WO2018056191A1 - 熱交換形換気装置 - Google Patents
熱交換形換気装置 Download PDFInfo
- Publication number
- WO2018056191A1 WO2018056191A1 PCT/JP2017/033390 JP2017033390W WO2018056191A1 WO 2018056191 A1 WO2018056191 A1 WO 2018056191A1 JP 2017033390 W JP2017033390 W JP 2017033390W WO 2018056191 A1 WO2018056191 A1 WO 2018056191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- exhaust
- heat exchange
- air supply
- path
- Prior art date
Links
- 238000009423 ventilation Methods 0.000 title claims abstract description 26
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 238000004378 air conditioning Methods 0.000 claims description 69
- 238000007664 blowing Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 abstract description 34
- 238000010586 diagram Methods 0.000 description 16
- 238000011084 recovery Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 5
- 230000005494 condensation Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
- F24F12/001—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
- F24F12/006—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/0001—Control or safety arrangements for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/77—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/30—Arrangement or mounting of heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/04—Ventilation with ducting systems, e.g. by double walls; with natural circulation
- F24F7/06—Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
- F24F7/08—Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to a heat exchange type ventilator.
- a ventilator for exchanging heat between outside air and room air a heat exchange type ventilator that is installed in a building, introduces outside air from an outside air supply port, and supplies the inside through a built-in heat exchange element is known.
- a heat exchange type ventilator that is installed in a building, introduces outside air from an outside air supply port, and supplies the inside through a built-in heat exchange element is known.
- FIG. 11 is a top view showing a conventional heat exchange type ventilator.
- the ventilation device main body 201 is installed in an attic space or a ceiling space in a building.
- Fresh fresh air is introduced from the outside air supply port 202, passes through the built-in heat exchange element 203, and is supplied indoors through the indoor supply port 204.
- the dirty air in the room is introduced from the indoor exhaust port 205, passes through the heat exchange element 203, and is exhausted to the outside through the outdoor exhaust port 206.
- the fresh outside air introduced from the outside air supply port 202 and the indoor dirty air introduced from the room exhaust port 205 are connected to the electric motor 207 through the heat exchange element 203 and the air supply fan 209 connected to the same shaft 208. And the exhaust air blower 210.
- the heat exchange type ventilator needs to adjust the air volume in the air supply path or exhaust path in order to ventilate.
- an object of the present invention is to provide a heat exchange type ventilator that can automatically determine the opening area of the air volume adjusting damper and simplify on-site construction.
- construction simplification is an example, and about the structure characterized by other than construction simplification, it is not limited to the heat exchange type ventilator which can simplify construction.
- a heat exchange ventilator includes an air supply fan provided with an air supply motor, an exhaust air fan provided with an exhaust motor, an air supply The air supply path that is blown from the outside to the room by the air blower, the exhaust path that is blown from the room to the outside by the exhaust air blower, and the air supply path and the exhaust path are provided at the intersecting positions.
- the control unit controls the rotation speed of the air supply motor
- the air supply path is connected to the circulation air path of the unitary air conditioning
- the control unit is for air supply detected by the current detection unit.
- the opening area of the air volume adjusting damper provided in the air supply path is changed so that the current value of the motor falls within a predetermined range of the target current value. This achieves the intended purpose.
- construction simplification is an example, and about the structure characterized by other than construction simplification, it is not limited to the heat exchange type ventilator which can simplify construction.
- heat exchange type ventilator when connected to unitary air conditioning, it is possible to provide a heat exchange type ventilator that can increase the temperature control efficiency of unitary air conditioning regardless of the simplification of construction.
- FIG. 1 is a top sectional view showing a heat exchange type ventilator according to a first embodiment of the present invention.
- FIG. 2 is a diagram illustrating a relationship between the motor rotation speed and the motor current value of the heat exchange type ventilator according to the first embodiment.
- FIG. 3 is a diagram illustrating the construction of the heat exchange type ventilator according to the first embodiment.
- FIG. 4 is a diagram showing another construction of the heat exchange type ventilation apparatus of the first embodiment.
- FIG. 5 is a top cross-sectional view showing the heat exchange type ventilator of the second embodiment.
- FIG. 6 is a diagram illustrating the construction of the heat exchange type ventilator according to the second embodiment.
- FIG. 7 is a control block diagram of the heat exchange ventilator according to the second embodiment.
- FIG. 1 is a top sectional view showing a heat exchange type ventilator according to a first embodiment of the present invention.
- FIG. 2 is a diagram illustrating a relationship between the motor rotation speed and the motor current value of the heat exchange type ventilator according
- FIG. 8 is a diagram showing another construction of the second embodiment heat exchange type ventilator.
- FIG. 9 is a control block diagram of the heat exchange type ventilator of FIG.
- FIG. 10 is a diagram showing another construction of the heat exchange type ventilation apparatus of the second embodiment.
- FIG. 11 is a top view showing a conventional heat exchange type ventilator.
- a heat exchange type ventilator is blown into a room from the outside by an air supply fan provided with an air supply motor, an exhaust air fan provided with an exhaust motor, and an air supply fan.
- a current detection unit that detects a current flowing through the air supply motor.
- the control unit controls the rotation speed of the air supply motor
- the air supply path is connected to the circulation air path of the unitary air conditioning
- the control unit is for air supply detected by the current detection unit.
- the opening area of the air volume adjusting damper provided in the air supply path is changed so that the current value of the motor falls within a predetermined range of the target current value.
- FIG. 1 is a top cross-sectional view showing the heat exchange type ventilator of the first embodiment.
- the heat exchange ventilator 1 includes an outside air suction port 2, an indoor air exhaust port 3 on the side surface of a box-shaped main body, and an outside air supply port 4 on the side surface facing this side surface.
- An air inlet 5 is provided.
- the heat exchange ventilator 1 sucks fresh outdoor air (supply air) from the side outside air intake port 2, passes through the heat exchange element 6 inside the heat exchange type ventilator 1, and from the outside air supply port 4.
- An air supply path 7 for supplying the room is provided.
- the heat exchange ventilator 1 also has an exhaust path 8 that sucks contaminated indoor air (exhaust air) from the indoor air intake port 5 and exhausts the air through the heat exchange element 6 from the indoor air exhaust port 3 to the outside of the room.
- the heat exchange element 6 has a heat recovery function of supplying the amount of heat of exhausted air to the supplied air, or supplying the amount of heat of supplied air to the amount of heat of exhausted air.
- Fresh outdoor air (supply air) introduced from the outside air inlet 2 and contaminated indoor air (exhaust air) introduced from the indoor air inlet 5 are an air supply fan 9 and an exhaust fan 10. , The air flow path 7 and the exhaust path 8 respectively flow.
- the heat exchange element 6 is disposed at a position where the air supply path 7 and the exhaust path 8 intersect.
- An air cleaning filter 12 is disposed on each of the outdoor air suction side and the indoor air suction side of the heat exchange element 6.
- the outside air inlet 2, the indoor air outlet 3, the outside air inlet 4, and the indoor air inlet 5 are each configured to be connected to a duct.
- the heat exchange ventilator 1 has a control unit 11 that controls the rotation speeds of the supply motor of the supply fan 9 and the exhaust motor of the exhaust fan 10.
- the control unit 11 controls the number of rotations of the air supply motor of the air supply fan 9 and the air discharge motor of the air exhaust fan 10 to keep the air supply air amount and the exhaust air amount constant, and the air supply motor or It has a current detector 17 that detects the current flowing through the exhaust motor.
- the control performed by the control unit 11 to keep the supply air amount and the exhaust air amount constant will be described.
- the control unit 11 controls the rotation speeds of the air supply motor and the exhaust motor so that the airflow output from the air supply fan 9 and the exhaust air fan 10 are equal.
- Heat exchange air operation Normally, when the operation is started in a construction state, a fixed external static pressure due to duct routing is applied to the heat exchange type ventilator. Therefore, in order to output a predetermined air volume, the control unit 11 controls the current value of each motor while confirming the rotation speeds of the air supply motor and the exhaust motor.
- the control unit 11 stores in advance the relationship between the supply motor rotation speed and the supply motor current value for outputting a predetermined air volume, and the relationship between the exhaust motor rotation speed and the exhaust motor current value.
- FIG. 2 is a diagram showing the relationship between the motor speed and the motor current value of the heat exchange type ventilator of the first embodiment.
- the control unit 11 realizes the set predetermined air volume by matching the relationship between the motor rotation speed and the motor current value. That is, constant air volume control can be realized on the line shown in FIG.
- FIG. 3 is a diagram showing the construction of the heat exchange type ventilator of the first embodiment.
- the unitary air conditioner 13 is installed in a machine room or the like in a building, and is connected to the room by a duct to form a circulation air passage 14 in the room.
- the unitary air conditioner 13 performs cooling and heating so that the set room temperature is reached, blows air to the circulation air passage 14, and circulates air through a plurality of indoor rooms, thereby controlling the interior to a predetermined temperature. To do.
- the circulation air passage 14 is a temperature control route through the unitary air conditioner 13 and is not ventilated indoors, and there is no supply of fresh outdoor air indoors. Therefore, by connecting the air supply path 7 to the circulation air path 14, the heat is exchanged at the same time while adjusting the temperature by indoor circulation, and the outdoor fresh air is taken in indoors while collecting heat. At this time, the air supply path 7 on the downstream side of the heat exchange element 6 is connected to the circulation air path 14 of the unitary air conditioner 13.
- the unitary air conditioner 13 performs indoor circulation operation, but negative pressure is applied to the outside air supply port 4 of the heat exchange type ventilator 1 by the air blowing function of the unitary air conditioner 13.
- the air supply path 7 of the heat exchange type ventilator 1 is pulled by the unitary air conditioner 13 so that the air volume exceeding the design flows. Therefore, particularly in the winter, a large amount of low temperature outside air may flow and cause problems such as condensation.
- an air volume adjustment damper 15 for canceling the negative pressure from the unitary air conditioner 13 is provided between the heat exchange type ventilation device 1 and the circulation air path 14 of the unitary air conditioner 13 in the air supply path 7. .
- the angle of the air volume adjusting damper 15 is determined by adjusting the opening area (opening ratio) so as to be a predetermined air volume while actually measuring the air supply air volume of the heat exchange type ventilation device 1.
- the opening area opening ratio
- the air volume adjustment damper 15 automatically adjusts the opening area (opening ratio) by the control unit 11, it is possible to reduce the number of on-site construction man-hours.
- control unit 11 causes the air supply fan 9 to be operated at a predetermined rotational speed. At this time, if the unitary air conditioner 13 is operated and the air volume adjustment damper 15 is fully open, the air blower 9 is under a negative pressure and the load is reduced, and the current value of the air supply motor detected by the current detector 17 is predetermined. The current value is smaller than the current value.
- the control unit 11 moves the damper angle by a predetermined angle (for example, 1 °) so that the damper opening area (opening ratio) of the air volume adjusting damper 15 becomes small.
- a predetermined angle for example, 1 °
- the control unit 11 ends the adjustment of the air volume adjustment damper 15 and determines the damper angle.
- the control unit 11 causes the air supply fan 9 to operate at a predetermined speed and the unitary air conditioner 13 is operated and the air volume adjustment damper 15 is fully closed, the air supply fan 9 has no air supply path. I can't work. Therefore, the current value of the air supply motor detected by the current detection unit 17 is smaller than the predetermined current value. Therefore, the control unit 11 moves the damper angle by a predetermined angle (for example, 1 °) so that the damper opening area (opening ratio) of the air volume adjusting damper 15 is increased. When the control unit 11 enters a predetermined range (for example, within 1%) with respect to the target current value, the control unit 11 ends the adjustment of the damper and determines the damper angle.
- a predetermined angle for example, 1 °
- the motor is operated so that the rotation speed of the motor is constant, and the damper opening area of the air volume adjustment damper 15 is set so that the current value of the motor is within a predetermined range of the target current value.
- the damper angle was determined by adjusting (aperture ratio).
- the motor is operated so that the current value of the motor is constant, and the damper opening area (opening ratio) of the air volume adjusting damper 15 is adjusted so that the rotational speed of the motor is within a predetermined range of the target rotational speed.
- the angle may be determined.
- a rotation speed detection section (not shown) is provided instead of the current detection section 17, and the rotation speed detection section detects the rotation speed of the air supply motor or the exhaust motor, and the control section 11 sets the damper angle. decide.
- FIG. 4 is a diagram showing another construction of the heat exchange type ventilation apparatus of the first embodiment.
- the exhaust path 8 may be connected to the indoor circulating air path 14 as shown in FIG. 4 showing another construction.
- the unitary air conditioner 13 performs indoor circulation operation, but negative pressure is applied to the indoor air suction port 5 of the heat exchange type ventilation device 1 by the air blowing function of the unitary air conditioner 13.
- the exhaust flow path 8 of the heat exchange type ventilation apparatus 1 cannot flow the design air volume while being pulled by the unitary air conditioner 13. Therefore, especially in the winter season, it is difficult for the high-temperature indoor airflow to flow with respect to the low-temperature outdoor airflow, and the outside air that does not exchange heat may flow directly into the room through the air supply path 7 and may cause problems such as condensation and cold wind.
- an air volume adjusting damper 16 for canceling the negative pressure from the unitary air conditioner 13 is provided between the heat exchange type ventilation device 1 and the circulation air path 14 of the unitary air conditioner 13 in the exhaust path 8.
- the air volume adjusting damper 16 automatically adjusts the opening area (opening ratio) by the control unit 11, it is possible to reduce the number of construction steps on site.
- the control unit 11 causes the exhaust fan 10 to be operated at a predetermined rotational speed. At this time, if the unitary air conditioner 13 is operated and the air volume adjustment damper 16 is fully open, the exhaust fan 10 has a negative pressure and cannot be blown. Therefore, the exhaust fan 10 does not work, and the current value of the exhaust motor detected by the current detection unit 17 is smaller than a predetermined current value. Therefore, the control unit 11 moves the damper angle by a predetermined angle (for example, 1 °) so that the damper opening area (opening ratio) of the air volume adjusting damper 16 becomes small. When the controller 11 enters a predetermined range (for example, within 1%) with respect to the target current value, the controller 11 ends the adjustment of the air volume adjustment damper 16 and determines the damper angle.
- a predetermined angle for example, within 1%) with respect to the target current value
- the control unit 11 operates the exhaust fan 10 at a predetermined rotation speed and the unitary air conditioner 13 is operated at this time and the air volume adjustment damper 16 is fully closed, the exhaust fan 10 has no air supply path, so that the work is not performed. I can't. Therefore, the current value of the exhaust motor detected by the current detection unit 17 is smaller than the predetermined current value. Therefore, the control unit 11 moves the damper angle by a predetermined angle (for example, 1 °) so that the damper opening area (opening ratio) of the air volume adjusting damper 16 is increased. When the controller 11 enters a predetermined range (for example, within 1%) with respect to the target current value, the controller 11 ends the adjustment of the air volume adjustment damper 16 and determines the damper angle.
- a predetermined angle for example, 1 °
- the on-site construction can be simplified and the heat exchange type ventilation device 1 capable of reducing the number of construction steps can be obtained.
- the unitary air conditioning 13 includes the concept of the whole building air conditioning or the central air conditioning (central air conditioning).
- control part 11 was provided in the heat exchange type ventilator 1, it does not need to be provided in the heat exchange type ventilator 1.
- control is performed by the control unit 11 located at a position away from the heat exchange ventilator 1.
- the control unit 11 includes the current detection unit 17, but the current detection unit 17 may be provided separately from the control unit 11.
- the target current value may be set in a range of (negative pressure). Alternatively, the target current value may be set as an arbitrary constant.
- the control unit 11 controls the air supply path 7 (or the exhaust path) so that the current value of the air supply motor (or the exhaust motor) detected by the current detection unit 17 is within a predetermined range of the target current value. 8)
- the opening area of the air volume adjusting damper provided in the inside may be changed.
- the control unit 11 controls the current value of the air supply motor (or exhaust motor) while controlling the rotation speed of the air supply motor (or exhaust motor) to be constant at a predetermined speed. May be changed in the opening area of the air volume adjustment damper provided in the air supply path 7 (or the exhaust path 8) so that the current falls within a predetermined range of the target current value.
- the control unit 11 detects the current value of the air supply motor (or the exhaust motor) and the opening area of the air volume adjustment damper (or the angle of the air volume adjustment damper).
- the control unit 11 detects the rotation speed of the air supply motor (or the exhaust motor) and the opening area of the air volume adjustment damper (or the angle of the air volume adjustment damper). For example, the control unit 11 operates the current value of the air supply motor (or the exhaust motor) at a constant value, and the rotational speed of the air supply motor (or the exhaust motor) falls within a predetermined range of the target rotational speed. In this way, the damper opening area (opening ratio) of the air volume adjusting damper 15 may be adjusted to determine the damper angle.
- control unit 11 causes the current value of the air supply motor (or the exhaust motor) to be the current value of the air supply motor (or the exhaust motor) that outputs a predetermined air volume at a predetermined external static pressure.
- the air volume adjusting damper 15 provided in the air supply path 7 or the air volume adjusting damper 16 provided in the exhaust path 8 may be operated.
- Embodiment 2 Next, the heat exchange type ventilation apparatus of Embodiment 2 is demonstrated.
- the unitary air conditioner When connecting the air supply path (or exhaust path) of a conventional heat exchange type ventilator and the circulation air path of unitary air conditioning (unitary air conditioning), the unitary air conditioner communicates with the outside air through the heat exchange type ventilator. If outside air is introduced during operation, the efficiency of temperature adjustment of the unitary air conditioning may be reduced compared to the case where indoor air is circulated without introducing outside air.
- a heat exchange type ventilation device capable of increasing the temperature regulation efficiency of the unitary air conditioning by suppressing the introduction of the outside air is realized.
- the purpose is to do.
- the heat exchange ventilator includes an air supply fan provided with an air supply motor, an exhaust air fan provided with an exhaust motor, and an air supply fan.
- the air supply path to be blown from the outside to the room by the air, the exhaust path to be blown from the room to the outside by the exhaust fan, and the air supply path and the exhaust path are provided at the intersecting positions.
- the control unit controls ON / OFF of the air supply blower, ON / OFF of the exhaust air blower, and opening / closing of the air supply air amount adjustment damper.
- the air supply path is directly connected to a circulation air path of unitary air conditioning, and the exhaust path is directly connected to an indoor space other than the circulation air path.
- the heat exchanger type ventilation system is an in exhaust path indoor temperature detector provided on the upstream side of the heat exchange element, the indoor temperature T i detected by the indoor temperature detector, set temperature T u of the unitary air-conditioning When the predetermined temperatures are ⁇ 1 and ⁇ 2 , the control unit determines that “unitary air conditioning is ON” and “T i ⁇ T u ⁇ 1 or T u + ⁇ 2 ⁇ T i ”. Is controlled to be “OFF” and “the supply air volume adjustment damper is closed”.
- control unit determines that “the exhaust fan is ON” and “the supply air volume adjustment damper is open”. It is characterized by controlling to become. This achieves the intended purpose.
- the heat exchange ventilator according to the second embodiment can increase the temperature control efficiency of unitary air conditioning by suppressing the introduction of outside air when the room temperature is not within a predetermined range with respect to the set temperature of unitary air conditioning.
- the load on unitary air conditioning can be reduced and the power consumption of unitary air conditioning can be reduced, and the indoor environment can be quickly conditioned to quickly realize a comfortable environment.
- FIG. 5 is a top sectional view showing the heat exchange type ventilator according to the second embodiment.
- the heat exchange type ventilator 101 includes an outside air inlet 102, an indoor air outlet 103 on the side surface of the box-shaped main body, and an outside air inlet 104 on the side surface facing the side surface, An air inlet 105 is provided.
- the heat exchange type ventilator 101 sucks fresh outdoor air (supply air) from the side outside air inlet 102, passes through the heat exchange element 106 inside the heat exchange type ventilator 101, and from the outside air inlet 104.
- An air supply path 107 for supplying the room is provided.
- the heat exchange type ventilator 101 sucks contaminated indoor air (exhaust air) from the indoor air suction port 105, passes through the heat exchange element 106, and exhausts it through the indoor air exhaust port 103 to the outside.
- the heat exchange element 106 has a heat recovery function of supplying the heat amount of the exhausted air to the supplied air or supplying the heat amount of the supplied air to the heat amount of the exhausted air.
- Fresh outdoor air (supply air) introduced from the outside air inlet 102 and contaminated indoor air (exhaust air) introduced from the indoor air inlet 105 are an air supply fan 109 and an exhaust fan 110. , The air flows through the air supply path 107 and the exhaust path 108, respectively.
- the heat exchange element 106 is disposed at a position where the air supply path 107 and the exhaust path 108 intersect.
- An air purifying filter 112 is disposed on each of the outdoor air suction side and the indoor air suction side of the heat exchange element 106.
- the outside air inlet 102, the indoor air outlet 103, the outside air inlet 104, and the indoor air inlet 105 are each configured to be connected to a duct.
- An indoor temperature detector 113 for detecting the indoor temperature is provided in the exhaust path 108 and upstream of the heat exchange element 106.
- FIG. 6 is a diagram showing the construction of the heat exchange type ventilator of the second embodiment.
- the unitary air conditioner 114 is installed in a machine room or the like in the building, and is connected to the room by a duct to form a circulation air path 115 in the room.
- the unitary air conditioner 114 controls the interior to a predetermined temperature by performing cooling and heating so that the set indoor temperature is achieved, blowing air to the circulation air passage 115, and circulating air in a plurality of indoor rooms. To do.
- the normal circulation air path is a temperature control path through the unitary air conditioner 114, indoor ventilation is not performed, and there is no supply of fresh outdoor air indoors. Therefore, by connecting the air supply path 107 to the circulation air passage 115, the heat is exchanged at the same time while adjusting the temperature by indoor circulation, and the outdoor fresh air is taken in indoors while collecting heat. At this time, the air supply path 107 on the downstream side of the heat exchange element 106 is connected to the circulation air path 115 of the unitary air conditioner 114.
- the unitary air conditioner 114 performs indoor circulation operation, but negative pressure is applied to the outside air supply port 104 of the heat exchange type ventilator 101 by the air blowing function of the unitary air conditioner 114.
- the air supply path 107 of the heat exchange type ventilator 101 is pulled by the unitary air conditioner 114, and the air volume more than the design flows. Therefore, particularly in the winter, a large amount of low temperature outside air may flow and cause problems such as condensation.
- a supply air volume adjustment damper 116 for canceling the negative pressure from the unitary air conditioner 114 between the heat exchange type ventilation device 101 and the circulation air path 115 of the unitary air conditioner 114 in the air supply path 107. Is provided.
- the supply air volume adjustment damper 116 determines the damper angle by adjusting the opening area (opening ratio) so as to be a predetermined air volume while actually measuring the supply air volume of the heat exchange type ventilator 101.
- the unitary air conditioning 114 when the temperature of the room is adjusted to the set temperature, the introduction of outside air after heat exchange into the circulation air passage 115, for example, during heating in the winter, may cause the circulation operation. In comparison, the air conditioning load is increased, and the time for the room to reach the set temperature is increased.
- FIG. 7 is a control block diagram of the heat exchange ventilator according to the second embodiment.
- control unit 111 controls the air supply fan 109, the exhaust air blower 110, and the air supply air amount adjustment damper 116.
- the load on the unitary air conditioner 114 can be reduced and the power consumption of the unitary air conditioner 114 can be reduced, and the indoor environment can be quickly conditioned to quickly realize a comfortable environment.
- the control unit 111 performs control by comparing the room temperature obtained from the room temperature detection unit 113 with the set temperature of the unitary air conditioner 114.
- the room temperature detected by the room temperature detector 113 is T i
- the set temperature of the unitary air conditioner 114 is T u
- the predetermined temperatures are ⁇ 1 and ⁇ 2 .
- the heat exchange type ventilator 101 is not operated while the unitary air conditioning 114 is stopped.
- the heat exchange ventilator 101 When starting the unitary air conditioner 114 for adjusting the room temperature, the heat exchange ventilator 101 does not immediately start the heat exchange air operation.
- control unit 111 activates only the exhaust air blower 110 while closing the supply air volume adjustment damper 116 in the supply air path 107 and introduces indoor air into the heat exchange type ventilator 101.
- the control unit 111 When the room temperature T i is detected by the room temperature detection unit 113 in the heat exchange type ventilator 101 and T i ⁇ T u ⁇ 1 or T u + ⁇ 2 ⁇ T i , the control unit 111 it is determined that the temperature T i has not reached the unitary air conditioning set temperature T u close. The control unit 111 controls the exhaust fan 110 to stop and the supply air volume adjustment damper 116 to be closed.
- the unitary air conditioner 114 is circulated indoors. T 1 hour after the circulation operation of only the unitary air conditioner 114 continues for a predetermined time, to start the air discharge fan 110 again detects the indoor temperature T i at the indoor temperature detection unit 113.
- the control unit 111 determines that the room temperature T i has reached the unitary air conditioning set temperature T u . Then, the control unit 111 controls the exhaust air blower 110 and the air supply fan 109 to start and the air supply air volume adjustment damper 116 is opened.
- the control unit 111 determines that the room temperature T i has not reached near the unitary air conditioning set temperature T u . Then, the control unit 111 controls the exhaust blower 110 to stop and the supply air amount adjustment damper 116 to be closed, and performs the indoor circulation operation again with only the unitary air conditioning 114 for t 1 hour.
- the control unit 111 detects the indoor temperature T i at the indoor temperature detection unit 113, at T u - ⁇ 1 ⁇ T i ⁇ T u + ⁇ 2 Check if it exists.
- the control unit 111 opens the supply air volume adjustment damper 116 again, operates the supply air fan 109 and the exhaust air fan 110, and performs heat exchange operation.
- the control unit 111 the 2 hours after a predetermined time t, detect the indoor temperature T i again confirms the indoor environment.
- the control unit 111 closes the supply air volume adjustment damper 116, stops the supply air fan 109 and the exhaust air fan 110, and unitary The air conditioner 114 is circulated to adjust the indoor temperature.
- the indoor environment thermostated with a small load to a set temperature T u Near unitary air conditioner 114 upon reaching room environment near the target temperature, performs heat exchange of gas operation, the heat recovery A comfortable environment can be realized while saving energy while taking in fresh air.
- the air supply fan is turned off when “T i ⁇ T u ⁇ 1 or T u + ⁇ 2 ⁇ T i ”, but the air supply fan may be left on. This is because the supply air volume adjustment damper is closed, so that the supply air can be stopped even if the supply air blower is turned on.
- FIG. 8 is a diagram showing another construction of the heat exchange type ventilation apparatus of the second embodiment.
- the exhaust passage 108 may be connected to the indoor circulation air passage 115.
- the unitary air conditioner 114 performs indoor circulation operation, but negative pressure is applied to the indoor air suction port 105 of the heat exchange type ventilator 101 by the air blowing function of the unitary air conditioner 114.
- the design air volume cannot flow through the exhaust path 108 of the heat exchanging ventilator 101 while being pulled by the unitary air conditioner 114. Therefore, especially in the winter season, it is difficult for the high-temperature indoor airflow to flow with respect to the low-temperature outdoor airflow, and the outside air that does not exchange heat may flow directly into the room through the air supply path 107, causing problems such as dew condensation and cold wind. There is.
- an exhaust air volume adjustment damper 117 for canceling the negative pressure from the unitary air conditioner 114 is provided between the heat exchange ventilator 101 and the circulation air path 115 of the unitary air conditioner 114 in the exhaust path 108.
- the exhaust air volume adjustment damper 117 determines the damper angle by adjusting the opening area (opening ratio) so as to be a predetermined air volume while actually measuring the exhaust air volume of the heat exchange ventilator 101.
- FIG. 9 is a control block diagram of the heat exchange type ventilator of FIG.
- the room temperature detected by the room temperature detector 113 is T i
- the set temperature of the unitary air conditioner 114 is T u
- the predetermined temperatures are ⁇ 1 and ⁇ 2 .
- the heat exchange type ventilator 101 is not operated while the unitary air conditioning 114 is stopped.
- the heat exchange ventilator 101 When the unitary air conditioner 114 is activated to adjust the room temperature, the heat exchange ventilator 101 does not immediately start the heat exchange air operation.
- control unit 111 closes the supply air volume adjustment damper 116 in the supply air path 107, opens the exhaust air volume adjustment damper 117 in the exhaust path 108, activates only the exhaust fan 110, and heat-exchanges the room air. Introduce into the device 101.
- the control unit 111 When the room temperature T i is detected by the room temperature detection unit 113 in the heat exchange type ventilator 101 and T i ⁇ T u ⁇ 1 or T u + ⁇ 2 ⁇ T i , the control unit 111 it is determined that the temperature T i has not reached the unitary air conditioning set temperature T u close. Then, the control unit 111 controls the exhaust fan 110 to stop and the supply air volume adjustment damper 116 and the exhaust air volume adjustment damper 117 to be closed.
- the unitary air conditioner 114 is circulated indoors. T 1 hour after the circulation operation of only the unitary air conditioner 114 continues for a predetermined time, to start the air discharge fan 110 again open the exhaust air flow control damper 117, to detect the indoor temperature T i at the indoor temperature detection unit 113.
- the control unit 111 detects the indoor temperature T i at the indoor temperature detection unit 113, at T u - ⁇ 1 ⁇ T i ⁇ T u + ⁇ 2 Check if it exists.
- the control unit 111 opens the supply air volume adjustment damper 116 and the exhaust air volume adjustment damper 117 again, and opens the supply air fan 109 and the exhaust air fan 110. Operate and continue heat exchange operation.
- the control unit 111 detects the indoor temperature T i again confirms the indoor environment.
- the control unit 111 closes the supply air amount adjustment damper 116 and the exhaust air amount adjustment damper 117, and supplies the supply air fan 109 and the exhaust air blower. 110 is stopped, the unitary air-conditioning 114 is circulated, and the room temperature is adjusted.
- the indoor environment thermostated with a small load to a set temperature T u Near unitary air conditioner 114 upon reaching room environment near the target temperature, performs heat exchange of gas operation, the heat recovery A comfortable environment can be realized while saving energy while taking in fresh air.
- FIG. 10 is a diagram showing another construction of the heat exchange type ventilation apparatus of the second embodiment.
- the supply air volume adjustment damper 116 and the exhaust air volume adjustment damper 117 may be provided inside the main body of the heat exchange type ventilator 101.
- the air supply air volume adjustment damper 116 of FIG. 6 may be provided inside the main body of the heat exchange type ventilator 101.
- the unitary air conditioning 114 (unitary air conditioning) includes the concept of the whole building air conditioning or the central air conditioning (central air conditioning).
- control part 111 was provided in the heat exchange type ventilator 101, it does not need to be provided in the heat exchange type ventilator 101. In this case, control is performed by the control unit 111 located at a position away from the heat exchange ventilator 101.
- ⁇ 1 is a constant that can take any value of 1 ° C., for example, 0.1 ° C. to 3 ° C.
- ⁇ 2 is a constant that can take any value of 1 ° C., for example, 0.1 ° C. to 3 ° C.
- the supply air volume adjustment damper is closed includes the case where the supply air volume adjustment damper is fully closed.
- the exhaust air volume adjustment damper is closed includes the case where the exhaust air volume adjustment damper is fully closed.
- the heat exchange type ventilator 101 is not operated while the unitary air conditioner 114 is stopped, but the heat exchange type ventilator 101 can be operated even when the unitary air conditioner 114 is stopped.
- a communication port communicating with the room is separately provided in the circulation air passage 115, an air passage that does not pass through the unitary air conditioning 114 can be formed, so that a smooth heat exchange operation can be performed.
- the communication port provided in the circulation air passage 115 can be opened and closed, and is closed when the unitary air conditioning is ON, and is preferably open when the unitary air conditioning is OFF.
- the air supply path 107 is connected to the circulation air passage 115 on the upstream side of the unitary air conditioning 114, but may be connected to the circulation air passage 115 on the downstream side of the unitary air conditioning 114.
- the ventilator according to the present invention is also effective as a duct type ventilator for the purpose of exchanging heat between the outside air and room air, a duct type air conditioner or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Ventilation (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本発明は、風量調整ダンパの開口面積を自動で決め、現場施工を簡易化できる熱交換形換気装置を提供することを目的とする。熱交換形換気装置(1)は、給気用モータを備えた給気用送風機と、排気用モータを備えた排気用送風機と、給気用送風機により屋外から室内に送風される給気経路(7)と、排気用送風機により室内から室外に送風される排気経路と、給気経路(7)と排気経路とが交差する位置に設けられ、室内の空気と屋外の空気を換気する際に熱交換するための熱交換素子と、給気用モータに流れる電流を検知する電流検知部とを備える。熱交換形換気装置は、制御部(11)により、給気用モータの回転数を制御する。給気経路はユニタリー空調(13)の循環風路(14)に接続され、制御部(11)は、電流検知部により検知された給気用モータの電流値が目標電流値の所定範囲内となるように、給気経路(7)内に設けられる風量調整ダンパ(15)の開口面積を変化させる。
Description
本発明は、熱交換形換気装置に関するものである。
従来、外気と室内空気を熱交換する換気装置としては、建物内に設置され外気を外気給気口から導入し、内蔵する熱交換素子を経て室内に供給する熱交換形換気装置が知られている(例えば、特許文献1参照)。
以下、その熱交換形換気装置について図11を参照しながら説明する。
図11は、従来の熱交換形換気装置を示す上面構成図である。
図11に示すように、換気装置本体201は、建物内の屋根裏空間または天井裏空間に設置される。
新鮮な外気は、外気給気口202から導入され、内蔵する熱交換素子203を通過して室内給気口204を経て室内に供給される。
一方、室内の汚れた空気は、室内排気口205から導入され、熱交換素子203を通過し、室外排気口206を経て室外に排気される。
外気給気口202から導入される新鮮な外気と室内排気口205から導入される室内の汚れた空気は、熱交換素子203を経て電動機207に同一軸208にて連結された給気用送風機209と排気用送風機210により移送される構成としている。
熱交換形換気装置は、換気をするために、給気経路または排気経路の風量を調整する必要がある。
従来の熱交換形換気装置の給気経路(または排気経路)とユニタリー空調(unitary air conditioning)の循環風路とを接続する場合、風量を調整するために、熱交換形換気装置の給気経路(または排気経路)におけるダクト内に風量調整ダンパを設置していた。しかし、この構成では、風量を測定しながら風量調整ダンパの角度(開口面積)を決めねばならず、現場施工が煩雑であるという課題があった。
そこで本発明は、上記従来の課題を解決するものであり、風量調整ダンパの開口面積を自動で決め、現場施工を簡易化できる熱交換形換気装置を提供することを目的とする。なお、施工簡易化は1例であり、施工簡易化以外を特徴とする構成については、施工簡易化できる熱交換形換気装置に限定されない。
そして、この目的を達成するために、本発明の一態様に係る熱交換形換気装置は、給気用モータを備えた給気用送風機と、排気用モータを備えた排気用送風機と、給気用送風機により屋外から室内に送風される給気経路と、排気用送風機により室内から室外に送風される排気経路と、給気経路と排気経路とが交差する位置に設けられ、室内の空気と屋外の空気を換気する際に熱交換するための熱交換素子と、給気用モータに流れる電流を検知する電流検知部とを備える。熱交換形換気装置は、制御部により、給気用モータの回転数を制御し、給気経路はユニタリー空調の循環風路に接続され、制御部は、電流検知部により検知された給気用モータの電流値が目標電流値の所定範囲内となるように、給気経路内に設けられる風量調整ダンパの開口面積を変化させるものである。これにより所期の目的を達成するものである。
本発明によれば、現場施工を簡易化した熱交換形換気装置を提供できる。なお、施工簡易化は1例であり、施工簡易化以外を特徴とする構成については、施工簡易化できる熱交換形換気装置に限定されない。例えば、ユニタリー空調と接続された場合、ユニタリー空調の温度調節効率を高めることができる熱交換形換気装置を施工簡易化と関係なく提供することもできる。
本発明の一態様に係る熱交換形換気装置は、給気用モータを備えた給気用送風機と、排気用モータを備えた排気用送風機と、給気用送風機により屋外から室内に送風される給気経路と、排気用送風機により室内から室外に送風される排気経路と、給気経路と排気経路とが交差する位置に設けられ、室内の空気と屋外の空気を換気する際に熱交換するための熱交換素子と、給気用モータに流れる電流を検知する電流検知部とを備える。熱交換形換気装置は、制御部により、給気用モータの回転数を制御し、給気経路はユニタリー空調の循環風路に接続され、制御部は、電流検知部により検知された給気用モータの電流値が目標電流値の所定範囲内となるように、給気経路内に設けられる風量調整ダンパの開口面積を変化させる構成を有する。
これにより、風量調整ダンパの開口面積を自動で決め、現場施工を簡易化でき、施工工数を減少させることができる。また、施工完了後に、運転ノッチが変更された際も、風量調整ダンパの再度の調整・施工が必要ではなく、自動で調整できるため、施工工数を減少することができる。なお、排気経路がユニタリー空調の循環風路に接続され、排気経路内に設けられる風量調整ダンパの開口面積を変化させる場合も同様の効果がある。
以下、本発明の実施の形態について図面を参照しながら説明する。
(実施の形態1)
実施の形態1の熱交換形換気装置について、図1を用いて内部の構成と給気経路、排気経路について説明する。
実施の形態1の熱交換形換気装置について、図1を用いて内部の構成と給気経路、排気経路について説明する。
図1は、実施の形態1の熱交換形換気装置を示す上面断面図である。
図1に示すように、熱交換形換気装置1には、箱形の本体の側面に外気吸込口2、室内空気排気口3、そして、この側面に対向した側面に外気給気口4、室内空気吸込口5が設けられている。
熱交換形換気装置1は、新鮮な屋外の空気(給気空気)を側面の外気吸込口2から吸込み、熱交換形換気装置1の内部の熱交換素子6を通って外気給気口4から室内に供給する給気経路7を備えている。
また、熱交換形換気装置1は、汚染された室内の空気(排気空気)を室内空気吸込口5から吸込み、熱交換素子6を通って室内空気排気口3から室外に排気する排気経路8を備えている。このとき、熱交換素子6は、排気される空気の熱量を給気される空気に供給する、または、給気される空気の熱量を排気される空気の熱量に供給する、熱回収の機能を有している。
外気吸込口2から導入される新鮮な屋外空気(給気空気)と、室内空気吸込口5から導入される汚染された室内の空気(排気空気)は、給気用送風機9と排気用送風機10の運転によりそれぞれ給気経路7と排気経路8を流れる。
熱交換素子6は、給気経路7と排気経路8とが交差する位置に配設される。熱交換素子6の室外空気吸込側および室内空気吸込側にはそれぞれ空気清浄フィルター12が配設される。また、外気吸込口2、室内空気排気口3、外気給気口4、室内空気吸込口5は、それぞれダクトが接続できる形状となっている。
そして、熱交換形換気装置1は、給気用送風機9の給気用モータと排気用送風機10の排気用モータの回転数を制御する制御部11を有している。制御部11は給気用送風機9の給気用モータと排気用送風機10の排気用モータの回転数を制御し、給気風量と排気風量を一定に保つ制御をするとともに、給気用モータまたは排気用モータに流れる電流を検知する電流検知部17を有する。
ここで制御部11が行う給気風量と排気風量を一定に保つ制御について説明する。熱交換形換気装置1を起動すると、制御部11は、給気用送風機9と排気用送風機10の出力する送風量が同等になるように、給気用モータと排気用モータの回転数を制御する(熱交換気運転)。通常、施工状態で運転を開始すると、ダクト引き廻しによる決まった機外静圧が熱交換形換気装置にかかる。そのため、所定風量を出力するために制御部11は給気用モータと排気用モータの回転数を確認しながら、各モータの電流値を制御する。制御部11は、あらかじめ所定風量を出力するための給気用モータ回転数と給気用モータ電流値の関係と、排気用モータ回転数と排気用モータ電流値の関係を記憶している。
図2は、実施の形態1の熱交換形換気装置のモータ回転数とモータ電流値との関係を示す図である。制御部11は設定された所定風量をこのモータ回転数とモータ電流値の関係に一致させることで実現する。すなわち、図2に示す線上において風量一定制御が実現できる。
ここで、本実施の形態における特徴的な部分、すなわち、制御部11の風量調整ダンパ動作について説明する。
図3は、実施の形態1の熱交換形換気装置の施工を示す図である。
ユニタリー空調13は、建物内の機械室などに設置され、室内とダクトで接続され、室内の循環風路14を形成する。
ユニタリー空調13は、設定された室内温度となるように、冷房・暖房を行い、循環風路14に送風し、屋内の複数の部屋の中に空気を循環させることで、屋内を所定温度に制御する。
循環風路14は、ユニタリー空調13を介した温度調節経路であり、屋内の換気は行われておらず、屋内には屋外の新鮮な空気の供給はない。そこで循環風路14に給気経路7を接続することで、屋内循環で温度調節をしながら、同時に熱交換気を行い、屋外の新鮮空気を熱回収しながら屋内に取り入れる。このとき、熱交換素子6の下流側の給気経路7がユニタリー空調13の循環風路14に接続される。
このとき、ユニタリー空調13は屋内循環運転を行っているが、熱交換形換気装置1の外気給気口4にはユニタリー空調13の送風機能により負圧がかかる。これにより、熱交換形換気装置1の給気経路7はユニタリー空調13に引っ張られる形で設計以上の風量が流れることとなる。そのため、特に冬期の場合は、低温外気が多量に流れ結露などの不具合がおこる可能性がある。これを抑制するために、給気経路7において熱交換形換気装置1とユニタリー空調13の循環風路14との間に、ユニタリー空調13からの負圧を相殺するための風量調整ダンパ15を設ける。
従来であれば風量調整ダンパ15の角度は、熱交換形換気装置1の給気風量を実測しながら、所定風量となるように、開口面積(開口率)を調整することで決定される。しかし、都度風量測定を実施する必要があるなど、現場施工が煩雑となる。
本実施の形態では、風量調整ダンパ15は制御部11により開口面積(開口率)を自動で調整されるため、現場での施工工数を削減することができる。
具体的には、制御部11は給気用送風機9を所定の回転数で一定運転させる。このときユニタリー空調13が運転され、風量調整ダンパ15が全開であれば給気用送風機9は負圧のため負荷が小さくなり、電流検知部17により検知された給気用モータの電流値は所定の電流値よりも小さい値となる。
そこで制御部11は、風量調整ダンパ15のダンパ開口面積(開口率)が小さくなるようにダンパ角度を所定角度ずつ(例えば1°)動かす。制御部11は、目標電流値に対し所定範囲(例えば1%以内)に入ったら風量調整ダンパ15の調整を終了しダンパ角度を決定する。
ここで、風量調整ダンパ15の調整時における給気用送風機9の回転数は、消費電力が最も低減できる機外静圧0Pa(図2のP=0)のときの回転数が望ましい。これは、機外静圧0Pa(図2のP=0)において圧力損失を最も低減できるからである。
また、制御部11が給気用送風機9を所定の回転数で一定運転させ、このときユニタリー空調13が運転され風量調整ダンパ15が全閉であれば、給気用送風機9は送風経路が無いため仕事ができない。そのため、電流検知部17により検知された給気用モータの電流値が所定の電流値よりも小さな値となる。そこで、制御部11は、風量調整ダンパ15のダンパ開口面積(開口率)が大きくなるようにダンパ角度を所定角度ずつ(例えば1°)動かす。制御部11は、目標電流値に対し所定範囲(例えば1%以内)に入ったらダンパの調整を終了しダンパ角度を決定する。
本実施の形態の熱交換形換気装置1では、モータの回転数が一定となるように運転し、モータの電流値を目標電流値の所定範囲内になるように風量調整ダンパ15のダンパ開口面積(開口率)を調整しダンパ角度決定をした。これに対し、モータの電流値が一定となるように運転し、モータの回転数を目標回転数の所定範囲内になるように、風量調整ダンパ15のダンパ開口面積(開口率)を調整しダンパ角度を決定してもよい。この場合、電流検知部17の代わりに回転数検知部(不図示)を設けて、回転数検知部により給気用モータまたは排気用モータの回転数を検知して、制御部11がダンパ角度を決定する。
図4は、実施の形態1の熱交換形換気装置の他の施工を示す図である。図4の他の施工を示す図のように、屋内の循環風路14に排気経路8を接続してもよい。ユニタリー空調13は屋内循環運転を行っているが、熱交換形換気装置1の室内空気吸込口5にはユニタリー空調13の送風機能により負圧がかかる。これにより、熱交換形換気装置1の排気経路8はユニタリー空調13に引っ張られる形で設計風量を流すことができない。そのため、特に冬期の場合は、低温外気風量に対して高温な室内風量が流れにくくなり、熱交換しない外気が給気経路7を通り室内に直接流れ、結露や冷風感などの不具合がおこる可能性がある。これを抑制するために、排気経路8において熱交換形換気装置1とユニタリー空調13の循環風路14との間に、ユニタリー空調13からの負圧を相殺するための風量調整ダンパ16を設ける。
風量調整ダンパ16は制御部11により開口面積(開口率)を自動で調整されるため、現場での施工工数を削減することができる。
具体的には、制御部11は排気用送風機10を所定の回転数で一定運転させる。このときユニタリー空調13が運転され、風量調整ダンパ16が全開であれば排気用送風機10は負圧のため負荷が大きくなり送風できない。そのため排気用送風機10は仕事をせず、電流検知部17により検知された排気用モータの電流値は所定の電流値よりも小さい値となる。そこで制御部11は、風量調整ダンパ16のダンパ開口面積(開口率)が小さくなるようにダンパ角度を所定角度ずつ(例えば1°)動かす。制御部11は、目標電流値に対し所定範囲(例えば1%以内)に入ったら風量調整ダンパ16の調整を終了しダンパ角度を決定する。
ここで、風量調整ダンパ16の調整時における排気用送風機10の回転数は、消費電力が最も低減できる機外静圧0Pa(図2のP=0)のときの回転数が望ましい。
また、制御部11が排気用送風機10を所定の回転数で一定運転させ、このときユニタリー空調13が運転され風量調整ダンパ16が全閉であれば、排気用送風機10は送風経路が無いため仕事ができない。そのため、電流検知部17により検知された排気用モータの電流値が所定の電流値よりも小さな値となる。そこで制御部11は、風量調整ダンパ16のダンパ開口面積(開口率)が大きくなるようにダンパ角度を所定角度ずつ(例えば1°)動かす。制御部11は、目標電流値に対し所定範囲(例えば1%以内)に入ったら風量調整ダンパ16の調整を終了しダンパ角度を決定する。
このように、風量調整ダンパ16の角度を自動で決めることにより、現場施工を簡易化でき、施工工数を減少させることができる熱交換形換気装置1を得ることができる。
以下、本実施の形態について補足する。
ユニタリー空調13(unitary air conditioning)は、全館空調あるいはセントラル空調(centralair conditioning)の概念を含むものである。
また、制御部11は熱交換形換気装置1に設けたが、熱交換形換気装置1に設けなくてもよい。この場合、熱交換形換気装置1から離れた位置にある制御部11により制御が行われる。
また、制御部11は電流検知部17を有する構成としたが、電流検知部17は制御部11と分離して設けられてもよい。
また、制御部11は、給気用モータおよび排気用モータの回転数と電流値を検知して制御し、給気風量と排気風量を一定に保つ制御をするとしたが、これは図2においてP=0の位置を特定するために行ったものである。図2においてP=0の位置を特定する必要は必ずしもないため、給気風量と排気風量を一定に保つ風量一定制御は必須ではない。風量一定制御を行わない場合は、P=0の位置を特定できない場合もあるが、図2のP=0の点よりも右側のP>0(正圧)の範囲または左側のP<0(負圧)の範囲において目標電流値を設定してもよい。或いは任意の定数として目標電流値を設定してもよい。この場合、制御部11は、電流検知部17により検知された給気用モータ(または排気用モータ)の電流値が目標電流値の所定範囲内となるように、給気経路7(または排気経路8)内に設けられる風量調整ダンパの開口面積を変化させてもよい。さらにこの場合、制御部11は、給気用モータ(または排気用モータ)の回転数が所定の回転数で一定となるように制御しながら、給気用モータ(または排気用モータ)の電流値が目標電流値の所定範囲内となるように、給気経路7(または排気経路8)内に設けられる風量調整ダンパの開口面積を変化させてもよい。
また、風量一定制御しない場合は、給気用モータおよび排気用モータの回転数は検知しなくてもよい。この場合、制御部11は、給気用モータ(または排気用モータ)の電流値と、風量調整ダンパの開口面積(または風量調整ダンパの角度)とを検知する。
また、風量一定制御しない場合であって、回転数検知部(不図示)を設ける場合は、給気用モータおよび排気用モータの電流値は検知しなくてもよい。この場合、制御部11は、給気用モータ(または排気用モータ)の回転数と、風量調整ダンパの開口面積(または風量調整ダンパの角度)とを検知する。そして、例えば、制御部11は、給気用モータ(または排気用モータ)の電流値を一定運転し、給気用モータ(または排気用モータ)の回転数を目標回転数の所定範囲内になるように、風量調整ダンパ15のダンパ開口面積(開口率)を調整しダンパ角度を決定してもよい。
また、制御部11は、給気用モータ(または排気用モータ)の電流値が所定の機外静圧における所定風量を出力する給気用モータ(または排気用モータ)の電流値となるように、給気経路7内に設けられる風量調整ダンパ15または排気経路8内に設けられる風量調整ダンパ16を動作させてもよい。
(実施の形態2)
次に、実施の形態2の熱交換形換気装置について説明する。
次に、実施の形態2の熱交換形換気装置について説明する。
従来の熱交換形換気装置の給気経路(または排気経路)とユニタリー空調(unitary air conditioning)の循環風路とを接続する場合、ユニタリー空調は熱交換形換気装置を通じて外気と通じるため、ユニタリー空調動作時に外気導入をしてしまうと、外気導入をせずに室内循環する場合と比較して、ユニタリー空調の温度調節の効率が下がる場合がある。
そこで実施の形態2では、ユニタリー空調の設定温度に対し、所定の範囲に室内温度がない場合、外気導入を抑えることで、ユニタリー空調の温度調節効率を高めることができる熱交換形換気装置を実現することを目的とする。
そして、この目的を達成するために、実施の形態2の熱交換形換気装置は、給気用モータを備えた給気用送風機と、排気用モータを備えた排気用送風機と、給気用送風機により屋外から室内に送風される給気経路と、排気用送風機により室内から屋外に送風される排気経路と、給気経路と排気経路とが交差する位置に設けられ、室内の空気と屋外の空気を換気する際に熱交換するための熱交換素子と、給気経路内に設けられた給気風量調整ダンパとを備える。熱交換形換気装置は、制御部により、給気用送風機のON/OFF、排気用送風機のON/OFF、および給気風量調整ダンパの開/閉を制御する。給気経路はユニタリー空調の循環風路に直接的に接続され、排気経路は循環風路以外の屋内空間に直接的に接続される。また、熱交換形換気装置は、排気経路内であって熱交換素子の上流側に室内温度検出部を設け、室内温度検出部により検出した室内温度をTi、ユニタリー空調の設定温度をTu、所定温度をα1、α2とすると、制御部は、「ユニタリー空調がON」且つ「Ti≦Tu-α1またはTu+α2≦Ti」である場合は、「排気用送風機がOFF」且つ「給気風量調整ダンパが閉」となるように制御する。また、制御部は、「ユニタリー空調がON」且つ「Tu-α1<Ti<Tu+α2」である場合は、「排気用送風機がON」且つ「給気風量調整ダンパが開」となるように制御することを特徴とする。これにより所期の目的を達成するものである。
実施の形態2の熱交換形換気装置は、ユニタリー空調の設定温度に対し、所定の範囲に室内温度がない場合、外気導入を抑えることで、ユニタリー空調の温度調節効率を高めることができる。
また、ユニタリー空調の運転時に外気の導入を抑制することで、ユニタリー空調の負荷を下げユニタリー空調の消費電力を削減できるとともに、屋内環境をすばやく空調し快適環境をすばやく実現することができる。
実施の形態2の熱交換形換気装置について、図5を用いて内部の構成と給気経路、排気経路について説明する。
図5は、実施の形態2の熱交換形換気装置を示す上面断面図である。図5に示すように、熱交換形換気装置101には、箱形の本体の側面に外気吸込口102、室内空気排気口103、そして、この側面に対向した側面に外気給気口104、室内空気吸込口105が設けられている。
熱交換形換気装置101は、新鮮な屋外の空気(給気空気)を側面の外気吸込口102から吸込み、熱交換形換気装置101の内部の熱交換素子106を通って外気給気口104から室内に供給する給気経路107を備えている。
また、熱交換形換気装置101は、汚染された室内の空気(排気空気)を室内空気吸込口105から吸込み、熱交換素子106を通って室内空気排気口103から室外に排気する排気経路108を備えている。このとき、熱交換素子106は、排気される空気の熱量を給気される空気に供給する、または、給気される空気の熱量を排気される空気の熱量に供給する、熱回収の機能を有している。
外気吸込口102から導入される新鮮な屋外空気(給気空気)と、室内空気吸込口105から導入される汚染された室内の空気(排気空気)は、給気用送風機109と排気用送風機110の運転によりそれぞれ給気経路107と排気経路108を流れる。
熱交換素子106は、給気経路107と排気経路108とが交差する位置に配設される。熱交換素子106の室外空気吸込側および室内空気吸込側にはそれぞれ空気清浄フィルター112が配設される。また、外気吸込口102、室内空気排気口103、外気給気口104、室内空気吸込口105は、それぞれダクトが接続できる形状となっている。
排気経路108内であって熱交換素子106の上流側に、室内温度を検出する室内温度検出部113が設けられている。
ここで、本実施の形態における特徴的な部分、すなわち、制御部111の風量調整ダンパ動作および製品動作について説明する。
図6は、実施の形態2の熱交換形換気装置の施工を示す図である。ユニタリー空調114は、建物内の機械室などに設置され、室内とダクトで接続され、室内の循環風路115を形成する。
ユニタリー空調114は、設定された室内温度となるように、冷房・暖房を行い、循環風路115に送風し、屋内の複数の部屋の中に空気を循環させることで、屋内を所定温度に制御する。
通常の循環風路は、ユニタリー空調114を介した温度調節経路であり、屋内の換気は行われておらず、屋内には屋外の新鮮な空気の供給はない。そこで循環風路115に給気経路107を接続することで、屋内循環で温度調節をしながら、同時に熱交換気を行い、屋外の新鮮空気を熱回収しながら屋内に取り入れる。このとき、熱交換素子106の下流側の給気経路107がユニタリー空調114の循環風路115に接続される。
このとき、ユニタリー空調114は屋内循環運転を行っているが、熱交換形換気装置101の外気給気口104にはユニタリー空調114の送風機能により負圧がかかる。これにより、熱交換形換気装置101の給気経路107はユニタリー空調114に引っ張られる形で設計以上の風量が流れることとなる。そのため、特に冬期の場合は、低温外気が多量に流れ結露などの不具合がおこる可能性がある。これを抑制するために、給気経路107において熱交換形換気装置101とユニタリー空調114の循環風路115との間に、ユニタリー空調114からの負圧を相殺するための給気風量調整ダンパ116を設ける。給気風量調整ダンパ116は、熱交換形換気装置101の給気風量を実測しながら、所定風量となるように、開口面積(開口率)を調整することでダンパ角度を決定する。
ユニタリー空調114により屋内循環で温度調整をしながら、同時に熱交換形換気装置101により熱交換気を行い、屋外の新鮮空気を熱回収しながら屋内に取り入れる換気ができる。
この一方で、特にユニタリー空調114の起動時は、室内を設定温度まで温度調節する際に、循環風路115に、例えば冬期における暖房時に熱交換後の外気が導入されることは、循環運転に比べ空調負荷を大きくすることとなり、室内が設定温度に到達する時間が長くなる。
これは、夏期における冷房時においても同様である。すなわち、夏期における冷房時に熱交換後の外気が導入されることは、循環運転に比べ空調負荷を大きくすることとなり、室内が設定温度に到達する時間が長くなる。
図7は、実施の形態2の熱交換形換気装置の制御ブロック図である。
本実施の形態では、図7のように、制御部111により、給気用送風機109、排気用送風機110、給気風量調整ダンパ116を制御する。ユニタリー空調114の運転時に外気の導入を抑制することにより、ユニタリー空調114の負荷を下げユニタリー空調114の消費電力を削減できるとともに、屋内環境をすばやく空調し快適環境をすばやく実現することができる。
制御部111は、室内温度検出部113から得られた室内温度と、ユニタリー空調114の設定温度とを比較することにより、制御を行う。
具体的に図7の制御動作を説明する。図7において、室内温度検出部113により検出した室内温度をTi、ユニタリー空調114の設定温度をTu、所定温度をα1、α2とする。
ユニタリー空調114が停止中は熱交換形換気装置101は運転しない。
室内温度調節のために、ユニタリー空調114を起動する際、熱交換形換気装置101は、直ぐに熱交換気運転を開始しない。
まず、制御部111は給気経路107内の給気風量調整ダンパ116を閉じたままで、排気用送風機110のみを起動し、室内空気を熱交換形換気装置101内へ導入する。
熱交換形換気装置101内の室内温度検出部113にて室内温度Tiを検出し、Ti≦Tu-α1またはTu+α2≦Tiである場合は、制御部111は、室内温度Tiがユニタリー空調設定温度Tu近くまで到達していないと判断する。そして制御部111は、排気用送風機110を停止し且つ給気風量調整ダンパ116が閉となるように制御する。
これにより、ユニタリー空調114が室内循環運転する。ユニタリー空調114のみの循環運転を一定時間継続したt1時間後、排気用送風機110を再度起動し、室内温度検出部113にて室内温度Tiを検出する。
このとき、Tu-α1<Ti<Tu+α2である場合は、制御部111は、室内温度Tiがユニタリー空調設定温度Tu近くに到達したと判断する。そして制御部111は、排気用送風機110および給気用送風機109を起動し、給気風量調整ダンパ116を開くように制御する。
これにより、室内温度がユニタリー空調114の設定温度Tu近くに到達した後は、熱交換形換気装置101を起動し、屋外の新鮮空気を熱回収しながら屋内に取り入れる換気を継続できる。その後、Ti≦Tu-α1またはTu+α2≦Tiとなった場合は、制御部111は、室内温度Tiがユニタリー空調設定温度Tu近くまで到達していないと判断する。そして制御部111は、排気用送風機110を停止し且つ給気風量調整ダンパ116が閉となるように制御し、再びユニタリー空調114のみで室内循環運転をt1時間行う。
途中でユニタリー空調114の設定温度Tuが変更されたときには、制御部111は、室内温度検出部113にて室内温度Tiを検出し、Tu-α1<Ti<Tu+α2であるかどうかを確認する。Tu-α1<Ti<Tu+α2である場合は、制御部111は、再び給気風量調整ダンパ116を開き、給気用送風機109、排気用送風機110を運転し、熱交換運転を継続する。
その後、設定温度Tuが変更されない場合、制御部111は、所定時間t2時間後には、再度室内温度Tiを検出し、室内環境の確認を行う。Ti≦Tu-α1またはTu+α2≦Tiである場合は、制御部111は、給気風量調整ダンパ116を閉じ、給気用送風機109、排気用送風機110を停止し、ユニタリー空調114の循環運転を行い、室内の温度調節を行う。
図7に示す制御を行うことにより、まず室内環境をユニタリー空調114の設定温度Tu近くまで小さい負荷で温度調節し、室内環境が目標温度近くに到達次第、熱交換気運転を行い、熱回収した新鮮空気を取り込みながら省エネを図りつつ快適環境を実現することができる。
なお、図7において「Ti≦Tu-α1またはTu+α2≦Ti」である場合に給気用送風機をOFFとしたが、給気用送風機をONのままにしてもよい。これは、給気風量調整ダンパを閉じた状態にするので、給気用送風機をONにしたとしても給気を停止することができるからである。
図8は、実施の形態2の熱交換形換気装置の他の施工を示す図である。
図4の他の施工を示す図のように、屋内の循環風路115に排気経路108を接続してもよい。ユニタリー空調114は屋内循環運転を行っているが、熱交換形換気装置101の室内空気吸込口105にはユニタリー空調114の送風機能により負圧がかかる。これにより、熱交換形換気装置101の排気経路108はユニタリー空調114に引っ張られる形で設計風量を流すことができない。そのため、特に冬期の場合は、低温外気風量に対して高温な室内風量が流れにくくなり、熱交換しない外気が給気経路107を通り室内に直接流れ、結露や冷風感などの不具合がおこる可能性がある。これを抑制するために、排気経路108において熱交換形換気装置101とユニタリー空調114の循環風路115との間に、ユニタリー空調114からの負圧を相殺するための排気風量調整ダンパ117を設ける。排気風量調整ダンパ117は、熱交換形換気装置101の排気風量を実測しながら、所定風量となるように、開口面積(開口率)を調整することでダンパ角度を決定する。
図9は、図8の熱交換形換気装置の制御ブロック図である。
具体的に図9の制御動作を説明する。図9において、室内温度検出部113により検出した室内温度をTi、ユニタリー空調114の設定温度をTu、所定温度をα1、α2とする。
ユニタリー空調114が停止中は熱交換形換気装置101は運転しない。
室内温度調節のために、ユニタリー空調114を起動する際、熱交換形換気装置101は、直ちに熱交換気運転を開始しない。
まず、制御部111は給気経路107内の給気風量調整ダンパ116を閉じ、排気経路108内の排気風量調整ダンパ117を開き、排気用送風機110のみを起動し、室内空気を熱交換形換気装置101内へ導入する。
熱交換形換気装置101内の室内温度検出部113にて室内温度Tiを検出し、Ti≦Tu-α1またはTu+α2≦Tiである場合は、制御部111は、室内温度Tiがユニタリー空調設定温度Tu近くまで到達していないと判断する。そして制御部111は、排気用送風機110を停止し且つ給気風量調整ダンパ116および排気風量調整ダンパ117が閉となるように制御する。
これにより、ユニタリー空調114が室内循環運転する。ユニタリー空調114のみの循環運転を一定時間継続したt1時間後、排気用送風機110を再度起動し、排気風量調整ダンパ117を開き、室内温度検出部113にて室内温度Tiを検出する。
このとき、Tu-α1<Ti<Tu+α2である場合は、室内温度Tiがユニタリー空調設定温度Tu近くに到達したと判断し、排気用送風機110および給気用送風機109を起動し、給気風量調整ダンパ116、排気風量調整ダンパ117を開くように制御する。
これにより、室内温度Tiがユニタリー空調114の設定温度Tu近くまで到達した後は、熱交換形換気装置101を起動し、屋外の新鮮空気を熱回収しながら屋内に取り入れる換気を継続できる。その後、Ti≦Tu-α1またはTu+α2≦Tiとなった場合は、制御部111は、室内温度Tiがユニタリー空調設定温度Tu近くまで到達していないと判断し、給気風量調整ダンパ116および排気風量調整ダンパ117が閉となるように制御し、再びユニタリー空調114のみで室内循環運転をt1時間行う。
途中でユニタリー空調114の設定温度Tuが変更されたときには、制御部111は、室内温度検出部113にて室内温度Tiを検出し、Tu-α1<Ti<Tu+α2であるかどうかを確認する。Tu-α1<Ti<Tu+α2である場合は、制御部111は、再び給気風量調整ダンパ116および排気風量調整ダンパ117を開き、給気用送風機109および排気用送風機110を運転し、熱交換運転を継続する。
その後、設定温度Tuが変更されない場合、制御部111は、所定時間t2時間後には、再度室内温度Tiを検出し、室内環境の確認を行う。Ti≦Tu-α1またはTu+α2≦Tiである場合は、制御部111は、給気風量調整ダンパ116および排気風量調整ダンパ117を閉じ、給気用送風機109および排気用送風機110を停止し、ユニタリー空調114の循環運転を行い、室内の温度調節を行う。
図9に示す制御を行うことにより、まず室内環境をユニタリー空調114の設定温度Tu近くまで小さい負荷で温度調節し、室内環境が目標温度近くに到達次第、熱交換気運転を行い、熱回収した新鮮空気を取り込みながら省エネを図りつつ快適環境を実現することができる。
なお、図9において「Ti≦Tu-α1またはTu+α2≦Ti」である場合に給気用送風機および排気用送風機をOFFとしたが、給気用送風機および/または排気用送風機をONのままにしてもよい。これは、給気風量調整ダンパおよび排気風量調整ダンパを閉じた状態にするので、給気用送風機および/または排気用送風機をONにしたとしても給気および排気を停止することができるからである。
図10は、実施の形態2の熱交換形換気装置の他の施工を示す図である。
図10に示すように、給気風量調整ダンパ116および排気風量調整ダンパ117を熱交換形換気装置101の本体内部に設けても良い。
また、図示しないが、図6の給気風量調整ダンパ116を熱交換形換気装置101の本体内部に設けても良い。
以下、本実施形態について補足する。
ユニタリー空調114(unitary air conditioning)は、全館空調あるいはセントラル空調(central air conditioning)の概念を含むものである。
また、制御部111は熱交換形換気装置101に設けたが、熱交換形換気装置101に設けなくてもよい。この場合、熱交換形換気装置101から離れた位置にある制御部111により制御が行われる。
また、α1は1℃等、例えば0.1℃~3℃の何れかの値を取り得る定数である。
また、α2は1℃等、例えば0.1℃~3℃の何れかの値を取り得る定数である。
また、「給気風量調整ダンパが閉」とは給気風量調整ダンパが全閉の場合を含む。「排気風量調整ダンパが閉」とは排気風量調整ダンパが全閉の場合を含む。
また、ユニタリー空調114が停止中は熱交換形換気装置101は運転しない、としたが、ユニタリー空調114が停止中であっても、熱交換形換気装置101は運転可能である。この場合、循環風路115に、室内と連通する連通口を別途設ければ、ユニタリー空調114を経由しない風路が形成できるため、スムーズな熱交換運転が可能となる。なお、このとき、循環風路115に設ける連通口は、開閉できることが好ましく、ユニタリー空調がONのときは閉じた状態となり、ユニタリー空調がOFFのときは開いた状態となることが好ましい。
また、実施の形態2では、給気経路107は、ユニタリー空調114の上流側における循環風路115に接続したが、ユニタリー空調114の下流側における循環風路115に接続してもよい。
以上、本発明に係る熱交換形換気装置について、実施の形態に基づいて説明したが、本発明は、実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
本発明にかかる換気装置は、外気と室内空気の熱交換を目的とするダクト式の換気装置、ダクト式の空気調和装置などの用途としても有効である。
1,101 熱交換形換気装置
2,102 外気吸込口
3,103 室内空気排気口
4,104 外気給気口
5,105 室内空気吸込口
6,106 熱交換素子
7,107 給気経路
8,108 排気経路
9,109 給気用送風機
10,110 排気用送風機
11,111 制御部
12,112 空気清浄フィルター
13 ユニタリー空調
14 循環風路
15 風量調整ダンパ
16 風量調整ダンパ
17 電流検知部
113 室内温度検出部
114 ユニタリー空調
115 循環風路
116 給気風量調整ダンパ
117 排気風量調整ダンパ
202 外気給気口
203 熱交換素子
209 給気用送風機
210 排気用送風機
2,102 外気吸込口
3,103 室内空気排気口
4,104 外気給気口
5,105 室内空気吸込口
6,106 熱交換素子
7,107 給気経路
8,108 排気経路
9,109 給気用送風機
10,110 排気用送風機
11,111 制御部
12,112 空気清浄フィルター
13 ユニタリー空調
14 循環風路
15 風量調整ダンパ
16 風量調整ダンパ
17 電流検知部
113 室内温度検出部
114 ユニタリー空調
115 循環風路
116 給気風量調整ダンパ
117 排気風量調整ダンパ
202 外気給気口
203 熱交換素子
209 給気用送風機
210 排気用送風機
Claims (12)
- 給気用モータを備えた給気用送風機と、
排気用モータを備えた排気用送風機と、
前記給気用送風機により屋外から室内に送風される給気経路と、
前記排気用送風機により室内から室外に送風される排気経路と、
前記給気経路と前記排気経路とが交差する位置に設けられ、室内の空気と屋外の空気を換気する際に熱交換するための熱交換素子と、
前記給気用モータに流れる電流を検知する電流検知部とを備えた熱交換形換気装置において、
制御部により、前記給気用モータの回転数を制御し、
前記給気経路はユニタリー空調の循環風路に接続され、
前記制御部は、前記電流検知部により検知された前記給気用モータの電流値が目標電流値の所定範囲内となるように、前記給気経路内に設けられる風量調整ダンパの開口面積を変化させることを特徴とする熱交換形換気装置。 - 前記制御部は、前記給気用モータの回転数が所定の回転数で一定となるように制御しながら、前記給気用モータの電流値が目標電流値の所定範囲内となるように、前記風量調整ダンパの開口面積を変化させることを特徴とする請求項1に記載の熱交換形換気装置。
- 給気用モータを備えた給気用送風機と、
排気用モータを備えた排気用送風機と、
前記給気用送風機により屋外から室内に送風される給気経路と、
前記排気用送風機により室内から室外に送風される排気経路と、
前記給気経路と前記排気経路とが交差する位置に設けられ、室内の空気と屋外の空気を換気する際に熱交換するための熱交換素子と、
前記排気用モータに流れる電流を検知する電流検知部とを備えた熱交換形換気装置において、
制御部により、前記排気用モータの回転数を制御し、
前記排気経路はユニタリー空調の循環風路に接続され、
前記制御部は、前記電流検知部により検知された前記排気用モータの電流値が目標電流値の所定範囲内となるように、前記排気経路内に設けられる風量調整ダンパの開口面積を変化させることを特徴とする熱交換形換気装置。 - 前記制御部は、前記排気用モータの回転数が所定の回転数で一定となるように制御しながら、前記排気用モータの電流値が目標電流値の所定範囲内となるように、前記風量調整ダンパの開口面積を変化させることを特徴とする請求項3に記載の熱交換形換気装置。
- 給気用モータを備えた給気用送風機と、
排気用モータを備えた排気用送風機と、
前記給気用送風機により屋外から室内に送風される給気経路と、
前記排気用送風機により室内から屋外に送風される排気経路と、
前記給気経路と前記排気経路とが交差する位置に設けられ、室内の空気と屋外の空気を換気する際に熱交換するための熱交換素子と、
前記給気経路内に設けられた給気風量調整ダンパとを備えた熱交換形換気装置において、制御部により、前記給気用送風機のON/OFF、前記排気用送風機のON/OFF、および前記給気風量調整ダンパの開/閉を制御し、
前記給気経路はユニタリー空調の循環風路に直接的に接続され、
前記排気経路は前記循環風路以外の屋内空間に直接的に接続され、
前記排気経路内であって前記熱交換素子の上流側に室内温度検出部を設け、
前記室内温度検出部により検出した室内温度をTi、前記ユニタリー空調の設定温度をTu、所定温度をα1、α2とすると、
前記制御部は、
「前記ユニタリー空調がON」且つ「Ti≦Tu-α1またはTu+α2≦Ti」である場合は、「前記排気用送風機がOFF」且つ「前記給気風量調整ダンパが閉」となるように制御し、
「前記ユニタリー空調がON」且つ「Tu-α1<Ti<Tu+α2」である場合は、「前記排気用送風機がON」且つ「前記給気風量調整ダンパが開」となるように制御することを特徴とする熱交換形換気装置。 - 前記制御部は、
「前記ユニタリー空調がON」且つ「Ti≦Tu-α1またはTu+α2≦Ti」である場合は、「前記給気用送風機がOFF」となるように制御することを特徴とする請求項5に記載の熱交換形換気装置。 - 前記制御部は、
前記ユニタリー空調の設定温度Tuが変更された場合、「Tu-α1<Ti<Tu+α2」を満たすかどうかを再度確認し、
「前記ユニタリー空調がON」且つ「Ti≦Tu-α1またはTu+α2≦Ti」である場合は、「前記排気用送風機がOFF」且つ「前記給気風量調整ダンパが閉」となるように制御し、
「前記ユニタリー空調がON」且つ「Tu-α1<Ti<Tu+α2」である場合は、「前記排気用送風機がON」且つ「前記給気風量調整ダンパが開」となるように制御することを特徴とする請求項5に記載の熱交換形換気装置。 - 給気用モータを備えた給気用送風機と、
排気用モータを備えた排気用送風機と、
前記給気用送風機により屋外から室内に送風される給気経路と、
前記排気用送風機により室内から屋外に送風される排気経路と、
前記給気経路と前記排気経路とが交差する位置に設けられ、室内の空気と屋外の空気を換気する際に熱交換するための熱交換素子と、
前記給気経路内に設けられた給気風量調整ダンパと、
前記排気経路内に設けられた排気風量調整ダンパとを備えた熱交換形換気装置において、制御部により、前記給気用送風機のON/OFF、前記排気用送風機のON/OFF、前記給気風量調整ダンパの開/閉、および前記排気風量調整ダンパの開/閉を制御し、
前記給気経路はユニタリー空調の循環風路に直接的に接続され、
前記排気経路は前記循環風路に直接的に接続され、
前記排気経路内であって前記熱交換素子の上流側に室内温度検出部を設け、
前記室内温度検出部により検出した室内温度をTi、前記ユニタリー空調の設定温度をTu、所定温度をα1、α2とすると、
前記制御部は、
「前記ユニタリー空調がON」且つ「Ti≦Tu-α1またはTu+α2≦Ti」である場合は、「前記給気風量調整ダンパが閉」且つ「前記排気風量調整ダンパが閉」となるように制御し、
「前記ユニタリー空調がON」且つ「Tu-α1<Ti<Tu+α2」である場合は、「前記給気用送風機がON」且つ「前記排気用送風機がON」且つ「前記給気風量調整ダンパが開」且つ「前記排気風量調整ダンパが開」となるように制御することを特徴とする熱交換形換気装置。 - 前記制御部は、
「前記ユニタリー空調がON」且つ「Ti≦Tu-α1またはTu+α2≦Ti」である場合は、「前記給気用送風機および前記排気用送風機がOFF」となるように制御することを特徴とする請求項8に記載の熱交換形換気装置。 - 前記制御部は、
「前記ユニタリー空調がON」且つ「Ti≦Tu-α1またはTu+α2≦Ti」である場合は、「前記給気用送風機または前記排気用送風機がOFF」となるように制御することを特徴とする請求項8に記載の熱交換形換気装置。 - 前記制御部は、
前記ユニタリー空調の設定温度Tuが変更された場合、「Tu-α1<Ti<Tu+α2」を満たすかどうかを再度確認し、
「前記ユニタリー空調がON」且つ「Ti≦Tu-α1またはTu+α2≦Ti」である場合は、「前記給気風量調整ダンパが閉」且つ「前記排気風量調整ダンパが閉」となるように制御し、
「前記ユニタリー空調がON」且つ「Tu-α1<Ti<Tu+α2」である場合は、「前記給気用送風機がON」且つ「前記排気用送風機がON」且つ「前記給気風量調整ダンパが開」且つ「前記排気風量調整ダンパが開」となるように制御することを特徴とする請求項8に記載の熱交換形換気装置。 - 前記給気用送風機、前記排気用送風機、および前記熱交換素子を収納する筐体を備え、
前記給気風量調整ダンパは、前記筐体の内部に設けられることを特徴とする請求項8に記載の熱交換形換気装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3033302A CA3033302A1 (en) | 2016-09-26 | 2017-09-15 | Heat exchange-type ventilation device |
US16/325,238 US20190203971A1 (en) | 2016-09-26 | 2017-09-15 | Heat exchange-type ventilation device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-186423 | 2016-09-26 | ||
JP2016186423A JP2018054135A (ja) | 2016-09-26 | 2016-09-26 | 熱交換形換気装置 |
JP2017-143647 | 2017-07-25 | ||
JP2017143647A JP2019027606A (ja) | 2017-07-25 | 2017-07-25 | 熱交換形換気装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056191A1 true WO2018056191A1 (ja) | 2018-03-29 |
Family
ID=61690419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/033390 WO2018056191A1 (ja) | 2016-09-26 | 2017-09-15 | 熱交換形換気装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190203971A1 (ja) |
CA (1) | CA3033302A1 (ja) |
WO (1) | WO2018056191A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111520860A (zh) * | 2019-02-05 | 2020-08-11 | 富士电机株式会社 | 供气系统 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10641515B2 (en) * | 2017-12-21 | 2020-05-05 | Rheem Manufacturing Company | Linearization of airflow through zone dampers of an HVAC system |
US11274839B1 (en) * | 2018-09-21 | 2022-03-15 | Qc Manufacturing, Inc. | Systems and methods for controlling and adjusting volume of fresh air intake in a building structure |
US11415333B2 (en) | 2019-11-22 | 2022-08-16 | Qc Manufacturing, Inc. | Fresh air cooling and ventilating system |
US20220065470A1 (en) * | 2020-08-25 | 2022-03-03 | Regal Beloit America, Inc. | Systems and methods for controlling indoor air quality with a fluid moving apparatus |
US11536483B1 (en) * | 2020-10-28 | 2022-12-27 | Trane International Inc. | Model-based control of zone dampers in an HVAC system |
EP4036486A1 (en) | 2021-01-29 | 2022-08-03 | Daikin Industries, Ltd. | Integrated hvac system for a building |
CN112923483B (zh) * | 2021-02-07 | 2022-08-02 | 广东钜宏科技股份有限公司 | 一种带热回收的新风系统 |
US20230243549A1 (en) * | 2022-02-03 | 2023-08-03 | Carrier Corporation | Collapsible coaxial flex duct |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0415442A (ja) * | 1990-05-07 | 1992-01-20 | Daikin Ind Ltd | 換気機能を有する空気調和装置 |
JPH0566044A (ja) * | 1991-06-18 | 1993-03-19 | Daikin Ind Ltd | 空気調和装置 |
JPH0742990A (ja) * | 1993-07-31 | 1995-02-10 | Ryuichi Kurokawa | 遊技場における空気調和機の省エネルギー制御方法 |
JPH08159532A (ja) * | 1994-12-09 | 1996-06-21 | Toshiba Corp | 換気扇の風量制御装置 |
JP2005282949A (ja) * | 2004-03-30 | 2005-10-13 | Sanyo Electric Co Ltd | 空気調和装置 |
JP2007192495A (ja) * | 2006-01-20 | 2007-08-02 | Matsushita Electric Ind Co Ltd | 換気扇の風量制御装置 |
JP2013104578A (ja) * | 2011-11-10 | 2013-05-30 | Daikin Industries Ltd | Vav式空調システム |
-
2017
- 2017-09-15 CA CA3033302A patent/CA3033302A1/en active Pending
- 2017-09-15 US US16/325,238 patent/US20190203971A1/en not_active Abandoned
- 2017-09-15 WO PCT/JP2017/033390 patent/WO2018056191A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0415442A (ja) * | 1990-05-07 | 1992-01-20 | Daikin Ind Ltd | 換気機能を有する空気調和装置 |
JPH0566044A (ja) * | 1991-06-18 | 1993-03-19 | Daikin Ind Ltd | 空気調和装置 |
JPH0742990A (ja) * | 1993-07-31 | 1995-02-10 | Ryuichi Kurokawa | 遊技場における空気調和機の省エネルギー制御方法 |
JPH08159532A (ja) * | 1994-12-09 | 1996-06-21 | Toshiba Corp | 換気扇の風量制御装置 |
JP2005282949A (ja) * | 2004-03-30 | 2005-10-13 | Sanyo Electric Co Ltd | 空気調和装置 |
JP2007192495A (ja) * | 2006-01-20 | 2007-08-02 | Matsushita Electric Ind Co Ltd | 換気扇の風量制御装置 |
JP2013104578A (ja) * | 2011-11-10 | 2013-05-30 | Daikin Industries Ltd | Vav式空調システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111520860A (zh) * | 2019-02-05 | 2020-08-11 | 富士电机株式会社 | 供气系统 |
Also Published As
Publication number | Publication date |
---|---|
CA3033302A1 (en) | 2018-03-29 |
US20190203971A1 (en) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018056191A1 (ja) | 熱交換形換気装置 | |
CN110023686B (zh) | 热交换型换气装置 | |
JP5591329B2 (ja) | 換気空調装置及びその制御方法 | |
US11187429B2 (en) | Integrated heat and energy recovery ventilator system | |
KR101034936B1 (ko) | 전열교환형 환기장치 및 그 제어방법 | |
JP6253459B2 (ja) | 空調用換気装置 | |
KR100665999B1 (ko) | 환기겸용 덕트형 공기조화기 | |
JP2008209034A (ja) | 空調換気装置 | |
WO2010116824A1 (ja) | 熱交換換気装置 | |
CN106489055A (zh) | 换气装置 | |
JP2013113473A (ja) | 熱交換換気装置 | |
CN103946638A (zh) | 给排型换气装置 | |
JP6074651B2 (ja) | 全熱交換型換気装置 | |
JP2015169399A (ja) | 換気装置 | |
JP6675057B2 (ja) | 熱交換形換気装置 | |
KR101562641B1 (ko) | 공기조화시스템 | |
KR101407435B1 (ko) | 공기조화기의 외기 바이패스 장치 | |
JP3753182B1 (ja) | 分流式空気調和装置及びその制御システム | |
KR100747802B1 (ko) | 환기장치 및 환기장치의 제어방법 | |
JP2658597B2 (ja) | 空気調和装置 | |
KR20180035290A (ko) | 공기조화 시스템 | |
KR20180035291A (ko) | 공기조화 시스템 | |
JP4675075B2 (ja) | 空気調和装置及び空気調和装置の制御方法 | |
JP2018054135A (ja) | 熱交換形換気装置 | |
JPH0718570B2 (ja) | 空気浄化換気空調装置及び該装置の制御方式 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17852964 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3033302 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17852964 Country of ref document: EP Kind code of ref document: A1 |