Nothing Special   »   [go: up one dir, main page]

WO2018043487A1 - Process for producing carbon-nanotube-containing composition, process for producing carbon nanotube dispersion, and carbon-nanotube-containing composition - Google Patents

Process for producing carbon-nanotube-containing composition, process for producing carbon nanotube dispersion, and carbon-nanotube-containing composition Download PDF

Info

Publication number
WO2018043487A1
WO2018043487A1 PCT/JP2017/030939 JP2017030939W WO2018043487A1 WO 2018043487 A1 WO2018043487 A1 WO 2018043487A1 JP 2017030939 W JP2017030939 W JP 2017030939W WO 2018043487 A1 WO2018043487 A1 WO 2018043487A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
containing composition
carbon
dispersion
carbon nanotubes
Prior art date
Application number
PCT/JP2017/030939
Other languages
French (fr)
Japanese (ja)
Inventor
平井孝佳
西野秀和
今津直樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017548085A priority Critical patent/JP6380687B2/en
Publication of WO2018043487A1 publication Critical patent/WO2018043487A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents

Definitions

  • the present invention relates to a carbon nanotube-containing composition and a method for producing the same.
  • Carbon nanotubes (hereinafter sometimes referred to as CNTs) are chemically highly stable polymer materials that have excellent electrical conductivity, thermal conductivity, and heat resistance, as well as high mechanical properties and biocompatibility. It is a substance that is expected to be used in various applications. In fact, beginning with the composite material field, studies are proceeding in various fields such as the electronics field, energy field, and medical field.
  • a laser ablation method As a method for producing carbon nanotubes, a laser ablation method, an arc discharge method, and a chemical vapor deposition method (CVD method) are known. Above all, the CVD method can synthesize carbon nanotubes in large quantities.
  • a supported catalyst CVD method (hereinafter sometimes abbreviated as “supported catalyst method”) in which carbon nanotubes are grown from a support on which metal catalyst fine particles are supported, or a catalyst (or its precursor) as a carbon source and a CVD method that does not require a support.
  • a gas-phase flow CVD method (hereinafter sometimes abbreviated as “gas-phase flow method”) in which carbon nanotubes are grown by introducing them directly into a reaction tube together with a carrier gas is known.
  • the CNTs produced as described above may be used by dispersing them in a dispersion medium.
  • dispersed nanomaterials generally have a high surface area because of their large surface area. Since carbon nanotubes with higher crystallinity and higher purity are more likely to aggregate, various devices have been made to disperse them.
  • Patent Document 4 when carbon nanotubes are dispersed using an ultrasonic homogenizer, if ultrasonic irradiation is continued until the carbon nanotubes are sufficiently dispersed, defects are introduced into the carbon nanotubes and conductivity is lowered.
  • a method is described in which a carbon nanotube is loosened in a dispersion medium by stirring the medium and the carbon nanotube at a high speed, and then dispersed by an ultrasonic homogenizer.
  • the dispersion liquid is obtained by stirring with a thin film swirl type high-speed mixer together with a dispersion medium and a dispersant. It is prepared.
  • the carbon nanotubes produced by the supported catalyst method in Patent Document 1 have a small Raman G / D ratio and contain a large amount of carbon by-products.
  • concentrated nitric acid also damages carbon nanotubes, the carbon nanotubes after purification are not sufficiently high quality.
  • the removal of the catalyst in the case of treatment using dilute nitric acid, the removal of the catalyst is insufficient, and the catalyst remains in the carbon nanotube.
  • An object of the present invention is to obtain a high-quality carbon nanotube-containing composition having no catalyst remaining, high heat resistance, and low carbon by-product in high yield.
  • Another object of the present invention is to produce a dispersion liquid in which carbon nanotubes are highly dispersed, and to use the dispersion liquid to achieve a transparent conductive film and a transparent conductive laminate that achieve both high conductivity and high transparency. Is to get.
  • the inventors of the present invention obtained higher results when liquid phase oxidation was performed with dilute nitric acid on high-quality carbon nanotubes having a Raman G / D ratio of 50 or more.
  • the inventors have found that carbon nanotubes with high quality, no catalyst residue, high heat resistance and few carbon by-products can be obtained, and have led to the following invention.
  • carbon nanotubes that are almost free of carbon impurities such as amorphous carbon have high crystallinity and purity, and are synthesized by vapor phase flow method are subjected to liquid phase oxidation under relatively mild conditions, and then dispersed by stirring.
  • a dispersion liquid in which carbon nanotubes are highly dispersed and by using the dispersion liquid, a transparent conductive film and a transparent conductive laminate that achieve both high conductivity and high transparency
  • the inventors have found that the following can be obtained.
  • a pre-purification carbon nanotube-containing composition having an intensity ratio (G / D ratio) of G band and D band in Raman spectroscopic analysis of 50 or more is used with nitric acid having a concentration of 1 wt% or more and 50 wt% or less.
  • a method for producing a carbon nanotube-containing composition comprising a liquid phase oxidation step of performing liquid phase oxidation by heating to reflux.
  • a method for producing a carbon nanotube dispersion comprising a step of dispersing the carbon nanotube-containing composition in the dispersion medium by subjecting the carbon nanotube-containing composition obtained by the above production method to a stirring treatment together with the dispersion medium.
  • a carbon nanotube-containing composition that satisfies all the following conditions (1) to (5): (1) The intensity ratio (G / D ratio) of G band and D band in Raman spectroscopic analysis is 90 or more; (2) The weight loss rate at 200 to 950 ° C. is 95% or more by thermogravimetric analysis when the temperature is raised at 10 ° C./min in air; (3) In the thermogravimetric analysis when the temperature is raised at 10 ° C./min in air, the combustion peak on the high temperature side is 770 ° C.
  • the present invention it is possible to produce a dispersion liquid in which carbon nanotubes are highly dispersed, and by using the dispersion liquid, a transparent conductive film and a transparent conductive laminate that achieve both high conductivity and high transparency. You can get a body.
  • the carbon nanotube-containing composition after synthesis and before purification contains carbon impurities such as amorphous carbon and a catalyst.
  • carbon impurities and the catalyst In order to improve the conductivity of the carbon nanotube-containing composition, it is important to remove carbon impurities and the catalyst from the carbon nanotube-containing composition before purification.
  • this method has the problem that carbon nanotubes such as amorphous carbon increase due to damage and decomposition due to excessive oxidation reaction by acid treatment, resulting in a decrease in the yield of carbon nanotubes.
  • a high-quality carbon nanotube-containing composition having a high degree of graphitization is used as the carbon nanotube-containing composition before purification, and the mixture is heated to reflux under mild conditions where the nitric acid concentration is 1 wt% to 50 wt%. It has been found that by performing liquid phase oxidation, carbon impurities and catalysts can be removed while minimizing damage to the carbon nanotubes, and a high-quality carbon nanotube-containing composition can be obtained in a high yield.
  • the carbon nanotube-containing composition means a total of a plurality of carbon nanotubes.
  • the existence form of the carbon nanotube is not particularly limited, and may be an independent form, a bundled form, an entangled form, or a mixed form thereof. Further, carbon nanotubes having various numbers of layers and diameters may be included.
  • impurities derived from the carbon nanotube production method for example, undecomposed carbon source or tar, carbon impurities generated by decomposition of the carbon source, and metals contained in the catalyst source or undecomposed catalyst source may be included. Good.
  • the carbon nanotube-containing composition before purification needs to have a G-band to D-band height ratio (G / D ratio) of 50 or more by Raman spectroscopic analysis at a wavelength of 532 nm. More preferably, the G / D ratio is 50 or more and 200 or less.
  • the G / D ratio is a value when the carbon nanotube-containing composition is evaluated by Raman spectroscopy.
  • the laser wavelength used in Raman spectroscopy is 532 nm.
  • the Raman shift observed in the vicinity of 1590 cm ⁇ 1 in the Raman spectrum obtained by Raman spectroscopy is called a graphite-derived G band, and the Raman shift observed in the vicinity of 1350 cm ⁇ 1 is D derived from defects in amorphous carbon or graphite. Called a band.
  • the ratio of the peak height of the G band and the D band is the G / D ratio.
  • a carbon nanotube-containing composition having a higher G / D ratio has a higher degree of graphitization and higher quality.
  • solid Raman spectroscopy such as a carbon nanotube-containing composition may vary depending on sampling. Therefore, at least three places and another place are subjected to Raman spectroscopic analysis, and an arithmetic average thereof is taken.
  • a G / D ratio of the carbon nanotube-containing composition before purification of 50 or more indicates a considerably high-quality carbon nanotube-containing composition.
  • the carbon nanotube-containing composition before purification preferably has a weight loss rate of 200 to 950 ° C. of 60% or more, more preferably 80%, in thermogravimetric analysis when the temperature is increased at 10 ° C./min in air. % Or more.
  • thermogravimetric analysis a sample of about 1 mg was placed in a thermogravimetric analyzer (eg, Shimadzu Corporation TGA-60), and the temperature was raised from room temperature to 1000 ° C. at a heating rate of 10 ° C./min. The weight loss rate of each sample is measured.
  • a gas phase flow method it is preferable to use a gas phase flow method.
  • the gas phase flow method it is preferable to produce a carbon nanotube-containing composition by introducing a catalyst, a carbon source and a carrier gas into the vertical reaction tube from above.
  • a gas phase flow method is disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-18673, but is not limited to this method, and other known gas phase flow methods can also be employed.
  • the catalyst is not particularly limited, but transition metal compounds or transition metal ultrafine particles are preferably used.
  • transition metal compounds include organic transition metal compounds and inorganic transition metal compounds.
  • examples of the organic transition metal compound include ferrocene, cobaltocene, nickelocene, and iron acetylacetonate.
  • examples of the inorganic transition metal compound include iron chloride.
  • a sulfur compound is preferably used as the cocatalyst, and examples thereof include thiophene, benzothiophene, and thianaphthene.
  • the carbon source a liquid or gaseous one can be used.
  • the carbon source include aromatic hydrocarbons such as benzene, toluene and xylene; gaseous hydrocarbons such as methane, ethane and ethylene; alcohols such as methanol, ethanol and propanol; and hexane, cyclohexane and decalin. Mention may be made of aliphatic hydrocarbons.
  • an inert gas such as nitrogen, argon or helium, hydrogen, or a mixed gas of inert gas and hydrogen can be used.
  • liquid phase oxidation is performed by heating and refluxing a carbon nanotube-containing composition before purification having a G / D ratio of 50 or more using nitric acid having a concentration of 1 wt% or more and 50 wt% or less.
  • the nitric acid concentration is more preferably 1% by weight or more, and further preferably 2% by weight or more.
  • the nitric acid concentration is more preferably less than 30% by weight, and even more preferably less than 20% by weight.
  • liquid phase oxidation step it is preferable to perform heating and refluxing in a temperature range of 100 ° C. or higher and 110 ° C. or lower, and more preferably in a temperature range of 100 ° C. or higher and lower than 106 ° C.
  • liquid phase oxidation is performed at a temperature exceeding 110 ° C.
  • the carbon nanotubes themselves are damaged, which may impair the quality of the carbon nanotubes.
  • the yield of carbon nanotubes is reduced.
  • the temperature is lower than 100 ° C., the oxidation of the carbon impurities and the catalyst becomes low, and the removal of the carbon impurities and the catalyst may be insufficient.
  • the time for performing the liquid phase oxidation is preferably in the range of 1 hour to 24 hours, more preferably in the range of 1 hour to 12 hours. If liquid phase oxidation is performed for longer than 24 hours, the carbon nanotubes themselves may be damaged, and the quality of the carbon nanotubes may be impaired. In addition, the yield of carbon nanotubes is reduced. If the liquid phase oxidation is less than 1 hour, the oxidation of the carbon impurities and the catalyst will be low, and the removal of the carbon impurities and the catalyst may be insufficient.
  • the mixing ratio of the oxidizing liquid and the carbon nanotubes during the liquid phase oxidation treatment is not particularly limited as long as the carbon nanotubes can be immersed, but when using a liquid with a specific gravity of about 1 to 1.5, the carbon nanotubes are used. It is preferable to use 100,000 to 150,000 parts by weight of the oxidizing liquid with respect to 100 parts by weight of the composition. If the amount of the oxidizing liquid is too small, the entire carbon nanotube may not be completely immersed in the oxidizing liquid. Therefore, the lower limit of the oxidizing liquid is the above amount.
  • the upper limit of the oxidizing liquid is not particularly limited as long as there is no problem in handling. When the specific gravity of the oxidizing liquid is outside the above range, an amount obtained by multiplying the preferred amount by the specific gravity may be used.
  • a step of treating with an alkaline aqueous solution may be performed.
  • the alkali is not particularly limited as long as the pH of the alkaline aqueous solution is pH 8 or higher, but ammonia or organic amine is preferably used.
  • the organic amine is preferably an organic compound containing nitrogen such as ethanolamine, ethylamine, n-propylamine, isopropylamine, diethylamine, triethylamine, ethylenediamine, hexamethylenediamine, hydrazine, pyridine, piperidine, hydroxypiperidine. Most preferred among these ammonia and organic amines is ammonia because it volatilizes and has less adverse effects later.
  • the concentration of the aqueous alkali solution is preferably in the range of 10% by volume or more and less than 30% by volume.
  • the treatment time is not particularly limited and is preferably stirred at room temperature for about 10 minutes to 2 hours. More preferably, it is 30 minutes to 1 hour.
  • the carbon nanotube-containing composition of the present invention has a G-band to D-band height ratio (G / D ratio) of 90 or more by Raman spectroscopy at a wavelength of 532 nm. More preferably, the G / D ratio is 90 or more and 200 or less. A G / D ratio of 90 or more of the carbon nanotube-containing composition after purification indicates a very high quality carbon nanotube-containing composition.
  • the carbon nanotube-containing composition of the present invention has a weight reduction rate of 200 to 950 ° C. of 95% or more by thermogravimetric analysis when the temperature is increased at 10 ° C./min in air.
  • the weight reduction rate is more preferably 97% or more, and still more preferably 99% or more.
  • the weight reduction rate is less than 95%, it means that the catalyst was not sufficiently removed and was contained in the carbon nanotube-containing composition. Impairs compatibility.
  • thermogravimetric analysis a sample is heated from room temperature to 1000 ° C. at a rate of temperature increase of 10 ° C./min in air using a thermogravimetric analyzer. The weight loss rate at 200 to 950 ° C. at that time is measured. By differentiating the obtained weight loss curve with time, a differential thermogravimetric curve (DTG) is obtained in which the x-axis is temperature (° C.) and the y-axis is DTG (mg / min). The peak temperature at that time is defined as the combustion peak temperature.
  • the purified carbon nanotube-containing composition often has two combustion peaks on the high temperature side and the low temperature side in the DTG curve.
  • a combustion peak present at 700 ° C. or higher and lower than 950 ° C. is defined as a high temperature combustion peak.
  • the combustion peak temperature on the high temperature side is more preferably 770 ° C. or higher and lower than 900 ° C., further preferably 780 ° C. or higher and lower than 850 ° C.
  • the weight loss in a range corresponding to the peak area of this peak is defined as TG (H).
  • the combustion peak on the low temperature side is a combustion peak existing from 350 ° C. to the inflection point at which the combustion peak changes to the combustion peak on the high temperature side.
  • the weight loss in the range corresponding to the peak area of this peak is defined as TG (L).
  • TG (L) When there is no inflection point, the weight loss in the range of 350 ° C. to 600 ° C. is defined as TG (L). It is considered that TG (L) has carbon impurities other than carbon nanotubes such as amorphous carbon attached to the carbon nanotubes.
  • carbon impurities are combusted at 400 ° C. or lower.
  • the combustion temperature tends to shift to a high temperature side, so that it is considered that the carbon impurities combust in the temperature range on the low temperature side.
  • the combustion peak temperature shifts to a lower temperature side in comparison with the combustion peak temperature of the original carbon nanotube. This is because the combustion temperature of carbon impurities is low, so the carbon impurities start burning first, and the generated heat energy is transferred to the carbon nanotubes, so the carbon nanotubes burn at a temperature lower than the original combustion temperature. It is.
  • the number of layers of carbon nanotubes is not particularly limited, but is preferably single-walled or double-walled, with double-walled carbon nanotubes being most preferred.
  • the reason for this is that single-walled carbon nanotubes have only one graphite layer, so when a defect is introduced when treated with an oxidizing liquid or during stirring, the conductive path with only one layer is destroyed, As the number of defects increases, the destruction of the conductive layer proceeds and the conductivity tends to decrease. For this reason, it is necessary to strictly control the temperature and time during the treatment with the oxidizing liquid.
  • the number of layers of carbon nanotubes contained in the carbon nanotube-containing composition of the present invention after purification is preferably such that the ratio of the number of double-walled carbon nanotubes to all carbon nanotubes is 60% or more. More preferably, the ratio of the number of double-walled carbon nanotubes to all carbon nanotubes is 70% or more.
  • the number of carbon nanotube layers is measured, for example, as follows. Observation with a transmission electron microscope at a magnification of 400,000, and the number of layers of 100 carbon nanotubes arbitrarily extracted from the field of view in which 10% or more of the field area is carbon nanotubes in a 75 nm square field of view. taking measurement.
  • the diameter of the carbon nanotube is not particularly limited, but the diameter of the carbon nanotube having the number of layers in the above preferable range is 1 nm to 10 nm, and those having a diameter in the range of 1 to 3 nm are preferably used.
  • Doping may be performed on the carbon nanotube-containing composition after liquid phase oxidation.
  • the doping technique is not particularly limited, but liquid phase doping is preferred.
  • the dopant include nitric acid, hydrochloric acid, sulfuric acid and the like, and there are no particular limitations as long as it is an acidic solution.
  • the carbon nanotube-containing composition obtained by the production method by the liquid phase oxidation treatment is stirred together with the dispersion medium, whereby the dispersion medium contains carbon nanotubes.
  • a carbon nanotube dispersion liquid can be obtained by dispersing the composition.
  • the reason why the carbon nanotube-containing composition is dispersed by the stirring treatment is that it is desired to disperse the carbon nanotube-containing composition with a weak force so as not to damage the graphite layer of the carbon nanotube and deteriorate the characteristics.
  • a carbon nanotube-containing composition is dispersed using a dispersion method that is widely used for dispersing a carbon nanotube-containing composition, such as an ultrasonic homogenizer, a roll mill, or a ball mill, defects may occur in the graphite layer of the carbon nanotube. Since the carbon nanotubes are cut by a strong stress, the characteristics of the carbon nanotubes such as conductivity and thermal conductivity are deteriorated.
  • the stress is too weak, and generally, a dispersion in which the carbon nanotube-containing composition is sufficiently dispersed cannot be obtained only by the stirring treatment.
  • the inventors using the carbon nanotube-containing composition obtained by the production method of the present invention, by performing a stirring process together with the dispersion medium, the carbon nanotubes without losing characteristics such as conductivity and thermal conductivity, Succeeded in producing highly dispersed dispersion.
  • highly dispersed means that when the dispersion is centrifuged at 10,000 G for 10 minutes and then recovered by 90 vol% as a supernatant, the concentration of the carbon nanotube dispersion in the supernatant is In other words, it means 80% by weight or more of the concentration of the carbon nanotube dispersion before centrifugation.
  • the reason why a sufficiently dispersed dispersion can be obtained only by stirring treatment is not clear, but is considered as follows.
  • a carbon nanotube undergoes a liquid phase oxidation treatment step such as nitric acid
  • a small amount of functional groups such as a carboxyl group, a hydroxyl group, and an epoxy group are introduced on the surface of the carbon nanotube.
  • the carbon nanotube-containing composition obtained by the production method of the present invention has moderately functional groups, electrostatic repulsion between the carbon nanotubes due to the functional groups occurs in the solution in the oxidation treatment step, and the bundle is loosened. It becomes easy.
  • carbon nanotubes that are easy to disperse in the dispersion step which is the next step, can be obtained.
  • the stirring process is performed by rotating the stirring blade in the container.
  • the shape of the stirring blade is preferably a solid grinding blade.
  • a mill for solid grinding by stirring, a juicer mixer, a food processor and the like can be used particularly preferably. More specifically, a trade name “Milcer” series (product of Iwatani Corporation) can be used.
  • the stirring blade it is preferable to stir the stirring blade at a rotational speed of 3000 revolutions / minute or more.
  • the higher the rotation speed of the stirring blade the more the carbon nanotubes are strongly sheared and sheared and the like, and the dispersion is quicker.
  • a more preferable rotation speed is 10,000 rotations / minute or more, and further preferably 20,000 rotations / minute or more.
  • the upper limit is at most 50000 revolutions / minute.
  • the rotational speed is too high, the carbon nanotubes are likely to be physically damaged by the stirring blade.
  • the temperature of the stirring and dispersing treatment is preferably performed while cooling in order to suppress the occurrence of extra side reactions due to dispersion.
  • the dispersion medium and other additives cooling is necessary. Is not necessarily.
  • the specific temperature condition varies depending on the dispersion medium, there is no particular limitation as long as the dispersion medium can maintain a liquid form and can be stirred.
  • the stirring time in the stirring treatment is preferably adjusted so that the graphite structure of the carbon nanotube-containing composition is highly dispersed without being destroyed as much as possible.
  • the specific stirring time is preferably 10 seconds or more and 2 hours or less from the viewpoint of dispersibility and conductivity. More preferably, they are 30 seconds or more and 30 minutes or less, More preferably, they are 1 minute or more and 5 minutes or less.
  • the time for the stirring treatment is less than 10 seconds, the shearing force is insufficient, and the dispersibility of the resulting dispersion is lowered.
  • the stirring time exceeds 2 hours, the carbon nanotubes contained in the obtained dispersion liquid are damaged by stirring, and the conductivity may be lowered.
  • the dispersion medium used for dispersion is not particularly limited, but it is preferable to use a polar solvent having a high affinity for a functional group such as a hydroxyl group, a carboxyl group, or an epoxy group, which is introduced by oxidation treatment.
  • polar solvents include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, amyl alcohol, terpineol, dihydroterpineol, and menthol; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ethyl acetate, butyl acetate, and ethyl lactate Esters; ethers such as dioxane, tetrahydrofuran, methyl cellosolve, ethyl cellosolve; ether alcohols such as ethoxyethanol, methoxyethoxyethanol; amide compounds such as dimethyl sulfoxide, N-methylpyrrolidone, dimethylformamide; other, water, Examples include morpholine and acetonitrile.
  • alcohols such as methanol, ethanol, propanol, isopropanol, butanol, amyl alcohol,
  • water, alcohol, ether, and a solvent combining them are particularly preferable from the viewpoint of dispersibility of the carbon nanotubes.
  • use of water is particularly preferable because it is easy to obtain an effect of improving dispersibility by hydrogen bonding with the surface functional group of the carbon nanotube.
  • the stirring treatment it is preferable to add a dispersant and stir with the carbon nanotubes. Since the carbon nanotube-containing composition obtained by the method for producing a carbon nanotube-containing composition of the present invention has only functional groups introduced so as not to deteriorate the characteristics of the carbon nanotube, only the carbon nanotube is stirred with a dispersion medium. If so, the dispersibility is not so high.
  • the dispersion is applied to the substrate, the dispersion is preferably dispersed so that high conductivity and thermal conductivity can be drawn out.
  • a polyvinyl acetal derivative or a cellulose derivative can be preferably used.
  • the polyvinyl acetal derivative include polyvinyl formal and polyvinyl butyral.
  • the cellulose derivative include methyl cellulose, ethyl cellulose, propyl cellulose, methyl ethyl cellulose, methyl propyl cellulose, and ethyl propyl cellulose when the cellulose derivative is a cellulose ether.
  • the cellulose derivative is a cellulose ester, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose valerate, cellulose stearate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate valerate, cellulose acetate
  • examples include proate, cellulose propionate butyrate, and cellulose acetate propionate butyrate.
  • a cellulose derivative is a cellulose ether ester, methyl cellulose acetate, methyl cellulose propionate, ethyl cellulose acetate, ethyl cellulose propionate, propyl cellulose acetate, propyl cellulose propionate, etc. are mentioned, However, it is not limited to these.
  • the dispersion medium is water
  • ionic dispersants can be used.
  • carboxylic acid derivatives such as cholic acid, deoxycholic acid, etc. It can be used.
  • Water-soluble cellulose derivatives and polyethylene glycol derivatives can also be used.
  • the carboxymethyl cellulose derivative is adhered to the carbon nanotubes in the dispersion, and the electrical repulsion of the carboxylate prevents the carbon nanotubes from aggregating. In this case, the conductivity is particularly good.
  • the carboxymethyl cellulose derivative is particularly preferably used when water is used as a dispersion medium, and those having a degree of etherification of 0.4 to 1 are particularly preferable.
  • the amount of the dispersant contained in the carbon nanotube dispersion liquid is preferably larger than the amount adsorbed on the carbon nanotubes and does not inhibit the conductivity.
  • the carbon nanotube dispersion obtained by the present invention is also characterized in that carbon nanotubes are highly dispersed in a dispersion medium even when a relatively small amount of dispersant is used.
  • the content of the dispersant contained in the carbon nanotube dispersion is preferably 10 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of the carbon nanotube-containing composition.
  • the content of the dispersant is more preferably 30 parts by weight or more with respect to 100 parts by weight of the carbon nanotube-containing composition.
  • the content is more preferably 200 parts by weight or less.
  • the content of the dispersing agent is less than 10 parts by weight, the dispersibility tends to be lowered because the bundle of carbon nanotubes cannot be sufficiently unraveled.
  • the content is more than 500 parts by weight, the conductive path is hindered by an excessive dispersant, so that the conductivity deteriorates when the dispersion is applied to the substrate.
  • a hydrophilic functional group is present in the dispersant, a change in conductivity due to moisture absorption of the dispersant is likely to occur with respect to environmental changes such as high temperature and high humidity.
  • the content of the carbon nanotube-containing composition with respect to the entire dispersion is preferably 0.01% by weight or more and 20% by weight or less.
  • the content is more preferably 0.05% by weight or more.
  • the content is more preferably 10% by weight or less.
  • the weight average molecular weight of the dispersant is preferably 10,000 or more and 400,000 or less, more preferably 30,000 or more and 250,000 or less, and further preferably more than 60,000 and 250,000 or less.
  • the weight average molecular weight of the dispersant is within this range, the dispersant can easily enter the gaps between the carbon nanotubes during dispersion, and the dispersibility of the carbon nanotubes is improved.
  • the dispersion liquid is applied on the base material, aggregation of the carbon nanotubes on the base material is also suppressed, so that the conductivity and transparency of the obtained conductive molded body can be compatible.
  • the weight average molecular weight in the present invention is determined by gel permeation chromatography (apparatus: LC-10A series manufactured by Shimadzu Corporation), column: GF-7M HQ manufactured by Showa Denko KK, mobile phase: 10 mmol / L lithium bromide aqueous solution, (Flow rate: 1.0 ml / min, column temperature: 25 ° C., detection: differential refractometer), and a value calculated by comparing with a calibration curve using polyethylene glycol.
  • the dispersant having the weight average molecular weight in the above range may be synthesized so that the range of the weight average molecular weight is in the above range, or by lowering the molecular weight by a method such as hydrolysis of a higher molecular weight dispersant. You may get.
  • thermogravimetric analysis Using a thermogravimetric analyzer (Shimadzu Corporation TGA-60), the temperature of the sample was increased from room temperature to 1000 ° C. at a temperature increase rate of 10 ° C./min. The obtained weight loss curve was differentiated by time to obtain a differential thermogravimetric curve (DTG) in which the x axis is temperature (° C.) and the y axis is DTG (mg / min). The weight loss rate in the temperature range of 200 to 950 ° C. at that time was measured.
  • TGA-60 thermogravimetric analyzer
  • the 1 includes a vertical reaction tube 22 serving as a reaction vessel for synthesizing a carbon nanotube-containing composition, a heating furnace 21 that is provided on the outer periphery of the vertical reaction tube 22 and heats the inside of the vertical reaction tube 22;
  • a box 24 and a collection filter 25 installed in the collection box 24 are included.
  • the vertical reaction tube 22 is connected to other members by the upper flange 20 and the lower flange 23 so that gas does not leak from the connection portion.
  • the syringe 11 stores, as a carbon source, a catalytic carbon source solution 12 in which an aromatic compound in a liquid state at normal temperature and pressure, ferrocene as an organic transition metal compound, and thiophene as an organic sulfur compound are mixed.
  • the introduction amount can be adjusted by the pump 13.
  • the collected carbon nanotube-containing composition before purification was placed in an about 1 mg thermogravimetric analyzer, and the temperature was raised from room temperature to 1000 ° C. in air at a rate of 10 ° C./min.
  • the weight loss rate at 200 to 950 ° C. at that time was 89%, and TG (H) / (TG (L) + TG (H)) was 0.81.
  • the G / D ratio was 83.
  • the collected carbon nanotube-containing composition before purification was placed in an about 1 mg thermogravimetric analyzer, and the temperature was raised from room temperature to 1000 ° C. in air at a rate of 10 ° C./min. At that time, the weight loss rate from 200 to 950 ° C. was 95%, and TG (H) / (TG (L) + TG (H)) was 0. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 13.
  • Example 1 The purified carbon nanotube-containing composition obtained by subjecting the carbon nanotube-containing composition before purification obtained in Reference Example 1 to liquid phase oxidation in 7.5 wt% nitric acid with stirring at a reflux temperature of 103 ° C. for 2 hours. I got a thing.
  • thermogravimetric analysis of the purified carbon nanotube-containing composition the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.83.
  • the peak temperature of TG (H) was 835 ° C.
  • the G / D ratio was 124.
  • the recovery rate was 89% by weight.
  • the recovery rate is a weight ratio of the obtained carbon nanotube-containing composition after purification when the weight of the carbon nanotube-containing composition before purification is 100% by weight.
  • Example 2 The purified carbon nanotube-containing composition obtained by subjecting the carbon nanotube-containing composition before purification obtained in Reference Example 1 to liquid phase oxidation in 7.5 wt% nitric acid with stirring at a reflux temperature of 103 ° C. for 6 hours. Got.
  • thermogravimetric analysis of the purified carbon nanotube-containing composition the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.81.
  • the peak temperature of TG (H) was 829 ° C.
  • the G / D ratio was 121.
  • the recovery rate was 89% by weight.
  • Example 3 The purified carbon nanotube-containing composition obtained in Reference Example 1 was subjected to liquid phase oxidation in 15% by weight nitric acid with stirring at a reflux temperature of 105 ° C. for 6 hours to obtain a purified carbon nanotube-containing composition. It was.
  • thermogravimetric analysis of the purified carbon nanotube-containing composition the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.81.
  • the peak temperature of TG (H) was 784 ° C.
  • the G / D ratio was 110.
  • the proportion of double-walled carbon nanotubes was 74%.
  • the recovery rate was 88% by weight.
  • Example 4 The purified carbon nanotube-containing composition obtained by subjecting the carbon nanotube-containing composition before purification obtained in Reference Example 1 to liquid phase oxidation in 3.8 wt% nitric acid with stirring at a reflux temperature of 101 ° C. for 2 hours. I got a thing.
  • thermogravimetric analysis of the purified carbon nanotube-containing composition the weight loss rate at 200 to 950 ° C. is 99%, and TG (H) / (TG (L) + TG (H)) is 0.83.
  • the peak temperature of TG (H) was 832 ° C.
  • the G / D ratio was 122.
  • the recovery rate was 90% by weight.
  • Example 5 The purified carbon nanotube-containing composition obtained in Reference Example 1 was subjected to liquid phase oxidation in 30 wt% nitric acid with stirring at a reflux temperature of 110 ° C. for 6 hours to obtain a purified carbon nanotube-containing composition. Obtained.
  • thermogravimetric analysis of the purified carbon nanotube-containing composition the weight loss rate at 200 to 950 ° C. is 99%, and TG (H) / (TG (L) + TG (H)) is 0.8.
  • the peak temperature of TG (H) was 770 ° C.
  • the G / D ratio was 95.
  • the recovery rate was 85% by weight.
  • Example 6 56.25 mg of the carbon nanotube-containing composition obtained in Example 3, sodium carboxymethylcellulose (Daiichi Kogyo Seiyaku Co., Ltd., hydrolyzate of serogen 5A, weight average molecular weight 35000) 10 wt% aqueous solution 843.85 mg, and 112.5 mg of ammonium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed and further distilled water was added to make 37.5 g. Using IMF-800DG (manufactured by Iwatani Corporation) as a stirrer, the rotation speed of the stirring blade was 20000 rpm A carbon nanotube dispersion was prepared by stirring for 3 minutes.
  • sodium carboxymethylcellulose Daiichi Kogyo Seiyaku Co., Ltd., hydrolyzate of serogen 5A, weight average molecular weight 35000
  • 10 wt% aqueous solution 843.85 mg
  • 112.5 mg of ammonium carbonate manufactured by Wako Pure Chemical
  • the carbon nanotube dispersion obtained as described above was diluted about 3 times with water, and the coating amount was adjusted within the range of 4 ⁇ m to 150 ⁇ m using a wire bar coater. After coating, the film was dried to obtain a carbon nanotube-coated film.
  • the transmittance was measured for each substrate in accordance with JIS K7105 using a Nippon Denshoku Industries Co., Ltd. haze meter NDH4000.
  • the surface resistance value was measured using a Loresta (registered trademark) EP MCP-T360 (manufactured by Dia Instruments Co., Ltd.) according to a 4-terminal 4-probe method according to JISK7194 (established in December 1994).
  • the obtained carbon nanotube dispersion was centrifuged at 10,000 G for 10 minutes, and then 90 vol% was recovered as a supernatant.
  • the concentration of the nanotube dispersion liquid was 90% by weight of the concentration of the carbon nanotube dispersion liquid before the centrifugal treatment.
  • the results are shown in Table 2.
  • the concentration of the carbon nanotube dispersion is such that 10 g of the dispersion is heated to 120 ° C. to evaporate the solvent, and the resulting residue is further dried for 24 hours.
  • the weight of the carbon nanotubes contained in the dispersion was calculated by subtracting the calculated weight of the dispersant from the amount of the above, and the concentration of the carbon nanotube dispersion was calculated.
  • Example 7 Using the carbon nanotube-containing composition obtained in Example 5, a carbon nanotube dispersion was prepared in the same manner as in Example 6. Transparent conductivity and CNT dispersion in the supernatant after centrifugation were performed in the same manner as in Example 6. The concentration of the liquid was measured.
  • the surface resistance value of the carbon nanotube-coated film at a total light transmittance of 88.5% was 300 ⁇ / ⁇ , and it was found that the film had good transparent conductivity.
  • the obtained carbon nanotube dispersion liquid was centrifuged at 10,000 G for 10 minutes, and then the carbon in the supernatant when 90 vol% was recovered as the supernatant.
  • the concentration of the nanotube dispersion liquid was 90% by weight of the concentration of the carbon nanotube dispersion liquid before the centrifugal treatment. The results are shown in Table 2.
  • Example 5 A carbon nanotube dispersion was prepared in the same manner as in Example 6 using the carbon nanotube-containing composition obtained in Comparative Example 4, and the transparent conductive and CNT dispersion in the supernatant after centrifugation as in Example 6. The concentration of was measured.
  • the surface resistance value of the carbon nanotube-coated film at a total light transmittance of 88.5% was 450 ⁇ / ⁇ , and the transparent conductivity was poor as compared with Example 6.
  • the obtained carbon nanotube dispersion liquid was centrifuged at 10,000 G for 10 minutes, and then the carbon in the supernatant when 90 vol% was recovered as the supernatant.
  • the concentration of the nanotube dispersion liquid was 75% by weight of the concentration of the carbon nanotube dispersion liquid before the centrifugal treatment. The results are shown in Table 2.
  • Example 6 A carbon nanotube dispersion was prepared in the same manner as in Example 6 using the carbon nanotube-containing composition (sample not subjected to liquid phase oxidation treatment with nitric acid) shown in Reference Example 1, and evaluated in the same manner as in Example 6. . The results are shown in Table 2. Compared to Example 6, both the transparent conductivity and dispersibility were poor.
  • Example 7 A carbon nanotube dispersion was prepared in the same manner as in Example 6 except that dispersion by stirring was not performed, and evaluation was performed in the same manner as in Example 6. The results are shown in Table 2. The carbon nanotube-containing composition was not dispersed, and the transparent conductivity could not be evaluated.
  • Example 8 A carbon nanotube dispersion was prepared in the same manner as in Example 6 except that the carbon nanotube-containing composition was dispersed using an ultrasonic homogenizer instead of stirring, and evaluation was performed in the same manner as in Example 6. The results are shown in Table 2. The dispersibility of the carbon nanotube-containing composition was good, but the surface resistance value was 500 ⁇ / ⁇ , which was worse than that of Example 6.
  • a dispersion in which carbon nanotubes having high crystallinity and high purity are highly dispersed can be produced.
  • a carbon nanotube dispersion liquid By using such a carbon nanotube dispersion liquid, it is possible to obtain a transparent conductive film or a transparent conductive laminate having both high conductivity and high transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A process for producing a carbon-nanotube-containing composition, the process including a liquid-phase oxidation step in which an unpurified carbon-nanotube-containing composition in which the intensity ratio between G-band and D-band (G/D ratio), as determined by Raman spectroscopy, is 50 or higher is heated together with nitric acid having a concentration of 1-50 wt%, with refluxing, to thereby conduct liquid-phase oxidation. A higher-quality carbon-nanotube-containing composition which contains no residual catalyst, has high heat resistance, and is reduced in by-product carbon content can be obtained in high yield.

Description

カーボンナノチューブ含有組成物の製造方法、カーボンナノチューブ分散液の製造方法およびカーボンナノチューブ含有組成物Method for producing carbon nanotube-containing composition, method for producing carbon nanotube dispersion, and carbon nanotube-containing composition
 本発明はカーボンナノチューブ含有組成物およびその製造方法に関する。 The present invention relates to a carbon nanotube-containing composition and a method for producing the same.
 カーボンナノチューブ(以下、CNTと呼ぶこともある)は化学的に極めて安定な高分子材料であり、導電性、熱伝導性および耐熱性にも優れ、さらに高い力学特性や生体適合性を有しており、様々な用途への展開が期待されている物質である。事実、複合材料分野に始まり、エレクトロニクス分野、エネルギー分野、医療分野など多岐分野での検討が進んでいる。 Carbon nanotubes (hereinafter sometimes referred to as CNTs) are chemically highly stable polymer materials that have excellent electrical conductivity, thermal conductivity, and heat resistance, as well as high mechanical properties and biocompatibility. It is a substance that is expected to be used in various applications. In fact, beginning with the composite material field, studies are proceeding in various fields such as the electronics field, energy field, and medical field.
 カーボンナノチューブの製造方法としてレーザーアブレーション法、アーク放電法、化学気相成長法(CVD法)が知られている。中でもCVD法はカーボンナノチューブを大量に合成することが可能である。金属触媒微粒子を担持させた担体からカーボンナノチューブを成長させる担持触媒CVD法(以下「担持触媒法」と略す場合もある)や担体を必要しないCVD法として触媒(またはその前駆体)を炭素源およびキャリアガスとともに直接反応管に導入してカーボンナノチューブを成長させる気相流動CVD法(以下「気相流動法」と略す場合もある)が知られている。いずれの製造方法も製造時のCNT組成物中に炭素副生物や触媒残渣が含まれており、それらの不純物を除去し、CNT組成物を精製するための方法もいくつか知られている。例えば、担持触媒法で製造した直後のカーボンナノチューブは炭素副生物を多く含んでいるため、濃硝酸で精製する方法が知られている(特許文献1)。一方で、気相流動法を用いると、ラマンG/D比の高い高品質なカーボンナノチューブを効率よくかつ安価に得ることが可能であるが、少量の炭素副生物や触媒残渣が含まれている(特許文献2)。また炭素不純物を除去する精製方法として酸化ガス中での加熱処理が知られている(特許文献3)。 As a method for producing carbon nanotubes, a laser ablation method, an arc discharge method, and a chemical vapor deposition method (CVD method) are known. Above all, the CVD method can synthesize carbon nanotubes in large quantities. A supported catalyst CVD method (hereinafter sometimes abbreviated as “supported catalyst method”) in which carbon nanotubes are grown from a support on which metal catalyst fine particles are supported, or a catalyst (or its precursor) as a carbon source and a CVD method that does not require a support. A gas-phase flow CVD method (hereinafter sometimes abbreviated as “gas-phase flow method”) in which carbon nanotubes are grown by introducing them directly into a reaction tube together with a carrier gas is known. In any production method, carbon by-products and catalyst residues are contained in the CNT composition at the time of production, and some methods for removing these impurities and purifying the CNT composition are also known. For example, since carbon nanotubes immediately after being produced by the supported catalyst method contain a large amount of carbon by-products, a method of purifying with concentrated nitric acid is known (Patent Document 1). On the other hand, high-quality carbon nanotubes with a high Raman G / D ratio can be obtained efficiently and inexpensively using a gas phase flow method, but a small amount of carbon by-products and catalyst residues are contained. (Patent Document 2). As a purification method for removing carbon impurities, heat treatment in an oxidizing gas is known (Patent Document 3).
 また、用途によっては、前記のようにして生成したCNTを分散媒に分散させて使用することもあるが、分散ナノ物質は一般的に表面積が大きいいため凝集性が高いことが知られている。結晶性が高く、純度の高いカーボンナノチューブほど凝集しやすくなるため、分散させるために種々の工夫がなされている。例えば特許文献4では、超音波ホモジナイザーを用いてカーボンナノチューブを分散させた場合、十分に分散するまで超音波照射を続けるとカーボンナノチューブに欠損が導入されて導電性が低下してしまうため、あらかじめ分散媒とカーボンナノチューブを高速攪拌することによって分散媒中にカーボンナノチューブをほぐした状態にし、その後、超音波ホモジナイザーによって分散することによって分散液を調製する方法が記載されている。 Depending on the application, the CNTs produced as described above may be used by dispersing them in a dispersion medium. However, it is known that dispersed nanomaterials generally have a high surface area because of their large surface area. Since carbon nanotubes with higher crystallinity and higher purity are more likely to aggregate, various devices have been made to disperse them. For example, in Patent Document 4, when carbon nanotubes are dispersed using an ultrasonic homogenizer, if ultrasonic irradiation is continued until the carbon nanotubes are sufficiently dispersed, defects are introduced into the carbon nanotubes and conductivity is lowered. A method is described in which a carbon nanotube is loosened in a dispersion medium by stirring the medium and the carbon nanotube at a high speed, and then dispersed by an ultrasonic homogenizer.
 特許文献5では、気相流動法の一種であるeDIPS法で製造された単層カーボンナノチューブを濃硝酸によって精製した後、分散媒および分散剤とともに薄膜旋回型高速ミキサーによる撹拌処理によって、分散液を調製している。 In Patent Document 5, after purifying single-walled carbon nanotubes produced by the eDIPS method, which is a kind of gas phase flow method, with concentrated nitric acid, the dispersion liquid is obtained by stirring with a thin film swirl type high-speed mixer together with a dispersion medium and a dispersant. It is prepared.
特開2012-116667号公報JP 2012-116667 A WO2017/010523WO2017 / 010523 特開2005-60170号公報Japanese Patent Laid-Open No. 2005-60170 特開2008-195563号公報JP 2008-195563 A 特開2016-126847号公報JP 2016-126847 A
 特許文献1に担持触媒法で製造したカーボンナノチューブは、ラマンG/D比が小さく炭素副生物を多く含んでおり、触媒を除去するためには濃硝酸で精製する必要がある。しかしながら濃硝酸は、カーボンナノチューブにも損傷を与えるため、精製後のカーボンナノチューブは十分に高品質にはならない。一方で、カーボンナノチューブへの損傷を減らすため、希薄な硝酸を使用した処理の場合には、触媒の除去が不十分であり、触媒がカーボンナノチューブ中に残留している。 The carbon nanotubes produced by the supported catalyst method in Patent Document 1 have a small Raman G / D ratio and contain a large amount of carbon by-products. In order to remove the catalyst, it is necessary to purify with concentrated nitric acid. However, since concentrated nitric acid also damages carbon nanotubes, the carbon nanotubes after purification are not sufficiently high quality. On the other hand, in order to reduce damage to the carbon nanotubes, in the case of treatment using dilute nitric acid, the removal of the catalyst is insufficient, and the catalyst remains in the carbon nanotube.
 特許文献2に記載されているような気相流動法で製造されたカーボンナノチューブは高品質であるが、少量の炭素副生物や触媒が残っており、純度の点で不十分である。 Although the carbon nanotubes produced by the gas phase flow method as described in Patent Document 2 are of high quality, a small amount of carbon by-products and catalysts remain, which is insufficient in terms of purity.
 特許文献3に記載されている精製方法では、炭素不純物は除去可能だが、触媒(触媒源に含まれる金属や未分解の触媒源等)は除去することはできない。触媒がカーボンナノチューブ中に残存すると、カーボンナノチューブの様々な特性を阻害する原因となりうる。 In the purification method described in Patent Document 3, carbon impurities can be removed, but catalysts (metals contained in the catalyst source, undecomposed catalyst sources, etc.) cannot be removed. If the catalyst remains in the carbon nanotube, it may cause various properties of the carbon nanotube to be inhibited.
 また、カーボンナノチューブを分散して使用する場合は、分散方法を工夫することによってカーボンナノチューブ分散液の性能を引き出すことが求められる。特許文献4に記載の方法では、比較的マイルドな分散方法である撹拌処理によって、カーボンナノチューブをほぐしても、最終的に超音波ホモジナイザーなど、大きなエネルギーや力のかかる分散法を使用しているため、カーボンナノチューブがダメージを受けてしまい、導電性向上に余り大きな効果が得られない。 Also, when carbon nanotubes are used in a dispersed manner, it is required to bring out the performance of the carbon nanotube dispersion by devising a dispersion method. In the method described in Patent Document 4, even if the carbon nanotubes are loosened by stirring treatment, which is a relatively mild dispersion method, a dispersion method that requires large energy or force, such as an ultrasonic homogenizer, is finally used. The carbon nanotubes are damaged, and the effect of improving the conductivity cannot be obtained.
 特許文献5の方法では、結晶性および純度の高い単層カーボンナノチューブを使用しているが、濃硝酸による処理で、カーボンナノチューブの欠損が多くなり、その結果、導電性が低下し、導電性を補うためにドーピングあるいはフィルムへのカーボンナノチューブ圧着などの追加工程が必要になる。 In the method of Patent Document 5, single-walled carbon nanotubes with high crystallinity and purity are used, but carbon nanotube defects are increased by the treatment with concentrated nitric acid. As a result, the conductivity is lowered, and the conductivity is reduced. In order to compensate, additional processes such as doping or pressure bonding of carbon nanotubes to the film are required.
 本発明の目的は、触媒が残っていない、耐熱性の高い、炭素副生物の少ないより高品質なカーボンナノチューブ含有組成物を高収率で得ることである。 An object of the present invention is to obtain a high-quality carbon nanotube-containing composition having no catalyst remaining, high heat resistance, and low carbon by-product in high yield.
 また、本発明の他の目的は、高度にカーボンナノチューブが分散した分散液を製造し、その分散液を用いることによって高い導電性と高い透明性とを両立した透明導電膜および透明導電性積層体を得ることである。 Another object of the present invention is to produce a dispersion liquid in which carbon nanotubes are highly dispersed, and to use the dispersion liquid to achieve a transparent conductive film and a transparent conductive laminate that achieve both high conductivity and high transparency. Is to get.
 本発明者らは、上記課題を解決するために鋭意検討を行なった結果、ラマンG/D比が50以上の高品質なカーボンナノチューブに対して、希薄硝酸で液相酸化を行うと、より高品質で、触媒残渣が残っておらず、耐熱性が高く、炭素副生物が少ないカーボンナノチューブが得られることを見出し、下記の発明に至った。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention obtained higher results when liquid phase oxidation was performed with dilute nitric acid on high-quality carbon nanotubes having a Raman G / D ratio of 50 or more. The inventors have found that carbon nanotubes with high quality, no catalyst residue, high heat resistance and few carbon by-products can be obtained, and have led to the following invention.
 また、アモルファスカーボンの様な炭素不純物がほとんど含まれず、結晶性や純度が高い、気相流動法で合成したカーボンナノチューブを、比較的マイルドな条件下で液相酸化処理した後、撹拌処理によって分散液を調製することによって、高度にカーボンナノチューブが分散した分散液を製造することができ、その分散液を用いることによって高い導電性と高い透明性とを両立した透明導電膜および透明導電性積層体を得ることができることを見出し、下記の発明に至った。
[1]ラマン分光分析におけるGバンドとDバンドの強度比(G/D比)が50以上である精製前カーボンナノチューブ含有組成物を、1重量%以上、50重量%以下の濃度の硝酸を用い、加熱還流することにより液相酸化を行う液相酸化工程を含むカーボンナノチューブ含有組成物の製造方法。
[2]上記の製造方法により得られたカーボンナノチューブ含有組成物を、分散媒と共に撹拌処理を施すことにより、分散媒にカーボンナノチューブ含有組成物を分散させる工程を含むカーボンナノチューブ分散液の製造方法。
[3]以下の(1)~(5)の条件を全て満たすカーボンナノチューブ含有組成物:
(1)ラマン分光分析におけるGバンドとDバンドの強度比(G/D比)が90以上;
(2)空気中で10℃/分で昇温した時の熱重量分析で200~950℃の重量減少率が95%以上;
(3)空気中で10℃/分で昇温したときの熱重量分析で、高温側の燃焼ピークが770℃以上、900℃未満;
(4)空気中で10℃/分で昇温したときの熱重量分析で、低温側の重量減量分(TG(L))と高温側の重量減量分(TG(H))が、TG(H)/(TG(L)+TG(H))が0.8以上;
(5)全てのカーボンナノチューブに対する2層カーボンナノチューブの割合が60%以上。
In addition, carbon nanotubes that are almost free of carbon impurities such as amorphous carbon, have high crystallinity and purity, and are synthesized by vapor phase flow method are subjected to liquid phase oxidation under relatively mild conditions, and then dispersed by stirring. By preparing the liquid, it is possible to produce a dispersion liquid in which carbon nanotubes are highly dispersed, and by using the dispersion liquid, a transparent conductive film and a transparent conductive laminate that achieve both high conductivity and high transparency The inventors have found that the following can be obtained.
[1] A pre-purification carbon nanotube-containing composition having an intensity ratio (G / D ratio) of G band and D band in Raman spectroscopic analysis of 50 or more is used with nitric acid having a concentration of 1 wt% or more and 50 wt% or less. A method for producing a carbon nanotube-containing composition comprising a liquid phase oxidation step of performing liquid phase oxidation by heating to reflux.
[2] A method for producing a carbon nanotube dispersion, comprising a step of dispersing the carbon nanotube-containing composition in the dispersion medium by subjecting the carbon nanotube-containing composition obtained by the above production method to a stirring treatment together with the dispersion medium.
[3] A carbon nanotube-containing composition that satisfies all the following conditions (1) to (5):
(1) The intensity ratio (G / D ratio) of G band and D band in Raman spectroscopic analysis is 90 or more;
(2) The weight loss rate at 200 to 950 ° C. is 95% or more by thermogravimetric analysis when the temperature is raised at 10 ° C./min in air;
(3) In the thermogravimetric analysis when the temperature is raised at 10 ° C./min in air, the combustion peak on the high temperature side is 770 ° C. or higher and lower than 900 ° C .;
(4) In thermogravimetric analysis when the temperature is increased at 10 ° C./min in air, the weight loss on the low temperature side (TG (L)) and the weight loss on the high temperature side (TG (H)) are TG ( H) / (TG (L) + TG (H)) is 0.8 or more;
(5) The ratio of double-walled carbon nanotubes to all carbon nanotubes is 60% or more.
 本発明によれば、触媒が残っていない、耐熱性の高い、炭素副生物の少ないより高品質なカーボンナノチューブ含有組成物を高収率で得ることができる。 According to the present invention, it is possible to obtain a high-quality carbon nanotube-containing composition with no catalyst remaining, high heat resistance, and low carbon by-product in high yield.
 また、本発明によれば、高度にカーボンナノチューブが分散した分散液を製造することができ、その分散液を用いることによって高い導電性と高い透明性とを両立した透明導電膜および透明導電性積層体を得ることができる。 Further, according to the present invention, it is possible to produce a dispersion liquid in which carbon nanotubes are highly dispersed, and by using the dispersion liquid, a transparent conductive film and a transparent conductive laminate that achieve both high conductivity and high transparency. You can get a body.
実施例で用いたカーボンナノチューブ集合体を合成するための装置概略図である。It is the apparatus schematic for synthesize | combining the carbon nanotube aggregate used in the Example.
 本発明のコンセプトについて説明する。合成後、精製される前のカーボンナノチューブ含有組成物には、アモルファスカーボン等の炭素不純物および触媒が含まれている。カーボンナノチューブ含有組成物の導電性向上のためには、精製前のカーボンナノチューブ含有組成物から炭素不純物および触媒を除去することが重要である。従来技術においては、濃硝酸(60重量%)による液相酸化によって炭素不純物および触媒が除去可能であることが、例えば特開2011-148674等にて報告されていた。しかし、この方法では、酸処理による過剰な酸化反応によって、カーボンナノチューブにダメージが加わり、分解することで、アモルファスカーボン等の炭素不純物が増加し、その結果カーボンナノチューブの収量が減少するという課題があった。本発明では、精製前のカーボンナノチューブ含有組成物としてグラファイト化度の高い高品質なカーボンナノチューブ含有組成物を用い、硝酸濃度が1重量%以上50重量%以下のマイルドな条件で加熱還流することにより液相酸化を行うことで、カーボンナノチューブに対するダメージを最小限に抑制しつつ、炭素不純物と触媒を除去でき、高品質なカーボンナノチューブ含有組成物を高収率で得ることができることを見出した。 The concept of the present invention will be described. The carbon nanotube-containing composition after synthesis and before purification contains carbon impurities such as amorphous carbon and a catalyst. In order to improve the conductivity of the carbon nanotube-containing composition, it is important to remove carbon impurities and the catalyst from the carbon nanotube-containing composition before purification. In the prior art, it has been reported in, for example, Japanese Patent Application Laid-Open No. 2011-148673 that carbon impurities and catalysts can be removed by liquid phase oxidation with concentrated nitric acid (60% by weight). However, this method has the problem that carbon nanotubes such as amorphous carbon increase due to damage and decomposition due to excessive oxidation reaction by acid treatment, resulting in a decrease in the yield of carbon nanotubes. It was. In the present invention, a high-quality carbon nanotube-containing composition having a high degree of graphitization is used as the carbon nanotube-containing composition before purification, and the mixture is heated to reflux under mild conditions where the nitric acid concentration is 1 wt% to 50 wt%. It has been found that by performing liquid phase oxidation, carbon impurities and catalysts can be removed while minimizing damage to the carbon nanotubes, and a high-quality carbon nanotube-containing composition can be obtained in a high yield.
 本発明においてカーボンナノチューブ含有組成物とは、複数のカーボンナノチューブが存在している総体を意味する。カーボンナノチューブの存在形態は特に限定されず、それぞれが独立の形態、束状になった形態、絡まり合った形態、あるいはこれらの混合形態が存在していてもよい。また、種々の層数、直径のカーボンナノチューブが含まれていてもよい。また、カーボンナノチューブ製造法由来の不純物、例えば未分解の炭素源やタール、炭素源が分解することで生成した炭素不純物、および触媒源に含まれる金属や未分解の触媒源が含まれていてもよい。 In the present invention, the carbon nanotube-containing composition means a total of a plurality of carbon nanotubes. The existence form of the carbon nanotube is not particularly limited, and may be an independent form, a bundled form, an entangled form, or a mixed form thereof. Further, carbon nanotubes having various numbers of layers and diameters may be included. In addition, impurities derived from the carbon nanotube production method, for example, undecomposed carbon source or tar, carbon impurities generated by decomposition of the carbon source, and metals contained in the catalyst source or undecomposed catalyst source may be included. Good.
 本発明において、精製前のカーボンナノチューブ含有組成物は、波長532nmのラマン分光分析によるGバンドとDバンドの高さ比(G/D比)が50以上である必要がある。より好ましくはG/D比が50以上、200以下である。G/D比とはカーボンナノチューブ含有組成物をラマン分光分析法により評価した時の値である。ラマン分光分析法で使用するレーザー波長は532nmとする。ラマン分光分析法により得られるラマンスペクトルにおいて1590cm-1付近に見られるラマンシフトは、グラファイト由来のGバンドと呼ばれ、1350cm-1付近に見られるラマンシフトはアモルファスカーボンやグラファイトの欠陥に由来のDバンドと呼ばれる。このGバンドとDバンドのピーク高さの比がG/D比である。G/D比が高いカーボンナノチューブ含有組成物ほど、グラファイト化度が高く、高品質であることを示している。またカーボンナノチューブ含有組成物のような固体のラマン分光分析法は、サンプリングによってばらつくことがある。そこで少なくとも3カ所、別の場所をラマン分光分析し、その相加平均をとるものとする。精製前のカーボンナノチューブ含有組成物のG/D比が50以上とは相当な高品質カーボンナノチューブ含有組成物であることを示している。 In the present invention, the carbon nanotube-containing composition before purification needs to have a G-band to D-band height ratio (G / D ratio) of 50 or more by Raman spectroscopic analysis at a wavelength of 532 nm. More preferably, the G / D ratio is 50 or more and 200 or less. The G / D ratio is a value when the carbon nanotube-containing composition is evaluated by Raman spectroscopy. The laser wavelength used in Raman spectroscopy is 532 nm. The Raman shift observed in the vicinity of 1590 cm −1 in the Raman spectrum obtained by Raman spectroscopy is called a graphite-derived G band, and the Raman shift observed in the vicinity of 1350 cm −1 is D derived from defects in amorphous carbon or graphite. Called a band. The ratio of the peak height of the G band and the D band is the G / D ratio. A carbon nanotube-containing composition having a higher G / D ratio has a higher degree of graphitization and higher quality. In addition, solid Raman spectroscopy such as a carbon nanotube-containing composition may vary depending on sampling. Therefore, at least three places and another place are subjected to Raman spectroscopic analysis, and an arithmetic average thereof is taken. A G / D ratio of the carbon nanotube-containing composition before purification of 50 or more indicates a considerably high-quality carbon nanotube-containing composition.
 精製前のカーボンナノチューブ含有組成物は、空気中で10℃/分で昇温した時の熱重量分析において、200~950℃の重量減少率が60%以上であることが好ましく、より好ましくは80%以上である。熱重量分析は、約1mgの試料を熱重量分析装置(例えば島津製作所 TGA-60)に設置し、空気中、10℃/分の昇温速度にて室温から1000℃まで昇温し、その際の試料の重量減少率を測定する。 The carbon nanotube-containing composition before purification preferably has a weight loss rate of 200 to 950 ° C. of 60% or more, more preferably 80%, in thermogravimetric analysis when the temperature is increased at 10 ° C./min in air. % Or more. In thermogravimetric analysis, a sample of about 1 mg was placed in a thermogravimetric analyzer (eg, Shimadzu Corporation TGA-60), and the temperature was raised from room temperature to 1000 ° C. at a heating rate of 10 ° C./min. The weight loss rate of each sample is measured.
 G/D比が50以上である精製前カーボンナノチューブ含有組成物を製造するためには、気相流動法を用いることが好ましい。また気相流動法としては、触媒、炭素源およびキャリアガスを縦型反応管に上部から導入し、カーボンナノチューブ含有組成物を製造することが好ましい。このような気相流動法は、例えば特開2013-18673に開示されているが、この方法に限定するものではなく、他の公知の気相流動法を採用することもできる。 In order to produce a pre-purification carbon nanotube-containing composition having a G / D ratio of 50 or more, it is preferable to use a gas phase flow method. As the gas phase flow method, it is preferable to produce a carbon nanotube-containing composition by introducing a catalyst, a carbon source and a carrier gas into the vertical reaction tube from above. Such a gas phase flow method is disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-18673, but is not limited to this method, and other known gas phase flow methods can also be employed.
 触媒としては、特に制限されるものではないが、遷移金属化合物または遷移金属超微粒子が好ましく用いられる。遷移金属化合物としては例えば、有機遷移金属化合物、無機遷移金属化合物等を挙げることができる。有機遷移金属化合物として例えば、フェロセン、コバルトセン、ニッケロセン、アセチルアセトナート鉄等を挙げることができる。無機遷移金属化合物としては塩化鉄等を挙げることができる。 The catalyst is not particularly limited, but transition metal compounds or transition metal ultrafine particles are preferably used. Examples of transition metal compounds include organic transition metal compounds and inorganic transition metal compounds. Examples of the organic transition metal compound include ferrocene, cobaltocene, nickelocene, and iron acetylacetonate. Examples of the inorganic transition metal compound include iron chloride.
 なお、触媒を前記縦型反応管に導入する際、該触媒によるカーボンナノチューブ含有組成物の生成反応を促進する助触媒を共に導入することが好ましい。助触媒として硫黄化合物を用いることが好ましく、例えば、チオフェン、ベンゾチオフェン、チアナフテン等が挙げられる。 In addition, when introducing the catalyst into the vertical reaction tube, it is preferable to introduce a co-catalyst that promotes the formation reaction of the carbon nanotube-containing composition by the catalyst. A sulfur compound is preferably used as the cocatalyst, and examples thereof include thiophene, benzothiophene, and thianaphthene.
 炭素源としては、液状またはガス状のものを用いることができる。炭素源としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素や;メタン、エタン、エチレン等のガス状炭化水素、メタノール、エタノール、プロパノール等のアルコール類;さらにヘキサン、シクロヘキサン、デカリン等の脂肪族炭化水素を挙げることができる。 As the carbon source, a liquid or gaseous one can be used. Examples of the carbon source include aromatic hydrocarbons such as benzene, toluene and xylene; gaseous hydrocarbons such as methane, ethane and ethylene; alcohols such as methanol, ethanol and propanol; and hexane, cyclohexane and decalin. Mention may be made of aliphatic hydrocarbons.
 キャリアガスとしては窒素、アルゴン、ヘリウム等の不活性ガスや、水素または、不活性ガスと水素の混合ガスを用いることができる。 As the carrier gas, an inert gas such as nitrogen, argon or helium, hydrogen, or a mixed gas of inert gas and hydrogen can be used.
 本発明においては、G/D比が50以上である精製前のカーボンナノチューブ含有組成物を、1重量%以上、50重量%以下の濃度の硝酸を用い、加熱還流することにより液相酸化を行う。硝酸濃度は、より好ましくは1重量%以上であり、さらに好ましくは2重量%以上である。また硝酸濃度は、30重量%未満がより好ましく、20重量%未満がさらに好ましい。硝酸濃度が50重量%より高い濃度で液相酸化を行なうと、カーボンナノチューブ自体にダメージを与えてしまい、カーボンナノチューブの品質を損ねる可能性がある。また、カーボンナノチューブの収量減少の問題を生じる。硝酸濃度が1重量%未満の場合、炭素不純物および触媒の酸化が不十分となり、炭素不純物および触媒の除去が難しくなる。高品質カーボンナノチューブ含有組成物を用いて精製処理を行うことにより、カーボンナノチューブ含有組成物から簡便に炭素不純物と触媒を除去でき、高品質なカーボンナノチューブ含有組成物を高収率で得ることができる。 In the present invention, liquid phase oxidation is performed by heating and refluxing a carbon nanotube-containing composition before purification having a G / D ratio of 50 or more using nitric acid having a concentration of 1 wt% or more and 50 wt% or less. . The nitric acid concentration is more preferably 1% by weight or more, and further preferably 2% by weight or more. The nitric acid concentration is more preferably less than 30% by weight, and even more preferably less than 20% by weight. When liquid phase oxidation is performed at a concentration of nitric acid higher than 50% by weight, the carbon nanotubes themselves are damaged, which may impair the quality of the carbon nanotubes. Moreover, the problem of the yield reduction of a carbon nanotube arises. When the nitric acid concentration is less than 1% by weight, oxidation of the carbon impurities and the catalyst becomes insufficient, and it becomes difficult to remove the carbon impurities and the catalyst. By performing a purification treatment using a high-quality carbon nanotube-containing composition, carbon impurities and catalysts can be easily removed from the carbon nanotube-containing composition, and a high-quality carbon nanotube-containing composition can be obtained in a high yield. .
 液相酸化工程においては、100℃以上、110℃以下の温度範囲で加熱還流を行なうことが好ましく、より好ましくは100℃以上、106℃未満の温度範囲である。110℃を超える温度で液相酸化を行なうと、カーボンナノチューブ自体にダメージを与えてしまい、カーボンナノチューブの品質を損ねる可能性がある。また、カーボンナノチューブの収量が減少する。温度が100℃未満の場合、炭素不純物および触媒の酸化が低くなり、炭素不純物および触媒の除去が不十分となる可能性がある。 In the liquid phase oxidation step, it is preferable to perform heating and refluxing in a temperature range of 100 ° C. or higher and 110 ° C. or lower, and more preferably in a temperature range of 100 ° C. or higher and lower than 106 ° C. When liquid phase oxidation is performed at a temperature exceeding 110 ° C., the carbon nanotubes themselves are damaged, which may impair the quality of the carbon nanotubes. In addition, the yield of carbon nanotubes is reduced. When the temperature is lower than 100 ° C., the oxidation of the carbon impurities and the catalyst becomes low, and the removal of the carbon impurities and the catalyst may be insufficient.
 液相酸化を行なう時間は、1時間以上、24時間以下の範囲が好ましく、より好ましくは1時間以上、12時間以下の範囲である。24時間より長い時間液相酸化を行なうと、カーボンナノチューブ自体にダメージを与えてしまい、カーボンナノチューブの品質を損ねる可能性がある。また、カーボンナノチューブの収量が減少する。液相酸化が1時間未満の場合、炭素不純物および触媒の酸化が低くなり、炭素不純物および触媒の除去が不十分となる可能性がある。 The time for performing the liquid phase oxidation is preferably in the range of 1 hour to 24 hours, more preferably in the range of 1 hour to 12 hours. If liquid phase oxidation is performed for longer than 24 hours, the carbon nanotubes themselves may be damaged, and the quality of the carbon nanotubes may be impaired. In addition, the yield of carbon nanotubes is reduced. If the liquid phase oxidation is less than 1 hour, the oxidation of the carbon impurities and the catalyst will be low, and the removal of the carbon impurities and the catalyst may be insufficient.
 液相酸化処理する際の、酸化性液体とカーボンナノチューブの混合比は、カーボンナノチューブが浸りきる程度あれば特に問題ないが、比重が1~1.5程度の液体を使用する場合は、カーボンナノチューブ組成物100重量部に対して酸化性液体100000~150000重量部使用することが好ましい。酸化性液体の量がこれ以上少ないと、カーボンナノチューブ全体が酸化性液体に浸りきらなくなる場合があるため、酸化性液体の下限は上記の量が目安となる。酸化性液体の上限は、取り扱いの点で問題なければ特に制限は無い。酸化性液体の比重が上記の範囲外である場合は、前記好ましい量に比重を乗じた量を使用すると良い。 The mixing ratio of the oxidizing liquid and the carbon nanotubes during the liquid phase oxidation treatment is not particularly limited as long as the carbon nanotubes can be immersed, but when using a liquid with a specific gravity of about 1 to 1.5, the carbon nanotubes are used. It is preferable to use 100,000 to 150,000 parts by weight of the oxidizing liquid with respect to 100 parts by weight of the composition. If the amount of the oxidizing liquid is too small, the entire carbon nanotube may not be completely immersed in the oxidizing liquid. Therefore, the lower limit of the oxidizing liquid is the above amount. The upper limit of the oxidizing liquid is not particularly limited as long as there is no problem in handling. When the specific gravity of the oxidizing liquid is outside the above range, an amount obtained by multiplying the preferred amount by the specific gravity may be used.
 精製前のカーボンナノチューブの結晶性が低い(G/D比が50未満)と、液相酸化処理工程における硝酸濃度が低くても、非結晶部分が基点となって過剰の官能基が導入されてカーボンナノチューブそのものが破壊されてしまい易くなる。また、G/D比が50未満の精製前カーボンナノチューブを濃度50重量%以下の硝酸で液相酸化処理しても、元々のカーボンナノチューブ結晶性の低さの影響で、導電性や熱伝導性などの特性が低いカーボンナノチューブしか得られない。 When the crystallinity of the carbon nanotubes before purification is low (G / D ratio is less than 50), even if the concentration of nitric acid in the liquid phase oxidation process is low, excess functional groups are introduced starting from the amorphous part. The carbon nanotubes themselves are easily destroyed. In addition, even if the carbon nanotubes before purification having a G / D ratio of less than 50 are subjected to liquid phase oxidation treatment with nitric acid having a concentration of 50% by weight or less, the conductivity and thermal conductivity are affected by the low crystallinity of the original carbon nanotubes. Only carbon nanotubes with low characteristics such as can be obtained.
 前記の液相酸化工程の後に、アルカリ水溶液で処理する工程を行ってもよい。アルカリとしては、アルカリ水溶液のpHがpH8以上であれば特に制限されないが、アンモニアや有機アミンを用いることが好ましい。有機アミンとしては、エタノールアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ヘキサメチレンジアミン、ヒドラジン、ピリジン、ピペリジン、ヒドロキシピペリジンなどの窒素を含む有機化合物が好ましい。これらアンモニア、有機アミンの中で最も好ましいのは、揮発して後に悪影響が少ないことからアンモニアである。 After the liquid phase oxidation step, a step of treating with an alkaline aqueous solution may be performed. The alkali is not particularly limited as long as the pH of the alkaline aqueous solution is pH 8 or higher, but ammonia or organic amine is preferably used. The organic amine is preferably an organic compound containing nitrogen such as ethanolamine, ethylamine, n-propylamine, isopropylamine, diethylamine, triethylamine, ethylenediamine, hexamethylenediamine, hydrazine, pyridine, piperidine, hydroxypiperidine. Most preferred among these ammonia and organic amines is ammonia because it volatilizes and has less adverse effects later.
 またアルカリ水溶液の濃度は10容量%以上、30容量%未満の範囲が好ましい。また処理の時間は特に制限はなく、10分から2時間程度、室温下で撹拌することが好ましい。より好ましくは30分から1時間である。 The concentration of the aqueous alkali solution is preferably in the range of 10% by volume or more and less than 30% by volume. The treatment time is not particularly limited and is preferably stirred at room temperature for about 10 minutes to 2 hours. More preferably, it is 30 minutes to 1 hour.
 以下、精製後に得られる本発明のカーボンナノチューブ含有組成物について述べる。本発明のカーボンナノチューブ含有組成物は、波長532nmのラマン分光分析によるGバンドとDバンドの高さ比(G/D比)が90以上である。より好ましくはG/D比が90以上、200以下である。精製後のカーボンナノチューブ含有組成物のG/D比が90以上とは非常に高品質なカーボンナノチューブ含有組成物であることを示している。 Hereinafter, the carbon nanotube-containing composition of the present invention obtained after purification will be described. The carbon nanotube-containing composition of the present invention has a G-band to D-band height ratio (G / D ratio) of 90 or more by Raman spectroscopy at a wavelength of 532 nm. More preferably, the G / D ratio is 90 or more and 200 or less. A G / D ratio of 90 or more of the carbon nanotube-containing composition after purification indicates a very high quality carbon nanotube-containing composition.
 本発明のカーボンナノチューブ含有組成物は、空気中で10℃/分で昇温したときの熱重量分析で、200~950℃の重量減少率が95%以上である。重量減少率は、より好ましくは97%以上、さらに好ましくは99%以上である。前記重量減少率が95%より小さい場合は、触媒が十分に除去されずにカーボンナノチューブ含有組成物中に含まれていたことを意味し、カーボンナノチューブ含有組成物の電気的特性、力学特性、生体適合性等を損なう。 The carbon nanotube-containing composition of the present invention has a weight reduction rate of 200 to 950 ° C. of 95% or more by thermogravimetric analysis when the temperature is increased at 10 ° C./min in air. The weight reduction rate is more preferably 97% or more, and still more preferably 99% or more. When the weight reduction rate is less than 95%, it means that the catalyst was not sufficiently removed and was contained in the carbon nanotube-containing composition. Impairs compatibility.
 熱重量分析においては、熱重量分析装置を用いて、試料を空気中、10℃/分の昇温速度で室温から1000℃まで昇温する。そのときの200~950℃の重量減少率を測定する。得られた重量減少量の曲線を時間で微分することにより、x軸を温度(℃)、y軸をDTG(mg/min)とする微分熱重量曲線(DTG)を得る。その際のピーク温度を燃焼ピーク温度とする。精製をしたカーボンナノチューブ含有組成物は、DTG曲線において高温側と低温側に二つの燃焼ピークが現れることが多い。 In thermogravimetric analysis, a sample is heated from room temperature to 1000 ° C. at a rate of temperature increase of 10 ° C./min in air using a thermogravimetric analyzer. The weight loss rate at 200 to 950 ° C. at that time is measured. By differentiating the obtained weight loss curve with time, a differential thermogravimetric curve (DTG) is obtained in which the x-axis is temperature (° C.) and the y-axis is DTG (mg / min). The peak temperature at that time is defined as the combustion peak temperature. The purified carbon nanotube-containing composition often has two combustion peaks on the high temperature side and the low temperature side in the DTG curve.
 本発明においては、700℃以上、950℃未満に存在する燃焼ピークを高温側の燃焼ピークとする。耐熱性の観点から、より好ましくは高温側の燃焼ピーク温度は770℃以上、900℃未満であり、さらに好ましくは780℃以上、850℃未満である。このピークのピーク面積に相当する範囲の重量減量分をTG(H)とする。低温側の燃焼ピークとは350℃~高温側の燃焼ピークへと変化する変曲点までに存在する燃焼ピークである。このピークのピーク面積に相当する範囲の重量減量分をTG(L)とする。なお、変曲点が存在しない場合には350℃~600℃の範囲の重量減量分をTG(L)とする。TG(L)はアモルファスカーボンなどのカーボンナノチューブ以外の炭素不純物がカーボンナノチューブに付着したものと考えられる。 In the present invention, a combustion peak present at 700 ° C. or higher and lower than 950 ° C. is defined as a high temperature combustion peak. From the viewpoint of heat resistance, the combustion peak temperature on the high temperature side is more preferably 770 ° C. or higher and lower than 900 ° C., further preferably 780 ° C. or higher and lower than 850 ° C. The weight loss in a range corresponding to the peak area of this peak is defined as TG (H). The combustion peak on the low temperature side is a combustion peak existing from 350 ° C. to the inflection point at which the combustion peak changes to the combustion peak on the high temperature side. The weight loss in the range corresponding to the peak area of this peak is defined as TG (L). When there is no inflection point, the weight loss in the range of 350 ° C. to 600 ° C. is defined as TG (L). It is considered that TG (L) has carbon impurities other than carbon nanotubes such as amorphous carbon attached to the carbon nanotubes.
 一般に炭素不純物は400℃以下で燃焼するが、カーボンナノチューブに付着した場合は燃焼温度が高温側にずれる傾向があるため、上記の低温側の温度範囲で燃焼するものと考えられる。一方で炭素不純物が付着したカーボンナノチューブはそれに応じて、本来のカーボンナノチューブの燃焼ピーク温度に比して燃焼ピーク温度が低温側にずれる。これは炭素不純物の燃焼温度が低いため、炭素不純物が先に燃焼を開始し、その際に生じた発熱エネルギーがカーボンナノチューブに移動するため、本来の燃焼温度より低い温度でカーボンナノチューブが燃焼するためである。したがって炭素不純物が少ないほど燃焼ピーク温度は高温側に現れるため、燃焼ピーク温度は高い方が、耐久性が高く、純度の高いカーボンナノチューブである。炭素不純物の割合が大きいほどTG(L)が大きくなり、カーボンナノチューブの割合が大きいほどTG(H)が大きくなる。TG(H)を(TG(H)+TG(L))で割ることでカーボンナノチューブ含有組成物の純度として表現することができる。TG(H)/(TG(L)+TG(H))の値を0.8以上とすることにより、炭素不純物の割合が小さく、高耐熱性かつ高導電性のカーボンナノチューブ含有組成物が得られるので好ましい。低温側の燃焼ピークが消失し、高温側の燃焼ピークのみが現れる場合にはTG(H)/(TG(L)+TG(H))の値が1となる。 Generally, carbon impurities are combusted at 400 ° C. or lower. However, when adhering to carbon nanotubes, the combustion temperature tends to shift to a high temperature side, so that it is considered that the carbon impurities combust in the temperature range on the low temperature side. On the other hand, in the carbon nanotube to which carbon impurities are attached, the combustion peak temperature shifts to a lower temperature side in comparison with the combustion peak temperature of the original carbon nanotube. This is because the combustion temperature of carbon impurities is low, so the carbon impurities start burning first, and the generated heat energy is transferred to the carbon nanotubes, so the carbon nanotubes burn at a temperature lower than the original combustion temperature. It is. Therefore, since the combustion peak temperature appears on the higher temperature side as the carbon impurity is smaller, the higher the combustion peak temperature, the higher the durability and the higher the purity of the carbon nanotube. The larger the proportion of carbon impurities, the larger TG (L), and the larger the proportion of carbon nanotubes, the larger TG (H). By dividing TG (H) by (TG (H) + TG (L)), it can be expressed as the purity of the carbon nanotube-containing composition. By setting the value of TG (H) / (TG (L) + TG (H)) to 0.8 or more, a carbon nanotube-containing composition having a low carbon impurity ratio and high heat resistance and high conductivity can be obtained. Therefore, it is preferable. When the combustion peak on the low temperature side disappears and only the combustion peak on the high temperature side appears, the value of TG (H) / (TG (L) + TG (H)) is 1.
 カーボンナノチューブの層数は、特に限定されないが、単層または2層であることが好ましく、中でも2層カーボンナノチューブが最も好ましい。その理由は、単層カーボンナノチューブはグラファイト層が1層しかないため、酸化性液体で処理した際や、撹拌処理の際に、欠損が導入されると、1層しかない導電パスが破壊され、欠損が増えるほど導電層の破壊が進み、導電性が低下しやすい。そのため、酸化性液体で処理する際の温度と時間のコントロールを厳密に行う必要が出てくる。カーボンナノチューブが2層カーボンナノチューブである場合は、導電パスを担う層が2重になっているため、外層に欠損や官能基の導入による導電パスの破壊が起きても、内層の導電パスが利用できるため、導電性が下がりにくい。また、理由は定かではないが、単層カーボンナノチューブよりも、2層カーボンナノチューブの方が、酸化処理などを行っても、劣化しにくいため好ましい。 The number of layers of carbon nanotubes is not particularly limited, but is preferably single-walled or double-walled, with double-walled carbon nanotubes being most preferred. The reason for this is that single-walled carbon nanotubes have only one graphite layer, so when a defect is introduced when treated with an oxidizing liquid or during stirring, the conductive path with only one layer is destroyed, As the number of defects increases, the destruction of the conductive layer proceeds and the conductivity tends to decrease. For this reason, it is necessary to strictly control the temperature and time during the treatment with the oxidizing liquid. When carbon nanotubes are double-walled carbon nanotubes, the layers that carry the conductive path are doubled, so even if the outer layer is damaged or the conductive path is destroyed due to the introduction of functional groups, the inner conductive path is used. Therefore, the conductivity is difficult to decrease. Although the reason is not clear, double-walled carbon nanotubes are preferable to single-walled carbon nanotubes because they are less likely to deteriorate even after oxidation treatment.
 精製後の本発明のカーボンナノチューブ含有組成物に含まれるカーボンナノチューブの層数は、全てのカーボンナノチューブに対する2層カーボンナノチューブの数の割合が60%以上であることが好ましい。より好ましくは全てのカーボンナノチューブに対する2層カーボンナノチューブの数の割合が70%以上である。上記カーボンナノチューブの層数の測定は、例えば、次のようにして行う。透過型電子顕微鏡を用いて倍率40万倍で観察し、75nm四方の視野の中で、視野面積の10%以上がカーボンナノチューブである視野中から任意に抽出した100本のカーボンナノチューブについて層数を測定する。一つの視野中で100本のカーボンナノチューブの測定ができない場合は、100本になるまで複数の視野から測定する。このとき、カーボンナノチューブ1本とは、視野中で一部カーボンナノチューブが見えていれば1本と計上し、必ずしも両端が見えている必要はない。また視野中で2本と認識されても視野外でつながって1本となっていることもあり得るが、その場合は2本と計上する。 The number of layers of carbon nanotubes contained in the carbon nanotube-containing composition of the present invention after purification is preferably such that the ratio of the number of double-walled carbon nanotubes to all carbon nanotubes is 60% or more. More preferably, the ratio of the number of double-walled carbon nanotubes to all carbon nanotubes is 70% or more. The number of carbon nanotube layers is measured, for example, as follows. Observation with a transmission electron microscope at a magnification of 400,000, and the number of layers of 100 carbon nanotubes arbitrarily extracted from the field of view in which 10% or more of the field area is carbon nanotubes in a 75 nm square field of view. taking measurement. When 100 carbon nanotubes cannot be measured in one visual field, measurement is performed from a plurality of visual fields until the number becomes 100. At this time, one carbon nanotube is counted as one if some carbon nanotubes are visible in the field of view, and both ends are not necessarily visible. In addition, even if it is recognized as two in the field of view, it may be connected outside the field of view and become one, but in that case, it is counted as two.
 カーボンナノチューブの直径は、特に限定されないが、上記好ましい範囲の層数のカーボンナノチューブの直径は1nm~10nmであり、特に1~3nmの範囲内であるものが好ましく用いられる。 The diameter of the carbon nanotube is not particularly limited, but the diameter of the carbon nanotube having the number of layers in the above preferable range is 1 nm to 10 nm, and those having a diameter in the range of 1 to 3 nm are preferably used.
 液相酸化後のカーボンナノチューブ含有組成物にドーピングを行ってもよい。ドーピング手法としては特に限定されないが、液相でのドーピングが好ましい。ドーパントとしては硝酸、塩酸、硫酸等が挙げられ、酸性溶液であれば特に限定されない。 Doping may be performed on the carbon nanotube-containing composition after liquid phase oxidation. The doping technique is not particularly limited, but liquid phase doping is preferred. Examples of the dopant include nitric acid, hydrochloric acid, sulfuric acid and the like, and there are no particular limitations as long as it is an acidic solution.
 また、本発明のカーボンナノチューブ分散液の製造方法によると、前記液相酸化処理による製造方法によって得られたカーボンナノチューブ含有組成物を分散媒と共に、攪拌処理を施すことによって、分散媒にカーボンナノチューブ含有組成物を分散させ、カーボンナノチューブ分散液を得ることができる。 Further, according to the method for producing a carbon nanotube dispersion of the present invention, the carbon nanotube-containing composition obtained by the production method by the liquid phase oxidation treatment is stirred together with the dispersion medium, whereby the dispersion medium contains carbon nanotubes. A carbon nanotube dispersion liquid can be obtained by dispersing the composition.
 撹拌処理によってカーボンナノチューブ含有組成物を分散させる理由は、カーボンナノチューブのグラファイト層にダメージを与えて特性を低下させることが無いよう、弱い力でカーボンナノチューブ含有組成物を分散させたいからである。一般にカーボンナノチューブ含有組成物の分散に広く使われている分散法、例えば、超音波ホモジナイザーやロールミル、ボールミルなど、を用いてカーボンナノチューブ含有組成物を分散すると、カーボンナノチューブのグラファイト層に欠損が生じたり、カーボンナノチューブが強い応力で切断されてしまったりするため、カーボンナノチューブの導電性や熱伝導性といった特性が低下してしまう。一方、撹拌による分散では、応力が弱すぎて、一般的には、撹拌処理のみでは十分にカーボンナノチューブ含有組成物が分散した分散液は得られない。 The reason why the carbon nanotube-containing composition is dispersed by the stirring treatment is that it is desired to disperse the carbon nanotube-containing composition with a weak force so as not to damage the graphite layer of the carbon nanotube and deteriorate the characteristics. In general, when a carbon nanotube-containing composition is dispersed using a dispersion method that is widely used for dispersing a carbon nanotube-containing composition, such as an ultrasonic homogenizer, a roll mill, or a ball mill, defects may occur in the graphite layer of the carbon nanotube. Since the carbon nanotubes are cut by a strong stress, the characteristics of the carbon nanotubes such as conductivity and thermal conductivity are deteriorated. On the other hand, in the dispersion by stirring, the stress is too weak, and generally, a dispersion in which the carbon nanotube-containing composition is sufficiently dispersed cannot be obtained only by the stirring treatment.
 発明者らは、本発明の製造方法によって得られたカーボンナノチューブ含有組成物を用いて、分散媒と共に撹拌処理を行うことによって、カーボンナノチューブが導電性や熱伝導性などの特性を失うことなく、高度に分散した分散液を製造することに成功した。ここで、高度に分散しているとは、当該分散液を1万Gにて10分間遠心処理をした後、90vol%を上清として回収したとき、上清部分のカーボンナノチューブ分散液の濃度が、遠心処理前のカーボンナノチューブ分散液の濃度の80重量%以上となることを言う。 The inventors, using the carbon nanotube-containing composition obtained by the production method of the present invention, by performing a stirring process together with the dispersion medium, the carbon nanotubes without losing characteristics such as conductivity and thermal conductivity, Succeeded in producing highly dispersed dispersion. Here, highly dispersed means that when the dispersion is centrifuged at 10,000 G for 10 minutes and then recovered by 90 vol% as a supernatant, the concentration of the carbon nanotube dispersion in the supernatant is In other words, it means 80% by weight or more of the concentration of the carbon nanotube dispersion before centrifugation.
 本発明において攪拌処理のみで十分に分散した分散液が得られる理由は明確になっているわけでは無いが、以下の様に考えている。一般に、カーボンナノチューブは硝酸などの液相酸化処理工程を経ると、カーボンナノチューブ表面にカルボキシル基、水酸基、エポキシ基等の官能基が微少量導入される。本発明の製造方法によって得られたカーボンナノチューブ含有組成物は適度に官能基が導入さていることから、酸化処理工程における溶液中において、官能基によるカーボンナノチューブ間の静電反発がおこり、バンドルがほぐれやすくなる。その結果、次の工程である分散工程において分散しやすいカーボンナノチューブが得られると推測している。 In the present invention, the reason why a sufficiently dispersed dispersion can be obtained only by stirring treatment is not clear, but is considered as follows. In general, when a carbon nanotube undergoes a liquid phase oxidation treatment step such as nitric acid, a small amount of functional groups such as a carboxyl group, a hydroxyl group, and an epoxy group are introduced on the surface of the carbon nanotube. Since the carbon nanotube-containing composition obtained by the production method of the present invention has moderately functional groups, electrostatic repulsion between the carbon nanotubes due to the functional groups occurs in the solution in the oxidation treatment step, and the bundle is loosened. It becomes easy. As a result, it is presumed that carbon nanotubes that are easy to disperse in the dispersion step, which is the next step, can be obtained.
 撹拌分散によって分散する場合にカーボンナノチューブがダメージを受けにくい理由は定かではないが、一般的には、撹拌によって分散媒、およびカーボンナノチューブにかかるせん断応力による分散は、超音波の振動(およびキャビテーション)や機械的にすり潰したりする応力と比べて力の弱いマイルドな分散になっていると考えられる。 The reason why carbon nanotubes are less likely to be damaged when dispersed by stirring dispersion is not clear, but in general, dispersion due to stirring and dispersion due to shear stress applied to carbon nanotubes is caused by ultrasonic vibration (and cavitation). It is considered that the dispersion is mild and weak compared to the stress that mechanically crushes.
 撹拌処理は、容器内で撹拌ブレードを回転させることによって行われる。撹拌ブレードの形状は、固体粉砕用のブレードが好ましい。撹拌機としては、撹拌による固体粉砕用ミル、ジューサーミキサー、フードプロセッサーなどが特に好ましく使用できる。より具体的には、商品名「ミルサー」シリーズ(岩谷産業株式会社製品)などが使用できる。 The stirring process is performed by rotating the stirring blade in the container. The shape of the stirring blade is preferably a solid grinding blade. As the stirrer, a mill for solid grinding by stirring, a juicer mixer, a food processor and the like can be used particularly preferably. More specifically, a trade name “Milcer” series (product of Iwatani Corporation) can be used.
 撹拌処理において、撹拌ブレードを3000回転/分以上の回転数で撹拌することが好ましい。撹拌ブレードの回転数は、高ければ高いほどカーボンナノチューブに強くせん断応力等のシェアが掛かかり、早く分散するため好ましい。より好ましい回転数としては10000回転/分以上であり、20000回転/分以上であるとさらに好ましい。しかし、余り回転数が高いと、発熱が激しく、現実的に分散操作を行えなくなるため、上限はせいぜい50000回転/分である。また、余りに回転数が高い場合は、カーボンナノチューブが撹拌翼によって物理的にダメージを受けやすくなる。撹拌分散処理の温度は、分散によって余計な副反応が起こるのを抑えるため、冷却しながら行うのが好ましいが、カーボンナノチューブや分散媒およびその他添加剤に特に反応するものがなければ、冷却する必要は必ずしも無い。具体的な温度条件は分散媒によって異なるが、分散媒が液状の形態を維持でき撹拌処理可能である温度であれば特に制限は無い。 In the stirring treatment, it is preferable to stir the stirring blade at a rotational speed of 3000 revolutions / minute or more. The higher the rotation speed of the stirring blade, the more the carbon nanotubes are strongly sheared and sheared and the like, and the dispersion is quicker. A more preferable rotation speed is 10,000 rotations / minute or more, and further preferably 20,000 rotations / minute or more. However, if the number of revolutions is too high, the heat generation is intense and the dispersion operation cannot be performed practically, so the upper limit is at most 50000 revolutions / minute. In addition, when the rotational speed is too high, the carbon nanotubes are likely to be physically damaged by the stirring blade. The temperature of the stirring and dispersing treatment is preferably performed while cooling in order to suppress the occurrence of extra side reactions due to dispersion. However, if there is no particular reaction with carbon nanotubes, the dispersion medium and other additives, cooling is necessary. Is not necessarily. Although the specific temperature condition varies depending on the dispersion medium, there is no particular limitation as long as the dispersion medium can maintain a liquid form and can be stirred.
 攪拌処理における攪拌時間は、カーボンナノチューブ含有組成物のグラファイト構造を可能な限り破壊せずに高度に分散させるように、時間を調整することが好ましい。具体的な攪拌時間は、10秒以上2時間以下であることが分散性と導電性の観点より好ましい。より好ましくは30秒以上30分以下であり、さらに好ましくは1分以上5分以下である。攪拌処理の時間が10秒未満の場合は、せん断力が不足し、得られる分散液の分散性が低くなる。また攪拌処理の時間が2時間を越える場合は、得られる分散液に含まれるカーボンナノチューブが攪拌によりダメージを受け、導電性が低下する場合があり好ましくない。 The stirring time in the stirring treatment is preferably adjusted so that the graphite structure of the carbon nanotube-containing composition is highly dispersed without being destroyed as much as possible. The specific stirring time is preferably 10 seconds or more and 2 hours or less from the viewpoint of dispersibility and conductivity. More preferably, they are 30 seconds or more and 30 minutes or less, More preferably, they are 1 minute or more and 5 minutes or less. When the time for the stirring treatment is less than 10 seconds, the shearing force is insufficient, and the dispersibility of the resulting dispersion is lowered. On the other hand, when the stirring time exceeds 2 hours, the carbon nanotubes contained in the obtained dispersion liquid are damaged by stirring, and the conductivity may be lowered.
 分散に使用する分散媒は、特に制限は無いが、酸化処理によって導入される、水酸基、カルキシル基、エポキシ基などの官能基と親和性の高い極性溶媒を使用することが好ましい。極性溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、アミルアルコール、テルピネオール、ジヒドロテルピネオール、メントールなどのアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、乳酸エチルなどのエステル類;ジオキサン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ等のエーテル類;エトキシエタノール、メトキシエトキシエタノール等のエーテルアルコール類;ジメチルスルホキシド、N-メチルピロリドン、ジメチルホルムアミド等のアミド系化合物;その他、水、モルホリン、アセトニトリルなどがあげられる。これらのなかでも、特に、水、アルコール、エーテルおよびそれらを組み合わせた溶媒がカーボンナノチューブの分散性から好ましい。中でも水を使用すると、カーボンナノチューブの表面官能基との水素結合によって分散性を向上する効果を得やすいため特に好ましい。 The dispersion medium used for dispersion is not particularly limited, but it is preferable to use a polar solvent having a high affinity for a functional group such as a hydroxyl group, a carboxyl group, or an epoxy group, which is introduced by oxidation treatment. Examples of polar solvents include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, amyl alcohol, terpineol, dihydroterpineol, and menthol; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ethyl acetate, butyl acetate, and ethyl lactate Esters; ethers such as dioxane, tetrahydrofuran, methyl cellosolve, ethyl cellosolve; ether alcohols such as ethoxyethanol, methoxyethoxyethanol; amide compounds such as dimethyl sulfoxide, N-methylpyrrolidone, dimethylformamide; other, water, Examples include morpholine and acetonitrile. Among these, water, alcohol, ether, and a solvent combining them are particularly preferable from the viewpoint of dispersibility of the carbon nanotubes. Among these, use of water is particularly preferable because it is easy to obtain an effect of improving dispersibility by hydrogen bonding with the surface functional group of the carbon nanotube.
 攪拌処理の際、分散剤をさらに加えて、カーボンナノチューブと伴に攪拌することが好ましい。本発明のカーボンナノチューブ含有組成物の製造方法によって得られたカーボンナノチューブ含有組成物は、カーボンナノチューブの特性を低下させない程度の官能基しか導入されていないため、カーボンナノチューブのみを分散媒と攪拌処理した場合、分散性はそれほど高くない。分散液を基材に塗布した場合に、高い導電性や熱伝導性を引き出せるほど分散させるため、分散剤を同時に投入して攪拌処理することが好ましい。 During the stirring treatment, it is preferable to add a dispersant and stir with the carbon nanotubes. Since the carbon nanotube-containing composition obtained by the method for producing a carbon nanotube-containing composition of the present invention has only functional groups introduced so as not to deteriorate the characteristics of the carbon nanotube, only the carbon nanotube is stirred with a dispersion medium. If so, the dispersibility is not so high. When the dispersion is applied to the substrate, the dispersion is preferably dispersed so that high conductivity and thermal conductivity can be drawn out.
 分散剤としては、分散媒が水以外の極性有機溶媒である場合は、ポリビニルアセタール誘導体またはセルロース誘導体が好ましく使用できる。具体的には、ポリビニルアセタール誘導体としては、ポリビニルホルマール、ポリビニルブチラールなどである。セルロース誘導体としては、セルロース誘導体がセルロースエーテルである場合は、メチルセルロース、エチルセルロース、プロピルセルロース、メチルエチルセルロース、メチルプロピルセルロース、エチルプロピルセルロースなどが挙げられる。またセルロース誘導体がセルロースエステルである場合は、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースバレレート、セルロースステアレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートバレレート、セルロースアセテートカプロエート、セルロースプロピオネートブチレート、セルロースアセテートプロピオネートブチレートなどが挙げられる。また、セルロース誘導体がセルロースエーテルエステルである場合は、メチルセルロースアセテート、メチルセルロースプロピオネート、エチルセルロースアセテート、エチルセルロースプロピオネート、プロピルセルロースアセテート、プロピルセルロースプロピオネートなどが挙げられるがこれらに限定されない。 As the dispersant, when the dispersion medium is a polar organic solvent other than water, a polyvinyl acetal derivative or a cellulose derivative can be preferably used. Specific examples of the polyvinyl acetal derivative include polyvinyl formal and polyvinyl butyral. Examples of the cellulose derivative include methyl cellulose, ethyl cellulose, propyl cellulose, methyl ethyl cellulose, methyl propyl cellulose, and ethyl propyl cellulose when the cellulose derivative is a cellulose ether. When the cellulose derivative is a cellulose ester, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose valerate, cellulose stearate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate valerate, cellulose acetate Examples include proate, cellulose propionate butyrate, and cellulose acetate propionate butyrate. Moreover, when a cellulose derivative is a cellulose ether ester, methyl cellulose acetate, methyl cellulose propionate, ethyl cellulose acetate, ethyl cellulose propionate, propyl cellulose acetate, propyl cellulose propionate, etc. are mentioned, However, it is not limited to these.
 分散媒が水である場合は、イオン性の分散剤が使用可能で、コール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム等剤のほか、コール酸、デオキシコール酸などのカルボン酸誘導体も使用可能である。また、水溶性のセルロース誘導体やポリエチレングリコール誘導体も使用可能である。中でもカルボキシメチルセルロース誘導体は、分散液中でカーボンナノチューブに付着した状態で、カルボキシラートの電気的な反発を利用してカーボンナノチューブの凝集が防がれるため、分散液の安定性が良く、導電性フィルムとした際の導電性が特に良好となる。カルボキシメチルセルロース誘導体は、水を分散媒として使用する場合に特に好ましく用いられ、特にエーテル化度が0.4~1のものが好ましい。 When the dispersion medium is water, ionic dispersants can be used. In addition to sodium cholate, sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, etc., carboxylic acid derivatives such as cholic acid, deoxycholic acid, etc. It can be used. Water-soluble cellulose derivatives and polyethylene glycol derivatives can also be used. In particular, the carboxymethyl cellulose derivative is adhered to the carbon nanotubes in the dispersion, and the electrical repulsion of the carboxylate prevents the carbon nanotubes from aggregating. In this case, the conductivity is particularly good. The carboxymethyl cellulose derivative is particularly preferably used when water is used as a dispersion medium, and those having a degree of etherification of 0.4 to 1 are particularly preferable.
 カーボンナノチューブ分散液に含まれる分散剤の量は、カーボンナノチューブに吸着される量より多く、かつ、導電性を阻害しない量であることが好ましい。本発明により得られるカーボンナノチューブ分散液は、用いる分散剤が比較的少量であっても、分散媒中でカーボンナノチューブが高度に分散していることも特徴である。 The amount of the dispersant contained in the carbon nanotube dispersion liquid is preferably larger than the amount adsorbed on the carbon nanotubes and does not inhibit the conductivity. The carbon nanotube dispersion obtained by the present invention is also characterized in that carbon nanotubes are highly dispersed in a dispersion medium even when a relatively small amount of dispersant is used.
 カーボンナノチューブ分散液に含まれる分散剤の含有量としては、具体的にはカーボンナノチューブ含有組成物100重量部に対して分散剤が10重量部以上500重量部以下であることが好ましい。分散剤の含有量は、カーボンナノチューブ含有組成物100重量部に対して30重量部以上であることがより好ましい。また、含有量は、200重量部以下であることがより好ましい。分散剤の含有量が10重量部よりも少ない場合は、カーボンナノチューブの束が十分に解れないために分散性が低くなりやすい。含有量が、500重量部よりも多いと、過剰な分散剤によって導電パスが阻害されるために、分散液を基材に塗布した場合に、導電性が悪化する。また、分散剤に親水性官能基が存在する場合は、高温・高湿度といった環境変化に対して分散剤の吸湿などによる導電性の変化が起こりやすくなる。 Specifically, the content of the dispersant contained in the carbon nanotube dispersion is preferably 10 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of the carbon nanotube-containing composition. The content of the dispersant is more preferably 30 parts by weight or more with respect to 100 parts by weight of the carbon nanotube-containing composition. The content is more preferably 200 parts by weight or less. When the content of the dispersing agent is less than 10 parts by weight, the dispersibility tends to be lowered because the bundle of carbon nanotubes cannot be sufficiently unraveled. If the content is more than 500 parts by weight, the conductive path is hindered by an excessive dispersant, so that the conductivity deteriorates when the dispersion is applied to the substrate. In addition, when a hydrophilic functional group is present in the dispersant, a change in conductivity due to moisture absorption of the dispersant is likely to occur with respect to environmental changes such as high temperature and high humidity.
 また、分散液全体に対するカーボンナノチューブ含有組成物の含有量は0.01重量%以上、20重量%以下であることが好ましい。含有量は、0.05重量%以上であることがより好ましい。また含有量は、10重量%以下であることがさらに好ましい。カーボンナノチューブ含有組成物の含有量が0.01質量%より小さいと、カーボンナノチューブに付着した分散剤同士のイオン反発やカーボンナノチューブ表面官能基の電子反発を有効に利用できなくなるため好ましくない。 In addition, the content of the carbon nanotube-containing composition with respect to the entire dispersion is preferably 0.01% by weight or more and 20% by weight or less. The content is more preferably 0.05% by weight or more. Further, the content is more preferably 10% by weight or less. When the content of the carbon nanotube-containing composition is less than 0.01% by mass, it is not preferable because ion repulsion between the dispersants attached to the carbon nanotube and electron repulsion of the carbon nanotube surface functional group cannot be effectively used.
 また、分散剤の重量平均分子量は、1万以上40万以下が好ましく、3万以上25万以下であることがより好ましく、さらに好ましくは、6万を超え、25万以下である。分散剤の重量平均分子量がこの範囲であると、分散時にカーボンナノチューブ間の隙間に分散剤が入りやすくなり、カーボンナノチューブの分散性が向上する。さらに基材上に分散液を塗布したとき、カーボンナノチューブの基材上での凝集も抑制されるため、得られる導電性成形体の導電性と透明性が両立できる。本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(装置:株式会社島津製作所製 LC-10Aシリーズ、カラム:昭和電工株式会社製 GF-7M HQ、移動相:10mmol/L 臭化リチウム水溶液、流速:1.0ml/min、カラム温度:25℃、検出:示差屈折率計)を用い、ポリエチレングリコールによる校正曲線と対比させて算出した値である。 Further, the weight average molecular weight of the dispersant is preferably 10,000 or more and 400,000 or less, more preferably 30,000 or more and 250,000 or less, and further preferably more than 60,000 and 250,000 or less. When the weight average molecular weight of the dispersant is within this range, the dispersant can easily enter the gaps between the carbon nanotubes during dispersion, and the dispersibility of the carbon nanotubes is improved. Furthermore, when the dispersion liquid is applied on the base material, aggregation of the carbon nanotubes on the base material is also suppressed, so that the conductivity and transparency of the obtained conductive molded body can be compatible. The weight average molecular weight in the present invention is determined by gel permeation chromatography (apparatus: LC-10A series manufactured by Shimadzu Corporation), column: GF-7M HQ manufactured by Showa Denko KK, mobile phase: 10 mmol / L lithium bromide aqueous solution, (Flow rate: 1.0 ml / min, column temperature: 25 ° C., detection: differential refractometer), and a value calculated by comparing with a calibration curve using polyethylene glycol.
 重量平均分子量が上記範囲の分散剤は、重量平均分子量の範囲が上記の範囲になるように合成しても良いし、より高分子量の分散剤を加水分解などの方法で低分子量化することで得ても良い。 The dispersant having the weight average molecular weight in the above range may be synthesized so that the range of the weight average molecular weight is in the above range, or by lowering the molecular weight by a method such as hydrolysis of a higher molecular weight dispersant. You may get.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
 (熱重量分析)
 熱重量分析装置(島津製作所TGA-60)を用いて、試料を空気中、10℃/分の昇温速度で室温から1000℃まで昇温した。得られた重量減少曲線を時間で微分することにより、x軸を温度(℃)、y軸をDTG(mg/min)とする微分熱重量曲線(DTG)を得た。そのときの200~950℃の温度範囲の重量減少率を測定した。
(Thermogravimetric analysis)
Using a thermogravimetric analyzer (Shimadzu Corporation TGA-60), the temperature of the sample was increased from room temperature to 1000 ° C. at a temperature increase rate of 10 ° C./min. The obtained weight loss curve was differentiated by time to obtain a differential thermogravimetric curve (DTG) in which the x axis is temperature (° C.) and the y axis is DTG (mg / min). The weight loss rate in the temperature range of 200 to 950 ° C. at that time was measured.
 (ラマン分光分析)
 共鳴ラマン分光計(ホリバ ジョバンイボン性 INF-300)に粉末試料を設置し、532nmのレーザー波長を用いて測定を行った。
(Raman spectroscopy)
A powder sample was placed in a resonance Raman spectrometer (Holiba Joban Yvon INF-300), and measurement was performed using a laser wavelength of 532 nm.
 (カーボンナノチューブの外径分布および層数分布の観察)
 カーボンナノチューブ含有組成物1mgをエタノール1mLに入れて、15分間、超音波バスを用いて分散処理を行った。分散した試料をグリッド上に数滴滴下し、乾燥した。このように試料の塗布されたグリッドを透過型電子顕微鏡(日本電子(株)製 JEM-2100)に設置し、測定を行った。カーボンナノチューブの外径分布および層数分布の観察は、倍率40万倍で行った。
(Observation of outer diameter distribution and wall number distribution of carbon nanotube)
1 mg of the carbon nanotube-containing composition was placed in 1 mL of ethanol, and dispersion treatment was performed using an ultrasonic bath for 15 minutes. A few drops of the dispersed sample were dropped on the grid and dried. The grid thus coated with the sample was placed in a transmission electron microscope (JEM-2100 manufactured by JEOL Ltd.), and measurement was performed. Observation of the outer diameter distribution and the wall number distribution of the carbon nanotubes was performed at a magnification of 400,000 times.
 (カーボンナノチューブの合成とその物性)
 [参考例1]
 図1に示す縦型の製造装置を使用して、カーボンナノチューブ含有組成物を製造した。
(Synthesis and properties of carbon nanotubes)
[Reference Example 1]
A carbon nanotube-containing composition was produced using the vertical production apparatus shown in FIG.
 図1に示す合成装置は、カーボンナノチューブ含有組成物を合成する反応容器となる縦型反応管22、縦型反応管22の外周に設けられ、縦型反応管22内を加熱する加熱炉21、縦型反応管22内に触媒炭素源溶液を霧状に噴出する液体噴霧ノズル19、液体噴霧用キャリアガス流量計14、液体噴霧用キャリアガスを貯蔵するタンク16、キャリアガス導入口18、キャリアガスの流量を調整するキャリアガス流量計15、キャリアガスを貯蔵するタンク17、縦型反応管22内に触媒炭素源溶液を導入する送液ポンプ13、合成されたカーボンナノチューブ含有組成物を回収する回収ボックス24および回収ボックス24内に設置された回収フィルター25によって構成される。また、縦型反応管22は、上部フランジ20と下部フランジ23によって接続部からガスが漏れないように他の部材と接続されている。 1 includes a vertical reaction tube 22 serving as a reaction vessel for synthesizing a carbon nanotube-containing composition, a heating furnace 21 that is provided on the outer periphery of the vertical reaction tube 22 and heats the inside of the vertical reaction tube 22; A liquid spray nozzle 19 for spraying a catalytic carbon source solution in the vertical reaction tube 22 in the form of a mist, a carrier gas flow meter 14 for liquid spray, a tank 16 for storing a carrier gas for liquid spray, a carrier gas inlet 18, and a carrier gas Carrier gas flow meter 15 for adjusting the flow rate of the liquid, tank 17 for storing the carrier gas, liquid feed pump 13 for introducing the catalytic carbon source solution into the vertical reaction tube 22, and recovery for recovering the synthesized carbon nanotube-containing composition A box 24 and a collection filter 25 installed in the collection box 24 are included. The vertical reaction tube 22 is connected to other members by the upper flange 20 and the lower flange 23 so that gas does not leak from the connection portion.
 シリンジ11には、炭素源として、常温常圧で液体状態の芳香族化合物と有機遷移金属化合物であるフェロセンと有機硫黄化合物であるチオフェンを混合した触媒炭素源溶液12が貯留されていて、送液ポンプ13にて導入量を調整できる。 The syringe 11 stores, as a carbon source, a catalytic carbon source solution 12 in which an aromatic compound in a liquid state at normal temperature and pressure, ferrocene as an organic transition metal compound, and thiophene as an organic sulfur compound are mixed. The introduction amount can be adjusted by the pump 13.
 触媒炭素源溶液12を、液体噴霧ノズル19から噴霧することによって縦型反応管22内に導入し、過熱炉21に囲まれた縦型反応管22中で気相流動CVD法を行なうことによって、精製前のカーボンナノチューブ含有組成物を合成した。得られた精製前カーボンナノチューブ含有組成物は、フィルター25によって回収した。フィルター25によってカーボンナノチューブ含有組成物が除去されたキャリアガスは、排気口26から系外へ排出される。 By introducing the catalytic carbon source solution 12 into the vertical reaction tube 22 by spraying from the liquid spray nozzle 19 and performing the gas phase flow CVD method in the vertical reaction tube 22 surrounded by the superheated furnace 21, A carbon nanotube-containing composition before purification was synthesized. The obtained pre-purification carbon nanotube-containing composition was recovered by the filter 25. The carrier gas from which the carbon nanotube-containing composition has been removed by the filter 25 is discharged out of the system through the exhaust port 26.
 回収した精製前のカーボンナノチューブ含有組成物を約1mg熱重量分析装置に設置し、空気中、10℃/分の昇温速度で室温から1000℃まで昇温した。そのときの200~950℃の重量減少率は89%であり、TG(H)/(TG(L)+TG(H))は0.81であった。また、波長532nmによるラマン分光分析の結果、G/D比は83であった。 The collected carbon nanotube-containing composition before purification was placed in an about 1 mg thermogravimetric analyzer, and the temperature was raised from room temperature to 1000 ° C. in air at a rate of 10 ° C./min. The weight loss rate at 200 to 950 ° C. at that time was 89%, and TG (H) / (TG (L) + TG (H)) was 0.81. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 83.
 [参考例2]
 特開2011-148674の実施例1の方法(担持触媒CVD法)を用いてカーボンナノチューブ含有組成物を製造し、回収した。
[Reference Example 2]
A carbon nanotube-containing composition was produced and recovered using the method of Example 1 (supported catalyst CVD method) of JP2011-148673A.
 回収した精製前のカーボンナノチューブ含有組成物を約1mg熱重量分析装置に設置し、空気中、10℃/分の昇温速度で室温から1000℃まで昇温した。そのときの200~950℃の重量減少率は95%であり、TG(H)/(TG(L)+TG(H))は0であった。また、波長532nmによるラマン分光分析の結果、G/D比は13であった。 The collected carbon nanotube-containing composition before purification was placed in an about 1 mg thermogravimetric analyzer, and the temperature was raised from room temperature to 1000 ° C. in air at a rate of 10 ° C./min. At that time, the weight loss rate from 200 to 950 ° C. was 95%, and TG (H) / (TG (L) + TG (H)) was 0. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 13.
 [実施例1]
 参考例1で得られた精製前のカーボンナノチューブ含有組成物を、7.5重量%硝酸中で、還流温度103℃、2時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は100%であり、TG(H)/(TG(L)+TG(H))は0.83であり、またTG(H)のピーク温度は835℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は124であった。回収率は89重量%であった。ここで、回収率とは、精製前のカーボンナノチューブ含有組成物の重量を100重量%としたときの、得られた精製後カーボンナノチューブ含有組成物の重量比率のことである。
[Example 1]
The purified carbon nanotube-containing composition obtained by subjecting the carbon nanotube-containing composition before purification obtained in Reference Example 1 to liquid phase oxidation in 7.5 wt% nitric acid with stirring at a reflux temperature of 103 ° C. for 2 hours. I got a thing. As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.83. The peak temperature of TG (H) was 835 ° C. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 124. The recovery rate was 89% by weight. Here, the recovery rate is a weight ratio of the obtained carbon nanotube-containing composition after purification when the weight of the carbon nanotube-containing composition before purification is 100% by weight.
 [実施例2]
 参考例1で得られた精製前のカーボンナノチューブ含有組成物を7.5重量%硝酸中で、還流温度103℃、6時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は100%であり、TG(H)/(TG(L)+TG(H))は0.81であり、またTG(H)のピーク温度は829℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は121であった。回収率は89重量%であった。
[Example 2]
The purified carbon nanotube-containing composition obtained by subjecting the carbon nanotube-containing composition before purification obtained in Reference Example 1 to liquid phase oxidation in 7.5 wt% nitric acid with stirring at a reflux temperature of 103 ° C. for 6 hours. Got. As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.81. The peak temperature of TG (H) was 829 ° C. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 121. The recovery rate was 89% by weight.
 [実施例3]
 参考例1で得られた精製前のカーボンナノチューブ含有組成物を15重量%硝酸中で、還流温度105℃、6時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は100%であり、TG(H)/(TG(L)+TG(H))は0.81であり、またTG(H)のピーク温度は784℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は110であった。2層カーボンナノチューブの割合は74%であった。回収率は88重量%であった。
[Example 3]
The purified carbon nanotube-containing composition obtained in Reference Example 1 was subjected to liquid phase oxidation in 15% by weight nitric acid with stirring at a reflux temperature of 105 ° C. for 6 hours to obtain a purified carbon nanotube-containing composition. It was. As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.81. The peak temperature of TG (H) was 784 ° C. Further, as a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 110. The proportion of double-walled carbon nanotubes was 74%. The recovery rate was 88% by weight.
 [実施例4]
 参考例1で得られた精製前のカーボンナノチューブ含有組成物を3.8重量%の硝酸中で、還流温度101℃、2時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は99%であり、TG(H)/(TG(L)+TG(H))は0.83であり、またTG(H)のピーク温度は832℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は122であった。回収率は90重量%であった。
[Example 4]
The purified carbon nanotube-containing composition obtained by subjecting the carbon nanotube-containing composition before purification obtained in Reference Example 1 to liquid phase oxidation in 3.8 wt% nitric acid with stirring at a reflux temperature of 101 ° C. for 2 hours. I got a thing. As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 99%, and TG (H) / (TG (L) + TG (H)) is 0.83. The peak temperature of TG (H) was 832 ° C. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 122. The recovery rate was 90% by weight.
 [実施例5]
 参考例1で得られた精製前のカーボンナノチューブ含有組成物を30重量%の硝酸中で、還流温度110℃、6時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は99%であり、TG(H)/(TG(L)+TG(H))は0.8であり、またTG(H)のピーク温度は770℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は95であった。回収率は85重量%であった。
[Example 5]
The purified carbon nanotube-containing composition obtained in Reference Example 1 was subjected to liquid phase oxidation in 30 wt% nitric acid with stirring at a reflux temperature of 110 ° C. for 6 hours to obtain a purified carbon nanotube-containing composition. Obtained. As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 99%, and TG (H) / (TG (L) + TG (H)) is 0.8. The peak temperature of TG (H) was 770 ° C. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 95. The recovery rate was 85% by weight.
 [比較例1]
 参考例1で得られた精製前のカーボンナノチューブ含有組成物を60重量%硝酸中で、還流温度121℃、2時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は100%であり、TG(H)/(TG(L)+TG(H))は0.79であり、またTG(H)のピーク温度は760℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は103であった。2層カーボンナノチューブの割合は74%であった。回収率は85重量%であった。
[Comparative Example 1]
The purified carbon nanotube-containing composition obtained in Reference Example 1 was subjected to liquid phase oxidation in 60% by weight nitric acid with stirring at a reflux temperature of 121 ° C. for 2 hours to obtain a purified carbon nanotube-containing composition. It was. As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.79. The peak temperature of TG (H) was 760 ° C. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 103. The proportion of double-walled carbon nanotubes was 74%. The recovery rate was 85% by weight.
 [比較例2]
 参考例2で得られた精製前のカーボンナノチューブ含有組成物を60重量%硝酸中で還流温度121℃、25時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は100%であり、TG(H)/(TG(L)+TG(H))は0.79であり、またTG(H)のピーク温度は725℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は70であった。回収率は13重量%であった。
[Comparative Example 2]
The purified carbon nanotube-containing composition obtained in Reference Example 2 was subjected to liquid phase oxidation in 60 wt% nitric acid with stirring at a reflux temperature of 121 ° C. for 25 hours to obtain a purified carbon nanotube-containing composition. . As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.79. The peak temperature of TG (H) was 725 ° C. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 70. The recovery rate was 13% by weight.
 [比較例3]
 参考例2で得られた精製前のカーボンナノチューブ含有組成物を50重量%硝酸中で還流温度117℃、50時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は100%であり、TG(H)/(TG(L)+TG(H))は0.84であり、またTG(H)のピーク温度は757℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は41であった。回収率は10重量%であった。
[Comparative Example 3]
The purified carbon nanotube-containing composition obtained in Reference Example 2 was subjected to liquid phase oxidation in 50 wt% nitric acid with stirring at a reflux temperature of 117 ° C. for 50 hours to obtain a purified carbon nanotube-containing composition. . As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 100%, and TG (H) / (TG (L) + TG (H)) is 0.84. The peak temperature of TG (H) was 757 ° C. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 41. The recovery rate was 10% by weight.
 [比較例4]
 参考例2で得られた精製前のカーボンナノチューブ含有組成物を60重量%硝酸中で還流温度121℃、5時間撹拌しながら液相酸化することにより、精製されたカーボンナノチューブ含有組成物を得た。精製されたカーボンナノチューブ含有組成物を熱重量分析した結果、200~950℃の重量減少率は99%であり、TG(H)/(TG(L)+TG(H))は0.9であり、またTG(H)のピーク温度は725℃であった。また、波長532nmによるラマン分光分析の結果、G/D比は80であった。回収率は80重量%であった。
[Comparative Example 4]
The purified carbon nanotube-containing composition obtained in Reference Example 2 was subjected to liquid phase oxidation in 60 wt% nitric acid with stirring at a reflux temperature of 121 ° C. for 5 hours to obtain a purified carbon nanotube-containing composition. . As a result of thermogravimetric analysis of the purified carbon nanotube-containing composition, the weight loss rate at 200 to 950 ° C. is 99%, and TG (H) / (TG (L) + TG (H)) is 0.9. The peak temperature of TG (H) was 725 ° C. As a result of Raman spectroscopic analysis at a wavelength of 532 nm, the G / D ratio was 80. The recovery rate was 80% by weight.
 以上の結果より、精製前のカーボンナノチューブ含有組成物のラマン分光分析におけるGバンドとDバンドの強度比(G/D比)が50以上であるカーボンナノチューブ含有組成物に対して、1重量%以上、50重量%以下の硝酸を用い加熱還流による液相酸化を行うことで簡便に炭素不純物と触媒を除去でき、高品質なカーボンナノチューブ含有組成物を高収率で得ることができた。 From the above results, 1% by weight or more with respect to the carbon nanotube-containing composition having a G-band to D-band intensity ratio (G / D ratio) of 50 or more in Raman spectroscopic analysis of the carbon nanotube-containing composition before purification. In addition, carbon impurities and the catalyst can be easily removed by performing liquid phase oxidation by heating and refluxing using nitric acid of 50% by weight or less, and a high-quality carbon nanotube-containing composition can be obtained in a high yield.
 [実施例6]
 実施例3で得られたカーボンナノチューブ含有組成物56.25mg、カルボキシメチルセルロースナトリウム(第一工業製薬(株)社製、セロゲン5Aの加水分解物、重量平均分子量35000)10wt%水溶液843.85mg、および炭酸アンモニウム(和光純薬製)112.5mgを混合し、さらに蒸留水を加えることによって37.5gにし、撹拌機としてIMF-800DG(岩谷産業株式会社製)を用いて、撹拌ブレードの回転数20000rpmで3分間撹拌処理を行うことによってカーボンナノチューブ分散液を調製した。
[Example 6]
56.25 mg of the carbon nanotube-containing composition obtained in Example 3, sodium carboxymethylcellulose (Daiichi Kogyo Seiyaku Co., Ltd., hydrolyzate of serogen 5A, weight average molecular weight 35000) 10 wt% aqueous solution 843.85 mg, and 112.5 mg of ammonium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed and further distilled water was added to make 37.5 g. Using IMF-800DG (manufactured by Iwatani Corporation) as a stirrer, the rotation speed of the stirring blade was 20000 rpm A carbon nanotube dispersion was prepared by stirring for 3 minutes.
 <分散液の評価>
 得られたカーボンナノチューブ分散液は、カーボンナノチューブが高度に分散し、カーボンナノチューブの特徴である高い導電性を維持しているということを示すため、東レ株式会社製PETフィルム(U46、厚み100μm)に、得られたカーボンナノチューブ分散液を塗布し、透明導電性を評価した。
<Evaluation of dispersion>
In order to show that the obtained carbon nanotube dispersion liquid is highly dispersed and maintains the high conductivity that is characteristic of the carbon nanotube, a PET film (U46, thickness 100 μm) manufactured by Toray Industries, Inc. is used. The obtained carbon nanotube dispersion was applied and the transparent conductivity was evaluated.
 測定用のフィルムは、上記のようにして得られたカーボンナノチューブ分散液を、水で約3倍に希釈し、ワイヤーバーコーターを用いて塗液膜厚4μ~150μの範囲で塗布量を調整して塗布した後、フィルムを乾燥することによって、カーボンナノチューブ塗布フィルムを得た。透過率は、日本電色工業株式会社製ヘイズメーターNDH4000を使用して、JIS K7105に準じて基材ごと測定した。表面抵抗値は、JISK7194(1994年12月制定)準処の4端子4探針法に従って、ロレスタ(登録商標)EP MCP-T360((株)ダイアインスツルメンツ社製)を用いて測定した。 For the film for measurement, the carbon nanotube dispersion obtained as described above was diluted about 3 times with water, and the coating amount was adjusted within the range of 4 μm to 150 μm using a wire bar coater. After coating, the film was dried to obtain a carbon nanotube-coated film. The transmittance was measured for each substrate in accordance with JIS K7105 using a Nippon Denshoku Industries Co., Ltd. haze meter NDH4000. The surface resistance value was measured using a Loresta (registered trademark) EP MCP-T360 (manufactured by Dia Instruments Co., Ltd.) according to a 4-terminal 4-probe method according to JISK7194 (established in December 1994).
 塗液膜厚を変えて、評価を行ったところ、カーボンナノチューブ塗布フィルムの全光線透過率88.5%における表面抵抗値が320Ω/□と、良好な透明導電性を示すことが分かった。 When the evaluation was performed while changing the coating film thickness, it was found that the surface resistance value of the carbon nanotube-coated film at a total light transmittance of 88.5% was 320Ω / □, indicating good transparent conductivity.
 また、カーボンナノチューブ分散液の分散性を評価するため、得られたカーボンナノチューブ分散液を1万Gにて10分間遠心処理をした後、90vol%を上清として回収したとき、上清部分のカーボンナノチューブ分散液の濃度が、遠心処理前のカーボンナノチューブ分散液の濃度の90重量%であった。結果を表2に示す。カーボンナノチューブ分散液の濃度は、分散液10gを120℃に加熱して溶媒を蒸発させ、得られた残渣をさらに24時間乾燥させた後、乾燥した残渣の重量から、分散処理時に混合した分散剤の量から計算した分散剤の重量を差し引くことによって、分散液中に含まれるカーボンナノチューブの重量を算出し、カーボンナノチューブ分散液の濃度を計算した。 In addition, in order to evaluate the dispersibility of the carbon nanotube dispersion, the obtained carbon nanotube dispersion was centrifuged at 10,000 G for 10 minutes, and then 90 vol% was recovered as a supernatant. The concentration of the nanotube dispersion liquid was 90% by weight of the concentration of the carbon nanotube dispersion liquid before the centrifugal treatment. The results are shown in Table 2. The concentration of the carbon nanotube dispersion is such that 10 g of the dispersion is heated to 120 ° C. to evaporate the solvent, and the resulting residue is further dried for 24 hours. The weight of the carbon nanotubes contained in the dispersion was calculated by subtracting the calculated weight of the dispersant from the amount of the above, and the concentration of the carbon nanotube dispersion was calculated.
 [実施例7]
 実施例5で得られたカーボンナノチューブ含有組成物を用いて、実施例6と同様にカーボンナノチューブ分散液を調製し、実施例6と同様に透明導電性および遠心処理後の上清部分のCNT分散液の濃度を測定した。
[Example 7]
Using the carbon nanotube-containing composition obtained in Example 5, a carbon nanotube dispersion was prepared in the same manner as in Example 6. Transparent conductivity and CNT dispersion in the supernatant after centrifugation were performed in the same manner as in Example 6. The concentration of the liquid was measured.
 カーボンナノチューブ塗布フィルムの全光線透過率88.5%における表面抵抗値は300Ω/□であり、良好な透明導電性を示すことが分かった。 The surface resistance value of the carbon nanotube-coated film at a total light transmittance of 88.5% was 300Ω / □, and it was found that the film had good transparent conductivity.
 また、カーボンナノチューブ分散液の分散性を評価するため、得られたカーボンナノチューブ分散液を1万Gにて10分間遠心処理をした後、90vol%を上清として回収したときの上清部分のカーボンナノチューブ分散液濃度が、遠心処理前のカーボンナノチューブ分散液の濃度の90重量%であった。結果を表2に示す。 In addition, in order to evaluate the dispersibility of the carbon nanotube dispersion liquid, the obtained carbon nanotube dispersion liquid was centrifuged at 10,000 G for 10 minutes, and then the carbon in the supernatant when 90 vol% was recovered as the supernatant. The concentration of the nanotube dispersion liquid was 90% by weight of the concentration of the carbon nanotube dispersion liquid before the centrifugal treatment. The results are shown in Table 2.
 [比較例5]
 比較例4で得られたカーボンナノチューブ含有組成物を用いて実施例6と同様にカーボンナノチューブ分散液を調製し、実施例6と同様に透明導電性および遠心処理後の上清部分のCNT分散液の濃度を測定した。
[Comparative Example 5]
A carbon nanotube dispersion was prepared in the same manner as in Example 6 using the carbon nanotube-containing composition obtained in Comparative Example 4, and the transparent conductive and CNT dispersion in the supernatant after centrifugation as in Example 6. The concentration of was measured.
 カーボンナノチューブ塗布フィルムの全光線透過率88.5%における表面抵抗値は450Ω/□であり、実施例6と比較して透明導電性が悪かった。 The surface resistance value of the carbon nanotube-coated film at a total light transmittance of 88.5% was 450Ω / □, and the transparent conductivity was poor as compared with Example 6.
 また、カーボンナノチューブ分散液の分散性を評価するため、得られたカーボンナノチューブ分散液を1万Gにて10分間遠心処理をした後、90vol%を上清として回収したときの上清部分のカーボンナノチューブ分散液濃度が、遠心処理前のカーボンナノチューブ分散液の濃度の75重量%であった。結果を表2に示す。 In addition, in order to evaluate the dispersibility of the carbon nanotube dispersion liquid, the obtained carbon nanotube dispersion liquid was centrifuged at 10,000 G for 10 minutes, and then the carbon in the supernatant when 90 vol% was recovered as the supernatant. The concentration of the nanotube dispersion liquid was 75% by weight of the concentration of the carbon nanotube dispersion liquid before the centrifugal treatment. The results are shown in Table 2.
 [比較例6]
 参考例1に示すカーボンナノチューブ含有組成物(硝酸による液相酸化処理をしていないサンプル)を用いて実施例6と同様にカーボンナノチューブ分散液を調製し、実施例6と同様に評価を行った。結果は表2に示す。実施例6と比較して、透明導電性および分散性が共に悪かった。
[Comparative Example 6]
A carbon nanotube dispersion was prepared in the same manner as in Example 6 using the carbon nanotube-containing composition (sample not subjected to liquid phase oxidation treatment with nitric acid) shown in Reference Example 1, and evaluated in the same manner as in Example 6. . The results are shown in Table 2. Compared to Example 6, both the transparent conductivity and dispersibility were poor.
 [比較例7]
 攪拌による分散を行わなかった以外は実施例6と同様にカーボンナノチューブ分散液を調製し、実施例6と同様に評価を行った。結果は表2に示す。カーボンナノチューブ含有組成物は分散せず、透明導電性も評価できなかった。
[Comparative Example 7]
A carbon nanotube dispersion was prepared in the same manner as in Example 6 except that dispersion by stirring was not performed, and evaluation was performed in the same manner as in Example 6. The results are shown in Table 2. The carbon nanotube-containing composition was not dispersed, and the transparent conductivity could not be evaluated.
 [比較例8]
 攪拌の代わりに超音波ホモジナイザーを用いてカーボンナノチューブ含有組成物を分散した以外は実施例6と同様にカーボンナノチューブ分散液を調製し、実施例6と同様に評価を行った。結果は表2に示す。カーボンナノチューブ含有組成物の分散性は良好であったが、表面抵抗値は500Ω/□であり、実施例6と比べて悪かった。
[Comparative Example 8]
A carbon nanotube dispersion was prepared in the same manner as in Example 6 except that the carbon nanotube-containing composition was dispersed using an ultrasonic homogenizer instead of stirring, and evaluation was performed in the same manner as in Example 6. The results are shown in Table 2. The dispersibility of the carbon nanotube-containing composition was good, but the surface resistance value was 500Ω / □, which was worse than that of Example 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、高結晶性、純度が高いカーボンナノチューブが高度に分散した分散液を製造することができる。そのようなカーボンナノチューブ分散液を用いることによって高い導電性と高い透明性とを両立した透明導電膜や透明導電性積層体を得ることができる。 According to the present invention, a dispersion in which carbon nanotubes having high crystallinity and high purity are highly dispersed can be produced. By using such a carbon nanotube dispersion liquid, it is possible to obtain a transparent conductive film or a transparent conductive laminate having both high conductivity and high transparency.
11シリンジ
12触媒炭素源溶液
13送液ポンプ
14液体噴霧用キャリアガス流量計
15キャリアガス流量計
16液体噴霧用キャリアガスタンク
17キャリアガスタンク
18キャリアガス導入口
19液体噴霧ノズル
20上部フランジ
21加熱炉
22縦型反応管
23下部フランジ
24回収ボックス
25回収フィルター
26排気ガス
11 Syringe 12 Catalytic carbon source solution 13 Liquid feed pump 14 Carrier gas flow meter for liquid spray 15 Carrier gas flow meter 16 Carrier gas tank for liquid spray 17 Carrier gas tank 18 Carrier gas inlet 19 Liquid spray nozzle 20 Upper flange 21 Heating furnace 22 vertical Type reaction tube 23 lower flange 24 recovery box 25 recovery filter 26 exhaust gas

Claims (11)

  1. ラマン分光分析におけるGバンドとDバンドの強度比(G/D比)が50以上である精製前カーボンナノチューブ含有組成物を、1重量%以上、50重量%以下の濃度の硝酸を用い、加熱還流することにより液相酸化を行う液相酸化工程を含むカーボンナノチューブ含有組成物の製造方法。 Heat-reflux a carbon nanotube-containing composition before purification having a G-band to D-band intensity ratio (G / D ratio) of 50 or more in Raman spectroscopic analysis using nitric acid having a concentration of 1 wt% or more and 50 wt% or less. The manufacturing method of the carbon nanotube containing composition including the liquid phase oxidation process of performing liquid phase oxidation by doing.
  2. 気相流動法でG/D比が50以上である精製前カーボンナノチューブ含有組成物を製造し、次いで前記液相酸化工程を行う請求項1記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to claim 1, wherein a pre-purification carbon nanotube-containing composition having a G / D ratio of 50 or more is produced by a gas phase flow method, and then the liquid phase oxidation step is performed.
  3. 前記気相流動法において、触媒、炭素源およびキャリアガスを縦型反応管に上部から導入し、精製前カーボンナノチューブ含有組成物を製造する請求項2に記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to claim 2, wherein in the gas phase flow method, a catalyst, a carbon source and a carrier gas are introduced into the vertical reaction tube from above to produce a carbon nanotube-containing composition before purification.
  4. 前記加熱還流温度を100℃以上、110℃以下の温度範囲で行う請求項1~3のいずれかに記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to any one of claims 1 to 3, wherein the heating reflux temperature is in a temperature range of 100 ° C or higher and 110 ° C or lower.
  5. 前記液相酸化工程における硝酸濃度が1重量%以上、20重量%未満である請求項1~4のいずれかに記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to any one of claims 1 to 4, wherein the concentration of nitric acid in the liquid phase oxidation step is 1 wt% or more and less than 20 wt%.
  6. 前記液相酸化工程を1時間以上、24時間以下行う請求項1~5のいずれかに記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to any one of claims 1 to 5, wherein the liquid phase oxidation step is performed for 1 hour to 24 hours.
  7. 得られたカーボンナノチューブ含有組成物において、全てのカーボンナノチューブに対する2層カーボンナノチューブの数の割合が60%以上である請求項1~6のいずれかに記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to any one of claims 1 to 6, wherein in the obtained carbon nanotube-containing composition, the ratio of the number of double-walled carbon nanotubes to all the carbon nanotubes is 60% or more.
  8. 請求項1~7に記載の製造方法により得られたカーボンナノチューブ含有組成物を、分散媒と共に撹拌処理を施すことにより、分散媒にカーボンナノチューブ含有組成物を分散させる工程を含むカーボンナノチューブ分散液の製造方法。 A carbon nanotube dispersion liquid comprising a step of dispersing the carbon nanotube-containing composition in the dispersion medium by subjecting the carbon nanotube-containing composition obtained by the production method according to claim 1 to a stirring treatment together with the dispersion medium. Production method.
  9. 前記撹拌処理を施す工程において、分散剤をさらに加えて、撹拌処理を施す請求項8に記載のカーボンナノチューブ分散液の製造方法。 The method for producing a carbon nanotube dispersion according to claim 8, wherein in the step of performing the stirring treatment, a dispersing agent is further added to perform the stirring treatment.
  10. 前記撹拌処理が、容器内で撹拌ブレードを3000回転/分以上50000回転/分以下の回転数で回転させる処理である請求項8または9記載のカーボンナノチューブ分散液の製造方法。 The method for producing a carbon nanotube dispersion liquid according to claim 8 or 9, wherein the stirring treatment is a treatment of rotating a stirring blade in a container at a rotational speed of 3000 rotations / minute or more and 50000 rotations / minute or less.
  11. 以下の(1)~(5)の条件を全て満たすカーボンナノチューブ含有組成物:
    (1)ラマン分光分析におけるGバンドとDバンドの強度比(G/D比)が90以上;
    (2)空気中で10℃/分で昇温した時の熱重量分析で200~950℃の重量減少率が95%以上;
    (3)空気中で10℃/分で昇温したときの熱重量分析で、高温側の燃焼ピークが770℃以上、900℃未満;
    (4)空気中で10℃/分で昇温したときの熱重量分析で、低温側の重量減量分(TG(L))と高温側の重量減量分(TG(H))が、TG(H)/(TG(L)+TG(H))が0.8以上;
    (5)全てのカーボンナノチューブに対する2層カーボンナノチューブの数の割合が60%以上。
    Carbon nanotube-containing composition satisfying all of the following conditions (1) to (5):
    (1) The intensity ratio (G / D ratio) of G band and D band in Raman spectroscopic analysis is 90 or more;
    (2) The weight loss rate at 200 to 950 ° C. is 95% or more by thermogravimetric analysis when the temperature is raised at 10 ° C./min in air;
    (3) In the thermogravimetric analysis when the temperature is raised at 10 ° C./min in air, the combustion peak on the high temperature side is 770 ° C. or higher and lower than 900 ° C .;
    (4) In thermogravimetric analysis when the temperature is increased at 10 ° C./min in air, the weight loss on the low temperature side (TG (L)) and the weight loss on the high temperature side (TG (H)) are TG ( H) / (TG (L) + TG (H)) is 0.8 or more;
    (5) The ratio of the number of double-walled carbon nanotubes to all carbon nanotubes is 60% or more.
PCT/JP2017/030939 2016-08-31 2017-08-29 Process for producing carbon-nanotube-containing composition, process for producing carbon nanotube dispersion, and carbon-nanotube-containing composition WO2018043487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017548085A JP6380687B2 (en) 2016-08-31 2017-08-29 Method for producing carbon nanotube dispersion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016169145 2016-08-31
JP2016-169145 2016-08-31
JP2017113360 2017-06-08
JP2017-113360 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018043487A1 true WO2018043487A1 (en) 2018-03-08

Family

ID=61300983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030939 WO2018043487A1 (en) 2016-08-31 2017-08-29 Process for producing carbon-nanotube-containing composition, process for producing carbon nanotube dispersion, and carbon-nanotube-containing composition

Country Status (2)

Country Link
JP (1) JP6380687B2 (en)
WO (1) WO2018043487A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164403A (en) * 2019-03-27 2020-10-08 東レ株式会社 Graphene dispersion and electrode for secondary battery
CN112299394A (en) * 2019-07-31 2021-02-02 东华理工大学 High-performance carbon nano tube and preparation method thereof
JP6870771B1 (en) * 2020-08-31 2021-05-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical elements, slurry for electrochemical element electrodes, electrodes for electrochemical elements and electrochemical elements
WO2021095600A1 (en) * 2019-11-14 2021-05-20 国立大学法人 奈良先端科学技術大学院大学 Carbon nanotube dispersion and method for producing same
JP2021521085A (en) * 2018-04-12 2021-08-26 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Carbon purification method and carbon products
JP2021134125A (en) * 2020-02-27 2021-09-13 日本ゼオン株式会社 Production method of carbon nanotube dispersion
KR20220122630A (en) 2019-12-27 2022-09-02 니폰 제온 가부시키가이샤 Fibrous carbon nanostructure, and method for producing surface-modified fibrous carbon nanostructure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116022775B (en) * 2022-12-29 2024-02-09 蜂巢能源科技(上饶)有限公司 Carbon nano tube purification method and application

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007622A (en) * 2003-06-17 2005-01-13 Takenaka Seisakusho:Kk Coated article having functional film formed thereon, functional coating agent and method for manufacturing functional coating agent
JP2007529640A (en) * 2004-03-20 2007-10-25 テイジン・トゥワロン・ビー.ブイ. Composite material containing PPTA and nanotubes
JP2009149503A (en) * 2007-11-30 2009-07-09 Toray Ind Inc Method for producing carbon nanotube composition
JP2012116667A (en) * 2010-11-29 2012-06-21 Toray Ind Inc Method for producing composition containing carbon nanotube
WO2013161317A1 (en) * 2012-04-27 2013-10-31 昭和電工株式会社 Method for purifying multilayered carbon nanotubes
JP2015048263A (en) * 2013-08-30 2015-03-16 帝人株式会社 Carbon nanotube assembly containing single walled carbon nanotube and double walled carbon nanotube, and synthesis method thereof
CN104760946A (en) * 2015-03-20 2015-07-08 中国科学院金属研究所 Method for preparing single-wall carbon nanotube fiber by using mixed gaseous carbon source
US20160035499A1 (en) * 2012-02-29 2016-02-04 Yazaki Corporation Purified carbon nanotubes and applications thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5831966B2 (en) * 2011-07-08 2015-12-16 国立研究開発法人産業技術総合研究所 Method for producing a carbon nanotube aggregate in which single-walled carbon nanotubes and double-walled carbon nanotubes are mixed at an arbitrary ratio

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007622A (en) * 2003-06-17 2005-01-13 Takenaka Seisakusho:Kk Coated article having functional film formed thereon, functional coating agent and method for manufacturing functional coating agent
JP2007529640A (en) * 2004-03-20 2007-10-25 テイジン・トゥワロン・ビー.ブイ. Composite material containing PPTA and nanotubes
JP2009149503A (en) * 2007-11-30 2009-07-09 Toray Ind Inc Method for producing carbon nanotube composition
JP2012116667A (en) * 2010-11-29 2012-06-21 Toray Ind Inc Method for producing composition containing carbon nanotube
US20160035499A1 (en) * 2012-02-29 2016-02-04 Yazaki Corporation Purified carbon nanotubes and applications thereof
WO2013161317A1 (en) * 2012-04-27 2013-10-31 昭和電工株式会社 Method for purifying multilayered carbon nanotubes
JP2015048263A (en) * 2013-08-30 2015-03-16 帝人株式会社 Carbon nanotube assembly containing single walled carbon nanotube and double walled carbon nanotube, and synthesis method thereof
CN104760946A (en) * 2015-03-20 2015-07-08 中国科学院金属研究所 Method for preparing single-wall carbon nanotube fiber by using mixed gaseous carbon source

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521085A (en) * 2018-04-12 2021-08-26 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Carbon purification method and carbon products
JP7558810B2 (en) 2018-04-12 2024-10-01 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Carbon nanotube purification method
JP2020164403A (en) * 2019-03-27 2020-10-08 東レ株式会社 Graphene dispersion and electrode for secondary battery
CN112299394A (en) * 2019-07-31 2021-02-02 东华理工大学 High-performance carbon nano tube and preparation method thereof
WO2021095600A1 (en) * 2019-11-14 2021-05-20 国立大学法人 奈良先端科学技術大学院大学 Carbon nanotube dispersion and method for producing same
JPWO2021095600A1 (en) * 2019-11-14 2021-05-20
KR20220122630A (en) 2019-12-27 2022-09-02 니폰 제온 가부시키가이샤 Fibrous carbon nanostructure, and method for producing surface-modified fibrous carbon nanostructure
JP2021134125A (en) * 2020-02-27 2021-09-13 日本ゼオン株式会社 Production method of carbon nanotube dispersion
JP7359037B2 (en) 2020-02-27 2023-10-11 日本ゼオン株式会社 Method for producing carbon nanotube dispersion
JP6870771B1 (en) * 2020-08-31 2021-05-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical elements, slurry for electrochemical element electrodes, electrodes for electrochemical elements and electrochemical elements
WO2022045218A1 (en) * 2020-08-31 2022-03-03 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element, slurry for electrochemical element electrode, electrochemical element electrode, and electrochemical element
JP2022041231A (en) * 2020-08-31 2022-03-11 日本ゼオン株式会社 Conductive material dispersion for electrochemical element, slurry for electrochemical element electrode, electrode for electrochemical element, and electrochemical element

Also Published As

Publication number Publication date
JP6380687B2 (en) 2018-08-29
JPWO2018043487A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6380687B2 (en) Method for producing carbon nanotube dispersion
Shirazi et al. Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: Purification and Functionalization
JP7193212B2 (en) CARBON NANOTUBES, MANUFACTURING METHOD THEREOF, AND CARBON NANOTUBE DISPERSION
JP5228323B2 (en) Method for producing single-walled carbon nanotube
EP2464698B1 (en) Solvent-based and water-based carbon nanotube inks with removable additives
CN101780951B (en) Purification method for obtaining high-purity carbon nano tube
Mallakpour et al. A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly (amide–imide) composites
Das et al. Common wet chemical agents for purifying multiwalled carbon nanotubes
KR102512338B1 (en) Carbon nanotube film and method for producing same
JP2009242145A (en) Production method of carbon nanotube film
Nair et al. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube
US20110204300A1 (en) Method for producing metallic carbon nanotube, carbon nanotube dispersion liquid, carbon nanotube-containing film, and transparent conductive film
JP5585325B2 (en) Carbon nanotube aqueous dispersion
US10995223B2 (en) Fibrous carbon nanostructure dispersion liquid
EP3279138B1 (en) Carbon film and method for producing same
JP2010024127A (en) Nitrated carbon nanotube and method for producing surface-modified carbon nanotube
CN102020267A (en) Purification method of single-wall carbon nano tube
JP6275743B2 (en) Solvent-based and water-based carbon nanotube inks with removable additives
JP2016190772A (en) Carbon film, and method for producing the same
US20170240426A1 (en) Method of functionalizing surfaces of carbon nanomaterials
JP7276625B2 (en) Method for producing boron nitride nanotubes
Ozarkar et al. Improved dispersion of carbon nanotubes in chitosan
JP4761183B2 (en) Carbon nanotube-dispersed polyimide and method for producing the same
JP2015189607A (en) Carbon nanotube dispersion and conductive film
JP6841318B2 (en) Carbon film and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017548085

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846492

Country of ref document: EP

Kind code of ref document: A1