Nothing Special   »   [go: up one dir, main page]

WO2018056045A1 - 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 - Google Patents

電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018056045A1
WO2018056045A1 PCT/JP2017/031881 JP2017031881W WO2018056045A1 WO 2018056045 A1 WO2018056045 A1 WO 2018056045A1 JP 2017031881 W JP2017031881 W JP 2017031881W WO 2018056045 A1 WO2018056045 A1 WO 2018056045A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
turned
power conversion
motor
side switching
Prior art date
Application number
PCT/JP2017/031881
Other languages
English (en)
French (fr)
Inventor
弘光 大橋
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2018540948A priority Critical patent/JP7070420B2/ja
Priority to CN201780057515.7A priority patent/CN109874381B/zh
Priority to DE112017004791.9T priority patent/DE112017004791T5/de
Publication of WO2018056045A1 publication Critical patent/WO2018056045A1/ja
Priority to US16/292,479 priority patent/US10742137B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/46Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a power conversion device that converts electric power supplied to an electric motor, a motor drive unit, and an electric power steering device.
  • Electric motors such as brushless DC motors and AC synchronous motors are generally driven by a three-phase current.
  • a complicated control technique such as vector control is used.
  • Such control technology requires advanced mathematical operations, and uses digital operation circuits such as a microcontroller (microcomputer).
  • Microcontroller microcontroller
  • Vector control technology is used in applications where motor load fluctuation is large, for example, in fields such as washing machines, electric assist bicycles, electric scooters, electric power steering devices, electric vehicles, and industrial equipment.
  • PWM pulse width modulation
  • an automotive electronic control unit (ECU: Electric Control Unit) is used for a vehicle.
  • the ECU includes a microcontroller, a power supply, an input / output circuit, an AD converter, a load drive circuit, a ROM (Read Only Memory), and the like.
  • An electronic control system is built around the ECU.
  • the ECU processes signals from sensors to control actuators such as motors. More specifically, the ECU controls the inverter in the power conversion device while monitoring the rotational speed and torque of the motor. Under the control of the ECU, the power conversion device converts drive power supplied to the motor.
  • Patent Document 1 discloses a power conversion device that includes a control unit and two inverters and converts power supplied to a three-phase motor.
  • Each of the two inverters is connected to a power source and a ground (hereinafter referred to as “GND”).
  • One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding.
  • Each inverter has a bridge circuit composed of three legs, each including a high-side switching element and a low-side switching element.
  • the control unit switches the motor control from the normal control to the abnormal control. In normal control, for example, the motor is driven by the other inverter using the neutral point of the winding formed in one inverter.
  • Embodiments of the present disclosure provide a power conversion device capable of appropriate current control over a wide range from low speed driving to high speed driving.
  • An exemplary power conversion device converts power from a power source into power supplied to a motor having n-phase (n is an integer of 3 or more) windings, A first inverter connected to one end, a second inverter connected to the other end of each phase winding, a first switch element for switching connection / disconnection between the first inverter and the power source, and A first switching circuit having at least one second switching element that switches connection / disconnection between the first inverter and the ground, and is configured in the first inverter when the motor is driven at a low speed.
  • a novel power conversion device capable of appropriate current control over a wide range from low speed drive to high speed drive, a motor drive unit having the power conversion device, and the motor drive
  • An electric power steering apparatus having a unit is provided.
  • FIG. 1 is a circuit diagram illustrating a circuit configuration of a power conversion device 100 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram illustrating another circuit configuration of the power conversion apparatus 100 according to the exemplary embodiment 1.
  • FIG. 3 is a block diagram showing a typical block configuration of a motor drive unit 400 having the power conversion device 100.
  • FIG. 4 is a graph showing the relationship between the rotational speed N (rps) per unit time of the motor and the torque T (N ⁇ m).
  • FIG. 5 is a flowchart illustrating an example of a processing procedure of the operation of the power conversion apparatus 100 according to the exemplary embodiment 1.
  • FIG. 1 is a circuit diagram illustrating a circuit configuration of a power conversion device 100 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram illustrating another circuit configuration of the power conversion apparatus 100 according to the exemplary embodiment 1.
  • FIG. 3 is a block diagram showing a typical block configuration of a motor drive unit 400 having the power conversion device 100.
  • FIG. 6 is a graph illustrating a current waveform obtained by plotting the current values flowing through the U-phase, V-phase, and W-phase windings of the motor 200 when the power conversion device 100 is controlled in the first operation mode.
  • FIG. 7 is a schematic diagram illustrating a current flow in the power conversion device 100 in the first operation mode.
  • FIG. 8 is a circuit diagram showing a circuit configuration of the power conversion device 100 in which the switching circuit 110 is arranged on the GND side of the first inverter 120.
  • FIG. 9 is a graph illustrating a current waveform obtained by plotting the current values flowing in the U-phase, V-phase, and W-phase windings of the motor 200 when the power conversion device 100 is controlled according to the three-phase energization control. .
  • FIG. 10 is a circuit diagram illustrating a circuit configuration of a power conversion device 100A according to an exemplary embodiment 2.
  • FIG. 11 is a flowchart illustrating an example of a processing procedure of the operation of the power conversion device 100A according to the exemplary embodiment 2.
  • FIG. 12A is a circuit diagram illustrating a variation of the circuit configuration of the power conversion device 100A according to the exemplary embodiment 2.
  • FIG. 12B is a circuit diagram showing a variation of the circuit configuration of the power conversion device 100A according to Exemplary Embodiment 2.
  • FIG. 13 is a circuit diagram illustrating a circuit configuration of a power conversion device 100B according to an exemplary embodiment 3.
  • FIG. 14 is a schematic diagram illustrating a typical configuration of an electric power steering apparatus 500 according to Exemplary Embodiment 4.
  • the connection between the inverter and GND cannot be disconnected.
  • the inventor of the present application has a problem that the current supplied to the winding of each phase through one inverter where the neutral point is not configured flows from the other inverter to GND without returning to the inverter of the supply source. I found it. In other words, the present inventors have found a problem that a closed loop of driving current is not formed. It is desirable that the current supplied from one inverter to the winding of each phase flows to GND through the inverter of the supply source.
  • an embodiment of the present disclosure will be described by taking as an example a power conversion device that converts power supplied to a three-phase motor having three-phase (U-phase, V-phase, and W-phase) windings.
  • a power converter that converts electric power supplied to an n-phase motor having n-phase windings (n is an integer of 4 or more) such as four-phase or five-phase is also included in the scope of the present disclosure.
  • FIG. 1 schematically shows a circuit configuration of a power conversion apparatus 100 according to the present embodiment.
  • the power conversion apparatus 100 includes a switching circuit 110, a first inverter 120, and a second inverter 130.
  • the power conversion device 100 can convert power supplied to various motors.
  • the motor 200 is, for example, a three-phase AC motor.
  • the left inverter in the drawing is referred to as a first inverter 120
  • the right inverter is referred to as a second inverter 130.
  • this relationship may be reversed.
  • the motor 200 has a U-phase winding M1, a V-phase winding M2, and a W-phase winding M3, and is connected to the first inverter 120 and the second inverter 130. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding.
  • “connection” between components (components) mainly means electrical connection.
  • the first inverter 120 has terminals U_L, V_L and W_L corresponding to the respective phases
  • the second inverter 130 has terminals U_R, V_R and W_R corresponding to the respective phases. *
  • the terminal U_L of the first inverter 120 is connected to one end of the U-phase winding M1, the terminal V_L is connected to one end of the V-phase winding M2, and the terminal W_L is connected to one end of the W-phase winding M1.
  • the terminal U_R of the second inverter 130 is connected to the other end of the U-phase winding M1, the terminal V_R is connected to the other end of the V-phase winding M2, and the terminal W_R is , And connected to the other end of the W-phase winding M1.
  • Such connection with the motor is different from so-called star connection and delta connection.
  • the switching circuit 110 includes a first switch element 111.
  • the switching circuit 110 disposed on the power source 101 side may be referred to as a “power source side switching circuit”.
  • the switching circuit 110 switches connection / disconnection between the first inverter 120 and the power source 101.
  • the first switch element 111 of the switching circuit 110 can be controlled by, for example, a microcontroller or a dedicated driver.
  • a transistor such as a field effect transistor (typically MOSFET) or an insulated gate bipolar transistor (IGBT) can be widely used, and a mechanical relay may be used.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the FET 111 has a free-wheeling diode 111D, and is arranged so that the free-wheeling diode 111D faces the power supply 101. More specifically, the FET 111 is arranged so that a forward current flows toward the power source 101 in the freewheeling diode 111D.
  • the switching circuit 110 preferably has a plurality of switch elements.
  • FIG. 2 schematically shows another circuit configuration of the power conversion apparatus 100 according to the present embodiment. *
  • the switching circuit 110 may further include a switch element (FET) 115 for reverse connection protection.
  • the FET 115 has a free-wheeling diode 115D and is arranged so that the free-wheeling diodes in the FET face each other. More specifically, the FET 111 is arranged so that a forward current flows toward the power source 101 in the freewheeling diode 111D, and the FET 115 is arranged so that a forward current flows toward the first inverter 120 in the freewheeling diode 115D. Is done. Even when the power supply 101 is connected in the reverse direction, the reverse current can be cut off by the reverse connection protection FET. *
  • the power supply 101 generates a predetermined power supply voltage.
  • a DC power source is used as the power source 101.
  • the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery). *
  • the power source 101 may be a single power source common to the first and second inverters 120, 130, and has a first power source for the first inverter 120 and a second power source for the second inverter 130. Also good. *
  • a coil 102 is provided between the power supply 101 and each inverter.
  • the coil 102 functions as a noise filter, and smoothes the high frequency noise included in the voltage waveform supplied to each inverter or the high frequency noise generated by each inverter so as not to flow to the power source 101 side.
  • a capacitor 103 is connected to the power supply terminal of each inverter.
  • the capacitor 103 is a so-called bypass capacitor and suppresses voltage ripple.
  • the capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to the design specifications. *
  • the first inverter 120 (may be referred to as “bridge circuit L”) has a bridge circuit composed of three legs. Each leg has a low-side switching element and a high-side switching element.
  • Switching elements 121L, 122L, and 123L shown in FIG. 1 are low-side switching elements, and switching elements 121H, 122H, and 123H are high-side switching elements.
  • FET or IGBT can be used as the switching element.
  • an FET is used as a switching element
  • the switching element may be referred to as an FET.
  • the switching elements 121L, 122L, and 123L are denoted as FETs 121L, 122L, and 123L. *
  • the first inverter 120 includes three shunt resistors 121R, 122R, and 123R as current sensors (see FIG. 3) for detecting currents flowing through the windings of the U-phase, V-phase, and W-phase phases. .
  • the current sensor 150 includes a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
  • the shunt resistors 121R, 122R, and 123R are respectively connected between the three low-side switching elements included in the three legs of the first inverter 120 and GND.
  • the shunt resistor 121R is electrically connected between the FET 121L and GND
  • the shunt resistor 122R is electrically connected between the FET 122L and GND
  • the shunt resistor 123R is connected between the FET 123L and GND. Electrically connected.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ . *
  • the second inverter 130 (may be referred to as “bridge circuit R”) has a bridge circuit composed of three legs.
  • FETs 131L, 132L, and 133L shown in FIG. 1 are low-side switching elements, and FETs 131H, 132H, and 133H are high-side switching elements.
  • the second inverter 130 has three shunt resistors 131R, 132R, and 133R. Those shunt resistors are connected between three low-side switching elements included in the three legs and GND.
  • Each FET of the first and second inverters 120, 130 can be controlled by, for example, a microcontroller or a dedicated driver. However, the connection example of the shunt resistor is not limited to this.
  • the three shunt resistors 131R, 132R, and 133R may be disposed between the FETs 121H, 122H, and 123H and the FET 111.
  • the number of shunt resistors for each inverter is not limited to three.
  • two shunt resistors 121R and 122R are used for the first inverter 120.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of the product cost and design specifications. *
  • FIG. 3 schematically shows a typical block configuration of a motor drive unit 400 having the power conversion apparatus 100.
  • the motor drive unit 400 includes the power conversion device 100, the motor 200, and the control circuit 300. *
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a microcontroller 340, a drive circuit 350, and a ROM 360.
  • the control circuit 300 is connected to the power conversion device 100 and drives the motor 200 by controlling the power conversion device 100.
  • the control circuit 300 can realize the closed loop control by controlling the target motor torque and rotation speed.
  • the power supply circuit 310 generates a DC voltage (for example, 3V, 5V) necessary for each block in the circuit.
  • the angle sensor 320 is, for example, a resolver or a Hall IC.
  • the angle sensor 320 detects the rotation angle of the rotor of the motor 200 (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the microcontroller 340.
  • the input circuit 330 receives the motor current value detected by the current sensor 150 (hereinafter referred to as “actual current value”), and converts the level of the actual current value to the input level of the microcontroller 340 as necessary. Then, the actual current value is output to the microcontroller 340.
  • actual current value the motor current value detected by the current sensor 150
  • the microcontroller 340 controls the switching operation (turn-on or turn-off) of each FET in the first and second inverters 120 and 130 of the power conversion device 100.
  • the microcontroller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350. Further, the microcontroller 340 can control ON / OFF of the FET 111 in the switching circuit 110 of the power conversion device 100.
  • the drive circuit 350 is typically a gate driver.
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each FET in the first and second inverters 120 and 130 according to the PWM signal, and gives the control signal to the gate of each FET.
  • the drive circuit 350 can generate a gate control signal for controlling on / off of the FET 111 in the switching circuit 110 in accordance with an instruction from the microcontroller 340, and can supply the control signal to the gate of the FET 111.
  • the microcontroller 340 may have the function of the drive circuit 350. In that case, the control circuit 300 may not include the drive circuit 350. *
  • the ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
  • the ROM 360 stores a control program including a command group for causing the microcontroller 340 to control the power conversion apparatus 100.
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting.
  • the power conversion device 100 has a power conversion mode including first and second operation modes. Specifically, when the motor 200 is driven at a low speed, the power conversion device 100 converts power in the first operation mode. On the other hand, when the motor is driven at high speed, the power conversion device 100 converts power in the second operation mode.
  • the first operation mode is a mode corresponding to low speed driving of the motor 200
  • the second operation mode is a mode corresponding to high speed driving of the motor 200.
  • FIG. 4 shows the relationship between the rotational speed (rps) per unit time of the motor and the torque T (N ⁇ m).
  • FIG. 4 shows a so-called TN curve.
  • the low speed drive and high speed drive areas are generally represented as the areas shown. *
  • FIG. 5 shows an example of a processing procedure of the operation of the power conversion apparatus 100.
  • the control circuit 300 of the motor drive unit 400 can detect the rotation speed of the motor 200 using various known methods (step S100).
  • the control circuit 300 determines whether the rotation speed of the motor 200 is low or high based on, for example, a TN curve (step S200).
  • the control circuit 300 selects the first operation mode as the power conversion mode (step S300), and determines that the motor 200 is driven at a high speed.
  • the second operation mode is selected as the conversion mode (step S400).
  • the control circuit 300 drives the motor 200 by controlling the first and second inverters based on the selected operation mode (step S500).
  • steps S300 to S500 will be described in detail. *
  • ⁇ First operation mode> When the motor 200 is driven at a low speed, the neutral point of the winding of each phase is configured in the connection node N1 (see FIG. 1) between the switching circuit 110 and the first inverter 120 in the first inverter 120. .
  • the fact that a certain node functions as a neutral point is expressed as “a neutral point is configured”.
  • the power conversion device 100 can drive the motor 200 by performing power conversion using the second inverter 130 and the neutral point.
  • the control circuit 300 turns on the FETs 121H, 122H, and 123H in the first inverter 120, and turns off the FETs 121L, 122L, and 123L. Thereby, the connection node N1 on the high side functions as a neutral point N1. In other words, in the first inverter 120, the neutral point N1 is configured on the high side.
  • the control circuit 300 further turns off the FET 111. Thereby, the electrical connection between the power supply 101 and the first inverter 120 is cut off, and current drawing from the power supply 101 to the first inverter 120 via the node N1 can be avoided.
  • FIG. 6 illustrates a current waveform (sine wave) obtained by plotting the current values flowing in the U-phase, V-phase, and W-phase windings of the motor 200 when the power conversion device 100 is controlled in the first operation mode.
  • the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • the current value is plotted every 30 ° electrical angle.
  • FIG. 7 schematically shows a current flow in the power conversion device 100 in the first operation mode. I pk in FIG. 6 represents the maximum current value (peak current value) of each phase.
  • FIG. 7 schematically shows a current flow in the power conversion device 100 in the first operation mode. I pk in FIG. 6 represents the maximum current value (peak current value) of each phase.
  • FIG. 7 shows the flow of current at a motor electrical angle of 270 °, for example.
  • Each of the three solid lines represents a current flowing from the power source 101 to the motor 200, and a broken line represents a regenerative current returning to the winding M1 of the motor 200.
  • the FETs 121H, 122H, and 123H are on, and the FETs 121L, 122L, and 123L are off.
  • the FETs 131H, 132L, and 133L are on, and the FETs 131L, 132H, and 133H are off.
  • the current flowing through the FET 131H of the second inverter 130 flows to the neutral point N1 through the winding M1 and the FET 121H of the first inverter 120. A part of the current flows through the FET 122H to the winding M2, and the remaining current flows through the FET 123H to the winding M3. The current flowing through the windings M2 and M3 returns to the second inverter 130 and flows to GND. Further, the regenerative current flows toward the winding M ⁇ b> 1 of the motor 200 through the free wheel diode of the FET 131 ⁇ / b> L. *
  • Table 1 exemplifies the value of the current flowing through the terminal of the second inverter 130 for each electrical angle in the current waveform of FIG. Specifically, Table 1 exemplifies the current value for each electrical angle of 30 ° flowing through the terminals U_R, V_R, and W_R of the second inverter 130 (bridge circuit R).
  • the direction of current flowing from the terminal of the bridge circuit L to the terminal of the bridge circuit R is defined as a positive direction.
  • the direction of current shown in FIG. 6 follows this definition.
  • the direction of current flowing from the terminal of the bridge circuit R to the terminal of the bridge circuit L is defined as a positive direction.
  • the phase difference between the current of the bridge circuit L and the current of the bridge circuit R is 180 °.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * I pk and the magnitude of the current value I 2 is I pk / 2.
  • the positive and negative signs of the current values shown in FIG. 6 have an inverse relationship (phase difference 180 °) to that of the current values shown in Table 1.
  • a current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the U-phase winding M1, and a magnitude from the bridge circuit R to the bridge circuit L in the V-phase winding M2.
  • a current of I pk flows, and a current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the W-phase winding M3.
  • a current of magnitude I 1 flows from the bridge circuit L to the bridge circuit R in the U-phase winding M1, and a magnitude from the bridge circuit R to the bridge circuit L in the V-phase winding M2.
  • a current of I 1 flows.
  • No current flows through the W-phase winding M3.
  • a current of magnitude Ipk flows from the bridge circuit L to the bridge circuit R in the U-phase winding M1, and the magnitude from the bridge circuit R to the bridge circuit L in the V-phase winding M2.
  • current I 2 flows, current having a magnitude I 2 flows from the bridge circuit R to the bridge circuit L is the winding M3 of W-phase.
  • a current of magnitude I 1 flows from the bridge circuit L to the bridge circuit R in the U-phase winding M1, and a magnitude from the bridge circuit R to the bridge circuit L in the W-phase winding M3.
  • a current of I 1 flows.
  • No current flows through the V-phase winding M2.
  • a current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the U-phase winding M1, and a magnitude from the bridge circuit L to the bridge circuit R in the V-phase winding M2.
  • a current I 2 flows, and a current I pk flows from the bridge circuit R to the bridge circuit L in the W-phase winding M3.
  • a current of magnitude I 2 flows from the bridge circuit R to the bridge circuit L in the U-phase winding M1, and a magnitude from the bridge circuit L to the bridge circuit R in the V-phase winding M2.
  • a current of I pk flows, and a current of magnitude I 2 flows from the bridge circuit R to the bridge circuit L in the W-phase winding M3.
  • a current of magnitude I 1 flows from the bridge circuit R to the bridge circuit L in the U-phase winding M1, and a magnitude from the bridge circuit L to the bridge circuit R in the V-phase winding M2.
  • a current of I 1 flows.
  • No current flows through the W-phase winding M3.
  • a current of magnitude Ipk flows from the bridge circuit R to the bridge circuit L through the U-phase winding M1, and from the bridge circuit L to the bridge circuit R through the V-phase winding M2.
  • current I 2 flows, current having a magnitude I 2 flows from the bridge circuit L to the bridge circuit R is the winding M3 of W-phase.
  • a current of magnitude I 1 flows from the bridge circuit R to the bridge circuit L in the U-phase winding M1, and a magnitude from the bridge circuit L to the bridge circuit R in the W-phase winding M3.
  • a current of I 1 flows.
  • No current flows through the V-phase winding M2.
  • a current of magnitude I 2 flows from the bridge circuit R to the bridge circuit L in the U-phase winding M1, and a magnitude from the bridge circuit R to the bridge circuit L in the V-phase winding M2.
  • a current I 2 flows, and a current I pk flows from the bridge circuit L to the bridge circuit R in the W-phase winding M3.
  • the control circuit 300 controls the switching operation of each FET of the bridge circuit R, for example, by vector control such that the current waveform shown in FIG. 6 is obtained.
  • the motor drive unit 400 can be modularized as a power pack. In that case, heat generated due to power consumption by the FET of the inverter is transmitted to the power pack, and heat generation of the power pack may become a problem. Therefore, at the time of low speed driving, it is desirable to reduce the number of FETs that perform a switching operation, for example.
  • the switching operation of each FET of the first inverter 120 does not occur during low-speed driving. Further, no current flows through the low-side switching elements 121L, 122L, and 123L that are in the off state. Therefore, the power loss in the first inverter 120 can be effectively suppressed. In other words, by generating more power loss due to the switching operation in the second inverter 130 on one side, it is possible to further suppress power loss due to all FETs in the two inverters.
  • FIG. 8 schematically shows a circuit configuration of the power conversion device 100 in which the switching circuit 110 is arranged on the GND side of the first inverter 120.
  • the switching circuit 110 may be disposed between the first inverter 120 and GND.
  • the switching circuit 110 includes a second switch element 112.
  • the switching circuit 110 disposed on the GND side may be referred to as a “GND side switching circuit”.
  • the switching circuit 110 switches connection / disconnection between the first inverter 120 and GND.
  • the control circuit 300 turns on the FETs 121L, 122L, and 123L in the first inverter 120, and turns off the FETs 121H, 122H, and 123H. Thereby, the connection node N2 on the low side functions as a neutral point N2. In other words, in the first inverter 120, the neutral point N2 is configured on the low side.
  • the control circuit 300 further turns off the FET 112 of the switching circuit 110. Thereby, the electrical connection between the first inverter 120 and GND is cut off, and current can be prevented from flowing from the first inverter 120 to GND via the node N2. *
  • the control circuit 300 controls the switching operation of each FET of the bridge circuit R, for example, by vector control such that the current waveform shown in FIG. 6 is obtained.
  • the power conversion apparatus 100 can drive the motor 200 using the neutral point N2 on the low side of the first inverter 120 and the second inverter 130.
  • FIG. 8 shows a flow of current at a motor electrical angle of 270 °, for example.
  • Each of the three solid lines represents a current flowing from the power source 101 to the motor 200, and a broken line represents a regenerative current returning to the winding M1 of the motor 200.
  • the FETs 121H, 122H, and 123H are in an off state, and the FETs 121L, 122L, and 123L are in an on state.
  • the FETs 131H, 132L, and 133L are on, and the FETs 131L, 132H, and 133H are off.
  • the current flowing through the FET 131H of the second inverter 130 flows to the neutral point N2 through the winding M1 and the FET 121L of the first inverter 120. A part of the current flows through the FET 122L to the winding M2, and the remaining current flows through the FET 123L to the winding M3.
  • the current flowing through the windings M2 and M3 returns to the second inverter 130 and flows to GND. Further, the regenerative current flows toward the winding M ⁇ b> 1 of the motor 200 through the free wheel diode of the FET 131 ⁇ / b> L.
  • the power conversion apparatus 100 can drive the motor 200 by performing power conversion using both the first and second inverters 120 and 130.
  • the control circuit 300 turns on the FET 111 of the switching circuit 110. Thereby, the power supply 101 and the 1st inverter 120 are electrically connected. In this connected state, the control circuit 300 drives the motor 200 by performing three-phase energization control using both the first and second inverters 120 and 130.
  • the H bridge including FETs 121L, 121H, 131L, and 131H
  • FET 121L when FET 121L is turned on, FET 131L is turned off, and when FET 121L is turned off, FET 131L is turned on.
  • FET 121H when the FET 121H is turned on, the FET 131H is turned off, and when the FET 121H is turned off, the FET 131H is turned on.
  • FIG. 9 illustrates a current waveform obtained by plotting the current values flowing through the U-phase, V-phase, and W-phase windings of the motor 200 when the power conversion device 100 is controlled according to the three-phase energization control.
  • the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • current values are plotted every 30 ° electrical angle.
  • Table 2 shows the value of current flowing through the terminals of each inverter for each electrical angle in the sine wave of FIG. Specifically, Table 2 shows values of currents flowing through terminals U_L, V_L, and W_L of the first inverter 120 (bridge circuit L) at every electrical angle of 30 °, and terminals of the second inverter 130 (bridge circuit R). The current value for every 30 electrical degrees flowing through U_R, V_R and W_R is shown. The definition of the current direction is as described above. *
  • a current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the U-phase winding M1, and from the bridge circuit R to the bridge circuit L in the V-phase winding M2.
  • magnitude current flow I pk current having a magnitude I 2 flows from the bridge circuit L to the bridge circuit R is the winding M3 of W-phase.
  • a current of magnitude I 1 flows from the bridge circuit L to the bridge circuit R in the U-phase winding M1, and a magnitude from the bridge circuit R to the bridge circuit L in the V-phase winding M2.
  • a current of I 1 flows. No current flows through the W-phase winding M3.
  • the control circuit 300 controls the switching operation of each FET of the bridge circuits L and R by three-phase energization control by vector control such that the current waveform shown in FIG. 9 is obtained.
  • the power conversion apparatus 100 can perform three-phase energization control using both the first and second inverters 120 and 130 during high-speed driving. As a result, the voltage of each phase can be increased, and as a result, the range of high-speed driving can be expanded.
  • the motor 200 can be driven efficiently while suppressing power loss due to the inverter over a wide range from low speed driving to high speed driving.
  • the power conversion device 100A according to the present embodiment is different from the power conversion device 100 according to the first embodiment in that it further includes a switching circuit 110 for the second inverter 130.
  • a switching circuit 110 for the second inverter 130 for the second inverter 130.
  • FIG. 10 schematically shows a circuit configuration of the power conversion device 100A according to the present embodiment. *
  • the power conversion device 100A includes two switching circuits 110 for the first and second inverters 120 and 130, respectively.
  • the switching circuit 110 for the first inverter 120 has an FET 111
  • the switching circuit 110 for the second inverter 130 has a third switch element (FET) 113.
  • the FET 113 switches connection / disconnection between the second inverter 130 and the power supply 101.
  • FIG. 11 shows an example of a processing procedure of the operation of the power conversion device 100A. *
  • the power conversion device 100A has a power conversion mode including first, second, and third operation modes.
  • step S300 when it is determined that the motor 200 is driven at a low speed, the control circuit 300 selects the first and third operation modes as the power conversion mode.
  • the first and second operation modes are as described in the first embodiment.
  • the third operation mode is a further mode corresponding to the low-speed driving of the motor 200 as in the first operation mode.
  • ⁇ Third operation mode> When the motor 200 is driven at a low speed, in the first operation mode, the control circuit 300 turns off the FET 111, turns on the FET 113, and turns on the FETs 121H, 122H, and 123H in the first inverter 120. FET 121L, 122L and 123L are turned off. Thereby, in the 1st inverter 120, the neutral point N1 is comprised by the high side.
  • the power conversion device 100A drives the motor 200 by performing power conversion using the neutral point N1 of the first inverter 120 and the second inverter 130.
  • the control circuit 300 turns on the FET 111, turns off the FET 113, and turns on the FETs 131H, 132H, and 133H in the second inverter 130, and turns off the FETs 131L, 132L, and 133L. .
  • the neutral point N3 is comprised by the high side.
  • the power conversion device 100A drives the motor 200 by performing power conversion using the neutral point N3 of the first inverter 120 and the second inverter 130.
  • the power conversion apparatus 100A can convert power using the first and second inverters 120 and 130 while alternately switching the first and third operation modes. For example, consider a driving sequence composed of first to N (N is an integer) periods. For example, the control circuit 300 converts power according to the first operation mode during odd-numbered periods (first, third, fifth,...) According to the driving sequence, and even numbers (second, fourth, sixth,. (Period) During the period, power can be converted by the third operation mode. *
  • the lengths of the first to Nth periods may all be the same or different (can be random). Also, for example, all the periods may be the same length or may be different between the odd periods. For example, all the periods may be the same length or may be different between even periods. Thus, the length of each period can be arbitrarily set according to product specifications and the like. *
  • the power conversion device 100A can convert power in the second operation mode as in the first embodiment (step S400 in FIG. 11). *
  • FIGS. 12A and 12B schematically show variations of the circuit configuration of the power conversion device 100A according to the present embodiment.
  • the power conversion device 100 ⁇ / b> A of the present embodiment only needs to have one switching circuit 110 for the first inverter 120 and one switching circuit 110 for the second inverter 130. Therefore, for example, the two switching circuits 110 are further arranged as shown in FIGS. 12A and 12B.
  • the operation according to the variation of the power conversion device 100A will be described by taking a circuit configuration including the two switching circuits 110 illustrated in FIG. 12A as an example. *
  • the control circuit 300 turns off the FET 112 and turns off the fourth switch element (FET) 114.
  • the FET 121H, 122H and 123H in the first inverter 120 are turned off, and the FETs 121L, 122L and 123L are turned on.
  • the neutral point N2 is comprised by the low side side.
  • the power conversion device 100A drives the motor 200 by performing power conversion using the neutral point N2 of the first inverter 120 and the second inverter 130.
  • the control circuit 300 turns on the FET 112, turns off the FET 114, and turns off the FETs 131H, 132H, and 133H in the second inverter 120, and turns on the FETs 131L, 132L, and 133L.
  • the neutral point N4 is configured on the low side in the second inverter 130.
  • the power conversion device 100A drives the motor 200 by performing power conversion using the neutral point N4 of the first inverter 120 and the second inverter 130.
  • the first and second inverters 120 and 130 can be switched and driven, so that power loss generated only by one inverter can be distributed to both inverters.
  • power loss generated only by one inverter can be distributed to both inverters.
  • localization of heat generation in the power pack as described above can be suppressed.
  • both expansion of the motor drive range and more effective heat generation countermeasures can be realized.
  • the power conversion device 100B according to the present embodiment is different from the power conversion device 100 according to the first embodiment in that it includes a power supply side switching circuit and a GND side switching circuit for the first inverter 120.
  • the difference from the power conversion apparatus 100 according to the first embodiment will be mainly described.
  • FIG. 13 schematically shows a circuit configuration of the power conversion device 100B according to the present embodiment.
  • the power conversion device 100 ⁇ / b> B has a switching circuit 110 including FETs 111 and 112 for the first inverter 120. *
  • the power conversion device 100B has a power conversion mode including the first and second operation modes.
  • the control circuit 300 determines that the motor 200 is driven at a low speed
  • the control circuit 300 selects the first operation mode as the power conversion mode, and determines that the motor 200 is driven at a high speed.
  • the second operation mode is selected as the power conversion mode.
  • the control circuit 300 When the motor 200 is driven at a low speed, in the first operation mode, the control circuit 300 turns off the FETs 111 and 112 and turns on all the high-side switching elements and the low-side switching elements of the first inverter 120. Accordingly, as shown in FIG. 13, the neutral point N1 is configured on the high side of the first inverter 120, and the neutral point N2 is configured on the low side.
  • the power conversion device 100 ⁇ / b> B drives the motor 200 by performing power conversion using the two neutral points N ⁇ b> 1 and N ⁇ b> 2 of the first inverter 120 and the second inverter 130. *
  • control circuit 300 turns on the FETs 111 and 112 and performs power conversion by three-phase energization control using the first and second inverters 120 and 130.
  • the current can be distributed to the high side and the low side by the two neutral points N1 and N2.
  • a vehicle such as an automobile generally has an electric power steering device.
  • the electric power steering apparatus generates an auxiliary torque for assisting a steering torque of a steering system that is generated when a driver operates a steering handle.
  • the auxiliary torque is generated by the auxiliary torque mechanism, and the burden on the operation of the driver can be reduced.
  • the auxiliary torque mechanism includes a steering torque sensor, an ECU, a motor, a speed reduction mechanism, and the like.
  • the steering torque sensor detects steering torque in the steering system.
  • the ECU generates a drive signal based on the detection signal of the steering torque sensor.
  • the motor generates auxiliary torque corresponding to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system via the speed reduction mechanism.
  • FIG. 14 schematically shows a typical configuration of the electric power steering apparatus 500 according to the present embodiment.
  • the electric power steering apparatus 500 includes a steering system 520 and an auxiliary torque mechanism 540. *
  • the steering system 520 is, for example, a steering handle 521, a steering shaft 522 (also referred to as “steering column”), universal shaft joints 523A, 523B, and a rotating shaft 524 (also referred to as “pinion shaft” or “input shaft”). .), A rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckle 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A and 529B.
  • the steering handle 521 is connected to the rotating shaft 524 via a steering shaft 522 and universal shaft joints 523A and 523B.
  • a rack shaft 526 is connected to the rotation shaft 524 via a rack and pinion mechanism 525.
  • the rack and pinion mechanism 525 includes a pinion 531 provided on the rotation shaft 524 and a rack 532 provided on the rack shaft 526.
  • the right steering wheel 529A is connected to the right end of the rack shaft 526 through a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order.
  • the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order.
  • the right side and the left side correspond to the right side and the left side as viewed from the driver sitting on the seat, respectively. *
  • a steering torque is generated by the driver operating the steering handle 521, and is transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525. Accordingly, the driver can operate the left and right steering wheels 529A and 529B.
  • the auxiliary torque mechanism 540 can be configured by, for example, a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and a power conversion device 545.
  • the auxiliary torque mechanism 540 gives auxiliary torque to the steering system 520 from the steering handle 521 to the left and right steering wheels 529A and 529B.
  • the auxiliary torque may be referred to as “additional torque”. *
  • the control circuit 300 according to the present disclosure can be used as the ECU 542, and the power conversion device 100 according to the present disclosure can be used as the power conversion device 545.
  • the motor 543 corresponds to the motor 200 in the present disclosure.
  • the motor drive unit 400 according to the present disclosure can be suitably used as an electromechanically integrated motor that can be configured by the ECU 542, the motor 543, and the power conversion device 545. *
  • the steering torque sensor 541 detects the steering torque of the steering system 520 applied by the steering handle 521.
  • the ECU 542 generates a drive signal for driving the motor 543 based on a detection signal from the steering torque sensor 541 (hereinafter referred to as “torque signal”).
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the auxiliary torque is transmitted to the rotating shaft 524 of the steering system 520 via the speed reduction mechanism 544.
  • the speed reduction mechanism 544 is, for example, a worm gear mechanism.
  • the auxiliary torque is further transmitted from the rotating shaft 524 to the rack and pinion mechanism 525.
  • the electric power steering apparatus 500 can be classified into a pinion assist type, a rack assist type, a column assist type, and the like depending on a location where the assist torque is applied to the steering system 520.
  • FIG. 14 shows a pinion assist type electric power steering apparatus 500.
  • the electric power steering apparatus 500 is also applied to a rack assist type, a column assist type, and the like. *
  • the ECU 542 can receive not only a torque signal but also a vehicle speed signal, for example.
  • the external device 560 is a vehicle speed sensor, for example.
  • the external device 560 may be another ECU that can communicate through an in-vehicle network, such as CAN (Controller Area Network).
  • the microcontroller of the ECU 542 can perform vector control or PWM control of the motor 543 based on a torque signal, a vehicle speed signal, and the like. *
  • the ECU 542 sets a target current value based on at least the torque signal.
  • the ECU 542 preferably sets the target current value in consideration of the vehicle speed signal detected by the vehicle speed sensor and the rotor rotation signal detected by the angle sensor.
  • the ECU 542 can control the drive signal of the motor 543, that is, the drive current so that the actual current value detected by the current sensor (not shown) matches the target current value.
  • the left and right steering wheels 529A and 529B can be operated by the rack shaft 526 using the combined torque obtained by adding the auxiliary torque of the motor 543 to the steering torque of the driver.
  • the motor drive unit 400 of the present disclosure for the above-described electromechanical integrated motor, an electric power steering apparatus having a motor drive unit that can improve heat generation countermeasures and can perform appropriate current control is provided. Is done.
  • Embodiments of the present disclosure can be widely used in various devices having various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
  • various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電力変換装置100は、モータ200の各相の巻線M1、M2、M3の一端に接続される第1インバータ120と、各相の巻線の他端に接続される第2インバータ130と、第1インバータと電源101との接続・非接続を切替える第1スイッチ素子111、および、第1インバータとグランドとの接続・非接続を切替える第2スイッチ素子112の少なくとも1つを有する第1切替回路110と、を有し、モータの低速駆動時、第1インバータに構成された各相の巻線の第1中性点および第2インバータを用いて電力変換を行う第1動作モードと、モータの高速駆動時、第1および第2インバータのn相通電制御によって電力変換を行う第2動作モードと、を有する。

Description

電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
本開示は、電動モータに供給する電力を変換する電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置に関する。
ブラシレスDCモータおよび交流同期モータなどの電動モータ(以下、単に「モータ」と表記する。)は、一般的に三相電流によって駆動される。三相電流の波形を正確に制御するため、ベクトル制御などの複雑な制御技術が用いられる。このような制御技術では、高度な数学的演算が必要であり、マイクロコントローラ(マイコン)などのデジタル演算回路が用いられる。ベクトル制御技術は、モータの負荷変動が大きな用途、例えば、洗濯機、電動アシスト自転車、電動スクータ、電動パワーステアリング装置、電気自動車、産業機器などの分野で活用されている。一方、出力が相対的に小さなモータでは、パルス幅変調(PWM)方式などの他のモータ制御方式が採用されている。 
車載分野においては、自動車用電子制御ユニット(ECU:Electrical Contorl Unit)が車両に用いられる。ECUは、マイクロコントローラ、電源、入出力回路、ADコンバータ、負荷駆動回路およびROM(Read Only Memory)などを有する。ECUを核として電子制御システムが構築される。例えば、ECUはセンサからの信号を処理してモータなどのアクチュエータを制御する。具体的に説明すると、ECUはモータの回転速度およびトルクを監視しながら、電力変換装置におけるインバータを制御する。ECUの制御の下で、電力変換装置はモータに供給する駆動電力を変換する。 
近年、モータ、電力変換装置およびECUが一体化された機電一体型モータ(本願明細書では、「パワーパック」と呼ぶ。)が開発されている。特に車載分野においては、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。 
例えば特許文献1は、制御部と、2つのインバータとを有し、三相モータに供給する電力を変換する電力変換装置を開示する。2つのインバータの各々は電源およびグランド(以下、「GND」と表記する。)に接続される。一方のインバータは、モータの三相の巻線の一端に接続され、他方のインバータは、三相の巻線の他端に接続される。各インバータは、各々がハイサイドスイッチング素子およびローサイドスイッチング素子を含む3つのレグから構成されるブリッジ回路を有する。制御部は、2つのインバータにおけるスイッチング素子の故障を検出した場合、モータ制御を正常時の制御から異常時の制御に切替える。正常時の制御では、例えば、一方のインバータに構成された巻線の中性点を用いて、他方のインバータによってモータが駆動される。
特開2014-192950号公報
上述した従来の技術では、電力変換装置による電流制御のさらなる向上が求められていた。 
本開示の実施形態は、低速駆動から高速駆動までの広範囲にわたって、適切な電流制御が可能となる電力変換装置を提供する。
本開示の例示的な電力変換装置は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換し、前記モータの各相の巻線の一端に接続される第1インバータと、前記各相の巻線の他端に接続される第2インバータと、前記第1インバータと前記電源との接続・非接続を切替える第1スイッチ素子、および、前記第1インバータとグランドとの接続・非接続を切替える第2スイッチ素子の少なくとも1つを有する第1切替回路と、を有し、前記モータの低速駆動時、前記第1インバータに構成された前記各相の巻線の第1中性点および前記第2インバータを用いて電力変換を行う第1動作モードと、前記モータの高速駆動時、前記第1および第2インバータのn相通電制御によって電力変換を行う第2動作モードと、を有する。
本開示の例示的な実施形態によると、低速駆動から高速駆動までの広範囲にわたって、適切な電流制御が可能となる新規な電力変換装置、当該電力変換装置を有するモータ駆動ユニット、および、当該モータ駆動ユニットを有する電動パワーステアリング装置が提供される。
図1は、例示的な実施形態1による電力変換装置100の回路構成を示す回路図である。 図2は、例示的な実施形態1による電力変換装置100の他の回路構成を示す回路図である。 図3は、電力変換装置100を有するモータ駆動ユニット400の典型的なブロック構成を示すブロック図である。 図4は、モータの単位時間当たりの回転数N(rps)とトルクT(N・m)との関係を示すグラフである。 図5は、例示的な実施形態1による電力変換装置100の動作の処理手順の一例を示すフローチャートである。 図6は、第1動作モードで電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。 図7は、第1動作モードでの電力変換装置100内の電流の流れを示す模式図である。 図8は、第1インバータ120のGND側に切替回路110を配置した電力変換装置100の回路構成を示す回路図である。 図9は、三相通電制御に従って電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。 図10は、例示的な実施形態2による電力変換装置100Aの回路構成を示す回路図である。 図11は、例示的な実施形態2による電力変換装置100Aの動作の処理手順の一例を示すフローチャートである。 図12Aは、例示的な実施形態2による電力変換装置100Aの回路構成のバリエーションを示す回路図である。 図12Bは、例示的な実施形態2による電力変換装置100Aの回路構成のバリエーションを示す回路図である。 図13は、例示的な実施形態3による電力変換装置100Bの回路構成を示す回路図である。 図14は、例示的な実施形態4による電動パワーステアリング装置500の典型的な構成を示す模式図である。
本開示の実施形態を説明する前に、本開示の基礎となった本願発明者の知見を説明する。 
特許文献1の電力変換装置においては、電源およびGNDと、2つのインバータの各々とが常時接続されたままである。その構成上、電源とインバータとの接続を切り離すことはできない。本願発明者は、中性点が構成されるインバータが電源から電流を引き込んでしまうという課題を見出した。これにより、電力損失が発生することとなる。 
電源と同様に、インバータとGNDとの接続を切り離すこともできない。本願発明者は、中性点が構成されない一方のインバータを通じて各相の巻線に供給される電流は、その供給元のインバータには戻らずに、他方のインバータからGNDに流れてしまうという課題を見出した。換言すると、駆動電流の閉ループが形成されないという課題を見出した。一方のインバータから各相の巻線に供給される電流は、その供給元のインバータを通じてGNDに流れることが望ましい。 
以下、添付の図面を参照しながら、本開示の電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 
本願明細書において、三相(U相、V相、W相)の巻線を有する三相モータに供給する電力を変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力を変換する電力変換装置も本開示の範疇である。 

(実施形態1)

〔1.1.電力変換装置100の構造〕

 図1は、本実施形態による電力変換装置100の回路構成を模式的に示す。 
電力変換装置100は、切替回路110、第1インバータ120および第2インバータ130を有する。電力変換装置100は種々のモータに供給する電力を変換することができる。モータ200は、例えば三相交流モータである。なお、本願明細書では、図面における左側のインバータを第1インバータ120と称し、右側のインバータを第2インバータ130と称する。当然に、この関係は逆であっても構わない。 
モータ200は、U相の巻線M1、V相の巻線M2およびW相の巻線M3を有し、第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。本願明細書において、部品(構成要素)同士の間の「接続」は、主に電気的な接続を意味する。第1インバータ120は、各相に対応した端子U_L、V_LおよびW_Lを有し、第2インバータ130は、各相に対応した端子U_R、V_RおよびW_Rを有する。 
第1インバータ120の端子U_Lは、U相の巻線M1の一端に接続され、端子V_Lは、V相の巻線M2の一端に接続され、端子W_Lは、W相の巻線M1の一端に接続される。第1インバータ120と同様に、第2インバータ130の端子U_Rは、U相の巻線M1の他端に接続され、端子V_Rは、V相の巻線M2の他端に接続され、端子W_Rは、W相の巻線M1の他端に接続される。モータとのこのような結線は、いわゆるスター結線およびデルタ結線とは異なる。 
切替回路110は、第1スイッチ素子111を有する。本願明細書では、電源101側に配置された切替回路110を「電源側切替回路」と称する場合がある。切替回路110は、第1インバータ120と電源101との接続・非接続を切替える。 
切替回路110の第1スイッチ素子111のオンおよびオフは、例えばマイクロコントローラまたは専用ドライバによって制御され得る。第1スイッチ素子111として、例えば電界効果トランジスタ(典型的にはMOSFET)または絶縁ゲートバイポーラトランジスタ(IGBT)などのトランジスタを広く用いることができるし、メカニカルリレーを用いても構わない。以下、切替回路110のスイッチ素子としてFETを用いる例を説明し、例えば第1スイッチ素子111を、FET111と表記する。 
FET111は、還流ダイオード111Dを有し、還流ダイオード111Dが電源101に向くように配置される。より詳細には、FET111は、還流ダイオード111D中に電源101に向けて順方向電流が流れるように配置される。 
図示する例に限られず、使用するスイッチ素子の個数は、設計仕様などを考慮して適宜決定される。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、切替回路110は、複数のスイッチ素子を有していることが好ましい。 
図2は、本実施形態による電力変換装置100の他の回路構成を模式的に示す。 
切替回路110は、逆接続保護用のスイッチ素子(FET)115をさらに有していてもよい。FET115は還流ダイオード115Dを有し、FET内の還流ダイオードの向きが互いに対向するように配置される。具体的に説明すると、FET111は、還流ダイオード111Dにおいて電源101に向けて順方向電流が流れるように配置され、FET115は、還流ダイオード115Dにおいて第1インバータ120に向けて順方向電流が流れるように配置される。電源101が逆向きに接続された場合でも、逆接続保護用のFETによって逆電流を遮断することができる。 
再び図1を参照する。 
電源101は所定の電源電圧を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC-DCコンバータであってもよいし、バッテリー(蓄電池)であっても良い。 
電源101は、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源および第2インバータ130用の第2電源を有していてもよい。 
電源101と各インバータとの間にコイル102が設けられている。コイル102は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサ103が接続されている。コンデンサ103は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ103は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 
第1インバータ120(「ブリッジ回路L」と表記する場合がある。)は、3個のレグから構成されるブリッジ回路を有する。各レグは、ローサイドスイッチング素子およびハイサイドスイッチング素子を有する。図1に示されるスイッチング素子121L、122Lおよび123Lがローサイドスイッチング素子であり、スイッチング素子121H、122Hおよび123Hが、ハイサイドスイッチング素子である。スイッチング素子として、例えばFETまたはIGBTを用いることができる。以下、スイッチング素子としてFETを用いる例を説明し、スイッチング素子をFETと表記する場合がある。例えば、スイッチング素子121L、122Lおよび123Lは、FET121L、122Lおよび123Lと表記される。 
第1インバータ120は、U相、V相およびW相の各相の巻線に流れる電流を検出するための電流センサ(図3を参照)として、3個のシャント抵抗121R、122Rおよび123Rを有する。電流センサ150は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を有する。例えば、シャント抵抗121R、122Rおよび123Rは、第1インバータ120の3個のレグに含まれる3個のローサイドスイッチング素子とGNDとの間にそれぞれ接続される。具体的には、シャント抵抗121RはFET121LとGNDとの間に電気的に接続され、シャント抵抗122RはFET122LとGNDとの間に電気的に接続され、シャント抵抗123RはFET123LとGNDとの間に電気的に接続される。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。 
第1インバータ120と同様に、第2インバータ130(「ブリッジ回路R」と表記する場合がある。)は、3個のレグから構成されるブリッジ回路を有する。図1に示されるFET131L、132Lおよび133Lがローサイドスイッチング素子であり、FET131H、132Hおよび133Hがハイサイドスイッチング素子である。また、第2インバータ130は、3個のシャント抵抗131R、132Rおよび133Rを有する。それらのシャント抵抗は、3個のレグに含まれる3個のローサイドスイッチング素子とGNDとの間に接続される。第1および第2インバータ120、130の各FETは、例えばマイクロコントローラまたは専用ドライバによって制御され得る。ただし、シャント抵抗の接続例はこの限りでない。例えば、3個のシャント抵抗131R、132Rおよび133Rは、FET121H、122Hおよび123Hと、FET111との間に配置されていてもよい。また、各インバータ用のシャント抵抗の数は3つに限られない。例えば、第1インバータ120用に2つのシャント抵抗121R、122Rが用いられる。使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などを考慮して適宜決定される。 
〔1.2.モータ駆動ユニット400の構造〕

 図3は、電力変換装置100を有するモータ駆動ユニット400の典型的なブロック構成を模式的に示す。 
モータ駆動ユニット400は、電力変換装置100、モータ200および制御回路300を有する。 
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、マイクロコントローラ340と、駆動回路350と、ROM360とを有する。制御回路300は、電力変換装置100に接続され、電力変換装置100を制御することによりモータ200を駆動する。例えば、制御回路300は、目的とするモータトルクおよび回転速度を制御してクローズドループ制御を実現することができる。 
電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。角度センサ320は、例えばレゾルバまたはホールICである。角度センサ320は、モータ200のロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をマイクロコントローラ340に出力する。入力回路330は、電流センサ150によって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取って、実電流値のレベルをマイクロコントローラ340の入力レベルに必要に応じて変換し、実電流値をマイクロコントローラ340に出力する。 
マイクロコントローラ340は、電力変換装置100の第1および第2インバータ120、130における各FETのスイッチング動作(ターンオンまたはターンオフ)を制御する。マイクロコントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。また、マイクロコントローラ340は、電力変換装置100の切替回路110におけるFET111のオンまたはオフを制御することができる。 
駆動回路350は、典型的にはゲートドライバである。駆動回路350は、第1および第2インバータ120、130における各FETのスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各FETのゲートに制御信号を与える。また、駆動回路350は、切替回路110におけるFET111のオンまたはオフを制御するゲート制御信号をマイクロコントローラ340からの指示に従って生成し、FET111のゲートに制御信号を与えることができる。ただし、マイクロコントローラ340は駆動回路350の機能を有していてもよい。その場合、制御回路300には駆動回路350はなくてもよい。 
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、マイクロコントローラ340に電力変換装置100を制御させるための命令群を含む制御プログラムを格納する。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 

〔1.3.モータ駆動ユニット400の動作〕

 以下、モータ駆動ユニット400の動作の具体例を説明し、主として電力変換装置100の動作の具体例を説明する。 
電力変換装置100は、第1および第2動作モードを含む電力変換モードを有する。具体的に説明すると、モータ200が低速で駆動しているとき、電力変換装置100は、第1動作モードで電力を変換する。これに対し、モータが高速で駆動しているとき、電力変換装置100は、第2動作モードで電力を変換する。換言すると、第1動作モードは、モータ200の低速駆動に対応したモードであり、第2動作モードは、モータ200の高速駆動に対応したモードである。 
図4は、モータの単位時間当たりの回転速度(rps)とトルクT(N・m)との関係を示す。図4は、いわゆるT-N曲線を示す。低速駆動および高速駆動領域は概ね、図示される領域として表される。 
図5は、電力変換装置100の動作の処理手順の一例を示す。 
モータ駆動ユニット400の制御回路300は、種々の公知の手法を用いてモータ200の回転速度を検出することができる(ステップS100)。制御回路300は、モータ200の回転速度が低速または高速であるかを、例えばT-N曲線に基づいて判定する(ステップS200)。制御回路300は、モータ200は低速で駆動していると判定したとき、電力変換モードとして第1動作モードを選択し(ステップS300)、モータ200は高速で駆動していると判定したとき、電力変換モードとして第2動作モードを選択する(ステップS400)。制御回路300は、選択された動作モードに基づいて第1および第2インバータを制御することによりモータ200を駆動する(ステップS500)。以下、ステップS300からS500を詳細に説明する。 

<第1動作モード>

 モータ200が低速で駆動しているとき、第1インバータ120において、切替回路110と第1インバータ120との接続ノードN1(図1を参照)に各相の巻線の中性点が構成される。本願明細書では、あるノードが中性点として機能することを、「中性点が構成される」と表現することとする。電力変換装置100は、第2インバータ130および中性点を用いて電力変換を行うことによってモータ200を駆動することができる。 
制御回路300は、第1インバータ120におけるFET121H、122Hおよび123Hをオンし、かつ、FET121L、122Lおよび123Lをオフする。これにより、ハイサイド側の接続ノードN1は中性点N1として機能する。換言すると、第1インバータ120において、中性点N1がハイサイド側に構成される。制御回路300はさらに、FET111をオフする。これにより、電源101と第1インバータ120との電気的な接続は遮断され、ノードN1を介した、電源101から第1インバータ120への電流の引き込みを回避することができる。 
図6は、第1動作モードで電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示する。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図6の電流波形において、電気角30°毎に電流値をプロットしている。なお、図6に例示した正弦波以外に、例えば矩形波を用いてモータ200を駆動することは可能である。図7は、第1動作モードでの電力変換装置100内の電流の流れを模式的に示す。図6のIpkは各相の最大電流値(ピーク電流値)を表す。図7には、例えばモータ電気角270°における電流の流れが示される。3つの実線のそれぞれは、電源101からモータ200に流れる電流を表し、破線は、モータ200の巻線M1に戻る回生電流を表す。 
図7に示される状態では、第1インバータ120においてFET121H、122Hおよび123Hはオン状態であり、FET121L、122L、123Lはオフ状態である。第2インバータ130においてFET131H、132Lおよび133Lはオン状態であり、FET131L、132Hおよび133Hはオフ状態である。 
第2インバータ130のFET131Hを流れた電流は、巻線M1および第1インバータ120のFET121Hを通って中性点N1に流れる。その電流の一部は、FET122Hを通って巻線M2に流れ、残りの電流は、FET123Hを通って巻線M3に流れる。巻線M2およびM3を流れた電流は、第2インバータ130に戻りGNDに流れる。また、FET131Lの還流ダイオードには回生電流がモータ200の巻線M1に向けて流れる。 
表1は、図6の電流波形における電気角毎に、第2インバータ130の端子に流れる電流値を例示する。具体的には、表1は、第2インバータ130(ブリッジ回路R)の端子U_R、V_RおよびW_Rに流れる、電気角30°毎の電流値を例示する。ここで、ブリッジ回路Lに対しては、ブリッジ回路Lの端子からブリッジ回路Rの端子に流れる電流方向を正の方向と定義する。図6に示される電流の向きはこの定義に従う。また、ブリッジ回路Rに対しては、ブリッジ回路Rの端子からブリッジ回路Lの端子に流れる電流方向を正の方向と定義する。従って、ブリッジ回路Lの電流とブリッジ回路Rの電流との位相差は180°となる。表1において、電流値I1の大きさは〔(3)1/2/2〕*Ipkであり、電流値I2の大きさはIpk/2である。なお、電流方向の定義次第では、図6に示される電流値の正負の符号は、表1に示される電流値のそれとは逆の関係(位相差180°)になる。 
Figure JPOXMLDOC01-appb-T000001
電気角0°においては、U相の巻線M1には電流は流れない。V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れる。 
電気角30°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れる。 
電気角60°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れる。W相の巻線M3には電流は流れない。 
電気角90°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れる。 
電気角120°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れる。V相の巻線M2には電流は流れない。 
電気角150°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れる。 
電気角180°においては、U相の巻線M1には電流は流れない。V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れる。 
電気角210°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れ、W相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れる。 
電気角240°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れ、V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れる。W相の巻線M3には電流は流れない。 
電気角270°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、V相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れる。 
電気角300°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れる。V相の巻線M2には電流は流れない。 
電気角330°においては、U相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI2の電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れる。 
中性点N1に流れ込む電流と中性点N1から流れ出る電流との総和は電気角毎に常に「0」になる。制御回路300は、例えば図6に示される電流波形が得られるようなベクトル制御によってブリッジ回路Rの各FETのスイッチング動作を制御する。 
切替回路110のFET111によって電源101と第1インバータ120とは電気的に非接続となるので、電源101から第1インバータ120に電流が流れ込まない。また、ローサイドスイッチング素子121L、122Lおよび123Lは全てオフしているため、第1インバータ120側のGNDには電流は流れない。これにより、電力損失を抑制することができ、かつ、駆動電流の閉ループを形成することで適切な電流制御が可能となる。 
モータの低速駆動時において、高トルクが必要とされるため、大電流がインバータに流れることとなる。その結果、各スイッチング素子における電力損失(スイッチング動作による損失を含む)は必然と大きくなる。インバータに使用されるFETの個数が増えると、インバータ全体の電力損失は一層大きくなる。例えば、モータ駆動ユニット400は、パワーパックとしてモジュール化され得る。その場合、インバータのFETによる電力消費が原因で発生する熱がパワーパックに伝わり、パワーパックの発熱が問題になることがある。そのため、低速駆動時では、例えばスイッチング動作を行うFETの数を低減することが望ましい。 
第1動作モードによると、低速駆動時において、第1インバータ120の各FETのスイッチング動作は発生しない。また、オフ状態であるローサイドスイッチング素子121L、122Lおよび123Lには電流は流れない。そのため、第1インバータ120での電力損失を効果的に抑制することができる。換言すると、片側の第2インバータ130においてスイッチング動作による電力損失をより多く発生させることで、2つのインバータにおける全FETによる電力損失をより抑えることが可能となる。 
図8は、第1インバータ120のGND側に切替回路110を配置した電力変換装置100の回路構成を模式的に示す。図示されるように、第1インバータ120とGNDとの間に切替回路110は配置され得る。切替回路110は、第2スイッチ素子112を有する。本願明細書では、GND側に配置された切替回路110を「GND側切替回路」と称する場合がある。切替回路110は、第1インバータ120とGNDとの接続・非接続を切替える。
制御回路300は、第1インバータ120におけるFET121L、122Lおよび123Lをオンし、かつ、FET121H、122Hおよび123Hをオフする。これにより、ローサイド側の接続ノードN2は中性点N2として機能する。換言すると、第1インバータ120において、中性点N2がローサイド側に構成される。制御回路300はさらに、切替回路110のFET112をオフする。これにより、第1インバータ120とGNDとの電気的な接続は遮断され、第1インバータ120からGNDにノードN2を介して電流が流れることを防ぐことができる。 
制御回路300は、例えば図6に示される電流波形が得られるようなベクトル制御によってブリッジ回路Rの各FETのスイッチング動作を制御する。これにより、電力変換装置100は、第1インバータ120のローサイド側の中性点N2および第2インバータ130を用いてモータ200を駆動することができる。 
図8には、例えばモータ電気角270°での電流の流れを示す。3つの実線のそれぞれは、電源101からモータ200に流れる電流を表し、破線は、モ―タ200の巻線M1に戻る回生電流を表している。第1インバータ120においてFET121H、122Hおよび123Hはオフ状態であり、FET121L、122Lおよび123Lはオン状態である。第2インバータ130においてFET131H、132Lおよび133Lはオン状態であり、FET131L、132Hおよび133Hはオフ状態である。 
第2インバータ130のFET131Hを流れた電流は、巻線M1および第1インバータ120のFET121Lを通って中性点N2に流れる。その電流の一部は、FET122Lを通って巻線M2に流れ、残りの電流は、FET123Lを通って巻線M3に流れる。巻線M2およびM3を流れた電流は、第2インバータ130に戻りGNDに流れる。また、FET131Lの還流ダイオードには回生電流がモータ200の巻線M1に向けて流れる。 
電源側切替回路に代えてGND側切替回路を用いても、電力損失を抑制することができ、かつ、駆動電流の閉ループを形成することで適切な電流制御が可能となる。また、例えば、上述したようなパワーパックの発熱対策を向上させることができる。 
<第2動作モード>

 モータ200が高速で駆動しているとき、電力変換装置100は、第1および第2インバータ120、130の両方を用いて電力変換を行うことによってモータ200を駆動することができる。 
再び図7を参照する。 
制御回路300は、切替回路110のFET111をオンにする。これにより、電源101と第1インバータ120とが電気的に接続される。この接続状態において、制御回路300は、第1および第2インバータ120、130の両方を用いて三相通電制御することによってモータ200を駆動する。三相通電制御とは、第1インバータ120のFETと第2インバータ130のFETとを互いに逆位相(位相差=180°)でスイッチング制御することを意味する。例えば、FET121L、121H、131Lおよび131Hを含むHブリッジに着目すると、FET121Lがオンすると、FET131Lはオフし、FET121Lがオフすると、FET131Lはオンする。これと同様に、FET121Hがオンすると、FET131Hはオフし、FET121Hがオフすると、FET131Hはオンする。 
図9は、三相通電制御に従って電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図9の電流波形において、電気角30°毎に電流値をプロットしている。なお、図9に例示した正弦波以外に、例えば矩形波を用いてモータ200を駆動することは可能である。 
表2は、図9の正弦波において電気角毎に、各インバータの端子に流れる電流値を示す。具体的には、表2は、第1インバータ120(ブリッジ回路L)の端子U_L、V_LおよびW_Lに流れる、電気角30°毎の電流値、および、第2インバータ130(ブリッジ回路R)の端子U_R、V_RおよびW_Rに流れる、電気角30°毎の電流値を示す。電流方向の定義は上述したとおりである。 
Figure JPOXMLDOC01-appb-T000002
例えば、電気角30°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、W相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさI2の電流が流れる。電気角60°においては、U相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさI1の電流が流れ、V相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさI1の電流が流れる。W相の巻線M3には電流は流れない。三相通電制御において、電流の向きを考慮した三相の巻線に流れる電流の総和は電気角毎に常に「0」になる。例えば、制御回路300は、図9に示される電流波形が得られるようなベクトル制御によってブリッジ回路LおよびRの各FETのスイッチング動作を三相通電制御で制御する。 
表1および表2に示されるように、第1および第2動作モードの間でモータ200に流れるモータ電流は電気角毎に変わらないことが分かる。換言すると、両モードの間でモータのアシストトルクは変わらない。 
モータの高速駆動時において、モータには大きな逆起電力が発生する。そのため、各相の電圧を高くする必要がある。第2動作モードによると、高速駆動時において、電力変換装置100は、第1および第2インバータ120、130の両方を用いて三相通電制御を行うことができる。これにより、各相の電圧を高くすることが可能となり、その結果、高速駆動の範囲を拡大させることが可能となる。 
本実施形態によると、低速駆動から高速駆動までの広範囲にわたって、インバータによる電力損失を抑制しつつ、モータ200を効率よく駆動させることができる。 
(実施形態2)

 図10から図12Bを参照しながら、本実施形態による電力変換装置100Aを説明する。 

〔2.1.電力変換装置100Aの構造〕

 本実施形態による電力変換装置100Aは、第2インバータ130用の切替回路110をさらに有している点で、実施形態1による電力変換装置100とは異なる。以下、実施形態1と本実施形態との間の差異点を中心に説明する。 
図10は、本実施形態による電力変換装置100Aの回路構成を模式的に示す。 
電力変換装置100Aは、第1および第2インバータ120、130用に2つの切替回路110をそれぞれ有する。第1インバータ120用の切替回路110はFET111を有し、第2インバータ130用の切替回路110は第3スイッチ素子(FET)113を有する。FET113は、第2インバータ130と電源101との接続・非接続を切替える。 

〔2.2.モータ駆動ユニット400の動作〕

 以下、本実施形態によるモータ駆動ユニット400の動作の具体例を説明し、主として電力変換装置100Aの動作の具体例を説明する。 
図11は、電力変換装置100Aの動作の処理手順の一例を示す。 
電力変換装置100Aは、第1、第2および第3動作モードを含む電力変換モードを有する。ステップS300において、制御回路300は、モータ200は低速で駆動していると判定したとき、電力変換モードとして第1および第3動作モードを選択する。第1および第2動作モードは実施形態1で説明したとおりである。第3動作モードは、第1動作モードと同様に、モータ200の低速駆動に対応したさらなるモードである。 

<第3動作モード>

 モータ200が低速で駆動しているとき、第1動作モード時、制御回路300は、FET111をオフして、FET113をオンし、かつ、第1インバータ120中のFET121H、122Hおよび123Hをオンして、FET121L、122Lおよび123Lをオフする。これにより、第1インバータ120において中性点N1がハイサイド側に構成される。電力変換装置100Aは、第1インバータ120の中性点N1および第2インバータ130を用いて電力変換を行うことによってモータ200を駆動する。 
一方、第3動作モード時、制御回路300は、FET111をオンして、FET113をオフし、かつ、第2インバータ130中のFET131H、132Hおよび133Hをオンして、FET131L、132Lおよび133Lをオフする。これにより、第2インバータ130において中性点N3がハイサイド側に構成される。電力変換装置100Aは、第1インバータ120および第2インバータ130の中性点N3を用いて電力変換を行うことによってモータ200を駆動する。 
電力変換装置100Aは、例えば、第1および第3動作モードを交互に切替えながら第1および第2インバータ120、130を用いて電力を変換することができる。例えば、第1からN(Nは整数)期間から構成される駆動シーケンスを考える。例えば、制御回路300は、その駆動シーケンスに従って、奇数期間(第1、3、5、・・・期間)中は第1動作モードによって電力を変換し、偶数(第2、4、6、・・・期間)期間中は第3動作モードによって電力を変換することができる。 
例えば、第1から第N期間の各期間の長さは、全て同じであってもよいし、異なっていてもよい(ランダムであり得る)。また、例えば、奇数期間の間で各期間は全て同じ長さであってもよく、または異なっていてもよい。例えば、偶数期間の間で各期間は全て同じ長さであってもよく、異なっていてもよい。このように、各期間の長さは、製品仕様等により任意に設定され得る。 
なお、モータ200が高速で駆動するとき、電力変換装置100Aは、実施形態1と同様に、第2動作モードで電力を変換することができる(図11のステップS400)。 
図12Aおよび図12Bは、本実施形態による電力変換装置100Aの回路構成のバリエーションを模式的に示す。本実施形態の電力変換装置100Aは、第1インバータ120用に1つの切替回路110を有し、第2インバータ130用に1つの切替回路110を有していればよい。そのため、例えば、2つの切替回路110はさらに、図12Aおよび図12Bに示されるように配置される。以下、図12Aに示される、2つの切替回路110を有する回路構成を例に、電力変換装置100Aのバリエーションによる動作を説明する。 
図12Aに示される電力変換装置100Aによれば、モータ200が低速で駆動しているとき、第1動作モード時、制御回路300は、FET112をオフして、第4スイッチ素子(FET)114をオンし、かつ、第1インバータ120中のFET121H、122Hおよび123Hをオフして、FET121L、122Lおよび123Lをオンする。これにより、第1インバータ120において中性点N2がローサイド側に構成される。電力変換装置100Aは、第1インバータ120の中性点N2および第2インバータ130を用いて電力変換を行うことによってモータ200を駆動する。 
一方、第3動作モード時、制御回路300は、FET112をオンして、FET114をオフし、かつ、第2インバータ120中のFET131H、132Hおよび133Hをオフして、FET131L、132Lおよび133Lをオンする。これにより、第2インバータ130において中性点N4がローサイド側に構成される。電力変換装置100Aは、第1インバータ120および第2インバータ130の中性点N4を用いて電力変換を行うことによってモータ200を駆動する。 
本実施形態およびそのバリエーションによれば、第1および第2インバータ120、130を切替えて駆動させることができるので、片側のインバータだけで発生する電力損失を両側のインバータに分散させることができる。これにより、例えば、上述したようなパワーパックにおける発熱の局在化を抑制することができる。その結果、モータの駆動範囲の拡大、および、より効果的な発熱対策が共に実現され得る。 

 (実施形態3)

 本実施形態による電力変換装置100Bは、第1インバータ120用に電源側切替回路およびGND側切替回路を有する点で、実施形態1による電力変換装置100とは異なる。以下、実施形態1による電力変換装置100との差異点を中心に説明する。 

〔3.1.電力変換装置100Bの構造〕

 図13は、本実施形態による電力変換装置100Bの回路構成を模式的に示す。 
電力変換装置100Bは、第1インバータ120用に、FET111、112を含む切替回路110を有する。 

〔3.2.モータ駆動ユニット400の動作〕

 電力変換装置100Bは、実施形態1による電力変換装置100と同様に、第1および第2動作モードを含む電力変換モードを有する。制御回路300(図3を参照)は、モータ200は低速で駆動していると判定したとき、電力変換モードとして第1動作モードを選択し、モータ200は高速で駆動していると判定したとき、電力変換モードとして第2動作モードを選択する。 
モータ200が低速で駆動しているとき、第1動作モード時、制御回路300は、FET111、112をオフし、かつ、第1インバータ120のハイサイドスイッチング素子およびローサイドスイッチング素子を全てオンにする。これにより、図13に示されるように、中性点N1が第1インバータ120のハイサイド側に構成され、かつ、中性点N2がローサイド側に構成される。電力変換装置100Bは、第1インバータ120の2つの中性点N1、N2および第2インバータ130を用いて電力変換を行うことによってモータ200を駆動する。 
第2動作モード時、制御回路300は、FET111、112をオンし、第1および第2インバータ120、130を用いて三相通電制御によって電力変換を行う。 
本実施形態によれば、図13に示されるように、2つの中性点N1、N2によって、電流をハイサイド側およびローサイド側に分散させることができる。第1インバータ120におけるFETのスイッチング動作による電力損失をなくすことにより、2つのインバータにおける全FETの通電抵抗による電力損失を低減することが可能となる。 

(実施形態4)

 自動車等の車両は一般的に、電動パワーステアリング装置を有する。電動パワーステアリング装置は、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構は、操舵トルクセンサ、ECU、モータおよび減速機構などから構成される。操舵トルクセンサは、ステアリング系における操舵トルクを検出する。ECUは、操舵トルクセンサの検出信号に基づいて駆動信号を生成する。モータは、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構を介してステアリング系に補助トルクを伝達する。 
本開示のモータ駆動ユニット400は、電動パワーステアリング装置に好適に利用される。図14は、本実施形態による電動パワーステアリング装置500の典型的な構成を模式的に示す。電動パワーステアリング装置500は、ステアリング系520および補助トルク機構540を有する。 
ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、回転軸524(「ピニオン軸」または「入力軸」とも称される。)、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bから構成され得る。ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。 
ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。 
補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速機構544および電力変換装置545から構成され得る。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。 
ECU542として、本開示による制御回路300を用いることができ、電力変換装置545として、本開示による電力変換装置100を用いることができる。また、モータ543は、本開示におけるモータ200に相当する。ECU542、モータ543および電力変換装置545によって構成することが可能な機電一体型モータとして、本開示によるモータ駆動ユニット400を好適に用いることができる。 

 操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。
電動パワーステアリング装置500は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類することができる。図14には、ピニオンアシスト型の電動パワーステアリング装置500を示す。ただし、電動パワーステアリング装置500は、ラックアシスト型、コラムアシスト型等にも適用される。 
ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。外部機器560は例えば車速センサである。または、外部機器560は、例えばCAN(Controller Area Network)等の車内ネットワークで通信可能な他のECUであってもよい。ECU542のマイクロコントローラは、トルク信号および車速信号などに基づいてモータ543をベクトル制御またはPWM制御することができる。 
ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサによって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサ(不図示)によって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。 
電動パワーステアリング装置500によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、上述した機電一体型モータに、本開示のモータ駆動ユニット400を利用することにより、発熱対策が向上され、かつ、適切な電流制御が可能となるモータ駆動ユニットを有する電動パワーステアリング装置が提供される。
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを有する多様な機器に幅広く利用され得る。
100、100A、100B:電力変換装置、101:電源、102:コイル、103:コンデンサ、110:切替回路、111:第1スイッチ素子(FET)、112:第2スイッチ素子(FET)、113:第3スイッチ素子(FET)、114:第4スイッチ素子(FET)、120:第1インバータ、121H、122H、123H:ハイサイドスイッチング素子(FET)、121L、122L、123L:ローサイドスイッチング素子(FET)、121R、122R、123R:シャント抵抗、130:第2インバータ、131H、132H、133H:ハイサイドスイッチング素子(FET)、131L、132L、133L:ローサイドスイッチング素子(FET)、131R、132R、133R:シャント抵抗、150:電流センサ、200:電動モータ、300:制御回路、310:電源回路、320:角度センサ、330:入力回路、340:マイクロコントローラ、350:駆動回路、360:ROM、400:モータ駆動ユニット、500:電動パワーステアリング装置、 

Claims (13)

  1. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、

     前記モータの各相の巻線の一端に接続される第1インバータと、

     前記各相の巻線の他端に接続される第2インバータと、

     前記第1インバータと前記電源との接続・非接続を切替える第1スイッチ素子、および、前記第1インバータとグランドとの接続・非接続を切替える第2スイッチ素子の少なくとも1つを有する第1切替回路と、

    を有し、

     前記モータの低速駆動時、前記第1インバータに構成された前記各相の巻線の第1中性点および前記第2インバータを用いて電力変換を行う第1動作モードと、

     前記モータの高速駆動時、前記第1および第2インバータのn相通電制御によって電力変換を行う第2動作モードと、を有する電力変換装置。
  2. 前記第2インバータと前記電源との接続・非接続を切替える第3スイッチ素子、または、前記第2インバータと前記グランドとの接続・非接続を切替える第4スイッチ素子を有する第2切替回路をさらに有する、請求項1に記載の電力変換装置。
  3. 前記モータの低速駆動時、前記第2インバータに構成された前記各相の巻線の第2中性点および前記第1インバータを用いて電力変換を行う第3動作モードをさらに有する、請求項2に記載の電力変換装置。
  4. 前記モータの低速駆動時、前記第1動作モードによる電力変換と、前記第3動作モードによる電力変換と、を切替える、請求項3に記載の電力変換装置。
  5. 前記第1および第2インバータの各ブリッジ回路は、各々がローサイドスイッチング素子およびハイサイドスイッチング素子を有するn個のレグから構成され、

     前記第1切替回路は、前記第1スイッチ素子を有し、

     前記第1動作モードでは、前記第1スイッチ素子はオフし、かつ、前記第1インバータのブリッジ回路において前記n個のハイサイドスイッチング素子がオンし、かつ、前記n個のローサイドスイッチング素子はオフする、請求項1に記載の電力変換装置。
  6. 前記第1および第2インバータの各ブリッジ回路は、各々がローサイドスイッチング素子およびハイサイドスイッチング素子を有するn個のレグから構成され、

     前記第1切替回路は、前記第2スイッチ素子を有し、

     前記第1動作モードでは、前記第2スイッチ素子はオフし、かつ、前記第1インバータのブリッジ回路において前記n個のローサイドスイッチング素子がオンし、かつ、前記n個のハイサイドスイッチング素子はオフする、請求項1に記載の電力変換装置。
  7. 前記第1および第2インバータの各ブリッジ回路は、各々がローサイドスイッチング素子およびハイサイドスイッチング素子を有するn個のレグから構成され、

     前記第1切替回路は前記第1スイッチ素子を有し、前記第2切替回路は前記第3スイッチ素子を有し、

     前記第1動作モードでは、前記第1スイッチ素子はオフして、前記第3スイッチ素子がオンし、かつ、前記第1インバータのブリッジ回路において前記n個のハイサイドスイッチング素子がオンし、かつ、前記n個のローサイドスイッチング素子はオフし、

     前記第3動作モードでは、前記第1スイッチ素子がオンして、前記第3スイッチ素子はオフし、かつ、前記第2インバータのブリッジ回路において前記n個のハイサイドスイッチング素子がオンし、かつ、前記n個のローサイドスイッチング素子はオフする、請求項3または4に記載の電力変換装置。
  8. 前記第1および第2インバータの各ブリッジ回路は、各々がローサイドスイッチング素子およびハイサイドスイッチング素子を有するn個のレグから構成され、

     前記第1切替回路は前記第1スイッチ素子を有し、前記第2切替回路は前記第4スイッチ素子を有し、

     前記第1動作モードでは、前記第1スイッチ素子はオフして、前記第4スイッチ素子がオンし、かつ、前記第1インバータのブリッジ回路において前記n個のハイサイドスイッチング素子がオンし、かつ、前記n個のローサイドスイッチング素子はオフし、

     前記第3動作モードでは、前記第1スイッチ素子がオンして、前記第4スイッチ素子はオフし、かつ、前記第2インバータのブリッジ回路において前記n個のハイサイドスイッチング素子はオフし、かつ、前記n個のローサイドスイッチング素子がオンする、請求項3または4に記載の電力変換装置。
  9. 前記第1および第2インバータの各ブリッジ回路は、各々がローサイドスイッチング素子およびハイサイドスイッチング素子を有するn個のレグから構成され、

     前記第1切替回路は前記第2スイッチ素子を有し、前記第2切替回路は前記第4スイッチ素子を有し、

     前記第1動作モードでは、前記第2スイッチ素子はオフして、前記第4スイッチ素子がオンし、かつ、前記第1インバータのブリッジ回路において前記n個のハイサイドスイッチング素子はオフし、かつ、前記n個のローサイドスイッチング素子がオンし、

     前記第3動作モードでは、前記第2スイッチ素子がオンして、前記第4スイッチ素子はオフし、かつ、前記第2インバータのブリッジ回路において前記n個のハイサイドスイッチング素子はオフし、かつ、前記n個のローサイドスイッチング素子がオンする、請求項3または4に記載の電力変換装置。
  10. 前記第1および第2インバータの各ブリッジ回路は、各々がローサイドスイッチング素子およびハイサイドスイッチング素子を有するn個のレグから構成され、

     前記第1切替回路は、前記第1および第2スイッチ素子を有し、

     前記第1動作モードでは、前記第1および第2スイッチ素子はオフし、かつ、前記第1インバータのブリッジ回路において前記n個のハイサイドスイッチング素子およびローサイドスイッチング素子はオンする、請求項1に記載の電力変換装置。
  11. 前記電源は単一の電源である、請求項1から10のいずれかに記載の電力変換装置。
  12. 前記モータと、

     請求項1から11のいずれかに記載の電力変換装置と、

     前記電力変換装置を制御する制御回路と、

    を有するモータ駆動ユニット。
  13. 請求項12に記載のモータ駆動ユニットを有する電動パワーステアリング装置。
PCT/JP2017/031881 2016-09-26 2017-09-05 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 WO2018056045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018540948A JP7070420B2 (ja) 2016-09-26 2017-09-05 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
CN201780057515.7A CN109874381B (zh) 2016-09-26 2017-09-05 电力转换装置、马达驱动单元和电动助力转向装置
DE112017004791.9T DE112017004791T5 (de) 2016-09-26 2017-09-05 Leistungsumwandlungsvorrichtung, motorantriebseinheit und elektrische servolenkvorrichtung
US16/292,479 US10742137B2 (en) 2016-09-26 2019-03-05 Power conversion device, motor drive unit, and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016186758 2016-09-26
JP2016-186758 2016-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/292,479 Continuation US10742137B2 (en) 2016-09-26 2019-03-05 Power conversion device, motor drive unit, and electric power steering device

Publications (1)

Publication Number Publication Date
WO2018056045A1 true WO2018056045A1 (ja) 2018-03-29

Family

ID=61690898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031881 WO2018056045A1 (ja) 2016-09-26 2017-09-05 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10742137B2 (ja)
JP (1) JP7070420B2 (ja)
CN (1) CN109874381B (ja)
DE (1) DE112017004791T5 (ja)
WO (1) WO2018056045A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022333A (ja) * 2018-08-03 2020-02-06 トヨタ自動車株式会社 モータシステム
WO2020059095A1 (ja) * 2018-09-20 2020-03-26 東芝キヤリア株式会社 モータ駆動装置及び冷凍サイクル装置
WO2020116226A1 (ja) * 2018-12-04 2020-06-11 株式会社デンソー 電力変換装置
JP2020124018A (ja) * 2019-01-29 2020-08-13 株式会社Soken 回転電機の駆動装置
JP2021002898A (ja) * 2019-06-19 2021-01-07 株式会社Soken 回転電機の制御装置
WO2021002445A1 (ja) * 2019-07-04 2021-01-07 株式会社デンソー 電力変換装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388082B2 (ja) * 2019-09-20 2023-11-29 ニデック株式会社 電力変換装置、駆動装置およびパワーステアリング装置
US11309822B2 (en) * 2020-04-03 2022-04-19 Regal Beloit America, Inc. Electric motors and drive circuits therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149153A (ja) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp モータの制御装置
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799959B2 (ja) * 1987-07-28 1995-10-25 株式会社安川電機 巻線切替機能付インバ−タ
JP3527071B2 (ja) * 1997-07-04 2004-05-17 株式会社日立製作所 電気自動車の制御装置
DE10234594B4 (de) * 2002-07-30 2005-02-24 Daimlerchrysler Ag Generator/Motor-System und Verfahren zum Betreiben dieses Generator/Motor-Systems
JP4749852B2 (ja) * 2005-11-30 2011-08-17 日立オートモティブシステムズ株式会社 モータ駆動装置及びそれを用いた自動車
CN2871284Y (zh) * 2006-03-01 2007-02-21 上海御能动力科技有限公司 双逆变器推挽式电机驱动系统
JP2010081786A (ja) * 2008-09-01 2010-04-08 Suri-Ai:Kk パワースイッチング回路
WO2012098585A1 (en) * 2011-01-21 2012-07-26 Three Eye Co., Ltd. Three-phase inverter for driving variable-speed electric machine
JP2014054094A (ja) 2012-09-07 2014-03-20 Denso Corp モータ駆動システム
JP2014192950A (ja) 2013-03-26 2014-10-06 Denso Corp 電力変換装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149153A (ja) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp モータの制御装置
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022333A (ja) * 2018-08-03 2020-02-06 トヨタ自動車株式会社 モータシステム
JP7196450B2 (ja) 2018-08-03 2022-12-27 株式会社デンソー モータシステム
WO2020059095A1 (ja) * 2018-09-20 2020-03-26 東芝キヤリア株式会社 モータ駆動装置及び冷凍サイクル装置
JPWO2020059095A1 (ja) * 2018-09-20 2021-05-13 東芝キヤリア株式会社 モータ駆動装置及び冷凍サイクル装置
CN113169679A (zh) * 2018-12-04 2021-07-23 株式会社电装 电力转换装置
WO2020116226A1 (ja) * 2018-12-04 2020-06-11 株式会社デンソー 電力変換装置
JP2020092502A (ja) * 2018-12-04 2020-06-11 株式会社Soken 電力変換装置
CN113169679B (zh) * 2018-12-04 2024-01-02 株式会社电装 电力转换装置
JP7037473B2 (ja) 2018-12-04 2022-03-16 株式会社Soken 電力変換装置
JP2020124018A (ja) * 2019-01-29 2020-08-13 株式会社Soken 回転電機の駆動装置
JP7104642B2 (ja) 2019-01-29 2022-07-21 株式会社Soken 回転電機の駆動装置
JP7284645B2 (ja) 2019-06-19 2023-05-31 株式会社Soken 回転電機の制御装置
JP2021002898A (ja) * 2019-06-19 2021-01-07 株式会社Soken 回転電機の制御装置
JP2021013225A (ja) * 2019-07-04 2021-02-04 株式会社Soken 電力変換装置
JP7071313B2 (ja) 2019-07-04 2022-05-18 株式会社Soken 電力変換装置
WO2021002445A1 (ja) * 2019-07-04 2021-01-07 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
CN109874381A (zh) 2019-06-11
US10742137B2 (en) 2020-08-11
JP7070420B2 (ja) 2022-05-18
CN109874381B (zh) 2021-07-06
DE112017004791T5 (de) 2019-06-13
US20190199239A1 (en) 2019-06-27
JPWO2018056045A1 (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
JP7070420B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
WO2017150641A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6874758B2 (ja) 電力変換装置、モータ駆動ユニット、電動パワーステアリング装置およびリレーモジュール
JP6888609B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2018173424A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7014183B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7063322B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7136110B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6947184B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
JP7010282B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2018056046A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019021647A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019044105A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540948

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17852822

Country of ref document: EP

Kind code of ref document: A1