WO2018047693A1 - ポリカーボネート樹脂組成物 - Google Patents
ポリカーボネート樹脂組成物 Download PDFInfo
- Publication number
- WO2018047693A1 WO2018047693A1 PCT/JP2017/031138 JP2017031138W WO2018047693A1 WO 2018047693 A1 WO2018047693 A1 WO 2018047693A1 JP 2017031138 W JP2017031138 W JP 2017031138W WO 2018047693 A1 WO2018047693 A1 WO 2018047693A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- polycarbonate resin
- parts
- less
- resin composition
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61D—BODY DETAILS OR KINDS OF RAILWAY VEHICLES
- B61D17/00—Construction details of vehicle bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61D—BODY DETAILS OR KINDS OF RAILWAY VEHICLES
- B61D17/00—Construction details of vehicle bodies
- B61D17/04—Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
- B61D17/18—Internal lining, e.g. insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61D—BODY DETAILS OR KINDS OF RAILWAY VEHICLES
- B61D33/00—Seats
- B61D33/0007—Details; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61D—BODY DETAILS OR KINDS OF RAILWAY VEHICLES
- B61D37/00—Other furniture or furnishings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61D—BODY DETAILS OR KINDS OF RAILWAY VEHICLES
- B61D37/00—Other furniture or furnishings
- B61D37/003—Other furniture or furnishings luggage rack and umbrella-stand for rail vehicles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
- C08K5/523—Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/08—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
- C08L51/085—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/5399—Phosphorus bound to nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- the present invention relates to a polycarbonate resin composition, and more particularly to a polycarbonate resin composition that achieves low exothermic property and low smoke generation at a high level.
- Patent Document 1 discloses a resin composition containing a polycarbonate resin having a branched structure, a graft polymer, a phosphorus-based flame retardant, talc, and the like.
- Patent Documents 2 to 3 disclose polycarbonate resin compositions containing silicone acrylate rubber, talc and phosphorus flame retardant.
- An object (problem) of the present invention is to provide a polycarbonate resin composition that achieves low heat generation and low smoke generation at a high level.
- the present inventor added a combination of a phosphorus-based flame retardant and a silicone-based flame retardant to a polycarbonate resin having a specific structure, and further contains an inorganic filler.
- the polycarbonate resin composition according to the first aspect of the present invention comprises a polycarbonate resin (A1) having a structural unit of the following general formula (1) and a polycarbonate resin (A2) having a structural unit of the following general formula (2), 3 to 20 parts by mass of a phosphorus-based flame retardant (B), 100 parts by mass of a polycarbonate-based flame retardant (B) is added to 100 parts by mass of a polycarbonate resin contained in a mass ratio of (A1) / (A2) of 100/0 to 10/90. 2) to 20 parts by mass of C) and 3 to 100 parts by mass of inorganic filler (D), and the phosphorus flame retardant (B) is a phosphazene compound and / or a condensed phosphate ester.
- R 1 represents a methyl group
- R 2 represents a hydrogen atom or a methyl group
- X represents R 3 and R 4 represent a hydrogen atom or a methyl group
- Z represents a group that forms an alicyclic hydrocarbon which may be bonded to a carbon atom C and may have a substituent having 6 to 12 carbon atoms.
- Indicates. (X in the general formula (2) has the same meaning as the general formula (1).)
- the polycarbonate resin composition according to the second aspect of the present invention is a polycarbonate resin (A1) having the structural unit of the general formula (1) and a polycarbonate resin (A2) having the structural unit of the general formula (2).
- A1 having the structural unit of the general formula (1)
- A2 having the structural unit of the general formula (2).
- B phosphorus-based flame retardant
- the phosphorus flame retardant (B) is a condensed phosphate ester and does not contain a phosphazene compound, Even if contained, the content is less than 3 parts by mass.
- the first aspect of the present invention it is possible to provide a polycarbonate resin composition that achieves low heat generation and low smoke generation at a high level, and in particular, the effect that it can be suitably used as a material for railway vehicle interiors. Play.
- the second invention of the present invention it is possible to provide a polycarbonate resin composition that achieves low heat generation and low smoke generation at a high level, and it can be suitably used particularly as a material for railway vehicle interiors. There is an effect.
- the polycarbonate resin composition of the first invention comprises a polycarbonate resin (A1) having a structural unit of the general formula (1) and a polycarbonate resin (A2) having a structural unit of the general formula (2), (A1) / 3 to 20 parts by mass of the phosphorus-based flame retardant (B) and 2 of the silicone-based flame retardant (C) with respect to 100 parts by mass of the polycarbonate resin contained in a mass ratio of (A2) of 100/0 to 10/90. It is characterized in that it contains ⁇ 20 parts by mass and 3 to 100 parts by mass of inorganic filler (D), and the phosphorus flame retardant (B) is a phosphazene compound and / or a condensed phosphate ester.
- the polycarbonate resin (A1) used in the polycarbonate resin composition of the first invention is a polycarbonate resin having a structural unit represented by the following general formula (1).
- R 1 represents a methyl group
- R 2 represents a hydrogen atom or a methyl group
- X represents R 3 and R 4 represent a hydrogen atom or a methyl group
- Z represents a group that forms an alicyclic hydrocarbon which may be bonded to C and have a substituent having 6 to 12 carbon atoms. .
- R 1 is a methyl group and R 2 is a hydrogen atom or a methyl group, but R 2 is particularly preferably a hydrogen atom.
- X is Is preferably an isopropylidene group in which both R 3 and R 4 are methyl groups, and X is In this case, Z is bonded to carbon C bonded to the two phenyl groups in the above formula (1) to form a bivalent alicyclic hydrocarbon group having 6 to 12 carbon atoms.
- the alicyclic carbon hydrogen group include a cyclohexylidene group, a cycloheptylidene group, a cyclododecylidene group, an adamantylidene group, a cyclododecylidene group, and the like.
- the substituted ones include those having these methyl substituents and ethyl substituents.
- a cyclohexylidene group, a methyl-substituted cyclohexylidene group (preferably 3,3,5-trimethyl-substituted), and a cyclododecylidene group are preferable.
- Preferred specific examples of the polycarbonate resin (A1) in the first invention include the following polycarbonate resins i) to iv). i) having a 2,2-bis (3-methyl-4-hydroxyphenyl) propane structural unit, that is, R 1 is a methyl group, R 2 is a hydrogen atom, and X (or —CR 3 R 4 —) is isopropylidene Having a structural unit as a group, ii) 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane structural unit, that is, having a structural unit in which R 1 is a methyl group, R 2 is a methyl group, and X is an isopropylidene group, iii) 2,2-bis (3-methyl-4-hydroxyphenyl) cyclohexane structural unit, that is, R 1 is a methyl group, R 2 is a hydrogen atom, and X (or —C ( ⁇ Z) —) is a cyclohexylidene group
- polycarbonate resins (A1) are respectively 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2- Bis (3-methyl-4-hydroxyphenyl) cyclohexane and 2,2-bis (3-methyl-4-hydroxyphenyl) cyclododecane can be used as dihydroxy compounds.
- the polycarbonate resin (A1) may have a carbonate structural unit other than the structural unit of the general formula (1).
- the structural unit of the general formula (2) that is, the structural unit derived from bisphenol-A
- you may have a structural unit derived from the other dihydroxy compound as mentioned later.
- the copolymerization amount of structural units other than the structural unit of the general formula (1) is usually 60 mol% or less, preferably 55 mol% or less, preferably 50 mol% or less, more preferably 40 mol% or less, and further 30 The mol% or less, particularly 20 mol% or less, 10 mol% or less, and most preferably 5 mol% or less.
- the polycarbonate resin (A1) and the polycarbonate resin (A2) are different resins, and the polycarbonate resin (A1) includes the bisphenol A-derived unit as a copolymer unit. As long as it has a structural unit represented by the general formula (1), it is treated as a polycarbonate resin (A1).
- the component derived from bisphenol A in the polycarbonate resin (A1) is preferably less than 50 mol%, more preferably 30% by mass. % Or less, more preferably 20% by mass or less, especially 10% by mass or less, and particularly preferably 5% by mass or less.
- the viscosity average molecular weight (Mv) of the polycarbonate resin (A1) used in the first invention is not limited, but is usually 10,000 to 90,000. When the viscosity average molecular weight is within this range, a molded product having good moldability and high mechanical strength can be obtained. When the viscosity average molecular weight is less than 10,000, impact resistance is remarkably lowered, and cracking or chipping when produced. There is a high possibility that defects will occur, and if it exceeds 90000, the fluidity will decrease.
- the lower limit of the preferred viscosity average molecular weight of the polycarbonate resin (A1) is 11000, more preferably 12000, still more preferably 15000, and the preferred upper limit is 70000, more preferably 40000, further 35000, and particularly preferably 31000. .
- the polycarbonate resin (A1) may be used singly or in combination of two or more, and may be adjusted to the above viscosity average molecular weight by mixing two or more types of polycarbonate resins having different viscosity average molecular weights. Moreover, you may mix and use the polycarbonate resin whose viscosity average molecular weight is outside said suitable range as needed.
- the polycarbonate resin (A2) used in the polycarbonate resin composition of the first invention is a polycarbonate resin having a structural unit represented by the following general formula (2).
- X in the general formula (2) has the same meaning as the general formula (1).
- a preferred specific example of the polycarbonate structural unit represented by the general formula (2) is 2,2-bis (4-hydroxyphenyl) propane, that is, a carbonate structural unit derived from bisphenol-A.
- the polycarbonate resin (A2) may have a carbonate structural unit other than the structural unit of the general formula (2), and may have a carbonate structural unit derived from another dihydroxy compound.
- the copolymerization amount of structural units other than the structural unit of the general formula (2) is usually preferably less than 50 mol%, more preferably 40 mol% or less, further 30 mol% or less, particularly 20 mol% or less, 10 mol% or less, and most preferably 5 mol% or less.
- Examples of other dihydroxy compounds include the following aromatic dihydroxy compounds.
- the polycarbonate resin (A2) is a resin different from the polycarbonate resin (A1), and when the polycarbonate resin contains the structural unit of the general formula (1) as a copolymer unit, the polycarbonate resin Treated as resin (A1).
- the viscosity average molecular weight (Mv) of the polycarbonate resin (A2) is not limited, but is usually 10,000 to 90,000. When the viscosity average molecular weight is within this range, a molded product having good moldability and high mechanical strength can be obtained. When the viscosity average molecular weight is less than 10,000, impact resistance is remarkably lowered, and cracking or chipping when produced. There is a high possibility that defects will occur, and if it exceeds 90000, the fluidity will decrease.
- the lower limit of the preferred viscosity average molecular weight of the polycarbonate resin (A2) is 11000, more preferably 12000, even more preferably 15000, and the preferred upper limit is 70000, more preferably 40000, even 35000, and particularly preferably 31000.
- the definition of the viscosity average molecular weight (Mv) is as described above.
- the polycarbonate resin (A2) may be adjusted in viscosity average molecular weight by mixing two or more kinds of polycarbonate resins having different viscosity average molecular weights.
- the method for producing the polycarbonate resins (A1) and (A2) used in the first invention is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer. Hereinafter, a particularly preferable one of these methods will be specifically described.
- the polycarbonate resin (A1) or (A2) is produced by the interfacial polymerization method.
- the pH is usually kept at 9 or more, and each dihydroxy compound and a carbonate precursor (preferably phosgene) are reacted, followed by polymerization.
- a polycarbonate resin is obtained by performing interfacial polymerization in the presence of a catalyst.
- a molecular weight adjusting agent terminal terminator
- an antioxidant may be present for the purpose of preventing oxidation of the dihydroxy compound.
- organic solvent inert to the reaction examples include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene; It is done.
- 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
- alkali compound contained in the alkaline aqueous solution examples include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate. Among them, sodium hydroxide and Potassium hydroxide is preferred. In addition, an alkali compound may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
- concentration of the alkali compound in the aqueous alkali solution is not limited, but is usually 5 to 10% by mass in order to control the pH in the aqueous alkali solution of the reaction to 10 to 12.
- the molar ratio of the bisphenol compound and the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11.
- it is preferably set to 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
- polymerization catalyst examples include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride Pyridine; guanine; guanidine salt; and the like.
- 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
- the molecular weight regulator examples include aromatic phenols having a monovalent phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol; mercaptans; phthalimides, and the like. Among them, aromatic phenols are preferable. Specific examples of such aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol.
- a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
- the amount used of the molecular weight regulator is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound.
- the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set.
- the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
- the reaction temperature is usually 0 to 40 ° C.
- the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
- the polycarbonate resin (A1) or (A2) is produced by the melt transesterification method.
- the melt transesterification method for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
- the dihydroxy compound is as described above.
- examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Of these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is particularly preferable.
- 1 type may be used for carbonic acid diester, and it may use 2 or more types together by arbitrary combinations and a ratio.
- the ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin can be obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound. It is more preferable.
- the upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
- the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method.
- a polycarbonate resin in which the terminal hydroxyl group amount is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic acid diester and the dihydroxy compound, the degree of vacuum during the transesterification reaction, and the like.
- the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
- the mixing ratio is as described above.
- a more aggressive adjustment method there may be mentioned a method in which a terminal terminator is mixed separately during the reaction.
- the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like.
- 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
- a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among these, it is preferable to use an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
- the reaction temperature is usually 100 to 320 ° C.
- the pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less.
- a melt polycondensation reaction may be performed under the conditions in this range while removing by-products such as hydroxy compounds.
- the melt polycondensation reaction can be performed by either a batch method or a continuous method.
- the order of mixing the reaction substrate, reaction medium, catalyst, additive, etc. is arbitrary as long as the desired polycarbonate resin is obtained, and an appropriate order may be set arbitrarily.
- the melt polycondensation reaction is preferably carried out continuously.
- a catalyst deactivator may be used as necessary.
- a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof.
- a catalyst deactivator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
- the amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less.
- it is 1 mass ppm or more normally with respect to polycarbonate resin, and is 100 mass ppm or less normally, Preferably it is 20 mass ppm or less.
- the polycarbonate resins (A1) and (A2) preferably contain a polycarbonate resin having a branched structure or a polycarbonate resin having a branched structure.
- a branching agent may be used to introduce a branched structure into the polycarbonate resin.
- a compound having three or more functional groups such as phloroglucin, trimellitic acid, and isatin bis (o-cresol) can be used.
- the polycarbonate resins (A1) and (A2) preferably include a polycarbonate resin having a branched structure or a polycarbonate resin having a branched structure in a total of 100% by mass of the polycarbonate resins (A1) and (A2).
- the content of is preferably 10 to 100% by mass.
- the content of the polycarbonate resin having a branched structure is more preferably 20 to 100% by mass, further preferably 25 to 100% by mass, and particularly preferably 30 to 100% by mass.
- the polycarbonate resin having a branched structure may be a polycarbonate resin having both a polycarbonate resin (A1) and (A2) or one of them having a branched structure, or a part or part of the polycarbonate resin (A1).
- a polycarbonate resin having a branched structure may be mixed.
- the ratio of the content of the polycarbonate resin (A1) and the polycarbonate resin (A2) is the mass ratio of both, and the ratio of polycarbonate resin (A1) / polycarbonate resin (A2) is 100/0 to 10/90. is there.
- the ratio between the polycarbonate resins (A1) and (A2) is such, good char formation is exhibited at the time of combustion, and low exothermic property and low smoke generation property are easily exhibited.
- the ratio of the content is preferably polycarbonate resin (A1) / polycarbonate resin (A2), 100/0 to 20/80, more preferably 100/0 to 30/70, still more preferably 100/0 to 40 / 60, particularly preferably 100/0 to 50/50.
- the polycarbonate resin composition of the first invention comprises a phosphorous flame retardant (B) and a silicone flame retardant (C) which are phosphazene compounds and / or condensed phosphate esters, and a total of polycarbonate resins (A1) and (A2). It contains 3 to 20 parts by mass and 2 to 20 parts by mass, respectively, with respect to 100 parts by mass.
- the phosphorus flame retardant (B) which is a phosphazene compound and / or a condensed phosphate ester and the silicone flame retardant (C)
- the flame retardancy of the polycarbonate resin composition of the first invention is achieved.
- a phosphazene compound and / or a condensed phosphate ester is used as the phosphorus-based flame retardant (B).
- a phosphate ester compound represented by the following general formula (3) is particularly preferable.
- R 1 , R 2 , R 3 and R 4 each represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group, and p, q , R and s are each 0 or 1, k is an integer of 1 to 5, and X 1 represents an arylene group.
- the phosphate ester compound represented by the above general formula (3) may be a mixture of compounds having different numbers of k, and in the case of a mixture of phosphate esters having different k, k is a value of the mixture. Average value. In the case of a mixture of compounds having different k numbers, the average k number is preferably 1 to 2, more preferably 1 to 1.5, still more preferably 1 to 1.2, particularly preferably 1 to 1.15. It is a range.
- X 1 represents a divalent arylene group such as resorcinol, hydroquinone, bisphenol A, 2,2′-dihydroxybiphenyl, 2,3′-dihydroxybiphenyl, 2,4′-dihydroxybiphenyl, 3,3 ′.
- dihydroxybiphenyl 3,4'-dihydroxybiphenyl, 4,4'-dihydroxybiphenyl, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1, Divalent derivatives derived from dihydroxy compounds such as 6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and 2,7-dihydroxynaphthalene It is a group. Of these, divalent groups derived from resorcinol, bisphenol A, and 3,3′-dihydroxybiphenyl are particularly preferable.
- R 1 , R 2 , R 3 and R 4 each represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group.
- aryl groups include phenyl group, cresyl group, xylyl group, isopropylphenyl group, butylphenyl group, tert-butylphenyl group, di-tert-butylphenyl group, p-cumylphenyl group, and the like.
- Group, cresyl group and xylyl group are more preferred.
- condensed phosphate represented by the general formula (3) examples include resorcinol bis-diphenyl phosphate (RDP), resorcinol bis-dixylenyl phosphate (RDX), bisphenol A bis-diphenyl phosphate (BDP), biphenyl.
- RDP resorcinol bis-diphenyl phosphate
- RDX resorcinol bis-dixylenyl phosphate
- BDP bisphenol A bis-diphenyl phosphate
- biphenyl examples include condensed phosphate esters such as bis-diphenyl phosphate and tetraphenyl-p-phenylene diphosphate.
- phosphoric acid ester compound in addition to the above, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,3-dihydroxyphenyl) Naturally, -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,4-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide and the like are also included.
- phosphate ester compound an aromatic condensed phosphate compound is preferred.
- the acid value of the condensed phosphate ester compound represented by the general formula (3) is preferably 0.2 mgKOH / g or less, more preferably 0.15 mgKOH / g or less, still more preferably 0.1 mgKOH or less, Especially preferably, it is 0.05 mgKOH / g or less.
- the lower limit of the acid value can be substantially zero.
- 1 type may be used for a condensed phosphate ester flame retardant (B), and it may use 2 or more types together by arbitrary combinations and a ratio.
- phosphazene compounds As the phosphazene compound, phosphazene compounds represented by the following general formulas (4) and (5) are particularly preferable.
- Examples of the phosphazene compounds represented by the general formulas (4) and (5) include phenoxyphosphazene, (poly) tolyloxyphosphazene (for example, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene).
- Cyclic such as o, m-tolyloxyphosphazene, o, p-tolyloxyphosphazene, m, p-tolyloxyphosphazene, o, m, p-tolyloxyphosphazene, and (poly) xylyloxyphosphazene and chain C 1-6 alkyl C 6-20 aryloxy phosphazene, (poly) phenoxy tolyloxy phosphazene (e.g., phenoxy o- tolyloxy phosphazene, a phenoxy m- tolyloxyethyl phosphazene, a phenoxy p- tolyloxy phosphazene, phenoxy o, m-tolyloxyphosphazene, phenoxy o, p-tolyloxyphosphazene, phenoxy m, p-tolyloxyphosphazene, phenoxy o
- cyclic and / or chain phenoxyphosphazene cyclic and / or chain C 1-3 alkyl C 6-20 aryloxyphosphazene, C 6-20 aryloxy C 1-3 alkyl C 6-20
- Aryloxyphosphazenes eg, cyclic and / or chain tolyloxyphosphazenes, cyclic and / or chain phenoxytolylphenoxyphosphazenes, etc.
- R 5 and R 6 may be the same or different and each represents an aryl group or an alkylaryl group.
- Examples of such an aryl group or alkylaryl group include a phenyl group, a naphthyl group, a methylphenyl group, and a benzyl group.
- cyclic phenoxyphosphazene in which R 5 and R 6 are phenyl groups is particularly preferable.
- Examples of such cyclic phenoxyphosphazene compounds include hexachlorocyclotriphosphazene, octachlorochloromethane, and a mixture of cyclic and linear chlorophosphazene obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C.
- Examples include compounds such as phenoxycyclotriphosphazene, octaphenoxycyclotetraphosphazene, and decaffenoxycyclopentaphosphazene obtained by removing a cyclic chlorophosphazene such as cyclotetraphosphazene and decachlorocyclopentaphosphazene and then substituting with a phenoxy group. .
- t represents an integer of 3 to 25.
- a compound in which t is an integer of 3 to 8 is preferable, and a mixture of compounds having different t may be used.
- R 7 and R 8 may be the same or different and each represents an aryl group or an alkylaryl group.
- Examples of such an aryl group or alkylaryl group include a phenyl group, a naphthyl group, a methylphenyl group, a benzyl group, and the like, and a chain phenoxyphosphazene in which R 7 and R 8 are phenyl groups is particularly preferable.
- Such a chain phenoxyphosphazene compound is obtained by, for example, subjecting hexachlorocyclotriphosphazene obtained by the above method to reversion polymerization at a temperature of 220 to 250 ° C., and obtaining a linear dichlorophosphazene having a polymerization degree of 3 to 10,000.
- Examples include compounds obtained by substitution with a phenoxy group.
- R 9 is represented by 3 groups: —N ⁇ P (OR 7 ) 3 groups, —N ⁇ P (OR 8 ) 3 groups, —N ⁇ P (O) OR 7 groups, and —N ⁇ P (O) OR 8 groups.
- R 10 represents at least one selected, and R 10 represents —P (OR 7 ) 4 group, —P (OR 8 ) 4 group, —P (O) (OR 7 ) 2 group, —P (O) (OR 8 ) At least one selected from two groups.
- u represents an integer of 3 to 10,000, preferably 3 to 1000, more preferably 3 to 100, and further preferably 3 to 25.
- the phosphazene compound may be a crosslinked phosphazene compound partially crosslinked.
- a crosslinked phosphazene compound examples include compounds having a crosslinked structure represented by the following general formula (6), for example, a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (that is, bisphenol S residue), 2,2- ( 4,4′-diphenylene) isopropylidene group-crosslinked structure, 4,4′-oxydiphenylene group-crosslinked structure, 4,4′-thiodiphenylene group-crosslinked structure, etc. And compounds having a crosslinked structure of 4,4′-diphenylene group.
- X 2 is —C (CH 3 ) 2 —, —SO 2 —, —S—, or —O—, and v is 0 or 1.
- a crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound in which R 5 and R 6 are phenyl groups in the general formula (4) with a crosslinking group represented by the general formula (4) is flame retardant.
- a crosslinked phenoxyphosphazene compound obtained by crosslinking a chain phenoxyphosphazene compound in which R 7 and R 8 are phenyl groups in the general formula (5) with a crosslinking group represented by the general formula (6) is flame retardant. From the above point, a crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound with a crosslinking group represented by the general formula (6) is more preferable.
- the content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (4) and / or the all phenyl groups in the chain phenoxyphosphazene compound represented by the general formula (5) Based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%.
- the crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.
- the phosphazene compound is a group consisting of the cyclic phenoxyphosphazene compound represented by the general formula (4) and a crosslinked phenoxyphosphazene compound obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (5) with a crosslinking group. It is preferable from the point of a flame retardance and a mechanical characteristic that it is at least 1 sort (s) selected from.
- the content of the phosphorus-based flame retardant (B) that is the condensed phosphate ester compound and / or the phosphazene compound is 100 parts by mass in total of the polycarbonate resins (A1) and (A2). On the other hand, it is 3 to 20 parts by mass. If it is less than 3 parts by mass, it is difficult to show sufficient low heat generation and low smoke generation, and if it is more than 20 parts by mass, heat resistance such as deflection temperature under load and durability against wet heat decrease, which is not preferable.
- the content of the phosphorus-based flame retardant (B) is preferably 3.5 to 20 parts by mass, more preferably 4 to 20 parts by mass, further 5 to 20 parts by mass, especially 8 to 20 parts by mass, especially 10 to 10 parts by mass. 20 parts by mass is preferred.
- the upper limit of the content is more preferably 18 parts by mass, more preferably 4 to 18 parts by mass, even more preferably 5 to 18 parts by mass, especially 8 to 18 parts by mass, and particularly preferably 10 to 18 parts by mass.
- silicone flame retardant (C) As the silicone flame retardant (C), polyorganosiloxane is preferable. Especially, as polyorganosiloxane, what has aromatic groups, such as a phenyl group, in a molecule
- the polyorganosiloxane may contain functional groups such as a silanol group, an epoxy group, an alkoxy group, a hydrosilyl (SiH) group, and a vinyl group in addition to the organic group described above in the molecule.
- functional groups such as a silanol group, an epoxy group, an alkoxy group, a hydrosilyl (SiH) group, and a vinyl group in addition to the organic group described above in the molecule.
- the content of silanol groups in the polyorganosiloxane is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, particularly preferably 5% by mass or more, and usually 10% by mass or less, preferably It is 9 mass% or less, More preferably, it is 8 mass% or less, Most preferably, it is 7.5 mass% or less.
- silanol group content is within the above range, a high flame retardant effect tends to be obtained, and when the silanol group content is too large, the thermal stability and wet heat stability of the polycarbonate resin composition are significantly reduced. there is a possibility.
- the polyorganosiloxane may contain an alkoxy group in addition to the hydroxyl group, but the amount is preferably 10% by mass or less. This is because if the alkoxy group exceeds 10% by mass, gelation is likely to occur, and the mechanical properties of the polycarbonate resin composition may be deteriorated.
- the average molecular weight (mass average molecular weight) of the polyorganosiloxane is not particularly limited and may be appropriately selected and used. Usually, it is 450 or more, preferably 1000 or more, more preferably 1500 or more, particularly preferably 1700 or more. 300,000 or less, preferably 100,000 or less, more preferably 20000 or less, particularly preferably 15000 or less. Those having a mass average molecular weight of less than the lower limit of the above range are difficult to produce, and the heat resistance of the polyorganosiloxane may be extremely reduced.
- the mass average molecular weight of the polyorganosiloxane is usually measured by GPC (gel permeation chromatograph).
- the silicone flame retardant (C) is also preferably a graft copolymer containing polyorganosiloxane.
- a modified polyorganosiloxane containing the above-described polyorganosiloxane and another (co) polymer such as polybutyl acrylate, butyl acrylate-styrene copolymer, or the like by graft copolymerization may also be used.
- These graft copolymers containing polyorganosiloxane are commercially available, for example “Kaneace MR-01” and “Kaneace MR-02” from Kaneka Corporation.
- the silicone flame retardant (C) may be used alone or in combination of two or more.
- the properties of the silicone flame retardant are not particularly limited and may be appropriately selected and used, such as solid and liquid. However, when it is liquid, the preferred viscosity is 25 °C, usually 1 centistokes (cSt) or more, preferably 4 centistokes or more, and usually 500 centistokes or less, preferably 100 centistokes or less. It is.
- the content of the silicone-based flame retardant (C) is 2 to 20 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). Within this range, good char formation is exhibited during combustion, and low heat generation and smoke generation are likely to occur.
- the content of the silicone flame retardant (C) is preferably 3 to 18 parts by mass, more preferably 4 to 16 parts by mass, and particularly preferably 5 to 15 parts by mass.
- the total content of the phosphorus-based flame retardant (B) and the silicone-based flame retardant (C) is preferably 15 to 40 parts by mass, 15% with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). More preferred is 30 parts by mass.
- the total content of (B) and (C) is more preferably 20 to 30 parts by mass.
- the resin composition of 1st invention contains an inorganic filler (D).
- the inorganic filler (D) include glass fillers such as glass fibers (chopped strands), glass short fibers (milled fibers), glass flakes, and glass beads; carbon fibers, carbon short fibers, carbon nanotubes, graphite, and the like. Carbon-based fillers; Whiskers such as potassium titanate and aluminum borate; Silicate compounds such as talc, mica, wollastonite, kaolinite, zonotolite, sepiolite, attabargite, montmorillonite, bentonite, smectite; silica, alumina, calcium carbonate, etc. Is mentioned. Among these, talc, glass fiber, silica, and wollastonite are preferable, talc and glass fiber, and particularly talc is preferable.
- the shape of the inorganic filler (D) is arbitrary such as a fiber shape, a needle shape, a plate shape, a granular shape, or an amorphous shape.
- the fiber can be selected from long fiber type (roving) type, short fiber type (chopped strand) type, or the like.
- the average fiber diameter is preferably 6 to 16 ⁇ m, more preferably 6 to 13 ⁇ m. By adopting such a fiber diameter, the mechanical properties can be improved more effectively.
- the average fiber length is preferably from 0.1 to 20 mm, more preferably from 1 to 10 mm. When the average fiber length is less than 0.1 mm, the reinforcing effect may be insufficient, and when it exceeds 20 mm, melt kneading with the polycarbonate resin or molding of the polycarbonate resin composition may be difficult.
- the average particle diameter of the inorganic filler (D) is preferably 0.05 to 50 ⁇ m, more preferably 0.1 to 25 ⁇ m. If the average particle size is too small, the reinforcing effect tends to be insufficient, and excessive thermal deformation may occur during combustion. On the other hand, if it is too large, the appearance of the molded product tends to be adversely affected, and the impact resistance may be insufficient.
- the most preferable average particle diameter of the inorganic filler (D) is 0.2 to 15 ⁇ m, particularly 0.3 to 10 ⁇ m.
- the average particle size (D 50 ) of the talc is preferably 1 to 20 ⁇ m, more preferably 1 to 15 ⁇ m, and further The thickness is preferably 2 to 13 ⁇ m. If the average particle size is less than 1 ⁇ m, the effect of suppressing thermal deformation during combustion is reduced, and the surface area in the resin composition becomes excessively large, which may undesirably decompose the resin component. If the average particle size exceeds 20 ⁇ m, the specific surface area in the resin composition is small, and the char forming effect during combustion that can exhibit flame retardancy is reduced, which is not preferable.
- the particle size of talc refers to D 50 measured by a laser diffraction / scattering method (ISO 13320-1).
- the inorganic filler (D) is also preferably subjected to a surface treatment with a surface treatment agent such as a silane coupling agent or a sizing agent in order to increase the affinity with the polycarbonate resin (A) and improve the adhesion.
- a surface treatment agent such as a silane coupling agent or a sizing agent
- the silane coupling agent include amino silane, epoxy silane, allyl silane, and vinyl silane.
- the sizing agent may include components such as an epoxy resin, a urethane resin, an acrylic resin, an antistatic agent, a lubricant, and a water repellent. Two or more inorganic fillers (D) may be used in combination.
- the average particle size 1 to 6 ⁇ m and the average particle size 8 to 20 ⁇ m preferably the average particle size 2 to 6 ⁇ m and the average particle size 8 to 15 ⁇ m, more preferably the average particle size 3 to 6 ⁇ m and the average particle size 8 to
- 12 ⁇ m of talc is used in combination, the formation of char during combustion and the suppression of thermal deformation are likely to occur with a suitable balance.
- the content of the inorganic filler (D) is 3 to 100 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). If it is less than 3 parts by mass, the shape stabilizing effect during combustion is weak, and low heat generation and low heat generation are insufficient. When the amount is more than 100 parts by mass, the action of the combustion component at the time of combustion coming out to the surface due to the core effect of the inorganic filler is large, so that low heat generation and low heat generation tend to be insufficient.
- the content of the inorganic filler (D) is preferably 5 parts by mass or more, more preferably 6 parts by mass or more, further preferably 7 parts by mass or more, and preferably 80 parts by mass or less, more preferably 70 parts by mass or less. More preferably, it is 50 parts by mass or less.
- the content of the inorganic filler (D) is more preferably 15 to 50 parts by mass, further preferably 18 to 50 parts by mass, especially 25 to 50 parts by mass, particularly 30 to 50 parts by mass.
- the inorganic filler (D) is talc
- the amount of talc is preferably larger than usual from the viewpoint of suppressing thermal deformation during combustion, and the preferable content is 100 parts by mass in total of the polycarbonate resins (A1) and (A2).
- it is 18 to 50 parts by mass, more preferably 25 to 50 parts by mass, more preferably 30 to 50 parts by mass, and particularly preferably 30 to 45 parts by mass.
- the ratio of the total content of the phosphorus-based flame retardant (B) and the silicone-based flame retardant (C) to the content of the inorganic filler (D) [(B) + (C)] / ( D) is preferably 2 or less.
- the content ratio exceeds 2 in the flame retardancy test of a railway vehicle or an aircraft in which the resin composition of the present invention is particularly suitably used, the shape stabilizing effect of the inorganic filler (D) becomes insufficient, and the flame retardancy It is not preferable because the test piece may significantly expand and deform during the property test.
- [(B) + (C)] / (D) is more preferably 1.5 or less, and its lower limit is preferably 0.5.
- the content ratio is preferably 1.5 or less, and more preferably 0.3 or more.
- a phosphorus flame retardant (B) is a phosphazene compound, it is preferable that it is 1.5 or less, It is more preferable that it is 1.0 or less, It is preferable that it is 0.3 or more.
- the polycarbonate resin composition preferably contains a fluororesin (E).
- a fluororesin (E) By containing the fluororesin (E), the melting characteristics of the resin composition can be improved, and the dripping prevention property at the time of combustion can be improved.
- fluororesin (E) examples include fluoroolefin resins.
- the fluoroolefin resin is usually a polymer or copolymer containing a fluoroethylene structure. Specific examples include difluoroethylene resin, tetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, and the like. Of these, tetrafluoroethylene resin and the like are preferable.
- the fluoroethylene resin include a fluoroethylene resin having a fibril forming ability.
- fluoroethylene resin having a fibril forming ability examples include “Teflon (registered trademark) 6J” manufactured by Mitsui DuPont Fluorochemical Co., Ltd., “Polyflon (registered trademark) F201L” and “Polyflon (registered trademark) F103” manufactured by Daikin Chemical Industries, Ltd. ",” Polyflon (registered trademark) FA500B “and the like.
- fluoroethylene resin for example, “Teflon (registered trademark) 30J”, “Teflon (registered trademark) 31-JR” manufactured by Mitsui DuPont Fluorochemical Co., Ltd., “Fluon ( Registered trademark) D-1 "and the like.
- a fluoroethylene polymer having a multilayer structure obtained by polymerizing vinyl monomers can also be used. Examples of such a fluoroethylene polymer include polystyrene-fluoroethylene composites, polystyrene-acrylonitrile-fluoroethylene.
- Examples include composites, polymethyl methacrylate-fluoroethylene composites, polybutyl methacrylate-fluoroethylene composites, etc. Specific examples include “Metablene (registered trademark) A-3800” manufactured by Mitsubishi Rayon Co., Ltd., GE Specialty Chemical Co., Ltd. “Blendex (registered trademark) 449” manufactured by the Company and the like can be mentioned.
- 1 type may contain the dripping inhibitor and 2 or more types may contain it by arbitrary combinations and a ratio.
- the content of the fluororesin (E) is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). If the content of the fluororesin (E) is less than 0.05 parts by mass, the effect of improving the flame retardancy by the fluororesin (E) tends to be insufficient, and if it exceeds 3 parts by mass, the resin composition Appearance defects, mechanical strength, and transparency are likely to deteriorate.
- the content of the fluororesin (E) is more preferably 0.05 to 1.5 parts by mass, still more preferably 0.08 to 1 part by mass, particularly preferably 0.08 to 0.5 parts by mass.
- the polycarbonate resin composition preferably contains an organic acid (F).
- the organic acid (F) exhibits a function of neutralizing the organic acid (F) when an inorganic compound showing basicity is used as the inorganic filler (D), for example, when the resin composition is molded. It is considered that the melt stability of the composition is improved.
- the organic acid (F) an organic compound containing at least one —SO 3 H group, —COOH group or —POH group in the molecular structure, that is, an organic sulfonic acid, an organic phosphoric acid, or an organic carboxylic acid is preferable. Among these, organic sulfonic acid and organic phosphoric acid are more preferable, and organic sulfonic acid is particularly preferable.
- organic sulfonic acid examples include benzenesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, naphthalenesulfonic acid, diisopropylnaphthalenesulfonic acid, diisobutylnaphthalenesulfonic acid, dodecylbenzenesulfonic acid, And aromatic sulfonic acids such as C8-18 aliphatic sulfonic acids, sulfonated polystyrene, methyl acrylate / sulfonated styrene copolymers, and oligomeric organic sulfonic acids.
- aromatic sulfonic acids such as C8-18 aliphatic sulfonic acids, sulfonated polystyrene, methyl acrylate / sulfonated styrene copolymers, and oligomeric organic sulfonic acids.
- organic sulfonic acid esters that can be preferably used as the organic acid (F) include methyl benzene sulfonate, ethyl benzene sulfonate, propyl benzene sulfonate, butyl benzene sulfonate, octyl benzene sulfonate, phenyl benzene sulfonate, methyl p-toluenesulfonate, ethyl p-toluenesulfonate, propyl p-toluenesulfonate, butyl p-toluenesulfonate, octyl p-toluenesulfonate, phenyl p-toluenesulfonate, methyl naphthalenesulfonate, naphthalenesulfonic acid
- examples include ethyl,
- organic phosphoric acid which can be preferably used as an organic acid (F)
- the organic phosphate represented, for example by the following general formula is preferable.
- R 1 represents an alkyl group or an aryl group.
- N represents an integer of 1 to 2.
- n is 1, two R 1 s may be the same or different.
- R 1 represents an alkyl group or an aryl group.
- R 1 is preferably an alkyl group having 1 or more, preferably 2 or more, and usually 30 or less, preferably 25 or less, or an aryl group having 6 or more and usually 30 or less carbon atoms.
- R 1 is preferably an alkyl group rather than an aryl group.
- R 1 may be the same or different from each other.
- Preferred compounds represented by the above general formula include long-chain alkyl acid phosphate compounds in which R 1 has 8 to 30 carbon atoms.
- Specific examples of the alkyl group having 8 to 30 carbon atoms include octyl group, 2-ethylhexyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group, tetradecyl group, A hexadecyl group, an octadecyl group, an eicosyl group, a triacontyl group, etc. are mentioned.
- Examples of the long-chain alkyl acid phosphate include octyl acid phosphate, 2-ethylhexyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, octadecyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, phenyl acid cyclophosphate, nonyl phenyl cyclo acid phosphate Acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, dimethyl acid phosphate, diethyl acid phosphate, dipropyl acid phosphate, diisopropyl acid phosphate, dibutyl acid phosphate, geo Chill acid phosphate, di-2-ethylhexyl acid phosphates, dioctyl acid phosphate, dilauryl acid phosphate, distearyl acid phosphate, diphenyl
- the compounding amount of the organic acid (F) is preferably 0.05 to 1 part by mass, and 0.01 to 0. 0 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). 5 parts by mass is more preferable.
- the polycarbonate resin composition preferably contains a stabilizer.
- a stabilizer a phosphorus stabilizer and a hindered phenol stabilizer are preferable.
- any known one can be used.
- Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Group 1 or Group 2B metal phosphates such as potassium, sodium phosphate, cesium phosphate and zinc phosphate; organic phosphate compounds, organic phosphite compounds, organic phosphonite compounds, etc. Particularly preferred.
- Organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylene bis (4,6-di- tert-butylphenyl) octyl phosphite and the like.
- organic phosphite compounds include, for example, “ADEKA STAB 1178”, “ADEKA STAB 2112”, “ADEKA STAB HP-10” manufactured by ADEKA, “JP-351” manufactured by Johoku Chemical Industry Co., Ltd., “ JP-360 ”,“ JP-3CP ”,“ Irgaphos 168 ”manufactured by BASF, and the like.
- phenolic stabilizers include hindered phenolic antioxidants. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl).
- pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate preferable.
- phenolic antioxidants include “Irganox 1010”, “Irganox 1076” manufactured by BASF, “Adekastab AO-50”, “Adekastab AO-60” manufactured by ADEKA, and the like. Is mentioned.
- 1 type may contain the stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.
- 1st invention WHEREIN As for content of a stabilizer, 0.01 mass part or more is preferable with respect to a total of 100 mass parts of polycarbonate resin (A1) and (A2), More preferably, it is 0.02 mass part or more. In addition, it is preferably 1 part by mass or less, more preferably 0.5 part by mass or less, and still more preferably 0.2 part by mass or less.
- [Other ingredients] Furthermore, you may contain other components other than the above as needed. Examples of other components include resins other than those described above and various resin additives. Examples of the resin additive include flame retardants other than those described above, ultraviolet absorbers, mold release agents, dyes and pigments, antistatic agents, antifogging agents, lubricants, antiblocking agents, fluidity improvers, plasticizers, and dispersion agents. Agents, antibacterial agents and the like. In addition, 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio.
- the polycarbonate resin composition preferably contains an ultraviolet absorber.
- an ultraviolet absorber include organic ultraviolet absorbers such as benzotriazole compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, triazine compounds, oxanilide compounds, malonic ester compounds, hindered amine compounds, and the like.
- a benzotriazole type ultraviolet absorber, a triazine type ultraviolet absorber, or a malonic acid ester type ultraviolet absorber is more preferable.
- the weather resistance improvement effect on the polycarbonate resin (A1) was better than that of the polycarbonate resin (A2) and the change in color tone was smaller.
- benzotriazole ultraviolet absorber examples include, for example, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -Dimethylbenzyl) phenyl] -benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl-phenyl) -benzotriazole, 2- (2'-hydroxy-3'-tert-butyl -5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butyl-phenyl) -5-chlorobenzotriazole), 2- (2′- Hydroxy-3 ′, 5′-di-tert-amyl) -benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotri Azole, 2,2′-methylenebis [4- (1,1,1,2,
- triazine ultraviolet absorber examples include triazine ultraviolet absorbers such as 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4- Diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3 , 5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydride) Xyl-4-dodecyloxyphenyl) -1,3,5-triazin
- malonic acid ester ultraviolet absorber examples include 2- (alkylidene) malonic acid esters, particularly 2- (1-arylalkylidene) malonic acid esters, and such malonic acid ester ultraviolet absorbers.
- Specific examples include “PR-25” manufactured by Clariant Japan, “B-CAP” manufactured by BASF, and the like.
- the content of the ultraviolet absorber is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). Moreover, it is preferably 1 part by mass or less, more preferably 0.6 part by mass or less, and further preferably 0.4 part by mass or less. If the content of the UV absorber is below the lower limit of the above range, the effect of improving the weather resistance may be insufficient, and if the content of the UV absorber exceeds the upper limit of the above range, the mold Debogit etc. may occur and cause mold contamination.
- the polycarbonate resin composition preferably contains a release agent.
- the release agent include aliphatic carboxylic acids, fatty acid esters composed of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15000, and polysiloxane silicone oils.
- a fatty acid ester composed of a carboxylic acid and an alcohol is more preferred.
- Examples of the aliphatic carboxylic acid constituting the fatty acid ester include saturated or unsaturated aliphatic monovalent, divalent or trivalent carboxylic acid.
- the aliphatic carboxylic acid includes alicyclic carboxylic acid.
- preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
- aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, melicic acid, montanic acid, tetrariacontanoic acid. , Adipic acid, azelaic acid and the like.
- Examples of the alcohol constituting the fatty acid ester include saturated or unsaturated monohydric alcohols and saturated or unsaturated polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these alcohols, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable. Here, aliphatic includes alicyclic compounds.
- these alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol. Etc.
- fatty acid esters composed of aliphatic carboxylic acids and alcohols include beeswax (mixture based on myristyl palmitate), stearic acid stearate, behenic acid behenate, behenic acid stearate, palmitic acid monoglyceride, stearic acid Examples include monoglyceride, stearic acid diglyceride, stearic acid triglyceride, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate.
- the content of the release agent is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2).
- the upper limit becomes like this.
- it is 1 mass part or less, More preferably, it is 0.6 mass part or less, More preferably, it is 0.4 mass part or less.
- the mixing method of the polycarbonate resin and each component, and the above additives to be blended as necessary is not particularly limited, and production of a known polycarbonate resin composition The method can be widely adopted.
- Specific examples include polycarbonate resin (A1), polycarbonate resin (A2), phosphorus-based flame retardant (B), silicone-based flame retardant (C) and inorganic filler (D), and the above-mentioned additives blended as necessary.
- each component in advance or only a part of the components is mixed in advance, and fed to an extruder using a feeder and melt-kneaded to produce the polycarbonate resin composition of the present invention.
- the polycarbonate resin composition of the present invention can also be produced.
- the inorganic filler (D) is a fibrous filler
- the inorganic filler (D) is a fibrous filler
- the polycarbonate resin composition of the first invention preferably has a maximum average thermal emissivity of 120 kW / m 2 or less.
- the maximum average thermal emissivity is in accordance with ISO 5660-1 and the obtained specimen is tested using a cone calorimeter with a heater irradiance of 50 kW / m 2 and with ignition. An average thermal emissivity is calculated and obtained as the maximum value (unit: kW / m 2 ).
- the maximum average thermal emissivity is preferably smaller, but the polycarbonate resin composition of the first invention preferably has a maximum average thermal emissivity of 120 kW / m 2 or less, more preferably 115 kW / m 2 or less. More preferably, it is 110 kW / m 2 or less.
- the polycarbonate resin composition of the first invention preferably has a specific optical density D s (4) of 400 or less after 4 minutes from the start of the test, which is an indicator of fuming properties, and a specified optical density of 4 minutes from the start of the test.
- the integrated value VOF 4 of density shows a value of 650 or less.
- the specific optical density D s (4) and the integrated value VOF 4 of the specific optical density are determined in accordance with ISO 5659-2, using a single chamber smoke emission tester with a heater irradiance of 50 kW / m 2 and a flameless method.
- the specific optical density D s (4) 4 minutes after the start of the test, which serves as an index of smoke emission, and the integrated value VOF 4 of the specific optical density for 4 minutes from the start of the test are obtained.
- the specific optical density D s is calculated from the absorbance T measured by the optical system installed in the chamber, the exposure area A of the chamber-volume V specimen, and the optical path length L of the measurement optical system by the following formula. .
- the specific optical density D s (4) and the specific optical density integrated value VOF 4 are preferably smaller in numerical value, and the specific optical density D s (4) and the specific optical density integrated value VOF 4 are lower in lower values. Indicates smoke.
- the specific optical density D s (4) is preferably 400 or less, more preferably 350, and the integrated value VOF 4 of the specific optical density is preferably 650 or less, more preferably 600. It is as follows.
- the polycarbonate resin composition of the first invention preferably has a maximum average thermal emissivity of 110 kW / m 2 or less, a D s (4) of 350 or less, and a VOF 4 of 600 or less.
- a polycarbonate resin molded article is produced using the polycarbonate resin composition of the first invention described above.
- the molding method of the polycarbonate resin molded body is not particularly limited, and examples thereof include a method of molding using a conventionally known molding machine such as an injection molding machine or an extrusion molding machine.
- the polycarbonate resin molded body formed by molding the resin composition of the first invention has both low heat generation and low smoke generation, and can clear the European railway vehicle fire prevention standard EN455545-2 and the North American railway fire prevention standard NFPA130.
- it is particularly suitable as a railway vehicle interior member.
- Preferred examples of the rail vehicle interior member include a handrail for a seat, a backrest, a table, a box, a pocket, a luggage rack (rack), a wall material, and a ceiling material.
- the polycarbonate resin composition of the second invention comprises a polycarbonate resin (A1) having a structural unit of the general formula (1) and a polycarbonate resin (A2) having a structural unit of the general formula (2).
- the phosphorus-based flame retardant (B) is a condensed phosphate ester, and does not contain a phosphazene compound, even if it is contained The amount is less than 3 parts by mass.
- the individual components used are basically the same as those described in the first invention of the present invention, and the second invention. Unless otherwise specified, the description of each component itself used in 1 applies as it is described in the first invention.
- the ratio of the content of the polycarbonate resin (A1) and the polycarbonate resin (A2) is a mass ratio of both, and the ratio of polycarbonate resin (A1) / polycarbonate resin (A2) is less than 10 / over 90 to 0 / 100, that is, the polycarbonate resin (A1) is 0 or more and less than 10 and the polycarbonate resin (A2) is more than 90 and 100 or less.
- the phosphorous flame retardant (B) is a condensed phosphate ester and does not contain a phosphazene compound, or even if it contains a phosphazene.
- the content of the compound is less than 3 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2), good char formation is exhibited at the time of combustion, and low heat build-up and low smoke generation are exhibited. It becomes possible.
- a condensed phosphate ester is used as the phosphorus-based flame retardant (B), and the content is 3 parts by mass even when the phosphazene compound is not contained or is contained. Is less than.
- the condensed phosphate ester and the phosphazene compound are as described above.
- the content of the phosphorus-based flame retardant (B) is 3 to 40 parts by mass with respect to a total of 100 parts by mass of the polycarbonate resins (A1) and (A2), as described above. It is preferably a condensed phosphate ester, and even when it contains a phosphazene compound, its content is less than 3 parts by mass.
- the content of the phosphorus flame retardant (B) is less than 3 parts by mass, it is difficult to show sufficiently low heat generation and low smoke generation, and when it is more than 40 parts by mass, the heat resistance such as the deflection temperature under load is lowered and the durability against wet heat Is unfavorable because of lowering.
- the content of the phosphorus-based flame retardant (B) is preferably 3.5 to 20 parts by mass, more preferably 4 to 20 parts by mass, further 5 to 20 parts by mass, especially 8 to 20 parts by mass, especially 10 to 10 parts by mass. 20 parts by mass is preferred.
- the upper limit of the content is more preferably 18 parts by mass, more preferably 4 to 18 parts by mass, even more preferably 5 to 18 parts by mass, especially 8 to 18 parts by mass, and particularly preferably 10 to 18 parts by mass.
- the content is preferably less than 2.5 parts by mass, more preferably less than 2.0 parts by mass, even more preferably less than 1.5 parts by mass, especially less than 1.0 part by mass, in particular 0.8. Most preferably, it is less than 5 parts by weight, particularly less than 0.3 parts by weight, and less than 0.1 parts by weight.
- the silicone flame retardant (C) is as described above.
- the content of the silicone flame retardant (C) is 2 to 40 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). Within this range, good char formation is exhibited during combustion, and low heat generation and smoke generation are likely to occur.
- the content of the silicone flame retardant (C) is preferably 3 to 18 parts by mass, more preferably 4 to 16 parts by mass, and particularly preferably 5 to 15 parts by mass.
- the total content of the phosphorus-based flame retardant (B) and the silicone-based flame retardant (C) is preferably 15 to 40 parts by mass, 15% with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). More preferred is 30 parts by mass. If it is within this range, good char is formed at the time of combustion, and in addition, there is little deformation due to combustion or the like, and low heat generation and smoke generation are likely to occur.
- the total content of (B) and (C) is more preferably 20 to 30 parts by mass.
- the inorganic filler (D) is as described above.
- the content of the inorganic filler (D) is 15 to 100 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). If it is less than 15 parts by mass, the shape stabilizing effect during combustion is weak, and low heat generation and low heat generation are insufficient.
- the amount is more than 100 parts by mass, the action of the combustion components at the time of combustion coming out to the surface due to the wax effect of the inorganic filler is large, so that low heat generation and low heat generation tend to be insufficient.
- the content of the inorganic filler (D) is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and preferably 80 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 50 parts by mass. It is as follows.
- the content of the inorganic filler (D) is more preferably 20 to 80 parts by mass, further preferably 20 to 70 parts by mass, especially 25 to 70 parts by mass, particularly 30 to 60 parts by mass.
- the inorganic filler (D) is talc
- the amount of talc is preferably larger than usual, and the preferred content is 18 to 50 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). More preferably, it is 25 to 50 parts by mass, more preferably 30 to 50 parts by mass, and particularly preferably 30 to 45 parts by mass.
- the ratio of the total content of the phosphorus-based flame retardant (B) and the silicone-based flame retardant (C) to the content of the inorganic filler (D) [(B) + (C)] / ( D) is preferably 2 or less. If the content ratio exceeds 2, the shape stabilization effect of the inorganic filler (D) becomes insufficient in flame retardant tests for railway vehicles, aircraft, etc., and the test piece expands and deforms significantly during the flame retardant test. It may occur and is not preferable.
- [(B) + (C)] / (D) is more preferably 1.5 or less, and the lower limit thereof is preferably 0.5, and particularly preferably 0.3 to 1.5.
- the fluorine resin (E) is also in the second invention, it is preferable to contain a fluorine resin (E), and the fluorine resin (E) is as described above.
- the content of the fluororesin (E) is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2). If the content of the fluororesin (E) is less than 0.05 parts by mass, the effect of improving the flame retardancy by the fluororesin (E) tends to be insufficient, and if it exceeds 3 parts by mass, the resin composition Appearance defects, mechanical strength, and transparency are likely to deteriorate.
- the content of the fluororesin (E) is more preferably 0.05 to 1.5 parts by mass, still more preferably 0.08 to 1 part by mass, particularly preferably 0.08 to 0.5 parts by mass.
- the polycarbonate resin composition preferably contains an organic acid (F), and the organic acid (F) is as described above.
- the blending amount of the organic acid (F) is preferably 0.05 to 1 part by weight, and preferably 0.01 to 0.005 parts per 100 parts by weight in total of the polycarbonate resins (A1) and (A2). 5 parts by mass is more preferable.
- the polycarbonate resin composition preferably contains a stabilizer, and the stabilizer is as described above.
- content of a stabilizer is 0.01 mass part or more with respect to a total of 100 mass parts of polycarbonate resin (A1) and (A2), More preferably, it is 0.02 mass part or more.
- it is preferably 1 part by mass or less, more preferably 0.5 part by mass or less, and still more preferably 0.2 part by mass or less.
- the resin composition of the second invention may further contain other components other than those described above as necessary.
- examples of other components include resins other than those described above and various resin additives.
- polyphenylene ether resin As resins other than those described above, it is also preferable to blend polyphenylene ether resin, polyarylate resin, polyetherimide resin, polyimide resin and the like to further suppress heat generation and smoke generation.
- the polyphenylene ether resin is preferably a modified polyphenylene ether resin alloyed with impact-resistant polystyrene (HIPS) or the like.
- the polyarylate resin is a resin containing an arylate polyester structural unit which is a reaction product of diphenol and an aromatic dicarboxylic acid, and a polymer obtained by polymerizing bisphenol A and phthalic acid (terephthalic acid and / or isophthalic acid is particularly preferable.
- the polyetherimide resin a polymer of 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane and m-phenylenediamine is particularly preferable.
- the content is preferably 5 to 100 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass in total of the polycarbonate resins (A1) and (A2).
- thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin; polystyrene resin, high impact polystyrene resin (HIPS), and acrylonitrile-styrene copolymer (AS resin).
- Styrene resins such as polyethylene resins, polyolefin resins such as polypropylene resins, polyurethane resins, polymethacrylate resins, polyamide resins, polyimide resins, polyphenylene sulfide resins, and polysulfone resins.
- 1 type may contain other resin and 2 or more types may contain it by arbitrary combinations and a ratio.
- resin additive examples include flame retardants other than those described above, ultraviolet absorbers, mold release agents, dyes and pigments, antistatic agents, antifogging agents, lubricants, antiblocking agents, fluidity improvers, plasticizers, and dispersion agents. Agents, antibacterial agents and the like.
- 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio. The explanation of these resin additives and the preferred content in the second invention are the same as those described in the explanation of the first invention.
- the polycarbonate resin composition of the second invention preferably has a maximum average thermal emissivity of 120 kW / m 2 or less, preferably a maximum average thermal emissivity of 120 kW / m 2 or less. More preferably, it is 115 kW / m 2 or less, more preferably 110 kW / m 2 or less.
- the polycarbonate resin composition of the second invention preferably has a specific optical density D s (4) of 400 or less and a specific optical density integrated value VOF 4 of 650 or less, as in the first invention. Indicates.
- the specific optical density D s (4) is preferably 400 or less, more preferably 350 or less, and the integrated value VOF 4 of the specific optical density is preferably 650 or less. Preferably it is 600 or less. Further, the polycarbonate resin composition of the second invention has a maximum average thermal emissivity of 110 kW / m 2 or less, D s (4) of 350 or less, and VOF 4 of 600, as in the first invention. The following is particularly preferable.
- a polycarbonate resin molded body is produced using the polycarbonate resin composition of the second invention described above.
- the molding method of the polycarbonate resin molded body is not particularly limited, and examples thereof include a method of molding using a conventionally known molding machine such as an injection molding machine or an extrusion molding machine.
- the polycarbonate resin molded article formed by molding the resin composition of the second invention has both low heat generation and low smoke generation, and can clear the European railway vehicle fire prevention standard EN455545-2 and the North American railway fire prevention standard NFPA130.
- it is particularly suitable as a railway vehicle interior member.
- Preferred examples of the rail vehicle interior member include a handrail for a seat, a backrest, a table, a box, a pocket, a luggage rack (rack), a wall material, and a ceiling material.
- the polycarbonate resin (A1-1) used as the polycarbonate resin (A1) was produced by the following method.
- reaction solution in the reactor is stirred, and cesium carbonate (Cs 2 CO 3 ) is used as a transesterification catalyst in the molten reaction solution so that the amount becomes 1.5 ⁇ 10 ⁇ 6 mol per 1 mol of BPC.
- Cs 2 CO 3 cesium carbonate
- the reaction solution was stirred and brewed at 220 ° C. for 30 minutes in a nitrogen gas atmosphere.
- the pressure in the reactor was reduced to 100 Torr over 40 minutes, and the reaction was further performed for 100 minutes to distill phenol.
- the temperature in the reactor was raised to 280 ° C. over 60 minutes and the pressure was reduced to 3 Torr to distill phenol corresponding to almost the entire distillation theoretical amount.
- the pressure in the reactor was kept below 1 Torr under the same temperature, and the reaction was further continued for 80 minutes to complete the polycondensation reaction.
- the stirring rotation speed of the stirrer was 38 rotations / minute
- the reaction liquid temperature immediately before the completion of the reaction was 300 ° C.
- the stirring power was 1.40 kW.
- the molten reaction solution was fed into a twin screw extruder, and 4-fold molar amount of butyl p-toluenesulfonate with respect to cesium carbonate was supplied from the first supply port of the twin screw extruder. After kneading with the reaction solution, the reaction solution was extruded in a strand shape through a die of a twin screw extruder and cut with a cutter to obtain carbonate resin pellets.
- the physical properties of the obtained polycarbonate resin (A1-1) were as follows. Pencil hardness: 2H, viscosity average molecular weight (Mv): 28000, with branched structure
- the polycarbonate resin (A1-2) used as the polycarbonate resin (A1) is a polycarbonate resin produced by the method described in paragraph [0132] of JP2013-112780A by an interfacial polymerization method.
- the physical properties are as follows. Pencil hardness: F, viscosity average molecular weight (Mv): 25000, no branched structure
- Examples 1 to 68, Comparative Examples 1 to 7 The above-mentioned components are blended and mixed in the compositions shown in Table 2 and below (all parts by mass) and kneaded at a barrel temperature of 280 ° C. with a twin-screw extruder (“TEX30XCT” manufactured by Nippon Steel Works, Ltd.). Pellets were produced. After the obtained pellets were dried at 80 ° C. for 5 hours, test pieces were prepared according to the following procedures, and the following evaluations were performed.
- the resin pellet obtained above is injection-molded under the conditions of a resin temperature of 280 ° C. and a mold temperature of 80 ° C. using an injection molding machine J55AD manufactured by Nippon Steel Works, and a plate of length 100 mm ⁇ width 100 mm ⁇ thickness 3 mm A test specimen was obtained.
- a comprehensive evaluation of the flame retardancy was performed according to the following five criteria A to E.
- D The maximum average thermal emissivity is 150 kW / m 2 or less, D s (4) is 600 or less, and VOF 4 is 1000 or less. E: None of the criteria A to D is satisfied. The evaluation results are shown in Tables 2 to 10 below.
- Example 69 to 79 The above-mentioned components were blended and mixed in the composition shown in Table 11 and below (all parts by mass), and kneaded at a barrel temperature of 280 ° C. with a twin-screw extruder (“TEX30XCT” manufactured by Nippon Steel Works, Ltd.) Pellets were produced. After the obtained pellets were dried at 80 ° C. for 5 hours, test pieces were prepared according to the same procedure as described above, and the same evaluation was performed.
- Table 11 all parts by mass
- the polycarbonate resin composition of the present invention is excellent in low heat generation and low smoke generation, it can be used as a molded article in various applications, and is particularly suitable for a railway vehicle interior member and has very high industrial applicability. .
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
下記一般式(1)の構造単位を有するポリカーボネート樹脂(A1)及び下記一般式(2)の構造単位を有するポリカーボネート樹脂(A2)を、(A1)/(A2)の質量比で100/0~10/90の割合で含有するポリカーボネート樹脂100質量部に対し、リン系難燃剤(B)を3~20質量部、シリコーン系難燃剤(C)を2~20質量部および無機フィラー(D)を3~100質量部含有し、リン系難燃剤(B)がホスファゼン化合物および/または縮合リン酸エステルであることを特徴とするポリカーボネート樹脂組成物。
Description
本発明は、ポリカーボネート樹脂組成物に関し、詳しくは、低発熱性と低発煙性を高いレベルで達成するポリカーボネート樹脂組成物に関する。
近年、鉄道等に代表される車両用の内装用部材においては、さまざまな部材において樹脂材料が適用され始めており、ポリカーボネート樹脂は、従来より鉄道車両や航空機などの内装部材へ使用されている。
鉄道車両用の材料として採用されるには、その国あるいは各行政機関が定める鉄道車両用の難燃性規格をクリアすることが必須となる。そして、安全性の強化の観点から、車両用材料には従来よりも厳しい防火基準が求められてきている。特に、新たに発行された欧州鉄道車両防火規格EN45545-2等においては、燃焼時の低発熱性と低発煙性が高いレベルで満足することが求められる。
ポリカーボネート樹脂の難燃性強化のため、従来より各種の提案がなされている。例えば、特許文献1には、分岐構造を有するポリカーボネート樹脂とグラフトポリマー、リン系難燃剤及びタルク等を含む樹脂組成物が開示されている。また、特許文献2~3では、シリコーンアクリレートゴム、タルク及びリン系難燃剤を含有するポリカーボネート樹脂組成物が開示されている。
しかしながら、このようなポリカーボネート樹脂組成物では、より高い防火基準が求められる上記のような規格には、適合不可能である。
本発明の目的(課題)は、低発熱性と低発煙性を高いレベルで達成するポリカーボネート樹脂組成物を提供することにある。
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、特定の構造を有するポリカーボネート樹脂に、リン系難燃剤とシリコーン系難燃剤とを組み合わせて添加し、さらに無機フィラーを含有することで、燃焼時の良好なチャー形成を促し、低発熱性と低発煙性を高いレベルで発現でき、前記したような高い防火基準を達成できることを見出し、本発明を完成させた。
本発明の第1の発明に係るポリカーボネート樹脂組成物は、下記一般式(1)の構造単位を有するポリカーボネート樹脂(A1)及び下記一般式(2)の構造単位を有するポリカーボネート樹脂(A2)を、(A1)/(A2)の質量比で100/0~10/90の割合で含有するポリカーボネート樹脂100質量部に対し、リン系難燃剤(B)を3~20質量部、シリコーン系難燃剤(C)を2~20質量部および無機フィラー(D)を3~100質量部含有し、リン系難燃剤(B)がホスファゼン化合物および/または縮合リン酸エステルであることを特徴としている。
また、本発明の第2の発明に係るポリカーボネート樹脂組成物は、上記一般式(1)の構造単位を有するポリカーボネート樹脂(A1)及び上記一般式(2)の構造単位を有するポリカーボネート樹脂(A2)を、(A1)/(A2)の質量比で10未満/90超~0/100の割合で含有するポリカーボネート樹脂100質量部に対し、リン系難燃剤(B)を3~40質量部、シリコーン系難燃剤(C)を2~40質量部および無機フィラー(D)を15~100質量部含有し、リン系難燃剤(B)が縮合リン酸エステルであり、かつホスファゼン化合物を含有しないか、含有する場合でもその含有量が3質量部未満であることを特徴としている。
本発明の第1の発明によれば、低発熱性と低発煙性を高いレベルで達成するポリカーボネート樹脂組成物を提供することができ、特に鉄道車両内装用の材料として好適に使用できるという効果を奏する。
また、本発明の第2の発明によれば、低発熱性と低発煙性を高いレベルで達成するポリカーボネート樹脂組成物を提供することができ、特に鉄道車両内装用の材料として好適に使用できるという効果を奏する。
<第1の発明>
以下、まず、本発明の第1の発明について詳細に説明する。
なお、本明細書において、本発明の構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定して解釈されるものではない。
また、本明細書において、「~」とは、特に断りがない限り、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
以下、まず、本発明の第1の発明について詳細に説明する。
なお、本明細書において、本発明の構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定して解釈されるものではない。
また、本明細書において、「~」とは、特に断りがない限り、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
第1の発明のポリカーボネート樹脂組成物は、前記一般式(1)の構造単位を有するポリカーボネート樹脂(A1)及び前記一般式(2)の構造単位を有するポリカーボネート樹脂(A2)を、(A1)/(A2)の質量比で100/0~10/90の割合で含有するポリカーボネート樹脂100質量部に対し、リン系難燃剤(B)を3~20質量部、シリコーン系難燃剤(C)を2~20質量部および無機フィラー(D)を3~100質量部含有し、リン系難燃剤(B)がホスファゼン化合物および/または縮合リン酸エステルであることを特徴とする。
[ポリカーボネート樹脂(A1)]
第1の発明のポリカーボネート樹脂組成物に使用するポリカーボネート樹脂(A1)は、下記一般式(1)で表される構造単位を有するポリカーボネート樹脂である。
(一般式(1)中、R1はメチル基、R2は水素原子またはメチル基を示し、Xは、
を示し、R3及びR4は水素原子またはメチル基を示し、ZはCと結合して炭素数6~12の置換基を有していてもよい脂環式炭化水素を形成する基を示す。)
第1の発明のポリカーボネート樹脂組成物に使用するポリカーボネート樹脂(A1)は、下記一般式(1)で表される構造単位を有するポリカーボネート樹脂である。
上記一般式(1)において、R1はメチル基であり、R2は水素原子またはメチル基であるが、R2は特には水素原子であることが好ましい。
また、Xは、
である場合、R3及びR4の両方がメチル基であるイソプロピリデン基であることが好ましく、また、Xが、
のとき、Zは、上記式(1)中の2個のフェニル基と結合する炭素Cと結合して、炭素数6~12の二価の脂環式炭化水素基を形成するが、二価の脂環式炭素水素基としては、例えば、シキロヘキシリデン基、シクロヘプチリデン基、シクロドデシリデン基、アダマンチリデン基、シクロドデシリデン基等のシクロアルキリデン基が挙げられる。置換されたものとしては、これらのメチル置換基、エチル置換基を有するもの等が挙げられる。これらの中でも、シクロヘキシリデン基、シキロヘキシリデン基のメチル置換体(好ましくは3,3,5-トリメチル置換体)、シクロドデシリデン基が好ましい。
第1の発明においてポリカーボネート樹脂(A1)としての好ましい具体例としては、以下のi)~iv)のポリカーボネート樹脂が挙げられる。
i)2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン構造単位を有するもの、即ちR1がメチル基、R2が水素原子、X(または-CR3R4-)がイソプロピリデン基である構造単位を有するもの、
ii)2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン構造単位、即ちR1がメチル基、R2がメチル基、Xがイソプロピリデン基である構造単位を有するもの、
iii)2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン構造単位、即ちR1がメチル基、R2が水素原子、X(または-C(=Z)-)がシクロヘキシリデン基である構造単位を有するもの、
iv)2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロドデカン構造単位、即ちR1がメチル基、R2が水素原子、X(または-C(=Z)-)がシクロドデシリデン基である構造単位を有するもの。
これらの中で、より好ましくは上記i)、ii)又はiii)、さらに好ましくは上記i)又はiii)、特には上記i)のポリカーボネート樹脂が好ましい。
i)2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン構造単位を有するもの、即ちR1がメチル基、R2が水素原子、X(または-CR3R4-)がイソプロピリデン基である構造単位を有するもの、
ii)2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン構造単位、即ちR1がメチル基、R2がメチル基、Xがイソプロピリデン基である構造単位を有するもの、
iii)2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン構造単位、即ちR1がメチル基、R2が水素原子、X(または-C(=Z)-)がシクロヘキシリデン基である構造単位を有するもの、
iv)2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロドデカン構造単位、即ちR1がメチル基、R2が水素原子、X(または-C(=Z)-)がシクロドデシリデン基である構造単位を有するもの。
これらの中で、より好ましくは上記i)、ii)又はiii)、さらに好ましくは上記i)又はiii)、特には上記i)のポリカーボネート樹脂が好ましい。
これらポリカーボネート樹脂(A1)は、それぞれ、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン及び2,2-ビス(3-メチル-4-ヒドロキシフェニル)シクロドデカンをジヒドロキシ化合物として使用して製造することができる。
ポリカーボネート樹脂(A1)は、前記一般式(1)の構造単位以外のカーボネート構造単位を有することもでき、例えば、前記一般式(2)の構造単位(即ち、ビスフェノール-A由来の構造単位)、あるいは後述するような他のジヒドロキシ化合物に由来する構造単位を有していてもよい。一般式(1)の構造単位以外の構造単位の共重合量は、通常60モル%以下であり、55モル%以下、また50モル%以下が好ましく、より好ましくは40モル%以下、さらには30モル%以下、特には20モル%以下であり、10モル%以下、なかでも5モル%以下が最も好ましい。
なお、第1の発明において、ポリカーボネート樹脂(A1)とポリカーボネート樹脂(A2)とは異なる樹脂であって、ポリカーボネート樹脂(A1)は、共重合単位としてビスフェノールA由来単位を含んでいる場合でも、上記一般式(1)で表される構造単位を有する限り、ポリカーボネート樹脂(A1)として扱われる。ポリカーボネート樹脂(A1)がビスフェノールA由来のカーボネート構造単位を共重合成分として含有する場合、ポリカーボネート樹脂(A1)中のビスフェノールA由来の成分は50モル%未満であることが好ましく、より好ましくは30質量%以下、さらに好ましくは20質量%以下、中でも10質量%以下、特には5質量%以下であることが好ましい。
第1の発明に用いるポリカーボネート樹脂(A1)の粘度平均分子量(Mv)には、制限はないが、通常10000~90000である。粘度平均分子量がこの範囲であると、成形性が良く、且つ機械的強度の大きい成形品が得られ、10000を下回ると、耐衝撃性が著しく低下し、製品化した際に割れや欠けなどの不具合を生じる可能性が高くなり、90000を超えると流動性が低下する。ポリカーボネート樹脂(A1)の好ましい粘度平均分子量の下限は、11000、より好ましくは12000、さらに好ましくは15000であり、また好ましい上限は、70000、より好ましくは40000、さらには35000、特に好ましくは31000である。
本明細書中、ポリカーボネート樹脂の粘度平均分子量(Mv)は、ウベローデ粘度計を用いて、ポリカーボネート樹脂(試料)の塩化メチレン中20℃の極限粘度[η]を測定し、以下の式より求める値である。
ηsp/C=[η]×(1+0.28ηsp)
[η]=1.23×10-4×(Mv)0.83
式中、ηspはポリカーボネート樹脂の塩化メチレン溶液について20℃で測定した比粘度であり、Cはこの塩化メチレン溶液の濃度である。塩化メチレン溶液としては、ポリカーボネート樹脂の濃度0.6g/dlのものを用いる。
ηsp/C=[η]×(1+0.28ηsp)
[η]=1.23×10-4×(Mv)0.83
式中、ηspはポリカーボネート樹脂の塩化メチレン溶液について20℃で測定した比粘度であり、Cはこの塩化メチレン溶液の濃度である。塩化メチレン溶液としては、ポリカーボネート樹脂の濃度0.6g/dlのものを用いる。
ポリカーボネート樹脂(A1)は、一種又は2種以上を混合して使用してもよく、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して上記粘度平均分子量に調整してもよい。また、必要に応じ、粘度平均分子量が上記の好適範囲外であるポリカーボネート樹脂を混合して用いてもよい。
[ポリカーボネート樹脂(A2)]
第1の発明のポリカーボネート樹脂組成物に使用するポリカーボネート樹脂(A2)は、下記一般式(2)で表される構造単位を有するポリカーボネート樹脂である。
(一般式(2)のXは、前記一般式(1)と同義である。)
第1の発明のポリカーボネート樹脂組成物に使用するポリカーボネート樹脂(A2)は、下記一般式(2)で表される構造単位を有するポリカーボネート樹脂である。
上記一般式(2)で表されるポリカーボネート構造単位の好ましい具体例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、即ち、ビスフェノール-A由来のカーボネート構造単位である。
ポリカーボネート樹脂(A2)は、前記一般式(2)の構造単位以外のカーボネート構造単位を有することもでき、他のジヒドロキシ化合物由来のカーボネート構造単位を有していてもよい。一般式(2)の構造単位以外の構造単位の共重合量は、通常50モル%未満が好ましく、より好ましくは40モル%以下、さらには30モル%以下、特には20モル%以下であり、10モル%以下、なかで5モル%以下が最も好ましい。
ポリカーボネート樹脂(A2)は、前記一般式(2)の構造単位以外のカーボネート構造単位を有することもでき、他のジヒドロキシ化合物由来のカーボネート構造単位を有していてもよい。一般式(2)の構造単位以外の構造単位の共重合量は、通常50モル%未満が好ましく、より好ましくは40モル%以下、さらには30モル%以下、特には20モル%以下であり、10モル%以下、なかで5モル%以下が最も好ましい。
他のジヒドロキシ化合物としては、例えば以下のような芳香族ジヒドロキシ化合物を挙げることができる。
ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシビフェニル、1,1-ビス(4-ヒドロキシフェニル)-3,3-5-トリメチルシクロヘキサン等が挙げられる。
ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシビフェニル、1,1-ビス(4-ヒドロキシフェニル)-3,3-5-トリメチルシクロヘキサン等が挙げられる。
なお、前述したように、ポリカーボネート樹脂(A2)はポリカーボネート樹脂(A1)とは異なる樹脂であって、ポリカーボネート樹脂が共重合単位として前記一般式(1)の構造単位を含んでいる場合は、ポリカーボネート樹脂(A1)として扱われる。
ポリカーボネート樹脂(A2)の粘度平均分子量(Mv)には、制限はないが、通常10000~90000である。粘度平均分子量がこの範囲であると、成形性が良く、且つ機械的強度の大きい成形品が得られ、10000を下回ると、耐衝撃性が著しく低下し、製品化した際に割れや欠けなどの不具合を生じる可能性が高くなり、90000を超えると流動性が低下する。ポリカーボネート樹脂(A2)の好ましい粘度平均分子量の下限は、11000、より好ましくは12000、さらに好ましくは15000であり、また好ましい上限は、70000、より好ましくは40000、さらには35000、特に好ましくは31000である。
なお、粘度平均分子量(Mv)の定義は、前記した通りである。
なお、粘度平均分子量(Mv)の定義は、前記した通りである。
また、ポリカーボネート樹脂(A2)は、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して粘度平均分子量を調整してもよい。
[ポリカーボネート樹脂(A1)及び(A2)の製造方法]
第1の発明に使用するポリカーボネート樹脂(A1)及び(A2)を製造する方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
以下、これらの方法のうち特に好適なものについて、具体的に説明する。
第1の発明に使用するポリカーボネート樹脂(A1)及び(A2)を製造する方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
以下、これらの方法のうち特に好適なものについて、具体的に説明する。
界面重合法
まず、ポリカーボネート樹脂(A1)又は(A2)を界面重合法で製造する場合について説明する。
界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、前記各ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させてもよい。
まず、ポリカーボネート樹脂(A1)又は(A2)を界面重合法で製造する場合について説明する。
界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、前記各ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させてもよい。
反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、なかでも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10~12にコントロールするために、5~10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になるようにコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、なかでも1:2.0以上、また、通常1:3.2以下、なかでも1:2.5以下とすることが好ましい。
アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10~12にコントロールするために、5~10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になるようにコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、なかでも1:2.0以上、また、通常1:3.2以下、なかでも1:2.5以下とすることが好ましい。
重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’-ジメチルシクロヘキシルアミン、N,N’-ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’-ジメチルアニリン、N,N’-ジエチルアニリン等の芳香族第三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、なかでも芳香族フェノールが好ましい。
このような芳香族フェノールとしては、具体的に、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロぺニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o-オキシン安息香酸、2-メチル-6-ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
このような芳香族フェノールとしては、具体的に、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロぺニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o-オキシン安息香酸、2-メチル-6-ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、ポリカーボネート樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。
反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
なお、反応温度は通常0~40℃であり、反応時間は通常は数分(例えば、10分)~数時間(例えば、6時間)である。
なお、反応温度は通常0~40℃であり、反応時間は通常は数分(例えば、10分)~数時間(例えば、6時間)である。
溶融エステル交換法
次に、ポリカーボネート樹脂(A1)又は(A2)を溶融エステル交換法で製造する場合について説明する。溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
次に、ポリカーボネート樹脂(A1)又は(A2)を溶融エステル交換法で製造する場合について説明する。溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
ジヒドロキシ化合物は、それぞれ前述の通りである。
一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。なかでも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、ジフェニルカーボネートが特に好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。なかでも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、ジフェニルカーボネートが特に好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
ジヒドロキシ化合物と炭酸ジエステルとの比率は所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、なかでも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。
ポリカーボネート樹脂では、その末端水酸基量が、熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルとジヒドロキシ化合物との混合比率、エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。
炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、アルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
溶融エステル交換法において、反応温度は通常100~320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、この範囲の条件で、ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。
溶融重縮合反応は、バッチ式、連続式のいずれの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし、ポリカーボネート樹脂及びポリカーボネート樹脂組成物の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。
溶融エステル交換法においては、必要に応じて、触媒失活剤を用いても良い。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。さらには、ポリカーボネート樹脂に対して、通常1質量ppm以上であり、また、通常100質量ppm以下、好ましくは20質量ppm以下である。
触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。さらには、ポリカーボネート樹脂に対して、通常1質量ppm以上であり、また、通常100質量ppm以下、好ましくは20質量ppm以下である。
ポリカーボネート樹脂(A1)、(A2)は、分岐構造を有するポリカーボネート樹脂又は、分岐構造を有するポリカーボネート樹脂を含有していることが好ましい。
ポリカーボネート樹脂に分岐構造を導入するには分岐剤を用いればよく、例えば1,1,1-トリス(4-ヒドキシフェニル)エタン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-〔α-メチル-α-(4’-ヒドロキシフェニル)エチル〕-4-〔α’,α’-ビス(4”-ヒドロキシフェニル)エチル〕ベンゼン、フロログルシン、トリメリット酸、及びイサチンビス(o-クレゾール)等の官能基を三個以上有する化合物等を用いることができる。
また、特開平8-259687号公報、特開平8-245782号公報に記載されているように、芳香族ジヒドロキシ化合物と炭酸ジエステルを用いる溶融エステル交換法により、分岐剤を添加することなく、分岐構造を有するポリカーボネート樹脂を製造することもできる。
ポリカーボネート樹脂に分岐構造を導入するには分岐剤を用いればよく、例えば1,1,1-トリス(4-ヒドキシフェニル)エタン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-〔α-メチル-α-(4’-ヒドロキシフェニル)エチル〕-4-〔α’,α’-ビス(4”-ヒドロキシフェニル)エチル〕ベンゼン、フロログルシン、トリメリット酸、及びイサチンビス(o-クレゾール)等の官能基を三個以上有する化合物等を用いることができる。
また、特開平8-259687号公報、特開平8-245782号公報に記載されているように、芳香族ジヒドロキシ化合物と炭酸ジエステルを用いる溶融エステル交換法により、分岐剤を添加することなく、分岐構造を有するポリカーボネート樹脂を製造することもできる。
ポリカーボネート樹脂(A1)、(A2)は、分岐構造を有するポリカーボネート樹脂又はこれを含有していることが好ましく、ポリカーボネート樹脂(A1)及び(A2)の合計100質量%中、分岐構造を有するポリカーボネート樹脂の含有割合が10~100質量%であることが好ましい。分岐構造がある一定以上の範囲にあると、燃焼時に良好な形状安定性を示し、低発熱、低発煙の観点から好ましい。分岐構造を有するポリカーボネート樹脂の含有割合は、より好ましくは20~100質量%であり、さらに好ましくは25~100質量%、特には30~100質量%であることが好ましい。
ここで、分岐構造を有するポリカーボネート樹脂は、ポリカーボネート樹脂(A1)、(A2)の両方、あるいはいずれか片方が分岐構造を有するポリカーボネート樹脂であってもよいし、ポリカーボネート樹脂(A1)の一部ないしはポリカーボネート樹脂(A2)の一部として、分岐構造を有するポリカーボネート樹脂を混合したものであってもよい。
ここで、分岐構造を有するポリカーボネート樹脂は、ポリカーボネート樹脂(A1)、(A2)の両方、あるいはいずれか片方が分岐構造を有するポリカーボネート樹脂であってもよいし、ポリカーボネート樹脂(A1)の一部ないしはポリカーボネート樹脂(A2)の一部として、分岐構造を有するポリカーボネート樹脂を混合したものであってもよい。
[ポリカーボネート樹脂(A1)及び(A2)の割合]
第1の発明において、ポリカーボネート樹脂(A1)及びポリカーボネート樹脂(A2)の含有量の比は、両者の質量比で、ポリカーボネート樹脂(A1)/ポリカーボネート樹脂(A2)が100/0~10/90である。ポリカーボネート樹脂(A1)と(A2)がこのような比であることにより、燃焼時に良好なチャー形成を示し、低発熱性、低発煙性が発現しやすい。
好ましい含有量の比は、ポリカーボネート樹脂(A1)/ポリカーボネート樹脂(A2)で、100/0~20/80であり、より好ましくは100/0~30/70、さらに好ましくは100/0~40/60、特に好ましくは100/0~50/50である。
第1の発明において、ポリカーボネート樹脂(A1)及びポリカーボネート樹脂(A2)の含有量の比は、両者の質量比で、ポリカーボネート樹脂(A1)/ポリカーボネート樹脂(A2)が100/0~10/90である。ポリカーボネート樹脂(A1)と(A2)がこのような比であることにより、燃焼時に良好なチャー形成を示し、低発熱性、低発煙性が発現しやすい。
好ましい含有量の比は、ポリカーボネート樹脂(A1)/ポリカーボネート樹脂(A2)で、100/0~20/80であり、より好ましくは100/0~30/70、さらに好ましくは100/0~40/60、特に好ましくは100/0~50/50である。
[リン系難燃剤(B)]
第1の発明のポリカーボネート樹脂組成物は、ホスファゼン化合物および/または縮合リン酸エステルであるリン系難燃剤(B)とシリコーン系難燃剤(C)を、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、それぞれ3~20質量部と2~20質量部を含有する。このようにホスファゼン化合物および/または縮合リン酸エステルであるリン系難燃剤(B)とシリコーン系難燃剤(C)を併せて含有することにより、第1の発明のポリカーボネート樹脂組成物の難燃性を、前記したような欧州鉄道車両防火規格をクリアできるレベルまで向上させることができる。
第1の発明のポリカーボネート樹脂組成物は、ホスファゼン化合物および/または縮合リン酸エステルであるリン系難燃剤(B)とシリコーン系難燃剤(C)を、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、それぞれ3~20質量部と2~20質量部を含有する。このようにホスファゼン化合物および/または縮合リン酸エステルであるリン系難燃剤(B)とシリコーン系難燃剤(C)を併せて含有することにより、第1の発明のポリカーボネート樹脂組成物の難燃性を、前記したような欧州鉄道車両防火規格をクリアできるレベルまで向上させることができる。
第1の発明において、リン系難燃剤(B)としては、ホスファゼン化合物および/または縮合リン酸エステルを使用する。
[縮合リン酸エステル]
縮合リン酸エステルとしては、下記一般式(3)で表されるリン酸エステル化合物が特に好ましい。
(式中、R1、R2、R3およびR4は、それぞれ炭素数1~6のアルキル基またはアルキル基で置換されていてもよい炭素数6~20のアリール基を示し、p、q、rおよびsは、それぞれ0または1であり、kは1から5の整数であり、X1はアリーレン基を示す。)
縮合リン酸エステルとしては、下記一般式(3)で表されるリン酸エステル化合物が特に好ましい。
上記一般式(3)で表されるリン酸エステル化合物は、kが異なる数を有する化合物の混合物であってもよく、かかるkが異なるリン酸エステルの混合物の場合は、kはそれらの混合物の平均値となる。異なるk数を有する化合物の混合物の場合は、平均のk数は好ましくは1~2、より好ましくは1~1.5、さらに好ましくは1~1.2、特に好ましくは1~1.15の範囲である。
また、X1は、二価のアリーレン基を示し、例えばレゾルシノール、ハイドロキノン、ビスフェノールA、2,2’-ジヒドロキシビフェニル、2,3’-ジヒドロキシビフェニル、2,4’-ジヒドロキシビフェニル、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシ化合物から誘導される二価の基である。これらのうち、特に、レゾルシノール、ビスフェノールA、3,3’-ジヒドロキシビフェニルから誘導される二価の基が好ましい。
また、一般式(3)におけるp、q、rおよびsは、それぞれ0または1を表し、なかでも1であることが好ましい。
また、R1、R2、R3およびR4は、それぞれ、炭素数1~6のアルキル基またはアルキル基で置換されていてもよい炭素数6~20のアリール基を示す。このようなアリール基としては、フェニル基、クレジル基、キシリル基、イソプロピルフェニル基、ブチルフェニル基、tert-ブチルフェニル基、ジ-tert-ブチルフェニル基、p-クミルフェニル基等が挙げられるが、フェニル基、クレジル基、キシリル基がより好ましい。
また、R1、R2、R3およびR4は、それぞれ、炭素数1~6のアルキル基またはアルキル基で置換されていてもよい炭素数6~20のアリール基を示す。このようなアリール基としては、フェニル基、クレジル基、キシリル基、イソプロピルフェニル基、ブチルフェニル基、tert-ブチルフェニル基、ジ-tert-ブチルフェニル基、p-クミルフェニル基等が挙げられるが、フェニル基、クレジル基、キシリル基がより好ましい。
一般式(3)で表される縮合リン酸エステルの具体例としては、レゾルシノールビス-ジフェニルホスフェート(RDP)、レゾルシノールビス-ジキシレニルホスフェート(RDX)、ビスフェノールAビス-ジフェニルホスフェート(BDP)、ビフェニルビス-ジフェニルホスフェート、テトラフェニル-p-フェニレンジホスフェート等の縮合リン酸エステル類等が挙げられる。
リン酸エステル化合物としては、上述のものの他に、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,3-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,4-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等も当然含まれる。
リン酸エステル化合物としては、芳香族縮合ホスフェート化合物が好ましい。
リン酸エステル化合物としては、芳香族縮合ホスフェート化合物が好ましい。
一般式(3)で表される縮合リン酸エステル化合物の酸価は、0.2mgKOH/g以下が好ましく、より好ましくは0.15mgKOH/g以下であり、さらに好ましくは0.1mgKOH以下であり、特に好ましくは0.05mgKOH/g以下である。かかる酸価の下限は実質的に0とすることも可能である。
なお、縮合リン酸エステル系難燃剤(B)は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
前記一般式(4)及び(5)で表されるホスファゼン化合物としては、例えば、フェノキシホスファゼン、(ポリ)トリルオキシホスファゼン(例えば、o-トリルオキシホスファゼン、m-トリルオキシホスファゼン、p-トリルオキシホスファゼン、o,m-トリルオキシホスファゼン、o,p-トリルオキシホスファゼン、m,p-トリルオキシホスファゼン、o,m,p-トリルオキシホスファゼン等)、(ポリ)キシリルオキシホスファゼン等の環状及び/又は鎖状C1-6アルキルC6-20アリールオキシホスファゼンや、(ポリ)フェノキシトリルオキシホスファゼン(例えば、フェノキシo-トリルオキシホスファゼン、フェノキシm-トリルオキシホスファゼン、フェノキシp-トリルオキシホスファゼン、フェノキシo,m-トリルオキシホスファゼン、フェノキシo,p-トリルオキシホスファゼン、フェノキシm,p-トリルオキシホスファゼン、フェノキシo,m,p-トリルオキシホスファゼン等)、(ポリ)フェノキシキシリルオキシホスファゼン、(ポリ)フェノキシトリルオキシキシリルオキシホスファゼン等の環状及び/又は鎖状C6-20アリールC1-10アルキルC6-20アリールオキシホスファゼン等が例示できる。
これらのうち、好ましくは、環状及び/又は鎖状フェノキシホスファゼン、環状及び/又は鎖状C1-3アルキルC6-20アリールオキシホスファゼン、C6-20アリールオキシC1-3アルキルC6-20アリールオキシホスファゼン(例えば、環状及び/又は鎖状トリルオキシホスファゼン、環状及び/又は鎖状フェノキシトリルフェノキシホスファゼン等)である。
これらのうち、好ましくは、環状及び/又は鎖状フェノキシホスファゼン、環状及び/又は鎖状C1-3アルキルC6-20アリールオキシホスファゼン、C6-20アリールオキシC1-3アルキルC6-20アリールオキシホスファゼン(例えば、環状及び/又は鎖状トリルオキシホスファゼン、環状及び/又は鎖状フェノキシトリルフェノキシホスファゼン等)である。
一般式(4)で表される環状ホスファゼン化合物としては、R5及びR6は、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。このようなアリール基又はアルキルアリール基としては、フェニル基、ナフチル基、メチルフェニル基、ベンジル基等が挙げられるが、なかでもR5及びR6がフェニル基である環状フェノキシホスファゼンが特に好ましい。
このような環状フェノキシホスファゼン化合物としては、例えば、塩化アンモニウムと五塩化リンとを120~130℃の温度で反応させて得られる環状及び直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後にフェノキシ基で置換して得られる、フェノキシシクロトリホスファゼン、オクタフェノキシシクロテトラホスファゼン、デカフェノキシシクロペンタホスファゼン等の化合物が挙げられる。
このような環状フェノキシホスファゼン化合物としては、例えば、塩化アンモニウムと五塩化リンとを120~130℃の温度で反応させて得られる環状及び直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後にフェノキシ基で置換して得られる、フェノキシシクロトリホスファゼン、オクタフェノキシシクロテトラホスファゼン、デカフェノキシシクロペンタホスファゼン等の化合物が挙げられる。
また、一般式(4)中、tは3~25の整数を表すが、なかでもtが3~8の整数である化合物が好ましく、tの異なる化合物の混合物であってもよい。なかでも、t=3のものが50質量%以上、t=4のものが10~40質量%、t=5以上のものが合わせて30質量%以下である化合物の混合物が好ましい。
一般式(5)中、R7及びR8は、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。このようなアリール基又はアルキルアリール基としては、フェニル基、ナフチル基、メチルフェニル基、ベンジル基等が挙げられるが、R7及びR8がフェニル基である鎖状フェノキシホスファゼンが特に好ましい。
このような鎖状フェノキシホスファゼン化合物は、例えば、上記の方法で得られるヘキサクロロシクロトリホスファゼンを220~250℃の温度で開還重合し、得られた重合度3~10000の直鎖状ジクロロホスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。
このような鎖状フェノキシホスファゼン化合物は、例えば、上記の方法で得られるヘキサクロロシクロトリホスファゼンを220~250℃の温度で開還重合し、得られた重合度3~10000の直鎖状ジクロロホスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。
また、R9は、-N=P(OR7)3基、-N=P(OR8)3基、-N=P(O)OR7基、-N=P(O)OR8基から選ばれる少なくとも1種を示し、R10は、-P(OR7)4基、-P(OR8)4基、-P(O)(OR7)2基、-P(O)(OR8)2基から選ばれる少なくとも1種を示す。
また、一般式(5)中、uは3~10000の整数を示し、好ましくは3~1000、より好ましくは3~100、さらに好ましくは3~25である。
また、ホスファゼン化合物は、その一部が架橋された架橋ホスファゼン化合物であってもよい。このような架橋構造を有することで耐熱性が向上する傾向にある。
このような架橋ホスファゼン化合物としては、下記一般式(6)に示す架橋構造、例えば、4,4’-スルホニルジフェニレン(すなわち、ビスフェノールS残基)の架橋構造を有する化合物、2,2-(4,4’-ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4’-オキシジフェニレン基の架橋構造を有する化合物、4,4’-チオジフェニレン基の架橋構造を有する化合物等の、4,4’-ジフェニレン基の架橋構造を有する化合物等が挙げられる。
このような架橋ホスファゼン化合物としては、下記一般式(6)に示す架橋構造、例えば、4,4’-スルホニルジフェニレン(すなわち、ビスフェノールS残基)の架橋構造を有する化合物、2,2-(4,4’-ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4’-オキシジフェニレン基の架橋構造を有する化合物、4,4’-チオジフェニレン基の架橋構造を有する化合物等の、4,4’-ジフェニレン基の架橋構造を有する化合物等が挙げられる。
また、架橋ホスファゼン化合物としては、一般式(4)においてR5及びR6がフェニル基である環状フェノキシホスファゼン化合物が上記一般式(4)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物又は、前記一般式(5)においてR7及びR8がフェニル基である鎖状フェノキシホスファゼン化合物が上記一般式(6)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物が難燃性の点から好ましく、環状フェノキシホスファゼン化合物が上記一般式(6)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物がより好ましい。
また、架橋フェノキシホスファゼン化合物中のフェニレン基の含有量は、一般式(4)で表される環状ホスファゼン化合物及び/又は一般式(5)で表される鎖状フェノキシホスファゼン化合物中の全フェニル基及びフェニレン基数を基準として、通常50~99.9%、好ましくは70~90%である。また、該架橋フェノキシホスファゼン化合物は、その分子内にフリーの水酸基を有しない化合物であることが特に好ましい。
ホスファゼン化合物は、前記一般式(4)で表される環状フェノキシホスファゼン化合物、及び、上記一般式(5)で表される環状フェノキシホスファゼン化合物が架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物よる成る群から選択される少なくとも1種であることが、難燃性及び機械的特性の点から好ましい。
第1の発明において、縮合リン酸エステル化合物および/またはホスファゼン化合物であるリン系難燃剤(B)の含有量は、前述したように、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、3~20質量部である。3質量部未満だと十分な低発熱、低発煙性を示しにくく、20質量部より多いと荷重たわみ温度等の耐熱性の低下や、湿熱に対する耐久性が低下するため好ましくない。リン系難燃剤(B)の含有量は、3.5~20質量部が好ましく、より好ましくは4~20質量部、さらには5~20質量部、なかでも8~20質量部、とりわけ10~20質量部が好ましい。また、含有量の上限は18質量部がより好ましいので、より好ましくは4~18質量部、さらには5~18質量部、なかでも8~18質量部、特に10~18質量部が好ましい。
[シリコーン系難燃剤(C)]
シリコーン系難燃剤(C)としては、ポリオルガノシロキサンが好ましい。なかでも、ポリオルガノシロキサンとしては、分子中にフェニル基等の芳香族基を有するものが好ましい。このようなポリオルガノシロキサンとしては、例えば、ポリジフェニルシロキサン、ポリメチルフェニルシロキサン、ポリジメチルジフェニルシロキサン、フェニル基含有環状シロキサン等が挙げられる。
シリコーン系難燃剤(C)としては、ポリオルガノシロキサンが好ましい。なかでも、ポリオルガノシロキサンとしては、分子中にフェニル基等の芳香族基を有するものが好ましい。このようなポリオルガノシロキサンとしては、例えば、ポリジフェニルシロキサン、ポリメチルフェニルシロキサン、ポリジメチルジフェニルシロキサン、フェニル基含有環状シロキサン等が挙げられる。
さらに、ポリオルガノシロキサンは、その分子中に上述の有機基の他に、シラノール基、エポキシ基、アルコキシ基、ヒドロシリル(SiH)基、ビニル基等の官能基を含んでいても良い。これらの特殊な官能基を含有することでポリオルガノシロキサンとポリカーボネート樹脂との相溶性が向上したり、燃焼時の反応性が向上したりすることにより、難燃性が高まることがある。
ポリオルガノシロキサンにおけるシラノール基の含有量は、通常1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上、特に好ましくは5質量%以上であり、通常10質量%以下、好ましくは9質量%以下、より好ましくは8質量%以下、特に好ましくは7.5質量%以下である。シラノール基の含有量を上述の範囲とすることで高い難燃効果が得られる傾向にあり、また、シラノール基含有量が多すぎるとポリカーボネート樹脂組成物の熱安定性や湿熱安定性が著しく低下する可能性がある。
なお、ポリオルガノシロキサンは水酸基の他にアルコキシ基を含有していてもよいが、その量は10質量%以下であることが好ましい。アルコキシ基が10質量%を超える場合は、ゲル化を引き起こしやすくなり、ポリカーボネート樹脂組成物の機械物性の低下を招く可能性がある為である。
ポリオルガノシロキサンの平均分子量(質量平均分子量)は特に制限はなく、適宜選択して用いればよいが、通常450以上、好ましくは1000以上、より好ましくは1500以上、特に好ましくは1700以上であり、通常300000以下、好ましくは100000以下、より好ましくは20000以下、特に好ましくは15000以下である。質量平均分子量が上記範囲の下限値未満のものは製造が困難であり、またポリオルガノシロキサンの耐熱性も極端に低下する可能性がある。また、質量平均分子量が前記範囲の上限値を超えるものは、分散性に劣るためか難燃性が低減する傾向にあり、かつポリカーボネート樹脂組成物の機械物性を低下させる傾向にある。
なお、ポリオルガノシロキサンの質量平均分子量は、通常GPC(ゲルパーミエーションクロマトグラフ)によって測定される。
なお、ポリオルガノシロキサンの質量平均分子量は、通常GPC(ゲルパーミエーションクロマトグラフ)によって測定される。
また、シリコーン系難燃剤(C)は、ポリオルガノシロキサン含有するグラフト共重合体であることも好ましい。上記したようなポリオルガノシロキサンと、他の(共)重合体、例えば、ポリアクリル酸ブチル、アクリル酸ブチル-スチレン共重合体などをグラフト共重合して含んだ変性ポリオルガノシロキサンでもよい。ポリオルガノシロキサンを含むこれらのグラフト共重合体は、市販されており、例えばカネカ社から「カネエースMR-01」及び「カネエースMR-02」として市販されている。
シリコーン系難燃剤(C)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
シリコーン系難燃剤の性状は、固体状、液体状等、特に制限はなく適宜選択して用いればよい。ただし、なかでも液体状である場合、好ましい粘度は、25℃で、通常1センチストークス(cSt)以上、好ましくは4センチストークス以上であり、また、通常500センチストークス以下、好ましくは100センチストークス以下である。
第1の発明において、シリコーン系難燃剤(C)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、2~20質量部である。この範囲にあると、燃焼時に良好なチャー形成を示し、低発熱、低発煙となりやすい。シリコーン系難燃剤(C)の含有量は、好ましくは3~18質量部、より好ましくは4~16質量部、特には5~15質量部が好ましい。
また、リン系難燃剤(B)及びシリコーン系難燃剤(C)の含有量の合計は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、好ましくは15~40質量部、15~30質量部であることがより好ましい。この範囲にあると、燃焼時に良好なチャー形成し、加えて、燃焼等による変形が少なく、低発熱、低発煙となりやすい。(B)及び(C)の合計の含有量は、より好ましくは20~30質量部である。
また、リン系難燃剤(B)及びシリコーン系難燃剤(C)の含有量の合計は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、好ましくは15~40質量部、15~30質量部であることがより好ましい。この範囲にあると、燃焼時に良好なチャー形成し、加えて、燃焼等による変形が少なく、低発熱、低発煙となりやすい。(B)及び(C)の合計の含有量は、より好ましくは20~30質量部である。
[無機フィラー(D)]
第1の発明の樹脂組成物は無機フィラー(D)を含有する。
無機フィラー(D)の具体例としては、ガラス繊維(チョップドストランド)、ガラス短繊維(ミルドファイバー)、ガラスフレーク、ガラスビーズ等のガラス系フィラー;炭素繊維、炭素短繊維、カーボンナノチューブ、黒鉛などの炭素系フィラー;チタン酸カリウム、ホウ酸アルミニウム等のウィスカー;タルク、マイカ、ウォラストナイト、カオリナイト、ゾノトライト、セピオライト、アタバルジャイト、モンモリロナイト、ベントナイト、スメクタイトなどの珪酸塩化合物;シリカ、アルミナ、炭酸カルシウム等が挙げられる。
これらの中では、タルク、ガラス繊維、シリカ、ウォラストナイトが好ましく、より好ましくはタルク、ガラス繊維、特には、タルクが好ましい。
第1の発明の樹脂組成物は無機フィラー(D)を含有する。
無機フィラー(D)の具体例としては、ガラス繊維(チョップドストランド)、ガラス短繊維(ミルドファイバー)、ガラスフレーク、ガラスビーズ等のガラス系フィラー;炭素繊維、炭素短繊維、カーボンナノチューブ、黒鉛などの炭素系フィラー;チタン酸カリウム、ホウ酸アルミニウム等のウィスカー;タルク、マイカ、ウォラストナイト、カオリナイト、ゾノトライト、セピオライト、アタバルジャイト、モンモリロナイト、ベントナイト、スメクタイトなどの珪酸塩化合物;シリカ、アルミナ、炭酸カルシウム等が挙げられる。
これらの中では、タルク、ガラス繊維、シリカ、ウォラストナイトが好ましく、より好ましくはタルク、ガラス繊維、特には、タルクが好ましい。
無機フィラー(D)の形状は、繊維状、針状、板状、粒状又は無定形状など任意である。
ガラス繊維等の形状が繊維状の場合は、繊維としては、長繊維タイプ(ロービング)のものや短繊維タイプ(チョップドストランド)のもの等から選択して用いることができる。平均繊維径は、6~16μmが好ましく、6~13μmがより好ましい。このような繊維径のものを採用することにより、機械的性質をより効果的に改善することができる。また、平均繊維長は、0.1~20mmが好ましく、1~10mmがより好ましい。平均繊維長が0.1mm未満の場合は、補強効果が不十分な場合があり、20mmを超えると、ポリカーボネート樹脂との溶融混練やポリカーボネート樹脂組成物の成形が困難な場合がある。
ガラス繊維等の形状が繊維状の場合は、繊維としては、長繊維タイプ(ロービング)のものや短繊維タイプ(チョップドストランド)のもの等から選択して用いることができる。平均繊維径は、6~16μmが好ましく、6~13μmがより好ましい。このような繊維径のものを採用することにより、機械的性質をより効果的に改善することができる。また、平均繊維長は、0.1~20mmが好ましく、1~10mmがより好ましい。平均繊維長が0.1mm未満の場合は、補強効果が不十分な場合があり、20mmを超えると、ポリカーボネート樹脂との溶融混練やポリカーボネート樹脂組成物の成形が困難な場合がある。
また、無機フィラー(D)の形状が繊維状以外である場合は、その平均粒子径が0.05~50μmであることが好ましく、さらには0.1~25μmであればより好ましい。平均粒子径が小さすぎると補強効果が不十分となりやすく、燃焼時に過度に熱変形する場合がある。逆に大きすぎても成形品外観に悪影響を与えやすく、更に耐衝撃性も不十分となる場合がある。無機フィラー(D)の最も好ましい平均粒子径は、0.2~15μm、特に0.3~10μmである。
無機フィラー(D)として最も好ましいのは前記したようにタルクであるが、タルクの粒径は、平均粒径(D50)が1~20μmであることが好ましく、より好ましくは1~15μm、更に好ましくは2~13μmである。平均粒径が1μm未満では燃焼時の熱変形を抑制する効果が低下することや、樹脂組成物中の表面積が過度に大きくなることから、樹脂成分を分解することがあり好ましくない。平均粒径が20μmを超えると、樹脂組成物中の比表面積が小さく、難燃性を発現しうる燃焼時のチャー形成効果が低下するので好ましくない。
なお、タルクの粒径は、レーザー回折・散乱法(ISO 13320-1)により測定されたD50をいう。
なお、タルクの粒径は、レーザー回折・散乱法(ISO 13320-1)により測定されたD50をいう。
また、無機フィラー(D)は、ポリカーボネート樹脂(A)との親和性を増し密着性を向上させるために、シランカップリング剤等の表面処理剤又は集束剤で表面処理されているものも好ましい。シランカップリング剤としては、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等が挙げられる。また、上記の集束剤には、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、帯電防止剤、潤滑剤及び撥水剤等の各成分を含めることもできる。
無機フィラー(D)は、2種以上を併用してもよい。2種以上のタルクを併用する場合には、好ましい粒径範囲において平均粒径が小さいものと大きいものの2種を併用することがより好ましい。具体的には、平均粒径1~6μmと平均粒径8~20μm、好ましくは平均粒径2~6μmと平均粒径8~15μm、より好ましくは平均粒径3~6μmと平均粒径8~12μmのタルクを併用すると、燃焼時のチャー形成と熱変形の抑制が好適なバランスで発現しやすくなる。
無機フィラー(D)は、2種以上を併用してもよい。2種以上のタルクを併用する場合には、好ましい粒径範囲において平均粒径が小さいものと大きいものの2種を併用することがより好ましい。具体的には、平均粒径1~6μmと平均粒径8~20μm、好ましくは平均粒径2~6μmと平均粒径8~15μm、より好ましくは平均粒径3~6μmと平均粒径8~12μmのタルクを併用すると、燃焼時のチャー形成と熱変形の抑制が好適なバランスで発現しやすくなる。
第1の発明において、無機フィラー(D)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、3~100質量部である。3質量部未満だと、燃焼時の形状安定効果が弱く、低発熱、低発熱性が不十分である。100質量部より多いと、燃焼時の燃焼成分が無機フィラーの芯効果によって表面に出てくる作用が大きいため、低発熱、低発熱性が不十分となりやすい。無機フィラー(D)の含有量は、好ましくは5質量部以上、より好ましくは6質量部以上、さらには7質量部以上が好ましく、また、好ましくは80質量部以下、より好ましくは70質量部以下、さらに好ましくは50質量部以下である。無機フィラー(D)の含有量は、より好ましくは15~50質量部、さらに好ましくは18~50質量部、中でも25~50質量部、特には30~50質量部である。
無機フィラー(D)がタルクの場合、タルクの量は通常より多いことが燃焼時の熱変形抑制の観点から好ましく、好ましい含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、18~50質量部であり、より好ましくは25~50質量部、より好ましくは30~50質量部、特には30~45質量部が好ましい。
無機フィラー(D)がタルクの場合、タルクの量は通常より多いことが燃焼時の熱変形抑制の観点から好ましく、好ましい含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、18~50質量部であり、より好ましくは25~50質量部、より好ましくは30~50質量部、特には30~45質量部が好ましい。
また、第1の発明において、リン系難燃剤(B)及びシリコーン系難燃剤(C)の含有量の合計と無機フィラー(D)の含有量の比[(B)+(C)]/(D)は、2以下であることが好ましい。含有量の比が2を超える場合、本発明の樹脂組成物が特に好適に用いられる鉄道車両や航空機などの難燃性試験において、無機フィラー(D)の形状安定効果が不十分となり、難燃性試験中に試験片の膨張、変形が著しく発生する場合があり好ましくない。
[(B)+(C)]/(D)は、より好ましくは1.5以下であり、その下限は0.5が好ましい。
特に、リン系難燃剤(B)が縮合リン酸エステルである場合には、上記含有量の比は、1.5以下であることが好ましく、0.3以上であることが好ましい。また、リン系難燃剤(B)がホスファゼン化合物である場合には、1.5以下であることが好ましく、1.0以下であることがより好ましく、0.3以上であることが好ましい。
[(B)+(C)]/(D)は、より好ましくは1.5以下であり、その下限は0.5が好ましい。
特に、リン系難燃剤(B)が縮合リン酸エステルである場合には、上記含有量の比は、1.5以下であることが好ましく、0.3以上であることが好ましい。また、リン系難燃剤(B)がホスファゼン化合物である場合には、1.5以下であることが好ましく、1.0以下であることがより好ましく、0.3以上であることが好ましい。
[フッ素系樹脂(E)]
第1の発明において、ポリカーボネート樹脂組成物は、フッ素系樹脂(E)を含有することが好ましい。フッ素系樹脂(E)を含有することで、樹脂組成物の溶融特性を改良することができ、燃焼時の滴下防止性を向上させることができる。
第1の発明において、ポリカーボネート樹脂組成物は、フッ素系樹脂(E)を含有することが好ましい。フッ素系樹脂(E)を含有することで、樹脂組成物の溶融特性を改良することができ、燃焼時の滴下防止性を向上させることができる。
フッ素系樹脂(E)としては、例えば、フルオロオレフィン樹脂が挙げられる。フルオロオレフィン樹脂は、通常フルオロエチレン構造を含む重合体あるいは共重合体である。具体例としてはジフルオロエチレン樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂等が挙げられる。中でも好ましくはテトラフルオロエチレン樹脂等が挙げられる。このフルオロエチレン樹脂としては、フィブリル形成能を有するフルオロエチレン樹脂が挙げられる。
フィブリル形成能を有するフルオロエチレン樹脂としては、例えば、三井・デュポンフロロケミカル社製「テフロン(登録商標)6J」、ダイキン化学工業社製「ポリフロン(登録商標)F201L」、「ポリフロン(登録商標)F103」、「ポリフロン(登録商標)FA500B」などが挙げられる。さらに、フルオロエチレン樹脂の水性分散液の市販品として、例えば、三井デュポンフロロケミカル社製「テフロン(登録商標)30J」、「テフロン(登録商標)31-JR」、ダイキン化学工業社製「フルオン(登録商標)D-1」等が挙げられる。さらに、ビニル系単量体を重合してなる多層構造を有するフルオロエチレン重合体も使用することができ、このようなフルオロエチレン重合体としては、ポリスチレン-フルオロエチレン複合体、ポリスチレン-アクリロニトリル-フルオロエチレン複合体、ポリメタクリル酸メチル-フルオロエチレン複合体、ポリメタクリル酸ブチル-フルオロエチレン複合体等が挙げられ、具体例としては三菱レイヨン社製「メタブレン(登録商標)A-3800」、GEスペシャリティケミカル社製「ブレンデックス(登録商標)449」等が挙げられる。
なお、滴下防止剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
なお、滴下防止剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
第1の発明において、フッ素系樹脂(E)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.05~3質量部であることが好ましい。フッ素系樹脂(E)の含有量は、0.05質量部より少ないと、フッ素系樹脂(E)による難燃性向上効果が不十分になりやすく、3質量部を超えると、樹脂組成物を成形した成形体の外観不良や機械的強度、透明性の低下が生じやすい。フッ素系樹脂(E)の含有量は、より好ましくは0.05~1.5質量部、さらに好ましくは0.08~1質量部、特に好ましくは0.08~0.5質量部である。
[有機酸(F)]
第1の発明において、ポリカーボネート樹脂組成物は、有機酸(F)を含有することも好ましい。
有機酸(F)は、樹脂組成物を成形する際に、例えば無機フィラー(D)として、塩基性を示す無機化合物を用いた場合、有機酸(F)はこれを中和する機能を発揮し、組成物の溶融安定性を向上させるものと考えられる。
有機酸(F)としては、-SO3H基、-COOH基または-POH基を分子構造中に少なくとも1つ含む有機化合物、すなわち、有機スルホン酸、有機リン酸、有機カルボン酸が好ましく、これらの中でも有機スルホン酸、有機リン酸がより好ましく、特に有機スルホン酸が好ましい。
第1の発明において、ポリカーボネート樹脂組成物は、有機酸(F)を含有することも好ましい。
有機酸(F)は、樹脂組成物を成形する際に、例えば無機フィラー(D)として、塩基性を示す無機化合物を用いた場合、有機酸(F)はこれを中和する機能を発揮し、組成物の溶融安定性を向上させるものと考えられる。
有機酸(F)としては、-SO3H基、-COOH基または-POH基を分子構造中に少なくとも1つ含む有機化合物、すなわち、有機スルホン酸、有機リン酸、有機カルボン酸が好ましく、これらの中でも有機スルホン酸、有機リン酸がより好ましく、特に有機スルホン酸が好ましい。
有機酸(F)として好ましく使用することができる有機スルホン酸として、ベンゼンスルホン酸、p-トルエンスルホン酸、キシレンスルホン酸、ナフタレンスルホン酸、ジイソプロピルナフタレンスルホン酸、ジイソブチルナフタレンスルホン酸、ドデシルベンゼンスルホン酸、等の芳香族スルホン酸、炭素数8~18の脂肪族スルホン酸、スルホン化ポリスチレン、アクリル酸メチル・スルホン化スチレン共重合体等のポリマーまたはオリゴマー状の有機スルホン酸等を挙げることができる。
また、有機酸(F)として好ましく使用することができる有機スルホン酸エステルとして、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸プロピル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、p-トルエンスルホン酸メチル、p-トルエンスルホン酸エチル、p-トルエンスルホン酸プロピル、p-トルエンスルホン酸ブチル、p-トルエンスルホン酸オクチル、p-トルエンスルホン酸フェニル、ナフタレンスルホン酸メチル、ナフタレンスルホン酸エチル、ナフタレンスルホン酸プロピル、ナフタレンスルホン酸ブチル、ドデシルベンゼンスルホン酸-2-フェニル-2-プロピル、ドデシルベンゼンスルホン酸-2-フェニル-2-ブチル等を挙げることができる。
また、有機酸(F)として好ましく使用することができる有機リン酸としては、例えば下記一般式で表される有機ホスフェートが好ましい。
(式中、R1はアルキル基又はアリール基を表す。nは1~2の整数を表す。なお、nが1のとき、2つのR1は同一でも異なっていてもよい。)
上記一般式において、R1はアルキル基又はアリール基を表す。R1は、炭素数が1以上、好ましくは2以上であり、通常30以下、好ましくは25以下のアルキル基、又は、炭素数が6以上、通常30以下のアリール基であることがより好ましいが、R1は、アリール基よりもアルキル基が好ましい。なお、R1が2以上存在する場合、R1同士はそれぞれ同一であっても異なっていてもよい。
上記一般式で示される好まし化合物として、R1が炭素原子数8~30の長鎖アルキルアシッドホスフェート化合物が挙げられる。炭素原子数8~30のアルキル基の具体例としては、オクチル基、2-エチルヘキシル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、トリアコンチル基等が挙げられる。
長鎖アルキルアシッドホスフェートとしては、例えば、オクチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、オクタデシルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、ビスフェノールAアシッドホスフェート、ジメチルアシッドホスフェート、ジエチルアシッドホスフェート、ジプロピルアシッドホスフェート、ジイソプロピルアシッドホスフェート、ジブチルアシッドホスフェート、ジオクチルアシッドホスフェート、ジ-2-エチルヘキシルアシッドホスフェート、ジオクチルアシッドホスフェート、ジラウリルアシッドホスフェート、ジステアリルアシッドホスフェート、ジフェニルアシッドホスフェート、ビスノニルフェニルアシッドホスフェート等が挙げられる。
これらの中でも、オクタデシルアシッドホスフェートが好ましく、このものはADEKA社製の商品名「アデカスタブAX-71」として、市販されている。
これらの中でも、オクタデシルアシッドホスフェートが好ましく、このものはADEKA社製の商品名「アデカスタブAX-71」として、市販されている。
第1の発明において、有機酸(F)の配合量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.05~1質量部が好ましく、0.01~0.5質量部がより好ましい。
[安定剤]
第1の発明において、ポリカーボネート樹脂組成物は、安定剤を含有することが好ましい。
安定剤としては、リン系安定剤、ヒンダードフェノール系安定剤が好ましい。
第1の発明において、ポリカーボネート樹脂組成物は、安定剤を含有することが好ましい。
安定剤としては、リン系安定剤、ヒンダードフェノール系安定剤が好ましい。
リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等が挙げられる。
このような、有機ホスファイト化合物としては、具体的には、例えば、ADEKA社製「アデカスタブ1178」、「アデカスタブ2112」、「アデカスタブHP-10」、城北化学工業社製「JP-351」、「JP-360」、「JP-3CP」、BASF社製「イルガフォス168」等が挙げられる。
このような、有機ホスファイト化合物としては、具体的には、例えば、ADEKA社製「アデカスタブ1178」、「アデカスタブ2112」、「アデカスタブHP-10」、城北化学工業社製「JP-351」、「JP-360」、「JP-3CP」、BASF社製「イルガフォス168」等が挙げられる。
フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン,2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等が挙げられる。
なかでも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、BASF社製「イルガノックス1010」、「イルガノックス1076」、ADEKA社製「アデカスタブAO-50」、「アデカスタブAO-60」等が挙げられる。
なお、安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
なお、安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
第1の発明において、安定剤の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.01質量部以上が好ましく、より好ましくは0.02質量部以上であり、また1質量部以下が好ましく、より好ましくは0.5質量部以下、さらに好ましくは0.2質量部以下である。
[その他の成分]
さらに、必要に応じて、上記以外のその他成分を含有していてもよい。その他の成分の例を挙げると、上記した以外の樹脂、各種樹脂添加剤などが挙げられる。
樹脂添加剤としては、例えば、上記した以外の難燃剤や、紫外線吸収剤、離型剤、染顔料、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
さらに、必要に応じて、上記以外のその他成分を含有していてもよい。その他の成分の例を挙げると、上記した以外の樹脂、各種樹脂添加剤などが挙げられる。
樹脂添加剤としては、例えば、上記した以外の難燃剤や、紫外線吸収剤、離型剤、染顔料、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
<紫外線吸収剤>
第1の発明において、ポリカーボネート樹脂組成物は、紫外線吸収剤を含有することも好ましい。特に、上記したリン系安定剤及び/又はフェノール系安定剤と併用することにより、耐候性がより向上しやすい傾向にある。
紫外線吸収剤としては、例えば、ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらの中では、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤又はマロン酸エステル系紫外線吸収剤がより好ましい。
特にポリカーボネート樹脂(A1)に対する耐候性の向上効果が、ポリカーボネート樹脂(A2)よりも良く、かつ色調の変化がより少ないことが認められた。
第1の発明において、ポリカーボネート樹脂組成物は、紫外線吸収剤を含有することも好ましい。特に、上記したリン系安定剤及び/又はフェノール系安定剤と併用することにより、耐候性がより向上しやすい傾向にある。
紫外線吸収剤としては、例えば、ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらの中では、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤又はマロン酸エステル系紫外線吸収剤がより好ましい。
特にポリカーボネート樹脂(A1)に対する耐候性の向上効果が、ポリカーボネート樹脂(A2)よりも良く、かつ色調の変化がより少ないことが認められた。
ベンゾトリアゾール系紫外線吸収剤の具体例としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチル-フェニル)-5-クロロベンゾトリアゾール)、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]等が挙げられ、なかでも2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]が好ましく、特に2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾールが好ましい。
トリアジン系紫外線吸収剤の具体例としては、トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン等が挙げられる。
マロン酸エステル系紫外線吸収剤の具体例としては、2-(アルキリデン)マロン酸エステル類、特に2-(1-アリールアルキリデン)マロン酸エステル類が挙げられ、このようなマロン酸エステル系紫外線吸収剤としては、具体的には例えば、クラリアントジャパン社製「PR-25」、BASF社製「B-CAP」等が挙げられる。
第1の発明において、紫外線吸収剤の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、また、好ましくは1質量部以下、より好ましくは0.6質量部以下、さらに好ましくは0.4質量部以下である。紫外線吸収剤の含有量が前記範囲の下限値以下の場合は、耐候性の改良効果が不十分となる可能性があり、紫外線吸収剤の含有量が前記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こす可能性がある。
<離型剤>
第1の発明において、ポリカーボネート樹脂組成物は、離型剤を含有することも好ましい。
離型剤としては、脂肪族カルボン酸、脂肪族カルボン酸及びアルコールからなる脂肪酸エステル、数平均分子量200~15000の脂肪族炭化水素化合物及びポリシロキサン系シリコーンオイル等が挙げられ、この中でも特に、脂肪族カルボン酸及びアルコールからなる脂肪酸エステルがより好ましい。
第1の発明において、ポリカーボネート樹脂組成物は、離型剤を含有することも好ましい。
離型剤としては、脂肪族カルボン酸、脂肪族カルボン酸及びアルコールからなる脂肪酸エステル、数平均分子量200~15000の脂肪族炭化水素化合物及びポリシロキサン系シリコーンオイル等が挙げられ、この中でも特に、脂肪族カルボン酸及びアルコールからなる脂肪酸エステルがより好ましい。
脂肪酸エステルを構成する脂肪族カルボン酸としては、飽和又は不飽和の脂肪族1価、2価若しくは3価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。このうち好ましい脂肪族カルボン酸は、炭素数6~36の1価又は2価カルボン酸であり、炭素数6~36の脂肪族飽和1価カルボン酸がさらに好ましい。このような脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、モンタン酸、テトラリアコンタン酸、アジピン酸、アゼライン酸等を挙げることができる。
脂肪酸エステルを構成するアルコールとしては、飽和又は不飽和の1価アルコール、飽和又は不飽和の多価アルコール等を挙げることができる。これらのアルコールは、フッ素原子、アリール基等の置換基を有していてもよい。これらのアルコールのうち、炭素数30以下の1価又は多価の飽和アルコールが好ましく、さらに炭素数30以下の脂肪族飽和1価アルコール、又は多価アルコールが好ましい。ここで脂肪族とは、脂環式化合物も含有する。これらのアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等を挙げることができる。
脂肪族カルボン酸及びアルコールからなる脂肪酸エステルの具体例としては、蜜ロウ(ミリスチルパルミテートを主成分とする混合物)、ステアリン酸ステアレート、ベヘン酸ベヘネート、ベヘン酸ステアレート、パルミチン酸モノグリセリド、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレートが挙げられる。これらの中でも、ペンタエリスリトールテトラステアレート、ステアリン酸ステアレート及びステアリン酸モノグリセリドから選ばれる少なくとも1種の離型剤を使用することがより好ましい。
第1の発明において、離型剤の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、また、その上限は好ましくは1質量部以下、より好ましくは0.6質量部以下、さらに好ましくは0.4質量部以下である。離型剤の含有量が前記範囲の下限値以下の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
第1の発明において、離型剤の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、また、その上限は好ましくは1質量部以下、より好ましくは0.6質量部以下、さらに好ましくは0.4質量部以下である。離型剤の含有量が前記範囲の下限値以下の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
[ポリカーボネート樹脂組成物の製造]
第1の発明において、ポリカーボネート樹脂組成物を製造する際、ポリカーボネート樹脂及び各成分、さらに必要に応じて配合される上記添加剤等の混合方法は特に限定されず、公知のポリカーボネート樹脂組成物の製造方法を広く採用できる。
具体例を挙げると、ポリカーボネート樹脂(A1)、ポリカーボネート樹脂(A2)、リン系難燃剤(B)、シリコーン系難燃剤(C)及び無機フィラー(D)、必要に応じて配合される上記添加剤等の各成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
第1の発明において、ポリカーボネート樹脂組成物を製造する際、ポリカーボネート樹脂及び各成分、さらに必要に応じて配合される上記添加剤等の混合方法は特に限定されず、公知のポリカーボネート樹脂組成物の製造方法を広く採用できる。
具体例を挙げると、ポリカーボネート樹脂(A1)、ポリカーボネート樹脂(A2)、リン系難燃剤(B)、シリコーン系難燃剤(C)及び無機フィラー(D)、必要に応じて配合される上記添加剤等の各成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
また、例えば、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明のポリカーボネート樹脂組成物を製造することもできる。
また、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明のポリカーボネート樹脂組成物を製造することもできる。
また、無機フィラーは、サイドフィード法を用いて、予め溶融混練過程を経た樹脂成分に対して、混練途中から添加し、その後軽いニーディングゾーンを経て、ストランドとして押し出す手法も好ましい。押し出されたストランドは冷却し、切断してペレット化する。特に、無機フィラー(D)が繊維状のフィラーである場合にこのような方法を採用することにより、繊維状無機フィラーの破砕を抑制することができ、機械的物性を良好に保つことが容易となる。
また、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明のポリカーボネート樹脂組成物を製造することもできる。
また、無機フィラーは、サイドフィード法を用いて、予め溶融混練過程を経た樹脂成分に対して、混練途中から添加し、その後軽いニーディングゾーンを経て、ストランドとして押し出す手法も好ましい。押し出されたストランドは冷却し、切断してペレット化する。特に、無機フィラー(D)が繊維状のフィラーである場合にこのような方法を採用することにより、繊維状無機フィラーの破砕を抑制することができ、機械的物性を良好に保つことが容易となる。
第1の発明のポリカーボネート樹脂組成物は、好ましくは最大平均熱放射率が120kW/m2以下の値を示す。最大平均熱放射率は、ISO5660-1に順じ、得られた試験片をコーンカロリーメーターを用いて、50kW/m2のヒーター放射照度、イグニッション有りの条件で試験し、消費された酸素量から平均熱放射率を算出し、その最大値(単位:kW/m2)として求めれる。最大平均熱放射率は数値が小さい方が好ましいが、第1の発明のポリカーボネート樹脂組成物は、好ましくは最大平均熱放射率が120kW/m2以下であり、より好ましくは115kW/m2以下、さらに好ましくは110kW/m2以下である。
また、第1の発明のポリカーボネート樹脂組成物は、好ましくは、発煙性の指標となる試験開始4分後の特定光学密度Ds(4)が400以下、また、試験開始から4分間の特定光学密度の積算値VOF4が650以下の値を示す。
特定光学密度Ds(4)と特定光学密度の積算値VOF4は、ISO5659-2に順じ、シングルチャンバ発煙性試験機を用いて、50kW/m2のヒーター放射照度、無炎法にて試験し、発煙性の指標となる試験開始4分後の特定光学密度Ds(4)および試験開始から4分間の特定光学密度の積算値VOF4が求められる。
特定光学密度Dsは、チャンバ―内に設置された光学系で測定された吸光度T、チャンバ―容積V試験片の暴露面積Aおよび測定光学系の光路長Lから、以下の式で算出される。
特定光学密度Ds(4)及び特定光学密度の積算値VOF4は、いずれも数値が小さい方が好ましく、特定光学密度Ds(4)及び特定光学密度の積算値VOF4は低い方が低発煙性であることを示す。第1の発明のポリカーボネート樹脂組成物は、特定光学密度Ds(4)が好ましくは400以下、より好ましくは350であり、特定光学密度の積算値VOF4は好ましくは650以下、より好ましくは600以下である。
特定光学密度Ds(4)と特定光学密度の積算値VOF4は、ISO5659-2に順じ、シングルチャンバ発煙性試験機を用いて、50kW/m2のヒーター放射照度、無炎法にて試験し、発煙性の指標となる試験開始4分後の特定光学密度Ds(4)および試験開始から4分間の特定光学密度の積算値VOF4が求められる。
特定光学密度Dsは、チャンバ―内に設置された光学系で測定された吸光度T、チャンバ―容積V試験片の暴露面積Aおよび測定光学系の光路長Lから、以下の式で算出される。
第1の発明のポリカーボネート樹脂組成物は、最大平均熱放射率が110kW/m2以下であり、Ds(4)が350以下で、かつVOF4が600以下であることが、特に好ましい。
[ポリカーボネート樹脂成形体]
上述した第1の発明のポリカーボネート樹脂組成物を用いて、ポリカーボネート樹脂成形体が製造される。ポリカーボネート樹脂成形体の成形方法は特に限定されず、例えば、射出成形機、押出成形機等の従来公知の成形機を用いて成形する方法等が挙げられる。
第1の発明の樹脂組成物を成形してなるポリカーボネート樹脂成形体は、低発熱性と低発煙性を併せ有し、欧州鉄道車両防火規格EN45545-2や北米鉄道防火規格NFPA130をクリアできるので、例えば、鉄道車両内装用部材等として、特に好適である。
鉄道車両内装用部材としては、座席の手すり、背もたれ、テーブル、ボックス、ポケット、荷物用棚(ラック)、壁材、天井材等が好ましく挙げられる。
上述した第1の発明のポリカーボネート樹脂組成物を用いて、ポリカーボネート樹脂成形体が製造される。ポリカーボネート樹脂成形体の成形方法は特に限定されず、例えば、射出成形機、押出成形機等の従来公知の成形機を用いて成形する方法等が挙げられる。
第1の発明の樹脂組成物を成形してなるポリカーボネート樹脂成形体は、低発熱性と低発煙性を併せ有し、欧州鉄道車両防火規格EN45545-2や北米鉄道防火規格NFPA130をクリアできるので、例えば、鉄道車両内装用部材等として、特に好適である。
鉄道車両内装用部材としては、座席の手すり、背もたれ、テーブル、ボックス、ポケット、荷物用棚(ラック)、壁材、天井材等が好ましく挙げられる。
<第2の発明>
以下、本発明の第2の発明について詳細に説明する。
第2の発明のポリカーボネート樹脂組成物は、上記一般式(1)の構造単位を有するポリカーボネート樹脂(A1)及び上記一般式(2)の構造単位を有するポリカーボネート樹脂(A2)を、(A1)/(A2)の質量比で10未満/90超~0/100の割合で含有するポリカーボネート樹脂100質量部に対し、リン系難燃剤(B)を3~40質量部、シリコーン系難燃剤(C)を2~40質量部および無機フィラー(D)を15~100質量部含有し、リン系難燃剤(B)が縮合リン酸エステルであり、かつホスファゼン化合物を含有しないか、含有する場合でもその含有量が3質量部未満であることを特徴とする。
以下、本発明の第2の発明について詳細に説明する。
第2の発明のポリカーボネート樹脂組成物は、上記一般式(1)の構造単位を有するポリカーボネート樹脂(A1)及び上記一般式(2)の構造単位を有するポリカーボネート樹脂(A2)を、(A1)/(A2)の質量比で10未満/90超~0/100の割合で含有するポリカーボネート樹脂100質量部に対し、リン系難燃剤(B)を3~40質量部、シリコーン系難燃剤(C)を2~40質量部および無機フィラー(D)を15~100質量部含有し、リン系難燃剤(B)が縮合リン酸エステルであり、かつホスファゼン化合物を含有しないか、含有する場合でもその含有量が3質量部未満であることを特徴とする。
なお、本発明の第2の発明のポリカーボネート樹脂組成物において、使用する個々の成分自体は、基本的には本発明の第1の発明にて説明したものと同じ成分であり、第2の発明で使用する各成分自体の説明は、特に断りのない限り、上記した第1の発明で記載したものがそのまま適用される。
[ポリカーボネート樹脂(A1)及び(A2)の割合]
第2の発明において、ポリカーボネート樹脂(A1)及びポリカーボネート樹脂(A2)の含有量の比は、両者の質量比で、ポリカーボネート樹脂(A1)/ポリカーボネート樹脂(A2)が10未満/90超~0/100、即ちポリカーボネート樹脂(A1)が0以上~10未満、ポリカーボネート樹脂(A2)が90超~100以下である。ポリカーボネート樹脂(A1)と(A2)がこのような比にある際には、リン系難燃剤(B)が縮合リン酸エステルであり、かつホスファゼン化合物を含有しないか、または、含有する場合でもホスファゼン化合物の含有量が、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、3質量部未満であると、燃焼時に良好なチャー形成を示し、低発熱性、低発煙性を発現することが可能となる。
第2の発明において、ポリカーボネート樹脂(A1)及びポリカーボネート樹脂(A2)の含有量の比は、両者の質量比で、ポリカーボネート樹脂(A1)/ポリカーボネート樹脂(A2)が10未満/90超~0/100、即ちポリカーボネート樹脂(A1)が0以上~10未満、ポリカーボネート樹脂(A2)が90超~100以下である。ポリカーボネート樹脂(A1)と(A2)がこのような比にある際には、リン系難燃剤(B)が縮合リン酸エステルであり、かつホスファゼン化合物を含有しないか、または、含有する場合でもホスファゼン化合物の含有量が、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、3質量部未満であると、燃焼時に良好なチャー形成を示し、低発熱性、低発煙性を発現することが可能となる。
[リン系難燃剤(B)]
第2の発明のポリカーボネート樹脂組成物では、リン系難燃剤(B)として、縮合リン酸エステルを使用して、ホスファゼン化合物を含有しないか、ホスファゼン化合物を含有する場合でもその含有量が3質量部未満である。このように縮合リン酸エステルとシリコーン系難燃剤(C)を併せて含有することにより、第2の発明のポリカーボネート樹脂組成物の難燃性を、前記したような欧州鉄道車両防火規格をクリアできるレベルまで向上させることができる。
第2の発明のポリカーボネート樹脂組成物では、リン系難燃剤(B)として、縮合リン酸エステルを使用して、ホスファゼン化合物を含有しないか、ホスファゼン化合物を含有する場合でもその含有量が3質量部未満である。このように縮合リン酸エステルとシリコーン系難燃剤(C)を併せて含有することにより、第2の発明のポリカーボネート樹脂組成物の難燃性を、前記したような欧州鉄道車両防火規格をクリアできるレベルまで向上させることができる。
縮合リン酸エステルとホスファゼン化合物は、前記した通りである。
第2の発明において、リン系難燃剤(B)の含有量は、前述したように、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、3~40質量部であり、全量が縮合リン酸エステルであることが好ましく、ホスファゼン化合物を含有する場合でもその含有量が3質量部未満である。リン系難燃剤(B)の含有量が3質量部未満だと十分な低発熱、低発煙性を示しにくく、40質量部より多いと荷重たわみ温度等の耐熱性の低下や、湿熱に対する耐久性が低下するため好ましくない。リン系難燃剤(B)の含有量は、3.5~20質量部が好ましく、より好ましくは4~20質量部、さらには5~20質量部、なかでも8~20質量部、とりわけ10~20質量部が好ましい。また、含有量の上限は18質量部がより好ましいので、より好ましくは4~18質量部、さらには5~18質量部、なかでも8~18質量部、特に10~18質量部が好ましい。
ホスファゼン化合物を含有する場合の含有量は、好ましくは2.5質量部未満、より好ましくは2.0質量部未満、さらには1.5質量部未満、中でも1.0質量部未満、とりわけ0.5質量部未満、特には0.3質量部未満、0.1質量部未満であることが最も好ましい。
ホスファゼン化合物を含有する場合の含有量は、好ましくは2.5質量部未満、より好ましくは2.0質量部未満、さらには1.5質量部未満、中でも1.0質量部未満、とりわけ0.5質量部未満、特には0.3質量部未満、0.1質量部未満であることが最も好ましい。
[シリコーン系難燃剤(C)]
シリコーン系難燃剤(C)は、前記した通りである。
第2の発明において、シリコーン系難燃剤(C)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、2~40質量部である。この範囲にあると、燃焼時に良好なチャー形成を示し、低発熱、低発煙となりやすい。シリコーン系難燃剤(C)の含有量は、好ましくは3~18質量部、より好ましくは4~16質量部、特には5~15質量部が好ましい。
また、リン系難燃剤(B)及びシリコーン系難燃剤(C)の含有量の合計は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、好ましくは15~40質量部、15~30質量部であることがより好ましい。この範囲にあると、燃焼時に良好なチャー形成し、加えて、燃焼等による変形が少なく、低発熱、低発煙となりやすい。(B)及び(C)の合計の含有量は、より好ましくは20~30質量部である。
シリコーン系難燃剤(C)は、前記した通りである。
第2の発明において、シリコーン系難燃剤(C)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、2~40質量部である。この範囲にあると、燃焼時に良好なチャー形成を示し、低発熱、低発煙となりやすい。シリコーン系難燃剤(C)の含有量は、好ましくは3~18質量部、より好ましくは4~16質量部、特には5~15質量部が好ましい。
また、リン系難燃剤(B)及びシリコーン系難燃剤(C)の含有量の合計は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、好ましくは15~40質量部、15~30質量部であることがより好ましい。この範囲にあると、燃焼時に良好なチャー形成し、加えて、燃焼等による変形が少なく、低発熱、低発煙となりやすい。(B)及び(C)の合計の含有量は、より好ましくは20~30質量部である。
[無機フィラー(D)]
無機フィラー(D)は、前記した通りである。
第2の発明において、無機フィラー(D)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、15~100質量部である。15質量部未満だと、燃焼時の形状安定効果が弱く、低発熱、低発熱性が不十分である。100質量部より多いと、燃焼時の燃焼成分が無機フィラーのロウ効果によって表面に出てくる作用が大きいため、低発熱、低発熱性が不十分となりやすい。無機フィラー(D)の含有量は、好ましくは20質量部以上、より好ましくは25質量部以上であり、また、好ましくは80質量部以下、より好ましくは70質量部以下、さらに好ましくは50質量部以下である。無機フィラー(D)の含有量は、より好ましくは20~80質量部、さらに好ましくは20~70質量部、中でも25~70質量部、特には30~60質量部である。
無機フィラー(D)がタルクの場合、タルクの量は通常より多いのが好ましく、好ましい含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、18~50質量部であり、より好ましくは25~50質量部、より好ましくは30~50質量部、特には30~45質量部が好ましい。
無機フィラー(D)は、前記した通りである。
第2の発明において、無機フィラー(D)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、15~100質量部である。15質量部未満だと、燃焼時の形状安定効果が弱く、低発熱、低発熱性が不十分である。100質量部より多いと、燃焼時の燃焼成分が無機フィラーのロウ効果によって表面に出てくる作用が大きいため、低発熱、低発熱性が不十分となりやすい。無機フィラー(D)の含有量は、好ましくは20質量部以上、より好ましくは25質量部以上であり、また、好ましくは80質量部以下、より好ましくは70質量部以下、さらに好ましくは50質量部以下である。無機フィラー(D)の含有量は、より好ましくは20~80質量部、さらに好ましくは20~70質量部、中でも25~70質量部、特には30~60質量部である。
無機フィラー(D)がタルクの場合、タルクの量は通常より多いのが好ましく、好ましい含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対し、18~50質量部であり、より好ましくは25~50質量部、より好ましくは30~50質量部、特には30~45質量部が好ましい。
また、第2の発明において、リン系難燃剤(B)及びシリコーン系難燃剤(C)の含有量の合計と無機フィラー(D)の含有量の比[(B)+(C)]/(D)は、2以下であることが好ましい。含有量の比が2を超える場合、鉄道車両や航空機などの難燃性試験において、無機フィラー(D)の形状安定効果が不十分となり、難燃性試験中に試験片の膨張、変形が著しく発生する場合があり好ましくない。
[(B)+(C)]/(D)は、より好ましくは1.5以下であり、その下限は0.5が好ましく、特に0.3~1.5であることが好ましい。
[(B)+(C)]/(D)は、より好ましくは1.5以下であり、その下限は0.5が好ましく、特に0.3~1.5であることが好ましい。
[フッ素系樹脂(E)]
第2の発明においても、フッ素系樹脂(E)を含有することが好ましく、フッ素系樹脂(E)は、先に説明した通りである。
第2の発明において、フッ素系樹脂(E)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.05~3質量部であることが好ましい。フッ素系樹脂(E)の含有量は、0.05質量部より少ないと、フッ素系樹脂(E)による難燃性向上効果が不十分になりやすく、3質量部を超えると、樹脂組成物を成形した成形体の外観不良や機械的強度、透明性の低下が生じやすい。フッ素系樹脂(E)の含有量は、より好ましくは0.05~1.5質量部、さらに好ましくは0.08~1質量部、特に好ましくは0.08~0.5質量部である。
第2の発明においても、フッ素系樹脂(E)を含有することが好ましく、フッ素系樹脂(E)は、先に説明した通りである。
第2の発明において、フッ素系樹脂(E)の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.05~3質量部であることが好ましい。フッ素系樹脂(E)の含有量は、0.05質量部より少ないと、フッ素系樹脂(E)による難燃性向上効果が不十分になりやすく、3質量部を超えると、樹脂組成物を成形した成形体の外観不良や機械的強度、透明性の低下が生じやすい。フッ素系樹脂(E)の含有量は、より好ましくは0.05~1.5質量部、さらに好ましくは0.08~1質量部、特に好ましくは0.08~0.5質量部である。
[有機酸(F)]
第2の発明において、ポリカーボネート樹脂組成物は、有機酸(F)を含有することも好ましく、有機酸(F)は先に説明した通りである。
第2の発明において、有機酸(F)の配合量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.05~1質量部が好ましく、0.01~0.5質量部がより好ましい。
第2の発明において、ポリカーボネート樹脂組成物は、有機酸(F)を含有することも好ましく、有機酸(F)は先に説明した通りである。
第2の発明において、有機酸(F)の配合量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.05~1質量部が好ましく、0.01~0.5質量部がより好ましい。
[安定剤]
第2の発明においても、ポリカーボネート樹脂組成物は、安定剤を含有することが好ましく、安定剤は先に説明した通りである。
第2の発明において、安定剤の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.01質量部以上が好ましく、より好ましくは0.02質量部以上であり、また1質量部以下が好ましく、より好ましくは0.5質量部以下、さらに好ましくは0.2質量部以下である。
第2の発明においても、ポリカーボネート樹脂組成物は、安定剤を含有することが好ましく、安定剤は先に説明した通りである。
第2の発明において、安定剤の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、0.01質量部以上が好ましく、より好ましくは0.02質量部以上であり、また1質量部以下が好ましく、より好ましくは0.5質量部以下、さらに好ましくは0.2質量部以下である。
[その他の成分]
第2の発明の樹脂組成物においても、さらに、必要に応じて、上記以外のその他成分を含有していてもよい。その他の成分の例を挙げると、上記した以外の樹脂、各種樹脂添加剤などが挙げられる。
第2の発明の樹脂組成物においても、さらに、必要に応じて、上記以外のその他成分を含有していてもよい。その他の成分の例を挙げると、上記した以外の樹脂、各種樹脂添加剤などが挙げられる。
上記した以外の樹脂としては、ポリフェニレンエーテル樹脂、ポリアリレート樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂等を配合して、さらに発熱性と発煙性をより抑制することも好ましい。
ポリフェニレンエーテル樹脂としては、耐衝撃性ポリスチレン(HIPS)などとアロイ化された変性ポリフェニレンエーテル樹脂が好ましい。ポリアリレート樹脂は、ジフェノールと芳香族ジカルボン酸との反応生成物であるアリレートポリエステル構造単位を含む樹脂であり、ビスフェノールAとフタル酸(テレフタル酸及び/又はイソフタル酸を重合させた重合体が特に好ましい。ポリエーテルイミド樹脂としては、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパンとm-フェニレンジアミンによる重合体が特に好ましい。
これらの樹脂を含有する場合の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、5~100質量部が好ましく、より好ましくは10~60質量部である。なお、前記した第1の発明の樹脂組成物にこれらを配合することも可能であり、その場合の含有量も上記と同様である。
ポリフェニレンエーテル樹脂としては、耐衝撃性ポリスチレン(HIPS)などとアロイ化された変性ポリフェニレンエーテル樹脂が好ましい。ポリアリレート樹脂は、ジフェノールと芳香族ジカルボン酸との反応生成物であるアリレートポリエステル構造単位を含む樹脂であり、ビスフェノールAとフタル酸(テレフタル酸及び/又はイソフタル酸を重合させた重合体が特に好ましい。ポリエーテルイミド樹脂としては、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパンとm-フェニレンジアミンによる重合体が特に好ましい。
これらの樹脂を含有する場合の含有量は、ポリカーボネート樹脂(A1)と(A2)の合計100質量部に対して、5~100質量部が好ましく、より好ましくは10~60質量部である。なお、前記した第1の発明の樹脂組成物にこれらを配合することも可能であり、その場合の含有量も上記と同様である。
さらにその他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;ポリスチレン樹脂、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)などのスチレン系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリウレタン樹脂;ポリメタクリレート樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂等が挙げられる。
なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
樹脂添加剤としては、例えば、上記した以外の難燃剤や、紫外線吸収剤、離型剤、染顔料、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
これらの樹脂添加剤の説明及び第2の発明における好ましい含有量は、第1の発明の説明において記載したのと同様である。
これらの樹脂添加剤の説明及び第2の発明における好ましい含有量は、第1の発明の説明において記載したのと同様である。
第2の発明のポリカーボネート樹脂組成物は、第1の発明と同様に、好ましくは最大平均熱放射率が120kW/m2以下の値を示し、好ましくは最大平均熱放射率が120kW/m2以下であり、より好ましくは115kW/m2以下、さらに好ましくは110kW/m2以下である。
また、第2の発明のポリカーボネート樹脂組成物は、第1の発明と同様に、好ましくは特定光学密度Ds(4)が400以下、また、特定光学密度の積算値VOF4が650以下の値を示す。
また、第2の発明のポリカーボネート樹脂組成物は、特定光学密度Ds(4)が好ましくは400以下、より好ましくは350以下であり、特定光学密度の積算値VOF4は好ましくは650以下、より好ましくは600以下である。
さらに、第2の発明のポリカーボネート樹脂組成物は、第1の発明と同様に、最大平均熱放射率が110kW/m2以下であり、Ds(4)が350以下で、かつVOF4が600以下であることが、特に好ましい。
また、第2の発明のポリカーボネート樹脂組成物は、第1の発明と同様に、好ましくは特定光学密度Ds(4)が400以下、また、特定光学密度の積算値VOF4が650以下の値を示す。
また、第2の発明のポリカーボネート樹脂組成物は、特定光学密度Ds(4)が好ましくは400以下、より好ましくは350以下であり、特定光学密度の積算値VOF4は好ましくは650以下、より好ましくは600以下である。
さらに、第2の発明のポリカーボネート樹脂組成物は、第1の発明と同様に、最大平均熱放射率が110kW/m2以下であり、Ds(4)が350以下で、かつVOF4が600以下であることが、特に好ましい。
[ポリカーボネート樹脂成形体]
上述した第2の発明のポリカーボネート樹脂組成物を用いて、ポリカーボネート樹脂成形体が製造される。ポリカーボネート樹脂成形体の成形方法は特に限定されず、例えば、射出成形機、押出成形機等の従来公知の成形機を用いて成形する方法等が挙げられる。
第2の発明の樹脂組成物を成形してなるポリカーボネート樹脂成形体は、低発熱性と低発煙性を併せ有し、欧州鉄道車両防火規格EN45545-2や北米鉄道防火規格NFPA130をクリアできるので、例えば、鉄道車両内装用部材等として、特に好適である。
鉄道車両内装用部材としては、座席の手すり、背もたれ、テーブル、ボックス、ポケット、荷物用棚(ラック)、壁材、天井材等が好ましく挙げられる。
上述した第2の発明のポリカーボネート樹脂組成物を用いて、ポリカーボネート樹脂成形体が製造される。ポリカーボネート樹脂成形体の成形方法は特に限定されず、例えば、射出成形機、押出成形機等の従来公知の成形機を用いて成形する方法等が挙げられる。
第2の発明の樹脂組成物を成形してなるポリカーボネート樹脂成形体は、低発熱性と低発煙性を併せ有し、欧州鉄道車両防火規格EN45545-2や北米鉄道防火規格NFPA130をクリアできるので、例えば、鉄道車両内装用部材等として、特に好適である。
鉄道車両内装用部材としては、座席の手すり、背もたれ、テーブル、ボックス、ポケット、荷物用棚(ラック)、壁材、天井材等が好ましく挙げられる。
<第1の発明に係る実施例>
以下、第1の発明に係る実施例により第1の発明を具体的に説明する。ただし、第1の発明は以下の実施例に限定して解釈されるものではない。
以下、第1の発明に係る実施例により第1の発明を具体的に説明する。ただし、第1の発明は以下の実施例に限定して解釈されるものではない。
なお、ポリカーボネート樹脂(A1)として使用した上記ポリカーボネート樹脂(A1-1)は、以下の方法で製造した。
<溶融エステル交換法によるポリカーボネート樹脂(A1-1)の製造>
2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールC、以下「BPC」と記す。)26.14モル(6.75kg)と、ジフェニルカーボネート26.66モル(5.71kg)を、撹拌機および溜出凝縮装置付きのSUS製反応器(内容積40リットル)内に入れ、反応器内を窒素ガスで置換後、窒素ガス雰囲気下で220℃まで30分間かけて昇温した。
次いで、反応器内の反応液を撹拌し、溶融状態下の反応液にエステル交換反応触媒として炭酸セシウム(Cs2CO3)を、BPC1モルに対し1.5×10-6モルとなるように加え、窒素ガス雰囲気下、220℃で30分、反応液を撹拌醸成した。次に、同温度下で反応器内の圧力を40分かけて100Torrに減圧し、さらに、100分間反応させ、フェノールを溜出させた。
2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールC、以下「BPC」と記す。)26.14モル(6.75kg)と、ジフェニルカーボネート26.66モル(5.71kg)を、撹拌機および溜出凝縮装置付きのSUS製反応器(内容積40リットル)内に入れ、反応器内を窒素ガスで置換後、窒素ガス雰囲気下で220℃まで30分間かけて昇温した。
次いで、反応器内の反応液を撹拌し、溶融状態下の反応液にエステル交換反応触媒として炭酸セシウム(Cs2CO3)を、BPC1モルに対し1.5×10-6モルとなるように加え、窒素ガス雰囲気下、220℃で30分、反応液を撹拌醸成した。次に、同温度下で反応器内の圧力を40分かけて100Torrに減圧し、さらに、100分間反応させ、フェノールを溜出させた。
次に、反応器内を60分かけて温度を280℃まで上げるとともに3Torrまで減圧し、留出理論量のほぼ全量に相当するフェノールを留出させた。次に、同温度下で反応器内の圧力を1Torr未満に保ち、さらに80分間反応を続け重縮合反応を終了させた。このとき、撹拌機の攪拌回転数は38回転/分であり、反応終了直前の反応液温度は300℃、攪拌動力は1.40kWであった。
次に、溶融状態のままの反応液を2軸押出機に送入し、炭酸セシウムに対して4倍モル量のp-トルエンスルホン酸ブチルを2軸押出機の第1供給口から供給し、反応液と混練し、その後、反応液を2軸押出機のダイを通してストランド状に押し出し、カッターで切断してカーボネート樹脂のペレットを得た。
得られたポリカーボネート樹脂(A1-1)の物性は以下の通りであった。
鉛筆硬度:2H、粘度平均分子量(Mv):28000、分岐構造あり
次に、溶融状態のままの反応液を2軸押出機に送入し、炭酸セシウムに対して4倍モル量のp-トルエンスルホン酸ブチルを2軸押出機の第1供給口から供給し、反応液と混練し、その後、反応液を2軸押出機のダイを通してストランド状に押し出し、カッターで切断してカーボネート樹脂のペレットを得た。
得られたポリカーボネート樹脂(A1-1)の物性は以下の通りであった。
鉛筆硬度:2H、粘度平均分子量(Mv):28000、分岐構造あり
また、ポリカーボネート樹脂(A1)として使用した上記ポリカーボネート樹脂(A1-2)は、特開2013-112780号の段落[0132]に記載された方法により準拠して製造された、界面重合法によるポリカーボネート樹脂であり、物性は以下の通りである。
鉛筆硬度:F、粘度平均分子量(Mv):25000、分岐構造なし
鉛筆硬度:F、粘度平均分子量(Mv):25000、分岐構造なし
(実施例1~68、比較例1~7)
上記した各成分を表2以下に示す組成(すべて質量部)で配合混合し、二軸押出機(日本製鋼所株式会社製「TEX30XCT」)により、バレル温度280℃で混練し、ポリカーボネート樹脂組成物ペレットを製造した。得られたペレットを、80℃、5時間乾燥した後、以下の手順に従い、試験片を作成し、以下の評価を行った。
上記した各成分を表2以下に示す組成(すべて質量部)で配合混合し、二軸押出機(日本製鋼所株式会社製「TEX30XCT」)により、バレル温度280℃で混練し、ポリカーボネート樹脂組成物ペレットを製造した。得られたペレットを、80℃、5時間乾燥した後、以下の手順に従い、試験片を作成し、以下の評価を行った。
上記で得られた樹脂ペレットについて、日本製鋼所製射出成形機J55ADを用い、樹脂温度280℃、金型温度80℃の条件下で射出成形を行い、長さ100mm×幅100mm×厚み3mmのプレート状試験片を得た。
[最大平均熱放射率]
ISO5660-1に順じ、得られた試験片を東洋精機製作所製コーンカロリーメーターC3を用いて、50kW/m2のヒーター放射照度、イグニッション有りの条件で試験し、消費された酸素量から平均熱放射率を算出し、その最大値を最大平均熱放射率(単位:kW/m2)とした。最大平均熱放射率は数値が小さい方が好ましい。
ISO5660-1に順じ、得られた試験片を東洋精機製作所製コーンカロリーメーターC3を用いて、50kW/m2のヒーター放射照度、イグニッション有りの条件で試験し、消費された酸素量から平均熱放射率を算出し、その最大値を最大平均熱放射率(単位:kW/m2)とした。最大平均熱放射率は数値が小さい方が好ましい。
[発煙性試験]
ISO5659-2に順じ、前述の試験片を長さ75mm×幅75mm×厚み3mmに裁断し、Fire Testing Technology製「M-323シリーズ」を用いて、50kW/m2のヒーター放射照度、無炎法にて試験し、発煙性の指標となる試験開始4分後の特定光学密度Ds(4)および試験開始から4分間の特定光学密度の積算値VOF4を求めた。
最大平均熱放射率、特定光学密度Ds(4)及び特定光学密度の積算値VOF4の値から、以下のA~Eの5段階の基準で、難燃性の総合評価を行った。
A:最大平均熱放射率が110kW/m2以下、かつDs(4)が350以下、かつVOF4が600以下。
B:最大平均熱放射率が115kW/m2以下、かつDs(4)400以下、かつVOF4が650以下。
C:最大平均熱放射率が120kW/m2以下、かつDs(4)500以下、かつVOF4が700以下。
D:最大平均熱放射率が150kW/m2以下、かつDs(4)600以下、かつVOF4が1000以下。
E:A~Dいずれの基準も満たさない。
評価結果を以下の表2~10に示す。
ISO5659-2に順じ、前述の試験片を長さ75mm×幅75mm×厚み3mmに裁断し、Fire Testing Technology製「M-323シリーズ」を用いて、50kW/m2のヒーター放射照度、無炎法にて試験し、発煙性の指標となる試験開始4分後の特定光学密度Ds(4)および試験開始から4分間の特定光学密度の積算値VOF4を求めた。
最大平均熱放射率、特定光学密度Ds(4)及び特定光学密度の積算値VOF4の値から、以下のA~Eの5段階の基準で、難燃性の総合評価を行った。
A:最大平均熱放射率が110kW/m2以下、かつDs(4)が350以下、かつVOF4が600以下。
B:最大平均熱放射率が115kW/m2以下、かつDs(4)400以下、かつVOF4が650以下。
C:最大平均熱放射率が120kW/m2以下、かつDs(4)500以下、かつVOF4が700以下。
D:最大平均熱放射率が150kW/m2以下、かつDs(4)600以下、かつVOF4が1000以下。
E:A~Dいずれの基準も満たさない。
評価結果を以下の表2~10に示す。
上記表2~10に示した結果から、第1発明の特定要件を全て満たすポリカーボネート樹脂組成物が初めて、低発熱性と低発煙性を高いレベルで達成できることが分かる。
<第2の発明に係る実施例>
次に、第2の発明に係る実施例により第2の発明を具体的に説明する。ただし、第2の発明は以下の実施例に限定して解釈されるものではない。
次に、第2の発明に係る実施例により第2の発明を具体的に説明する。ただし、第2の発明は以下の実施例に限定して解釈されるものではない。
実施例及び比較例において、前記した成分の以外に、新たに使用した成分は、以下の表11の通りである。
(実施例69~79)
上記した各成分を表11以下に示す組成(すべて質量部)で配合混合し、二軸押出機(日本製鋼所株式会社製「TEX30XCT」)により、バレル温度280℃で混練し、ポリカーボネート樹脂組成物ペレットを製造した。得られたペレットを、80℃、5時間乾燥した後、前記と同様の手順に従い、試験片を作成し、同様の評価を行った。
上記した各成分を表11以下に示す組成(すべて質量部)で配合混合し、二軸押出機(日本製鋼所株式会社製「TEX30XCT」)により、バレル温度280℃で混練し、ポリカーボネート樹脂組成物ペレットを製造した。得られたペレットを、80℃、5時間乾燥した後、前記と同様の手順に従い、試験片を作成し、同様の評価を行った。
上記表12に示した結果から、第2発明の特定要件を全て満たすポリカーボネート樹脂組成物が、低発熱性と低発煙性を高いレベルで達成できることが分かる。
本発明のポリカーボネート樹脂組成物は、低発熱性と低発煙性に優れるので、各種用途における成形体として使用でき、特に、鉄道車両内装用部材に好適であり、産業上の利用性は非常に高い。
Claims (15)
- 下記一般式(1)の構造単位を有するポリカーボネート樹脂(A1)及び下記一般式(2)の構造単位を有するポリカーボネート樹脂(A2)を、(A1)/(A2)の質量比で100/0~10/90の割合で含有するポリカーボネート樹脂100質量部に対し、リン系難燃剤(B)を3~20質量部、シリコーン系難燃剤(C)を2~20質量部および無機フィラー(D)を3~100質量部含有し、リン系難燃剤(B)がホスファゼン化合物および/または縮合リン酸エステルであることを特徴とするポリカーボネート樹脂組成物。
- 上記一般式(1)の構造単位を有するポリカーボネート樹脂(A1)及び上記一般式(2)の構造単位を有するポリカーボネート樹脂(A2)を、(A1)/(A2)の質量比で10未満/90超~0/100の割合で含有するポリカーボネート樹脂100質量部に対し、リン系難燃剤(B)を3~40質量部、シリコーン系難燃剤(C)を2~40質量部および無機フィラー(D)を15~100質量部含有し、リン系難燃剤(B)が縮合リン酸エステルであり、かつホスファゼン化合物を含有しないか、含有する場合でもその含有量が3質量部未満であることを特徴とするポリカーボネート樹脂組成物。
- 前記一般式(1)におけるR1がメチル基、R2が水素原子であり、前記一般式(1)及び(2)におけるXがイソプロピリデン基である請求項1または2に記載のポリカーボネート樹脂組成物。
- ポリカーボネート樹脂(A1)および(A2)の合計100質量%中、分岐構造を有するポリカーボネート樹脂の含有割合が10~100質量%である請求項1~3のいずれかに記載のポリカーボネート樹脂組成物。
- リン系難燃剤(B)及びシリコーン系難燃剤(C)の含有量の合計が、ポリカーボネート樹脂(A1)および(A2)の合計100質量部に対し、15~40質量部である請求項1~4のいずれかに記載のポリカーボネート樹脂組成物。
- リン系難燃剤(B)及びシリコーン系難燃剤(C)の含有量の合計と無機フィラー(D)の含有量の比[(B)+(C)]/(D)が2以下である請求項1~5のいずれかに記載のポリカーボネート樹脂組成物。
- シリコーン系難燃剤(C)がポリオルガノシロキサン含有グラフト共重合体である請求項1~6のいずれかに記載のポリカーボネート樹脂組成物。
- 無機フィラー(D)がタルクである請求項1~7のいずれかに記載のポリカーボネート樹脂組成物。
- さらに、フッ素系樹脂(E)を、ポリカーボネート樹脂(A1)および(A2)の合計100質量部に対し、0.05~3質量部含有する請求項1~8のいずれかに記載のポリカーボネート樹脂組成物。
- さらに、有機酸(F)を、ポリカーボネート樹脂(A1)および(A2)の合計100質量部に対し、0.05~1質量部含有する請求項1~9のいずれかに記載のポリカーボネート樹脂組成物。
- ISO5660-1に準拠して、50kW/m2のヒーター放射照度、イグニッション有りの条件で試験した最大平均熱放射率が120kW/m2以下である請求項1~10のいずれかに記載のポリカーボネート樹脂組成物。
- ISO5659-2に準拠して、50kW/m2のヒーター放射照度、無炎法の条件で試験した、試験開始4分後の特定光学密度DS(4)が400以下である請求項1~11のいずれかに記載のポリカーボネート樹脂組成物。
- ISO5659-2に準拠して、50kW/m2のヒーター放射照度、無炎法の条件でし試験した、試験開始から4分間特定光学密度の積算値VOF4が650以下である請求項1~12のいずれかに記載のポリカーボネート樹脂組成物。
- 最大平均熱放射率が110kW/m2以下、DS(4)が350以下、かつVOF4が600以下である請求項1~13のいずれかに記載のポリカーボネート樹脂組成物。
- 請求項1~14のいずれかに記載のポリカーボネート樹脂組成物からなる鉄道車両内装用部材。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/325,077 US11603467B2 (en) | 2016-09-09 | 2017-08-30 | Polycarbonate resin composition |
CN201780055498.3A CN109689784B (zh) | 2016-09-09 | 2017-08-30 | 聚碳酸酯树脂组合物 |
JP2017562112A JP6285085B1 (ja) | 2016-09-09 | 2017-08-30 | ポリカーボネート樹脂組成物 |
EP17848633.8A EP3511375A4 (en) | 2016-09-09 | 2017-08-30 | POLYCARBONATE RESIN COMPOSITION |
US17/839,554 US20220325099A1 (en) | 2016-09-09 | 2022-06-14 | Polycarbonate resin composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016176746 | 2016-09-09 | ||
JP2016-176746 | 2016-09-09 | ||
JP2017093845 | 2017-05-10 | ||
JP2017-093845 | 2017-05-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/325,077 A-371-Of-International US11603467B2 (en) | 2016-09-09 | 2017-08-30 | Polycarbonate resin composition |
US17/839,554 Continuation US20220325099A1 (en) | 2016-09-09 | 2022-06-14 | Polycarbonate resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018047693A1 true WO2018047693A1 (ja) | 2018-03-15 |
Family
ID=61561438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/031138 WO2018047693A1 (ja) | 2016-09-09 | 2017-08-30 | ポリカーボネート樹脂組成物 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11603467B2 (ja) |
EP (1) | EP3511375A4 (ja) |
WO (1) | WO2018047693A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100350A1 (ja) * | 2018-11-12 | 2020-05-22 | 積水化学工業株式会社 | 樹脂シート |
JP2020079381A (ja) * | 2018-11-12 | 2020-05-28 | 積水化学工業株式会社 | 樹脂シート |
WO2020194996A1 (ja) * | 2019-03-27 | 2020-10-01 | 積水化学工業株式会社 | 樹脂組成物及び成形体 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109689784B (zh) * | 2016-09-09 | 2022-04-29 | 三菱工程塑料株式会社 | 聚碳酸酯树脂组合物 |
US11643549B2 (en) * | 2018-04-09 | 2023-05-09 | Covestro Intellectual Property Gmbh & Co. Kg | Polycarbonate composition, molded article prepared from same, and use thereof |
EP3929248A1 (en) * | 2020-06-26 | 2021-12-29 | SHPP Global Technologies B.V. | Polycarbonate compositions with thin wall flame retardant properties and shaped article therefore |
EP4342948A1 (en) * | 2022-09-23 | 2024-03-27 | Trinseo Europe GmbH | Flame retardant polycarbonate formulations |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5128480B1 (ja) | 1971-06-15 | 1976-08-19 | ||
JPH08245782A (ja) | 1995-03-09 | 1996-09-24 | Mitsubishi Gas Chem Co Inc | ポリカーボネートの製造法 |
JPH08259687A (ja) | 1995-03-22 | 1996-10-08 | Mitsubishi Gas Chem Co Inc | ポリカーボネートの製造法 |
US6150443A (en) | 1998-08-13 | 2000-11-21 | Idemitsu Petrochemical Co., Ltd. | Flame-retardant polycarbonate resin composition and its injection moldings |
EP2465902A1 (en) | 2009-08-12 | 2012-06-20 | Mitsubishi Gas Chemical Company, Inc. | Polycarbonate resin composition |
US20130030094A1 (en) | 2010-03-31 | 2013-01-31 | Ryuuji Uchimura | Polycarbonate resin, composition of said resin, and molded article of said resin |
JP2013064047A (ja) * | 2011-09-16 | 2013-04-11 | Mitsubishi Chemicals Corp | ポリカーボネート樹脂組成物 |
JP2013071958A (ja) * | 2011-09-27 | 2013-04-22 | Mitsubishi Chemicals Corp | ポリカーボネート樹脂組成物 |
JP2013112780A (ja) | 2011-11-30 | 2013-06-10 | Teijin Chem Ltd | 共重合ポリカーボネート樹脂組成物および成形品 |
JP2013237798A (ja) * | 2012-05-16 | 2013-11-28 | Mitsubishi Engineering Plastics Corp | 芳香族ポリカーボネート樹脂組成物及びその成形品 |
JP2013256553A (ja) * | 2012-06-11 | 2013-12-26 | Mitsubishi Engineering Plastics Corp | ポリカーボネート樹脂組成物 |
US20140030296A1 (en) | 2011-01-31 | 2014-01-30 | Shizuoka Prefecture | Vaccine adjuvant |
JP2014240492A (ja) | 2008-12-23 | 2014-12-25 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG | 難燃化衝撃変性ポリカーボネート組成物 |
JP2016023290A (ja) | 2014-07-24 | 2016-02-08 | 三菱エンジニアリングプラスチックス株式会社 | 熱伝導性ポリカーボネート樹脂組成物及び成形品 |
WO2016103161A1 (en) | 2014-12-23 | 2016-06-30 | Sabic Global Technologies B.V. | Reinforced polycarbonate compositions |
US20180362758A1 (en) | 2015-12-21 | 2018-12-20 | Sabic Global Technologies B.V. | Thermoplastic compositions for laser direct structuring and methods for the manufacture and use thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE181938T1 (de) * | 1993-04-27 | 1999-07-15 | Teijin Chemicals Ltd | Modifiziertes aromatisches polycarbonat harz und modifiziertes phenol zu seine herstellung |
US5723526A (en) * | 1993-09-08 | 1998-03-03 | Teijin Chemicals Ltd | Resin composition and molded article |
JP2986672B2 (ja) * | 1994-02-16 | 1999-12-06 | 帝人化成株式会社 | 難燃性樹脂組成物 |
US6127465A (en) * | 1997-09-04 | 2000-10-03 | Idemitsu Petrochemical Co., Ltd. | Polycarbonate resin composition |
US7572847B2 (en) * | 2005-07-21 | 2009-08-11 | Asahi Kasei Chemicals Corporation | Aromatic polycarbonate resin composition and production method thereof |
US7446144B2 (en) | 2005-09-14 | 2008-11-04 | Bayer Materialscience Llc | Thermoplastic molding composition and articles thermoformed therefrom |
US20090215934A1 (en) * | 2006-03-06 | 2009-08-27 | Makoto Nakamura | Thermoplastic resin composition and resin molded product |
DE102006012988A1 (de) * | 2006-03-22 | 2007-09-27 | Bayer Materialscience Ag | Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen |
JP4849196B1 (ja) | 2010-07-21 | 2012-01-11 | 三菱エンジニアリングプラスチックス株式会社 | 高熱伝導性ポリカーボネート系樹脂組成物及び成形体 |
KR101946671B1 (ko) * | 2011-12-02 | 2019-04-22 | 데이진 가부시키가이샤 | 폴리카보네이트-폴리디오르가노실록산 공중합 수지를 함유하는 난연성 수지 조성물 및 그 성형품 |
US9499695B2 (en) | 2012-04-20 | 2016-11-22 | Mitsubishi Engineering-Plastics Corporation | Polycarbonate resin composition |
EP3004229B1 (en) * | 2013-06-04 | 2019-09-04 | SABIC Global Technologies B.V. | Polycarbonate based thermally conductive flame retardant polymer compositions |
KR102018711B1 (ko) * | 2016-12-05 | 2019-11-14 | 롯데첨단소재(주) | 수지 조성물 및 이로부터 제조된 성형품 |
-
2017
- 2017-08-30 EP EP17848633.8A patent/EP3511375A4/en active Pending
- 2017-08-30 WO PCT/JP2017/031138 patent/WO2018047693A1/ja active Application Filing
- 2017-08-30 US US16/325,077 patent/US11603467B2/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5128480B1 (ja) | 1971-06-15 | 1976-08-19 | ||
JPH08245782A (ja) | 1995-03-09 | 1996-09-24 | Mitsubishi Gas Chem Co Inc | ポリカーボネートの製造法 |
JPH08259687A (ja) | 1995-03-22 | 1996-10-08 | Mitsubishi Gas Chem Co Inc | ポリカーボネートの製造法 |
US6150443A (en) | 1998-08-13 | 2000-11-21 | Idemitsu Petrochemical Co., Ltd. | Flame-retardant polycarbonate resin composition and its injection moldings |
JP2014240492A (ja) | 2008-12-23 | 2014-12-25 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG | 難燃化衝撃変性ポリカーボネート組成物 |
JP5882062B2 (ja) | 2008-12-23 | 2016-03-09 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG | 難燃化衝撃変性ポリカーボネート組成物 |
EP2465902A1 (en) | 2009-08-12 | 2012-06-20 | Mitsubishi Gas Chemical Company, Inc. | Polycarbonate resin composition |
US20130030094A1 (en) | 2010-03-31 | 2013-01-31 | Ryuuji Uchimura | Polycarbonate resin, composition of said resin, and molded article of said resin |
US20140030296A1 (en) | 2011-01-31 | 2014-01-30 | Shizuoka Prefecture | Vaccine adjuvant |
JP2013064047A (ja) * | 2011-09-16 | 2013-04-11 | Mitsubishi Chemicals Corp | ポリカーボネート樹脂組成物 |
JP2013071958A (ja) * | 2011-09-27 | 2013-04-22 | Mitsubishi Chemicals Corp | ポリカーボネート樹脂組成物 |
JP2013112780A (ja) | 2011-11-30 | 2013-06-10 | Teijin Chem Ltd | 共重合ポリカーボネート樹脂組成物および成形品 |
JP2013237798A (ja) * | 2012-05-16 | 2013-11-28 | Mitsubishi Engineering Plastics Corp | 芳香族ポリカーボネート樹脂組成物及びその成形品 |
JP2013256553A (ja) * | 2012-06-11 | 2013-12-26 | Mitsubishi Engineering Plastics Corp | ポリカーボネート樹脂組成物 |
JP2016023290A (ja) | 2014-07-24 | 2016-02-08 | 三菱エンジニアリングプラスチックス株式会社 | 熱伝導性ポリカーボネート樹脂組成物及び成形品 |
WO2016103161A1 (en) | 2014-12-23 | 2016-06-30 | Sabic Global Technologies B.V. | Reinforced polycarbonate compositions |
US20180362758A1 (en) | 2015-12-21 | 2018-12-20 | Sabic Global Technologies B.V. | Thermoplastic compositions for laser direct structuring and methods for the manufacture and use thereof |
Non-Patent Citations (6)
Title |
---|
ANONYMOUS: "Impact modifier "METABLEN™ Type C,E,W,S"", MITSUBISHI CHEMICAL CORPORATION, 6 August 2020 (2020-08-06), pages 1 - 3, XP055733103, Retrieved from the Internet <URL:https://www.m-chemical.co.jp/en/products/departments/mcc/metablen/product/1202145_8000.html> |
ANONYMOUS: "IUPILON (E-2000 clear color)", PRODUCT SAFETY DATASHEET, 27 January 2011 (2011-01-27), pages 1 - 8, XP055733115 |
ANONYMOUS: "Railway applications - Fire protection on railway vehicles- Part 2: Requirements for fire behavior of materials and components", BRITISH STANDARD BS EN 45545-2:2013+A1:2015, BSI STANDARDS LTD., 1 January 2015 (2015-01-01), pages 3pp, 2 - 73, XP055933542 |
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 111211-39-3 |
HIROSHI NISHIZAWA: "Flammability and technique for flame retardancy of polymer materials -Recent technical trend from the view point of flame retarding mechanism-", MATERIARU RAIFU GAKKAISHI, vol. 14, no. 4, October 2002 (2002-10-01), pages 165 - 173, XP055733110 |
See also references of EP3511375A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100350A1 (ja) * | 2018-11-12 | 2020-05-22 | 積水化学工業株式会社 | 樹脂シート |
JP2020079381A (ja) * | 2018-11-12 | 2020-05-28 | 積水化学工業株式会社 | 樹脂シート |
CN112867754A (zh) * | 2018-11-12 | 2021-05-28 | 积水化学工业株式会社 | 树脂片 |
CN112867754B (zh) * | 2018-11-12 | 2023-10-13 | 积水化学工业株式会社 | 树脂片 |
EP3882304B1 (en) | 2018-11-12 | 2023-12-13 | Sekisui Chemical Co., Ltd. | Resin sheet |
US11970609B2 (en) | 2018-11-12 | 2024-04-30 | Sekisui Chemical Co., Ltd. | Resin sheet |
WO2020194996A1 (ja) * | 2019-03-27 | 2020-10-01 | 積水化学工業株式会社 | 樹脂組成物及び成形体 |
JP6816331B1 (ja) * | 2019-03-27 | 2021-01-20 | 積水化学工業株式会社 | 成形体 |
Also Published As
Publication number | Publication date |
---|---|
EP3511375A4 (en) | 2020-03-04 |
EP3511375A1 (en) | 2019-07-17 |
US11603467B2 (en) | 2023-03-14 |
US20200291226A1 (en) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6285085B1 (ja) | ポリカーボネート樹脂組成物 | |
WO2018047693A1 (ja) | ポリカーボネート樹脂組成物 | |
JP5163102B2 (ja) | 難燃性芳香族ポリカーボネート樹脂組成物 | |
KR101515339B1 (ko) | 폴리카보네이트 수지 조성물 | |
JP5946256B2 (ja) | ポリカーボネート樹脂組成物 | |
JP5592046B2 (ja) | 帯電防止性に優れた難燃性ポリカーボネート樹脂組成物 | |
JP2015004044A (ja) | ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法 | |
US10508191B2 (en) | Flame-retardant polycarbonate resin composition, sheet and film each using same, and method for producing said sheet or film | |
JP5449458B2 (ja) | ポリカーボネート樹脂組成物 | |
JP6645743B2 (ja) | 熱伝導性ポリカーボネート樹脂組成物及び成形品 | |
JP6480120B2 (ja) | 熱伝導性ポリカーボネート樹脂組成物及び成形品 | |
JP2008266362A (ja) | 難燃性芳香族ポリカーボネート樹脂組成物及び樹脂成形体 | |
JP6389090B2 (ja) | 熱伝導性ポリカーボネート樹脂組成物及び成形品 | |
JP6276019B2 (ja) | ポリカーボネート樹脂組成物 | |
JP5286110B2 (ja) | 芳香族ポリカーボネート樹脂組成物及びその成形体 | |
JP5449442B2 (ja) | ポリカーボネート樹脂組成物 | |
JP2017095667A (ja) | 樹脂組成物、成形体、電子部品、電子機器、及び電子事務機器 | |
JP6352030B2 (ja) | ポリカーボネート樹脂組成物および成形品 | |
JP6173906B2 (ja) | 熱伝導性ポリカーボネート樹脂組成物及び成形品 | |
JP5275890B2 (ja) | 芳香族ポリカーボネート樹脂組成物及びその成形体 | |
WO2020194996A1 (ja) | 樹脂組成物及び成形体 | |
JP6026129B2 (ja) | ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法 | |
JP2015199853A (ja) | ポリカーボネート樹脂組成物および成形品 | |
JP5217996B2 (ja) | ポリカーボネート樹脂組成物 | |
JP2019189697A (ja) | ポリカーボネート樹脂組成物および成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017562112 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17848633 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017848633 Country of ref document: EP Effective date: 20190409 |