in FIGS. 3A to 3C, the ring portion 18 is disposed between both end portions of the inner cylinder 2 in the axial direction. The shape of the opening 19 of the ring portion 18 is not limited to the star shape as shown in FIGS. 3B, 3C, and 4A, and may be, for example, the shape as shown in FIGS. 4B to 4C, and can be changed as appropriate. It is. The ring portion 18 is made of a rigid material such as hard synthetic resin or metal, but may be made of an elastic material such as rubber or soft synthetic resin. The ring portion 18 is configured as a separate member from the inner cylinder 2 and the outer cylinder 3, but may be provided integrally with the outer cylinder 3, for example. In this case, the ring portion 18 is preferably provided with a through hole through which the pressurized medium can pass as appropriate. Further, instead of such a ring portion 18, for example, a plurality of ball-shaped members arranged at intervals (for example, equal intervals) in the circumferential direction of the inner cylinder 2, and the plurality of ball-shaped members are penetrated. The shape restricting portion 12 may be configured by an annular member that forms an annular shape and presses the plurality of ball-shaped members against the inner cylinder 2 at least in a minimum pressure state. The annular member may be stretchable in the circumferential direction like a rubber band, for example, or may not have such stretchability.
図5A~図5Cは、本発明の第3実施形態に係る筒ユニット1cを示す。本実施形態では、形状規制部12は、図5A~図5Cに示すように、ゴム又は軟質の合成樹脂等の弾性材料からなる弾性筒体21で構成されている。本実施形態に係る筒ユニット1cが備える弾性筒体21は、少なくとも最小圧状態において内筒2の内周面と接触する接触部22を有するとともに、最小圧状態において接触部22によって内筒2の形状を所定の形状に(本例では、星形の断面形状を含む筒状をなすように)変化させるように構成されている。そして、弾性筒体21は、加圧空間5の内部圧力の増加によって、内筒2とともに弾性変形し、内側空間11を収縮させることができる。なお、弾性筒体21の形、大きさ、弾性等は、内筒2に求められる形状に応じて適宜設定が可能である。また、弾性筒体21は、接触部22を介して内筒2の内周面に全周に亘って、又は全周の一部のみに亘って接合することができる。また、弾性筒体21を内筒2よりも十分大きな寸法を有するものとし、内筒2に圧入して組み付けるようにすることにより、接合を省略してもよい。また、弾性筒体21を内筒2の外周面4に組み付けるようにしてもよい。この場合も、弾性筒体21は内筒2に対して必要に応じて接合すればよい。なお、図5B中の二点鎖線は、自然状態での内筒2の形状を示す。
5A to 5C show a cylinder unit 1c according to a third embodiment of the present invention. In the present embodiment, as shown in FIGS. 5A to 5C, the shape restricting portion 12 is constituted by an elastic cylinder 21 made of an elastic material such as rubber or soft synthetic resin. The elastic cylinder body 21 provided in the cylinder unit 1c according to the present embodiment has a contact portion 22 that comes into contact with the inner peripheral surface of the inner cylinder 2 at least in the minimum pressure state, and the contact portion 22 in the minimum pressure state causes the The shape is changed to a predetermined shape (in this example, so as to form a cylindrical shape including a star-shaped cross-sectional shape). The elastic cylinder 21 can be elastically deformed together with the inner cylinder 2 due to an increase in the internal pressure of the pressurizing space 5, and the inner space 11 can be contracted. The shape, size, elasticity, and the like of the elastic cylinder 21 can be appropriately set according to the shape required for the inner cylinder 2. The elastic cylinder 21 can be joined to the inner peripheral surface of the inner cylinder 2 through the contact portion 22 over the entire circumference or over only a part of the entire circumference. Moreover, joining may be abbreviate | omitted by making the elastic cylinder 21 into a dimension sufficiently larger than the inner cylinder 2, and press-fitting in the inner cylinder 2. The elastic cylinder 21 may be assembled to the outer peripheral surface 4 of the inner cylinder 2. Also in this case, the elastic cylinder 21 may be joined to the inner cylinder 2 as necessary. In addition, the dashed-two dotted line in FIG. 5B shows the shape of the inner cylinder 2 in a natural state.
前述した様々な具体例のように、形状規制部12を内筒2の軸方向の両端部間に設けた場合には、汎用性の高い円筒状に形成された内筒2を、最小圧状態において、軸方向の両端部の断面形状(中心軸線と垂直な平面による断面形状)が円形をなすとともに、軸方向の両端部間の所定位置に向けて漸次、前記断面形状が非円形となるように滑らかに変形している異形円筒状をなすように弾性変形させておくことができる。内筒2をこのような異形円筒状に変形させておくことにより、加圧空間5の内部圧力の増加によって、内側空間11を収縮させるように内筒2を膨張変形させ易くすることができるとともに、膨張変形の仕方が常に略一定になるように動作を安定させることができ、もって、搬送特性を安定させることができる。また、内筒2における軸方向の両端部を断面形状が円形をなすものとすることで、一般的に円筒状をなす配管に直接接続して用いることができるため、利便性を確保することができる。内筒2を始めから前記のような異形円筒状に形成しておくことも考えられるが、本実施形態のように形状規制部12を用いて異形円筒状に変形させる方が、既存の円筒状の内筒2を用いることができるため製造効率を向上することができる。すなわち、内筒2自体の形状や構造によらずに、動作時の内筒2の形状を所望のものとすることができる。また、形状規制部12を前述したようなリング部18によって構成することにより、内筒2に対する形状規制部12の配置を容易にすることができる。
When the shape restricting portion 12 is provided between both axial ends of the inner cylinder 2 as in the various specific examples described above, the inner cylinder 2 formed in a highly versatile cylindrical shape is in a minimum pressure state. The cross-sectional shape of both end portions in the axial direction (cross-sectional shape by a plane perpendicular to the central axis) is circular, and the cross-sectional shape gradually becomes non-circular toward a predetermined position between both end portions in the axial direction. It can be elastically deformed to form a deformed cylindrical shape that is smoothly deformed. By deforming the inner cylinder 2 into such a deformed cylindrical shape, the inner cylinder 2 can be easily expanded and deformed so as to contract the inner space 11 by increasing the internal pressure of the pressurizing space 5. The operation can be stabilized so that the manner of expansion and deformation is always substantially constant, so that the transport characteristics can be stabilized. In addition, since both end portions in the axial direction of the inner cylinder 2 have a circular cross-sectional shape, it can be used by directly connecting to a pipe having a generally cylindrical shape, thereby ensuring convenience. it can. Although it is conceivable to form the inner cylinder 2 in the shape of a deformed cylinder from the beginning, it is possible to deform the shape of the inner cylinder 2 into a deformed cylinder using the shape restricting portion 12 as in the present embodiment. Since the inner cylinder 2 can be used, manufacturing efficiency can be improved. That is, the shape of the inner cylinder 2 at the time of operation can be made desired regardless of the shape and structure of the inner cylinder 2 itself. Moreover, the configuration of the shape regulating portion 12 with respect to the inner cylinder 2 can be facilitated by configuring the shape regulating portion 12 with the ring portion 18 as described above.
なお、内筒2は、形状規制部12の接触部13によって変形させられる前の自然状態において円筒状をなすものに限られない。また、内筒2は、自然状態において円筒状又はその他の筒状をなすとともに、局所的に径方向内側に突出する凸部(図示省略)などが設けられた形状のものであってもよい。例えば、このような凸部を、内筒2を内側空間11が収縮するように膨張変形させたときに径方向内側へ最も突出することになる各周方向位置に配置しておくことにより、最大加圧状態となったときにこれら凸部によって内側空間11の中心部を容易に閉塞させることができる。また、内筒2は、例えば軸方向等に延在する溝や突条等を有していてもよい。
The inner cylinder 2 is not limited to a cylindrical shape in a natural state before being deformed by the contact portion 13 of the shape regulating portion 12. Further, the inner cylinder 2 may have a cylindrical shape or other cylindrical shape in a natural state, and may have a shape provided with a convex portion (not shown) that protrudes radially inward locally. For example, by arranging such a convex portion at each circumferential position that protrudes most radially inward when the inner cylinder 2 is inflated and deformed so that the inner space 11 contracts, When the pressure state is reached, the central portion of the inner space 11 can be easily closed by these convex portions. Moreover, the inner cylinder 2 may have a groove | channel, a protrusion, etc. extended in an axial direction etc., for example.
図6A~図6Cは、本発明の第4実施形態に係る筒ユニット1dを示す。本実施形態では、形状規制部12は、図6A~図6Cに示すように、加圧空間5における内筒2の軸方向の両端部に設けられるとともに、前述したリング部18と同様の構成となっている。すなわち、前述した内筒2の軸方向の両端部に設けられた一対のフランジ部7に代えて、図6A~図6Cに示すような一対のリング部23を備えている。一対のリング部23は、それぞれ、内筒2が挿入される開口部24を有する。一対のリング部23の開口部24の外周縁には、それぞれ、接触部25が含まれる。一対のリング部23の接触部25は、それぞれ、内筒2の外周面4と全周に亘って流体密に接合、例えば固着されている。一対のリング部23は、本例では外筒3と一体に形成されている。一対のリング部23の開口部24の形状は、図6Bに示したような星形に限らず、前掲図4B~図4Dに示すような形状としてもよく、適宜変更が可能である。一対のリング部23は、硬質の合成樹脂又は金属等の剛性材料からなっているが、例えばゴム又は軟質の合成樹脂等の弾性材料からなるものとしてもよい。なお、形状規制部12は、加圧空間5における内筒2の軸方向の両端部の一方のみに設けてもよい。この場合も、形状規制部12はリング部23で構成することができる。また、形状規制部12は、加圧空間5における内筒2の軸方向の両端部の一方と、他方との間で形状が異なるものとしてもよい(例えば、一方が略三角形状で他方が星形形状など)。本実施形態のように、形状規制部12を加圧空間5における内筒2の軸方向の両端部に設けた場合でも、内筒2自体の形状や構造によらずに、動作時の内筒2の形状を所望のものとすることができる。なお、本実施形態において、内筒2の軸方向中間部を支持する支持部を外筒3に設けてもよい。例えば、そのような支持部を内筒2の底面側に設けることで、被搬送物の重みによる内筒2のたるみの発生を抑制することができる。また、そのような支持部を例えば全周に亘って連続又は間欠的に設けることで、内筒2の軸方向中間部の最小圧状態における形状を所定の形状に変化させる構成(すなわち、そのような支持部を追加的な形状規制部として設けた構成)としてもよい。支持部の形状は特に限定されず、例えば軸方向又は周方向等に延びる突条や、径方向内側に延びる突起であってよい。また、図3A~図3C及び図4A~図4Dに示したようなリング部であってもよい。さらには、例えば軸方向に延びる棒状部材(シャフト等)であってもよい。また、内筒2の底面側に限らず、周方向の任意の1箇所以上に、例えば軸方向に延びる棒状部材(シャフト等)を形状規制部として設け、動作時の内筒2の形状を所望のものとする構成としてもよい。そのような棒状部材は、例えばらせん状に延びるものであってもよい。
6A to 6C show a cylinder unit 1d according to a fourth embodiment of the present invention. In the present embodiment, as shown in FIGS. 6A to 6C, the shape restricting portions 12 are provided at both end portions in the axial direction of the inner cylinder 2 in the pressurizing space 5, and have the same configuration as the ring portion 18 described above. It has become. That is, a pair of ring portions 23 as shown in FIGS. 6A to 6C are provided instead of the pair of flange portions 7 provided at both end portions of the inner cylinder 2 in the axial direction. Each of the pair of ring portions 23 has an opening 24 into which the inner cylinder 2 is inserted. A contact portion 25 is included in each outer peripheral edge of the opening 24 of the pair of ring portions 23. The contact portions 25 of the pair of ring portions 23 are joined, for example, firmly, fluid-tightly over the outer peripheral surface 4 and the entire circumference of the inner cylinder 2. The pair of ring portions 23 are formed integrally with the outer cylinder 3 in this example. The shape of the opening 24 of the pair of ring portions 23 is not limited to the star shape as shown in FIG. 6B, but may be the shape as shown in FIGS. 4B to 4D, and can be changed as appropriate. The pair of ring portions 23 are made of a rigid material such as hard synthetic resin or metal, but may be made of an elastic material such as rubber or soft synthetic resin. The shape restricting portion 12 may be provided only on one of both end portions in the axial direction of the inner cylinder 2 in the pressurizing space 5. Also in this case, the shape restricting portion 12 can be constituted by the ring portion 23. Further, the shape restricting portion 12 may have a shape different between one end of the axial direction of the inner cylinder 2 in the pressurizing space 5 and the other (for example, one is a substantially triangular shape and the other is a star). Shape etc.). Even when the shape restricting portions 12 are provided at both ends in the axial direction of the inner cylinder 2 in the pressurized space 5 as in the present embodiment, the inner cylinder during operation is independent of the shape and structure of the inner cylinder 2 itself. The shape of 2 can be made as desired. In the present embodiment, a support portion that supports the axial intermediate portion of the inner cylinder 2 may be provided in the outer cylinder 3. For example, by providing such a support portion on the bottom surface side of the inner cylinder 2, it is possible to suppress the occurrence of sagging of the inner cylinder 2 due to the weight of the conveyed object. Moreover, the structure which changes the shape in the minimum pressure state of the axial direction intermediate part of the inner cylinder 2 to a predetermined | prescribed shape by providing such a support part continuously or intermittently over the perimeter (namely, such as A configuration in which a simple support portion is provided as an additional shape restricting portion). The shape of the support portion is not particularly limited, and may be, for example, a protrusion extending in the axial direction or the circumferential direction, or a protrusion extending inward in the radial direction. Further, it may be a ring portion as shown in FIGS. 3A to 3C and FIGS. 4A to 4D. Furthermore, for example, a rod-like member (such as a shaft) extending in the axial direction may be used. Further, not only on the bottom surface side of the inner cylinder 2, for example, a rod-like member (such as a shaft) extending in the axial direction is provided as a shape restricting portion at any one or more locations in the circumferential direction, and the shape of the inner cylinder 2 during operation is desired. It is good also as a structure made into. Such a rod-shaped member may extend in a spiral shape, for example.
以上説明したような筒ユニット1a、1b、1c、1d等(以下、単に「筒ユニット1a等」ともいう)は、例えば、ポンプ装置や混合装置を構成するために用いることができる。例えば、図7Aに示すように、筒ユニット1a等の内側空間11の軸方向の両端部に、それぞれ、被搬送物の通路となる管体Tを接続するとともに、これら両管体Tにそれぞれ、軸方向の一方側への被搬送物の通過を許容する一方、他方側への通過を阻止する逆止弁Vを配置することにより、ポンプ装置を構成することができる。この場合、筒ユニット1a等の内筒2を、圧力制御部10による加圧によって、内側空間11が収縮するように変形させることにより、被搬送物を軸方向の一方側へ搬送することができる。また、図7Bに示すように、複数の筒ユニット1a等を準備し、これらを軸方向に接続するとともに、隣接する筒ユニット1a等同士の間で時間差を設けて順次加圧を行うことにより、内側空間11を順次収縮させて、被搬送物を搬送することもできる。このような蠕動運動による搬送によれば、特に、スラリーなどの固液混合体や、粉体などをスムーズに搬送することが可能となる。また、筒ユニット1a等の軸方向の両端面の少なくとも一方が中心軸線O1、O2に対して傾斜した構成としてもよく、このように傾斜した筒ユニット1a等を連結して用いることにより、色々な形状の搬送経路を形成することができる。さらに、連結する筒ユニット1a等間で、形状規制部12の形状が異なっていてもよい(例えば、一方が略三角形状で他方が星形形状など)。
The cylinder units 1a, 1b, 1c, 1d and the like as described above (hereinafter also simply referred to as “cylinder unit 1a etc.”) can be used, for example, to configure a pump device or a mixing device. For example, as shown in FIG. 7A, tube ends T serving as passages for the objects to be conveyed are connected to both ends in the axial direction of the inner space 11 such as the cylinder unit 1 a, respectively. By disposing a check valve V that allows passage of an object to be conveyed to one side in the axial direction and prevents passage to the other side, a pump device can be configured. In this case, the inner cylinder 2 such as the cylinder unit 1a is deformed so that the inner space 11 contracts by pressurization by the pressure control unit 10, so that the object to be conveyed can be conveyed to one side in the axial direction. . Further, as shown in FIG. 7B, by preparing a plurality of cylinder units 1a, etc., connecting them in the axial direction, and sequentially applying pressure by providing a time difference between adjacent cylinder units 1a, etc. The inner space 11 can be contracted sequentially to transport the object to be transported. According to the conveyance by such a peristaltic motion, it becomes possible to smoothly convey a solid-liquid mixture such as slurry or powder. Further, at least one of both end faces in the axial direction of the cylinder unit 1a and the like may be inclined with respect to the central axis O1 and O2, and by using the inclined cylinder unit 1a and the like connected in this manner, A conveying path having a shape can be formed. Furthermore, the shape of the shape restricting portion 12 may be different between the connected cylinder units 1a and the like (for example, one is substantially triangular and the other is star-shaped).
また、前述したように構成されるポンプ装置は、被搬送物の搬送に伴って被搬送物が押し潰されるので、混合装置としての機能も発揮することができる。すなわち、被搬送物として例えば固液混合体を用いる場合に、固体と液体との混合を促進することができ、また、複数種類の液体、固液混合体又は粉体等を用いる場合にも、それらの混合を促進することができる。前述したような筒ユニット1a等によって混合装置を構成する場合には、被搬送物の流路が環状をなす(すなわち、循環路を形成するように)構成することが好ましい。或いは、相互接続した複数の筒ユニット1a等を貫く被搬送物の流路の両端部を閉塞可能に構成し、これら両端部を閉塞した状態で、被搬送物を当該流路の一端部と他端部との間で往復させるように搬送してもよい。さらに、単一の筒ユニット1a等を用い、その内筒2における軸方向の両端部を閉塞した状態で、内筒2を作動させることによって内側空間11内の物質を混合してもよい。
In addition, the pump device configured as described above can exhibit a function as a mixing device because the transported object is crushed as the transported object is transported. That is, when using, for example, a solid-liquid mixture as an object to be transported, mixing of solid and liquid can be promoted, and also when using a plurality of types of liquid, solid-liquid mixture, powder, Can promote their mixing. In the case where the mixing apparatus is configured by the cylinder unit 1a and the like as described above, it is preferable that the flow path of the transported object is formed in an annular shape (that is, so as to form a circulation path). Alternatively, both ends of the flow path of the object to be transported that penetrates the plurality of interconnected cylinder units 1a and the like can be closed, and in a state where these both ends are closed, the object to be transported is connected to one end of the flow path and the like. You may convey so that it may reciprocate between edge parts. Furthermore, the substance in the inner space 11 may be mixed by operating the inner cylinder 2 in a state in which both ends in the axial direction of the inner cylinder 2 are closed using a single cylinder unit 1a and the like.
前述したような筒ユニット1a等に搬送される被搬送物としては、液体、気液混合体、固液混合体又は粉体などの流動物質が挙げられる。しかしながら、内側空間11の長さを超える長さの棒状物を搬送できるように筒ユニット1a等を構成することもできる。例えば、筒ユニット1a等は、内筒2と外筒3との両方が、その軸方向に収縮性を有するように、すなわち、加圧空間5への加圧によって、内筒2が径方向内側へ膨張変形するとともに外筒3が径方向外側へ膨張変形することに伴い、内筒2と外筒3との両方が、その軸方向に収縮変形するように、構成してもよい。そのようなものの例として、本発明の第5実施形態に係る筒ユニット1eを図8に示す。本実施形態に係る筒ユニット1eによれば、加圧空間5への加圧時に、図8中の二点鎖線で示すように、筒ユニット1eの軸方向の長さを収縮させることができるので、筒ユニット1eの軸方向の一端部を固定しておけば、前述したような棒状物であっても筒ユニット1eの軸方向の一端部側から他端部側へ搬送することが可能となる。また、前述したような筒ユニット1a等において、内筒2と外筒3との両方がその軸方向に収縮性を有する構成とした場合には、粘度の高い液体を、特に有利に搬送することができる。なお、前記したような収縮性を得るためには、例えば、外筒3及び内筒2の一方を、弾性筒状体の内部に該弾性筒状体の軸方向に延在する複数の繊維コードが埋設された、軸方向繊維強化型の弾性筒状体で構成する一方、外筒3及び内筒2の他方を、そのような繊維強化構造を有さない弾性筒状体で構成すればよい。なお、外筒3及び内筒2の両方を、軸方向繊維強化型の弾性筒状体で構成してもよい。また、内筒2及び外筒3の少なくとも一方を、このような軸方向繊維強化型の弾性筒状体に代えて、弾性筒状体の外側がスリーブ状に編み込まれた繊維コードで覆われた、スリーブ状繊維強化型の弾性筒状体で構成してもよい。一方、前述したような筒ユニット1a等において、外筒3を、前述したような収縮性を有さない剛体によって構成した場合には、粉体を、特に有利に搬送することができる。この場合、内筒2は、繊維強化構造を有さない弾性筒状体で構成すればよいが、前述したような軸方向繊維強化型の弾性筒状体や、スリーブ状繊維強化型の弾性筒状体で構成しても構わない。
Examples of the object to be conveyed to the cylinder unit 1a and the like as described above include fluid substances such as liquid, gas-liquid mixture, solid-liquid mixture, and powder. However, the cylinder unit 1a and the like can also be configured so that a rod-shaped object having a length exceeding the length of the inner space 11 can be conveyed. For example, in the cylinder unit 1a and the like, the inner cylinder 2 is radially inward so that both the inner cylinder 2 and the outer cylinder 3 are contractible in the axial direction, that is, by pressurizing the pressurizing space 5. The inner cylinder 2 and the outer cylinder 3 may both be contracted and deformed in the axial direction as the outer cylinder 3 expands and deforms toward the outside in the radial direction. As an example of such a case, a cylinder unit 1e according to a fifth embodiment of the present invention is shown in FIG. According to the cylinder unit 1e according to the present embodiment, the axial length of the cylinder unit 1e can be contracted as shown by a two-dot chain line in FIG. If one end of the cylinder unit 1e in the axial direction is fixed, even the rod-shaped object as described above can be conveyed from one end in the axial direction of the cylinder unit 1e to the other end. . Further, in the cylinder unit 1a and the like as described above, when both the inner cylinder 2 and the outer cylinder 3 are configured to be contractible in the axial direction, a highly viscous liquid is transported particularly advantageously. Can do. In order to obtain the contractibility as described above, for example, one of the outer cylinder 3 and the inner cylinder 2 is provided with a plurality of fiber cords extending in the axial direction of the elastic cylindrical body inside the elastic cylindrical body. Is formed of an axial fiber-reinforced elastic cylindrical body, while the other of the outer cylinder 3 and the inner cylinder 2 is formed of an elastic cylindrical body having no such fiber-reinforced structure. . In addition, you may comprise both the outer cylinder 3 and the inner cylinder 2 with the axial direction fiber reinforcement type elastic cylindrical body. Further, at least one of the inner cylinder 2 and the outer cylinder 3 is covered with a fiber cord in which the outer side of the elastic cylindrical body is knitted into a sleeve shape instead of such an axial fiber-reinforced elastic cylindrical body. Alternatively, it may be formed of a sleeve-like fiber reinforced elastic cylindrical body. On the other hand, in the cylinder unit 1a and the like as described above, when the outer cylinder 3 is formed of a rigid body having no contractibility as described above, the powder can be conveyed particularly advantageously. In this case, the inner cylinder 2 may be formed of an elastic cylindrical body having no fiber reinforced structure. However, the axial fiber reinforced elastic cylindrical body or the sleeve-shaped fiber reinforced elastic cylinder as described above may be used. You may comprise by a shape body.
また、前述したような筒ユニット1a、1b、1c、1d、1e等は、複数の加圧空間5を有する構成としてもよい。例えば、図9A~図9Cに示すように、本発明の第6実施形態に係る筒ユニット1fが備える加圧空間形成部26は、複数(図示の場合では2つ)の加圧空間5を形成しており、内筒2における複数の加圧空間5に包囲されたそれぞれの部分は、最小圧状態と最大圧状態との間で動作可能である。圧力制御部27は、複数の加圧空間5の内部圧力を、それぞれ、制御することにより、内筒2を最小圧状態と最大圧状態との間で動作させることができる。また、形状規制部28は、少なくとも最小圧状態において前記それぞれの部分に接触する接触部29を有するとともに、最小圧状態において接触部29によって前記それぞれの部分の形状を所定の形状に変化させるものである。具体的には、加圧空間形成部26は、円筒状の外筒3と、外筒3の軸方向の両端部に設けられた一対のフランジ部7と、一対のフランジ部7の間に設けられた隔壁部30と、を備えている。一対のフランジ部7及び隔壁部30は外筒3に一体に形成してもよい。一対のフランジ部7及び隔壁部30は内筒2と流体密に接合、例えば固着されている。このような筒ユニット1fによれば、図7Bに示した複数の筒ユニット1aを備えたポンプ装置の場合と同様の要領で、被搬送物を搬送することができる。なお、図9A~図9Cには、形状規制部28として凸部14を示したが、凸部14に代えて、前述した、凸部15、16、17や、リング部18や、弾性筒体21等を用いてもよい。また、形状規制部28は、前記それぞれの部分に対して、図9Aに示したように軸方向の両端部間に配置してもよいし、軸方向の両端部に配置してもよい。さらに、図8に示した筒ユニット1eの場合のように、筒ユニット1fにおいても、内筒2と外筒3との両方がその軸方向に収縮性を有するように構成してもよい。
Further, the cylinder units 1a, 1b, 1c, 1d, and 1e as described above may have a plurality of pressurizing spaces 5. For example, as shown in FIGS. 9A to 9C, the pressurizing space forming unit 26 provided in the cylinder unit 1f according to the sixth embodiment of the present invention forms a plurality (two in the illustrated case) of pressurizing spaces 5. The respective portions of the inner cylinder 2 surrounded by the plurality of pressurizing spaces 5 are operable between the minimum pressure state and the maximum pressure state. The pressure control unit 27 can operate the inner cylinder 2 between the minimum pressure state and the maximum pressure state by controlling the internal pressures of the plurality of pressurizing spaces 5 respectively. The shape restricting portion 28 has a contact portion 29 that contacts at least the respective portions in the minimum pressure state, and changes the shape of each portion to a predetermined shape by the contact portion 29 in the minimum pressure state. is there. Specifically, the pressurizing space forming part 26 is provided between the cylindrical outer cylinder 3, the pair of flange parts 7 provided at both axial ends of the outer cylinder 3, and the pair of flange parts 7. The partition part 30 was provided. The pair of flange portions 7 and partition walls 30 may be formed integrally with the outer cylinder 3. The pair of flange portions 7 and the partition wall portion 30 are fluid-tightly joined, for example, fixed to the inner cylinder 2. According to such a cylinder unit 1f, the object to be conveyed can be conveyed in the same manner as in the case of the pump apparatus including the plurality of cylinder units 1a shown in FIG. 7B. 9A to 9C, the convex portion 14 is shown as the shape restricting portion 28. However, instead of the convex portion 14, the convex portions 15, 16, 17 described above, the ring portion 18, and the elastic cylindrical body are used. 21 etc. may be used. Further, the shape restricting portion 28 may be disposed between the both end portions in the axial direction as shown in FIG. 9A or may be disposed at both end portions in the axial direction with respect to the respective portions. Further, as in the case of the cylinder unit 1e shown in FIG. 8, both the inner cylinder 2 and the outer cylinder 3 may be configured to have contractibility in the axial direction also in the cylinder unit 1f.
以上、図1A~図9Cを参照して、本発明の第1~第6実施形態とその変形例等について説明したが、前述したところは本発明の一例を示したにすぎず、発明の要旨を逸脱しない限り、種々の変更を加えてよいことは言うまでもない。例えば、形状規制部は、加圧空間における軸方向の両端部間と、加圧空間における軸方向の両端部の少なくとも一方と、の両方に設けてもよい。また、図2A~図2D及び図4A~図4D等々に関し、最小圧状態において内筒を変形させる種々の形態の形状規制部を示したが、前述したように、これらは必ずしも剛体でなくてもよい。弾性体とすることで、例えば、見かけ上内筒が殆ど変形していないものの径方向外側から力を負荷されている状態を維持することにより、加圧空間への加圧時に内筒の径方向内側への膨張変形を生じさせ易くしたり、膨張変形の仕方(変形時の形状)を変更したりすることができるのは勿論、最小圧状態での内側空間を広く保ち、搬送や混合の効率を高めることができる。また、最小圧状態における加圧空間の形状や大きさは種々変更が可能である。なお、加圧空間の容積は、小さくする方が、内筒を動作させるための加圧媒体の使用量を低減でき、且つ、内筒の動作速度を向上させることができる。加圧空間の容積を低減するために、例えば、最小圧状態において、外筒の内周面の形状が、内筒の外周面の形状に沿ったものとなるように構成してもよい。例えば、最小圧状態において、内筒を、リング部によって図4Bに示したような略三角形状に変形させるようにした場合に、リング部の外形及びその周囲の外筒の形状も略三角形状をなすように構成してもよい。このような構成とすることで、例えば複数の搬送装置を並列に配置する際などに、密に配置することができ、省スペース化を図ることができる。また、複数の互いに分離した加圧空間を有するポンプ装置や混合装置において、例えば、図4Aや図4Bに示した形状規制部を位相を変えて複数配置するようにしてもよい。例えば、図4Aに示した形状規制部を互いに45°位相をずらして、隣接する加圧空間に配置するように構成してもよい。このような構成によれば、内筒2を効果的に変形させることができ、搬送効率を向上することができる。図4Aに示した形状規制部に代えて、図4Bに示した形状規制部を用い、位相を180°又は30°ずらして配置した場合には、特に粉体の搬送速度を向上することができる。また、図6A~図6Cに示した例において、軸方向の一端側の形状規制部と他端側の形状規制部との位相を互いに45°ずらした構成としてもよい。また、図6A~図6Cに示した例では形状規制部は星形形状であったが、図4Bに示したような略三角形状に変更し、その位相を互いに180°又は30°ずらして配置した構成としてもよい。
The first to sixth embodiments of the present invention and the modifications thereof have been described with reference to FIGS. 1A to 9C. However, the above description is only an example of the present invention, and the gist of the invention is described above. It goes without saying that various changes may be made without departing from the above. For example, the shape restricting portion may be provided between both end portions in the axial direction in the pressurizing space and at least one end portion in the axial direction in the pressurizing space. 2A to 2D, 4A to 4D, and the like, various shapes of the shape restricting portions that deform the inner cylinder in the minimum pressure state are shown. However, as described above, these are not necessarily rigid bodies. Good. By using an elastic body, for example, the inner cylinder in the radial direction during pressurization to the pressurizing space is maintained by maintaining a state in which a force is applied from outside in the radial direction although the inner cylinder is apparently hardly deformed. In addition to making it easier to cause inward expansion and deformation, the way of expansion and deformation (the shape at the time of deformation) can be changed, as well as keeping the inner space wide in the minimum pressure state, and the efficiency of conveyance and mixing Can be increased. Further, the shape and size of the pressurizing space in the minimum pressure state can be variously changed. Note that, if the volume of the pressurizing space is reduced, the amount of the pressurizing medium used for operating the inner cylinder can be reduced, and the operating speed of the inner cylinder can be improved. In order to reduce the volume of the pressurizing space, for example, in the minimum pressure state, the shape of the inner peripheral surface of the outer cylinder may be configured to follow the shape of the outer peripheral surface of the inner cylinder. For example, in the minimum pressure state, when the inner cylinder is deformed into a substantially triangular shape as shown in FIG. 4B by the ring portion, the outer shape of the ring portion and the surrounding outer cylinder also have a substantially triangular shape. You may comprise. By adopting such a configuration, for example, when a plurality of transfer apparatuses are arranged in parallel, they can be arranged densely, and space saving can be achieved. Further, in a pump device or a mixing device having a plurality of pressurizing spaces separated from each other, for example, a plurality of shape regulating portions shown in FIGS. 4A and 4B may be arranged with different phases. For example, the shape restricting portions illustrated in FIG. 4A may be configured to be arranged in adjacent pressurizing spaces with a phase difference of 45 ° from each other. According to such a configuration, the inner cylinder 2 can be effectively deformed, and the conveyance efficiency can be improved. When the shape restricting portion shown in FIG. 4B is used instead of the shape restricting portion shown in FIG. 4A and the phase is shifted by 180 ° or 30 °, the powder conveyance speed can be improved particularly. . Further, in the example shown in FIGS. 6A to 6C, the phase of the shape restricting portion on one end side in the axial direction and the shape restricting portion on the other end side may be shifted by 45 ° from each other. In the example shown in FIGS. 6A to 6C, the shape restricting portion has a star shape. However, the shape restricting portion is changed to a substantially triangular shape as shown in FIG. It is good also as a structure.
次に、図10A~図22Cを参照して、本発明の第7~第16実施形態に係る筒ユニット及び搬送装置について例示説明する。
Next, with reference to FIGS. 10A to 22C, the cylinder unit and the conveying device according to the seventh to sixteenth embodiments of the present invention will be described as an example.
まず、図10A~図13を参照して、本発明の第1実施形態に係る筒ユニット101a及び搬送装置102aについて、詳細に例示説明する。図10A~図10Cに示すように、本実施形態に係る筒ユニット101aは、弾性変形可能であるとともに円筒状をなす、内筒103aを備える。また、筒ユニット101aは、内筒103aの外周面との間に、該外周面と接し、加圧媒体の供給・排出に伴い内筒103aを弾性変形させて膨張・収縮する、加圧空間104aを形成する、外筒105aを備える。加圧空間104aが膨張し、内筒103aが径方向内側へ膨張変形したときの状態を、図10A~図10B中に二点鎖線で示す。内筒103aは、加圧空間104aに接する軸方向の長さ部分である、可動筒部106aを有する。本実施形態では、可動筒部106aは、その外周面及び内周面における軸方向と直交する断面形状が軸方向の全長に亘って一定の非円形状をなすように形成されている。なお、このような構成に代えて、可動筒部106aの外周面及び内周面の少なくとも一方における軸方向と直交する断面形状が、非円形状をなす構成としてもよい。例えば、また、可動筒部106aの外周面及び内周面における軸方向と直交する断面形状が、可動筒部106aの軸方向の一端部では図10Bに示すような略三角形状である一方、他端部では図22Bに示すような星形形状である構成としてもよい。可動筒部106aの外周面及び内周面の少なくとも一方における軸方向と直交する断面形状が、軸方向の全長に亘って一定の非円形状をなす構成としてもよい。
First, with reference to FIG. 10A to FIG. 13, the cylinder unit 101a and the transport device 102a according to the first embodiment of the present invention will be described in detail. As shown in FIGS. 10A to 10C, the cylinder unit 101a according to this embodiment includes an inner cylinder 103a that is elastically deformable and has a cylindrical shape. In addition, the cylinder unit 101a is in contact with the outer peripheral surface of the inner cylinder 103a and pressurizes a space 104a that expands and contracts by elastically deforming the inner cylinder 103a in accordance with supply / discharge of the pressurized medium. The outer cylinder 105a is formed. A state when the pressurizing space 104a expands and the inner cylinder 103a expands and deforms radially inward is shown by a two-dot chain line in FIGS. 10A to 10B. The inner cylinder 103a has a movable cylinder part 106a which is an axial length part in contact with the pressurizing space 104a. In the present embodiment, the movable cylindrical portion 106a is formed such that the cross-sectional shape perpendicular to the axial direction on the outer peripheral surface and the inner peripheral surface forms a constant non-circular shape over the entire length in the axial direction. Instead of such a configuration, the cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface of the movable cylinder portion 106a may be a non-circular configuration. For example, the cross-sectional shape orthogonal to the axial direction on the outer peripheral surface and the inner peripheral surface of the movable tube portion 106a is substantially triangular as shown in FIG. 10B at one end portion in the axial direction of the movable tube portion 106a. It is good also as a structure which is a star shape as shown to FIG. 22B in an edge part. The cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface of the movable cylinder portion 106a may be a non-circular shape that is constant over the entire length in the axial direction.
本実施形態では、前記非円形状は略三角形状であり、より具体的には略正三角形状である。ここで、略三角形状及び略正三角形状の頂点は、図10Aに示されるように湾曲していてもよい。また、前記非円形状は、適宜、被搬送物の種類等に応じて最適な略三角形状に変更することが可能である。
In the present embodiment, the non-circular shape is a substantially triangular shape, and more specifically, a substantially equilateral triangular shape. Here, the vertices of the substantially triangular shape and the substantially equilateral triangular shape may be curved as shown in FIG. 10A. In addition, the non-circular shape can be appropriately changed to an optimal substantially triangular shape according to the type of the conveyed object.
本実施形態では、可動筒部106aは、前記非円形状をなす断面形状が、軸方向の全長に亘って一定の大きさとなるように形成されている。なお、可動筒部106aの外周面の前記非円形状をなす断面形状の大きさが、軸方向の位置の変化に応じて変化するようになっていてもよいし、可動筒部106aの内周面の前記非円形状をなす断面形状の大きさが、軸方向の位置の変化に応じて変化するようになっていてもよいし、可動筒部106aの外周面の前記非円形状をなす断面形状の大きさと、可動筒部106aの内周面の前記非円形状をなす断面形状の大きさとの両方が、軸方向の位置の変化に応じて変化するようになっていてもよい。
In the present embodiment, the movable cylinder portion 106a is formed such that the non-circular cross-sectional shape has a constant size over the entire length in the axial direction. Note that the size of the non-circular cross-sectional shape of the outer peripheral surface of the movable cylindrical portion 106a may be changed according to a change in the position in the axial direction, or the inner periphery of the movable cylindrical portion 106a. The size of the cross-sectional shape forming the non-circular shape of the surface may be changed according to a change in the position in the axial direction, or the cross-section forming the non-circular shape of the outer peripheral surface of the movable cylinder portion 106a. Both the size of the shape and the size of the non-circular cross-sectional shape of the inner peripheral surface of the movable cylinder portion 106a may be changed according to the change in the position in the axial direction.
本実施形態では、可動筒部106aは、前記非円形状をなす断面形状が、軸方向の全長に亘って周方向に回転しないように形成されている。可動筒部106aは、前記非円形状をなす断面形状が、軸方向の位置の変化に応じて周方向に回転するように形成されていてもよく、そのような構成の例は、第3実施形態として後述する。
In the present embodiment, the movable cylinder portion 106a is formed such that the non-circular cross-sectional shape does not rotate in the circumferential direction over the entire length in the axial direction. The movable cylindrical portion 106a may be formed such that the non-circular cross-sectional shape rotates in the circumferential direction in accordance with the change in the axial position. An example of such a configuration is described in the third embodiment. It will be described later as a form.
本実施形態では、内筒103aは、例えばゴム又は軟質の合成樹脂等の弾性材料からなる押出し成形品である。しかしながら、内筒3aの素材は弾性材料に限られず、また、内筒103aは押出し成形品に限られない。
In the present embodiment, the inner cylinder 103a is an extruded product made of an elastic material such as rubber or soft synthetic resin. However, the material of the inner cylinder 3a is not limited to an elastic material, and the inner cylinder 103a is not limited to an extruded product.
本実施形態では、加圧空間104aは加圧媒体の供給・排出に伴い内筒103aのみを弾性変形させて膨張・収縮するようになっている。すなわち、外筒105aは、加圧空間104aへの加圧媒体の供給時に径方向外側へ実質的に膨張変形しない程度の径方向の剛性を有している。なお、外筒105aは、その中心軸線O2に直交する方向に曲げ変形可能に構成されていてもよい。例えば、外筒105aを、スリーブ状に編み込んだ繊維コードをゴム又は軟質の合成樹脂等の弾性材料中に埋設させた構成とすることができる。このような構成によれば、被搬送物の搬送方向を所望の方向へ曲げることができる。
In this embodiment, the pressurizing space 104a expands and contracts by elastically deforming only the inner cylinder 103a with the supply / discharge of the pressurizing medium. That is, the outer cylinder 105a has a radial rigidity that does not substantially expand and deform radially outward when the pressurized medium is supplied to the pressurized space 104a. The outer cylinder 105a may be configured to be able to be bent and deformed in a direction orthogonal to the central axis O2. For example, the outer cylinder 105a can be configured such that a fiber cord knitted into a sleeve shape is embedded in an elastic material such as rubber or soft synthetic resin. According to such a structure, the conveyance direction of a to-be-conveyed object can be bent in a desired direction.
本実施形態では、外筒105aの内周面と可動筒部106aの外周面とは、軸方向と直交する断面形状が、互いに軸方向の全長に亘って周方向の向きが揃った相似形状をなしている。このような構成によれば、加圧媒体として気体等の圧縮性流体を用いる場合に、加圧媒体の供給・排出による内筒103aの弾性変形の応答速度を高めて被搬送物の搬送速度を高めることができ、また、必要となる加圧媒体の流量を低減することができる。また、外筒105aの内周面と可動筒部106aの外周面とを互いになるべく沿わせることにより、このような効果(すなわち、加圧媒体の供給・排出による内筒103aの弾性変形の応答速度を高めて被搬送物の搬送速度を高めることができ、また、必要となる加圧媒体の流量を低減することができるという効果)をさらに高めることができる。
In the present embodiment, the inner peripheral surface of the outer cylinder 105a and the outer peripheral surface of the movable cylinder part 106a have a similar shape in which the cross-sectional shapes orthogonal to the axial direction are aligned in the circumferential direction over the entire length in the axial direction. There is no. According to such a configuration, when a compressible fluid such as gas is used as the pressurizing medium, the response speed of the elastic deformation of the inner cylinder 103a due to the supply / discharge of the pressurizing medium is increased to increase the transport speed of the object to be transported. In addition, the required flow rate of the pressurized medium can be reduced. Further, such an effect (that is, a response speed of elastic deformation of the inner cylinder 103a due to supply / discharge of the pressurized medium) is obtained by aligning the inner peripheral surface of the outer cylinder 105a and the outer peripheral surface of the movable cylinder portion 106a as much as possible. Can be increased to increase the conveyance speed of the object to be conveyed, and the effect of reducing the required flow rate of the pressurized medium can be further increased.
本実施形態では、内筒103aは、加圧空間104aに接しない軸方向の長さ部分である、不動筒部107aを軸方向の両端部に有している。不動筒部107aは、全周に亘って外筒105aの内周面に流体密に接合されている。また、外筒105aの内周面には、全周に亘って周方向に延びる周溝108aが形成されている。周溝108aは、加圧空間104aが収縮した状態においても、可動筒部106aの外周面との間に空間を形成するようになっている。すなわち、外筒105aの内周面における可動筒部106aと対向する部分は、加圧空間104aが収縮したときに、周溝108aの部分を除いた全面が可動筒部106aに接するようになっている。また、周溝108aは、本実施形態では、可動筒部106aの軸方向中央部に配置されている。しかしながら、周溝108aの軸方向の位置は適宜変更が可能である。このような周溝108aを設けることにより、周溝108aを設けない場合と比べ、特に高速の動作周期(加圧媒体の供給・排出の周期)で、被搬送物の搬送速度を向上することができる。なお、周溝108aを設けずに、外筒105aの内周面における可動筒部106aと対向する部分の全面が、加圧空間104aが収縮したときに可動筒部106aに接するように構成することも可能である。
In the present embodiment, the inner cylinder 103a has an immovable cylinder portion 107a at both axial ends, which is an axial length portion that does not contact the pressurizing space 104a. The stationary cylinder portion 107a is fluid-tightly joined to the inner peripheral surface of the outer cylinder 105a over the entire circumference. Further, a circumferential groove 108a extending in the circumferential direction over the entire circumference is formed on the inner circumferential surface of the outer cylinder 105a. The circumferential groove 108a forms a space with the outer peripheral surface of the movable cylinder portion 106a even when the pressurizing space 104a is contracted. In other words, the portion of the inner peripheral surface of the outer cylinder 105a facing the movable cylinder portion 106a comes into contact with the movable cylinder portion 106a when the pressurizing space 104a contracts and the entire surface excluding the portion of the circumferential groove 108a. Yes. Moreover, the circumferential groove 108a is arrange | positioned in the axial direction center part of the movable cylinder part 106a in this embodiment. However, the position of the circumferential groove 108a in the axial direction can be changed as appropriate. By providing such a circumferential groove 108a, it is possible to improve the conveyance speed of the object to be conveyed, particularly in a high-speed operation cycle (pressure medium supply / discharge cycle), compared to the case where the circumferential groove 108a is not provided. it can. It should be noted that, without providing the circumferential groove 108a, the entire surface of the inner peripheral surface of the outer cylinder 105a facing the movable cylinder part 106a is configured to contact the movable cylinder part 106a when the pressurizing space 104a contracts. Is also possible.
本実施形態では、加圧空間104aが全周に亘って連続的に形成されている。したがって、周方向の1箇所で加圧媒体を供給・排出すればよいため、構成を簡素化することができる。なお、加圧空間104aを全周に亘って間欠的に形成する構成としてもよい。あるいは、加圧空間104aを周方向の1箇所のみ(例えば、前記略三角形状の底面部分のみ)に形成する構成としてもよい。しかしながら、被搬送物の高い搬送速度を確保するためには、加圧空間104aを全周に亘って連続又は間欠的に形成することが好ましい。また、本実施形態では、可動筒部106aの外周面と外筒105aの内周面と外筒105aの外周面とは、軸方向と直交する断面形状が、互いに軸方向の全長に亘って周方向の向きが揃った相似形状をなしている。このような構成によれば、筒ユニット101aを用いた搬送装置102aを複数並列に配置する場合などにおいて、外筒105aの外周面の断面形状が円形の場合と比べ、外筒105a同士をより密に配置することができ、省スペース化を図ることができる。
In this embodiment, the pressurizing space 104a is continuously formed over the entire circumference. Therefore, it is only necessary to supply and discharge the pressurized medium at one place in the circumferential direction, so that the configuration can be simplified. In addition, it is good also as a structure which forms the pressurization space 104a intermittently over the perimeter. Or it is good also as a structure which forms the pressurization space 104a in only one place of the circumferential direction (for example, only the substantially triangular bottom face part). However, in order to ensure a high conveyance speed of the object to be conveyed, it is preferable to form the pressurized space 104a continuously or intermittently over the entire circumference. In the present embodiment, the outer peripheral surface of the movable tube portion 106a, the inner peripheral surface of the outer tube 105a, and the outer peripheral surface of the outer tube 105a have a cross-sectional shape orthogonal to the axial direction, and are circumferentially extending over the entire length in the axial direction. It has a similar shape with aligned directions. According to such a configuration, when a plurality of transfer devices 102a using the cylinder unit 101a are arranged in parallel, the outer cylinders 105a are more densely connected than when the outer peripheral surface of the outer cylinder 105a is circular. Therefore, space saving can be achieved.
また、本実施形態に係る搬送装置102aは、前述した筒ユニット101aと、該筒ユニット101aにおける加圧媒体の供給・排出を制御する、圧力制御部109aと、を備える。圧力制御部109aは、加圧空間104aへの加圧媒体の供給(図10A中の上向き矢印参照)と、加圧空間104aからの加圧媒体の排出(図10A中の下向き矢印参照)とを制御することができる。また、圧力制御部109aは、例えば、コンプレッサ等の圧力発生源と、配管などの流路形成部と、流路切替弁(電磁弁等)と、によって構成することができる。加圧媒体としては、任意の流体を用いることができるが、例えば、空気又は二酸化炭素等の気体が好ましく、油、水等の液体であってもよい。
Further, the transport apparatus 102a according to this embodiment includes the above-described cylinder unit 101a and a pressure control unit 109a that controls supply / discharge of the pressurized medium in the cylinder unit 101a. The pressure control unit 109a supplies the pressurized medium to the pressurized space 104a (see the upward arrow in FIG. 10A) and discharges the pressurized medium from the pressurized space 104a (see the downward arrow in FIG. 10A). Can be controlled. The pressure control unit 109a can be configured by, for example, a pressure generation source such as a compressor, a flow path forming unit such as piping, and a flow path switching valve (such as a solenoid valve). Although any fluid can be used as the pressurizing medium, for example, a gas such as air or carbon dioxide is preferable, and a liquid such as oil or water may be used.
かかる構成になる筒ユニット101aは、例えば、ポンプ装置や混合装置を構成するために用いることができる。例えば、図11に示すように、内筒103aの軸方向の両端部に、それぞれ、被搬送物の通路となる管体Tを接続するとともに、これら両管体Tにそれぞれ、軸方向の一方側への被搬送物の通過を許容する一方、他方側への通過を阻止する逆止弁Vを配置することにより、ポンプ装置を構成することができる。この場合、筒ユニット101aの内筒103aを、圧力制御部109aによる加圧によって弾性変形させることにより、被搬送物を軸方向の一方側へ搬送することができる。ここで、筒ユニット101aに搬送される被搬送物としては、液体、気液混合体、固液混合体又は粉体などの流動物質が挙げられる。
The cylinder unit 101a having such a configuration can be used, for example, to configure a pump device or a mixing device. For example, as shown in FIG. 11, pipes T serving as passages for the objects to be conveyed are connected to both ends in the axial direction of the inner cylinder 103a, respectively, and both pipes T are respectively connected to one axial side. By disposing a check valve V that allows passage of the object to be conveyed to the other side and prevents passage to the other side, a pump device can be configured. In this case, the object to be conveyed can be conveyed to one side in the axial direction by elastically deforming the inner cylinder 103a of the cylinder unit 101a by pressurization by the pressure control unit 109a. Here, examples of the object to be transported to the cylinder unit 101a include fluid substances such as liquid, gas-liquid mixture, solid-liquid mixture, and powder.
また、図12に示すように、複数の筒ユニット101aを準備し、これらを軸方向に接続するとともに、例えば、隣接する筒ユニット101a同士の間で時間差を設けて順次加圧を行うことにより、内筒103aを順次弾性変形させて、被搬送物を搬送することもできる。このような蠕動運動による搬送によれば、特に、スラリーなどの固液混合体や、粉体などをスムーズに搬送することが可能となる。本実施形態では、内筒103aが略三角形状をなしているため、その膨張変形する底面の広い面積を確保することができ、特に粉体の搬送速度を向上することができる。また、本実施形態では、外筒105aの外周面は、軸方向と直交する断面形状が略三角形状をなしているため、例えば複数のポンプ装置を並列に配置する際などに、外筒105aの外周面の断面形状が円形の場合と比べ、外筒105a同士をより密に配置することができ、省スペース化を図ることができる。なお、外筒105aの外周面は、略三角形状に代えて、他の略多角形状としてもよい。なお、筒ユニット101aの軸方向の両端面の少なくとも一方が中心軸線O1、O2に対して傾斜した構成としてもよく、このように傾斜した筒ユニット101aを連結して用いることにより、色々な形状の搬送経路を形成することができる。また、連結する筒ユニット101a間で、可動筒部106aの断面形状が異なっていてもよい(例えば、一方が略三角形状で他方が星形形状など)。さらに、連結する筒ユニット101a間で、可動筒部106aの断面形状の周方向の向きが互いに異なっていてもよい(例えば、一方が上向きの略三角形状で他方が下向きの略三角形状など)。
Further, as shown in FIG. 12, by preparing a plurality of cylinder units 101a and connecting them in the axial direction, for example, by sequentially applying pressure by providing a time difference between adjacent cylinder units 101a, The inner cylinder 103a can be elastically deformed in order to convey the object to be conveyed. According to the conveyance by such a peristaltic motion, it becomes possible to smoothly convey a solid-liquid mixture such as slurry or powder. In this embodiment, since the inner cylinder 103a has a substantially triangular shape, it is possible to secure a wide area of the bottom surface that expands and deforms, and in particular, it is possible to improve the powder conveyance speed. In the present embodiment, the outer peripheral surface of the outer cylinder 105a has a substantially triangular cross section perpendicular to the axial direction. For example, when arranging a plurality of pump devices in parallel, the outer cylinder 105a Compared to the case where the outer peripheral surface has a circular cross-sectional shape, the outer cylinders 105a can be arranged more densely, and space saving can be achieved. In addition, the outer peripheral surface of the outer cylinder 105a may be another substantially polygonal shape instead of the substantially triangular shape. It should be noted that at least one of both end faces in the axial direction of the cylinder unit 101a may be inclined with respect to the central axis O1, O2, and various shapes can be obtained by connecting and using the inclined cylinder unit 101a. A conveyance path can be formed. Moreover, the cross-sectional shape of the movable cylinder part 106a may differ between the cylinder units 101a to be connected (for example, one is substantially triangular and the other is star-shaped). Furthermore, the direction of the circumferential direction of the cross-sectional shape of the movable cylinder portion 106a may be different between the cylinder units 101a to be connected (for example, one is a substantially triangular shape with one upward and the other is a substantially triangular shape with the other facing downward).
また、前述したように構成されるポンプ装置は、被搬送物の搬送に伴って被搬送物が押し潰されるので、混合装置としての機能も発揮することができる。すなわち、被搬送物として例えば固液混合体を用いる場合に、固体と液体との混合を促進することができ、また、複数種類の液体、固液混合体又は粉体等を用いる場合にも、それらの混合を促進することができる。筒ユニット101aによって混合装置を構成する場合には、例えば図13に示すように、被搬送物の流路が環状をなす(すなわち、循環路を形成する)ように構成することが好ましい。なお、図13に示す細線矢印は、循環路に適宜のタイミングで供給される被搬送物と、循環路から適宜のタイミングで排出される被搬送物とを表す。また、このような構成に代えて、例えば、相互接続した複数の筒ユニット101aを貫く被搬送物の流路の両端部を閉塞可能に構成し、これら両端部を閉塞した状態で、被搬送物を当該流路の一端部と他端部との間で往復させるように搬送してもよい。さらに、単一の筒ユニット101aを用い、その内筒103aにおける軸方向の両端部を閉塞した状態で、内筒103aを作動させることによって内筒103aの径方向内側の空間内の物質を混合してもよい。
In addition, the pump device configured as described above can exhibit a function as a mixing device because the transported object is crushed as the transported object is transported. That is, when using, for example, a solid-liquid mixture as an object to be transported, mixing of solid and liquid can be promoted, and also when using a plurality of types of liquid, solid-liquid mixture, powder, Can promote their mixing. When the mixing device is configured by the cylinder unit 101a, for example, as illustrated in FIG. 13, it is preferable that the channel of the transported object has an annular shape (that is, forms a circulation path). Note that the thin line arrows shown in FIG. 13 represent the conveyed object supplied to the circulation path at an appropriate timing and the conveyed object discharged from the circulation path at an appropriate timing. Further, instead of such a configuration, for example, both ends of the flow path of the object to be conveyed that penetrates the plurality of interconnected cylinder units 101a are configured to be occluded, and the objects to be conveyed are in a state where these both ends are blocked. May be conveyed so as to reciprocate between one end and the other end of the flow path. Furthermore, using the single cylinder unit 101a, the inner cylinder 103a is operated in a state in which both end portions in the axial direction of the inner cylinder 103a are closed to mix substances in the space inside the inner cylinder 103a in the radial direction. May be.
また、筒ユニット101aを用いる前述した種々のポンプ装置(混合装置)は、水平方向への搬送に限らず、傾斜方向、さらには鉛直方向上方への搬送にも用いることができる。このような傾斜方向又は鉛直方向上方への搬送に用いる場合には、内筒103aの可動筒部106aは、加圧空間104aへの加圧による膨張変形時に、3方向から中心軸線O1に向けて互いに接近する部分によって、内筒103aの径方向内側の空間ができるだけ閉塞されるように構成することが好ましい。そのような構成としては、例えば、加圧空間104aに供給する加圧媒体の量を多く設定して可動筒部106aの膨張変形量を大きくする構成が挙げられる。また、内筒103aの軸方向と直交する断面形状を、そのような閉塞を促進するような形状に設定してもよい。
Further, the above-described various pump devices (mixing devices) using the cylinder unit 101a can be used not only for conveyance in the horizontal direction but also for conveyance in the inclined direction and further upward in the vertical direction. When used for such an upward or downward conveyance in the vertical direction, the movable cylinder portion 106a of the inner cylinder 103a is directed from the three directions toward the central axis O1 during expansion deformation due to pressurization of the pressurization space 104a. It is preferable that the radially inner space of the inner cylinder 103a is closed as much as possible by the portions that are close to each other. As such a configuration, for example, a configuration in which the amount of the pressurizing medium supplied to the pressurizing space 104a is set to be large to increase the amount of expansion and deformation of the movable cylindrical portion 106a. Further, the cross-sectional shape orthogonal to the axial direction of the inner cylinder 103a may be set to a shape that promotes such blockage.
以上説明したように、本実施形態に係る筒ユニット101aは、可動筒部106aの外周面及び内周面の少なくとも一方(より具体的には両方)における軸方向と直交する断面形状が、軸方向の全長に亘って一定の非円形状をなしている、という構成になっているので、内筒部103aの安定した弾性変形(膨張変形)を実現することができる。
As described above, in the cylinder unit 101a according to the present embodiment, the cross-sectional shape orthogonal to the axial direction on at least one (more specifically, both) of the outer peripheral surface and the inner peripheral surface of the movable cylindrical portion 106a has an axial direction. Therefore, a stable elastic deformation (expansion deformation) of the inner cylinder portion 103a can be realized.
次に、本発明の第2実施形態に係る筒ユニット101b及び搬送装置102bについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット101aは、内筒103aと外筒105aとの両方が、その軸方向に収縮性を有していない構成であったが、本実施形態に係る筒ユニット101bは、そのような収縮性を有するように構成されている。図14に示すように、筒ユニット101bは、内筒103bと外筒105bとの両方が、その軸方向に収縮性を有するように、すなわち、加圧空間104bへの加圧によって、内筒103bが径方向内側へ膨張変形するとともに外筒105bが径方向外側へ膨張変形することに伴い、内筒103bと外筒105bとの両方が、その軸方向に収縮変形するように、構成されている。その他の構成は、前述した筒ユニット101a及び搬送装置102aの場合と同一の構成となっている。本実施形態に係る筒ユニット101bによっても、前述した筒ユニット101aの場合と同様に、ポンプ装置や混合装置等を構成することができる。
Next, the cylinder unit 101b and the transport apparatus 102b according to the second embodiment of the present invention will be described in detail as examples. The cylinder unit 101a according to the first embodiment described above has a configuration in which both the inner cylinder 103a and the outer cylinder 105a are not contractible in the axial direction, but the cylinder unit 101b according to the present embodiment. Is configured to have such contractility. As shown in FIG. 14, the cylinder unit 101b includes an inner cylinder 103b so that both the inner cylinder 103b and the outer cylinder 105b are contractible in the axial direction, that is, by pressurizing the pressurizing space 104b. As the outer cylinder 105b expands and deforms radially inward and the outer cylinder 105b expands and deforms radially outward, both the inner cylinder 103b and the outer cylinder 105b are contracted and deformed in the axial direction. . Other configurations are the same as those in the case of the cylinder unit 101a and the transfer device 102a. Also with the cylinder unit 101b according to the present embodiment, a pump device, a mixing device, and the like can be configured as in the case of the cylinder unit 101a described above.
また、本実施形態に係る筒ユニット101bによれば、加圧空間104bへの加圧時に、図14中の二点鎖線で示すように、筒ユニット101bの軸方向の長さを収縮させることができるので、例えば、筒ユニット101bの軸方向の一端部を固定しておくことで、可動筒部106bの軸方向の長さを超える長さの棒状物を、筒ユニット101bの軸方向の一端部側から他端部側へ搬送することができる。また、筒ユニット101bによれば、粘度の高い液体を、特に有利に搬送することができる。なお、前記したような収縮性を得るためには、例えば、外筒105b及び内筒103bの一方を、弾性筒状体の内部に該弾性筒状体の軸方向に延在する複数の繊維コードが埋設された、軸方向繊維強化型の弾性筒状体で構成する一方、外筒105b及び内筒103bの他方を、そのような繊維強化構造を有さない弾性筒状体で構成すればよい。なお、外筒105b及び内筒103bの両方を、軸方向繊維強化型の弾性筒状体で構成してもよい。また、外筒105bを、このような軸方向繊維強化型の弾性筒状体に代えて、弾性筒状体の外側がスリーブ状に編み込まれた繊維コードで覆われた、スリーブ状繊維強化型の弾性筒状体で構成してもよい。一方、前述した筒ユニット101aのように、前述したような収縮性を有さない構成とした場合には、粉体を、特に有利に搬送することができる。
Further, according to the cylinder unit 101b according to the present embodiment, the axial length of the cylinder unit 101b can be contracted as shown by a two-dot chain line in FIG. 14 when the pressure is applied to the pressure space 104b. Therefore, for example, by fixing one end portion of the cylindrical unit 101b in the axial direction, a rod-like object having a length exceeding the axial length of the movable cylindrical portion 106b can be converted into one end portion of the cylindrical unit 101b in the axial direction. It can be conveyed from the side to the other end side. Moreover, according to the cylinder unit 101b, a liquid with a high viscosity can be conveyed especially advantageously. In order to obtain the contractibility as described above, for example, a plurality of fiber cords in which one of the outer cylinder 105b and the inner cylinder 103b extends in the axial direction of the elastic cylindrical body inside the elastic cylindrical body. Is formed of an axial fiber reinforced elastic cylindrical body, while the other of the outer cylinder 105b and the inner cylinder 103b is formed of an elastic cylindrical body having no such fiber reinforced structure. . Note that both the outer cylinder 105b and the inner cylinder 103b may be formed of an axial fiber-reinforced elastic cylindrical body. Also, the outer cylinder 105b is replaced with such an axial fiber reinforced elastic cylindrical body, and the outer cylindrical body is covered with a fiber cord knitted in a sleeve shape. You may comprise with an elastic cylinder. On the other hand, when the configuration does not have the contractibility as described above, like the above-described cylinder unit 101a, the powder can be transported particularly advantageously.
次に、本発明の第3実施形態に係る筒ユニット101c及び搬送装置102cについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット101aにおいては、可動筒部106aは、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の全長に亘って周方向に回転しないように形成されていたが、本実施形態では、図15A~図15Cに示すように、可動筒部106cは、その外周面及び内周面における前記非円形状(略正三角形状)をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成されている。より具体的には、本実施形態では、前記非円形状をなす断面形状は、軸方向の位置の変化に対して一定の割合で周方向に回転している。本実施形態では、可動筒部106cの軸方向の両端部間の回転角θは、60°となっている。なお、回転角θは、例えば30°など、任意の角度に変更が可能である。また、可動筒部106cは、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の位置の変化に対して一定でない割合で周方向に回転するように形成されていてもよい。また、本実施形態では、外筒105cは、その内周面及び外周面における断面形状が軸方向の位置の変化に応じて内筒103cの断面形状の回転と一致して回転するように形成されている。その他の構成は、前述した筒ユニット101a及び搬送装置102aの場合と同一の構成となっている。本実施形態に係る筒ユニット101cによっても、前述した筒ユニット101aの場合と同様に、ポンプ装置や混合装置等を構成することができる。また、本実施形態のような周方向の回転を含む構成によれば、被搬送物を搬送する際の搬送速度及び/又は混合効率等を高めることができる。
Next, the cylinder unit 101c and the transport apparatus 102c according to the third embodiment of the present invention will be described in detail as examples. In the cylinder unit 101a according to the first embodiment described above, the movable cylinder portion 106a is configured so that the non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof does not rotate in the circumferential direction over the entire length in the axial direction. In this embodiment, as shown in FIGS. 15A to 15C, the movable cylinder portion 106c has a cross-sectional shape that forms the non-circular shape (substantially equilateral triangular shape) on the outer peripheral surface and the inner peripheral surface thereof. Is formed so as to rotate in the circumferential direction in accordance with a change in the position in the axial direction. More specifically, in this embodiment, the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position. In the present embodiment, the rotation angle θ between both end portions in the axial direction of the movable cylinder portion 106c is 60 °. The rotation angle θ can be changed to an arbitrary angle such as 30 °. Further, the movable cylindrical portion 106c may be formed so that the non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof rotates in the circumferential direction at a non-constant ratio with respect to the change in the axial position. Good. Further, in the present embodiment, the outer cylinder 105c is formed such that the cross-sectional shape of the inner peripheral surface and the outer peripheral surface thereof rotates in accordance with the rotation of the cross-sectional shape of the inner cylinder 103c according to the change in the axial position. ing. Other configurations are the same as those in the case of the cylinder unit 101a and the transfer device 102a. Also with the cylinder unit 101c according to the present embodiment, a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101a described above. Moreover, according to the structure including the rotation of the circumferential direction like this embodiment, the conveyance speed and / or mixing efficiency at the time of conveying a to-be-conveyed object can be improved.
次に、本発明の第4実施形態に係る筒ユニット101d及び搬送装置102dについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット101aは、加圧空間104a及び可動筒部106aを1組備えた構成となっていたが、図16A~図16Cに示すように、本実施形態に係る筒ユニット101dは、加圧空間104d及び可動筒部106dを複数組、より具体的には2組備える構成となっている。なお、2組に限らず、3組以上備える構成としてもよい。その他の構成は、前述した筒ユニット101a及び搬送装置102aの場合と同一の構成となっている。本実施形態に係る筒ユニット101dによっても、前述した筒ユニット101aの場合と同様に、ポンプ装置や混合装置等を構成することができる。
Next, the cylinder unit 101d and the transfer device 102d according to the fourth embodiment of the present invention will be described in detail as examples. The cylinder unit 101a according to the first embodiment described above has a configuration including one set of the pressure space 104a and the movable cylinder portion 106a. However, as shown in FIGS. 16A to 16C, the cylinder unit 101a according to the present embodiment is configured. The unit 101d is configured to include a plurality of sets, more specifically two sets, of the pressurizing space 104d and the movable cylindrical portion 106d. In addition, it is good also as a structure provided not only with 2 sets but 3 sets or more. Other configurations are the same as those in the case of the cylinder unit 101a and the transfer device 102a. Also with the cylinder unit 101d according to the present embodiment, a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101a described above.
次に、本発明の第5実施形態に係る筒ユニット101e及び搬送装置102eについて、詳細に例示説明する。前述した第4実施形態に係る筒ユニット101dにおいては、複数の可動筒部106dは、それぞれ、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の全長に亘って周方向に回転しないように形成されていたが、図17A~図17Dに示すように、本実施形態では、複数の可動筒部106eは、それぞれ、その外周面及び内周面における前記非円形状(略正三角形状)をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成されている。より具体的には、本実施形態では、複数の可動筒部106eにおける前記非円形状をなす断面形状は、それぞれ、軸方向の位置の変化に対して一定の割合で周方向に回転している。本実施形態では、複数の可動筒部106eのそれぞれにおいて、軸方向の両端部間の回転角θは、60°となっている。その他の構成は、前述した筒ユニット101d及び搬送装置102dの場合と同一の構成となっている。なお、回転角θは、例えば30°など、任意の角度に変更が可能である。本実施形態に係る筒ユニット101eによっても、前述した筒ユニット101dの場合と同様に、ポンプ装置や混合装置等を構成することができる。なお、本実施形態では、内筒103eは、前述したような周方向のねじれを伴う形状に成形された、例えば押出し成形品等の成形品である。しかしながら、内筒103eは、このように周方向のねじれを伴う形状に成形された成形品に限られない。すなわち、周方向のねじれを伴わない形状に成形された成形品からなる内筒103eを、ねじって配置した構成としてもよい。
Next, the cylinder unit 101e and the transport apparatus 102e according to the fifth embodiment of the present invention will be described in detail as examples. In the cylinder unit 101d according to the fourth embodiment described above, each of the plurality of movable cylinder portions 106d has a non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof in the circumferential direction over the entire length in the axial direction. 17A to 17D, in the present embodiment, the plurality of movable cylinder portions 106e have the non-circular shape (substantially) on the outer peripheral surface and the inner peripheral surface, respectively. The cross-sectional shape forming an equilateral triangle shape is formed so as to rotate in the circumferential direction in accordance with a change in the position in the axial direction. More specifically, in the present embodiment, the non-circular cross-sectional shapes of the plurality of movable cylinder portions 106e are each rotated in the circumferential direction at a constant rate with respect to the change in the axial position. . In the present embodiment, in each of the plurality of movable tube portions 106e, the rotation angle θ between both end portions in the axial direction is 60 °. Other configurations are the same as those of the cylinder unit 101d and the transfer device 102d described above. The rotation angle θ can be changed to an arbitrary angle such as 30 °. Also with the cylinder unit 101e according to the present embodiment, a pump device, a mixing apparatus, and the like can be configured, as in the case of the cylinder unit 101d described above. In the present embodiment, the inner cylinder 103e is a molded product such as an extrusion-molded product that is formed into a shape with a circumferential twist as described above. However, the inner cylinder 103e is not limited to a molded product formed into a shape with a twist in the circumferential direction. That is, it is good also as a structure which twisted and arrange | positioned the inner cylinder 103e which consists of a molded product shape | molded in the shape which does not accompany the circumferential twist.
次に、本発明の第6実施形態に係る筒ユニット101f及び搬送装置102fについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット101aは、外筒105aの内周面及び外周面の断面形状が略正三角形状をなしていたが、図18A~図18Cに示すように、本実施形態に係る筒ユニット101fは、外筒105fの内周面における加圧空間104fに接する部分の断面形状が円形状をなしている。また、外筒105fの外周面の断面形状も円形状をなしている。本実施形態では、外筒105fは、円筒状の外周部材110fと、リング状をなす一対の支持部材111fと、を備えている。外周部材110fと一対の支持部材111fとは互いに流体密に接合されている。なお、外周部材110fと一対の支持部材111fとを一体に成形した単一の成形部品によって外筒105fを構成してもよい。一対の支持部材111fは内周面の断面形状が略正三角形状をなしており、全周に亘って内筒103fの両端部(不動筒部107f)の外周面に流体密に接合されている。その他の構成は、前述した筒ユニット101a及び搬送装置102aの場合と同一の構成となっている。本実施形態に係る筒ユニット101fによっても、前述した筒ユニット101aの場合と同様に、ポンプ装置や混合装置等を構成することができる。本実施形態において、可動筒部106fの軸方向中間部を支持する支持部を外筒105fに設けてもよい。例えば、そのような支持部を可動筒部6fの底面側に設けることで、被搬送物の重みによる可動筒部106fのたるみの発生を抑制することができる。また、そのような支持部を例えば全周に亘って連続又は間欠的に設けることで、可動筒部106fの軸方向中間部の収縮変形時における軸方向と直交する断面形状を所望の形状に保持する構成としてもよい。
Next, the cylinder unit 101f and the transport device 102f according to the sixth embodiment of the present invention will be described in detail as examples. In the cylinder unit 101a according to the first embodiment described above, the cross-sectional shapes of the inner peripheral surface and the outer peripheral surface of the outer cylinder 105a are substantially equilateral triangles. However, as shown in FIGS. In the cylinder unit 101f according to the above, the cross-sectional shape of the portion in contact with the pressurizing space 104f on the inner peripheral surface of the outer cylinder 105f is circular. The cross-sectional shape of the outer peripheral surface of the outer cylinder 105f is also circular. In the present embodiment, the outer cylinder 105f includes a cylindrical outer peripheral member 110f and a pair of support members 111f having a ring shape. The outer peripheral member 110f and the pair of support members 111f are joined to each other in a fluid-tight manner. Note that the outer cylinder 105f may be constituted by a single molded part obtained by integrally molding the outer peripheral member 110f and the pair of support members 111f. The pair of support members 111f have a substantially equilateral triangular cross-sectional shape on the inner peripheral surface, and are fluid-tightly joined to the outer peripheral surfaces of both end portions (non-moving cylindrical portion 107f) of the inner cylinder 103f over the entire circumference. . Other configurations are the same as those in the case of the cylinder unit 101a and the transfer device 102a. Also with the cylinder unit 101f according to the present embodiment, a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101a described above. In the present embodiment, a support portion that supports the intermediate portion in the axial direction of the movable cylinder portion 106f may be provided in the outer cylinder 105f. For example, by providing such a support portion on the bottom surface side of the movable cylinder portion 6f, it is possible to suppress the occurrence of sagging of the movable cylinder portion 106f due to the weight of the conveyed object. Further, by providing such a support portion continuously or intermittently over the entire circumference, for example, the cross-sectional shape orthogonal to the axial direction at the time of contraction deformation of the axial intermediate portion of the movable cylinder portion 106f is maintained in a desired shape. It is good also as composition to do.
次に、本発明の第7実施形態に係る筒ユニット101g及び搬送装置102gについて、詳細に例示説明する。前述した第6実施形態に係る筒ユニット101fにおいては、可動筒部106fは、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の全長に亘って周方向に回転しないように形成されていたが、本実施形態では、図19A~図19Cに示すように、可動筒部106gは、その外周面及び内周面における前記非円形状(略正三角形状)をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成されている。より具体的には、本実施形態では、前記非円形状をなす断面形状は、軸方向の位置の変化に対して一定の割合で周方向に回転している。本実施形態では、可動筒部106gの軸方向の両端部間の回転角θは、60°となっている。なお、一対の支持部材111g間の回転角も同様の60°となっている。また、回転角θは、例えば30°など、任意の角度に変更が可能である。また、可動筒部6gは、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の位置の変化に対して一定でない割合で周方向に回転するように形成されていてもよい。その他の構成は、前述した筒ユニット101f及び搬送装置102fの場合と同一の構成となっている。本実施形態に係る筒ユニット101gによっても、前述した筒ユニット101fの場合と同様に、ポンプ装置や混合装置等を構成することができる。また、本実施形態のような周方向の回転を含む構成によれば、被搬送物を搬送する際の混合効率等を高めることができる。
Next, the cylinder unit 101g and the transport device 102g according to the seventh embodiment of the present invention will be described in detail as examples. In the cylinder unit 101f according to the sixth embodiment described above, the movable cylinder portion 106f is configured such that the non-circular cross-sectional shape of the outer peripheral surface and the inner peripheral surface thereof does not rotate in the circumferential direction over the entire length in the axial direction. In this embodiment, as shown in FIGS. 19A to 19C, the movable cylindrical portion 106g has a cross-sectional shape that forms the non-circular shape (substantially equilateral triangular shape) on the outer peripheral surface and the inner peripheral surface thereof. Is configured to rotate in the circumferential direction in accordance with a change in the axial position. More specifically, in this embodiment, the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position. In the present embodiment, the rotation angle θ between both end portions in the axial direction of the movable cylinder portion 106g is 60 °. The rotation angle between the pair of support members 111g is also 60 °. Further, the rotation angle θ can be changed to an arbitrary angle such as 30 °. Further, the movable cylinder portion 6g may be formed so that the non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof rotates in the circumferential direction at a non-constant ratio with respect to the change in the axial position. Good. Other configurations are the same as those of the cylinder unit 101f and the transport device 102f described above. Also with the cylinder unit 101g according to the present embodiment, a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101f described above. Moreover, according to the structure including rotation in the circumferential direction as in the present embodiment, it is possible to improve the mixing efficiency and the like when conveying the object to be conveyed.
次に、本発明の第8実施形態に係る筒ユニット101h及び搬送装置102hについて、詳細に例示説明する。前述した第6実施形態に係る筒ユニット101fは、加圧空間104f及び可動筒部106fを1組備えた構成となっていたが、図20A~図20Cに示すように、本実施形態に係る筒ユニット101hは、加圧空間104h及び可動筒部106hを複数組、より具体的には2組備える構成となっている。なお、2組に限らず、3組以上備える構成としてもよい。その他の構成は、前述した筒ユニット101f及び搬送装置102fの場合と同一の構成となっている。本実施形態に係る筒ユニット101hによっても、前述した筒ユニット101fの場合と同様に、ポンプ装置や混合装置等を構成することができる。
Next, the cylinder unit 101h and the transport apparatus 102h according to the eighth embodiment of the present invention will be described in detail as examples. The cylinder unit 101f according to the sixth embodiment described above has a configuration including one set of the pressurizing space 104f and the movable cylinder part 106f. However, as shown in FIGS. The unit 101h includes a plurality of sets, more specifically two sets, of the pressurizing space 104h and the movable cylinder portion 106h. In addition, it is good also as a structure provided not only with 2 sets but 3 sets or more. Other configurations are the same as those of the cylinder unit 101f and the transport device 102f described above. Also with the cylinder unit 101h according to the present embodiment, a pump device, a mixing device, and the like can be configured as in the case of the cylinder unit 101f described above.
次に、本発明の第9実施形態に係る筒ユニット101i及び搬送装置102iについて、詳細に例示説明する。前述した第8実施形態に係る筒ユニット101hは、複数の可動筒部106hは、それぞれ、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の全長に亘って周方向に回転しないように形成されていたが、図21A~図21Dに示すように、本実施形態では、複数の可動筒部106iは、それぞれ、その外周面及び内周面における前記非円形状(略正三角形状)をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成されている。より具体的には、本実施形態では、複数の可動筒部106iにおける前記非円形状をなす断面形状は、それぞれ、軸方向の位置の変化に対して一定の割合で周方向に回転している。本実施形態では、複数の可動筒部106iのそれぞれにおいて、軸方向の両端部間の回転角θは、60°となっている。その他の構成は、前述した筒ユニット101h及び搬送装置102hの場合と同一の構成となっている。なお、隣り合う一対の支持部材111i間の回転角も同様の60°となっている。また、回転角θは、例えば30°など、任意の角度に変更が可能である。本実施形態に係る筒ユニット101iによっても、前述した筒ユニット101hの場合と同様に、ポンプ装置や混合装置等を構成することができる。
Next, the cylinder unit 101i and the transport apparatus 102i according to the ninth embodiment of the present invention will be described in detail as examples. In the cylinder unit 101h according to the eighth embodiment described above, each of the plurality of movable cylinder portions 106h has the non-circular cross-sectional shape on the outer circumferential surface and the inner circumferential surface thereof extending in the circumferential direction over the entire axial length. Although formed so as not to rotate, as shown in FIGS. 21A to 21D, in the present embodiment, the plurality of movable cylindrical portions 106i are each provided with the non-circular shape (substantially positive on the outer peripheral surface and the inner peripheral surface thereof, respectively. A triangular cross-sectional shape is formed so as to rotate in the circumferential direction in accordance with a change in axial position. More specifically, in the present embodiment, the non-circular cross-sectional shapes of the plurality of movable cylinder portions 106i are each rotated in the circumferential direction at a constant rate with respect to the change in the axial position. . In the present embodiment, in each of the plurality of movable tube portions 106i, the rotation angle θ between both end portions in the axial direction is 60 °. Other configurations are the same as those of the cylinder unit 101h and the transfer device 102h described above. The rotation angle between a pair of adjacent support members 111i is also 60 °. Further, the rotation angle θ can be changed to an arbitrary angle such as 30 °. Also with the cylinder unit 101i according to the present embodiment, a pump device, a mixing device, and the like can be configured as in the case of the cylinder unit 101h described above.
次に、本発明の第10実施形態に係る筒ユニット101j及び搬送装置102jについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット101aにおいては、可動筒部106aは、その外周面及び内周面における軸方向と直交する断面形状が軸方向の全長に亘って一定の略正三角形状をなすように形成されていたが、図22A~22Cに示すように、本実施形態では、可動筒部106jは、その外周面及び内周面における軸方向と直交する断面形状が軸方向の全長に亘って一定の星形形状をなすように形成されている。その他の構成は、前述した筒ユニット101a及び搬送装置102aの場合と同一の構成となっている。本実施形態に係る筒ユニット101jによっても、前述した筒ユニット101aの場合と同様に、ポンプ装置や混合装置等を構成することができる。なお、本実施形態の筒ユニット101jにおいても、図15A~図15Cに示した第3実施形態に係る筒ユニット101cの場合と同様に、可動筒部106jを、その外周面及び内周面における星形形状をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成した構成としてもよい。この場合、可動筒部106jの軸方向の両端部間の回転角θは、45°とするのが好ましい。また、本実施形態の筒ユニット101jにおいても、図16A~図17Dに示した例の場合のように、種々の変更が可能であることはいうまでもない。
Next, the cylinder unit 101j and the transport apparatus 102j according to the tenth embodiment of the present invention will be described in detail as examples. In the cylinder unit 101a according to the first embodiment described above, the movable cylinder portion 106a has a substantially equilateral triangular shape in which the cross-sectional shape orthogonal to the axial direction on the outer peripheral surface and the inner peripheral surface is constant over the entire length in the axial direction. 22A to 22C, in the present embodiment, the movable cylindrical portion 106j has a cross-sectional shape perpendicular to the axial direction on the outer peripheral surface and the inner peripheral surface thereof, which is the total length in the axial direction. It is formed so as to form a constant star shape. Other configurations are the same as those in the case of the cylinder unit 101a and the transfer device 102a. Also with the cylinder unit 101j according to the present embodiment, a pump device, a mixing apparatus, and the like can be configured as in the case of the cylinder unit 101a described above. In the cylinder unit 101j of the present embodiment, the movable cylinder portion 106j is arranged on the outer peripheral surface and the inner peripheral surface as in the case of the cylinder unit 101c according to the third embodiment shown in FIGS. 15A to 15C. It is good also as a structure formed so that the cross-sectional shape which makes a shape might rotate in the circumferential direction according to the change of the position of an axial direction. In this case, the rotation angle θ between the axial end portions of the movable cylinder portion 106j is preferably 45 °. Needless to say, the cylinder unit 101j of the present embodiment can be variously modified as in the example shown in FIGS. 16A to 17D.
以上、図10A~図22Cを参照して、本発明の第7~第16実施形態及びその変形例等について説明したが、前述したところは本発明の実施形態の一例を示したにすぎず、発明の要旨を逸脱しない限り、種々の変更を加えてよいことは言うまでもない。例えば、第7~第16実施形態に係る筒ユニットにおいて、第1~第15実施形態で示した形状規制部又はリング部を用いる構成としてもよい。
The seventh to sixteenth embodiments of the present invention and the modifications thereof have been described above with reference to FIGS. 10A to 22C. However, the above description only shows an example of the embodiments of the present invention. It goes without saying that various changes may be made without departing from the gist of the invention. For example, the cylindrical units according to the seventh to sixteenth embodiments may be configured to use the shape restricting portion or the ring portion shown in the first to fifteenth embodiments.
次に、図23~図34を参照して、本発明のさらなる様々な実施形態について例示説明する。
Next, various further embodiments of the present invention will be described with reference to FIGS.
図23は、搬送装置202の一構成例を示す図である。搬送装置202は、図示しない既設の配管の途中や搬入側の端部に設けられる。図23に示すように、搬送装置202は、筒ユニット205と伸縮体250とを連結して構成される。
FIG. 23 is a diagram illustrating a configuration example of the transport device 202. The transfer device 202 is provided in the middle of existing piping (not shown) or at the end of the carry-in side. As shown in FIG. 23, the transport device 202 is configured by connecting a cylinder unit 205 and a stretchable body 250.
図24A~図24Dは、筒ユニット205の一構成例を示す軸方向断面図及び径方向断面図である。図24A、図24Bに示すように、筒ユニット205は、内筒211と、内筒211の外周面に沿って同軸に設けられた外筒212と、一対のエンドプレート215;215が設けられている。即ち、筒ユニット205は、外筒212の内周面に沿って内筒211が設けられ、外筒212及び内筒211の両端部が一対のエンドプレート215;215に閉塞されている。内筒211は、例えば0.2~5mm程度の厚さのゴム、エラストマーなどの伸縮可能なマトリックス材料を円筒状に成形して構成される。内筒211には、軸方向に沿って一端から他端まで延長する拘束体213が複数本(この実施の形態では4本)埋設される。本実施形態では、拘束体213は、4本を周方向に均等な間隔で90°毎に埋設されている。
FIGS. 24A to 24D are an axial sectional view and a radial sectional view showing an example of the configuration of the cylinder unit 205. FIG. 24A and 24B, the cylinder unit 205 includes an inner cylinder 211, an outer cylinder 212 provided coaxially along the outer peripheral surface of the inner cylinder 211, and a pair of end plates 215 and 215. Yes. That is, the cylinder unit 205 is provided with an inner cylinder 211 along the inner peripheral surface of the outer cylinder 212, and both ends of the outer cylinder 212 and the inner cylinder 211 are closed by a pair of end plates 215; The inner cylinder 211 is configured by, for example, molding a stretchable matrix material such as rubber or elastomer having a thickness of about 0.2 to 5 mm into a cylindrical shape. A plurality (four in this embodiment) of restraints 213 extending from one end to the other end along the axial direction are embedded in the inner cylinder 211. In the present embodiment, four restraining bodies 213 are embedded every 90 ° at equal intervals in the circumferential direction.
拘束体213には、例えば炭素繊維、ガラス繊維、金属繊維等の繊維のロービング(繊維を引き揃えたもの)、ヤーン(撚りをかけたもの)、コード(合糸したもの)や、金属のワイヤなど、引張弾性率が内筒211を形成するマトリックス材料の弾性率以上のものが適用される。例えば、内筒211は、筒状の型材の外周にラテックスゴムを塗布し、次いで拘束体213を配材し、さらにその上からラテックスゴムを塗布し、架橋させた後に、離型することで円筒状に成形される。
For example, carbon fiber, glass fiber, metal fiber, etc., fiber roving (fibers aligned), yarn (twisted), cord (combined yarn), metal wire, etc. For example, a material whose tensile elastic modulus is higher than that of the matrix material forming the inner cylinder 211 is applied. For example, the inner cylinder 211 is formed by applying latex rubber to the outer periphery of a cylindrical mold material, then distributing the restraining body 213, further applying latex rubber thereon, cross-linking, and then releasing the cylinder. It is formed into a shape.
なお、拘束体213は、上述のように、繊維状のものを別途設けることの他に、内筒211の基材であるマトリックス材料により形成することもできる。
Note that, as described above, the restraining body 213 can be formed of a matrix material which is a base material of the inner cylinder 211 in addition to separately providing a fibrous material.
外筒212は、金属、硬質合成樹脂等の空気の圧力等によって変形しない材料からなる筒体により構成される。外筒212は、内周面の軸方向中央に円周方向に沿って周回する溝208と、この溝208から外周面に貫通する孔230を備える。上述の内筒211は、外筒212の内周に沿って設けられ、軸方向の両端が外筒212にそれぞれ固定される。具体的には、内筒211は、端部を拡径方向に折り曲げ、環状のエンドプレート215;215と外筒212の端面との間で挟み込んで固定される。なお、内筒211の固定方法は、上記の方法に限定されるものではなく、例えば、円筒状の内筒211の両端部を内周側から押えリングによって外筒212の内周面に押し付けて固定してもよい。
The outer cylinder 212 is composed of a cylinder made of a material that is not deformed by air pressure or the like such as metal or hard synthetic resin. The outer cylinder 212 includes a groove 208 that circulates in the circumferential direction at the center in the axial direction of the inner peripheral surface, and a hole 230 that penetrates from the groove 208 to the outer peripheral surface. The above-described inner cylinder 211 is provided along the inner periphery of the outer cylinder 212, and both axial ends are fixed to the outer cylinder 212. Specifically, the inner cylinder 211 is fixed by being bent at an end portion in the diameter increasing direction and sandwiched between the annular end plate 215; 215 and the end surface of the outer cylinder 212. Note that the method of fixing the inner cylinder 211 is not limited to the above-described method. For example, both end portions of the cylindrical inner cylinder 211 are pressed against the inner peripheral surface of the outer cylinder 212 from the inner peripheral side by a pressing ring. It may be fixed.
各エンドプレート215は、平板状の円環体からなり、例えば、外筒212の端面に図外のボルト等の固定手段により固定される。なお、外筒212へのエンドプレート215;215の固定方法は、これに限定されず、例えば、エンドプレート215;215の内周を外筒212の外周にねじ込む等の固定方法により外筒212に固定するようにしても良い。
Each end plate 215 is formed of a flat ring-shaped body, and is fixed to the end surface of the outer cylinder 212 by a fixing means such as a bolt (not shown). Note that the method of fixing the end plate 215; 215 to the outer cylinder 212 is not limited to this. It may be fixed.
各エンドプレート215には、筒ユニット205を他の筒ユニット205や伸縮体250と連結するための、軸方向に貫通する複数の孔218が同一円周上に均等な間隔で設けられている。
Each end plate 215 is provided with a plurality of holes 218 penetrating in the axial direction at equal intervals on the same circumference for connecting the cylinder unit 205 to the other cylinder unit 205 and the elastic body 250.
図24C、図24Dに示すように、筒ユニット205は、上述の孔230を介して溝208に空気(加圧媒体)を供給することにより、内筒211と外筒212との間に空気が入り込み、内筒211を径方向内側に膨張する。つまり、溝208は、内筒211と外筒212との間に形成された環状の気室(加圧空間)を構成する。内筒211の膨張は、各拘束体213の拘束により、内筒211における拘束体213同士の間の部分が径方向内側に膨張し、供給した空気を排出することにより元の円筒形状に復帰する。
As shown in FIGS. 24C and 24D, the cylinder unit 205 supplies air (pressurized medium) to the groove 208 through the hole 230 described above, so that air flows between the inner cylinder 211 and the outer cylinder 212. The inner cylinder 211 expands radially inward. That is, the groove 208 forms an annular air chamber (pressurized space) formed between the inner cylinder 211 and the outer cylinder 212. The expansion of the inner cylinder 211 causes the portion between the restraining bodies 213 in the inner cylinder 211 to expand radially inward by restraint of each restraining body 213, and returns to the original cylindrical shape by discharging the supplied air. .
なお、図24Dでは、内筒211が径方向内側に膨張した状態を示すための説明の便宜上、隙間zとして図中に示してあるが、内筒211が最も膨張したときには、内筒211のうち拘束体213同士の間の部分が互いに密着して隙間zがゼロとなる。
In FIG. 24D, for convenience of explanation to show a state in which the inner cylinder 211 is expanded radially inward, the gap z is shown in the drawing. However, when the inner cylinder 211 is expanded most, The portions between the restraining bodies 213 are in close contact with each other, and the gap z becomes zero.
図25A~図25Cは、伸縮体250の一構成例を示す軸方向断面図及び径方向断面図である。
25A to 25C are an axial cross-sectional view and a radial cross-sectional view showing an example of the configuration of the stretchable body 250, respectively.
伸縮体250は、例えば、軸方向に沿って伸縮自在な蛇腹構造を有する外側伸縮体としての外側筒237と、軸方向に伸縮自在に構成された内側伸縮体としての内側筒238と、一対の端部部材236;236とを備える。
The elastic body 250 includes, for example, an outer cylinder 237 as an outer elastic body having a bellows structure that can expand and contract in the axial direction, an inner cylinder 238 as an inner elastic body that is configured to expand and contract in the axial direction, End members 236; 236.
端部部材236;236は、例えば樹脂や硬質のゴム、金属等により構成される円環体からなり、円筒状の筒部236Aと、平板円環状のフランジ部236Bとで構成される。筒部236A及び2フランジ部36Bは、同軸となるように、例えばねじ止め等により固定される。一方の端部部材236は、筒部236Aの外周から筒部236Aの内部を延長し、筒部236A;236A同士の対向面である端面236tに開口する貫通孔245を備える。貫通孔245は、伸縮体250に形成される後述の気室S50に空気を供給、又は気室S50から空気を排出を可能にするための孔である。各フランジ部236Bには、軸方向に沿って貫通する複数の貫通孔233が同一円周上に均等な間隔で設けられる。各フランジ部236Bに設けられた貫通孔233は、筒ユニット205のエンドプレート215に設けられた孔218に対応し、筒ユニット205との連結や他の伸縮体250との連結を可能にする。
The end member 236; 236 is made of, for example, an annular body made of resin, hard rubber, metal, or the like, and includes a cylindrical tube portion 236A and a flat plate-shaped annular flange portion 236B. The cylindrical portion 236A and the two flange portions 36B are fixed by, for example, screwing so as to be coaxial. One end member 236 includes a through-hole 245 that extends from the outer periphery of the tube portion 236A to the inside of the tube portion 236A and opens to the end surface 236t that is a facing surface between the tube portions 236A and 236A. The through hole 245 is a hole for supplying air to an air chamber S50, which will be described later, formed in the stretchable body 250, or discharging air from the air chamber S50. Each flange portion 236B is provided with a plurality of through holes 233 penetrating along the axial direction at equal intervals on the same circumference. The through holes 233 provided in each flange portion 236 </ b> B correspond to the holes 218 provided in the end plate 215 of the cylinder unit 205, and can be connected to the cylinder unit 205 or to another stretchable body 250.
内側筒238は、コイルばね239と、コイルばね239の内周を覆う被覆体244とで構成される。本実施形態のコイルばね239には、圧縮ばねが適用される。つまり、端部部材236;236同士を離間させるように軸方向外向きに付勢力を生じさせるばねである。
The inner cylinder 238 includes a coil spring 239 and a cover 244 that covers the inner periphery of the coil spring 239. A compression spring is applied to the coil spring 239 of this embodiment. That is, it is a spring that generates an urging force outward in the axial direction so as to separate the end members 236; 236 from each other.
被覆体244は、例えば、ラテックスゴム等のように伸縮自在であり、かつ空気や液体等の流体の流通や浸透を許容しない素材を円筒状に成形して構成される。
The covering body 244 is configured by, for example, forming a cylindrical material such as latex rubber that can expand and contract and does not allow fluid or permeation of fluid such as air or liquid.
内側筒238は、被覆体244の外周をコイルばね239が覆った状態で、各端部部材236の筒部236Aの内周に固定される。本構成の内側筒238によれば、搬送路となる被覆体244の筒形状がコイルばね239によって維持される。
The inner tube 238 is fixed to the inner periphery of the tube portion 236A of each end member 236 in a state where the outer periphery of the covering 244 is covered with the coil spring 239. According to the inner cylinder 238 of this configuration, the cylindrical shape of the covering 244 serving as a conveyance path is maintained by the coil spring 239.
内側筒238の固定方法としては、例えば、筒部236Aの内周にねじ切り等の溝を形成しておき、この溝にコイルばね239をねじ込むことでコイルばね239を筒部236Aに固定できる。さらに、コイルばね239を筒部236Aに固定した状態で、コイルばね239の内周側に被覆体244を挿通し、被覆体244の端部を拡径方向に折り曲げ、筒部236Aとフランジ部236Bとの間で挟み込むことで固定される。なお、コイルばね239及び被覆体244の端部部材236への固定方法は、これに限定されない。例えば、筒部236Aに接着剤等の固定手段により固定するようにしても良く、一対の端部部材236にコイルばね239の付勢力が作用し、さらに、一対の端部部材236;236間における気密を形成するように被覆体244を固定しても良い。
As a method of fixing the inner cylinder 238, for example, a groove such as a thread is formed on the inner periphery of the cylinder portion 236A, and the coil spring 239 can be screwed into the groove to fix the coil spring 239 to the cylinder portion 236A. Further, with the coil spring 239 fixed to the cylindrical portion 236A, the covering body 244 is inserted into the inner peripheral side of the coil spring 239, the end portion of the covering body 244 is bent in the diameter increasing direction, and the cylindrical portion 236A and the flange portion 236B. It is fixed by inserting between the two. In addition, the fixing method to the edge member 236 of the coil spring 239 and the cover 244 is not limited to this. For example, the cylindrical portion 236A may be fixed by a fixing means such as an adhesive, the urging force of the coil spring 239 acts on the pair of end members 236, and further between the pair of end members 236; 236 The covering body 244 may be fixed so as to form an airtight state.
なお、上記説明では、内側筒238をコイルばね239の内周側に被覆体244を設けて構成するとしたが、これに限定されない。例えば、コイルばね239の外周側に被覆体244を設けても良く、或は、コイルばね239の内周側と外周側とに被覆体を設けるようにして内側筒238を構成しても良い。また、被覆体244の内周側と外周側の両方にコイルばねを設けて内側筒238を構成しても良い。なお、コイルばねを被覆体244の内外に設ける場合には、各ばねの付勢方向が同じものを用いることは言うまでもない。
In the above description, the inner cylinder 238 is configured by providing the cover 244 on the inner peripheral side of the coil spring 239. However, the present invention is not limited to this. For example, the covering body 244 may be provided on the outer peripheral side of the coil spring 239, or the inner cylinder 238 may be configured such that the covering body is provided on the inner peripheral side and the outer peripheral side of the coil spring 239. Further, the inner cylinder 238 may be configured by providing coil springs on both the inner peripheral side and the outer peripheral side of the covering 244. In addition, when providing a coil spring in the inside and outside of the coating | covering body 244, it cannot be overemphasized that the biasing direction of each spring uses the same thing.
外側筒237は、軸方向への伸縮を許容し、半径方向(径方向外側)には伸縮(膨張)を許容しない蛇腹構造を有する筒体からなる。外側筒237は、軸方向の各端部が、筒部236Aの外周に気密を維持するように固定される。例えば、外側筒237は、図25Aに示すように、止め輪231により筒部236Aの外周に気密を形成するように強固に固定される。
The outer cylinder 237 is a cylinder having a bellows structure that allows expansion and contraction in the axial direction and does not allow expansion and contraction (expansion) in the radial direction (radially outward). The outer cylinder 237 is fixed so that each end in the axial direction maintains airtightness on the outer periphery of the cylinder 236A. For example, as shown in FIG. 25A, the outer cylinder 237 is firmly fixed by a retaining ring 231 so as to form an airtight seal on the outer periphery of the cylinder part 236A.
上述のように伸縮体250を構成することにより、伸縮体250には、内側筒238と、外側筒237と、一対の端部部材236;236とで囲まれ、区画された気室S50が形成される。伸縮体250は、内側筒238を構成するコイルばね239が軸方向外向きに付勢しているため、気室S50の空気を排出することにより収縮し、気室S50に空気を供給することにより伸長する。詳細には、気室S50の空気を排出することにより、気室S50の内圧を負圧とし、この負圧コイルばね239の外向きの付勢力に打ち勝つことにより、図25Cに示すように、軸方向に収縮する。そして、伸縮体250は、気室S50に空気を供給することによりコイルばね239の付勢力により軸方向に伸長する。
By configuring the stretchable body 250 as described above, the stretchable body 250 is surrounded by the inner cylinder 238, the outer cylinder 237, and the pair of end members 236; 236, and a partitioned air chamber S50 is formed. Is done. Since the coil spring 239 that constitutes the inner cylinder 238 is biased outward in the axial direction, the elastic body 250 contracts by discharging the air in the air chamber S50, and supplies air to the air chamber S50. Elongate. Specifically, by discharging air from the air chamber S50, the internal pressure of the air chamber S50 is made negative, and by overcoming the outward biasing force of the negative pressure coil spring 239, as shown in FIG. Shrink in the direction. The stretchable body 250 extends in the axial direction by the biasing force of the coil spring 239 by supplying air to the air chamber S50.
上記筒ユニット205及び伸縮体250は、図23に示すように、軸線が同軸となるように連結される。具体的には、筒ユニット205のエンドプレート215の孔218と、伸縮体250のフランジ部236Bの貫通孔233とに、ボルトB1を貫通させ、ナットB2を締め付けることで連結される。これにより、筒ユニット205の内筒211及び伸縮体250の内側筒238が連通し、搬送物を搬送するための搬送路が形成される。
As shown in FIG. 23, the cylinder unit 205 and the expansion / contraction body 250 are connected so that their axes are coaxial. Specifically, the bolt B1 is passed through the hole 218 of the end plate 215 of the cylinder unit 205 and the through hole 233 of the flange portion 236B of the expansion / contraction body 250, and the nut B2 is tightened. Thereby, the inner cylinder 211 of the cylinder unit 205 and the inner cylinder 238 of the expansion / contraction body 250 communicate with each other, and a conveyance path for conveying a conveyed product is formed.
上記筒ユニット205及び伸縮体250は、駆動装置(圧力制御部)209により制御される。本実施形態に係る駆動装置209は、空気供給手段241と、制御弁242と、空気排出手段249と、制御弁246と、コントロールユニット243とを備える。
The cylinder unit 205 and the expansion / contraction body 250 are controlled by a driving device (pressure control unit) 209. The drive device 209 according to this embodiment includes an air supply unit 241, a control valve 242, an air discharge unit 249, a control valve 246, and a control unit 243.
空気供給手段241は、例えば、圧縮空気を供給可能なエアコンプレッサや圧縮空気を貯留するエアタンクにより構成される。貯留された圧縮空気は、筒ユニット205の溝208及び伸縮体250の気室S50に供給される。
The air supply means 241 includes, for example, an air compressor that can supply compressed air or an air tank that stores compressed air. The stored compressed air is supplied to the groove 208 of the cylinder unit 205 and the air chamber S50 of the expandable body 250.
制御弁242は、チューブ254により空気供給手段241と、チューブ245により溝208と接続される。制御弁242は、空気供給手段241から溝208への圧縮空気の供給を制御する供給弁と、溝208の空気を排気する排気弁とを備える。供給弁及び排気弁は、それぞれコントロールユニットと電気的に接続され、空気供給手段241から溝208への圧縮空気の供給、及び、溝208からの空気の排気を制御する。供給弁及び排気弁は、1つの筒ユニット205に対で設けられる。例えば、筒ユニット205を複数連結して搬送装置202が構成される場合、制御弁242には、筒ユニット205の数量に対応する数量の供給弁及び排気弁の対が少なくとも設けられる。
The control valve 242 is connected to the air supply means 241 by the tube 254 and the groove 208 by the tube 245. The control valve 242 includes a supply valve that controls the supply of compressed air from the air supply means 241 to the groove 208 and an exhaust valve that exhausts the air in the groove 208. The supply valve and the exhaust valve are electrically connected to the control unit, respectively, and control the supply of compressed air from the air supply means 241 to the groove 208 and the exhaust of air from the groove 208. The supply valve and the exhaust valve are provided as a pair in one cylinder unit 205. For example, when the conveyance device 202 is configured by connecting a plurality of cylinder units 205, the control valve 242 is provided with at least a pair of supply valves and exhaust valves corresponding to the quantity of the cylinder units 205.
空気排出手段249は、例えば、空気を吸引可能な負圧ポンプにより構成され、伸縮体250の気室S50から空気を排出する。
The air discharge means 249 is constituted by, for example, a negative pressure pump capable of sucking air, and discharges air from the air chamber S50 of the expansion and contraction body 250.
制御弁246は、チューブ247により空気排出手段249と、チューブ248により気室S50と接続される。制御弁246は、空気排出手段249により気室S50の空気を排出する排出弁と、気室S50に空気を供給する大気解放弁とを備える。排出弁及び大気解放弁は、それぞれコントロールユニットと電気的に接続され、空気排出手段249による気室S50からの空気の排出、及び、気室S50の大気との連通による空気の供給を制御する。排出弁及び大気解放弁は、1つの伸縮体250に対で設けられる。例えば、伸縮体250を複数連結して搬送装置202が構成される場合、制御弁246には、伸縮体250の数量に対応する数量の排出弁及び大気解放弁の対が少なくとも設けられる。各チューブ245;247;248;254には、耐圧かつ可撓性を有するものが好ましい。
The control valve 246 is connected to the air discharge means 249 by the tube 247 and the air chamber S50 by the tube 248. The control valve 246 includes a discharge valve that discharges air from the air chamber S50 by the air discharge unit 249, and an air release valve that supplies air to the air chamber S50. The discharge valve and the atmosphere release valve are electrically connected to the control unit, respectively, and control the discharge of air from the air chamber S50 by the air discharge means 249 and the supply of air by communication with the air in the air chamber S50. A discharge valve and an air release valve are provided in a pair on one elastic body 250. For example, when the conveying device 202 is configured by connecting a plurality of expansion bodies 250, the control valve 246 is provided with at least a pair of discharge valves and atmospheric release valves corresponding to the number of expansion bodies 250. Each tube 245; 247; 248; 254 preferably has pressure resistance and flexibility.
コントロールユニット243は、演算手段としてのCPU、搬送装置202の動作を制御するためのプログラムを記憶するROM等の記憶手段を含むマイクロコンピュータを備える。コントロールユニット243は、入力手段から入力された指令に応じて制御弁242の供給弁や排気弁、制御弁246の排出弁や大気解放弁に出力する信号を制御する。
The control unit 243 includes a microcomputer including a CPU as a calculation unit and a storage unit such as a ROM for storing a program for controlling the operation of the transport device 202. The control unit 243 controls signals output to the supply valve and the exhaust valve of the control valve 242, the discharge valve and the atmosphere release valve of the control valve 246 according to the command input from the input means.
コントロールユニット243は、例えば、記憶手段に、搬送装置202を構成する筒ユニット205の膨縮及び伸縮体250の伸縮させる順序を規定するプログラムが記憶される。例えば、筒ユニット205及び伸縮体250を動作させて一方向に搬送物を移動させる搬送モードや、筒ユニット205及び伸縮体250を動作させて搬送物を一端側から他端側に往復させる攪拌モード等を実行するためのプログラムが記憶される。
The control unit 243 stores, for example, a program that defines the order in which the cylinder unit 205 constituting the transport device 202 is expanded and contracted and the expansion and contraction body 250 is expanded and contracted in the storage unit. For example, a transport mode in which the transport unit is moved in one direction by operating the cylinder unit 205 and the expansion body 250, or a stirring mode in which the transport unit is reciprocated from one end side to the other end by operating the tube unit 205 and the expansion body 250. Etc. are stored.
図26A~図26Gは、筒ユニット205と伸縮体250とを交互に設けて搬送装置202を構成し、当該搬送装置202をポンプとして動作させて搬送物を一方向に搬送するときの動作を示す図である。なお、以下の説明では、各筒ユニット205及び伸縮体250を特定するため、筒ユニット205A;205B;205C、伸縮体250A;250B;250C等として示す。また、搬送物は、筒ユニット205A側から搬入されるものとして説明する。
FIG. 26A to FIG. 26G show the operation when the cylindrical unit 205 and the expansion / contraction body 250 are alternately provided to constitute the transport device 202, and the transport device 202 is operated as a pump to transport the transported material in one direction. FIG. In the following description, the cylinder units 205A; 205B; 205C, the expansion bodies 250A; 250B; Further, the description will be made assuming that the conveyed product is carried in from the cylinder unit 205A side.
図26Aは、搬送装置202が設置された初期状態を示している。即ち、各筒ユニット205A;205B;205Cは、内筒211が収縮した状態、伸縮体250A;250B;250Cは、軸方向に最も伸長した状態にある。
FIG. 26A shows an initial state in which the transfer device 202 is installed. That is, the cylinder units 205A; 205B; 205C are in a state in which the inner cylinder 211 is contracted, and the stretchable bodies 250A; 250B;
図26Bに示すように、筒ユニット205Aの溝208に圧縮空気を供給し、内筒211を膨張させる。これにより、筒ユニット205A内の搬送物が伸縮体250A側に押し出される。そして、筒ユニット205Aの内筒211の膨張により膨張した内筒211の壁面同士が接することで、搬送路が閉塞され、上流側と下流側とに仕切られる。
As shown in FIG. 26B, compressed air is supplied to the groove 208 of the cylinder unit 205A, and the inner cylinder 211 is expanded. Thereby, the conveyed product in cylinder unit 205A is pushed out to the expansion-contraction body 250A side. And the wall surface of the inner cylinder 211 which expanded by expansion | swelling of the inner cylinder 211 of cylinder unit 205A contact | connects a conveyance path, and is divided into the upstream and downstream.
次に、図26Cに示すように、筒ユニット205Aの内筒211の膨張状態を維持したまま、伸縮体250Aの気室S50の空気を排出し、軸方向に収縮させる。伸縮体250Aの軸方向の収縮により、膨張状態にある筒ユニット205Aの内筒211が壁となって搬送物を筒ユニット205B側へと押し出す。
Next, as shown in FIG. 26C, while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205A, the air in the air chamber S50 of the expandable body 250A is discharged and contracted in the axial direction. Due to the contraction in the axial direction of the expansion / contraction body 250A, the inner cylinder 211 of the cylinder unit 205A in an expanded state serves as a wall to push the conveyed product toward the cylinder unit 205B.
次に、図26Dに示すように、筒ユニット205Aの内筒211の膨張状態及び伸縮体250Aの収縮状態を維持したまま、筒ユニット205Bの溝208に圧縮空気を供給し、内筒211を膨張させる。これにより、筒ユニット205B内の搬送物が伸縮体250B側に押し出される。そして、筒ユニット205Bの内筒211の膨張により膨張した内筒211の壁面同士が接することで、搬送路が閉塞され、上流側と下流側とに仕切られる。
Next, as shown in FIG. 26D, compressed air is supplied to the groove 208 of the cylinder unit 205B while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205A and the contracted state of the stretchable body 250A to expand the inner cylinder 211. Let Thereby, the conveyed product in the cylinder unit 205B is pushed out to the elastic body 250B side. Then, the wall surfaces of the inner cylinder 211 expanded by the expansion of the inner cylinder 211 of the cylinder unit 205B are in contact with each other, so that the conveyance path is closed and partitioned into an upstream side and a downstream side.
次に、図26Eに示すように、筒ユニット205Bの内筒211の膨張状態を維持したまま、伸縮体250Bの気室S50の空気を排出し、伸縮体250Bを軸方向に収縮させる。伸縮体250Bの収縮により、膨張状態にある筒ユニット205Bの内筒211が壁となって搬送物を筒ユニット205C側に押し出す。また、伸縮体250Bの収縮と同時に、膨張状態の筒ユニット205Aの溝208から空気を排気して筒ユニット205Aの内筒211を収縮させるとともに、収縮状態の伸縮体250Aの気室S50を大気と連通させて気室S50内に空気を導入(供給)することにより伸縮体250Aを軸方向に伸長させる。これにより、新たな搬送物が、筒ユニット205A側から搬入される。
Next, as shown in FIG. 26E, while the expanded state of the inner cylinder 211 of the cylinder unit 205B is maintained, the air in the air chamber S50 of the expansion body 250B is discharged, and the expansion body 250B is contracted in the axial direction. By contraction of the expansion / contraction body 250B, the inner cylinder 211 of the cylinder unit 205B in the expanded state serves as a wall to push the conveyed product to the cylinder unit 205C side. Simultaneously with the contraction of the expansion body 250B, air is exhausted from the groove 208 of the expanded cylinder unit 205A to contract the inner cylinder 211 of the cylinder unit 205A, and the air chamber S50 of the contraction expanded body 250A The stretchable body 250A is extended in the axial direction by introducing (supplying) air into the air chamber S50 through communication. Thereby, a new conveyed product is carried in from the cylinder unit 205A side.
次に、図26Fに示すように、筒ユニット205Bの内筒211の膨張状態及び伸縮体250Bの収縮状態を維持したまま、筒ユニット205Cの溝208に圧縮空気を供給し、筒ユニット205Cの内筒211を膨張させる。これにより、筒ユニット205C内の搬送物が伸縮体250C側に押し出される。そして、筒ユニット205Cの内筒211の膨張により、膨張した内筒211の壁面同士が接することで、搬送路が閉塞され、上流側と下流側とに仕切られる。
Next, as shown in FIG. 26F, compressed air is supplied to the groove 208 of the cylinder unit 205C while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205B and the contracted state of the elastic body 250B. The cylinder 211 is expanded. Thereby, the conveyed product in the cylinder unit 205 </ b> C is pushed out to the elastic body 250 </ b> C side. Then, due to the expansion of the inner cylinder 211 of the cylinder unit 205C, the wall surfaces of the expanded inner cylinder 211 come into contact with each other, so that the conveyance path is closed and partitioned into an upstream side and a downstream side.
次に、図26Gに示すように、筒ユニット205Cの内筒211の膨張状態を維持したまま、伸縮体250Cの気室S50の空気を排出し、伸縮体250Cを軸方向に収縮させる。
Next, as shown in FIG. 26G, while the expanded state of the inner cylinder 211 of the cylinder unit 205C is maintained, the air in the air chamber S50 of the expansion body 250C is discharged, and the expansion body 250C is contracted in the axial direction.
伸縮体250Cの収縮により、膨張状態にある筒ユニット205Cの内筒211が壁となって搬送物を伸縮体250Cよりも下流側に押し出す。また、伸縮体250Cの収縮と同時に、膨張状態の筒ユニット205Bの溝208から空気を排気して筒ユニット205Bの内筒211を収縮させるとともに、収縮状態の伸縮体250Bの気室S50を大気と連通させて気室S50内に空気を導入(供給)することにより、伸縮体250Bを軸方向に伸長させる。
By contraction of the expansion / contraction body 250C, the inner cylinder 211 of the cylinder unit 205C in an expanded state serves as a wall to push the conveyed product downstream from the expansion / contraction body 250C. Simultaneously with the contraction of the expandable body 250C, air is exhausted from the groove 208 of the expanded cylinder unit 205B to contract the inner cylinder 211 of the cylinder unit 205B, and the air chamber S50 of the contracted expandable body 250B The stretchable body 250B is extended in the axial direction by introducing (supplying) air into the air chamber S50 through communication.
次に、図26Bに示す状態、即ち、筒ユニット205Aの内筒211の膨張状態及び伸縮体250Aの収縮状態を維持したまま、筒ユニット205Bの溝208に圧縮空気を供給し、内筒211を膨張させると同時に、筒ユニット205Cを収縮させるとともに伸縮体250Cを軸方向に伸長させる。そして、図26B~図26Gの工程を繰り返すことにより、搬送路を構成する筒ユニット205A~205C及び伸縮体250A~250Cを、搬送物を下流側へと移動させるポンプとして動作させることができる。
Next, while maintaining the state shown in FIG. 26B, that is, the expanded state of the inner cylinder 211 of the cylinder unit 205A and the contracted state of the expandable body 250A, compressed air is supplied to the groove 208 of the cylinder unit 205B, Simultaneously with the expansion, the cylinder unit 205C is contracted and the elastic body 250C is extended in the axial direction. Then, by repeating the steps of FIGS. 26B to 26G, the cylinder units 205A to 205C and the expansion / contraction bodies 250A to 250C constituting the conveyance path can be operated as a pump for moving the conveyance object to the downstream side.
なお、図26A~図26Gに示すポンプとしての各筒ユニット205A~205Cの膨縮動作及び各伸縮体250A~250Cの伸縮動作の順序は、一例であって適宜変更可能である。
Note that the order of the expansion / contraction operation of the cylinder units 205A to 205C and the expansion / contraction operation of the expansion / contraction members 250A to 250C as pumps shown in FIGS. 26A to 26G is an example and can be changed as appropriate.
例えば、図26Bに示すように、最も上流側に位置する筒ユニット205Aを膨張させた場合にはそれよりも下流側に位置する全ての伸縮体250A~250Cを収縮させ、図26Dに示すように筒ユニット205Bを膨張させた場合にはそれよりも下流側に位置する全ての伸縮体250B,250Cを収縮させるようにしても良い。本実施形態のように、自然状態において伸長状態にある伸縮体250A~250Cと、筒ユニット205A~205Cとを交互に配置して搬送装置202を構成した場合には、膨張した筒ユニット205A~205Cよりも下流側に位置する伸縮体を収縮させることにより、より多くの搬送物を下流側へと移動させることができる。
For example, as shown in FIG. 26B, when the cylinder unit 205A located on the most upstream side is expanded, all the elastic bodies 250A to 250C located on the downstream side are contracted, and as shown in FIG. 26D. When the cylinder unit 205B is expanded, all the stretchable bodies 250B and 250C located on the downstream side of the cylinder unit 205B may be contracted. When the transport device 202 is configured by alternately arranging the stretchable bodies 250A to 250C and the cylinder units 205A to 205C that are in an extended state in the natural state as in the present embodiment, the expanded cylinder units 205A to 205C are configured. By contracting the expansion / contraction body located further downstream, more conveyed items can be moved to the downstream side.
また、上記実施形態では、3つの筒ユニット205及び伸縮体250を交互に設けて搬送装置202を構成するものとして説明したが、搬送装置202を構成する筒ユニット205及び伸縮体250の数量は、これに限定されず、少なくとも1つの筒ユニット205及び1つの伸縮体250を含んで構成することによって搬送物を移動させるポンプとして動作させることができる。
Moreover, although the said embodiment demonstrated as what comprises the conveyance apparatus 202 by alternately providing the three cylinder units 205 and the expansion-contraction body 250, the quantity of the cylinder units 205 and expansion-contraction bodies 250 which comprise the conveyance apparatus 202 is as follows. However, the present invention is not limited to this, and the pump can be operated as a pump for moving a conveyed product by including at least one cylinder unit 205 and one elastic body 250.
図27A~図27Eは、搬送装置202における他の動作を示す図である。図26A~図26Gでは、一方向に搬送物を搬送するときの搬送動作を示したが、例えば、図27A~図27Eに示すように、搬送途中において撹拌動作をさせることもできる。図27A~図27Eは、図26A~図26Gに示す搬送装置202から筒ユニット205A;205B及び伸縮体250A;250Bを抜き出したものである。
FIGS. 27A to 27E are diagrams showing other operations in the transfer device 202. FIG. 26A to 26G show the transport operation when transporting the transported material in one direction, but for example, as shown in FIGS. 27A to 27E, a stirring operation can be performed during the transport. 27A to 27E show the cylinder units 205A; 205B and the stretchable bodies 250A; 250B extracted from the conveying device 202 shown in FIGS. 26A to 26G.
まず、図27Aに示すように、筒ユニット205Bの溝208に圧縮空気を供給し、内筒211を膨張させる。これにより、筒ユニット205Bに位置する搬送物が、伸縮体250A側及び伸縮体250B側に押し出される。そして、筒ユニット205Bの内筒211の膨張により壁面同士が接することで搬送路が閉塞される。
First, as shown in FIG. 27A, compressed air is supplied to the groove 208 of the cylinder unit 205B, and the inner cylinder 211 is expanded. Thereby, the conveyed product located in the cylinder unit 205B is pushed out to the elastic body 250A side and the elastic body 250B side. The wall surfaces come into contact with each other due to the expansion of the inner cylinder 211 of the cylinder unit 205 </ b> B, thereby closing the conveyance path.
次に、図27Bに示すように、筒ユニット205Bの内筒211の膨張状態を維持したまま、筒ユニット205Aの溝208に圧縮空気を供給し、内筒211を膨張させる。これにより、搬送物が筒ユニット205Aと筒ユニット205Bの間に停留する。
Next, as shown in FIG. 27B, while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205B, compressed air is supplied to the groove 208 of the cylinder unit 205A to expand the inner cylinder 211. Thereby, the conveyed product stops between the cylinder unit 205A and the cylinder unit 205B.
次に、図27Cに示すように、筒ユニット205Bの内筒211及び筒ユニット205Aの内筒211の膨張状態を維持したまま、伸縮体250Aの気室S50から空気を排出して伸縮体250Aを軸方向に収縮させる。
Next, as shown in FIG. 27C, while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205B and the inner cylinder 211 of the cylinder unit 205A, air is discharged from the air chamber S50 of the expansion body 250A to remove the expansion body 250A. Shrink in the axial direction.
次に、図27Bに示すように、筒ユニット205Bの内筒211及び筒ユニット205Aの内筒211の膨張状態を維持したまま、伸縮体250Aの気室S50に空気を供給し、伸縮体250Aを軸方向に収縮させる工程と、図27Cに示すように、筒ユニット205Bの内筒211及び筒ユニット205Aの内筒211の膨張状態を維持したまま、伸縮体250Aの気室S50から空気を排出し、伸縮体250Aを軸方向に収縮させる工程を繰り返すことにより、筒ユニット205A及び筒ユニット205Bの間において搬送物が撹拌される。
Next, as shown in FIG. 27B, while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205B and the inner cylinder 211 of the cylinder unit 205A, air is supplied to the air chamber S50 of the extension body 250A, and the extension body 250A is moved. As shown in FIG. 27C, air is discharged from the air chamber S50 of the expansion body 250A while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205B and the inner cylinder 211 of the cylinder unit 205A. The conveyed product is agitated between the cylinder unit 205A and the cylinder unit 205B by repeating the process of contracting the elastic body 250A in the axial direction.
そして、撹拌動作を所定回繰り返した後に、図27Dに示すように、筒ユニット205Aの内筒211の膨張状態を維持したまま、伸縮体250Aの軸方向への伸長と筒ユニット205Bの収縮とを同時に行う。
Then, after repeating the stirring operation a predetermined number of times, as shown in FIG. 27D, the expansion of the expansion / contraction body 250A in the axial direction and the contraction of the cylinder unit 205B are performed while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205A. Do it at the same time.
次に、図27Eに示すように、筒ユニット205Aの内筒211の膨張状態を維持したまま、伸縮体250Aの気室S50から空気を排出し、伸縮体250Aを軸方向に収縮させることにより、撹拌した搬送物を筒ユニット205Bへと押し出す。そして、図26C~図26Gに示すように、各筒ユニット及び伸縮体を動作させることにより、搬送物を下流側に搬送することができる。
Next, as shown in FIG. 27E, while maintaining the expanded state of the inner cylinder 211 of the cylinder unit 205A, the air is discharged from the air chamber S50 of the expansion body 250A, and the expansion body 250A is contracted in the axial direction. The stirred conveyed product is pushed out to the cylinder unit 205B. Then, as shown in FIGS. 26C to 26G, the transported object can be transported downstream by operating each cylinder unit and the telescopic body.
図28A~図28Fは、搬送装置202の他の動作を示す図である。本実施形態では、搬送装置202を水などの流体を汲み上げるポンプとして動作させる場合について説明する。本実施形態に係る搬送装置202は、2つの筒ユニット205A;205Bと、筒ユニット205A;205Bの間に1つの伸縮体250とで構成される。
28A to 28F are diagrams showing another operation of the transport device 202. In the present embodiment, a case will be described in which the transport device 202 is operated as a pump that pumps up a fluid such as water. The conveying apparatus 202 according to the present embodiment is configured by two cylinder units 205A; 205B and one stretchable body 250 between the cylinder units 205A; 205B.
図28Aに示すように、搬送装置202は、筒ユニット205Aが水没し、液面Eが伸縮体250の約半分の高さに位置するように、筒ユニット205Bが図外の固定手段により固定されている。
As shown in FIG. 28A, in the conveying device 202, the cylinder unit 205B is fixed by fixing means (not shown) so that the cylinder unit 205A is submerged and the liquid level E is located at about half the height of the expansion / contraction body 250. ing.
まず、図28Bに示すように、液面E下に沈む筒ユニット205Aの内筒211を膨張させる。これにより、搬送装置202内に取り込まれた流体の液面Fは、液面EからΔE1上昇する。
First, as shown in FIG. 28B, the inner cylinder 211 of the cylinder unit 205A that sinks below the liquid level E is expanded. As a result, the liquid level F of the fluid taken into the transfer device 202 rises by ΔE1 from the liquid level E.
次に、図28Cに示すように、筒ユニット205Aの膨張状態を維持したまま、伸縮体250を軸方向に収縮させる。これにより、搬送装置202内の液面Fは、液面EからΔE2上昇する。
Next, as shown in FIG. 28C, the expansion / contraction body 250 is contracted in the axial direction while maintaining the expanded state of the cylinder unit 205A. As a result, the liquid level F in the transport device 202 rises from the liquid level E by ΔE2.
次に、図28Dに示すように、筒ユニット205Aの膨張状態及び伸縮体250の収縮状態を維持したまま、筒ユニット205Bを膨張させる。これにより、搬送装置202内の液面は、液面EからΔE3上昇する。
Next, as shown in FIG. 28D, the cylinder unit 205B is expanded while maintaining the expanded state of the cylinder unit 205A and the contracted state of the stretchable body 250. As a result, the liquid level in the transfer device 202 rises by ΔE3 from the liquid level E.
次に、図28Eに示すように、筒ユニット205Bの膨張状態を維持したまま、筒ユニット205Aの収縮と、伸縮体250の伸長とを同時に行う。これにより、搬送装置202内に筒ユニット205Aの開口から流体が流入する。
Next, as shown in FIG. 28E, the cylinder unit 205A is contracted and the telescopic body 250 is expanded simultaneously while maintaining the expanded state of the cylinder unit 205B. As a result, fluid flows into the transfer device 202 from the opening of the cylinder unit 205A.
次に、図28Fに示すように、筒ユニット205Bの膨張状態及び伸縮体250の伸長状態を維持したまま、筒ユニット205Aを膨張させる。
Next, as shown in FIG. 28F, the cylindrical unit 205A is expanded while maintaining the expanded state of the cylindrical unit 205B and the expanded state of the stretchable body 250.
次に、図28ACに示す状態となるように、筒ユニット205Aの膨張状態を維持したまま、筒ユニット205Bの収縮と同時に、伸縮体250を軸方向に収縮させる。これにより、搬送装置202内における流体が、筒ユニット205Bよりも上方へと汲み上げられる。
Next, as shown in FIG. 28AC, the expansion / contraction body 250 is contracted in the axial direction simultaneously with the contraction of the cylinder unit 205B while maintaining the expanded state of the cylinder unit 205A. Thereby, the fluid in the conveying apparatus 202 is pumped up rather than the cylinder unit 205B.
そして、図28C~図28Fの工程を繰り返すことにより、連続的に液体を汲み上げることができる。このように、搬送装置202を汲み上げポンプとして動作させることにより、従来のポンプのような呼び水等の前処理が不要となる。
Then, the liquid can be continuously pumped up by repeating the steps of FIGS. 28C to 28F. Thus, by operating the transport device 202 as a pumping pump, pretreatment such as priming water as in a conventional pump becomes unnecessary.
図29は、搬送装置202の他の構成例を示す図である。
上記実施形態では、伸縮体250の内側筒238を構成するコイルばね239を圧縮ばねで構成するとして説明したが、引張りバネで構成しても良い。つまり、端部部材236;236同士を近接させるように軸方向内向きに付勢力を生じさせるばねである。 FIG. 29 is a diagram illustrating another configuration example of thetransport device 202.
In the above embodiment, thecoil spring 239 constituting the inner cylinder 238 of the expansion / contraction body 250 has been described as being constituted by a compression spring, but may be constituted by a tension spring. That is, the end member 236 is a spring that generates an urging force inward in the axial direction so as to bring the end members 236 close to each other.
上記実施形態では、伸縮体250の内側筒238を構成するコイルばね239を圧縮ばねで構成するとして説明したが、引張りバネで構成しても良い。つまり、端部部材236;236同士を近接させるように軸方向内向きに付勢力を生じさせるばねである。 FIG. 29 is a diagram illustrating another configuration example of the
In the above embodiment, the
この場合、駆動装置209は、図29に示すように構成される。本実施形態に係る駆動装置209は、筒ユニット205の溝208及び伸縮体250の気室S50に供給する圧縮空気を貯留する空気供給手段241と、溝208への空気の供給及び排気を制御する制御弁242と、気室S50への空気の供給及び排気を制御する制御弁246と、制御弁242及び制御弁246の動作を制御するコントロールユニット243とを備えるように構成すれば良い。
In this case, the driving device 209 is configured as shown in FIG. The drive device 209 according to this embodiment controls the air supply means 241 that stores compressed air supplied to the groove 208 of the cylinder unit 205 and the air chamber S50 of the expansion body 250, and the supply and exhaust of air to the groove 208. A control valve 242, a control valve 246 that controls the supply and exhaust of air to the air chamber S 50, and a control unit 243 that controls the operation of the control valve 242 and the control valve 246 may be provided.
空気供給手段241は、例えば、圧縮空気を供給可能なエアコンプレッサや圧縮空気を貯留するエアタンクにより構成される。
The air supply means 241 includes, for example, an air compressor that can supply compressed air or an air tank that stores compressed air.
制御弁242は、チューブ254により空気供給手段241と、チューブ245により溝8と接続される。制御弁242は、空気供給手段241から溝208への圧縮空気の供給を制御する供給弁と、溝208の空気を排気する排気弁とを備える。供給弁及び排気弁は、それぞれコントロールユニットと電気的に接続され、空気供給手段241から溝208への圧縮空気の供給、及び溝208からの空気の排気を制御する。供給弁及び排気弁は、1つの筒ユニット205に対で設けられる。例えば、筒ユニット205を複数連結して搬送装置202が構成される場合、制御弁242には、筒ユニット205の数量に対応する数量の供給弁及び排気弁の対が少なくとも設けられる。
The control valve 242 is connected to the air supply means 241 by the tube 254 and the groove 8 by the tube 245. The control valve 242 includes a supply valve that controls the supply of compressed air from the air supply means 241 to the groove 208 and an exhaust valve that exhausts the air in the groove 208. The supply valve and the exhaust valve are electrically connected to the control unit, respectively, and control the supply of compressed air from the air supply means 241 to the groove 208 and the exhaust of air from the groove 208. The supply valve and the exhaust valve are provided as a pair in one cylinder unit 205. For example, when the conveyance device 202 is configured by connecting a plurality of cylinder units 205, the control valve 242 is provided with at least a pair of supply valves and exhaust valves corresponding to the quantity of the cylinder units 205.
制御弁246は、チューブ247により空気供給手段241と、チューブ248により気室S50と接続される。制御弁246は、空気供給手段241から気室S50への圧縮空気の供給を制御する供給弁と、気室S50の空気を排気する排気弁とを備える。供給弁及び排気弁は、それぞれコントロールユニットと電気的に接続され、空気供給手段241から気室S50への圧縮空気の供給、及び気室S50からの空気の排気を制御する。供給弁及び排気弁は、1つの伸縮体250に対で設けられる。例えば、伸縮体250を複数連結して搬送装置202が構成される場合、制御弁246には、伸縮体250の数量に対応する数量の供給弁及び排気弁の対が少なくとも設けられる。そして、コントロールユニット243の制御により、制御弁242の供給弁や排気弁、制御弁246の供給弁や排気弁の動作が制御される。
The control valve 246 is connected to the air supply means 241 by the tube 247 and the air chamber S50 by the tube 248. The control valve 246 includes a supply valve that controls the supply of compressed air from the air supply unit 241 to the air chamber S50, and an exhaust valve that exhausts the air in the air chamber S50. The supply valve and the exhaust valve are electrically connected to the control unit, respectively, and control the supply of compressed air from the air supply means 241 to the air chamber S50 and the exhaust of air from the air chamber S50. The supply valve and the exhaust valve are provided in a pair on one elastic body 250. For example, when the transport device 202 is configured by connecting a plurality of expansion bodies 250, the control valve 246 is provided with at least a pair of supply valves and exhaust valves corresponding to the number of the expansion bodies 250. The control unit 243 controls the operation of the supply valve and exhaust valve of the control valve 242, and the supply valve and exhaust valve of the control valve 246.
図30A~図30Bは、伸縮体250の他の形態を示す図である。上述の実施形態では、伸縮体250の内側筒238をコイルばね239と、コイルばね239の内周を覆う被覆体244とで構成するものとして説明したが、外側筒237と同様に、軸方向に沿って伸縮自在な蛇腹構造を有する筒体により構成しても良い。この場合、内側筒238と外側筒237とにより区画される気室S50に空気を給排することで、内側筒238と外側筒237とが同期して軸方向に伸縮するため、伸縮体250を伸縮させることができる。
30A to 30B are diagrams showing other forms of the stretchable body 250. FIG. In the above-described embodiment, the inner cylinder 238 of the expansion / contraction body 250 has been described as being configured by the coil spring 239 and the covering body 244 that covers the inner periphery of the coil spring 239. You may comprise by the cylinder which has a bellows structure which can be expanded-contracted along. In this case, by supplying and discharging air to and from the air chamber S50 defined by the inner cylinder 238 and the outer cylinder 237, the inner cylinder 238 and the outer cylinder 237 are expanded and contracted in the axial direction. Can be expanded and contracted.
図31A~図31Bは、伸縮体250の他の形態を示す図である。伸縮体250の他の形態として、内筒と外筒とを、金属、硬質合成樹脂等の空気の圧力等によって変形しない材料からなる筒体により構成することもできる。図31A~図31Bに示すように、内側筒238を互いに摺動自在に構成された一組の筒238A;238Bにより構成し、内筒と同様に、外側筒237を互いに摺動自在に構成された一組の筒237A;237Bにより構成しても良い。内側筒238を構成する一方の筒238Aと、他方の筒238Bとは、互いにシール部を介して密封状態が維持され、外側筒237を構成する一方の筒237Aと、他方の筒237Bとは、互いにシール部を介して密封状態が維持される。そして、内側筒238と外側筒237とにより区画される気室S50に空気を給排することで気室S50の容積を変化させ、その結果として内側筒238と外側筒237とが相対的に軸方向に移動することにより伸縮体250を伸縮させることができる。
FIGS. 31A to 31B are diagrams showing other forms of the stretchable body 250. FIG. As another form of the stretchable body 250, the inner cylinder and the outer cylinder can be formed of a cylinder made of a material that is not deformed by the pressure of air, such as metal or hard synthetic resin. As shown in FIGS. 31A to 31B, the inner cylinder 238 includes a pair of cylinders 238A and 238B configured to be slidable with respect to each other, and the outer cylinder 237 is configured to be slidable with respect to each other like the inner cylinder. You may comprise only one set of cylinders 237A; 237B. One cylinder 238A constituting the inner cylinder 238 and the other cylinder 238B are maintained in a sealed state via a seal portion, and one cylinder 237A and the other cylinder 237B constituting the outer cylinder 237 are: The sealed state is maintained through the seal portions. Then, the volume of the air chamber S50 is changed by supplying and discharging air to and from the air chamber S50 defined by the inner cylinder 238 and the outer cylinder 237. As a result, the inner cylinder 238 and the outer cylinder 237 are relatively pivoted. The elastic body 250 can be expanded and contracted by moving in the direction.
なお、図30A~図30B,図31A~図31Bに示す伸縮体250においても端部部材236;236を近接、又は離間させるように、コイルばねや渦巻ばね等の付勢手段を設けることにより、伸縮時の動作時間を短縮して搬送効率を向上させることができる。
30A to 30B and 31A to 31B are provided with a biasing means such as a coil spring or a spiral spring so that the end members 236 and 236 are brought close to or away from each other. The operation time during expansion and contraction can be shortened to improve the conveyance efficiency.
図32A~図32Bは、筒ユニット205の他の形態を示す図である。上記実施形態では、筒ユニット205の外筒212を、金属、硬質合成樹脂等の空気の圧力等によって変形しない材料からなる筒体により構成するとして説明したが、例えば0.2~5mm程度の厚さのゴム、エラストマーなどの膨張可能なマトリックス材料にカーボンロービング等の高弾性繊維を軸方向に配向した筒体により構成しても良い。このように筒ユニット205の外筒212を構成することにより、筒ユニット205の内筒211を径方向内側に膨張させるときに、外筒212は高弾性繊維により軸方向への伸長が規制されて径方向外側に膨張し、その結果として筒ユニット205の軸線方向の長さを収縮させることができる。
32A to 32B are diagrams showing other forms of the cylinder unit 205. FIG. In the above embodiment, the outer cylinder 212 of the cylinder unit 205 has been described as being configured by a cylinder made of a material that is not deformed by the pressure of air such as metal or hard synthetic resin. You may comprise by the cylinder which orient | assigned highly elastic fibers, such as carbon roving, to the expandable matrix material, such as a rubber | gum, an elastomer, and the axial direction. By configuring the outer cylinder 212 of the cylinder unit 205 in this way, when the inner cylinder 211 of the cylinder unit 205 is expanded radially inward, the outer cylinder 212 is restricted from extending in the axial direction by high elastic fibers. It expand | swells to radial direction outer side, As a result, the length of the axial direction of the cylinder unit 205 can be shrunk | reduced.
なお、内筒211の膨張時に筒ユニット205を軸方向に収縮させるための構成として、上述のように、繊維層により軸方向への伸長を規制することに限定されず、例えば、スリーブ状に編み込んだ繊維コードで環状のゴムを覆うことにより軸方向への伸長を規制する所謂マッキベン型の構成を採用しても良い。
Note that the configuration for contracting the cylinder unit 205 in the axial direction when the inner cylinder 211 is expanded is not limited to restricting the extension in the axial direction by the fiber layer, as described above. A so-called McKibben type configuration in which the extension in the axial direction is restricted by covering the annular rubber with a fiber cord may be employed.
上記各実施形態では、筒ユニット205と伸縮体250とを直列に配置するため、筒ユニット205の内筒211と伸縮体250の内側筒238とを同径となるようにして説明したが、これに限定されず、筒ユニット205と伸縮体250の大きさは適宜変更可能である。以下、筒ユニット205と伸縮体250の大きさを変えて、搬送装置202を構成した場合について説明する。
In each of the above-described embodiments, the cylindrical unit 205 and the expansion / contraction body 250 are arranged in series. However, the sizes of the cylinder unit 205 and the stretchable body 250 can be changed as appropriate. Hereinafter, the case where the conveyance device 202 is configured by changing the sizes of the cylinder unit 205 and the expansion and contraction body 250 will be described.
図33A~図33Cは、搬送装置202の他の構成例を示す図である。
33A to 33C are diagrams showing another configuration example of the transport device 202. FIG.
例えば、図32A~図32Bに示すように筒ユニット205を構成した場合、図33A~図33Cに示すように搬送装置202を構成することができる。本実施形態にかかる搬送装置202は、軸方向に伸縮自在の筒214の内周側に筒ユニット205を配置し、筒ユニット205を構成するエンドプレート215;215により筒214の端部を閉塞することにより構成される。即ち、内筒211と外筒212とで筒ユニット205を構成し、外筒212と筒214とで伸縮体250’を構成している。
For example, when the cylinder unit 205 is configured as shown in FIGS. 32A to 32B, the conveying device 202 can be configured as shown in FIGS. 33A to 33C. In the transport device 202 according to the present embodiment, the cylinder unit 205 is disposed on the inner peripheral side of the cylinder 214 that is extendable in the axial direction, and the end portion of the cylinder 214 is closed by the end plates 215 and 215 constituting the cylinder unit 205. It is constituted by. That is, the inner cylinder 211 and the outer cylinder 212 constitute a cylinder unit 205, and the outer cylinder 212 and the cylinder 214 constitute an extendable body 250 '.
本実施形態にかかる搬送装置202は、図33Bに示すように内筒211と外筒212とで形成される気室(加圧空間)S5に圧縮空気を供給し内筒211を膨張させることにより、図33Aに示す伸長状態からx1軸方向に収縮する。この膨張状態を維持したまま外筒212と筒214とで形成される気室S50の空気を排出することにより、筒ユニット205は、さらにx2軸方向に収縮される。
As shown in FIG. 33B, the transfer device 202 according to this embodiment supplies compressed air to an air chamber (pressurized space) S <b> 5 formed by the inner cylinder 211 and the outer cylinder 212 to expand the inner cylinder 211. , Contracted in the x1 axis direction from the extended state shown in FIG. 33A. By discharging the air in the air chamber S50 formed by the outer cylinder 212 and the cylinder 214 while maintaining this expanded state, the cylinder unit 205 is further contracted in the x2 axis direction.
このように搬送装置202を構成することにより、筒ユニット205の内筒211を膨張させるときの膨張率を向上させることができる。ここでいう膨張率とは、図33Bに示すように内筒211の膨張時の体積を内筒211が膨張したときの筒ユニット205の軸線方向の長さ寸法に、図33Aに示すように膨張前の内筒211の直径を掛けた体積により除したときの割合をいう。膨張率が小さくなるほど図中矢印Jに示す空間の容積が大きくなる。つまり、筒ユニット205の内筒211の膨張率が大きくなることにより、矢印Jで示す空間の容積が小さくなり、筒ユニット205内の搬送物を搬送方向により多く移動させることができるので、搬送物の搬送効率を向上させることができる。
By configuring the transport device 202 in this way, the expansion rate when the inner cylinder 211 of the cylinder unit 205 is expanded can be improved. The expansion rate here refers to the axial length of the cylinder unit 205 when the inner cylinder 211 expands to the volume when the inner cylinder 211 expands as shown in FIG. 33B. This is the ratio when the diameter of the previous inner cylinder 211 is divided by the multiplied volume. As the expansion coefficient decreases, the volume of the space indicated by arrow J in the figure increases. In other words, since the expansion rate of the inner cylinder 211 of the cylinder unit 205 is increased, the volume of the space indicated by the arrow J is reduced, and the conveyed item in the cylindrical unit 205 can be moved more in the conveying direction. The conveyance efficiency can be improved.
なお、この場合筒ユニット205の外筒212には、図25A~図25C,図31A~図31Bに示す蛇腹状の外側筒237や、図32A~図32Bに示す筒237A;237Bを用いることができる。
In this case, as the outer cylinder 212 of the cylinder unit 205, the bellows-shaped outer cylinder 237 shown in FIGS. 25A to 25C and FIGS. 31A to 31B and the cylinders 237A and 237B shown in FIGS. 32A to 32B may be used. it can.
また、上述のように、内筒211の膨張率を大きくするための搬送装置202の他の形態としては、図34に示すように、伸縮体250を筒ユニット205の内筒211よりも小径に形成し、筒ユニット205の一方のエンドプレート205に複数の伸縮体250を並列に連結するように構成しても良い。即ち、筒ユニット205の外周側に、筒ユニット205の軸線と平行に伸縮体250を複数配置し、筒ユニット205を構成するエンドプレート215に各伸縮体250の端部部材236を固定して搬送装置202を構成するようにしても良い。
Further, as described above, as another form of the conveying device 202 for increasing the expansion rate of the inner cylinder 211, as shown in FIG. 34, the telescopic body 250 has a smaller diameter than the inner cylinder 211 of the cylinder unit 205. It is also possible to form and connect a plurality of stretchable bodies 250 to one end plate 205 of the cylinder unit 205 in parallel. That is, a plurality of elastic bodies 250 are arranged on the outer peripheral side of the cylinder unit 205 in parallel with the axis of the cylinder unit 205, and the end member 236 of each elastic body 250 is fixed to the end plate 215 constituting the cylinder unit 205 and conveyed. The apparatus 202 may be configured.
このように搬送装置202を構成することにより、筒ユニット205の内筒211を膨張させた後に複数の伸縮体250を収縮させることで、筒ユニット205の内筒211の膨張率を大きくして搬送物の搬送効率を向上させることができる。なお、この場合の伸縮体250は、内側筒238及び外側筒237の2重管構造である必須ではなく、単に軸方向に伸縮可能な、例えば蛇腹構造を有する筒と、筒ユニット205の外筒212との間で気室S50を形成するようにしても良い。
By configuring the transfer device 202 in this way, the expansion cylinder 250 is contracted after the inner cylinder 211 of the cylinder unit 205 is expanded, and thereby the expansion rate of the inner cylinder 211 of the cylinder unit 205 is increased. The conveyance efficiency of things can be improved. In this case, the expansion / contraction body 250 is not necessarily a double tube structure of the inner tube 238 and the outer tube 237, but is simply a tube that can be expanded and contracted in the axial direction, for example, a bellows structure, and an outer tube of the tube unit 205. The air chamber S50 may be formed between the air chamber 212 and the air chamber 212.
なお、図34に示す伸縮体250と筒ユニット205の関係は、逆でも良く、筒ユニット205を伸縮体250の内側筒238よりも小径に形成し、伸縮体250の一方の端部部材236に複数の筒ユニット205を並列に連結するようにしても良い。
Note that the relationship between the stretchable body 250 and the tubular unit 205 shown in FIG. 34 may be reversed. The tubular unit 205 is formed to have a smaller diameter than the inner tube 238 of the stretchable body 250, and is attached to one end member 236 of the stretchable body 250. A plurality of cylinder units 205 may be connected in parallel.
なお、上記各実施形態で示した搬送装置202の構成は一例であって、筒ユニット205及び伸縮体250の連結順序及び連結数については、適宜設定すれば良い。即ち、搬送装置202は、少なくとも一つの筒ユニット205と一つの伸縮体250とを連結した状態を基本構成として構成し、搬送物に応じて、既設の配管の間に設けたり、或は、既設の配管に代えてすべてを搬送装置202により構成することにより、効率良く搬送させることができる。
In addition, the structure of the conveying apparatus 202 shown in each said embodiment is an example, Comprising: What is necessary is just to set suitably about the connection order and the number of connections of the cylinder unit 205 and the expansion-contraction body 250. FIG. In other words, the transport device 202 is configured as a basic configuration in which at least one cylinder unit 205 and one stretchable body 250 are connected to each other, and is provided between existing pipes according to the transported object. By constructing everything by the conveying device 202 in place of the pipe, it can be efficiently conveyed.
なお、上述の説明では、筒ユニット205の内筒211を膨張させた後に、伸縮体250を軸方向に収縮させるものとして説明したが、これに限定されず、筒ユニット205の内筒211の膨張と、伸縮体250の収縮するタイミングは、適宜設定すれば良い。例えば、搬送物が気体を含む泡立った流体や空気を含む粉等のような場合には、粘度や圧縮性に応じて例えば「膨張体を膨張させると同時に蛇腹を収縮させる」等のようにタイミングを変更することにより、搬送性や混合性を向上させることができる。
In the above description, the expansion cylinder 250 is contracted in the axial direction after the inner cylinder 211 of the cylinder unit 205 is expanded. However, the present invention is not limited to this, and the expansion of the inner cylinder 211 of the cylinder unit 205 is performed. And the timing which the expansion-contraction body 250 contracts should just be set suitably. For example, when the transported object is a foamed fluid containing gas or a powder containing air, the timing such as “expand the bellows at the same time as expanding the expansion body” according to the viscosity or compressibility. By changing the above, it is possible to improve transportability and mixing properties.
上記説明では、伸縮体250に気室S50を設けて、筒ユニット205の駆動と共通の駆動装置209から空気を給排することにより伸縮体250を伸縮させるものとして説明したが、例えば、伸縮体250を構成する伸縮動作は、端部部材236;236間に駆動手段としてエアシリンダを連結し、駆動装置209によりエアシリンダ内の空気を給排させるようにしても良い。
In the above description, the expansion chamber 250 is provided with the air chamber S50, and the expansion and contraction body 250 is expanded and contracted by supplying and discharging air from the drive device 209 that is common to the driving of the cylinder unit 205. In the expansion / contraction operation constituting 250, an air cylinder may be connected as a driving means between the end members 236 and 236, and the air in the air cylinder may be supplied and discharged by the driving device 209.
また、端部部材236;236間に、機械的なボールねじ機構等のリニア駆動機構を駆動手段として設け、リニア駆動機構を制御する制御装置とを、駆動装置209とは別に設け、リニア駆動機構の進退動作を制御装置により制御することにより、端部部材236;236を近接離間させて伸縮体250を伸縮させるようにしても良い。このように機械的に伸縮体250を伸縮させる場合には、伸縮体250は、単に軸方向に伸縮可能な、例えば蛇腹構造を有する筒として構成することができる。
Further, a linear drive mechanism such as a mechanical ball screw mechanism is provided as a drive means between the end members 236 and 236, and a control device for controlling the linear drive mechanism is provided separately from the drive device 209, and the linear drive mechanism By controlling the advancing / retreating operation by the control device, the end member 236; When the elastic body 250 is mechanically expanded and contracted in this way, the elastic body 250 can be configured as a cylinder having, for example, a bellows structure that can expand and contract in the axial direction.
以上説明したように、本実施形態に係る搬送装置202によれば、粉体、高粘度流体、気液混合物、連続体(棒状のもの等)の搬送に好適である。
As described above, the transport device 202 according to the present embodiment is suitable for transporting powders, high-viscosity fluids, gas-liquid mixtures, and continuums (such as rods).
以上、図23~図34を参照して、本発明のさらなる様々な実施形態について説明したが、前述したところは本発明の実施形態の一例を示したにすぎず、発明の要旨を逸脱しない限り、種々の変更を加えてよいことは言うまでもない。例えば、これらの実施形態に係る筒ユニットにおいて、第1~第15実施形態で示した形状規制部又はリング部を用いる構成としてもよい。
The various embodiments of the present invention have been described above with reference to FIGS. 23 to 34. However, the above description is only an example of the embodiments of the present invention and does not depart from the gist of the invention. Needless to say, various modifications may be made. For example, the cylindrical units according to these embodiments may be configured to use the shape restricting portion or the ring portion shown in the first to fifteenth embodiments.
(実施例)
本発明の実施例として、図10A~図10Cに示した筒ユニット1aを用いた、図12に示したポンプ装置を製作し、粉体の搬送実験を行った。ポンプ装置の寸法及び作動条件は、以下のとおりであった。
・内筒2aの内周面の周長:100.6mm
・内筒2aの厚み:1.1mm
・可動筒部6aの軸方向の長さ(筒ユニット1個当たりの長さ):25mm
・動作周期(加圧媒体の供給・排出の周期):20ms
・加圧媒体:空気 (Example)
As an example of the present invention, the pump device shown in FIG. 12 using thecylinder unit 1a shown in FIGS. 10A to 10C was manufactured, and a powder conveyance experiment was conducted. The dimensions and operating conditions of the pump device were as follows.
-Circumference of the inner peripheral surface of the inner cylinder 2a: 100.6 mm
・ Thickness of inner cylinder 2a: 1.1 mm
-Length in the axial direction of the movable cylinder part 6a (length per cylinder unit): 25 mm
-Operation cycle (pressure medium supply / discharge cycle): 20 ms
・ Pressure medium: Air
本発明の実施例として、図10A~図10Cに示した筒ユニット1aを用いた、図12に示したポンプ装置を製作し、粉体の搬送実験を行った。ポンプ装置の寸法及び作動条件は、以下のとおりであった。
・内筒2aの内周面の周長:100.6mm
・内筒2aの厚み:1.1mm
・可動筒部6aの軸方向の長さ(筒ユニット1個当たりの長さ):25mm
・動作周期(加圧媒体の供給・排出の周期):20ms
・加圧媒体:空気 (Example)
As an example of the present invention, the pump device shown in FIG. 12 using the
-Circumference of the inner peripheral surface of the inner cylinder 2a: 100.6 mm
・ Thickness of inner cylinder 2a: 1.1 mm
-Length in the axial direction of the movable cylinder part 6a (length per cylinder unit): 25 mm
-Operation cycle (pressure medium supply / discharge cycle): 20 ms
・ Pressure medium: Air
上記の条件でポンプ装置を作動させることにより、80g/sという粉体の優れた搬送速度を実現できることが確認された。この搬送速度は、本発明による内筒の安定した弾性変形(膨張変形)の実現によってもたらされたものと推測される。
It was confirmed that an excellent conveying speed of powder of 80 g / s can be realized by operating the pump device under the above conditions. This conveyance speed is presumed to have been brought about by the realization of stable elastic deformation (expansion deformation) of the inner cylinder according to the present invention.
1a、1b、1c、1d、1e、1f 筒ユニット
1A、1B、1C、1D、1E、1F 搬送装置
2 内筒
3 外筒(加圧空間形成部)
4 内筒の外周面
5 加圧空間
6、26 加圧空間形成部
7 フランジ部(加圧空間形成部)
8 内側部材
9 外側部材
10、27 圧力制御部
11 内側空間
12、28 形状規制部
13、20、22、25、29 接触部
14、15、16、17 凸部
18、23 リング部
19、24 開口部
21 弾性筒体
30 隔壁部(加圧空間形成部)
O1 内筒の中心軸線
O2 外筒の中心軸線
T 管体
V 逆止弁
101a~101j 筒ユニット
102a~102j 搬送装置
103a~103c、103e、103f、103j 内筒
104a、104b、104d、104f、104h 加圧空間
105a~105c、105f 外筒
106a~106j 可動筒部
107a、107f 不動筒部
108a 周溝
109a 圧力制御部
110f 外周部材
111f、111g、111i 支持部材
θ 回転角
202 搬送装置
205 筒ユニット
209 駆動装置
211 内筒
212 外筒
237 外側筒
238 内側筒
250 伸縮体 1a, 1b, 1c, 1d, 1e, 1f Cylinder unit 1A, 1B, 1C, 1D, 1E, 1F Conveying device 2 Inner cylinder 3 Outer cylinder (pressure space forming part)
4 Outer peripheral surface ofinner cylinder 5 Pressurizing space 6, 26 Pressurizing space forming part 7 Flange part (pressurizing space forming part)
8Inner member 9 Outer member 10, 27 Pressure control unit 11 Inner space 12, 28 Shape regulating unit 13, 20, 22, 25, 29 Contact portion 14, 15, 16, 17 Protruding portion 18, 23 Ring portion 19, 24 Opening Part 21 Elastic cylinder 30 Partition part (pressurization space formation part)
O1 Center axis of the inner cylinder O2 Center axis of the outer cylinder T TubeV Check valve 101a to 101j Tube unit 102a to 102j Conveying device 103a to 103c, 103e, 103f, 103j Inner cylinder 104a, 104b, 104d, 104f, 104h Pressure space 105a to 105c, 105f Outer cylinder 106a to 106j Movable cylinder part 107a, 107f Non-movable cylinder part 108a Circumferential groove 109a Pressure control part 110f Outer peripheral member 111f, 111g, 111i Support member θ Rotation angle 202 Conveying device 205 Cylinder unit 209 Drive device 211 Inner cylinder 212 Outer cylinder 237 Outer cylinder 238 Inner cylinder 250 Elastic body
1A、1B、1C、1D、1E、1F 搬送装置
2 内筒
3 外筒(加圧空間形成部)
4 内筒の外周面
5 加圧空間
6、26 加圧空間形成部
7 フランジ部(加圧空間形成部)
8 内側部材
9 外側部材
10、27 圧力制御部
11 内側空間
12、28 形状規制部
13、20、22、25、29 接触部
14、15、16、17 凸部
18、23 リング部
19、24 開口部
21 弾性筒体
30 隔壁部(加圧空間形成部)
O1 内筒の中心軸線
O2 外筒の中心軸線
T 管体
V 逆止弁
101a~101j 筒ユニット
102a~102j 搬送装置
103a~103c、103e、103f、103j 内筒
104a、104b、104d、104f、104h 加圧空間
105a~105c、105f 外筒
106a~106j 可動筒部
107a、107f 不動筒部
108a 周溝
109a 圧力制御部
110f 外周部材
111f、111g、111i 支持部材
θ 回転角
202 搬送装置
205 筒ユニット
209 駆動装置
211 内筒
212 外筒
237 外側筒
238 内側筒
250 伸縮体 1a, 1b, 1c, 1d, 1e,
4 Outer peripheral surface of
8
O1 Center axis of the inner cylinder O2 Center axis of the outer cylinder T Tube
Claims (28)
- 弾性変形可能であるとともに筒状をなす、内筒と、
前記内筒の外周面との間に、該外周面と接する加圧空間を形成する、加圧空間形成部と、を備え、
前記内筒は、前記加圧空間の内部圧力が加圧媒体の排出によって最小となる、最小圧状態と、前記内部圧力が前記加圧媒体の供給によって最大となり、且つ、前記最小圧状態からの前記内部圧力の上昇によって前記内筒がその径方向内側へ膨張変形し、前記内筒の内周面によって形成された内側空間が収縮した、最大圧状態と、の間で動作可能であり、
前記内筒は、前記最小圧状態において、軸方向と直交する断面形状が非円形状をなしている、筒ユニット。 An inner cylinder that is elastically deformable and has a cylindrical shape;
A pressurizing space forming part that forms a pressurizing space in contact with the outer peripheral surface between the outer peripheral surface of the inner cylinder, and
The inner cylinder has a minimum pressure state in which the internal pressure of the pressurized space is minimized by discharging the pressurized medium, and the internal pressure is maximized by the supply of the pressurized medium, and from the minimum pressure state. The inner cylinder is inflated and deformed radially inward by the increase in the internal pressure, and the inner space formed by the inner peripheral surface of the inner cylinder is contracted, and is operable between a maximum pressure state and
The inner cylinder is a cylinder unit in which the cross-sectional shape orthogonal to the axial direction is noncircular in the minimum pressure state. - 前記非円形状は、略三角形状又は星形形状である、請求項1に記載の筒ユニット。 The cylinder unit according to claim 1, wherein the non-circular shape is a substantially triangular shape or a star shape.
- 少なくとも前記最小圧状態において前記内筒と接触する接触部を有するとともに、前記最小圧状態において前記接触部によって前記内筒の形状を前記非円形状に変化させる、形状規制部をさらに備える、請求項1又は2に記載の筒ユニット。 The apparatus further comprises a shape restricting portion that has a contact portion that contacts at least the inner cylinder in the minimum pressure state and changes the shape of the inner cylinder to the non-circular shape by the contact portion in the minimum pressure state. The cylinder unit according to 1 or 2.
- 前記形状規制部は、前記内筒が挿入される開口部を有する板状をなす、リング部によって構成されており、
前記開口部の外周縁には、前記接触部が含まれる、請求項3に記載の筒ユニット。 The shape restricting portion is configured by a ring portion having a plate shape having an opening into which the inner cylinder is inserted,
The cylinder unit according to claim 3, wherein the outer peripheral edge of the opening includes the contact portion. - 前記リング部は、前記加圧空間における前記内筒の軸方向の両端部間に配置されている、請求項4に記載の筒ユニット。 The cylinder unit according to claim 4, wherein the ring part is disposed between both axial ends of the inner cylinder in the pressurizing space.
- 前記リング部は、前記加圧空間における前記内筒の軸方向の両端部の少なくとも一方に配置されており、
前記リング部の前記開口部は、前記内筒の前記外周面と全周に亘って接合されている、請求項4に記載の筒ユニット。 The ring portion is disposed on at least one of both end portions in the axial direction of the inner cylinder in the pressure space,
The said opening part of the said ring part is a cylinder unit of Claim 4 joined over the said outer peripheral surface and the said outer periphery of the said inner cylinder. - 前記加圧空間形成部は、複数の互いに分離した前記加圧空間を形成しており、
前記内筒における前記複数の加圧空間に包囲されたそれぞれの部分は、前記最小圧状態と前記最大圧状態との間で動作可能であり、
前記形状規制部は、少なくとも前記最小圧状態において前記それぞれの部分に接触する前記接触部を有するとともに、前記最小圧状態において前記接触部によって前記それぞれの部分の形状を前記非円形状に変化させるものである、請求項3~6のいずれか一項に記載の筒ユニット。 The pressurizing space forming part forms a plurality of pressurizing spaces separated from each other,
Each portion surrounded by the plurality of pressure spaces in the inner cylinder is operable between the minimum pressure state and the maximum pressure state,
The shape restricting portion has the contact portion that contacts the respective portions at least in the minimum pressure state, and changes the shape of the respective portions to the non-circular shape by the contact portion in the minimum pressure state. The cylinder unit according to any one of claims 3 to 6, wherein - 前記加圧空間形成部は、前記内筒の外周面との間に前記加圧空間を形成する、外筒を有し、
前記内筒は、前記加圧空間に接する軸方向の長さ部分である、可動筒部を有し、
前記可動筒部は、その外周面及び内周面の少なくとも一方における前記軸方向と直交する断面形状が前記非円形状をなすように形成されている、請求項1又は2に記載の筒ユニット。 The pressurizing space forming part has an outer cylinder that forms the pressurizing space between the outer peripheral surface of the inner cylinder,
The inner cylinder has a movable cylinder portion that is an axial length portion in contact with the pressure space,
The cylinder unit according to claim 1 or 2, wherein the movable cylinder part is formed so that a cross-sectional shape orthogonal to the axial direction on at least one of an outer peripheral surface and an inner peripheral surface thereof forms the noncircular shape. - 前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の全長に亘って一定の非円形状をなすように形成されている、請求項8に記載の筒ユニット。 The cylindrical unit according to claim 8, wherein the movable cylindrical portion is formed such that a cross-sectional shape forming the non-circular shape forms a constant non-circular shape over the entire length in the axial direction.
- 前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の全長に亘って一定の大きさとなるように形成されている、請求項8又は9に記載の筒ユニット。 The cylinder unit according to claim 8 or 9, wherein the movable cylinder part is formed so that a cross-sectional shape forming the non-circular shape has a constant size over the entire length in the axial direction.
- 前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に応じて周方向に回転するように形成されている、請求項8~10のいずれか一項に記載の筒ユニット。 The movable cylinder portion is formed so that a cross-sectional shape forming the non-circular shape rotates in a circumferential direction in accordance with a change in the position in the axial direction. Cylinder unit.
- 前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に対して一定の割合で周方向に回転するように形成されている、請求項11に記載の筒ユニット。 The cylinder unit according to claim 11, wherein the movable cylinder part is formed so that a cross-sectional shape forming the non-circular shape rotates in a circumferential direction at a constant rate with respect to a change in the position in the axial direction. .
- 前記加圧空間及び前記可動筒部を複数組備える、請求項8~12のいずれか一項に記載の筒ユニット。 The cylinder unit according to any one of claims 8 to 12, comprising a plurality of sets of the pressurizing space and the movable cylinder portion.
- 前記非円形状は、略三角形状である、請求項8~13のいずれか一項に記載の筒ユニット。 The cylinder unit according to any one of claims 8 to 13, wherein the non-circular shape is a substantially triangular shape.
- 前記略三角形状は、略正三角形状である、請求項14に記載の筒ユニット。 The cylinder unit according to claim 14, wherein the substantially triangular shape is a substantially equilateral triangular shape.
- 前記非円形状は、星形形状である、請求項8~13のいずれか一項に記載の筒ユニット。 The cylinder unit according to any one of claims 8 to 13, wherein the non-circular shape is a star shape.
- 前記内筒は押出し成形品である、請求項8~16のいずれか一項に記載の筒ユニット。 The cylinder unit according to any one of claims 8 to 16, wherein the inner cylinder is an extruded product.
- 前記外筒は、その中心軸線に直交する方向に曲げ変形可能である、請求項8~17のいずれか一項に記載の筒ユニット。 The cylinder unit according to any one of claims 8 to 17, wherein the outer cylinder can be bent and deformed in a direction perpendicular to a central axis thereof.
- 前記外筒の内周面と前記可動筒部の外周面とは、前記軸方向と直交する断面形状が、互いに前記軸方向の全長に亘って相似形状をなしている、請求項8~18のいずれか一項に記載の筒ユニット。 The inner peripheral surface of the outer cylinder and the outer peripheral surface of the movable cylinder portion are similar to each other in cross-sectional shape perpendicular to the axial direction over the entire length in the axial direction. The cylinder unit as described in any one.
- 請求項1~19のいずれか一項に記載の筒ユニットと、
前記筒ユニットにおける前記加圧空間への前記加圧媒体の供給・排出を制御する、圧力制御部と、を備える、搬送装置。 The cylinder unit according to any one of claims 1 to 19,
A pressure control unit that controls supply / discharge of the pressurized medium to / from the pressurized space in the cylinder unit. - 前記筒ユニットに連結され、軸方向に伸縮する筒状の伸縮体と、
前記伸縮体を伸縮させる駆動手段と、をさらに備え、
前記筒ユニットの前記加圧空間形成部は、前記内筒の外周面との間に前記加圧空間を形成する、外筒を有する、請求項20に記載の搬送装置。 A cylindrical expansion body connected to the cylinder unit and extending or contracting in the axial direction;
Drive means for expanding and contracting the stretchable body,
21. The transport apparatus according to claim 20, wherein the pressure space forming portion of the cylinder unit includes an outer cylinder that forms the pressure space between an outer peripheral surface of the inner cylinder. - 前記外筒は、軸方向への伸長が規制され、前記加圧空間内への前記加圧媒体の供給により径方向外側に膨張し、前記筒ユニットを軸方向に収縮可能に構成された、請求項21に記載の搬送装置。 The outer cylinder is configured to be restricted from extending in the axial direction, expand radially outward by supplying the pressurizing medium into the pressurizing space, and contract the axial unit in the axial direction. Item 22. The transport device according to Item 21.
- 前記伸縮体は、外側筒と、外側筒の内周側に設けられた内側筒と、を備え、
前記伸縮体は、前記駆動手段が、前記外側筒と前記内側筒とを同期して軸方向に圧縮・伸長させることにより伸縮する、請求項21又は22に記載の搬送装置。 The stretchable body includes an outer cylinder and an inner cylinder provided on the inner peripheral side of the outer cylinder,
The transport device according to claim 21 or 22, wherein the telescopic body expands and contracts when the driving means compresses and expands the outer cylinder and the inner cylinder in the axial direction in synchronization. - 前記伸縮体は、外側筒と、外側筒の内周側に設けられた内側筒と、を備え、
前記伸縮体は、前記駆動手段が、前記外側筒と前記内側筒とを相対的に軸方向に移動させることにより伸縮する、請求項21又は22に記載の搬送装置。 The stretchable body includes an outer cylinder and an inner cylinder provided on the inner peripheral side of the outer cylinder,
The transport device according to claim 21 or 22, wherein the elastic body expands and contracts when the driving means relatively moves the outer cylinder and the inner cylinder in the axial direction. - 前記伸縮体は、前記外側筒と前記内側筒とで区画される気室を備え、前記気室への流体の給排により伸縮する、請求項23又は24に記載の搬送装置。 The transfer device according to claim 23 or 24, wherein the expandable body includes an air chamber partitioned by the outer cylinder and the inner cylinder, and expands and contracts by supplying and discharging fluid to and from the air chamber.
- 前記伸縮体を前記筒ユニットに直列に配列した、請求項21~25のいずれか一項に記載の搬送装置。 The transfer device according to any one of claims 21 to 25, wherein the stretchable bodies are arranged in series in the cylinder unit.
- 前記伸縮体を前記筒ユニットの外周に複数配列し、各伸縮体の各端部を筒ユニットの各端部と連結した、請求項21~25のいずれか一項に記載の搬送装置。 The transport device according to any one of claims 21 to 25, wherein a plurality of the stretchable bodies are arranged on an outer periphery of the cylinder unit, and each end of each stretchable body is connected to each end of the cylinder unit.
- 前記伸縮体の内周側に前記筒ユニットが設けられ、該筒ユニットの端部と該伸縮体の端部とを連結した、請求項21に記載の搬送装置。 The transport apparatus according to claim 21, wherein the cylindrical unit is provided on an inner peripheral side of the elastic body, and an end portion of the cylindrical unit and an end portion of the elastic body are connected to each other.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/335,404 US10975973B2 (en) | 2016-09-21 | 2017-09-21 | Tube unit and transport apparatus |
CN201780058403.3A CN109790834B (en) | 2016-09-21 | 2017-09-21 | Cartridge unit and conveying device |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016184533 | 2016-09-21 | ||
JP2016-184533 | 2016-09-21 | ||
JP2016188567A JP6727506B2 (en) | 2016-09-27 | 2016-09-27 | Tube |
JP2016-188567 | 2016-09-27 | ||
JP2016-237121 | 2016-12-06 | ||
JP2016-237120 | 2016-12-06 | ||
JP2016237120A JP6860193B2 (en) | 2016-12-06 | 2016-12-06 | Cylinder unit and transfer device |
JP2016237121A JP6840380B2 (en) | 2016-09-21 | 2016-12-06 | Cylinder unit and transfer device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056378A1 true WO2018056378A1 (en) | 2018-03-29 |
Family
ID=61689537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034165 WO2018056378A1 (en) | 2016-09-21 | 2017-09-21 | Tube unit and transport device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018056378A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112135684A (en) * | 2018-05-21 | 2020-12-25 | 学校法人中央大学 | Kneading method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533773A (en) * | 1991-07-31 | 1993-02-09 | Aisin Seiki Co Ltd | Fluid pump |
JP2000002184A (en) * | 1998-06-16 | 2000-01-07 | Kurita Mach Mfg Co Ltd | Pump unit and pump |
JP2000234589A (en) * | 1999-02-16 | 2000-08-29 | Iwaki Co Ltd | Tube pump |
JP2012071230A (en) * | 2010-09-28 | 2012-04-12 | Koganei Corp | Chemical liquid feeder |
-
2017
- 2017-09-21 WO PCT/JP2017/034165 patent/WO2018056378A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533773A (en) * | 1991-07-31 | 1993-02-09 | Aisin Seiki Co Ltd | Fluid pump |
JP2000002184A (en) * | 1998-06-16 | 2000-01-07 | Kurita Mach Mfg Co Ltd | Pump unit and pump |
JP2000234589A (en) * | 1999-02-16 | 2000-08-29 | Iwaki Co Ltd | Tube pump |
JP2012071230A (en) * | 2010-09-28 | 2012-04-12 | Koganei Corp | Chemical liquid feeder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112135684A (en) * | 2018-05-21 | 2020-12-25 | 学校法人中央大学 | Kneading method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5416672B2 (en) | Chemical supply device | |
TWI243876B (en) | A device comprising a combination of a chamber and a piston | |
JP6727506B2 (en) | Tube | |
KR20140034070A (en) | Bellows pump | |
WO2018056378A1 (en) | Tube unit and transport device | |
KR20140016960A (en) | Bellows pump | |
JP6420319B2 (en) | Pneumatic reciprocating fluid pump with improved check valve assembly and associated method | |
JP2012514729A (en) | Bellows plunger having one or more helically extending features, pumps including such bellows plungers, and related methods | |
CN109790834B (en) | Cartridge unit and conveying device | |
KR101967217B1 (en) | Flexible twisting pump and manufacturing method thereof | |
CN104405723A (en) | Extensible hydraulic oil cylinder | |
KR101324924B1 (en) | Fixed delivery type hydraulic pump | |
WO2016143057A1 (en) | Positive displacement pump | |
US9856865B2 (en) | Pneumatic reciprocating fluid pump with reinforced shaft | |
CN102459812B (en) | Expansion device for breaking solid material, use of the device and method for producing it | |
NZ538036A (en) | Fluid operated pump | |
JP6860193B2 (en) | Cylinder unit and transfer device | |
JP7343897B2 (en) | Pump unit and pump | |
CN107110153B (en) | uniaxial eccentric screw pump | |
JP6840380B2 (en) | Cylinder unit and transfer device | |
JP2014131558A (en) | Double corrugated pipe artificial muscle | |
NO892276L (en) | MULTIPLE ROOM PUMP, VALVE FOR SUCH A PUMP AND USE OF SUCH A PUMP. | |
KR20090068123A (en) | Coating apparatus | |
CN108468637B (en) | Curtain type corrugated pipe pump | |
CN109424681A (en) | Mixing spring for hydraulic cylinder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17853146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17853146 Country of ref document: EP Kind code of ref document: A1 |