Nothing Special   »   [go: up one dir, main page]

WO2018055671A1 - Inverter device, compressor drive device, and air conditioner - Google Patents

Inverter device, compressor drive device, and air conditioner Download PDF

Info

Publication number
WO2018055671A1
WO2018055671A1 PCT/JP2016/077684 JP2016077684W WO2018055671A1 WO 2018055671 A1 WO2018055671 A1 WO 2018055671A1 JP 2016077684 W JP2016077684 W JP 2016077684W WO 2018055671 A1 WO2018055671 A1 WO 2018055671A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
drive signal
voltage vector
output voltage
control unit
Prior art date
Application number
PCT/JP2016/077684
Other languages
French (fr)
Japanese (ja)
Inventor
鹿嶋 美津夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/077684 priority Critical patent/WO2018055671A1/en
Priority to JP2018540515A priority patent/JP6591081B2/en
Publication of WO2018055671A1 publication Critical patent/WO2018055671A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to an inverter device, a compressor driving device, and an air conditioner that convert DC power supplied from a DC bus into three-phase AC power by driving a plurality of switching elements in an inverter main circuit.
  • the conventional inverter device shown in Patent Document 1 includes an inverter main circuit including an upper arm switching element group connected to the positive side of a DC power source and a lower arm switching element group connected to the negative side of the DC power source, Generates a current sensor that detects the direct current flowing between the power supply and the inverter main circuit, and a pulse width modulation (PWM) drive signal that controls on / off of each of the upper arm switching element group and the lower arm switching element group A control circuit.
  • PWM pulse width modulation
  • the control circuit detects the phase current with the current sensor at the timing near the end of the ON period of the upper arm switching element group after the half cycle within the carrier cycle, and uses the phase current detected with the current sensor in the next carrier cycle And it is comprised so that the control which calculates the PWM modulation
  • the present invention has been made in view of the above, and obtains an inverter device that improves control responsiveness by making a detected current value based on PWM modulation generated by the immediately preceding calculation. With the goal.
  • an inverter device is an inverter main circuit that converts DC power supplied from a DC bus into three-phase AC power using a plurality of semiconductor switching elements.
  • a DC current detection circuit that detects a DC current flowing in the DC bus, and an inverter control unit that outputs a pulse width modulation drive signal that controls a plurality of semiconductor switching elements based on the DC current detected by the DC current detection circuit; Is provided.
  • the calculation cycle for calculating the pulse width modulation drive signal is Ts
  • the calculation processing time of the pulse width modulation drive signal is Tx
  • the control carrier cycle of the pulse width modulation drive signal is Tc
  • the inverter device has an effect of improving control responsiveness by making the detected current value based on the PWM modulation generated by the immediately preceding calculation.
  • FIG. 1 is a timing chart showing an operation from when a PWM drive signal is calculated based on a DC current detected by the DC current detection circuit shown in FIG. 1 until the calculated PWM drive signal is reflected.
  • Output voltage vector Vs per calculation cycle calculated by the inverter control unit according to Embodiment 1 of the present invention, and output voltage vector Vsc per half carrier cycle of control carrier 1 before correction by the output voltage vector correction unit Diagram showing the relationship The figure which shows the correspondence of the switching state of the switching element of the inverter main circuit with respect to a basic voltage vector, and the phase current information reproduced from DC current Idc Timing chart of PWM drive signal corresponding to output voltage vector Vsc shown in FIG.
  • FIG. FIG. 1 is a configuration diagram of an inverter device according to Embodiment 1 of the present invention.
  • the inverter device 100 is applied as a drive device for a compressor mounted on an air conditioner (not shown) will be described.
  • the inverter device 100 includes a converter circuit 2 that converts AC power supplied from the AC power source 1 into DC power, an inverter main circuit 3 that converts DC power output from the converter circuit 2 into three-phase AC power, and a converter circuit. 2 and a DC current detection circuit 5 for detecting a DC current Idc flowing in a negative DC bus N provided between the inverter main circuit 3 and a positive DC bus P provided between the converter circuit 2 and the inverter main circuit 3.
  • a DC voltage detection circuit 6 that detects a DC voltage Vdc applied to the negative DC bus N and an inverter control unit 7 are provided.
  • the inverter device 100 is connected to a three-phase permanent magnet synchronous motor 4 driven by the three-phase AC power output from the inverter main circuit 3.
  • the converter circuit 2 is configured such that the value of the DC voltage Vdc output from the converter circuit 2 changes from 250V to 450V.
  • the AC power supply 1 is AC100V
  • a voltage doubler rectifier circuit is applied to the compressor driving converter circuit 2 provided in the air conditioner.
  • the AC power supply is AC200V
  • the compressor drive provided in the air conditioner is applied.
  • a full-wave rectifier circuit is applied to the converter circuit 2 for use.
  • the compressor driving converter circuit 2 provided in the air conditioner may be configured to increase the pressure by short-circuiting and opening a reactor (not shown) disposed between the AC power source 1 and the converter circuit 2.
  • a reactor (not shown) arranged in a subsequent stage of a rectifier circuit that rectifies AC power supplied from the AC power supply 1 is boosted by short-circuiting and opening.
  • many methods are applied to the converter circuit 2, and any method can be applied to the converter circuit 2 as long as the DC voltage Vdc output from the converter circuit 2 is in the range of 250V to 450V. May be used.
  • the AC power source 1 shown in FIG. 1 is a single-phase AC power source, but may be a three-phase AC power source.
  • the inverter main circuit 3 includes switching elements SW1, SW2, SW3, SW4, SW5, which are a plurality of semiconductor switching elements composed of SiC-MOSFETs (SiC: Silicon Carbide, MOSFETs: Metal-Oxide-Semiconductor Field-Effect Transistors).
  • SW6, a plurality of free-wheeling diodes D1, D2, D3, D4, D5, D6 connected in reverse parallel to each of the plurality of switching elements SW1, SW2, SW3, SW4, SW5, SW6, and a plurality of switching elements It comprises a plurality of drive circuits 3a, 3b, 3c, 3d, 3e, 3f for driving each of SW1, SW2, SW3, SW4, SW5, SW6.
  • the switching elements SW1, SW2, SW3, SW4, SW5, and SW6 for driving the compressor provided in the air conditioner take into account the DC voltage Vdc output from the converter circuit 2 and the surge voltage generated by the wiring impedance. An element of around 600V is used.
  • a SiC-MOSFET parasitic diode is used for the diodes D1, D2, D3, D4, D5, and D6 that are a plurality of freewheeling diodes.
  • the drains of the switching elements SW1, SW2, SW3 are connected to the positive DC bus P.
  • the sources of the switching elements SW4, SW5, SW6 are connected to the negative DC bus N.
  • the source of the switching element SW1 is connected to the drain of the switching element SW4.
  • the source of the switching element SW2 is connected to the drain of the switching element SW5.
  • the source of the switching element SW3 is connected to the drain of the switching element SW6.
  • Three switching elements SW1, SW2, SW3 connected to the positive DC bus P constitute an upper arm switching element group, and three switching elements SW4, SW5, SW6 arranged on the negative DC bus N are lower arms.
  • a side switching element group is configured.
  • the drive circuit 3a receives the PWM drive signal UP output from the inverter control unit 7, converts the PWM drive signal UP into a voltage capable of driving the switching element SW1, and outputs the voltage to the gate of the switching element SW1.
  • the drive circuit 3b receives the PWM drive signal VP output from the inverter control unit 7, converts the PWM drive signal VP into a voltage that can drive the switching element SW2, and outputs the voltage to the gate of the switching element SW2.
  • the drive circuit 3c receives the PWM drive signal WP output from the inverter control unit 7, converts the PWM drive signal WP into a voltage that can drive the switching element SW3, and outputs the voltage to the gate of the switching element SW3.
  • the drive circuit 3d receives the PWM drive signal UN output from the inverter control unit 7, converts the PWM drive signal UN into a voltage that can drive the switching element SW4, and outputs the voltage to the gate of the switching element SW4.
  • the drive circuit 3e receives the PWM drive signal VN output from the inverter control unit 7, converts the PWM drive signal VN into a voltage that can drive the switching element SW5, and outputs the voltage to the gate of the switching element SW5.
  • the drive circuit 3f receives the PWM drive signal WN output from the inverter control unit 7, converts the PWM drive signal WN into a voltage that can drive the switching element SW6, and outputs the voltage to the gate of the switching element SW6.
  • the plurality of switching elements SW1, SW2, SW3, SW4, SW5, and SW6 are simply referred to as switching elements SW1 to SW6, and the plurality of diodes D1, D2, D3, D4, D5, and D6 are simply referred to as diodes D1 to D6.
  • the plurality of drive circuits 3a, 3b, 3c, 3d, 3e, and 3f may be simply referred to as drive circuits 3a to 3f.
  • the permanent magnet synchronous motor 4 includes a stator 4a in which a three-phase Y-shaped connection composed of a U-phase winding 41, a V-phase winding 42, and a W-phase winding 43 is provided on a stator core (not shown),
  • the permanent magnet rotor 4b provided inside the child 4a, the terminal U connected to the U-phase winding 41, the terminal V connected to the V-phase winding 42, and the W-phase winding 43 are connected. And a terminal W.
  • connection point 3-1 of the switching element SW1 and the switching element SW4 of the inverter main circuit 3 is connected to the terminal U of the permanent magnet synchronous motor 4.
  • a connection point 3-2 between the switching element SW2 and the switching element SW5 of the inverter main circuit 3 is connected to the terminal V of the permanent magnet synchronous motor 4.
  • a connection point 3-3 between the switching element SW3 and the switching element SW6 of the inverter main circuit 3 is connected to a terminal W of the permanent magnet synchronous motor 4.
  • the current flowing between the connection point 3-1 of the switching element SW1 and the switching element SW4 and the terminal U is referred to as a U-phase current Iu
  • the connection point 3-2 of the switching element SW2 and the switching element SW5 A current flowing between the terminal V and the terminal W is referred to as a V-phase current Iv
  • a current flowing between the connection point 3-3 of the switching element SW3 and the switching element SW6 and the terminal W is referred to as a W-phase current Iw.
  • the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw are supplied to the stator 4a of the permanent magnet synchronous motor 4, and the permanent magnet rotor 4b is rotated by the magnetic field generated by the stator 4a, and the permanent magnet rotor 4b.
  • the compressor (not shown) connected to the motor rotates, the refrigerant circulates in the air conditioner.
  • the stator 4a provided with the three-phase Y-type connection is used for the permanent magnet synchronous motor 4 is described.
  • the permanent magnet synchronous motor 4 is provided with the three-phase Y-type connection.
  • a stator 4a provided with a three-phase ⁇ -shaped connection may be used.
  • the DC current detection circuit 5 includes a shunt resistor 5a and an amplifier 5b provided on the negative DC bus N.
  • the amplifier 5b amplifies the voltage drop between both ends of the shunt resistor 5a caused by the direct current flowing through the shunt resistor 5a, and outputs the amplified voltage to the inverter control unit 7 as current information corresponding to the direct current Idc.
  • the current information output from the amplifier 5b is expressed as a direct current Idc.
  • a circuit using an operational amplifier can be exemplified.
  • a configuration example of a DC current detection circuit 5 that detects a DC current by amplifying a voltage drop across the shunt resistor 5a is shown.
  • the DC current detection circuit 5 detects a DC current.
  • a possible DCCT DC Current Transformer
  • the DC voltage detection circuit 6 divides the DC voltage Vdc applied between the positive DC bus P and the negative DC bus N connected to the output side of the converter circuit 2 and supplies the divided voltage to the inverter control unit 7.
  • the inverter control unit 7 configures the inverter main circuit 3 based on the DC current detected by the DC current detection circuit 5, the voltage detected by the DC voltage detection circuit 6, and the frequency command value f * given from the outside.
  • PWM drive signals UP, UN, VP, VN, WP, and WN for controlling each of the switching elements SW1 to SW6 to be output are output.
  • the frequency command value f * may be simply represented by f *
  • the PWM drive signals UP, UN, VP, VN, WP, and WN may be simply referred to as PWM drive signals UP to WN.
  • PWM drive signals UP, VP, and WP are PWM drive signals of the upper arm side switching element group of the inverter main circuit 3, and are signals for driving the switching elements SW1, SW2, and SW3, respectively.
  • the PWM drive signals UN, VN, WN are PWM drive signals for the lower arm side switching element group of the inverter main circuit 3, and are signals for driving the switching elements SW4, SW5, SW6, respectively.
  • the inverter control unit 7 can be realized by a microprocessor.
  • the inverter control unit 7 includes an AD (Analog to Digital) converter 8, an AD converter 9, and an output voltage vector correction unit 10.
  • the output of the direct current detection circuit 5 is input to the AD converter 8, and the AD converter 8 converts the analog voltage output from the direct current detection circuit 5 into a digital value that can be used for calculation in the inverter control unit 7.
  • the output of the DC voltage detection circuit 6 is input to the AD converter 9, and the AD converter 9 converts the analog voltage output from the DC voltage detection circuit 6 into a digital value that can be used for calculation in the inverter control unit 7. Convert.
  • the output voltage vector correction unit 10 corrects the output voltage vector in order to reproduce the phase current for two phases from the direct current Idc during one calculation cycle for calculating the PWM drive signal.
  • the output voltage vector will be described later.
  • FIG. 2 is a timing chart showing the operation from the calculation of the PWM drive signal based on the value of the DC current detected by the DC current detection circuit shown in FIG. 1 to the reflection of the calculated PWM drive signal. is there.
  • the calculation of the PWM drive signal may be simply referred to as PWM calculation.
  • FIG. 2 shows the reference carrier of the PWM signal.
  • (C) shows a control carrier 1 for generating a PWM drive signal.
  • the carrier period Tc1 of the control carrier 1 may be simply referred to as a control carrier period Tc1.
  • (D) shows a processing interval of PWM calculation when the calculation processing time Tx is set to “Ts / 2 ⁇ Tx ⁇ 2Ts / 3”.
  • (E) shows a control carrier 2 for generating a PWM drive signal.
  • the carrier period Tc2 of the control carrier 2 may be simply referred to as a control carrier period Tc2.
  • (F) shows a PWM calculation processing section when the calculation processing time Tx is set to “2Ts / 3 ⁇ Tx ⁇ 3Ts / 4”.
  • (G) shows a control carrier 3 for generating a PWM drive signal.
  • the carrier period Tc3 of the control carrier 3 may be simply referred to as a control carrier period Tc3.
  • (H) shows a processing section of PWM calculation when the calculation processing time Tx is set to “3Ts / 4 ⁇ Tx ⁇ 4Ts / 5”.
  • FIG. 2 illustrates a reference carrier and a control carrier that are symmetrical triangular wave carriers.
  • the valley timing of the reference carrier coincides with the valley timing or peak timing of the control carrier.
  • the control carriers 1, 2, and 3 shown in (c), (e), and (g) sections reflecting the output voltage vector are overlaid.
  • the output voltage vector is represented in the form of “Vsxy_z” for convenience. That is, (c) represents the output voltage vector Vsxy_z calculated by the PWM calculation shown in (d), (e) shows the output voltage vector Vsxy_z calculated by the PWM calculation shown in (f), (G) shows an output voltage vector Vsxy_z calculated by the PWM calculation shown in (h).
  • 4 indicates that the vector can reproduce the phase current information for two phases flowing through 4.
  • the calculation start timing of the calculation process 1 is the valley timing D of the reference carrier. Timing D is also the valley timing of the control carrier 1.
  • the direct current Idc used in the calculation process 1 is detected in a section A to D that is a half carrier period of the control carrier 1 immediately before the calculation start timing D. Since the PWM drive signal corresponding to the output voltage vector “Vsa0_1” is output in the half-carrier cycle period from A to D, the inverter control unit 7 outputs the current flowing through the permanent magnet synchronous motor 4 based on the direct current Idc. Phase current information for the phase can be detected.
  • the inverter control unit 7 Based on the direct current Idc, the inverter control unit 7 obtains an output voltage vector at the center phase from the timing F before the next carrier start timing I to the timing K after one calculation cycle from the timing F before the half carrier cycle of the control carrier 1. . The inverter control unit 7 performs this calculation within a section from the calculation start timing D to the timing F.
  • the PWM drive signal for the calculated output voltage vector is reflected in the interval from timing F to timing K.
  • a section in which the PWM drive signal for the calculated output voltage vector is reflected such as a section from F to K, may be referred to as a “PWM drive signal reflection section”.
  • the inverter control unit 7 outputs a PWM drive signal corresponding to the output voltage vector “Vsa1_1” in a section from F to I which is a half carrier period of the control carrier 1 immediately before the calculation start timing I of the next calculation process 2.
  • the PWM drive signal corresponding to the output voltage vector “Vsb1_1” is output in the remaining I to K intervals.
  • the calculation after the calculation process 2 of (d) is performed every calculation cycle Ts.
  • the calculation start timing does not necessarily need to be the valley timing or peak timing of the triangular wave carrier, and if it can be ensured that the calculation is completed by the timing at which the PWM drive signal is to be reflected, the calculation start timing is higher than the above timing. You can be late.
  • the operations (f) and (h) are performed in the same manner as (d).
  • of the output voltage vector Vs and the phase ⁇ v from the ⁇ -axis are as follows if the values of the ⁇ -axis voltage V ⁇ and the ⁇ -axis voltage V ⁇ on the control axis ( ⁇ - ⁇ axis) of the rotating coordinate system are obtained. It can obtain
  • the modulation factor in this case is obtained from the following equation (3) based on the DC voltage Vdc detected by the DC voltage detection circuit 6.
  • FIG. 3 shows the output voltage vector Vs per calculation cycle calculated by the inverter control unit according to Embodiment 1 of the present invention, and the output per half carrier cycle of the control carrier 1 before correction by the output voltage vector correction unit 10. It is a figure which shows the relationship with the voltage vector Vsc.
  • FIG. 4 is a diagram showing a correspondence relationship between the switching state of the switching element of the inverter main circuit and the phase current information reproduced from the DC current Idc with respect to the basic voltage vector.
  • FIG. 5 is a timing chart of the PWM drive signal corresponding to the output voltage vector Vsc shown in FIG.
  • FIG. 6 shows the relationship between the output voltage vector Vs per calculation cycle calculated by the inverter control unit according to Embodiment 1 of the present invention and the output voltage vectors Vsa and Vsb after correction by the output voltage vector correction unit 10.
  • FIG. 4 is a diagram showing a correspondence relationship between the switching state of the switching element of the inverter main circuit and the phase current information reproduced from the DC current I
  • FIG. 3 shows an output voltage vector Vs calculated for the control carrier 1.
  • V0 to V7 shown in FIG. 3 are basic voltage vectors.
  • each of the eight basic voltage vectors V0 to V7 corresponds to the ON or OFF state of each of the switching elements SW1 to SW6 of the inverter main circuit 3. It is attached.
  • the switching elements SW1, SW2, and SW3 are OFF, and the switching elements SW4, SW5, and SW6 are ON.
  • the switching elements SW2, SW3, SW4 are OFF, and the switching elements SW1, SW5, SW6 are ON.
  • the switching elements SW3, SW4, SW5 are OFF, and the switching elements SW1, SW2, SW6 are ON.
  • the switching elements SW1, SW3, SW5 are OFF, and the switching elements SW2, SW4, SW6 are ON.
  • the switching elements SW1, SW5, SW6 are OFF, and the switching elements SW2, SW3, SW4 are ON.
  • the switching elements SW1, SW2, and SW6 are OFF, and the switching elements SW3, SW4, and SW5 are ON.
  • the switching elements SW2, SW4, SW6 are OFF, and the switching elements SW1, SW3, SW5 are ON.
  • the switching elements SW4, SW5, SW6 are OFF, and the switching elements SW1, SW2, SW3 are ON.
  • FIG. 4 also shows phase current information flowing in the permanent magnet synchronous motor 4 reproduced from the direct current Idc when each of the switching elements SW1 to SW6 is in a non-zero voltage vector state of the basic voltage vectors V1 to V6. Are associated with the basic voltage vectors V1 to V6.
  • the basic voltage vector V1 corresponds to the phase current information “+ Iu”
  • the basic voltage vector V2 corresponds to the phase current information “ ⁇ Iw”
  • the basic voltage vector V3 corresponds to the phase current information “+ Iv”.
  • the phase current information “ ⁇ Iu” corresponds to the voltage vector V4
  • the phase current information “+ Iw” corresponds to the basic voltage vector V5
  • the phase current information “ ⁇ Iv” corresponds to the basic voltage vector V6.
  • the phase current information “+” indicates the direction of the phase current flowing from the inverter main circuit 3 toward the permanent magnet synchronous motor 4
  • the phase current information “ ⁇ ” indicates the direction from the permanent magnet synchronous motor 4 to the inverter main circuit 3. The direction of the flowing phase current.
  • the magnitude of the output voltage vector Vs is indicated by the magnitude per calculation cycle Ts.
  • the output voltage vector Vsc per half carrier period (Tc ⁇ 1/2) is 1 / of the magnitude of the output voltage vector Vs.
  • 3 ti is the output time per half carrier period of the basic voltage vector V1 in the rotation direction out of V1 and V2 which are non-zero basic voltage vectors adjacent to the output voltage vector Vsc.
  • the direction of rotation means backward with respect to the direction of rotation of the output voltage vector.
  • tk is an output time per half carrier period of V2, which is a basic voltage vector ahead in the rotation direction.
  • the rotation direction ahead means forward with respect to the rotation direction of the output voltage vector.
  • TMIN is the minimum time required to detect the direct current supplied to the inverter main circuit 3.
  • the minimum time TMIN is the response delay time of the drive circuits 3a to 3f and the switching elements SW1 to SW6, the ringing time generated in the DC current supplied to the inverter main circuit 3, the delay time of the DC current detection circuit 5, and AD It is set in consideration of the sample hold time of the converter 8 and a vertical short circuit prevention time described later.
  • FIG. 5 shows the control carrier 1.
  • B shows PWM drive signals UP to WN of the switching elements SW1 to SW6.
  • C shows the direct current Idc.
  • D shows a voltage vector state corresponding to the PWM drive signal.
  • FIG. 5 shows a case where the PWM drive signal reflection interval starts from the falling edge of the carrier as in the AF interval of FIG.
  • Vsc shown in the control carrier 1 in FIG. 5A indicates an output voltage vector output in the half carrier cycle of the control carrier 1, and in FIG. 2 Vsc and one Vsc output in the rising half cycle of the control carrier 1 are shown.
  • the corresponding switching element when the PWM drive signal is “H (ON)”, the corresponding switching element is turned ON, and when it is “L (OFF)”, the corresponding switching element is turned OFF.
  • the output ratio of the zero vectors V0 and V7 in the half carrier period is 1: 1, but this output ratio can be arbitrarily set.
  • the output voltage vector is obtained in this way, a PWM drive signal corresponding to the vector can be generated.
  • the time ti of the output voltage vector Vsc is equal to or greater than TMIN, but the time tk of the output voltage vector Vsc is less than TMIN, and the inverter control unit 7 uses the DC current Idc for two phases. Phase current information cannot be reproduced.
  • the output voltage vector correction unit 10 of the inverter control unit 7 corrects the output voltage vector Vs, and converts the output voltage vector Vs per calculation cycle Ts to a direct current.
  • the output voltage vector Vsa in which the phase current information for two phases is reproduced from the Idc and the output voltage vector Vsb in which the combination of the output voltage vector Vsa becomes Vs is output. In this way, two sets of phase currents can be reproduced from the direct current during one calculation cycle, and the output voltage vector per calculation cycle can be kept the same.
  • the output time per half carrier period of V1 which is the basic voltage vector in the rotation direction, among V1 and V2, which are adjacent to the output voltage vector Vsa and have a non-zero magnitude.
  • Is tia, “tia ti”
  • the output voltage vector correction unit 10 of the inverter control unit 7 sets the longer output time to “(Tc1 / 2) ⁇ Nc ”.
  • the modulation factor is 1 or more
  • the output voltage vector Vsb is in such a state.
  • the combined vector of the output voltage vector Vsa and the output voltage vector Vsb is completely different from the output voltage vector Vs. It does not match.
  • such a state is a high rotation region where the PWM drive signal is saturated such that the modulation rate becomes 1 or more, and the output voltage vector per one calculation cycle before and after correction is held substantially the same.
  • FIG. 7 is a first timing chart of the PWM drive signal corrected by the output voltage vector correction unit corresponding to the output voltage vectors Vsa and Vsb shown in FIG.
  • FIG. 7 shows a case where the inverter control unit 7 outputs the output voltage vector Vsa in the first half carrier period of the PWM drive signal reflection interval and outputs the output voltage vector Vsb in the remaining PWM drive signal reflection interval.
  • FIG. 7 shows a case where the PWM drive signal reflection section starts from the falling edge of the carrier as in FIG.
  • the meanings of (a) to (d) shown in FIG. 7 are the same as (a) to (d) shown in FIG.
  • Trg1 and Trg2 in (c) shown in FIG. 7 represent detection timings for obtaining phase current information for two phases from the direct current Idc.
  • the interval between the detection timing Trg1 and the detection timing Trg2 is a PWM drive signal having an intermediate ON width among a plurality of PWM drive signals for controlling the upper arm side switching element group, that is, FIG. 7 is set to the minimum time for obtaining phase current information for two phases before and after the timing when the PWM drive signal VP is switched from ON to OFF.
  • This minimum time is the same length as the minimum time TMIN described above.
  • the detection timing Trg1 is a timing near the end of the detected voltage vector state
  • the detection timing Trg2 is a timing immediately after switching to the detected voltage vector state, so that the value of the detected phase current is actually
  • the controllability of the permanent magnet synchronous motor 4 is deteriorated.
  • a carrier cycle Tc in which the state of the triangular wave carrier in the section in which the DC current Idc is detected for each calculation period, such as the control carrier 1 or the control carrier 3, is switched between the carrier rising section and the falling section is detected.
  • the timing Trg1, the detection timing Trg2, and the voltage vector state it is possible to mitigate the effect of deviating from the actual center value of the phase current.
  • the control response is slightly sacrificed, the above effect can be further mitigated by taking a moving average of the reproduced phase current or the current value obtained by converting the phase current onto the control axis ( ⁇ - ⁇ axis). .
  • FIG. 8 is a second timing chart of the PWM drive signal corrected by the output voltage vector correction unit corresponding to the output voltage vectors Vsa and Vsb shown in FIG.
  • the difference between FIG. 7 and FIG. 8 is that in FIG. 7, the PWM drive signal reflection section starts from the falling edge of the carrier, whereas in FIG. 8, the PWM drive signal reflection section is the carrier like the FK section of FIG. It starts from the rise.
  • the interval between the detection timing Trg1 and the detection timing Trg2 is a PWM drive signal having an intermediate ON width among a plurality of PWM drive signals for controlling the upper arm side switching element group, that is, the PWM drive signal in FIG.
  • the minimum time for obtaining phase current information for two phases is set. This minimum time is the same length as the minimum time TMIN described above.
  • phase current (+ Iu) corresponding to the basic voltage vector V1 is reproduced.
  • phase current (+ Iu) corresponding to the basic voltage vector V1 is reproduced from the DC current Idc at the detection timing Trg1, and corresponding to the basic voltage vector V2 at the detection timing Trg2.
  • the phase current (-Iw) is reproduced.
  • the inverter device 100 includes the inverter main circuit 3 that converts the DC power supplied from the DC bus into three-phase AC power using the plurality of switching elements SW1 to SW6, and the DC bus.
  • a DC current detection circuit 5 that detects a flowing DC current
  • an inverter control unit that outputs PWM drive signals UP to WN that control the plurality of switching elements SW1 to SW6 based on the DC current Idc detected by the DC current detection circuit 5 7.
  • the inverter control unit 7 sets “Tx ⁇ (Ts ⁇ Tc / Tc) to the control carrier cycle Tc of the PWM drive signals UP to WN, where Ts is the calculation cycle for calculating the PWM drive signals UP to WN and Tx is the calculation processing time. 2) ”is set, so that the PWM drive signal UP generated by the immediately preceding calculation process is used for the next calculation process even in applications where the calculation processing time Tx is 1 ⁇ 2 or more of the calculation cycle Ts.
  • the inverter apparatus 100 can be obtained which can detect the direct current generated by .about.WN and has higher control responsiveness. Thereby, it is possible to follow load fluctuations during high-speed rotation, and it is possible to suppress the occurrence of step-out and overcurrent interruption.
  • the inverter control unit 7 generates the PWM drive signals UP to WN based on the triangular wave carrier, and the state of the triangular wave carrier in the interval in which the DC current Idc is detected every calculation cycle Ts alternates between the carrier rising interval and the falling interval.
  • the control carrier cycle Tc so as to be switched, it is possible to suppress deterioration in controllability of the permanent magnet synchronous motor 4 that occurs when the phase current information reproduced from the DC current Idc deviates from the actual center value of the phase current. .
  • the inverter control unit 7 corrects the output voltage vector in order to reproduce the phase current for two phases from the direct current Idc during one calculation cycle, corrects the output voltage vector, and calculates the output voltage vector before and after the correction.
  • the output voltage vector correction unit 10 corrects the output voltage vectors to be the same. Thereby, the distortion of the phase current waveform due to the correction of the output voltage vector can be suppressed as much as possible, and the noise generated therewith can also be suppressed.
  • the inverter control unit 7 outputs the output voltage vector Vsa in which the phase current information for two phases is reproduced from the DC current Idc and the remaining PWM other than the output voltage vector Vsa. Since the combined vector with the output voltage vector Vsb output in the drive signal reflecting section does not necessarily match the output voltage vector Vs per calculation cycle Ts, phase current information for two phases is always obtained from the DC current Idc. can get.
  • the inverter device 100 can suppress switching loss by using wide band gap semiconductor elements such as SiC-MOSFETs for the switching elements SW1 to SW6 of the inverter main circuit 3, "Tx ⁇ (Ts-Tc / 2) "can be set with a high degree of freedom in setting the control carrier period Tc.
  • SiC-MOSFET is used for the switching elements SW1 to SW6 of the inverter main circuit 3 according to the first embodiment and the parasitic diodes of the SiC-MOSFET are used for the diodes D1 to D6 which are freewheeling diodes
  • the elements SW1 to SW6 and the diodes D1 to D6 are not limited to these.
  • Si-IGBT Silicon-Insulated Gate Bipolar Transistor
  • Si-FRD Silicon-Fast Recovery Diode
  • Embodiment 2 FIG. In the first embodiment, the example in which the control carrier period is a constant value has been described. In the second embodiment, an example in which the control carrier period is changed according to the modulation rate will be described.
  • the hardware configuration of the inverter device 100 according to the second embodiment is the same as that of the inverter device 100 according to the first embodiment, and hereinafter, an example of calculation for changing the control carrier cycle in the inverter device 100 according to the second embodiment. explain.
  • Si-IGBT is mainly used as the switching elements SW1 to SW6, and Si-FRD is mainly used as the reflux diode.
  • Si-IGBT is mainly used as the switching elements SW1 to SW6
  • Si-FRD is mainly used as the reflux diode.
  • SiC-MOSFETs are used as the switching elements SW1 to SW6, and the switching elements SW1 to SW6 are the free-wheeling diodes D1, D2, D3, D4, D5, and D6.
  • the switching loss of the inverter main circuit 3 is reduced as compared with the case where Si-IGBT and Si-FRD are used. Therefore, the balance between the switching loss in the inverter main circuit 3 and the iron loss of the permanent magnet synchronous motor 4 changes, and the control carrier frequency at which the overall efficiency of the inverter main circuit 3 and the permanent magnet synchronous motor 4 is maximized is much higher than 6 kHz. Change to 18 kHz.
  • the inverter control unit 7 performs control so as to obtain phase current information for two phases flowing in the permanent magnet synchronous motor 4 during one calculation cycle based on the DC current Idc, the output voltage as shown in FIG. It is necessary to change the vector. This means that the fluctuation of the output voltage supplied to the permanent magnet synchronous motor 4 becomes large. In this way, the fluctuation of the phase current flowing through the permanent magnet synchronous motor 4 becomes large. Therefore, especially when the modulation rate is low, the iron loss of the permanent magnet synchronous motor 4 is not improved even if the control carrier period is lowered, that is, the control carrier frequency is increased, and the modulation rate depends on the modulation rate as shown in FIG. As a result, the control carrier period at which the total efficiency is maximized changes.
  • FIG. 9 is a graph showing the relationship between the control carrier period and the overall efficiency at the modulation rates Vk1, Vk2, and Vk3 (Vk1 ⁇ Vk2 ⁇ Vk3).
  • the horizontal axis of FIG. 9 represents the control carrier cycle Tc
  • the vertical axis of FIG. 9 represents the overall efficiency of the inverter main circuit 3 and the permanent magnet synchronous motor 4 when the control carrier cycle Tc is changed.
  • FIG. 9 shows three modulation rates Vk1, Vk2, Vk3 and control carrier periods Tc1, Tc2, Tc3.
  • the control carrier cycle that maximizes the total efficiency when the modulation factor Vk3 is the highest value is Tc3
  • the control carrier cycle that maximizes the total efficiency when the modulation factor Vk1 is the lowest value is Tc1
  • the control carrier period at which the total efficiency is maximum when the modulation rate Vk2 is lower than the modulation rate Vk3 and higher than the modulation rate Vk1 is Tc2. That is, the three modulation factors Vk1, Vk2, and Vk3 shown in FIG. 9 have a relationship of Vk1 ⁇ Vk2 ⁇ Vk3, and the three control carrier periods Tc1, Tc2, and Tc3 have a relationship of Tc3 ⁇ Tc2 ⁇ Tc1.
  • FIG. 10 is a diagram illustrating a setting example of the control carrier period with respect to the modulation rate.
  • the horizontal axis in FIG. 10 is the modulation factor Vk
  • the vertical axis in FIG. 10 is the control carrier period Tc.
  • the seven modulation factors Vk1, Vk1a, Vk2a, Vk2, Vk2b, Vk3a, and Vk3 shown on the horizontal axis of FIG. 10 have a relationship of Vk1 ⁇ Vk1a ⁇ Vk2a ⁇ Vk2 ⁇ Vk2b ⁇ Vk3a ⁇ Vk3.
  • the three control carrier periods Tc1, Tc2, and Tc3 shown on the vertical axis in FIG. 10 have a relationship of Tc3 ⁇ Tc2 ⁇ Tc1.
  • the inverter control unit 7 of the inverter device 100 sets the control carrier cycle Tc1 when the modulation factor Vk is Vk1a or less, and sets the control carrier cycle Tc2 when the modulation factor Vk is Vk2a or more and Vk2b or less.
  • the control carrier period Tc3 is set.
  • the inverter control unit 7 holds the value of the immediately preceding control carrier cycle Tc.
  • the modulation rate Vk exceeds Vk2b and is less than Vk3a
  • the inverter control unit 7 holds the value of the immediately preceding control carrier cycle Tc.
  • the inverter control unit 7 changes the control carrier cycle Tc while keeping the value of the calculation cycle Ts constant as shown in FIG. For example, when the control carrier cycle Tc is changed from Tc1 to Tc2 at the timing D in FIG. 2, the output of the section of Vsb0_2 is set by recalculating the output of the section of Vsb0_1. In this recalculation, Nc is changed from 2 to 3. By doing so, fluctuations in the phase current when switching the control carrier period Tc can be suppressed.
  • the inverter device 100 can be operated in a state close to the control carrier cycle Tc in which the total efficiency is maximized, that is, in a state close to the control carrier frequency, with the calculation cycle Ts fixed. However, it is assumed that the condition of “Tx ⁇ (Ts ⁇ Tc / 2)” is satisfied even when the control carrier period Tc is the highest value Tc1.
  • the inverter device 100 includes the inverter main circuit 3, the DC current detection circuit 5, and the inverter control unit 7.
  • the inverter control unit 7 calculates the PWM drive signals UP to WN.
  • Ts is a constant value
  • the carrier cycle Tc is switched according to the modulation rate.
  • the inverter device 100 with high control responsiveness can be obtained, and the control carrier frequency Tc is close to the control carrier cycle Tc in which the overall efficiency of the inverter main circuit 3 and the permanent magnet synchronous motor 4 is maximized, that is, the control carrier frequency.
  • the inverter device 100 can be operated in a close state.
  • the carrier period value is switched in three stages according to the value of the modulation factor Vk.
  • the inverter control unit 7 uses the value of the modulation factor Vk as follows: It is good also as a structure which switches the value of a carrier period in two steps. For example, the inverter control unit 7 controls the control carrier cycle at only two locations of the control carrier 1 and the control carrier 3 where the state of the triangular wave carrier in the section in which the DC current Idc is detected for each computation cycle is switched between the carrier rising section and the falling section. Switch Tc.
  • the inverter control unit 7 switches the control carrier cycle Tc according to the modulation rate Vk.
  • the control carrier cycle Tc depends on other parameters that can obtain the same effect, for example, the frequency of the permanent magnet synchronous motor 4. May be switched.
  • the control carrier frequency is set in the range of 6 kHz to 18 kHz, it can be based on the PWM modulation generated by the calculation immediately before the detected current value, so that the control responsiveness is maintained. It can be realized as it is.
  • FIG. 11 is a configuration diagram of a compressor driving device and an air conditioner according to Embodiment 3 of the present invention.
  • a compressor drive device 200 shown in FIG. 11 uses the inverter device 100 according to the first or second embodiment as a drive device of the compressor 20, and the air conditioner 300 shown in FIG.
  • the compressor 20 includes a compression unit 21 that compresses the refrigerant, and a permanent magnet synchronous motor 4 that drives the compression unit 21.
  • the compressor 20, the four-way valve 31, the outdoor heat exchanger 32-1, the indoor heat exchanger 32-2, and the expansion valve 33 are connected to each other by a refrigerant pipe 30 to constitute a refrigerant circuit that circulates the refrigerant.
  • the air conditioner 300 performs the air conditioning operation while changing the pressure of the refrigerant passing through the pipe by utilizing heat absorption or heat dissipation with respect to the air to be heat exchanged.
  • Wind generated by rotation of a blower fan (not shown) flows to the outdoor heat exchanger 32-1.
  • the outdoor heat exchanger 32-1 performs heat exchange between the refrigerant and the air.
  • the air conditioner 300 according to the third embodiment since the inverter device 100 according to the first embodiment is used as the compressor driving device 200, the air conditioner 300 with high responsiveness is obtained and noise is generated. Can be suppressed.
  • the inverter device 100 according to the first embodiment and the second embodiment is not limited to the device for driving the compressor 20 of the air conditioner 300, and can be applied to any device using the permanent magnet synchronous motor 4. It is.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

An inverter device (100) is characterized by being provided with: an inverter main circuit (3); a direct current detection circuit (5) that detects a direct current flowing in a direct current bus bar; and an inverter control unit (7) that outputs a pulse width modulation drive signal for controlling a plurality of semiconductor switching elements on the basis of the direct current detected by the direct current detection circuit (5). The inverter device is also characterized in that, when an operation frequency for operating the pulse width modulation drive signal is represented by Ts, an operation time of the pulse width modulation drive signal is represented by Tx, and a control carrier period of the pulse width modulation drive signal is represented by Tc, the inverter control unit (7) sets, as Tc, a value satisfying formula of Tx<(Ts-Tc/2).

Description

インバータ装置、圧縮機駆動装置及び空気調和機Inverter device, compressor drive device and air conditioner
 本発明は、インバータ主回路内の複数のスイッチング素子を駆動することにより、直流母線から供給される直流電力を三相交流電力に変換するインバータ装置、圧縮機駆動装置及び空気調和機に関する。 The present invention relates to an inverter device, a compressor driving device, and an air conditioner that convert DC power supplied from a DC bus into three-phase AC power by driving a plurality of switching elements in an inverter main circuit.
 特許文献1に示す従来のインバータ装置は、直流電源の正側に接続される上アームスイッチング素子群と直流電源の負側に接続される下アームスイッチング素子群とを備えたインバータ主回路と、直流電源とインバータ主回路との間に流れる直流電流を検出する電流センサと、上アームスイッチング素子群と下アームスイッチング素子群の各々をオンオフ制御するパルス幅変調(Pulse Width Modulation:PWM)駆動信号を生成する制御回路とを備える。制御回路はキャリア周期内の半周期経過以降における上アームスイッチング素子群のON期間終端近くのタイミングにおいて、電流センサにより相電流を検出し、電流センサで検出された相電流を次のキャリア周期で使用し、次の次のキャリア周期におけるPWM変調を演算する制御を行うように構成されている。 The conventional inverter device shown in Patent Document 1 includes an inverter main circuit including an upper arm switching element group connected to the positive side of a DC power source and a lower arm switching element group connected to the negative side of the DC power source, Generates a current sensor that detects the direct current flowing between the power supply and the inverter main circuit, and a pulse width modulation (PWM) drive signal that controls on / off of each of the upper arm switching element group and the lower arm switching element group A control circuit. The control circuit detects the phase current with the current sensor at the timing near the end of the ON period of the upper arm switching element group after the half cycle within the carrier cycle, and uses the phase current detected with the current sensor in the next carrier cycle And it is comprised so that the control which calculates the PWM modulation | alteration in the following next carrier period may be performed.
特許第5200395号公報Japanese Patent No. 5200395
 しかしながら特許文献1に示す従来のインバータ装置は、検出された電流を次のキャリア周期で使用し、次の次のキャリア周期におけるPWM変調を演算する制御を行っていたので、検出される電流値は前の前の演算により生成されたPWM変調に基づくものであるため、制御の応答性が低く、高速回転時の負荷変動に追従できずに脱調もしくは過電流遮断に至るという課題があった。 However, since the conventional inverter device shown in Patent Document 1 uses the detected current in the next carrier cycle and performs control to calculate PWM modulation in the next carrier cycle, the detected current value is Since it is based on the PWM modulation generated by the previous calculation, there is a problem that the control responsiveness is low and the step-out or overcurrent interruption occurs without being able to follow the load fluctuation at the time of high-speed rotation.
 本発明は、上記に鑑みてなされたものであって、検出される電流値を直前の演算により生成されるPWM変調に基づくものにすることで、制御の応答性が向上するインバータ装置を得ることを目的とする。 The present invention has been made in view of the above, and obtains an inverter device that improves control responsiveness by making a detected current value based on PWM modulation generated by the immediately preceding calculation. With the goal.
 上述した課題を解決し、目的を達成するために、本発明に係るインバータ装置は、直流母線から供給される直流電力を、複数の半導体スイッチング素子を用いて三相交流電力に変換するインバータ主回路と、直流母線に流れる直流電流を検出する直流電流検出回路と、直流電流検出回路により検出された直流電流に基づいて複数の半導体スイッチング素子を制御するパルス幅変調駆動信号を出力するインバータ制御部とを備える。インバータ制御部は、パルス幅変調駆動信号を演算する演算周期をTsとし、パルス幅変調駆動信号の演算処理時間をTxとし、パルス幅変調駆動信号の制御キャリア周期をTcとしたとき、Tcに「Tx<(Ts-Tc/2)」を満たす値を設定することを特徴とする。 In order to solve the above-described problems and achieve the object, an inverter device according to the present invention is an inverter main circuit that converts DC power supplied from a DC bus into three-phase AC power using a plurality of semiconductor switching elements. A DC current detection circuit that detects a DC current flowing in the DC bus, and an inverter control unit that outputs a pulse width modulation drive signal that controls a plurality of semiconductor switching elements based on the DC current detected by the DC current detection circuit; Is provided. When the calculation cycle for calculating the pulse width modulation drive signal is Ts, the calculation processing time of the pulse width modulation drive signal is Tx, and the control carrier cycle of the pulse width modulation drive signal is Tc, A value satisfying “Tx <(Ts−Tc / 2)” is set.
 本発明に係るインバータ装置は、検出される電流値を直前の演算により生成されるPWM変調に基づくものにすることで、制御の応答性が向上するという効果を奏する。 The inverter device according to the present invention has an effect of improving control responsiveness by making the detected current value based on the PWM modulation generated by the immediately preceding calculation.
本発明の実施の形態1に係るインバータ装置の構成図The block diagram of the inverter apparatus which concerns on Embodiment 1 of this invention 図1に示す直流電流検出回路で検出された直流電流に基づきPWM駆動信号の演算が行われてから、演算されたPWM駆動信号が反映されるまでの動作を示すタイミングチャートFIG. 1 is a timing chart showing an operation from when a PWM drive signal is calculated based on a DC current detected by the DC current detection circuit shown in FIG. 1 until the calculated PWM drive signal is reflected. 本発明の実施の形態1に係るインバータ制御部で演算される1演算周期当たりの出力電圧ベクトルVsと、出力電圧ベクトル補正部による補正前の制御キャリア1の半キャリア周期当たりの出力電圧ベクトルVscとの関係を示す図Output voltage vector Vs per calculation cycle calculated by the inverter control unit according to Embodiment 1 of the present invention, and output voltage vector Vsc per half carrier cycle of control carrier 1 before correction by the output voltage vector correction unit Diagram showing the relationship 基本電圧ベクトルに対するインバータ主回路のスイッチング素子のスイッチング状態と直流電流Idcから再現される相電流情報との対応関係を示す図The figure which shows the correspondence of the switching state of the switching element of the inverter main circuit with respect to a basic voltage vector, and the phase current information reproduced from DC current Idc 図3に示す出力電圧ベクトルVscに対応したPWM駆動信号のタイミングチャートTiming chart of PWM drive signal corresponding to output voltage vector Vsc shown in FIG. 本発明の実施の形態1に係るインバータ制御部で演算される1演算周期当たりの出力電圧ベクトルVsと、出力電圧ベクトル補正部による補正後の出力電圧ベクトルVsa,Vsbとの関係を示す図The figure which shows the relationship between the output voltage vector Vs per calculation period calculated by the inverter control part which concerns on Embodiment 1 of this invention, and the output voltage vectors Vsa and Vsb after correction | amendment by an output voltage vector correction | amendment part. 図6に示す出力電圧ベクトルVsa,Vsbに対応して出力電圧ベクトル補正部により補正されたPWM駆動信号の第1のタイミングチャートFirst timing chart of the PWM drive signal corrected by the output voltage vector correction unit corresponding to the output voltage vectors Vsa and Vsb shown in FIG. 図6に示す出力電圧ベクトルVsa,Vsbに対応して出力電圧ベクトル補正部により補正されたPWM駆動信号の第2のタイミングチャートSecond timing chart of PWM drive signal corrected by output voltage vector correction unit corresponding to output voltage vectors Vsa and Vsb shown in FIG. 変調率Vk1,Vk2,Vk3(Vk1<Vk2<Vk3)における制御キャリア周期と総合効率の関係を示す図The figure which shows the relationship between the control carrier period and total efficiency in modulation factor Vk1, Vk2, Vk3 (Vk1 <Vk2 <Vk3). 変調率に対する制御キャリア周期の設定例を示す図The figure which shows the example of a setting of the control carrier period with respect to a modulation rate 本発明の実施の形態3に係る圧縮機駆動装置及び空気調和機の構成図The block diagram of the compressor drive device and air conditioner concerning Embodiment 3 of this invention
 以下に、本発明の実施の形態に係るインバータ装置、圧縮機駆動装置及び空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an inverter device, a compressor driving device, and an air conditioner according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は本発明の実施の形態1に係るインバータ装置の構成図である。実施の形態1では、インバータ装置100を、不図示の空気調和機に搭載される圧縮機の駆動装置として適用する例を説明する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of an inverter device according to Embodiment 1 of the present invention. In the first embodiment, an example in which the inverter device 100 is applied as a drive device for a compressor mounted on an air conditioner (not shown) will be described.
 インバータ装置100は、交流電源1から供給される交流電力を直流電力に変換するコンバータ回路2と、コンバータ回路2から出力される直流電力を三相交流電力に変換するインバータ主回路3と、コンバータ回路2及びインバータ主回路3の間に設けられる負側直流母線Nに流れる直流電流Idcを検出する直流電流検出回路5と、コンバータ回路2及びインバータ主回路3の間に設けられる正側直流母線P及び負側直流母線Nに印加される直流電圧Vdcを検出する直流電圧検出回路6と、インバータ制御部7とを備える。インバータ装置100には、インバータ主回路3が出力する三相交流電力により駆動される三相の永久磁石同期電動機4が接続される。 The inverter device 100 includes a converter circuit 2 that converts AC power supplied from the AC power source 1 into DC power, an inverter main circuit 3 that converts DC power output from the converter circuit 2 into three-phase AC power, and a converter circuit. 2 and a DC current detection circuit 5 for detecting a DC current Idc flowing in a negative DC bus N provided between the inverter main circuit 3 and a positive DC bus P provided between the converter circuit 2 and the inverter main circuit 3. A DC voltage detection circuit 6 that detects a DC voltage Vdc applied to the negative DC bus N and an inverter control unit 7 are provided. The inverter device 100 is connected to a three-phase permanent magnet synchronous motor 4 driven by the three-phase AC power output from the inverter main circuit 3.
 コンバータ回路2は、コンバータ回路2が出力する直流電圧Vdcの値が250Vから450Vになるように構成される。具体例には、交流電源1がAC100Vの場合、空気調和機に設けられる圧縮機駆動用のコンバータ回路2には倍電圧整流回路が適用され、AC200Vの場合、空気調和機に設けられる圧縮機駆動用のコンバータ回路2には全波整流回路が適用される。 The converter circuit 2 is configured such that the value of the DC voltage Vdc output from the converter circuit 2 changes from 250V to 450V. For example, when the AC power supply 1 is AC100V, a voltage doubler rectifier circuit is applied to the compressor driving converter circuit 2 provided in the air conditioner. When the AC power supply is AC200V, the compressor drive provided in the air conditioner is applied. A full-wave rectifier circuit is applied to the converter circuit 2 for use.
 その他、空気調和機に設けられる圧縮機駆動用のコンバータ回路2は、交流電源1及びコンバータ回路2の間に配置された不図示のリアクトルを短絡及び開放させて昇圧する構成にしたものでもよいし、交流電源1から供給される交流電力を整流する整流回路の後段に配置された不図示のリアクトルを短絡及び開放させて昇圧する構成にしたものでもよい。このようにコンバータ回路2には多数の方式が適用されるが、コンバータ回路2が出力する直流電圧Vdcの値が250Vから450Vの範囲になるような構成であれば、コンバータ回路2にはどの方式を用いてもよい。また図1に示す交流電源1は単相交流電源であるが、三相交流電源でもよい。 In addition, the compressor driving converter circuit 2 provided in the air conditioner may be configured to increase the pressure by short-circuiting and opening a reactor (not shown) disposed between the AC power source 1 and the converter circuit 2. A configuration may be adopted in which a reactor (not shown) arranged in a subsequent stage of a rectifier circuit that rectifies AC power supplied from the AC power supply 1 is boosted by short-circuiting and opening. As described above, many methods are applied to the converter circuit 2, and any method can be applied to the converter circuit 2 as long as the DC voltage Vdc output from the converter circuit 2 is in the range of 250V to 450V. May be used. The AC power source 1 shown in FIG. 1 is a single-phase AC power source, but may be a three-phase AC power source.
 インバータ主回路3は、SiC-MOSFET(SiC:Silicon Carbide、MOSFET:Metal-Oxide-Semiconductor Field-Effect Transistor)で構成される複数の半導体スイッチング素子であるスイッチング素子SW1,SW2,SW3,SW4,SW5,SW6と、複数のスイッチング素子SW1,SW2,SW3,SW4,SW5,SW6のそれぞれに逆並列接続される複数の還流ダイオードであるダイオードD1,D2,D3,D4,D5,D6と、複数のスイッチング素子SW1,SW2,SW3,SW4,SW5,SW6のそれぞれを駆動するための複数の駆動回路3a,3b,3c,3d,3e,3fとにより構成される。 The inverter main circuit 3 includes switching elements SW1, SW2, SW3, SW4, SW5, which are a plurality of semiconductor switching elements composed of SiC-MOSFETs (SiC: Silicon Carbide, MOSFETs: Metal-Oxide-Semiconductor Field-Effect Transistors). SW6, a plurality of free-wheeling diodes D1, D2, D3, D4, D5, D6 connected in reverse parallel to each of the plurality of switching elements SW1, SW2, SW3, SW4, SW5, SW6, and a plurality of switching elements It comprises a plurality of drive circuits 3a, 3b, 3c, 3d, 3e, 3f for driving each of SW1, SW2, SW3, SW4, SW5, SW6.
 空気調和機に設けられる圧縮機駆動用のスイッチング素子SW1,SW2,SW3,SW4,SW5,SW6には、コンバータ回路2が出力する直流電圧Vdcと配線インピーダンスにより生じるサージ電圧とを考慮して、耐圧600V前後の素子が使用される。複数の還流ダイオードであるダイオードD1,D2,D3,D4,D5,D6にはSiC-MOSFETの寄生ダイオードを用いる。スイッチング素子SW1,SW2,SW3のそれぞれのドレインは正側直流母線Pに接続される。スイッチング素子SW4,SW5,SW6のそれぞれのソースは負側直流母線Nに接続される。スイッチング素子SW1のソースは、スイッチング素子SW4のドレインに接続される。スイッチング素子SW2のソースは、スイッチング素子SW5のドレインに接続される。スイッチング素子SW3のソースは、スイッチング素子SW6のドレインに接続される。正側直流母線Pに接続された3つのスイッチング素子SW1,SW2,SW3は上アーム側スイッチング素子群を構成し、負側直流母線Nに配置された3つのスイッチング素子SW4,SW5,SW6は下アーム側スイッチング素子群を構成する。 The switching elements SW1, SW2, SW3, SW4, SW5, and SW6 for driving the compressor provided in the air conditioner take into account the DC voltage Vdc output from the converter circuit 2 and the surge voltage generated by the wiring impedance. An element of around 600V is used. A SiC-MOSFET parasitic diode is used for the diodes D1, D2, D3, D4, D5, and D6 that are a plurality of freewheeling diodes. The drains of the switching elements SW1, SW2, SW3 are connected to the positive DC bus P. The sources of the switching elements SW4, SW5, SW6 are connected to the negative DC bus N. The source of the switching element SW1 is connected to the drain of the switching element SW4. The source of the switching element SW2 is connected to the drain of the switching element SW5. The source of the switching element SW3 is connected to the drain of the switching element SW6. Three switching elements SW1, SW2, SW3 connected to the positive DC bus P constitute an upper arm switching element group, and three switching elements SW4, SW5, SW6 arranged on the negative DC bus N are lower arms. A side switching element group is configured.
 駆動回路3aは、インバータ制御部7から出力されるPWM駆動信号UPを入力し、PWM駆動信号UPをスイッチング素子SW1を駆動できる電圧に変換してスイッチング素子SW1のゲートに出力する。駆動回路3bは、インバータ制御部7から出力されるPWM駆動信号VPを入力し、PWM駆動信号VPをスイッチング素子SW2を駆動できる電圧に変換してスイッチング素子SW2のゲートに出力する。駆動回路3cは、インバータ制御部7から出力されるPWM駆動信号WPを入力し、PWM駆動信号WPをスイッチング素子SW3を駆動できる電圧に変換してスイッチング素子SW3のゲートに出力する。駆動回路3dは、インバータ制御部7から出力されるPWM駆動信号UNを入力し、PWM駆動信号UNをスイッチング素子SW4を駆動できる電圧に変換してスイッチング素子SW4のゲートに出力する。駆動回路3eは、インバータ制御部7から出力されるPWM駆動信号VNを入力し、PWM駆動信号VNをスイッチング素子SW5を駆動できる電圧に変換してスイッチング素子SW5のゲートに出力する。駆動回路3fは、インバータ制御部7から出力されるPWM駆動信号WNを入力し、PWM駆動信号WNをスイッチング素子SW6を駆動できる電圧に変換してスイッチング素子SW6のゲートに出力する。 The drive circuit 3a receives the PWM drive signal UP output from the inverter control unit 7, converts the PWM drive signal UP into a voltage capable of driving the switching element SW1, and outputs the voltage to the gate of the switching element SW1. The drive circuit 3b receives the PWM drive signal VP output from the inverter control unit 7, converts the PWM drive signal VP into a voltage that can drive the switching element SW2, and outputs the voltage to the gate of the switching element SW2. The drive circuit 3c receives the PWM drive signal WP output from the inverter control unit 7, converts the PWM drive signal WP into a voltage that can drive the switching element SW3, and outputs the voltage to the gate of the switching element SW3. The drive circuit 3d receives the PWM drive signal UN output from the inverter control unit 7, converts the PWM drive signal UN into a voltage that can drive the switching element SW4, and outputs the voltage to the gate of the switching element SW4. The drive circuit 3e receives the PWM drive signal VN output from the inverter control unit 7, converts the PWM drive signal VN into a voltage that can drive the switching element SW5, and outputs the voltage to the gate of the switching element SW5. The drive circuit 3f receives the PWM drive signal WN output from the inverter control unit 7, converts the PWM drive signal WN into a voltage that can drive the switching element SW6, and outputs the voltage to the gate of the switching element SW6.
 以下では、複数のスイッチング素子SW1,SW2,SW3,SW4,SW5,SW6を単にスイッチング素子SW1~SW6と称し、複数のダイオードD1,D2,D3,D4,D5,D6を単にダイオードD1~D6と称し、複数の駆動回路3a,3b,3c,3d,3e,3fを単に駆動回路3a~3fと称する場合がある。 Hereinafter, the plurality of switching elements SW1, SW2, SW3, SW4, SW5, and SW6 are simply referred to as switching elements SW1 to SW6, and the plurality of diodes D1, D2, D3, D4, D5, and D6 are simply referred to as diodes D1 to D6. The plurality of drive circuits 3a, 3b, 3c, 3d, 3e, and 3f may be simply referred to as drive circuits 3a to 3f.
 永久磁石同期電動機4は、不図示の固定子鉄心にU相巻線41、V相巻線42及びW相巻線43で構成される三相Y形結線が施された固定子4aと、固定子4aの内部に設けられた永久磁石回転子4bと、U相巻線41に接続される端子Uと、V相巻線42に接続される端子Vと、W相巻線43に接続される端子Wとを備える。 The permanent magnet synchronous motor 4 includes a stator 4a in which a three-phase Y-shaped connection composed of a U-phase winding 41, a V-phase winding 42, and a W-phase winding 43 is provided on a stator core (not shown), The permanent magnet rotor 4b provided inside the child 4a, the terminal U connected to the U-phase winding 41, the terminal V connected to the V-phase winding 42, and the W-phase winding 43 are connected. And a terminal W.
 インバータ主回路3のスイッチング素子SW1及びスイッチング素子SW4の接続点3-1が永久磁石同期電動機4の端子Uに接続される。インバータ主回路3のスイッチング素子SW2及びスイッチング素子SW5の接続点3-2が永久磁石同期電動機4の端子Vに接続される。インバータ主回路3のスイッチング素子SW3及びスイッチング素子SW6の接続点3-3が永久磁石同期電動機4の端子Wに接続される。実施の形態1では、スイッチング素子SW1及びスイッチング素子SW4の接続点3-1と端子Uとの間に流れる電流をU相電流Iuと称し、スイッチング素子SW2及びスイッチング素子SW5の接続点3-2と端子Vとの間に流れる電流をV相電流Ivと称し、スイッチング素子SW3及びスイッチング素子SW6の接続点3-3と端子Wとの間に流れる電流をW相電流Iwと称する。 The connection point 3-1 of the switching element SW1 and the switching element SW4 of the inverter main circuit 3 is connected to the terminal U of the permanent magnet synchronous motor 4. A connection point 3-2 between the switching element SW2 and the switching element SW5 of the inverter main circuit 3 is connected to the terminal V of the permanent magnet synchronous motor 4. A connection point 3-3 between the switching element SW3 and the switching element SW6 of the inverter main circuit 3 is connected to a terminal W of the permanent magnet synchronous motor 4. In the first embodiment, the current flowing between the connection point 3-1 of the switching element SW1 and the switching element SW4 and the terminal U is referred to as a U-phase current Iu, and the connection point 3-2 of the switching element SW2 and the switching element SW5 A current flowing between the terminal V and the terminal W is referred to as a V-phase current Iv, and a current flowing between the connection point 3-3 of the switching element SW3 and the switching element SW6 and the terminal W is referred to as a W-phase current Iw.
 U相電流Iu、V相電流Iv及びW相電流Iwが永久磁石同期電動機4の固定子4aに供給され、固定子4aが発生する磁界により永久磁石回転子4bが回転し、永久磁石回転子4bに接続された不図示の圧縮機が回転することにより、空気調和機内に冷媒が循環する。実施の形態1では、三相Y形結線が施された固定子4aを永久磁石同期電動機4に使用する例について説明しているが、永久磁石同期電動機4には、三相Y形結線が施された固定子4aの代わりに三相Δ形結線が施された固定子4aを用いてもよい。 The U-phase current Iu, the V-phase current Iv, and the W-phase current Iw are supplied to the stator 4a of the permanent magnet synchronous motor 4, and the permanent magnet rotor 4b is rotated by the magnetic field generated by the stator 4a, and the permanent magnet rotor 4b. As the compressor (not shown) connected to the motor rotates, the refrigerant circulates in the air conditioner. In the first embodiment, an example in which the stator 4a provided with the three-phase Y-type connection is used for the permanent magnet synchronous motor 4 is described. However, the permanent magnet synchronous motor 4 is provided with the three-phase Y-type connection. Instead of the fixed stator 4a, a stator 4a provided with a three-phase Δ-shaped connection may be used.
 直流電流検出回路5は、負側直流母線Nに設けられたシャント抵抗5aと増幅器5bとを備える。増幅器5bは、シャント抵抗5aに直流電流が流れることにより生じるシャント抵抗5aの両端間の電圧降下分を増幅し、増幅した電圧を直流電流Idcに対応する電流情報としてインバータ制御部7に出力する。図1では増幅器5bから出力される電流情報を直流電流Idcとして表記している。増幅器5bとしてはオペアンプを用いた回路を例示できる。実施の形態1では、シャント抵抗5aの両端間の電圧降下分を増幅することにより直流電流を検出する直流電流検出回路5の構成例を示すが、直流電流検出回路5には、直流電流を検出可能なDCCT(DC Current Transformer)を用いてもよい。 The DC current detection circuit 5 includes a shunt resistor 5a and an amplifier 5b provided on the negative DC bus N. The amplifier 5b amplifies the voltage drop between both ends of the shunt resistor 5a caused by the direct current flowing through the shunt resistor 5a, and outputs the amplified voltage to the inverter control unit 7 as current information corresponding to the direct current Idc. In FIG. 1, the current information output from the amplifier 5b is expressed as a direct current Idc. As the amplifier 5b, a circuit using an operational amplifier can be exemplified. In the first embodiment, a configuration example of a DC current detection circuit 5 that detects a DC current by amplifying a voltage drop across the shunt resistor 5a is shown. The DC current detection circuit 5 detects a DC current. A possible DCCT (DC Current Transformer) may be used.
 直流電圧検出回路6は、コンバータ回路2の出力側に接続される正側直流母線P及び負側直流母線Nの間に印加される直流電圧Vdcを分圧してインバータ制御部7に与える。 The DC voltage detection circuit 6 divides the DC voltage Vdc applied between the positive DC bus P and the negative DC bus N connected to the output side of the converter circuit 2 and supplies the divided voltage to the inverter control unit 7.
 インバータ制御部7は、直流電流検出回路5で検出された直流電流と、直流電圧検出回路6で検出された電圧と、外部から与えられる周波数指令値f*とに基づき、インバータ主回路3を構成するスイッチング素子SW1~SW6のそれぞれを制御するためのPWM駆動信号UP,UN,VP,VN,WP,WNを出力する。以下では、周波数指令値f*を単にf*で表し、PWM駆動信号UP,UN,VP,VN,WP,WNを単にPWM駆動信号UP~WNと称する場合がある。 The inverter control unit 7 configures the inverter main circuit 3 based on the DC current detected by the DC current detection circuit 5, the voltage detected by the DC voltage detection circuit 6, and the frequency command value f * given from the outside. PWM drive signals UP, UN, VP, VN, WP, and WN for controlling each of the switching elements SW1 to SW6 to be output are output. Hereinafter, the frequency command value f * may be simply represented by f *, and the PWM drive signals UP, UN, VP, VN, WP, and WN may be simply referred to as PWM drive signals UP to WN.
 PWM駆動信号UP,VP,WPは、インバータ主回路3の上アーム側スイッチング素子群のPWM駆動信号であり、それぞれがスイッチング素子SW1,SW2,SW3を駆動するための信号である。PWM駆動信号UN,VN,WNは、インバータ主回路3の下アーム側スイッチング素子群のPWM駆動信号であり、それぞれがスイッチング素子SW4,SW5,SW6を駆動するための信号である。 PWM drive signals UP, VP, and WP are PWM drive signals of the upper arm side switching element group of the inverter main circuit 3, and are signals for driving the switching elements SW1, SW2, and SW3, respectively. The PWM drive signals UN, VN, WN are PWM drive signals for the lower arm side switching element group of the inverter main circuit 3, and are signals for driving the switching elements SW4, SW5, SW6, respectively.
 インバータ制御部7はマイクロプロセッサにより実現できる。インバータ制御部7は、AD(Analog to Digital)変換器8と、AD変換器9と、出力電圧ベクトル補正部10とを備える。AD変換器8には直流電流検出回路5の出力が入力され、AD変換器8は直流電流検出回路5から出力されるアナログの電圧を、インバータ制御部7内の演算に利用可能なディジタル値に変換する。AD変換器9には直流電圧検出回路6の出力が入力され、AD変換器9は直流電圧検出回路6から出力されるアナログの電圧を、インバータ制御部7内の演算に利用可能なディジタル値に変換する。 The inverter control unit 7 can be realized by a microprocessor. The inverter control unit 7 includes an AD (Analog to Digital) converter 8, an AD converter 9, and an output voltage vector correction unit 10. The output of the direct current detection circuit 5 is input to the AD converter 8, and the AD converter 8 converts the analog voltage output from the direct current detection circuit 5 into a digital value that can be used for calculation in the inverter control unit 7. Convert. The output of the DC voltage detection circuit 6 is input to the AD converter 9, and the AD converter 9 converts the analog voltage output from the DC voltage detection circuit 6 into a digital value that can be used for calculation in the inverter control unit 7. Convert.
 出力電圧ベクトル補正部10は、PWM駆動信号を演算する1演算周期中に、直流電流Idcから二相分の相電流を再現するため、出力電圧ベクトルに補正を加える。出力電圧ベクトルについては後述する。 The output voltage vector correction unit 10 corrects the output voltage vector in order to reproduce the phase current for two phases from the direct current Idc during one calculation cycle for calculating the PWM drive signal. The output voltage vector will be described later.
 次にインバータ装置100の動作を説明する。図2は図1に示す直流電流検出回路で検出された直流電流の値に基づきPWM駆動信号の演算が行われてから、演算されたPWM駆動信号が反映されるまでの動作を示すタイミングチャートである。以下では、PWM駆動信号の演算を単にPWM演算と称する場合がある。 Next, the operation of the inverter device 100 will be described. FIG. 2 is a timing chart showing the operation from the calculation of the PWM drive signal based on the value of the DC current detected by the DC current detection circuit shown in FIG. 1 to the reflection of the calculated PWM drive signal. is there. Hereinafter, the calculation of the PWM drive signal may be simply referred to as PWM calculation.
 図2において、(a)にはPWM信号の基準キャリアが示される。基準キャリア周期Tc_stdは、PWM駆動信号を演算する演算周期Tsと同じであり、図2には「Tc_std=Ts」と表示されている。(b)にはPWM演算の開始タイミングが矢印で示される。 In FIG. 2, (a) shows the reference carrier of the PWM signal. The reference carrier cycle Tc_std is the same as the calculation cycle Ts for calculating the PWM drive signal, and “Tc_std = Ts” is displayed in FIG. In (b), the start timing of the PWM calculation is indicated by an arrow.
 (c)にはPWM駆動信号を生成するための制御キャリア1が示される。制御キャリア1は、PWM演算の演算処理時間Txが「Ts/2≦Tx<2Ts/3」に設定される場合における制御キャリアの一例であり、制御キャリア1のキャリア周期Tc1は「Tc1=2Ts/3」に設定される。以下では制御キャリア1のキャリア周期Tc1を単に制御キャリア周期Tc1と称する場合がある。(d)には演算処理時間Txが「Ts/2≦Tx<2Ts/3」に設定される場合におけるPWM演算の処理区間が示される。 (C) shows a control carrier 1 for generating a PWM drive signal. The control carrier 1 is an example of the control carrier when the calculation processing time Tx of the PWM calculation is set to “Ts / 2 ≦ Tx <2Ts / 3”, and the carrier cycle Tc1 of the control carrier 1 is “Tc1 = 2Ts / 3 ". Hereinafter, the carrier period Tc1 of the control carrier 1 may be simply referred to as a control carrier period Tc1. (D) shows a processing interval of PWM calculation when the calculation processing time Tx is set to “Ts / 2 ≦ Tx <2Ts / 3”.
 (e)にはPWM駆動信号を生成するための制御キャリア2が示される。制御キャリア2は、PWM演算の演算処理時間Txが「2Ts/3≦Tx<3Ts/4」に設定される場合における制御キャリアの一例であり、制御キャリア2のキャリア周期Tc2は「Tc2=Ts/2」に設定される。以下では制御キャリア2のキャリア周期Tc2を単に制御キャリア周期Tc2と称する場合がある。(f)には演算処理時間Txが「2Ts/3≦Tx<3Ts/4」に設定される場合におけるPWM演算の処理区間が示される。 (E) shows a control carrier 2 for generating a PWM drive signal. The control carrier 2 is an example of the control carrier when the calculation processing time Tx of the PWM calculation is set to “2Ts / 3 ≦ Tx <3Ts / 4”, and the carrier period Tc2 of the control carrier 2 is “Tc2 = Ts / 2 ". Hereinafter, the carrier period Tc2 of the control carrier 2 may be simply referred to as a control carrier period Tc2. (F) shows a PWM calculation processing section when the calculation processing time Tx is set to “2Ts / 3 ≦ Tx <3Ts / 4”.
 (g)にはPWM駆動信号を生成するための制御キャリア3が示される。制御キャリア3は、PWM演算の演算処理時間Txが「3Ts/4≦Tx<4Ts/5」に設定される場合における制御キャリアの一例であり、制御キャリア3のキャリア周期Tc3は「Tc3=2Ts/5」に設定される。以下では制御キャリア3のキャリア周期Tc3を単に制御キャリア周期Tc3と称する場合がある。(h)には演算処理時間Txが「3Ts/4≦Tx<4Ts/5」に設定される場合におけるPWM演算の処理区間が示される。 (G) shows a control carrier 3 for generating a PWM drive signal. The control carrier 3 is an example of the control carrier when the calculation processing time Tx of the PWM calculation is set to “3Ts / 4 ≦ Tx <4Ts / 5”, and the carrier period Tc3 of the control carrier 3 is “Tc3 = 2Ts / 5 ". Hereinafter, the carrier period Tc3 of the control carrier 3 may be simply referred to as a control carrier period Tc3. (H) shows a processing section of PWM calculation when the calculation processing time Tx is set to “3Ts / 4 ≦ Tx <4Ts / 5”.
 図2には、左右対称の三角波キャリアである基準キャリア及び制御キャリアが例示され、図2では基準キャリアの谷タイミングと制御キャリアの谷タイミングもしくは山タイミングとが一致している。(c)、(e)、(g)に示す制御キャリア1,2,3には、出力電圧ベクトルを反映した区間が重ねて表記されている。(c)、(e)、(g)では、出力電圧ベクトルを便宜上「Vsxy_z」の形で表記している。すなわち、(c)には(d)に示すPWM演算で演算された出力電圧ベクトルVsxy_zが表記され、(e)には(f)に示すPWM演算で演算された出力電圧ベクトルVsxy_zが表記され、(g)には(h)に示すPWM演算で演算された出力電圧ベクトルVsxy_zが表記されている。 FIG. 2 illustrates a reference carrier and a control carrier that are symmetrical triangular wave carriers. In FIG. 2, the valley timing of the reference carrier coincides with the valley timing or peak timing of the control carrier. In the control carriers 1, 2, and 3 shown in (c), (e), and (g), sections reflecting the output voltage vector are overlaid. In (c), (e), and (g), the output voltage vector is represented in the form of “Vsxy_z” for convenience. That is, (c) represents the output voltage vector Vsxy_z calculated by the PWM calculation shown in (d), (e) shows the output voltage vector Vsxy_z calculated by the PWM calculation shown in (f), (G) shows an output voltage vector Vsxy_z calculated by the PWM calculation shown in (h).
 出力電圧ベクトルVsxy_zの「x」の部分には”a”と”b”があり、「x=a」の出力電圧ベクトルは、直流電流検出回路5で検出された直流電流Idcから永久磁石同期電動機4に流れる二相分の相電流情報を再現できるベクトルであることを示す。「x=b」の出力電圧ベクトルは、前記「x=a」の出力電圧ベクトルと合成すると後述する演算周期当たりの出力電圧ベクトルとなるベクトルであることを示す。ただし、後述するが変調率が1以上になるようなとき、2つのベクトルを合成しても演算周期当たりの出力電圧ベクトルと一致しない状態もあり得る。 “X” portion of the output voltage vector Vsxy_z includes “a” and “b”, and the output voltage vector of “x = a” is obtained from the DC current Idc detected by the DC current detection circuit 5. 4 indicates that the vector can reproduce the phase current information for two phases flowing through 4. The output voltage vector of “x = b” indicates a vector that becomes an output voltage vector per calculation cycle, which will be described later, when combined with the output voltage vector of “x = a”. However, as will be described later, when the modulation rate is 1 or more, there is a possibility that even if two vectors are combined, they do not match the output voltage vector per calculation cycle.
 Vsxy_zの「y」の部分には整数が入り、「y=1」の出力電圧ベクトルは、(d)、(f)、(h)のそれぞれに示される「演算処理1」で演算される出力電圧ベクトルを示す。「y=2」の出力電圧ベクトルは、(d)、(f)、(h)のそれぞれに示される「演算処理2」で演算される出力電圧ベクトルを示す。 An integer is entered in the “y” portion of Vsxy_z, and the output voltage vector of “y = 1” is an output calculated by “calculation processing 1” shown in each of (d), (f), and (h). Indicates the voltage vector. The output voltage vector of “y = 2” indicates the output voltage vector calculated in “calculation process 2” shown in each of (d), (f), and (h).
 Vsxy_zの「z」の部分には対応する制御キャリアの数字が入り、「z=1」の出力電圧ベクトルは、制御キャリア1のPWM演算による出力電圧ベクトルを示す。「z=2」の出力電圧ベクトルは、制御キャリア2のPWM演算による出力電圧ベクトルを示す。「z=3」の出力電圧ベクトルは、制御キャリア3のPWM演算による出力電圧ベクトルを示す。 The number of the corresponding control carrier is entered in the “z” portion of Vsxy_z, and the output voltage vector of “z = 1” indicates an output voltage vector of the control carrier 1 by PWM calculation. The output voltage vector of “z = 2” indicates an output voltage vector obtained by PWM calculation of the control carrier 2. The output voltage vector of “z = 3” indicates an output voltage vector obtained by PWM calculation of the control carrier 3.
 続いて、直流電流Idcが検出されてからPWM駆動信号が演算され、演算されたPWM駆動信号が反映されるまでの動作を、(d)のPWM演算の演算処理1のタイミングを例に取り説明する。 Subsequently, the operation from when the DC current Idc is detected until the PWM drive signal is calculated and the calculated PWM drive signal is reflected will be described by taking the timing of the calculation process 1 of (d) PWM calculation as an example. To do.
 演算処理1の演算開始タイミングは基準キャリアの谷タイミングDである。タイミングDは制御キャリア1の谷タイミングでもある。演算処理1で使用される直流電流Idcは、演算開始タイミングDの直前の制御キャリア1の半キャリア周期であるA~Dの区間で検出される。A~Dの半キャリア周期区間には、出力電圧ベクトル「Vsa0_1」に対応したPWM駆動信号が出力されているため、インバータ制御部7は、直流電流Idcに基づき、永久磁石同期電動機4に流れる二相分の相電流情報を検出できる。 The calculation start timing of the calculation process 1 is the valley timing D of the reference carrier. Timing D is also the valley timing of the control carrier 1. The direct current Idc used in the calculation process 1 is detected in a section A to D that is a half carrier period of the control carrier 1 immediately before the calculation start timing D. Since the PWM drive signal corresponding to the output voltage vector “Vsa0_1” is output in the half-carrier cycle period from A to D, the inverter control unit 7 outputs the current flowing through the permanent magnet synchronous motor 4 based on the direct current Idc. Phase current information for the phase can be detected.
 インバータ制御部7は、直流電流Idcに基づいて、次の演算開始タイミングIよりも制御キャリア1の半キャリア周期前のタイミングFから1演算周期後のタイミングKまでの中心位相における出力電圧ベクトルを求める。インバータ制御部7は、この演算を、演算開始タイミングDからタイミングFまでの区間内で行う。演算された出力電圧ベクトルに対するPWM駆動信号は、タイミングFからタイミングKまでの区間に反映される。以下では、F~Kの区間のように、演算された出力電圧ベクトルに対するPWM駆動信号が反映される区間を「PWM駆動信号反映区間」と称する場合がある。 Based on the direct current Idc, the inverter control unit 7 obtains an output voltage vector at the center phase from the timing F before the next carrier start timing I to the timing K after one calculation cycle from the timing F before the half carrier cycle of the control carrier 1. . The inverter control unit 7 performs this calculation within a section from the calculation start timing D to the timing F. The PWM drive signal for the calculated output voltage vector is reflected in the interval from timing F to timing K. Hereinafter, a section in which the PWM drive signal for the calculated output voltage vector is reflected, such as a section from F to K, may be referred to as a “PWM drive signal reflection section”.
 インバータ制御部7は、次の演算処理2の演算開始タイミングIの直前における制御キャリア1の半キャリア周期であるF~Iの区間に、出力電圧ベクトル「Vsa1_1」に対応したPWM駆動信号を出力し、残りのI~Kの区間に、出力電圧ベクトル「Vsb1_1」に対応したPWM駆動信号を出力する。 The inverter control unit 7 outputs a PWM drive signal corresponding to the output voltage vector “Vsa1_1” in a section from F to I which is a half carrier period of the control carrier 1 immediately before the calculation start timing I of the next calculation process 2. The PWM drive signal corresponding to the output voltage vector “Vsb1_1” is output in the remaining I to K intervals.
 同様にインバータ制御部7では、演算周期Ts毎に(d)の演算処理2以降の演算が行われる。ここで、演算開始タイミングは、必ずしも三角波キャリアの谷タイミングまたは山タイミングである必要はなく、PWM駆動信号を反映させたいタイミングまでに演算が終了することが確保できれば、上記のタイミングより演算開始タイミングが遅くても構わない。インバータ制御部7では、(f)、(h)の動作も(d)と同様に行われる。 Similarly, in the inverter control unit 7, the calculation after the calculation process 2 of (d) is performed every calculation cycle Ts. Here, the calculation start timing does not necessarily need to be the valley timing or peak timing of the triangular wave carrier, and if it can be ensured that the calculation is completed by the timing at which the PWM drive signal is to be reflected, the calculation start timing is higher than the above timing. You can be late. In the inverter control unit 7, the operations (f) and (h) are performed in the same manner as (d).
 次に、出力電圧ベクトルについて説明する。出力電圧ベクトルVsの大きさ|Vs|及びγ軸からの位相θvは、回転座標系の制御軸(γ-δ軸)におけるγ軸電圧Vγ及びδ軸電圧Vδの値が求められれば、それぞれ下記式(1)及び式(2)より求めることができる。 Next, the output voltage vector will be described. The magnitude | Vs | of the output voltage vector Vs and the phase θv from the γ-axis are as follows if the values of the γ-axis voltage Vγ and the δ-axis voltage Vδ on the control axis (γ-δ axis) of the rotating coordinate system are obtained. It can obtain | require from Formula (1) and Formula (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 γ軸電圧Vγ及びδ軸電圧Vδは、角速度指令値ω*(=2π×f*)と永久磁石同期電動機4に流れる相電流情報とに基づき、例えば特許第3860031号公報に記載される公知の方法で算出できる。 The γ-axis voltage Vγ and the δ-axis voltage Vδ are based on the angular velocity command value ω * (= 2π × f *) and the phase current information flowing through the permanent magnet synchronous motor 4, for example, as disclosed in Japanese Patent No. 3860031. It can be calculated by the method.
 また、この場合の変調率は、直流電圧検出回路6で検出された直流電圧Vdcに基づき下記式(3)より求められる。 Further, the modulation factor in this case is obtained from the following equation (3) based on the DC voltage Vdc detected by the DC voltage detection circuit 6.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 続いて、出力電圧ベクトルVsとインバータ主回路3のスイッチング素子との関係を説明する。 Subsequently, the relationship between the output voltage vector Vs and the switching elements of the inverter main circuit 3 will be described.
 図3は本発明の実施の形態1に係るインバータ制御部で演算される1演算周期当たりの出力電圧ベクトルVsと、出力電圧ベクトル補正部10による補正前の制御キャリア1の半キャリア周期当たりの出力電圧ベクトルVscとの関係を示す図である。図4は基本電圧ベクトルに対するインバータ主回路のスイッチング素子のスイッチング状態と直流電流Idcから再現される相電流情報との対応関係を示す図である。図5は図3に示す出力電圧ベクトルVscに対応したPWM駆動信号のタイミングチャートである。図6は本発明の実施の形態1に係るインバータ制御部で演算される1演算周期当たりの出力電圧ベクトルVsと、出力電圧ベクトル補正部10による補正後の出力電圧ベクトルVsa,Vsbとの関係を示す図である。 FIG. 3 shows the output voltage vector Vs per calculation cycle calculated by the inverter control unit according to Embodiment 1 of the present invention, and the output per half carrier cycle of the control carrier 1 before correction by the output voltage vector correction unit 10. It is a figure which shows the relationship with the voltage vector Vsc. FIG. 4 is a diagram showing a correspondence relationship between the switching state of the switching element of the inverter main circuit and the phase current information reproduced from the DC current Idc with respect to the basic voltage vector. FIG. 5 is a timing chart of the PWM drive signal corresponding to the output voltage vector Vsc shown in FIG. FIG. 6 shows the relationship between the output voltage vector Vs per calculation cycle calculated by the inverter control unit according to Embodiment 1 of the present invention and the output voltage vectors Vsa and Vsb after correction by the output voltage vector correction unit 10. FIG.
 図3には制御キャリア1の場合に演算される出力電圧ベクトルVsが示される。図3に示すV0~V7は基本電圧ベクトルであり、図4では、8つの基本電圧ベクトルV0~V7のそれぞれが、インバータ主回路3のスイッチング素子SW1~SW6のそれぞれのONまたはOFFの状態に対応付けられている。 FIG. 3 shows an output voltage vector Vs calculated for the control carrier 1. V0 to V7 shown in FIG. 3 are basic voltage vectors. In FIG. 4, each of the eight basic voltage vectors V0 to V7 corresponds to the ON or OFF state of each of the switching elements SW1 to SW6 of the inverter main circuit 3. It is attached.
 図4に示すように基本電圧ベクトルV0では、スイッチング素子SW1,SW2,SW3がOFFであり、スイッチング素子SW4,SW5,SW6がONである。基本電圧ベクトルV1では、スイッチング素子SW2,SW3,SW4がOFFであり、スイッチング素子SW1,SW5,SW6がONである。基本電圧ベクトルV2では、スイッチング素子SW3,SW4,SW5がOFFであり、スイッチング素子SW1,SW2,SW6がONである。基本電圧ベクトルV3では、スイッチング素子SW1,SW3,SW5がOFFであり、スイッチング素子SW2,SW4,SW6がONである。基本電圧ベクトルV4では、スイッチング素子SW1,SW5,SW6がOFFであり、スイッチング素子SW2,SW3,SW4がONである。基本電圧ベクトルV5では、スイッチング素子SW1,SW2,SW6がOFFであり、スイッチング素子SW3,SW4,SW5がONである。基本電圧ベクトルV6では、スイッチング素子SW2,SW4,SW6がOFFであり、スイッチング素子SW1,SW3,SW5がONである。基本電圧ベクトルV7では、スイッチング素子SW4,SW5,SW6がOFFであり、スイッチング素子SW1,SW2,SW3がONである。 As shown in FIG. 4, in the basic voltage vector V0, the switching elements SW1, SW2, and SW3 are OFF, and the switching elements SW4, SW5, and SW6 are ON. In the basic voltage vector V1, the switching elements SW2, SW3, SW4 are OFF, and the switching elements SW1, SW5, SW6 are ON. In the basic voltage vector V2, the switching elements SW3, SW4, SW5 are OFF, and the switching elements SW1, SW2, SW6 are ON. In the basic voltage vector V3, the switching elements SW1, SW3, SW5 are OFF, and the switching elements SW2, SW4, SW6 are ON. In the basic voltage vector V4, the switching elements SW1, SW5, SW6 are OFF, and the switching elements SW2, SW3, SW4 are ON. In the basic voltage vector V5, the switching elements SW1, SW2, and SW6 are OFF, and the switching elements SW3, SW4, and SW5 are ON. In the basic voltage vector V6, the switching elements SW2, SW4, SW6 are OFF, and the switching elements SW1, SW3, SW5 are ON. In the basic voltage vector V7, the switching elements SW4, SW5, SW6 are OFF, and the switching elements SW1, SW2, SW3 are ON.
 また図4には、スイッチング素子SW1~SW6のそれぞれが基本電圧ベクトルV1~V6の非零の電圧ベクトルの状態になるときに、直流電流Idcから再現される永久磁石同期電動機4に流れる相電流情報が基本電圧ベクトルV1~V6に対応付けられている。 FIG. 4 also shows phase current information flowing in the permanent magnet synchronous motor 4 reproduced from the direct current Idc when each of the switching elements SW1 to SW6 is in a non-zero voltage vector state of the basic voltage vectors V1 to V6. Are associated with the basic voltage vectors V1 to V6.
 基本電圧ベクトルV1には相電流情報「+Iu」が対応し、基本電圧ベクトルV2には相電流情報「-Iw」が対応し、基本電圧ベクトルV3には相電流情報「+Iv」が対応し、基本電圧ベクトルV4には相電流情報「-Iu」が対応し、基本電圧ベクトルV5には相電流情報「+Iw」が対応し、基本電圧ベクトルV6には相電流情報「-Iv」が対応している。相電流情報の「+」は、インバータ主回路3から永久磁石同期電動機4に向かって流れる相電流の方向を表し、相電流情報の「-」は永久磁石同期電動機4からインバータ主回路3に向かって流れる相電流の方向を表す。 The basic voltage vector V1 corresponds to the phase current information “+ Iu”, the basic voltage vector V2 corresponds to the phase current information “−Iw”, and the basic voltage vector V3 corresponds to the phase current information “+ Iv”. The phase current information “−Iu” corresponds to the voltage vector V4, the phase current information “+ Iw” corresponds to the basic voltage vector V5, and the phase current information “−Iv” corresponds to the basic voltage vector V6. . The phase current information “+” indicates the direction of the phase current flowing from the inverter main circuit 3 toward the permanent magnet synchronous motor 4, and the phase current information “−” indicates the direction from the permanent magnet synchronous motor 4 to the inverter main circuit 3. The direction of the flowing phase current.
 図3において、出力電圧ベクトルVsの大きさは演算周期Ts当たりの大きさで示される。実施の形態1では、制御キャリア周期Tc1がTc1=2Ts/3に設定されているため、半キャリア周期(Tc・1/2)当たりの出力電圧ベクトルVscは出力電圧ベクトルVsの大きさの1/3となる。tiは出力電圧ベクトルVscに隣接する大きさが非零の基本電圧ベクトルであるV1,V2の内、回転方向元の基本電圧ベクトルV1の半キャリア周期当たりの出力時間である。回転方向元は出力電圧ベクトルの回転方向に対して後方を意味する。tkは回転方向先の基本電圧ベクトルであるV2の半キャリア周期当たりの出力時間である。回転方向先は出力電圧ベクトルの回転方向に対して前方を意味する。TMINはインバータ主回路3に供給される直流電流を検出するのに必要な最小時間である。最小時間TMINは、駆動回路3a~3f及びスイッチング素子SW1~SW6の応答遅延時間と、インバータ主回路3に供給される直流電流に発生するリンギング時間と、直流電流検出回路5の遅延時間と、AD変換器8のサンプルホールド時間と、後述する上下短絡防止時間とを考慮して設定される。 In FIG. 3, the magnitude of the output voltage vector Vs is indicated by the magnitude per calculation cycle Ts. In the first embodiment, since the control carrier period Tc1 is set to Tc1 = 2Ts / 3, the output voltage vector Vsc per half carrier period (Tc · 1/2) is 1 / of the magnitude of the output voltage vector Vs. 3 ti is the output time per half carrier period of the basic voltage vector V1 in the rotation direction out of V1 and V2 which are non-zero basic voltage vectors adjacent to the output voltage vector Vsc. The direction of rotation means backward with respect to the direction of rotation of the output voltage vector. tk is an output time per half carrier period of V2, which is a basic voltage vector ahead in the rotation direction. The rotation direction ahead means forward with respect to the rotation direction of the output voltage vector. TMIN is the minimum time required to detect the direct current supplied to the inverter main circuit 3. The minimum time TMIN is the response delay time of the drive circuits 3a to 3f and the switching elements SW1 to SW6, the ringing time generated in the DC current supplied to the inverter main circuit 3, the delay time of the DC current detection circuit 5, and AD It is set in consideration of the sample hold time of the converter 8 and a vertical short circuit prevention time described later.
 ここで、出力電圧ベクトルVscに隣接する大きさが非零の基本電圧ベクトルであるV1,V2の内、回転方向元の基本電圧ベクトルであるV1から出力電圧ベクトルVsまでの角度を、不図示のθx[°]とする。このとき、時間ti,tkのそれぞれは下記式(4)及び式(5)により求めることができる。 Here, the angle from the basic voltage vector V1 that is the original in the rotation direction to the output voltage vector Vs among the basic voltage vectors V1 and V2 that are adjacent to the output voltage vector Vsc is non-illustrated. It is assumed that θx [°]. At this time, each of time ti and tk can be calculated | required by following formula (4) and Formula (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図5において、(a)は制御キャリア1を示す。(b)はスイッチング素子SW1~SW6のPWM駆動信号UP~WNを示す。(c)は直流電流Idcを示す。(d)はPWM駆動信号に対応した電圧べクトル状態を示す。図5には、PWM駆動信号の反映区間が図2のA-F区間のようにキャリア立下りから始まる場合を示している。 In FIG. 5, (a) shows the control carrier 1. (B) shows PWM drive signals UP to WN of the switching elements SW1 to SW6. (C) shows the direct current Idc. (D) shows a voltage vector state corresponding to the PWM drive signal. FIG. 5 shows a case where the PWM drive signal reflection interval starts from the falling edge of the carrier as in the AF interval of FIG.
 図5の(a)の制御キャリア1に表記されるVscは、制御キャリア1の半キャリア周期で出力される出力電圧ベクトルを示し、図5には、制御キャリア1の立下り半周期で出力される2つのVscと、制御キャリア1の立上り半周期で出力される1つのVscとが示される。 Vsc shown in the control carrier 1 in FIG. 5A indicates an output voltage vector output in the half carrier cycle of the control carrier 1, and in FIG. 2 Vsc and one Vsc output in the rising half cycle of the control carrier 1 are shown.
 図5の(b)において、PWM駆動信号が「H(ON)」の場合、その対応するスイッチング素子がON動作し、「L(OFF)」の場合にその対応するスイッチング素子がOFF動作する。例えば、PWM駆動信号のUPが「H(ON)」の場合、その対応するスイッチング素子SW1がONし、UPが「L(OFF)」の場合、スイッチング素子SW1がOFFする。実施の形態1では、半キャリア周期におけるゼロベクトルV0,V7の出力割合を1:1にしているが、この出力割合は任意に設定できる。 In FIG. 5B, when the PWM drive signal is “H (ON)”, the corresponding switching element is turned ON, and when it is “L (OFF)”, the corresponding switching element is turned OFF. For example, when UP of the PWM drive signal is “H (ON)”, the corresponding switching element SW1 is turned ON, and when UP is “L (OFF)”, the switching element SW1 is turned OFF. In the first embodiment, the output ratio of the zero vectors V0 and V7 in the half carrier period is 1: 1, but this output ratio can be arbitrarily set.
 また、PWM駆動信号UP及びPWM駆動信号UNのスイッチング状態が「ONからOFF」または「OFFからON」に切り替わるときには、スイッチング素子の上下短絡を防止する上下短絡防止時間を設ける必要があるが、ここでは説明の簡略化のため省略している。PWM駆動信号VP及びPWM駆動信号VNのスイッチング状態が「ONからOFF」または「OFFからON」に切り替わるときの上下短絡防止時間と、PWM駆動信号WP及びPWM駆動信号WNのスイッチング状態が「ONからOFF」または「OFFからON」に切り替わるときの上下短絡防止時間も同様である。 Further, when the switching state of the PWM drive signal UP and the PWM drive signal UN is switched from “ON to OFF” or “OFF to ON”, it is necessary to provide a vertical short circuit prevention time for preventing the vertical short circuit of the switching element. However, it is omitted for simplification of explanation. The upper and lower short-circuit prevention time when the switching state of the PWM drive signal VP and the PWM drive signal VN is switched from “ON to OFF” or “OFF to ON” and the switching state of the PWM drive signal WP and the PWM drive signal WN are changed from “ON”. The same applies to the upper and lower short-circuit prevention time when switching from “OFF” or “OFF to ON”.
 このように出力電圧ベクトルが求められれば、そのベクトルに対応したPWM駆動信号を生成できる。しかしながら、図3に示されるように、出力電圧ベクトルVscの時間tiはTMIN以上であるが、出力電圧ベクトルVscの時間tkはTMIN未満であり、インバータ制御部7では直流電流Idcから二相分の相電流情報を再現することができない。 If the output voltage vector is obtained in this way, a PWM drive signal corresponding to the vector can be generated. However, as shown in FIG. 3, the time ti of the output voltage vector Vsc is equal to or greater than TMIN, but the time tk of the output voltage vector Vsc is less than TMIN, and the inverter control unit 7 uses the DC current Idc for two phases. Phase current information cannot be reproduced.
 そこで実施の形態1に係るインバータ制御部7の出力電圧ベクトル補正部10は、図6に示されるように、出力電圧ベクトルVsの補正を行い、演算周期Ts当たりの出力電圧ベクトルVsを、直流電流Idcから二相分の相電流情報が再現される出力電圧ベクトルVsaと、出力電圧ベクトルVsaとの合成がVsとなる出力電圧ベクトルVsbとに分けて出力する。このようにすることで、1演算周期中に前記直流電流から二組分の相電流を再現できると共に、1演算周期当たりの出力電圧ベクトルを同一に保持できる。 Therefore, as shown in FIG. 6, the output voltage vector correction unit 10 of the inverter control unit 7 according to the first embodiment corrects the output voltage vector Vs, and converts the output voltage vector Vs per calculation cycle Ts to a direct current. The output voltage vector Vsa in which the phase current information for two phases is reproduced from the Idc and the output voltage vector Vsb in which the combination of the output voltage vector Vsa becomes Vs is output. In this way, two sets of phase currents can be reproduced from the direct current during one calculation cycle, and the output voltage vector per calculation cycle can be kept the same.
 具体的には、出力電圧ベクトルVsaに隣接し、かつ、大きさが非零の基本電圧ベクトルであるV1,V2の内、回転方向元の基本電圧ベクトルであるV1の半キャリア周期当たりの出力時間をtiaとし、「tia=ti」とし、回転方向先の基本電圧ベクトルであるV2の半キャリア周期当たりの出力時間をtkaとし、「tka=TMIN」とする。 Specifically, the output time per half carrier period of V1, which is the basic voltage vector in the rotation direction, among V1 and V2, which are adjacent to the output voltage vector Vsa and have a non-zero magnitude. Is tia, “tia = ti”, the output time per half carrier period of V2, which is the basic voltage vector ahead in the rotation direction, is tka, and “tka = TMIN”.
 「(tia+tka)>(Tc1/2)」となる場合、tia及びtkaの内、出力時間が長い方を「(Tc1/2)-TMIN」とする。また、出力電圧ベクトルVsbの回転方向元の基本電圧ベクトルの残りの出力区間、すなわち図6に示す1キャリア周期当たりの出力時間をtibとする。出力電圧ベクトルVsbの回転方向先の基本電圧ベクトルの残りの出力区間、すなわち図6に示す1キャリア周期当たりの出力時間をtkbとする。そしてインバータ制御部7の出力電圧ベクトル補正部10は、「(tib+tkb)>(Tc1/2)×Nc」となる場合、「(tib+tkb)=(Tc1/2)×Nc」となるように出力時間tib,tkbの内、短い方を零に近づける。Ncは、出力電圧ベクトルVsbを出力する区間の半キャリア周期の数であり、この場合はNc=2である。 When “(tia + tka)> (Tc1 / 2)”, the longer output time of tia and tka is defined as “(Tc1 / 2) −TMIN”. Further, let tib be the remaining output section of the basic voltage vector in the rotation direction of the output voltage vector Vsb, that is, the output time per carrier cycle shown in FIG. The remaining output section of the basic voltage vector ahead of the rotation direction of the output voltage vector Vsb, that is, the output time per carrier period shown in FIG. The output voltage vector correction unit 10 of the inverter control unit 7 outputs the output time so that “(tib + tkb) = (Tc1 / 2) × Nc” when “(tib + tkb)> (Tc1 / 2) × Nc”. The shorter one of tib and tkb is brought closer to zero. Nc is the number of half carrier periods in the section in which the output voltage vector Vsb is output. In this case, Nc = 2.
 出力時間の短い方を零にしても「(tib+tkb)=(Tc1/2)×Nc」とならない場合、インバータ制御部7の出力電圧ベクトル補正部10は、更に出力時間の長い方を「(Tc1/2)×Nc」とする。変調率が1以上になるようなとき、出力電圧ベクトルVsbはこのような状態になるが、この場合、出力電圧ベクトルVsa及び出力電圧ベクトルVsbの合成ベクトルは、出力電圧ベクトルVsとは完全には一致しない状態となる。しかしながら、このような状態になるのは変調率が1以上になるようなPWM駆動信号が飽和する高回転領域状態であり、補正前後での1演算周期当たりの出力電圧ベクトルは略同一に保持される。 If “(tib + tkb) = (Tc1 / 2) × Nc” is not satisfied even if the shorter output time is zero, the output voltage vector correction unit 10 of the inverter control unit 7 sets the longer output time to “(Tc1 / 2) × Nc ”. When the modulation factor is 1 or more, the output voltage vector Vsb is in such a state. In this case, the combined vector of the output voltage vector Vsa and the output voltage vector Vsb is completely different from the output voltage vector Vs. It does not match. However, such a state is a high rotation region where the PWM drive signal is saturated such that the modulation rate becomes 1 or more, and the output voltage vector per one calculation cycle before and after correction is held substantially the same. The
 図7は図6に示す出力電圧ベクトルVsa,Vsbに対応して出力電圧ベクトル補正部により補正されたPWM駆動信号の第1のタイミングチャートである。図7では、インバータ制御部7が、出力電圧ベクトルVsaをPWM駆動信号反映区間の最初の半キャリア周期に出力し、出力電圧ベクトルVsbを残りのPWM駆動信号反映区間に出力する場合を示す。図7には、図5と同様にPWM駆動信号反映区間がキャリア立下りから始まる場合を示す。図7に示す(a)~(d)の意味は図5に示す(a)~(d)と同じである。また、図7に示す(c)におけるTrg1及びTrg2は、直流電流Idcから二相分の相電流情報を得るための検出タイミングを表す。 FIG. 7 is a first timing chart of the PWM drive signal corrected by the output voltage vector correction unit corresponding to the output voltage vectors Vsa and Vsb shown in FIG. FIG. 7 shows a case where the inverter control unit 7 outputs the output voltage vector Vsa in the first half carrier period of the PWM drive signal reflection interval and outputs the output voltage vector Vsb in the remaining PWM drive signal reflection interval. FIG. 7 shows a case where the PWM drive signal reflection section starts from the falling edge of the carrier as in FIG. The meanings of (a) to (d) shown in FIG. 7 are the same as (a) to (d) shown in FIG. Further, Trg1 and Trg2 in (c) shown in FIG. 7 represent detection timings for obtaining phase current information for two phases from the direct current Idc.
 ここで実施の形態1では、検出タイミングTrg1及び検出タイミングTrg2の間隔が、上アーム側スイッチング素子群を制御する複数のPWM駆動信号の内、それぞれのON幅が中間となるPWM駆動信号、すなわち図7ではPWM駆動信号VPがONからOFFに切り替わるタイミングの前後で、二相分の相電流情報を得られる最小時間に設定されている。この最小時間は前述した最小時間TMINと同じ長さの時間である。 Here, in the first embodiment, the interval between the detection timing Trg1 and the detection timing Trg2 is a PWM drive signal having an intermediate ON width among a plurality of PWM drive signals for controlling the upper arm side switching element group, that is, FIG. 7 is set to the minimum time for obtaining phase current information for two phases before and after the timing when the PWM drive signal VP is switched from ON to OFF. This minimum time is the same length as the minimum time TMIN described above.
 この場合、インバータ制御部7は、直流電流Idcに基づき二相分の相電流情報を最小時間の間隔で得ることができるので、「Iu+Iv+Iw=0」の関係に基づき残りの一相の相電流も精度よく再現できるというメリットがある。しかしながら、検出タイミングTrg1は、検出される電圧ベクトル状態の終端近くのタイミングとなり、検出タイミングTrg2は、検出される電圧ベクトル状態に切り替わった直後のタイミングとなるため、検出される相電流の値が実際の相電流の中心値から外れ、永久磁石同期電動機4の制御性が悪化する。 In this case, the inverter control unit 7 can obtain the phase current information for two phases based on the direct current Idc at the minimum time interval, so that the remaining one-phase phase current is also calculated based on the relationship of “Iu + Iv + Iw = 0”. There is an advantage that it can be accurately reproduced. However, the detection timing Trg1 is a timing near the end of the detected voltage vector state, and the detection timing Trg2 is a timing immediately after switching to the detected voltage vector state, so that the value of the detected phase current is actually Thus, the controllability of the permanent magnet synchronous motor 4 is deteriorated.
 この対策として、制御キャリア1または制御キャリア3のように、演算周期毎に直流電流Idcが検出される区間の三角波キャリアの状態がキャリア立上り区間及び立下り区間に切り替わるキャリア周期Tcを設定し、検出タイミングTrg1、検出タイミングTrg2及び電圧ベクトル状態の関係を変えることにより、実際の相電流の中心値から外れる影響を緩和できる。制御の応答性は若干犠牲になるが、再現された相電流、または相電流を制御軸(γ-δ軸)上に変換した電流値の移動平均を取ることで、更に上記の影響を緩和できる。 As a countermeasure, a carrier cycle Tc in which the state of the triangular wave carrier in the section in which the DC current Idc is detected for each calculation period, such as the control carrier 1 or the control carrier 3, is switched between the carrier rising section and the falling section is detected. By changing the relationship between the timing Trg1, the detection timing Trg2, and the voltage vector state, it is possible to mitigate the effect of deviating from the actual center value of the phase current. Although the control response is slightly sacrificed, the above effect can be further mitigated by taking a moving average of the reproduced phase current or the current value obtained by converting the phase current onto the control axis (γ-δ axis). .
 図8は図6に示す出力電圧ベクトルVsa,Vsbに対応して出力電圧ベクトル補正部により補正されたPWM駆動信号の第2のタイミングチャートである。図7及び図8の相違点は、図7ではPWM駆動信号反映区間がキャリア立下りから始まるのに対して、図8では、PWM駆動信号反映区間が図2のF-K区間のようにキャリア立上りから始まることである。 FIG. 8 is a second timing chart of the PWM drive signal corrected by the output voltage vector correction unit corresponding to the output voltage vectors Vsa and Vsb shown in FIG. The difference between FIG. 7 and FIG. 8 is that in FIG. 7, the PWM drive signal reflection section starts from the falling edge of the carrier, whereas in FIG. 8, the PWM drive signal reflection section is the carrier like the FK section of FIG. It starts from the rise.
 ここで、検出タイミングTrg1及び検出タイミングTrg2の間隔は、上アーム側スイッチング素子群を制御する複数のPWM駆動信号の内、それぞれのON幅が中間となるPWM駆動信号、すなわち図8ではPWM駆動信号VPがOFFからONに切り替わるタイミングの前後で、二相分の相電流情報を得られる最小時間に設定されている。この最小時間は前述した最小時間TMINと同じ長さの時間である。 Here, the interval between the detection timing Trg1 and the detection timing Trg2 is a PWM drive signal having an intermediate ON width among a plurality of PWM drive signals for controlling the upper arm side switching element group, that is, the PWM drive signal in FIG. Before and after the timing when VP is switched from OFF to ON, the minimum time for obtaining phase current information for two phases is set. This minimum time is the same length as the minimum time TMIN described above.
 図7のようにPWM駆動信号反映区間がキャリア立下りから始まる場合、検出タイミングTrg1では直流電流Idcから基本電圧ベクトルV2に対応する相電流(-Iw)が再現され、検出タイミングTrg2では直流電流Idcから基本電圧ベクトルV1に対応する相電流(+Iu)が再現される。 As shown in FIG. 7, when the PWM drive signal reflection section starts from the falling edge of the carrier, the phase current (−Iw) corresponding to the basic voltage vector V2 is reproduced from the DC current Idc at the detection timing Trg1, and the DC current Idc is detected at the detection timing Trg2. Thus, the phase current (+ Iu) corresponding to the basic voltage vector V1 is reproduced.
 これに対して図8のようにキャリア立上りから始まる場合、検出タイミングTrg1では直流電流Idcから基本電圧ベクトルV1に対応する相電流(+Iu)が再現され、検出タイミングTrg2では基本電圧ベクトルV2に対応する相電流(-Iw)が再現される。 On the other hand, when starting from the rising edge of the carrier as shown in FIG. 8, the phase current (+ Iu) corresponding to the basic voltage vector V1 is reproduced from the DC current Idc at the detection timing Trg1, and corresponding to the basic voltage vector V2 at the detection timing Trg2. The phase current (-Iw) is reproduced.
 以上のように実施の形態1に係るインバータ装置100は、直流母線から供給される直流電力を複数のスイッチング素子SW1~SW6を用いて三相交流電力に変換するインバータ主回路3と、直流母線に流れる直流電流を検出する直流電流検出回路5と、直流電流検出回路5より検出された直流電流Idcに基づいて複数のスイッチング素子SW1~SW6を制御するPWM駆動信号UP~WNを出力するインバータ制御部7とを備える。そしてインバータ制御部7は、PWM駆動信号UP~WNを演算する演算周期をTs、演算処理時間をTxとするとき、PWM駆動信号UP~WNの制御キャリア周期Tcに「Tx<(Ts-Tc/2)」を満たす値を設定するようにしたので、演算処理時間Txが演算周期Tsの1/2以上の用途においても、次の演算処理には直前の演算処理で生成されたPWM駆動信号UP~WNにより生じる直流電流を検出でき、より一層制御の応答性が高いインバータ装置100が得られる。これにより、高速回転時の負荷変動にも追従でき、脱調及び過電流遮断の発生を抑制できるという効果を奏する。 As described above, the inverter device 100 according to the first embodiment includes the inverter main circuit 3 that converts the DC power supplied from the DC bus into three-phase AC power using the plurality of switching elements SW1 to SW6, and the DC bus. A DC current detection circuit 5 that detects a flowing DC current, and an inverter control unit that outputs PWM drive signals UP to WN that control the plurality of switching elements SW1 to SW6 based on the DC current Idc detected by the DC current detection circuit 5 7. Then, the inverter control unit 7 sets “Tx <(Ts−Tc / Tc) to the control carrier cycle Tc of the PWM drive signals UP to WN, where Ts is the calculation cycle for calculating the PWM drive signals UP to WN and Tx is the calculation processing time. 2) ”is set, so that the PWM drive signal UP generated by the immediately preceding calculation process is used for the next calculation process even in applications where the calculation processing time Tx is ½ or more of the calculation cycle Ts. The inverter apparatus 100 can be obtained which can detect the direct current generated by .about.WN and has higher control responsiveness. Thereby, it is possible to follow load fluctuations during high-speed rotation, and it is possible to suppress the occurrence of step-out and overcurrent interruption.
 またインバータ制御部7は、PWM駆動信号UP~WNを三角波キャリアに基づいて生成し、演算周期Ts毎に直流電流Idcを検出する区間の三角波キャリアの状態がキャリア立上り区間及び立下り区間を交互に切り替わるように、制御キャリア周期Tcを設定することで、直流電流Idcから再現される相電流情報が実際の相電流の中心値から外れることで生じる永久磁石同期電動機4の制御性の悪化を抑制できる。 Further, the inverter control unit 7 generates the PWM drive signals UP to WN based on the triangular wave carrier, and the state of the triangular wave carrier in the interval in which the DC current Idc is detected every calculation cycle Ts alternates between the carrier rising interval and the falling interval. By setting the control carrier cycle Tc so as to be switched, it is possible to suppress deterioration in controllability of the permanent magnet synchronous motor 4 that occurs when the phase current information reproduced from the DC current Idc deviates from the actual center value of the phase current. .
 またインバータ制御部7は、1演算周期中に直流電流Idcから二相分の相電流を再現するために出力電圧ベクトルを補正し、出力電圧ベクトルを補正すると共に、補正前後での1演算周期当たりの出力電圧ベクトルが同一になるように補正する出力電圧ベクトル補正部10を備える。これにより、出力電圧ベクトルを補正したことによる相電流波形の歪を極力抑制することができ、それに伴い発生する騒音も抑制できる。 Further, the inverter control unit 7 corrects the output voltage vector in order to reproduce the phase current for two phases from the direct current Idc during one calculation cycle, corrects the output voltage vector, and calculates the output voltage vector before and after the correction. The output voltage vector correction unit 10 corrects the output voltage vectors to be the same. Thereby, the distortion of the phase current waveform due to the correction of the output voltage vector can be suppressed as much as possible, and the noise generated therewith can also be suppressed.
 またインバータ制御部7は、変調率が1以上になるような場合には、直流電流Idcから二相分の相電流情報が再現される出力電圧ベクトルVsaと、出力電圧ベクトルVsa以外の残りのPWM駆動信号反映区間に出力される出力電圧ベクトルVsbとの合成ベクトルが、演算周期Ts当たりの出力電圧ベクトルVsに必ずしも一致しないようにしているので、常に直流電流Idcから二相分の相電流情報が得られる。 Further, when the modulation rate is 1 or more, the inverter control unit 7 outputs the output voltage vector Vsa in which the phase current information for two phases is reproduced from the DC current Idc and the remaining PWM other than the output voltage vector Vsa. Since the combined vector with the output voltage vector Vsb output in the drive signal reflecting section does not necessarily match the output voltage vector Vs per calculation cycle Ts, phase current information for two phases is always obtained from the DC current Idc. can get.
 またインバータ装置100は、インバータ主回路3のスイッチング素子SW1~SW6にSiC-MOSFETのようなワイドバンドギャップ半導体素子を使用することで、スイッチング損失を抑えることができるため、「Tx<(Ts-Tc/2)」の条件を満たす制御キャリア周期Tcの設定自由度を高くできる。 In addition, since the inverter device 100 can suppress switching loss by using wide band gap semiconductor elements such as SiC-MOSFETs for the switching elements SW1 to SW6 of the inverter main circuit 3, "Tx <(Ts-Tc / 2) "can be set with a high degree of freedom in setting the control carrier period Tc.
 なお実施の形態1に係るインバータ主回路3のスイッチング素子SW1~SW6にはSiC-MOSFETが用いられ、還流ダイオードであるダイオードD1~D6にはSiC-MOSFETの寄生ダイオードを用いる構成としているが、スイッチング素子SW1~SW6及びダイオードD1~D6はこれらに限定されるものではない。空気調和機に設けられる圧縮機駆動用のインバータ主回路3で主に使われているSi-IGBT(Silicon-Insulated Gate Bipolar Transistor)をスイッチング素子SW1~SW6として用いてもよいし、Si-FRD(Silicon-Fast Recovery Diode)をダイオードD1~D6として用いてもよい。なお実施の形態1では三角波キャリアを用いたPWM駆動信号の生成について説明しているが、のこぎり波キャリアなど他のキャリアにおいても同様なPWM駆動信号を生成できる場合はこれに限定されるものではないことは言うまでもない。 Although the SiC-MOSFET is used for the switching elements SW1 to SW6 of the inverter main circuit 3 according to the first embodiment and the parasitic diodes of the SiC-MOSFET are used for the diodes D1 to D6 which are freewheeling diodes, The elements SW1 to SW6 and the diodes D1 to D6 are not limited to these. Si-IGBT (Silicon-Insulated Gate Bipolar Transistor) used mainly in the inverter main circuit 3 for driving the compressor provided in the air conditioner may be used as the switching elements SW1 to SW6, or Si-FRD ( Silicon-Fast Recovery Diode) may be used as the diodes D1 to D6. In the first embodiment, generation of a PWM drive signal using a triangular wave carrier is described. However, the case where a similar PWM drive signal can be generated also in other carriers such as a sawtooth wave carrier is not limited to this. Needless to say.
実施の形態2.
 実施の形態1では制御キャリア周期を一定値とした例を説明したが、実施の形態2では変調率に応じて制御キャリア周期を変化させる例を説明する。実施の形態2に係るインバータ装置100のハードウェア構成は、実施の形態1に係るインバータ装置100と同様であり、以下では実施の形態2に係るインバータ装置100において制御キャリア周期を変化させる演算例について説明する。
Embodiment 2. FIG.
In the first embodiment, the example in which the control carrier period is a constant value has been described. In the second embodiment, an example in which the control carrier period is changed according to the modulation rate will be described. The hardware configuration of the inverter device 100 according to the second embodiment is the same as that of the inverter device 100 according to the first embodiment, and hereinafter, an example of calculation for changing the control carrier cycle in the inverter device 100 according to the second embodiment. explain.
 空気調和機に設けられる圧縮機駆動用のインバータ主回路3には、スイッチング素子SW1~SW6として主にSi-IGBTが使用され、また還流ダイオードとして主にSi-FRDが使用される。このようなインバータ主回路3では、5kHz前後の制御キャリア周波数に、インバータ主回路3及び永久磁石同期電動機4の総合効率が最大となるポイントが存在する。 In the inverter main circuit 3 for driving the compressor provided in the air conditioner, Si-IGBT is mainly used as the switching elements SW1 to SW6, and Si-FRD is mainly used as the reflux diode. In such an inverter main circuit 3, there is a point where the overall efficiency of the inverter main circuit 3 and the permanent magnet synchronous motor 4 is maximized at a control carrier frequency of around 5 kHz.
 一方、実施の形態1に係るインバータ装置100のように、スイッチング素子SW1~SW6としてSiC-MOSFETが使用され、還流ダイオードであるダイオードD1,D2,D3,D4,D5,D6として前記スイッチング素子SW1~SW6の寄生ダイオードが使用されるインバータ主回路3では、Si-IGBT及びSi-FRDが使用される場合に比べて、インバータ主回路3のスイッチング損失が減少する。そのためインバータ主回路3におけるスイッチング損失と永久磁石同期電動機4の鉄損とのバランスが変わり、インバータ主回路3及び永久磁石同期電動機4の総合効率が最大となる制御キャリア周波数は、より一層高い6kHz~18kHzに変わる。 On the other hand, like the inverter device 100 according to the first embodiment, SiC-MOSFETs are used as the switching elements SW1 to SW6, and the switching elements SW1 to SW6 are the free-wheeling diodes D1, D2, D3, D4, D5, and D6. In the inverter main circuit 3 in which the parasitic diode of SW6 is used, the switching loss of the inverter main circuit 3 is reduced as compared with the case where Si-IGBT and Si-FRD are used. Therefore, the balance between the switching loss in the inverter main circuit 3 and the iron loss of the permanent magnet synchronous motor 4 changes, and the control carrier frequency at which the overall efficiency of the inverter main circuit 3 and the permanent magnet synchronous motor 4 is maximized is much higher than 6 kHz. Change to 18 kHz.
 しかしながら、インバータ制御部7が直流電流Idcに基づいて、1演算周期中に永久磁石同期電動機4に流れる二相分の相電流情報を得るように制御する場合、前述した図6のように出力電圧ベクトルを変化させる必要が生じる。これは、永久磁石同期電動機4に供給する出力電圧の変動が大きくなることを意味し、如いては永久磁石同期電動機4に流れる相電流の変動が大きくなることに繋がる。そのため、特に変調率が低いときには、制御キャリア周期を低くしても、すなわち制御キャリア周波数を高くしても永久磁石同期電動機4の鉄損が改善されずに、図9のように変調率に応じて上記の総合効率が最大となる制御キャリア周期が変化する。 However, when the inverter control unit 7 performs control so as to obtain phase current information for two phases flowing in the permanent magnet synchronous motor 4 during one calculation cycle based on the DC current Idc, the output voltage as shown in FIG. It is necessary to change the vector. This means that the fluctuation of the output voltage supplied to the permanent magnet synchronous motor 4 becomes large. In this way, the fluctuation of the phase current flowing through the permanent magnet synchronous motor 4 becomes large. Therefore, especially when the modulation rate is low, the iron loss of the permanent magnet synchronous motor 4 is not improved even if the control carrier period is lowered, that is, the control carrier frequency is increased, and the modulation rate depends on the modulation rate as shown in FIG. As a result, the control carrier period at which the total efficiency is maximized changes.
 図9を用いて総合効率及び制御キャリア周期の関係を説明する。図9は変調率Vk1,Vk2,Vk3(Vk1<Vk2<Vk3)における制御キャリア周期と総合効率の関係を示す図である。図9の横軸は制御キャリア周期Tcを表し、図9の縦軸は制御キャリア周期Tcを変化させたときのインバータ主回路3及び永久磁石同期電動機4の総合効率を示す。 The relationship between the overall efficiency and the control carrier cycle will be described with reference to FIG. FIG. 9 is a graph showing the relationship between the control carrier period and the overall efficiency at the modulation rates Vk1, Vk2, and Vk3 (Vk1 <Vk2 <Vk3). The horizontal axis of FIG. 9 represents the control carrier cycle Tc, and the vertical axis of FIG. 9 represents the overall efficiency of the inverter main circuit 3 and the permanent magnet synchronous motor 4 when the control carrier cycle Tc is changed.
 図9には3つの変調率Vk1,Vk2,Vk3及び制御キャリア周期Tc1,Tc2,Tc3が示される。最も高い値の変調率Vk3のときに前記総合効率が最大となる制御キャリア周期がTc3であり、最も低い値の変調率Vk1のときに前記総合効率が最大となる制御キャリア周期がTc1であり、変調率Vk3よりも低く変調率Vk1よりも高い値の変調率Vk2のときに前記総合効率が最大となる制御キャリア周期がTc2である。すなわち図9に示される3つの変調率Vk1,Vk2,Vk3はVk1<Vk2<Vk3の関係性を有し、3つの制御キャリア周期Tc1,Tc2,Tc3はTc3<Tc2<Tc1の関係性を有する。 FIG. 9 shows three modulation rates Vk1, Vk2, Vk3 and control carrier periods Tc1, Tc2, Tc3. The control carrier cycle that maximizes the total efficiency when the modulation factor Vk3 is the highest value is Tc3, and the control carrier cycle that maximizes the total efficiency when the modulation factor Vk1 is the lowest value is Tc1, The control carrier period at which the total efficiency is maximum when the modulation rate Vk2 is lower than the modulation rate Vk3 and higher than the modulation rate Vk1 is Tc2. That is, the three modulation factors Vk1, Vk2, and Vk3 shown in FIG. 9 have a relationship of Vk1 <Vk2 <Vk3, and the three control carrier periods Tc1, Tc2, and Tc3 have a relationship of Tc3 <Tc2 <Tc1.
 図10は変調率に対する制御キャリア周期の設定例を示す図である。図10の横軸は変調率Vkであり、図10の縦軸は制御キャリア周期Tcである。図10の横軸に示される7つの変調率Vk1,Vk1a,Vk2a,Vk2,Vk2b,Vk3a,Vk3は、Vk1<Vk1a<Vk2a<Vk2<Vk2b<Vk3a<Vk3の関係性を有する。図10の縦軸に示される3つの制御キャリア周期Tc1,Tc2,Tc3は、Tc3<Tc2<Tc1の関係性を有する。 FIG. 10 is a diagram illustrating a setting example of the control carrier period with respect to the modulation rate. The horizontal axis in FIG. 10 is the modulation factor Vk, and the vertical axis in FIG. 10 is the control carrier period Tc. The seven modulation factors Vk1, Vk1a, Vk2a, Vk2, Vk2b, Vk3a, and Vk3 shown on the horizontal axis of FIG. 10 have a relationship of Vk1 <Vk1a <Vk2a <Vk2 <Vk2b <Vk3a <Vk3. The three control carrier periods Tc1, Tc2, and Tc3 shown on the vertical axis in FIG. 10 have a relationship of Tc3 <Tc2 <Tc1.
 実施の形態2に係るインバータ装置100のインバータ制御部7は、変調率VkがVk1a以下では制御キャリア周期Tc1を設定し、変調率VkがVk2a以上、かつ、Vk2b以下では制御キャリア周期Tc2を設定し、変調率VkがVk3a以上では制御キャリア周期Tc3を設定する。変調率VkがVk1aを超え、かつ、Vk2a未満の場合、インバータ制御部7は、直前の制御キャリア周期Tcの値を保持する。また変調率VkがVk2bを超え、かつ、Vk3a未満の場合、インバータ制御部7は、直前の制御キャリア周期Tcの値を保持する。 The inverter control unit 7 of the inverter device 100 according to the second embodiment sets the control carrier cycle Tc1 when the modulation factor Vk is Vk1a or less, and sets the control carrier cycle Tc2 when the modulation factor Vk is Vk2a or more and Vk2b or less. When the modulation rate Vk is equal to or higher than Vk3a, the control carrier period Tc3 is set. When the modulation factor Vk exceeds Vk1a and less than Vk2a, the inverter control unit 7 holds the value of the immediately preceding control carrier cycle Tc. When the modulation rate Vk exceeds Vk2b and is less than Vk3a, the inverter control unit 7 holds the value of the immediately preceding control carrier cycle Tc.
 ここで、インバータ制御部7は、図2に示すように演算周期Tsの値を一定値にした状態で、制御キャリア周期Tcの変更を行う。例えば、図2のDのタイミングで制御キャリア周期TcをTc1からTc2に変更する場合、Vsb0_2の区間の出力はVsb0_1の区間の出力を再計算することで設定される。この再計算では、Ncが2から3に変更される。こうすることで、制御キャリア周期Tcの切り替え時の相電流の変動を抑えられる。 Here, the inverter control unit 7 changes the control carrier cycle Tc while keeping the value of the calculation cycle Ts constant as shown in FIG. For example, when the control carrier cycle Tc is changed from Tc1 to Tc2 at the timing D in FIG. 2, the output of the section of Vsb0_2 is set by recalculating the output of the section of Vsb0_1. In this recalculation, Nc is changed from 2 to 3. By doing so, fluctuations in the phase current when switching the control carrier period Tc can be suppressed.
 そして演算周期Tsを固定にしたままで上記の総合効率が最大となる制御キャリア周期Tcに近い状態、すなわち制御キャリア周波数に近い状態でインバータ装置100を動作させることができる。ただし、制御キャリア周期Tcが一番高い値のTc1のときでも「Tx<(Ts-Tc/2)」の条件を満たしていることが前提である。 The inverter device 100 can be operated in a state close to the control carrier cycle Tc in which the total efficiency is maximized, that is, in a state close to the control carrier frequency, with the calculation cycle Ts fixed. However, it is assumed that the condition of “Tx <(Ts−Tc / 2)” is satisfied even when the control carrier period Tc is the highest value Tc1.
 以上のように実施の形態2に係るインバータ装置100は、インバータ主回路3、直流電流検出回路5及びインバータ制御部7を備え、インバータ制御部7は、PWM駆動信号UP~WNを演算する演算周期Tsを一定値にした状態で、変調率に応じてキャリア周期Tcを切り替える。この構成により、制御の応答性が高いインバータ装置100を得ることができると共に、インバータ主回路3及び永久磁石同期電動機4の総合効率が最大となる制御キャリア周期Tcに近い状態、すなわち制御キャリア周波数に近い状態でインバータ装置100を動作させることができる。 As described above, the inverter device 100 according to the second embodiment includes the inverter main circuit 3, the DC current detection circuit 5, and the inverter control unit 7. The inverter control unit 7 calculates the PWM drive signals UP to WN. In a state where Ts is a constant value, the carrier cycle Tc is switched according to the modulation rate. With this configuration, the inverter device 100 with high control responsiveness can be obtained, and the control carrier frequency Tc is close to the control carrier cycle Tc in which the overall efficiency of the inverter main circuit 3 and the permanent magnet synchronous motor 4 is maximized, that is, the control carrier frequency. The inverter device 100 can be operated in a close state.
 なお実施の形態2では、キャリア周期の値が変調率Vkの値に応じて3段階に切り替えられているが、実施の形態2に係るインバータ制御部7は、変調率Vkの値に応じて、キャリア周期の値を2段階に切り替える構成としてもよい。例えばインバータ制御部7は、演算周期毎に直流電流Idcが検出される区間の三角波キャリアの状態がキャリア立上り区間及び立下り区間に切り替わる制御キャリア1及び制御キャリア3の2箇所のみで、制御キャリア周期Tcを切り替える。 In the second embodiment, the carrier period value is switched in three stages according to the value of the modulation factor Vk. However, the inverter control unit 7 according to the second embodiment uses the value of the modulation factor Vk as follows: It is good also as a structure which switches the value of a carrier period in two steps. For example, the inverter control unit 7 controls the control carrier cycle at only two locations of the control carrier 1 and the control carrier 3 where the state of the triangular wave carrier in the section in which the DC current Idc is detected for each computation cycle is switched between the carrier rising section and the falling section. Switch Tc.
 また実施の形態2に係るインバータ制御部7は、制御キャリア周期Tcを変調率Vkに応じて切り替えるが、同様な効果が得られる他のパラメータ、例えば永久磁石同期電動機4の周波数により制御キャリア周期Tcを切り替えるようにしても良い。なお、本発明を用いれば、スイッチング素子SW1~SW6にSiC-MOSFETのようなワイドギャップ半導体を用いた構成において、インバータ主回路3と永久磁石同期電動機4との総合効率が高いインバータ装置を得るために、上記制御キャリア周波数を6kHz~18kHzの範囲に設定しても、検出される電流値の直前の演算により生成されるPWM変調に基づくものにすることができるので、制御の応答性を維持したまま実現することができる。    Further, the inverter control unit 7 according to the second embodiment switches the control carrier cycle Tc according to the modulation rate Vk. However, the control carrier cycle Tc depends on other parameters that can obtain the same effect, for example, the frequency of the permanent magnet synchronous motor 4. May be switched. According to the present invention, in order to obtain an inverter device having a high overall efficiency of the inverter main circuit 3 and the permanent magnet synchronous motor 4 in a configuration using wide gap semiconductors such as SiC-MOSFETs for the switching elements SW1 to SW6. Even if the control carrier frequency is set in the range of 6 kHz to 18 kHz, it can be based on the PWM modulation generated by the calculation immediately before the detected current value, so that the control responsiveness is maintained. It can be realized as it is. *
実施の形態3.
 図11は本発明の実施の形態3に係る圧縮機駆動装置及び空気調和機の構成図である。図11に示す圧縮機駆動装置200は、実施の形態1または実施の形態2に係るインバータ装置100を圧縮機20の駆動装置として用いたものであり、図11に示す空気調和機300は、圧縮機駆動装置200と、圧縮機駆動装置200により駆動される圧縮機20と、四方弁31と、室外熱交換器32-1と、室内熱交換器32-2と、膨張弁33とを備える。
Embodiment 3 FIG.
FIG. 11 is a configuration diagram of a compressor driving device and an air conditioner according to Embodiment 3 of the present invention. A compressor drive device 200 shown in FIG. 11 uses the inverter device 100 according to the first or second embodiment as a drive device of the compressor 20, and the air conditioner 300 shown in FIG. A machine drive device 200, a compressor 20 driven by the compressor drive device 200, a four-way valve 31, an outdoor heat exchanger 32-1, an indoor heat exchanger 32-2, and an expansion valve 33.
 圧縮機20は、冷媒を圧縮する圧縮部21と、圧縮部21を駆動する永久磁石同期電動機4とを備える。圧縮機20、四方弁31、室外熱交換器32-1、室内熱交換器32-2及び膨張弁33は、冷媒配管30により相互に接続され、冷媒を循環させる冷媒回路を構成する。そして空気調和機300は、冷媒が蒸発または凝縮するとき、熱交換対象となる空気に対して吸熱または放熱することを利用し、管内を通過する冷媒の圧力を変化させながら空気調和運転を行う。不図示の送風ファンが回転することにより発生する風が室外熱交換器32-1に通流する。これにより室外熱交換器32-1では冷媒と空気との熱交換が行われる。 The compressor 20 includes a compression unit 21 that compresses the refrigerant, and a permanent magnet synchronous motor 4 that drives the compression unit 21. The compressor 20, the four-way valve 31, the outdoor heat exchanger 32-1, the indoor heat exchanger 32-2, and the expansion valve 33 are connected to each other by a refrigerant pipe 30 to constitute a refrigerant circuit that circulates the refrigerant. When the refrigerant evaporates or condenses, the air conditioner 300 performs the air conditioning operation while changing the pressure of the refrigerant passing through the pipe by utilizing heat absorption or heat dissipation with respect to the air to be heat exchanged. Wind generated by rotation of a blower fan (not shown) flows to the outdoor heat exchanger 32-1. As a result, the outdoor heat exchanger 32-1 performs heat exchange between the refrigerant and the air.
 同様に不図示の送風ファンが回転することにより発生する風が室内熱交換器32-2に通流する。これにより室内熱交換器32-2では冷媒と空気との熱交換が行われる。 Similarly, wind generated by rotation of a blower fan (not shown) flows to the indoor heat exchanger 32-2. As a result, heat is exchanged between the refrigerant and the air in the indoor heat exchanger 32-2.
 実施の形態3に係る空気調和機300には、実施の形態1に係るインバータ装置100が圧縮機駆動装置200として用いられているため、応答性が高い空気調和機300が得られると共に騒音の発生を抑制できる。 In the air conditioner 300 according to the third embodiment, since the inverter device 100 according to the first embodiment is used as the compressor driving device 200, the air conditioner 300 with high responsiveness is obtained and noise is generated. Can be suppressed.
 なお実施の形態1及び実施の形態2に係るインバータ装置100は、空気調和機300の圧縮機20を駆動するための装置に限定されず、永久磁石同期電動機4を用いたあらゆる装置に適用が可能である。 The inverter device 100 according to the first embodiment and the second embodiment is not limited to the device for driving the compressor 20 of the air conditioner 300, and can be applied to any device using the permanent magnet synchronous motor 4. It is.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 交流電源、2 コンバータ回路、3 インバータ主回路、3-1,3-2,3-3 接続点、3a,3b,3c,3d,3e,3f 駆動回路、4 永久磁石同期電動機、4a 固定子、4b 永久磁石回転子、5 直流電流検出回路、5a シャント抵抗、5b 増幅器、6 直流電圧検出回路、7 インバータ制御部、8,9 AD変換器、10 出力電圧ベクトル補正部、20 圧縮機、21 圧縮部、30 冷媒配管、31 四方弁、32-1 室外熱交換器、32-2 室内熱交換器、33 膨張弁、41 U相巻線、42 V相巻線、43 W相巻線、100 インバータ装置、200 圧縮機駆動装置、300 空気調和機。 1 AC power supply, 2 converter circuit, 3 inverter main circuit, 3-1, 3-2, 3-3 connection point, 3a, 3b, 3c, 3d, 3e, 3f drive circuit, 4 permanent magnet synchronous motor, 4a stator 4b permanent magnet rotor, 5 DC current detection circuit, 5a shunt resistor, 5b amplifier, 6 DC voltage detection circuit, 7 inverter control unit, 8, 9 AD converter, 10 output voltage vector correction unit, 20 compressor, 21 Compressor, 30 refrigerant piping, 31 four-way valve, 32-1, outdoor heat exchanger, 32-2, indoor heat exchanger, 33 expansion valve, 41 U-phase winding, 42 V-phase winding, 43 W-phase winding, 100 Inverter device, 200 compressor drive device, 300 air conditioner.

Claims (9)

  1.  直流母線から供給される直流電力を、複数の半導体スイッチング素子を用いて三相交流電力に変換するインバータ主回路と、
     前記直流母線に流れる直流電流を検出する直流電流検出回路と、
     前記直流電流検出回路により検出された直流電流に基づいて前記複数の半導体スイッチング素子を制御するパルス幅変調駆動信号を出力するインバータ制御部と
     を備え、
     前記インバータ制御部は、
     前記パルス幅変調駆動信号を演算する演算周期をTsとし、前記パルス幅変調駆動信号の演算処理時間をTxとし、前記パルス幅変調駆動信号の制御キャリア周期をTcとしたとき、Tcに「Tx<(Ts-Tc/2)」を満たす値を設定することを特徴とするインバータ装置。
    An inverter main circuit for converting DC power supplied from the DC bus into three-phase AC power using a plurality of semiconductor switching elements;
    A direct current detection circuit for detecting a direct current flowing in the direct current bus;
    An inverter control unit that outputs a pulse width modulation drive signal for controlling the plurality of semiconductor switching elements based on the direct current detected by the direct current detection circuit;
    The inverter control unit
    When the calculation cycle for calculating the pulse width modulation drive signal is Ts, the calculation processing time of the pulse width modulation drive signal is Tx, and the control carrier cycle of the pulse width modulation drive signal is Tc, Tc is expressed as “Tx < A value satisfying (Ts−Tc / 2) ”is set.
  2.  前記インバータ制御部は、演算した前記パルス幅変調駆動信号を、次の演算処理の開始タイミングよりも前から出力し、次の演算処理ではその開始タイミングよりも前に出力されたパルス幅変調駆動信号により生じる直流電流から二相分の相電流情報を再現することを特徴とする請求項1に記載のインバータ装置。 The inverter control unit outputs the calculated pulse width modulation drive signal before the start timing of the next calculation process, and the pulse width modulation drive signal output before the start timing in the next calculation process The inverter device according to claim 1, wherein the phase current information for two phases is reproduced from the direct current generated by.
  3.  前記インバータ制御部は、前記パルス幅変調駆動信号を三角波キャリアに基づいて生成し、前記演算周期毎に前記直流電流を検出する区間の三角波キャリアの状態が立上り区間及び立下り区間を交互に切り替わるように、前記制御キャリア周期を設定することを特徴とする請求項2に記載のインバータ装置。 The inverter control unit generates the pulse width modulation drive signal based on a triangular wave carrier so that the state of the triangular wave carrier in the interval in which the DC current is detected is alternately switched between a rising interval and a falling interval for each calculation cycle. The inverter device according to claim 2, wherein the control carrier period is set to the inverter device.
  4.  前記インバータ制御部は、1演算周期中に前記直流電流から二相分の相電流を再現するために出力電圧ベクトルを補正すると共に、補正前後での1演算周期当たりの出力電圧ベクトルが同一になるように補正する出力電圧ベクトル補正部を備えることを特徴とする請求項1から請求項3の何れか一項に記載のインバータ装置。 The inverter control unit corrects the output voltage vector in order to reproduce the phase current for two phases from the direct current during one calculation cycle, and the output voltage vector per calculation cycle before and after the correction is the same. The inverter apparatus according to any one of claims 1 to 3, further comprising an output voltage vector correction unit configured to correct the output as described above.
  5.  前記インバータ制御部は、前記演算周期を一定値にした状態で、変調率に応じて前記制御キャリア周期を切り替えることを特徴とする請求項1から請求項4の何れか一項に記載のインバータ装置。 5. The inverter device according to claim 1, wherein the inverter control unit switches the control carrier cycle according to a modulation rate in a state where the calculation cycle is set to a constant value. 6. .
  6.  前記半導体スイッチング素子はワイドバンドギャップ半導体素子によって形成されていることを特徴とする請求項1から請求項5の何れか一項に記載のインバータ装置。 6. The inverter device according to claim 1, wherein the semiconductor switching element is formed of a wide band gap semiconductor element.
  7.  前記インバータ制御部には、前記パルス幅変調駆動信号の制御キャリア周波数が6kHz~18kHzの範囲に設定されることを特徴とする請求項6に記載のインバータ装置。 The inverter device according to claim 6, wherein the control carrier frequency of the pulse width modulation drive signal is set in the range of 6 kHz to 18 kHz in the inverter control unit.
  8.  請求項1から請求項7の何れか一項に記載のインバータ装置を、前記インバータ主回路から出力される三相交流電力によって駆動される永久磁石電動機を搭載した圧縮機の駆動装置として備えたことを特徴とする圧縮機駆動装置。 The inverter device according to any one of claims 1 to 7 is provided as a drive device for a compressor equipped with a permanent magnet motor driven by three-phase AC power output from the inverter main circuit. A compressor driving device characterized by the above.
  9.  請求項8に記載の圧縮機駆動装置を備え、前記圧縮機駆動装置を用いて冷媒を循環させることを特徴とする空気調和機。 An air conditioner comprising the compressor drive device according to claim 8 and circulating a refrigerant using the compressor drive device.
PCT/JP2016/077684 2016-09-20 2016-09-20 Inverter device, compressor drive device, and air conditioner WO2018055671A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/077684 WO2018055671A1 (en) 2016-09-20 2016-09-20 Inverter device, compressor drive device, and air conditioner
JP2018540515A JP6591081B2 (en) 2016-09-20 2016-09-20 Inverter device, compressor drive device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077684 WO2018055671A1 (en) 2016-09-20 2016-09-20 Inverter device, compressor drive device, and air conditioner

Publications (1)

Publication Number Publication Date
WO2018055671A1 true WO2018055671A1 (en) 2018-03-29

Family

ID=61690227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077684 WO2018055671A1 (en) 2016-09-20 2016-09-20 Inverter device, compressor drive device, and air conditioner

Country Status (2)

Country Link
JP (1) JP6591081B2 (en)
WO (1) WO2018055671A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213045A1 (en) * 2019-04-15 2020-10-22 三菱電機株式会社 Inverter device, compressor drive device, and air conditioner
CN114094906A (en) * 2021-12-08 2022-02-25 广东美芝制冷设备有限公司 Frequency converter control method and device, electronic equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051764A (en) * 2007-01-30 2007-10-10 广东志成冠军集团有限公司 Parallel control device and method for sine wave inverter
CN103401457A (en) * 2013-07-09 2013-11-20 西安交通大学 Carrier wave modulation method of voltage type three-level neutral point clamped converter
JP2015104174A (en) * 2013-11-22 2015-06-04 三菱電機株式会社 Synchronous machine control device
JP2015167438A (en) * 2014-03-03 2015-09-24 株式会社デンソー Controller for ac motor
JP2016072991A (en) * 2014-09-26 2016-05-09 株式会社デンソー Controller for ac motor
JP2016119822A (en) * 2014-12-24 2016-06-30 株式会社安川電機 Power conversion device, controller, and method for changing carrier frequency

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664040B2 (en) * 2000-05-17 2005-06-22 日産自動車株式会社 PWM inverter for motor control
JP2007110811A (en) * 2005-10-12 2007-04-26 Yaskawa Electric Corp Inverter apparatus and control method for the same
JP5435292B2 (en) * 2010-08-05 2014-03-05 アイシン・エィ・ダブリュ株式会社 Control device
WO2016042628A1 (en) * 2014-09-17 2016-03-24 三菱電機株式会社 Power conversion device and compressor driving device
JP2015092817A (en) * 2014-12-03 2015-05-14 三菱電機株式会社 Compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051764A (en) * 2007-01-30 2007-10-10 广东志成冠军集团有限公司 Parallel control device and method for sine wave inverter
CN103401457A (en) * 2013-07-09 2013-11-20 西安交通大学 Carrier wave modulation method of voltage type three-level neutral point clamped converter
JP2015104174A (en) * 2013-11-22 2015-06-04 三菱電機株式会社 Synchronous machine control device
JP2015167438A (en) * 2014-03-03 2015-09-24 株式会社デンソー Controller for ac motor
JP2016072991A (en) * 2014-09-26 2016-05-09 株式会社デンソー Controller for ac motor
JP2016119822A (en) * 2014-12-24 2016-06-30 株式会社安川電機 Power conversion device, controller, and method for changing carrier frequency

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213045A1 (en) * 2019-04-15 2020-10-22 三菱電機株式会社 Inverter device, compressor drive device, and air conditioner
JPWO2020213045A1 (en) * 2019-04-15 2021-10-14 三菱電機株式会社 Inverter device, compressor drive device and air conditioner
JP7072720B2 (en) 2019-04-15 2022-05-20 三菱電機株式会社 Inverter device, compressor drive device and air conditioner
CN114094906A (en) * 2021-12-08 2022-02-25 广东美芝制冷设备有限公司 Frequency converter control method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPWO2018055671A1 (en) 2018-12-27
JP6591081B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6342079B2 (en) Inverter control device and air conditioner
JP5718474B2 (en) Power conversion device, electric motor drive device, and air conditioner
US10658964B2 (en) Motor driving apparatus, vacuum cleaner, and hand dryer
WO2018042636A1 (en) Inverter device, compressor drive device, and air-conditioner
KR101474263B1 (en) Motor control device, and air-conditioner using the same
WO2013111326A1 (en) Motor drive circuit and permanent magnet synchronous motor
JP6755845B2 (en) Motor drive system
WO2013080610A1 (en) Power converter, electric motor drive device, and air conditioner
JP6046446B2 (en) Vector control device, motor control device using the same, and air conditioner
CN107836078B (en) Synchronous motor control device, compressor drive device, and air conditioner
JP2022173520A (en) Open winding motor driving device and refrigeration cycle device
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
JP6591081B2 (en) Inverter device, compressor drive device and air conditioner
JP6826928B2 (en) Inverter device, air conditioner, control method and program of inverter device
JP7072720B2 (en) Inverter device, compressor drive device and air conditioner
JP4578500B2 (en) Inverter control device and refrigeration air conditioner
KR101422132B1 (en) Motor control device, and air-conditioner using the same
JP7301229B2 (en) Electric motor drive and heat pump device
JP6087167B2 (en) refrigerator
CN110326210B (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018540515

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916742

Country of ref document: EP

Kind code of ref document: A1