Nothing Special   »   [go: up one dir, main page]

WO2018042859A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2018042859A1
WO2018042859A1 PCT/JP2017/023912 JP2017023912W WO2018042859A1 WO 2018042859 A1 WO2018042859 A1 WO 2018042859A1 JP 2017023912 W JP2017023912 W JP 2017023912W WO 2018042859 A1 WO2018042859 A1 WO 2018042859A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat medium
cooling
heat
evaporator
Prior art date
Application number
PCT/JP2017/023912
Other languages
French (fr)
Japanese (ja)
Inventor
慧伍 佐藤
加藤 吉毅
竹内 雅之
橋村 信幸
功嗣 三浦
憲彦 榎本
賢吾 杉村
アリエル マラシガン
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018042859A1 publication Critical patent/WO2018042859A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Definitions

  • This disclosure relates to a refrigeration cycle apparatus that cools a plurality of devices to be cooled.
  • Patent Document 1 describes a refrigeration cycle apparatus in which two evaporators are connected in parallel with each other in a refrigerant flow.
  • This prior art includes two sets of solenoid valves, an expansion valve, and an evaporator connected in parallel to each other.
  • Each set of solenoid valves, expansion valves and evaporators are arranged in series with each other in the refrigerant flow, and each set of solenoid valves and expansion valves is controlled to distribute the cold heat of the refrigerant to the two evaporators.
  • one of the two evaporators cools the conditioned air by exchanging heat between the conditioned air and the refrigerant.
  • the air blown to the battery is heat-exchanged with the refrigerant to cool the air blown to the battery.
  • Patent Document 2 describes a refrigeration cycle apparatus that cools cooling water by exchanging heat between refrigerant and cooling water in an evaporator.
  • the temperature adjustment object apparatus is cooled by circulating the cooling water cooled by the evaporator to the temperature adjustment object apparatus.
  • the plurality of temperature adjustment target devices are cooled by circulating the cooling water cooled by the evaporator through the plurality of temperature adjustment target devices.
  • Patent Document 1 since the two sets of expansion valve and evaporator are connected in parallel to each other, the refrigerant circuit becomes complicated. In addition, it is difficult to properly control the temperature of the two evaporators by appropriately distributing the refrigerant to the two sets of expansion valves and evaporators. Moreover, in the evaporator with the smaller refrigerant flow rate of the two evaporators, the refrigerant and the refrigerating machine oil tend to stay.
  • the present disclosure simplifies the configuration of a refrigerant circuit, facilitates temperature control, suppresses retention of refrigerant and refrigerating machine oil, and easily satisfies the requirements of a plurality of cooling target devices. With the goal.
  • a refrigeration cycle apparatus includes a compressor that sucks in, compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, and a decompression unit that depressurizes the refrigerant dissipated by the radiator.
  • An evaporator that cools the heat medium by exchanging heat between the refrigerant depressurized by the depressurization unit and the heat medium, a first cooling target device that is cooled by using the cold heat of the refrigerant depressurized by the depressurization unit, and a second A cooling target device, a heat medium circuit that circulates the heat medium cooled by the evaporator only to the first cooling target device among the first cooling target device and the second cooling target device, and heat flowing into the first cooling target device A flow rate adjusting unit for adjusting the flow rate of the medium.
  • the heat medium of the heat medium circuit circulates only to the first cooling target device among the first cooling target device and the second cooling target device and does not circulate to the second cooling target device, the first cooling target device and the first cooling target device 2 It becomes easy to satisfy the requirements of the equipment to be cooled.
  • a refrigeration cycle apparatus 10 shown in FIG. 1 is a vehicular refrigeration cycle apparatus used for adjusting a vehicle interior space to an appropriate temperature.
  • the refrigeration cycle apparatus 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (in other words, an internal combustion engine) and a travel electric motor.
  • the hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle capable of charging power supplied from an external power source (in other words, commercial power source) when the vehicle is stopped to a battery (in other words, an in-vehicle battery) mounted on the vehicle.
  • a battery in other words, an in-vehicle battery mounted on the vehicle.
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle but also for operating the generator.
  • the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery constitutes the refrigeration cycle apparatus 10 as well as the electric motor for traveling. It is supplied to various in-vehicle devices such as electric components.
  • the refrigeration cycle apparatus 10 includes a compressor 11, a condenser 12, a first expansion valve 13, an outdoor heat exchanger 14, a second expansion valve 15, a battery evaporator 16, and a cooler core evaporator 17. It is.
  • a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure is configured.
  • the compressor 11, the condenser 12, the first expansion valve 13, the outdoor heat exchanger 14, the second expansion valve 15, the battery evaporator 16 and the cooler core evaporator 17 are arranged in series with each other in the refrigerant flow. .
  • the battery evaporator 16 and the cooler core evaporator 17 are directly connected without any other components. Therefore, the refrigerant that has passed through the pond evaporator 16 flows directly to the cooler core evaporator 17.
  • the compressor 11 is an electric compressor that is driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle apparatus 10.
  • the compressor 11 may be a variable capacity compressor driven by a belt.
  • the condenser 12 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 20.
  • the high-temperature coolant circuit 20 is a heat medium circuit in which coolant as a heat medium circulates.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the high-temperature cooling water circuit 20.
  • the high temperature side pump 21 is a heat medium pump that sucks and discharges cooling water.
  • the high temperature side pump 21 is an electric pump.
  • the high temperature side pump 21 is a flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the high temperature cooling water circuit 20.
  • the heater core 22 is an air heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the cooling water of the high-temperature coolant circuit 20 and the air blown into the vehicle interior.
  • the cooling water radiates heat to the air blown into the vehicle interior due to a change in sensible heat. That is, in the heater core 22, even if the cooling water dissipates heat to the air blown into the passenger compartment, the cooling water remains in a liquid phase and does not change phase.
  • the first expansion valve 13 is a first decompression unit that decompresses and expands the liquid refrigerant that has flowed out of the condenser 12.
  • the first expansion valve 13 is an electric variable throttle mechanism, and includes a valve body and an electric actuator.
  • the valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage.
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the first expansion valve 13 is composed of a variable throttle mechanism with a fully open function that fully opens the refrigerant passage when the throttle opening is fully opened. That is, the first expansion valve 13 can prevent the refrigerant from depressurizing by fully opening the refrigerant passage.
  • the operation of the first expansion valve 13 is controlled by a control signal output from the control device 40.
  • the outdoor heat exchanger 14 is a refrigerant outdoor air heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the outside air. Outside air is blown to the outdoor heat exchanger 14 by an outdoor blower 18.
  • the outdoor blower 18 is a blower that blows outside air toward the outdoor heat exchanger 14.
  • the outdoor blower 18 is an electric blower that drives a fan with an electric motor.
  • the outdoor heat exchanger 14 and the outdoor blower 18 are disposed in the foremost part of the vehicle. Therefore, traveling wind can be applied to the outdoor heat exchanger 14 when the vehicle is traveling.
  • the outdoor heat exchanger 14 When the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is lower than the temperature of the outside air, the outdoor heat exchanger 14 functions as a heat absorber that causes the refrigerant to absorb the heat of the outside air. When the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is higher than the temperature of the outside air, the outdoor heat exchanger 14 functions as a radiator that radiates the heat of the refrigerant to the outside air.
  • the outdoor heat exchanger 14 has a heat exchange part 141, a liquid storage part 142, and a supercooling part 143.
  • the heat exchanging unit 141 of the outdoor heat exchanger 14 exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the outside air.
  • the liquid storage part 142 of the outdoor heat exchanger 14 is a refrigerant storage part that separates the gas-liquid refrigerant flowing out from the heat exchange part 141 of the outdoor heat exchanger 14 and stores excess refrigerant.
  • the supercooling unit 143 of the outdoor heat exchanger 14 supercools the liquid phase refrigerant by exchanging heat between the liquid refrigerant flowing out of the liquid storage unit 142 of the outdoor heat exchanger 14 and the outside air.
  • the supercooling bypass pipe 19 is connected to the liquid storage part 142 of the outdoor heat exchanger 14.
  • the supercooling bypass pipe 19 is a supercooling section bypass section in which the refrigerant that has flowed through the liquid storage section 142 of the outdoor heat exchanger 14 flows bypassing the supercooling section 143.
  • the supercooling bypass pipe 19 is provided with a supercooling bypass opening / closing valve 19a.
  • the supercooling bypass opening / closing valve 19 a is a supercooling bypass opening adjustment unit that adjusts the flow opening of the supercooling bypass pipe 19.
  • the supercooling bypass opening / closing valve 19 a is an electromagnetic valve and is controlled by the control device 40.
  • the second expansion valve 15 is a second decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the outdoor heat exchanger 14.
  • the second expansion valve 15 is an electric variable throttle mechanism, and includes a valve body and an electric actuator.
  • the valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage.
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the second expansion valve 15 is composed of a variable throttle mechanism with a fully open function that fully opens the refrigerant passage when the throttle opening is fully opened. That is, the second expansion valve 15 can prevent the refrigerant from depressurizing by fully opening the refrigerant passage.
  • the operation of the second expansion valve 15 is controlled by a control signal output from the control device 40.
  • the cooling mode and the heating mode are switched by changing the throttle openings of the first expansion valve 13 and the second expansion valve 15.
  • the cooling mode is a heat dissipation mode in which the refrigerant is radiated by the outdoor heat exchanger 14.
  • the heating mode is an endothermic mode in which the refrigerant is absorbed by the outdoor heat exchanger 14.
  • the first expansion valve 13 and the second expansion valve 15 are operation mode switching units that switch between a cooling mode and a heating mode.
  • the battery evaporator 16 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out of the second expansion valve 15 and the insulating oil of the insulating oil circuit 25.
  • the battery evaporator 16 is disposed upstream of the cooler core evaporator 17 in the refrigerant flow.
  • the low-pressure refrigerant that has flowed out of the battery evaporator 16 flows into the cooler core evaporator 17.
  • the insulating oil in the insulating oil circuit 25 is a fluid as a heat medium.
  • the insulating oil of the insulating oil circuit 25 is an insulating heat medium having insulating properties.
  • a battery evaporator 16 In the insulating oil circuit 25, a battery evaporator 16, an insulating oil pump 26, and a battery 27 are arranged.
  • the insulating oil pump 26 is a heat medium pump that sucks and discharges insulating oil.
  • the insulating oil pump 26 is an electric pump.
  • the insulating oil pump 26 is an insulating oil flow rate adjusting unit that adjusts the flow rate of the insulating oil circulating in the insulating oil circuit 25.
  • the battery 27 is an in-vehicle device mounted on the vehicle.
  • the battery 27 is a heat-generating device that generates heat when activated.
  • the battery 27 has an insulating oil passage through which insulating oil flows, and is a device to be cooled that is cooled by the insulating oil.
  • the required cooling temperature of the battery 27 is, for example, about 10 ° C. to 40 ° C.
  • the insulating oil absorbs heat by sensible heat change. That is, in the battery 27, even if the insulating oil absorbs heat, the insulating oil remains in a liquid phase and does not change in phase. Since the insulating oil has an insulating property, the insulating property inside the battery 27 can be maintained even if the insulating oil is passed through the battery 27 in order to cool the battery 27.
  • the cooler core evaporator 17 is disposed downstream of the battery evaporator 16 in the refrigerant flow.
  • the cooler core evaporator 17 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out of the battery evaporator 16 and the cooling water of the low-temperature cooling water circuit 30.
  • the cooler core evaporator 17 is a first evaporator, and the battery evaporator 16 is a second evaporator.
  • the gas-phase refrigerant evaporated in the cooler core evaporator 17 is sucked into the compressor 11 and compressed.
  • the low-temperature cooling water circuit 30 is a heat medium circuit in which cooling water as a heat medium circulates.
  • the cooling water of the low-temperature cooling water circuit 30 is a first heat medium
  • the insulating oil of the insulating oil circuit 25 is a second heat medium.
  • the low-temperature coolant circuit 30 is a first heat medium circuit
  • the insulating oil circuit 25 is a second heat medium circuit.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the low-temperature cooling water circuit 30.
  • a cooler core evaporator 17 In the low-temperature cooling water circuit 30, a cooler core evaporator 17, a low temperature side pump 31, and a cooler core 32 are arranged.
  • the low temperature side pump 31 is a heat medium pump that sucks and discharges cooling water.
  • the low temperature side pump 31 is an electric pump.
  • the low temperature side pump 31 is a flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the low temperature cooling water circuit 30.
  • the low temperature side pump 31 is a first flow rate adjusting unit, and the insulating oil pump 26 is a second flow rate adjusting unit.
  • the cooler core 32 is an air cooling heat exchanger that cools the air blown into the vehicle interior by exchanging heat between the cooling water of the low-temperature cooling water circuit 30 and the air blown into the vehicle interior.
  • the cooling water absorbs heat from the air blown into the vehicle interior due to a change in sensible heat. That is, in the cooler core 32, even if the cooling water absorbs heat from the air blown into the passenger compartment, the cooling water remains in a liquid phase and does not change phase.
  • the cooler core 32 is a device to be cooled that is cooled by cooling water.
  • the cooler core 32 is a first cooling target device, and the battery 27 is a second cooling target device.
  • the required cooling temperature of the cooler core 32 is, for example, about 0 ° C. That is, the required cooling temperature is different between the battery 27 and the cooler core 32 which are the devices to be cooled. Specifically, the battery 27 has a higher required cooling temperature than the cooler core 32, and the cooler core 32 has a lower required cooling temperature than the battery 27.
  • the cooler core 32 and the heater core 22 are accommodated in a casing (hereinafter referred to as an air conditioning casing) of an indoor air conditioning unit (not shown).
  • the air conditioning casing is an air passage forming member that forms an air passage.
  • the heater core 22 is disposed on the air flow downstream side of the cooler core 32 in the air passage in the air conditioning casing.
  • the air conditioning casing is disposed in the vehicle interior space.
  • an inside / outside air switching box (not shown) and an indoor fan (not shown) are arranged.
  • the inside / outside air switching box is an inside / outside air switching unit that switches between introduction of inside air and outside air into an air passage in the air conditioning casing.
  • the indoor blower sucks and blows the inside air and the outside air introduced into the air passage in the air conditioning casing through the inside / outside air switching box.
  • An air mix door (not shown) is disposed between the cooler core 32 and the heater core 22 in the air passage in the air conditioning casing.
  • the air mix door adjusts the air volume ratio between the cool air that has passed through the cooler core 32 and the cool air that flows into the heater core 22 and the cool air that bypasses the heater core 22 and flows.
  • the air mix door is a rotary door that is rotatably supported with respect to the air conditioning casing. By adjusting the opening position of the air mix door, the temperature of the conditioned air blown from the air conditioning casing into the vehicle compartment can be adjusted to a desired temperature.
  • the air mix door is driven by a servo motor. The operation of the servo motor is controlled by the control device 40.
  • bypass pipe 35 One end of a bypass pipe 35 is connected to the refrigerant outlet side of the outdoor heat exchanger 14 and the refrigerant inlet side of the second expansion valve 15.
  • the bypass pipe 35 is an evaporator bypass section in which the refrigerant flowing out of the outdoor heat exchanger 14 flows by bypassing the second expansion valve 15, the battery evaporator 16, and the cooler core evaporator 17.
  • the other end of the bypass pipe 35 is connected to the refrigerant outlet side of the cooler core evaporator 17 and the refrigerant suction side of the compressor 11.
  • the bypass pipe 35 is provided with a bypass opening / closing valve 36.
  • the bypass opening / closing valve 36 is a bypass opening adjustment unit that adjusts the opening of the bypass pipe 35.
  • the bypass opening / closing valve 36 is an electromagnetic valve and is controlled by the control device 40.
  • the control device 40 has a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the control device 40 performs various calculations and processes based on a control program stored in the ROM.
  • Various devices to be controlled are connected to the output side of the control device 40.
  • the control device 40 is a control unit that controls operations of various devices to be controlled.
  • the control target devices controlled by the control device 40 include the compressor 11, the first expansion valve 13, the second expansion valve 15, the outdoor blower 18, the supercooling bypass on-off valve 19a, the high temperature side pump 21, the insulating oil pump 26, and the low temperature.
  • Software and hardware for controlling the electric motor of the compressor 11 in the control device 40 is a refrigerant discharge capacity control unit.
  • Software and hardware for controlling the first expansion valve 13 in the control device 40 is a first throttle control unit.
  • Software and hardware for controlling the second expansion valve 15 in the control device 40 is a second throttle control unit.
  • Software and hardware for controlling the outdoor blower 18 in the control device 40 are an outside air blowing capacity control unit.
  • Software and hardware for controlling the supercooling bypass opening / closing valve 19a in the control device 40 is a bypass opening control unit.
  • the software and hardware for controlling the high temperature side pump 21 in the control device 40 is a high temperature side heat medium flow control unit.
  • Software and hardware for controlling the insulating oil pump 26 in the control device 40 is an insulating heat medium flow control unit.
  • Software and hardware for controlling the low temperature side pump 31 in the control device 40 is a low temperature side heat medium flow control unit.
  • the input side of the control device 40 is connected to various air conditioning control sensors such as an inside air temperature sensor (not shown), an outside air temperature sensor (not shown), and a solar radiation amount sensor (not shown).
  • the inside air temperature sensor detects the passenger compartment temperature Tr.
  • the outside air temperature sensor detects the outside air temperature Tam.
  • the solar radiation amount sensor detects the solar radiation amount Ts in the passenger compartment.
  • control switches are connected to the input side of the control device 40.
  • Various operation switches are provided on an operation panel (not shown) and are operated by a passenger.
  • the operation panel is arranged near the instrument panel at the front of the passenger compartment. Operation signals from various operation switches are input to the control device 40.
  • the various operation switches are air conditioner switches, temperature setting switches, etc.
  • the air conditioner switch sets whether to cool the air in the indoor air conditioning unit.
  • the temperature setting switch sets a set temperature in the passenger compartment.
  • the control device 40 switches the air conditioning mode to either the heating mode or the cooling mode based on the target blowing temperature TAO or the like.
  • the target blowing temperature TAO is the target temperature of the blowing air blown out into the passenger compartment.
  • the control device 40 calculates the target blowing temperature TAO based on the following mathematical formula.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C
  • Tset is the vehicle interior set temperature set by the temperature setting switch on the operation panel
  • Tr is the inside air temperature detected by the inside air temperature sensor
  • Tam is the outside air temperature detected by the outside air temperature sensor
  • Ts is the solar radiation amount sensor. Is the amount of solar radiation detected by.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • the cooling mode is a first mode in which the outdoor heat exchanger 14 releases heat from the refrigerant.
  • the heating mode is a second mode in which the outdoor heat exchanger 14 absorbs heat from the refrigerant.
  • the control device 40 sets the first expansion valve 13 to a fully open state and sets the second expansion valve 15 to a throttle state. In the cooling mode, the control device 40 stops the high temperature side pump 21 and drives the low temperature side pump 31.
  • the control device 40 determines the operating states of the various control devices connected to the control device 40 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the air mix door closes the air passage of the heater core 22 so that the total flow rate of the blown air that has passed through the cooler core 32 bypasses the heater core 22 and flows. It is determined.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12 as indicated by a point a1 in FIG.
  • the cooling water of the high temperature cooling water circuit 20 does not circulate in the condenser 12. Therefore, the refrigerant that has flowed into the condenser 12 flows out of the condenser 12 with almost no heat exchange with the cooling water in the high-temperature cooling water circuit 20.
  • the refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13. At this time, since the first expansion valve 13 fully opens the refrigerant passage, the refrigerant flowing out of the condenser 12 flows into the outdoor heat exchanger 14 without being depressurized by the first expansion valve 13.
  • the refrigerant flowing into the outdoor heat exchanger 14 dissipates heat to the outside air blown from the outdoor blower 18 by the outdoor heat exchanger 14.
  • the control device 40 closes the bypass on-off valve 36.
  • the refrigerant flowing out of the outdoor heat exchanger 14 flows into the second expansion valve 15 and is depressurized until it becomes a low-pressure refrigerant at the second expansion valve 15. Inflated.
  • the low-pressure refrigerant decompressed by the second expansion valve 15 flows into the battery evaporator 16, and absorbs heat from the insulating oil in the insulating oil circuit 25 to evaporate. Thereby, since the insulating oil of the insulating oil circuit 25 is cooled, the battery 27 is cooled.
  • the low-pressure refrigerant that has flowed out of the battery evaporator 16 flows into the cooler core evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, since the cooling water of the low-temperature cooling water circuit 30 is cooled, the air is cooled by the cooler core 32.
  • the refrigerant flowing out of the cooler core evaporator 17 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
  • the refrigerant condensed in the heat exchange unit 141 is gas-liquid separated in the liquid storage unit 142, and excess liquid phase refrigerant is stored.
  • the control device 40 closes the supercooling bypass opening / closing valve 19a. As a result, the liquid-phase refrigerant flowing out of the liquid storage unit 142 flows through the supercooling unit 143 and is supercooled.
  • the low-pressure refrigerant absorbs heat from the insulating oil in the insulating oil circuit 25 and the insulating oil in the insulating oil circuit 25 absorbs heat from the battery 27 in the battery evaporator 16.
  • the low-pressure refrigerant absorbs heat from the cooling water in the low-temperature cooling water circuit 30 in the cooler core evaporator 17, and the cooling water in the low-temperature cooling water circuit 30 is cooled in the cooler core 32 from the air blown into the vehicle interior. It absorbs heat. Therefore, in the cooling mode, the battery 27 can be cooled and the vehicle interior can be cooled.
  • the refrigerant pressure in the battery evaporator 16 and the cooler core evaporator 17 decreases due to pressure loss. It becomes lower than the refrigerant pressure in the evaporator 16 for use.
  • the cooler core 32 can be set to a temperature lower than that of the battery 27.
  • the control device 40 adjusts the flow rate of the insulating oil in the insulating oil circuit 25 with the insulating oil pump 26. Thereby, the temperature of the battery 27 can be appropriately adjusted to the required cooling temperature (for example, about 10 to 40 ° C.).
  • the control device 40 adjusts the flow rate of the cooling water in the low temperature cooling water circuit 30 with the low temperature side pump 31. Thereby, the temperature of the air cooled by the cooler core 32 can be appropriately adjusted to the required cooling temperature, for example, about 0 ° C.
  • Heating mode In the heating mode, the control device 40 brings the first expansion valve 13 into a throttled state and the second expansion valve 15 into a fully opened state. In the heating mode, the control device 40 drives the high temperature side pump 21 and stops the low temperature side pump 31.
  • the control device 40 determines the operating states of the various control devices connected to the control device 40 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the control signal output to the first expansion valve 13 is determined so that the supercooling degree of the refrigerant flowing into the first expansion valve 13 approaches a predetermined target supercooling degree.
  • the target degree of supercooling is determined so that the coefficient of performance of the cycle (so-called COP) approaches the maximum value.
  • the air mix door fully opens the air passage of the heater core 22 so that the total flow rate of the blown air that has passed through the cooler core 32 passes through the air passage of the heater core 22. To be determined.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12 and exchanges heat with the cooling water in the high-temperature cooling water circuit 20 to dissipate heat. Thereby, the cooling water of the high temperature cooling water circuit 20 is heated.
  • the refrigerant flowing out of the condenser 12 flows into the first expansion valve 13 and is depressurized until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the outdoor heat exchanger 14 and absorbs heat from the outside air blown from the outdoor blower 18. Evaporate.
  • the control device 40 opens the bypass opening / closing valve 36.
  • the refrigerant flowing out of the outdoor heat exchanger 14 bypasses the second expansion valve 15, the battery evaporator 16, and the cooler core evaporator 17, thereby compressing the compressor. 11 flows to the suction side and is compressed again by the compressor 11.
  • the control device 40 opens the supercooling bypass opening / closing valve 19a. Thereby, since the refrigerant
  • coolant can be reduced.
  • the condenser 12 radiates heat from the high-pressure refrigerant to the cooling water of the high-temperature cooling water circuit 20, and the heater core 22 converts the cooling water of the high-temperature cooling water circuit 20 into the air blown into the vehicle interior. Dissipate heat. Thereby, a vehicle interior can be heated.
  • the refrigeration cycle apparatus of the present embodiment includes a cooler core 32, a battery 27, a low-temperature cooling water circuit 30, and a low-temperature side pump 31.
  • the cooler core 32 and the battery 27 are cooled using the cold heat of the refrigerant decompressed by the second expansion valve 15.
  • the low-temperature cooling water circuit 30 circulates the cooling water cooled by the cooler core evaporator 17 only to the cooler core 32 of the cooler core 32 and the battery 27.
  • the low temperature side pump 31 adjusts the flow rate of the cooling water flowing into the cooler core 32.
  • the cooler core 32 and the battery 27 can be cooled without distributing the refrigerant, and the temperature of the cooler core 32 can be controlled by the low temperature side pump 31. Therefore, compared with the prior art disclosed in Patent Document 1 in which the refrigerant is distributed to the two evaporators, the refrigerant circuit can be simplified, temperature control can be facilitated, and stagnation of the refrigerant and refrigerating machine oil can be suppressed.
  • the cooling water of the low-temperature cooling water circuit 30 circulates only to the cooler core 32 of the cooler core 32 and the battery 27 and does not circulate to the battery 27. Therefore, requirements of the cooler core 32 and the battery 27 (for example, required cooling temperature, insulation, etc.) It is easy to satisfy (request).
  • the refrigeration cycle apparatus of the present embodiment includes an insulating oil circuit 25 and an insulating oil pump 26.
  • the insulating oil circuit 25 circulates the insulating oil cooled by the battery evaporator 16 to the battery 27.
  • the insulating oil pump 26 adjusts the flow rate of the insulating oil flowing into the battery 27.
  • the battery evaporator 16 and the cooler core evaporator 17 are arranged in series with each other in the refrigerant flow.
  • the temperature of the battery 27 can be easily adjusted by the insulating oil pump 26 adjusting the flow rate of the insulating oil.
  • the battery evaporator 16 is disposed upstream of the cooler core evaporator 17 in the refrigerant flow. According to this, since the refrigerant pressure in the battery evaporator 16 becomes higher than the refrigerant pressure in the cooler core evaporator 17 due to the pressure loss in the battery evaporator 16 and the cooler core evaporator 17, in the battery evaporator 16 The refrigerant temperature becomes higher than the refrigerant temperature in the cooler core evaporator 17. Therefore, the temperature zone of the battery 27 can be made higher than the temperature zone of the cooler core 32 in accordance with the respective required cooling temperatures of the battery 27 and the cooler core 32.
  • the battery 27 has an insulating oil passage through which the insulating oil flows, and is cooled by the insulating oil.
  • the battery 50 is placed in contact with the battery 50 so as to conduct heat and is cooled by the battery cooler 50.
  • the battery cooler 50 is an evaporator that evaporates low-pressure refrigerant by causing the low-pressure refrigerant flowing out of the second expansion valve 15 to absorb heat from the battery 27.
  • the battery cooler 50 is disposed upstream of the cooler core evaporator 17 in the refrigerant flow.
  • the battery cooler 50 is directly connected to the cooler core evaporator 17 without any other components. Therefore, the low-pressure refrigerant flowing out from the battery cooler 50 flows into the cooler core evaporator 17.
  • the battery cooler 50 is a refrigerant circulation device through which the low-pressure refrigerant that has flowed out of the second expansion valve 15 circulates.
  • the battery cooler 50 is a device to be cooled that is cooled by the low-pressure refrigerant that has flowed out of the second expansion valve 15.
  • the battery cooler 50 is a second cooling target device.
  • the battery cooler 50 is an in-vehicle device cooler for cooling the in-vehicle device.
  • the refrigerant pressure decreases due to pressure loss, so the refrigerant pressure in the cooler core evaporator 17 is lower than the refrigerant pressure in the battery cooler 50.
  • the cooler core 32 can be set to a temperature lower than that of the battery 27.
  • a battery bypass pipe 51 is connected to the refrigerant outlet side of the second expansion valve 15 and the refrigerant inlet side of the battery cooler 50.
  • the other end of the battery bypass pipe 51 is connected to the refrigerant outlet side of the battery cooler 50 and the refrigerant inlet side of the cooler core evaporator 17.
  • the battery bypass pipe 51 is a battery bypass section in which the refrigerant flowing out from the second expansion valve 15 flows by bypassing the battery cooler 50.
  • a battery bypass opening / closing valve 52 is disposed in the battery bypass pipe 51.
  • the battery bypass opening / closing valve 52 is a battery bypass opening degree adjusting unit that adjusts the opening degree of the battery bypass pipe 51.
  • the battery bypass on-off valve 52 is an electromagnetic valve and is controlled by the control device 40.
  • the battery bypass pipe 51 and the battery bypass on / off valve 52 are a second flow rate adjusting unit that adjusts the flow rate of the insulating oil flowing into the battery 27. That is, when the battery bypass opening / closing valve 52 increases the opening degree of the battery bypass pipe 51, the flow rate of the refrigerant flowing through the battery cooler 50 is reduced. Therefore, the battery bypass opening / closing valve 52 can adjust the temperature of the battery cooler 50 by adjusting the opening degree of the battery bypass pipe 51, and thus the temperature of the battery 27 can be adjusted.
  • the refrigeration cycle apparatus of the present embodiment includes a battery cooler 50.
  • the battery cooler 50 is in contact with the battery 27 so as to conduct heat, and the refrigerant flowing out of the second expansion valve 15 flows.
  • the battery cooler 50 and the cooler core evaporator 17 are arranged in series with each other in the flow of the refrigerant. According to this, the battery 27 can be cooled as in the first embodiment.
  • the battery cooler 50 is disposed upstream of the cooler core evaporator 17 in the refrigerant flow.
  • the refrigerant pressure in the battery cooler 50 becomes higher than the refrigerant pressure in the cooler core evaporator 17 due to the pressure loss in the battery cooler 50 and the cooler core evaporator 17, the refrigerant temperature in the battery cooler 50 is increased. It becomes higher than the refrigerant temperature in the cooler core evaporator 17. Therefore, the temperature zone of the battery 27 can be made higher than the temperature zone of the cooler core 32 in accordance with the respective required cooling temperatures of the battery 27 and the cooler core 32.
  • the battery bypass pipe 51 forms a refrigerant flow path through which the refrigerant bypasses the battery cooler 50. Thereby, the temperature of the battery 27 can be adjusted favorably.
  • the insulating oil of the insulating oil circuit 25 is cooled by the low-pressure refrigerant of the refrigeration cycle apparatus 10, but in this embodiment, as shown in FIG. Cooled by the cooling water of the low-temperature cooling water circuit 30.
  • the refrigeration cycle apparatus 10 of the present embodiment includes an insulating oil cooling heat exchanger 55 instead of the battery evaporator 16 of the first embodiment.
  • the heat exchanger 55 for cooling the insulating oil cools the insulating oil of the insulating oil circuit 25 (in other words, the second heat medium) by exchanging heat between the cooling water of the low-temperature cooling water circuit 30 and the insulating oil of the insulating oil circuit 25.
  • the second heat medium cooling heat exchanger is the heat medium.
  • the cooling water absorbs heat from the insulating oil by sensible heat change. That is, in the heat exchanger 55 for cooling the insulating oil, even if the cooling water absorbs heat from the insulating oil, the cooling water remains in a liquid phase and does not change phase.
  • the insulating oil in the insulating oil circuit 25 cooled by the insulating oil cooling heat exchanger 55 flows through the battery 27, whereby the battery 27 is cooled.
  • the insulating oil cooling heat exchanger 55 is arranged on the downstream side of the cooler core 32 in the flow of the cooling water in the low-temperature cooling water circuit 30.
  • the cooling water absorbs heat by sensible heat change, so that the cooling water temperature in the insulating oil cooling heat exchanger 55 is higher than the cooling water temperature in the cooler core 32. Therefore, the temperature zone of the battery 27 can be made higher than the temperature zone of the cooler core 32 in accordance with the respective required cooling temperatures of the battery 27 and the cooler core 32.
  • a cooler core bypass pipe 56 is connected to the cooling water outlet side of the cooler core evaporator 17 and the cooling water inlet side of the cooler core 32.
  • the other end of the cooler core bypass pipe 56 is connected to the coolant outlet side of the cooler core 32 and to the coolant inlet side of the heat exchanger 55 for cooling the insulating oil.
  • the cooler core bypass pipe 56 is a cooler core bypass section in which the cooling water flowing out from the cooler core evaporator 17 flows by bypassing the cooler core 32.
  • a cooler core bypass opening / closing valve 57 is arranged in the cooler core bypass pipe 56.
  • the cooler core bypass opening / closing valve 57 is a cooler core bypass opening degree adjusting unit that adjusts the opening degree of the cooler core bypass pipe 56.
  • the cooler core bypass opening / closing valve 57 is an electromagnetic valve and is controlled by the control device 40.
  • the cooler core bypass pipe 56 and the cooler core bypass opening / closing valve 57 are a first flow rate adjusting unit that adjusts the flow rate of the cooling water flowing into the cooler core 32. That is, when the cooler core bypass opening / closing valve 57 increases the opening degree of the cooler core bypass pipe 56, the flow rate of the refrigerant flowing through the cooler core 32 decreases. Therefore, the temperature of the cooler core 32 can be adjusted by the cooler core bypass opening / closing valve 57 adjusting the opening degree of the cooler core bypass pipe 56.
  • the refrigeration cycle apparatus of the present embodiment includes a heat exchanger 55 for insulating oil cooling and an insulating oil circuit 25.
  • the heat exchanger 55 for cooling the insulating oil cools the insulating oil by exchanging heat between the cooling water and the insulating oil.
  • the insulating oil circuit 25 circulates the insulating oil cooled by the insulating oil cooling heat exchanger 55 to the battery 27. Thereby, the battery 27 can be cooled similarly to the said embodiment.
  • the insulating oil cooling heat exchanger 55 is disposed downstream of the cooler core 32 in the flow of the cooling water. According to this, when the cooling water exchanges heat between the cooler core 32 and the insulating oil cooling heat exchanger 55, the cooling water temperature in the insulating oil cooling heat exchanger 55 becomes higher than the cooling water temperature in the cooler core 32. Therefore, the temperature zone of the battery 27 can be made higher than the temperature zone of the cooler core 32 in accordance with the respective required cooling temperatures of the battery 27 and the cooler core 32.
  • the cooler core bypass pipe 56 forms a cooling water flow path in which the cooling water flows through the cooler core 32 in the low-temperature cooling water circuit 30.
  • an insulating oil pump 26 is provided.
  • the insulating oil pump 26 adjusts the flow rate of the insulating oil flowing into the battery 27. Thereby, the temperature of the battery 27 can be adjusted favorably.
  • the battery 27 is cooled with insulating oil, but may be cooled with various insulating media.
  • the battery 27 may be cooled with an insulating heat medium such as a fluorine-based inert liquid.
  • a battery cooling heat exchanger may be disposed in the refrigeration cycle apparatus 10 instead of the battery 27 of each of the above embodiments.
  • the battery cooling heat exchanger is an in-vehicle device cooler for cooling a battery (in other words, an in-vehicle device).
  • a battery-cooling heat exchanger is a heat exchanger that cools air blown to a battery by exchanging heat between air blown to the battery and insulating oil.
  • the cooling target devices are the battery 27 and the cooler core 32, but the cooling target devices may be various in-vehicle devices such as an inverter and an intercooler.
  • the inverter is a power conversion unit that converts DC power supplied from the battery into AC power and outputs it to the traveling motor.
  • the intercooler is a heat exchanger that cools the engine intake air by exchanging heat between the engine intake air that has been compressed by the supercharger and has reached a high temperature and the coolant.
  • cooling water is used as the heat medium, but various media such as oil may be used as the heat medium.
  • Nano fluid may be used as the heat medium.
  • a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
  • the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
  • liquidity of can be acquired.
  • Such operational effects vary depending on the particle configuration, particle shape, blending ratio, and additional substances of the nanoparticles.
  • the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
  • the heat capacity of the heat medium can be increased, it is possible to increase the amount of cold stored heat due to sensible heat of the heat medium itself.
  • the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
  • the aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
  • Nanoparticles containing any of Au, Ag, Cu, and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT, graphene, graphite core-shell nanoparticle, Au nanoparticle-containing CNT, and the like can be used as the constituent atoms of the nanoparticle.
  • the CNT is a carbon nanotube.
  • the graphite core-shell nanoparticle is a particle body having a structure such as a carbon nanotube surrounding the atom.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and various refrigerants may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A refrigeration cycle device comprises: a compressor (11); a radiator (14) that dissipates heat from refrigerant delivered from the compressor (11); a pressure reducing unit (15) that reduces the pressure of the refrigerant for which the heat has been dissipated by the radiator (14); an evaporator (17) that cools a heating medium by exchanging heat between the heating medium and the refrigerant for which the pressure has been reduced by the pressure reducing unit (15); a first machine to be cooled (32) and a second machine to be cooled (27) that are cooled by using the cold of the refrigerant for which the pressure has been reduced by the pressure reducing unit (15); a heating medium circuit (30) that circulates the heating medium cooled by the evaporator (17) to only the first machine to be cooled (32) of the first machine to be cooled (32) and the second machine to be cooled (27); and a flow rate adjusting unit (31) that adjusts the flow rate of the heating medium flowing to the first machine to be cooled (32).

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年8月29日に出願された日本特許出願2016-166594号を基にしている。 This application is based on Japanese Patent Application No. 2016-166594 filed on Aug. 29, 2016, the disclosure of which is incorporated herein by reference.
  本開示は、複数個の冷却対象機器を冷却する冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle apparatus that cools a plurality of devices to be cooled.
  従来、特許文献1には、2つの蒸発器が冷媒流れにおいて互いに並列に接続された冷凍サイクル装置が記載されている。この従来技術では、互いに並列に接続された2組の電磁弁、膨張弁および蒸発器を備えている。各組の電磁弁、膨張弁および蒸発器は、冷媒流れにおいて互いに直列に配置されており、各組の電磁弁および膨張弁を制御することによって、2つの蒸発器に冷媒の冷熱を分配する。 Conventionally, Patent Document 1 describes a refrigeration cycle apparatus in which two evaporators are connected in parallel with each other in a refrigerant flow. This prior art includes two sets of solenoid valves, an expansion valve, and an evaporator connected in parallel to each other. Each set of solenoid valves, expansion valves and evaporators are arranged in series with each other in the refrigerant flow, and each set of solenoid valves and expansion valves is controlled to distribute the cold heat of the refrigerant to the two evaporators.
  この従来技術では、2つの蒸発器のうち一方の蒸発器では、空調空気を冷媒と熱交換させて空調空気を冷却する。2つの蒸発器のうち他方の蒸発器では、電池へ送風される空気を冷媒と熱交換させて電池へ送風される空気を冷却する。 In this conventional technology, one of the two evaporators cools the conditioned air by exchanging heat between the conditioned air and the refrigerant. In the other evaporator of the two evaporators, the air blown to the battery is heat-exchanged with the refrigerant to cool the air blown to the battery.
  従来、特許文献2には、蒸発器において冷媒と冷却水とを熱交換させて冷却水を冷却する冷凍サイクル装置が記載されている。この従来技術では、蒸発器で冷却された冷却水を温度調整対象機器に流通させることによって温度調整対象機器を冷却する。温度調整対象機器が複数個設けられている場合、蒸発器で冷却された冷却水を複数個の温度調整対象機器に流通させることによって複数個の温度調整対象機器を冷却する。 Conventionally, Patent Document 2 describes a refrigeration cycle apparatus that cools cooling water by exchanging heat between refrigerant and cooling water in an evaporator. In this prior art, the temperature adjustment object apparatus is cooled by circulating the cooling water cooled by the evaporator to the temperature adjustment object apparatus. When a plurality of temperature adjustment target devices are provided, the plurality of temperature adjustment target devices are cooled by circulating the cooling water cooled by the evaporator through the plurality of temperature adjustment target devices.
特開2003-279180号公報JP 2003-279180 A 特開2014-218237号公報JP 2014-218237 A
  上記特許文献1の従来技術では、2組の膨張弁および蒸発器が互いに並列に接続されているので、冷媒回路が複雑になる。また、2組の膨張弁および蒸発器に冷媒を適切に分配して2つの蒸発器の温度を適切に制御するのが困難である。また、2つの蒸発器のうち冷媒流量が少なくなる方の蒸発器では、冷媒や冷凍機油が滞留しやすい。 In the prior art disclosed in Patent Document 1, since the two sets of expansion valve and evaporator are connected in parallel to each other, the refrigerant circuit becomes complicated. In addition, it is difficult to properly control the temperature of the two evaporators by appropriately distributing the refrigerant to the two sets of expansion valves and evaporators. Moreover, in the evaporator with the smaller refrigerant flow rate of the two evaporators, the refrigerant and the refrigerating machine oil tend to stay.
  上記特許文献2の従来技術では、複数個の温度調整対象機器に同一の冷却水を流通させるので、複数個の温度調整対象機器の要求、例えば温度帯や絶縁性といった要求が互いに異なる場合、これらの要求を同時に満足させるのが困難である。 In the prior art of the above-mentioned Patent Document 2, since the same cooling water is circulated through a plurality of temperature adjustment target devices, if the requirements for a plurality of temperature adjustment target devices, for example, temperature zones and insulation requirements are different from each other, It is difficult to satisfy these requirements simultaneously.
  本開示は上記点に鑑みて、冷媒回路の構成を簡素化し、温度制御を容易化し、冷媒や冷凍機油の滞留を抑制し、複数個の冷却対象機器の要求を容易に満足できるようにすることを目的とする。 In view of the above points, the present disclosure simplifies the configuration of a refrigerant circuit, facilitates temperature control, suppresses retention of refrigerant and refrigerating machine oil, and easily satisfies the requirements of a plurality of cooling target devices. With the goal.
 本開示の一例による冷凍サイクル装置は、冷媒を吸入して圧縮し吐出する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器で放熱された冷媒を減圧させる減圧部と、減圧部で減圧された冷媒と熱媒体とを熱交換させて熱媒体を冷却させる蒸発器と、減圧部で減圧された冷媒の冷熱を利用して冷却される第1冷却対象機器および第2冷却対象機器と、蒸発器で冷却された熱媒体を第1冷却対象機器および第2冷却対象機器のうち第1冷却対象機器のみに循環させる熱媒体回路と、第1冷却対象機器に流入する熱媒体の流量を調整する流量調整部とを備える。 A refrigeration cycle apparatus according to an example of the present disclosure includes a compressor that sucks in, compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, and a decompression unit that depressurizes the refrigerant dissipated by the radiator. An evaporator that cools the heat medium by exchanging heat between the refrigerant depressurized by the depressurization unit and the heat medium, a first cooling target device that is cooled by using the cold heat of the refrigerant depressurized by the depressurization unit, and a second A cooling target device, a heat medium circuit that circulates the heat medium cooled by the evaporator only to the first cooling target device among the first cooling target device and the second cooling target device, and heat flowing into the first cooling target device A flow rate adjusting unit for adjusting the flow rate of the medium.
  これによると、第1冷却対象機器および第2冷却対象機器のうち第1冷却対象機器の温度を、流量調整部によって制御できるので、2つの蒸発器に冷媒を分配する上記特許文献1の従来技術と比較して、冷媒回路の構成を簡素化でき、温度制御を容易化でき、冷媒や冷凍機油の滞留を抑制できる。 According to this, since the temperature of the first cooling target device among the first cooling target device and the second cooling target device can be controlled by the flow rate adjusting unit, the prior art of the above-described Patent Document 1 that distributes the refrigerant to two evaporators. In comparison with the above, the configuration of the refrigerant circuit can be simplified, the temperature control can be facilitated, and the retention of refrigerant and refrigerating machine oil can be suppressed.
  しかも、熱媒体回路の熱媒体は、第1冷却対象機器および第2冷却対象機器のうち第1冷却対象機器のみに循環し、第2冷却対象機器に循環しないので、第1冷却対象機器および第2冷却対象機器の要求を満足させることが容易になる。 In addition, since the heat medium of the heat medium circuit circulates only to the first cooling target device among the first cooling target device and the second cooling target device and does not circulate to the second cooling target device, the first cooling target device and the first cooling target device 2 It becomes easy to satisfy the requirements of the equipment to be cooled.
第1実施形態における冷凍サイクル装置の全体構成図である。It is a whole lineblock diagram of the refrigerating cycle device in a 1st embodiment. 第1実施形態における冷凍サイクル装置の冷房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the air_conditioning | cooling mode of the refrigerating-cycle apparatus in 1st Embodiment. 第1実施形態における冷凍サイクル装置の暖房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the heating mode of the refrigeration cycle apparatus in 1st Embodiment. 第2実施形態における冷凍サイクル装置の全体構成図である。It is a whole block diagram of the refrigerating-cycle apparatus in 2nd Embodiment. 第3実施形態における冷凍サイクル装置の全体構成図である。It is a whole block diagram of the refrigerating-cycle apparatus in 3rd Embodiment.
  以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
  (第1実施形態)
 図1に示す冷凍サイクル装置10は、車室内空間を適切な温度に調整するために用いられる車両用冷凍サイクル装置である。本実施形態では、冷凍サイクル装置10を、エンジン(換言すれば内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。
(First embodiment)
A refrigeration cycle apparatus 10 shown in FIG. 1 is a vehicular refrigeration cycle apparatus used for adjusting a vehicle interior space to an appropriate temperature. In the present embodiment, the refrigeration cycle apparatus 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (in other words, an internal combustion engine) and a travel electric motor.
  本実施形態のハイブリッド自動車は、車両停車時に外部電源(換言すれば商用電源)から供給された電力を、車両に搭載された電池(換言すれば車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。 The hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle capable of charging power supplied from an external power source (in other words, commercial power source) when the vehicle is stopped to a battery (in other words, an in-vehicle battery) mounted on the vehicle. Has been. As the battery, for example, a lithium ion battery can be used.
  エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用電動モータのみならず、冷凍サイクル装置10を構成する電動式構成機器をはじめとする各種車載機器に供給される。 The driving force output from the engine is used not only for driving the vehicle but also for operating the generator. And the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery constitutes the refrigeration cycle apparatus 10 as well as the electric motor for traveling. It is supplied to various in-vehicle devices such as electric components.
  冷凍サイクル装置10は、圧縮機11、凝縮器12、第1膨張弁13、室外熱交換器14、第2膨張弁15、電池用蒸発器16およびクーラコア用蒸発器17を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。 The refrigeration cycle apparatus 10 includes a compressor 11, a condenser 12, a first expansion valve 13, an outdoor heat exchanger 14, a second expansion valve 15, a battery evaporator 16, and a cooler core evaporator 17. It is. In the refrigeration cycle apparatus 10 of the present embodiment, a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure is configured.
  圧縮機11、凝縮器12、第1膨張弁13、室外熱交換器14、第2膨張弁15、電池用蒸発器16およびクーラコア用蒸発器17は、冷媒の流れにおいて互いに直列に配置されている。例えば、図1のように、電池用蒸発器16およびクーラコア用蒸発器17は、他の構成部品を介さず直接連結されている。 そのため、池用蒸発器16を通過した冷媒が直接クーラコア用蒸発器17に流れることになる。 The compressor 11, the condenser 12, the first expansion valve 13, the outdoor heat exchanger 14, the second expansion valve 15, the battery evaporator 16 and the cooler core evaporator 17 are arranged in series with each other in the refrigerant flow. . For example, as shown in FIG. 1, the battery evaporator 16 and the cooler core evaporator 17 are directly connected without any other components. Therefore, the refrigerant that has passed through the pond evaporator 16 flows directly to the cooler core evaporator 17.
  圧縮機11は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル装置10の冷媒を吸入して圧縮して吐出する。圧縮機11は、ベルトによって駆動される可変容量圧縮機であってもよい。 The compressor 11 is an electric compressor that is driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle apparatus 10. The compressor 11 may be a variable capacity compressor driven by a belt.
  凝縮器12は、圧縮機11から吐出された高圧側冷媒と高温冷却水回路20の冷却水とを熱交換させることによって高圧側冷媒を凝縮させる凝縮器である。 The condenser 12 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 20.
  高温冷却水回路20は、熱媒体としての冷却水が循環する熱媒体回路である。本実施形態では、高温冷却水回路20の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。 The high-temperature coolant circuit 20 is a heat medium circuit in which coolant as a heat medium circulates. In this embodiment, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the high-temperature cooling water circuit 20.
  高温冷却水回路20には、凝縮器12、高温側ポンプ21およびヒータコア22が配置されている。高温側ポンプ21は、冷却水を吸入して吐出する熱媒体ポンプである。高温側ポンプ21は電動式のポンプである。高温側ポンプ21は、高温冷却水回路20を循環する冷却水の流量を調整する流量調整部である。 In the high temperature cooling water circuit 20, a condenser 12, a high temperature side pump 21 and a heater core 22 are arranged. The high temperature side pump 21 is a heat medium pump that sucks and discharges cooling water. The high temperature side pump 21 is an electric pump. The high temperature side pump 21 is a flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the high temperature cooling water circuit 20.
  ヒータコア22は、高温冷却水回路20の冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱用熱交換器である。ヒータコア22では、冷却水が顕熱変化にて車室内へ送風される空気に放熱する。すなわち、ヒータコア22では、冷却水が車室内へ送風される空気に放熱しても冷却水が液相のままで相変化しない。 The heater core 22 is an air heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the cooling water of the high-temperature coolant circuit 20 and the air blown into the vehicle interior. In the heater core 22, the cooling water radiates heat to the air blown into the vehicle interior due to a change in sensible heat. That is, in the heater core 22, even if the cooling water dissipates heat to the air blown into the passenger compartment, the cooling water remains in a liquid phase and does not change phase.
  第1膨張弁13は、凝縮器12から流出した液相冷媒を減圧膨張させる第1減圧部である。第1膨張弁13は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒通路の通路開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。 The first expansion valve 13 is a first decompression unit that decompresses and expands the liquid refrigerant that has flowed out of the condenser 12. The first expansion valve 13 is an electric variable throttle mechanism, and includes a valve body and an electric actuator. The valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage. The electric actuator has a stepping motor that changes the throttle opening of the valve body.
  第1膨張弁13は、絞り開度を全開した際に冷媒通路を全開する全開機能付きの可変絞り機構で構成されている。つまり、第1膨張弁13は、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。第1膨張弁13の作動は、制御装置40から出力される制御信号によって制御される。 The first expansion valve 13 is composed of a variable throttle mechanism with a fully open function that fully opens the refrigerant passage when the throttle opening is fully opened. That is, the first expansion valve 13 can prevent the refrigerant from depressurizing by fully opening the refrigerant passage. The operation of the first expansion valve 13 is controlled by a control signal output from the control device 40.
  室外熱交換器14は、第1膨張弁13から流出した冷媒と外気とを熱交換させる冷媒外気熱交換器である。室外熱交換器14には、室外送風機18によって外気が送風される。 The outdoor heat exchanger 14 is a refrigerant outdoor air heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the outside air. Outside air is blown to the outdoor heat exchanger 14 by an outdoor blower 18.
  室外送風機18は、室外熱交換器14へ向けて外気を送風する送風部である。室外送風機18は、ファンを電動モータにて駆動する電動送風機である。室外熱交換器14および室外送風機18は、車両の最前部に配置されている。そのため、車両の走行時には室外熱交換器14に走行風を当てることができる。 The outdoor blower 18 is a blower that blows outside air toward the outdoor heat exchanger 14. The outdoor blower 18 is an electric blower that drives a fan with an electric motor. The outdoor heat exchanger 14 and the outdoor blower 18 are disposed in the foremost part of the vehicle. Therefore, traveling wind can be applied to the outdoor heat exchanger 14 when the vehicle is traveling.
  室外熱交換器14を流通する冷媒の温度が外気の温度よりも低い場合、室外熱交換器14は、外気の熱を冷媒に吸熱させる吸熱器として機能する。室外熱交換器14を流通する冷媒の温度が外気の温度よりも高い場合、室外熱交換器14は、冷媒の熱を外気に放熱させる放熱器として機能する。 When the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is lower than the temperature of the outside air, the outdoor heat exchanger 14 functions as a heat absorber that causes the refrigerant to absorb the heat of the outside air. When the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is higher than the temperature of the outside air, the outdoor heat exchanger 14 functions as a radiator that radiates the heat of the refrigerant to the outside air.
  室外熱交換器14は、熱交換部141、貯液部142および過冷却部143を有している。室外熱交換器14の熱交換部141は、第1膨張弁13から流出した冷媒と外気とを熱交換させる。室外熱交換器14の貯液部142は、室外熱交換器14の熱交換部141から流出した冷媒の気液を分離するとともに冷媒の余剰分を貯える冷媒貯留部である。室外熱交換器14の過冷却部143は、室外熱交換器14の貯液部142から流出した液相冷媒と外気とを熱交換させて液相冷媒を過冷却する。 The outdoor heat exchanger 14 has a heat exchange part 141, a liquid storage part 142, and a supercooling part 143. The heat exchanging unit 141 of the outdoor heat exchanger 14 exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the outside air. The liquid storage part 142 of the outdoor heat exchanger 14 is a refrigerant storage part that separates the gas-liquid refrigerant flowing out from the heat exchange part 141 of the outdoor heat exchanger 14 and stores excess refrigerant. The supercooling unit 143 of the outdoor heat exchanger 14 supercools the liquid phase refrigerant by exchanging heat between the liquid refrigerant flowing out of the liquid storage unit 142 of the outdoor heat exchanger 14 and the outside air.
  室外熱交換器14の貯液部142には過冷却バイパス配管19が接続されている。過冷却バイパス配管19は、室外熱交換器14の貯液部142を流れた冷媒が過冷却部143をバイパスして流れる過冷却部バイパス部である。 The supercooling bypass pipe 19 is connected to the liquid storage part 142 of the outdoor heat exchanger 14. The supercooling bypass pipe 19 is a supercooling section bypass section in which the refrigerant that has flowed through the liquid storage section 142 of the outdoor heat exchanger 14 flows bypassing the supercooling section 143.
  過冷却バイパス配管19には過冷却バイパス開閉弁19aが配置されている。過冷却バイパス開閉弁19aは、過冷却バイパス配管19の流路開度を調整する過冷却バイパス開度調整部である。過冷却バイパス開閉弁19aは電磁弁であり、制御装置40によって制御される。 The supercooling bypass pipe 19 is provided with a supercooling bypass opening / closing valve 19a. The supercooling bypass opening / closing valve 19 a is a supercooling bypass opening adjustment unit that adjusts the flow opening of the supercooling bypass pipe 19. The supercooling bypass opening / closing valve 19 a is an electromagnetic valve and is controlled by the control device 40.
  第2膨張弁15は、室外熱交換器14から流出した液相冷媒を減圧膨張させる第2減圧部である。第2膨張弁15は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒通路の通路開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。 The second expansion valve 15 is a second decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the outdoor heat exchanger 14. The second expansion valve 15 is an electric variable throttle mechanism, and includes a valve body and an electric actuator. The valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage. The electric actuator has a stepping motor that changes the throttle opening of the valve body.
  第2膨張弁15は、絞り開度を全開した際に冷媒通路を全開する全開機能付きの可変絞り機構で構成されている。つまり、第2膨張弁15は、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。第2膨張弁15は、制御装置40から出力される制御信号によって、その作動が制御される。 The second expansion valve 15 is composed of a variable throttle mechanism with a fully open function that fully opens the refrigerant passage when the throttle opening is fully opened. That is, the second expansion valve 15 can prevent the refrigerant from depressurizing by fully opening the refrigerant passage. The operation of the second expansion valve 15 is controlled by a control signal output from the control device 40.
  第1膨張弁13および第2膨張弁15の絞り開度が変更されることによって、冷房モードと暖房モードとが切り替えられる。冷房モードは、室外熱交換器14で冷媒を放熱させる放熱モードである。暖房モードは、室外熱交換器14で冷媒に吸熱させる吸熱モードである。第1膨張弁13および第2膨張弁15は、冷房モードと暖房モードとを切り替える運転モード切替部である。 The cooling mode and the heating mode are switched by changing the throttle openings of the first expansion valve 13 and the second expansion valve 15. The cooling mode is a heat dissipation mode in which the refrigerant is radiated by the outdoor heat exchanger 14. The heating mode is an endothermic mode in which the refrigerant is absorbed by the outdoor heat exchanger 14. The first expansion valve 13 and the second expansion valve 15 are operation mode switching units that switch between a cooling mode and a heating mode.
  電池用蒸発器16は、第2膨張弁15を流出した低圧冷媒と絶縁油回路25の絶縁油とを熱交換させることによって低圧冷媒を蒸発させる蒸発器である。電池用蒸発器16は、冷媒の流れにおいて、クーラコア用蒸発器17よりも上流側に配置されている。電池用蒸発器16から流出した低圧冷媒はクーラコア用蒸発器17に流入する。 The battery evaporator 16 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out of the second expansion valve 15 and the insulating oil of the insulating oil circuit 25. The battery evaporator 16 is disposed upstream of the cooler core evaporator 17 in the refrigerant flow. The low-pressure refrigerant that has flowed out of the battery evaporator 16 flows into the cooler core evaporator 17.
  絶縁油回路25の絶縁油は、熱媒体としての流体である。絶縁油回路25の絶縁油は、絶縁性を有する絶縁熱媒体である。絶縁油回路25には、電池用蒸発器16、絶縁油ポンプ26および電池27が配置されている。 The insulating oil in the insulating oil circuit 25 is a fluid as a heat medium. The insulating oil of the insulating oil circuit 25 is an insulating heat medium having insulating properties. In the insulating oil circuit 25, a battery evaporator 16, an insulating oil pump 26, and a battery 27 are arranged.
  絶縁油ポンプ26は、絶縁油を吸入して吐出する熱媒体ポンプである。絶縁油ポンプ26は電動式のポンプである。絶縁油ポンプ26は、絶縁油回路25を循環する絶縁油の流量を調整する絶縁油流量調整部である。 The insulating oil pump 26 is a heat medium pump that sucks and discharges insulating oil. The insulating oil pump 26 is an electric pump. The insulating oil pump 26 is an insulating oil flow rate adjusting unit that adjusts the flow rate of the insulating oil circulating in the insulating oil circuit 25.
  電池27は、車両に搭載される車載機器である。電池27は、作動に伴って発熱する発熱機器である。電池27は、絶縁油が流通する絶縁油流路を有しており、絶縁油によって冷却される冷却対象機器である。電池27の要求冷却温度は、例えば10℃~40℃程度である。 The battery 27 is an in-vehicle device mounted on the vehicle. The battery 27 is a heat-generating device that generates heat when activated. The battery 27 has an insulating oil passage through which insulating oil flows, and is a device to be cooled that is cooled by the insulating oil. The required cooling temperature of the battery 27 is, for example, about 10 ° C. to 40 ° C.
  電池27では、絶縁油が顕熱変化にて吸熱する。すなわち、電池27では、絶縁油が吸熱しても絶縁油が液相のままで相変化しない。絶縁油が絶縁性を有しているので、電池27を冷却するために電池27内に絶縁油を流通させても電池27内部の絶縁性を維持できる。 In the battery 27, the insulating oil absorbs heat by sensible heat change. That is, in the battery 27, even if the insulating oil absorbs heat, the insulating oil remains in a liquid phase and does not change in phase. Since the insulating oil has an insulating property, the insulating property inside the battery 27 can be maintained even if the insulating oil is passed through the battery 27 in order to cool the battery 27.
  クーラコア用蒸発器17は、冷媒の流れにおいて、電池用蒸発器16よりも下流側に配置されている。クーラコア用蒸発器17は、電池用蒸発器16を流出した低圧冷媒と低温冷却水回路30の冷却水とを熱交換させることによって低圧冷媒を蒸発させる蒸発器である。クーラコア用蒸発器17は第1蒸発器であり、電池用蒸発器16は第2蒸発器である。クーラコア用蒸発器17で蒸発した気相冷媒は、圧縮機11に吸入されて圧縮される。 The cooler core evaporator 17 is disposed downstream of the battery evaporator 16 in the refrigerant flow. The cooler core evaporator 17 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out of the battery evaporator 16 and the cooling water of the low-temperature cooling water circuit 30. The cooler core evaporator 17 is a first evaporator, and the battery evaporator 16 is a second evaporator. The gas-phase refrigerant evaporated in the cooler core evaporator 17 is sucked into the compressor 11 and compressed.
  低温冷却水回路30は、熱媒体としての冷却水が循環する熱媒体回路である。低温冷却水回路30の冷却水は第1熱媒体であり、絶縁油回路25の絶縁油は第2熱媒体である。低温冷却水回路30は第1熱媒体回路であり、絶縁油回路25は第2熱媒体回路である。 The low-temperature cooling water circuit 30 is a heat medium circuit in which cooling water as a heat medium circulates. The cooling water of the low-temperature cooling water circuit 30 is a first heat medium, and the insulating oil of the insulating oil circuit 25 is a second heat medium. The low-temperature coolant circuit 30 is a first heat medium circuit, and the insulating oil circuit 25 is a second heat medium circuit.
  本実施形態では、低温冷却水回路30の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。 In the present embodiment, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the low-temperature cooling water circuit 30.
  低温冷却水回路30には、クーラコア用蒸発器17、低温側ポンプ31およびクーラコア32が配置されている。 In the low-temperature cooling water circuit 30, a cooler core evaporator 17, a low temperature side pump 31, and a cooler core 32 are arranged.
  低温側ポンプ31は、冷却水を吸入して吐出する熱媒体ポンプである。低温側ポンプ31は電動式のポンプである。低温側ポンプ31は、低温冷却水回路30を循環する冷却水の流量を調整する流量調整部である。低温側ポンプ31は第1流量調整部であり、絶縁油ポンプ26は第2流量調整部である。 The low temperature side pump 31 is a heat medium pump that sucks and discharges cooling water. The low temperature side pump 31 is an electric pump. The low temperature side pump 31 is a flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the low temperature cooling water circuit 30. The low temperature side pump 31 is a first flow rate adjusting unit, and the insulating oil pump 26 is a second flow rate adjusting unit.
  クーラコア32は、低温冷却水回路30の冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を冷却する空気冷却用熱交換器である。クーラコア32では、冷却水が顕熱変化にて車室内へ送風される空気から吸熱する。すなわち、クーラコア32では、冷却水が車室内へ送風される空気から吸熱しても冷却水が液相のままで相変化しない。クーラコア32は、冷却水によって冷却される冷却対象機器である。クーラコア32は第1冷却対象機器であり、電池27は第2冷却対象機器である。 The cooler core 32 is an air cooling heat exchanger that cools the air blown into the vehicle interior by exchanging heat between the cooling water of the low-temperature cooling water circuit 30 and the air blown into the vehicle interior. In the cooler core 32, the cooling water absorbs heat from the air blown into the vehicle interior due to a change in sensible heat. That is, in the cooler core 32, even if the cooling water absorbs heat from the air blown into the passenger compartment, the cooling water remains in a liquid phase and does not change phase. The cooler core 32 is a device to be cooled that is cooled by cooling water. The cooler core 32 is a first cooling target device, and the battery 27 is a second cooling target device.
  クーラコア32の要求冷却温度は、例えば0℃程度である。すなわち、冷却対象機器である電池27およびクーラコア32は、要求冷却温度が互いに異なっている。具体的には、電池27はクーラコア32よりも要求冷却温度が高く、クーラコア32は電池27よりも要求冷却温度が低くなっている。 The required cooling temperature of the cooler core 32 is, for example, about 0 ° C. That is, the required cooling temperature is different between the battery 27 and the cooler core 32 which are the devices to be cooled. Specifically, the battery 27 has a higher required cooling temperature than the cooler core 32, and the cooler core 32 has a lower required cooling temperature than the battery 27.
  クーラコア32およびヒータコア22は、図示しない室内空調ユニットのケーシング(以下、空調ケーシングと言う。)に収容されている。空調ケーシングは、空気通路を形成する空気通路形成部材である。 The cooler core 32 and the heater core 22 are accommodated in a casing (hereinafter referred to as an air conditioning casing) of an indoor air conditioning unit (not shown). The air conditioning casing is an air passage forming member that forms an air passage.
  ヒータコア22は、空調ケーシング内の空気通路において、クーラコア32の空気流れ下流側に配置されている。空調ケーシングは、車室内空間に配置されている。 The heater core 22 is disposed on the air flow downstream side of the cooler core 32 in the air passage in the air conditioning casing. The air conditioning casing is disposed in the vehicle interior space.
  空調ケーシングには、図示しない内外気切替箱と図示しない室内送風機とが配置されている。内外気切替箱は、空調ケーシング内の空気通路に内気と外気とを切替導入する内外気切替部である。室内送風機は、内外気切替箱を通して空調ケーシング内の空気通路に導入された内気および外気を吸入して送風する。 In the air conditioning casing, an inside / outside air switching box (not shown) and an indoor fan (not shown) are arranged. The inside / outside air switching box is an inside / outside air switching unit that switches between introduction of inside air and outside air into an air passage in the air conditioning casing. The indoor blower sucks and blows the inside air and the outside air introduced into the air passage in the air conditioning casing through the inside / outside air switching box.
  空調ケーシング内の空気通路においてクーラコア32とヒータコア22との間には、図示しないエアミックスドアが配置されている。エアミックスドアは、クーラコア32を通過した冷風のうちヒータコア22に流入する冷風とヒータコア22をバイパスして流れる冷風との風量割合を調整する。 An air mix door (not shown) is disposed between the cooler core 32 and the heater core 22 in the air passage in the air conditioning casing. The air mix door adjusts the air volume ratio between the cool air that has passed through the cooler core 32 and the cool air that flows into the heater core 22 and the cool air that bypasses the heater core 22 and flows.
  エアミックスドアは、空調ケーシングに対して回転可能に支持された回転式ドアである。エアミックスドアの開度位置を調整することによって、空調ケーシングから車室内に吹き出される空調風の温度を所望温度に調整できる。エアミックスドアは、サーボモータによって駆動される。サーボモータの作動は、制御装置40によって制御される。 The air mix door is a rotary door that is rotatably supported with respect to the air conditioning casing. By adjusting the opening position of the air mix door, the temperature of the conditioned air blown from the air conditioning casing into the vehicle compartment can be adjusted to a desired temperature. The air mix door is driven by a servo motor. The operation of the servo motor is controlled by the control device 40.
  室外熱交換器14の冷媒出口側かつ第2膨張弁15の冷媒入口側にはバイパス配管35の一端が接続されている。バイパス配管35は、室外熱交換器14から流出した冷媒が第2膨張弁15、電池用蒸発器16およびクーラコア用蒸発器17をバイパスして流れる蒸発器バイパス部である。バイパス配管35の他端は、クーラコア用蒸発器17の冷媒出口側かつ圧縮機11の冷媒吸入側に接続されている。 One end of a bypass pipe 35 is connected to the refrigerant outlet side of the outdoor heat exchanger 14 and the refrigerant inlet side of the second expansion valve 15. The bypass pipe 35 is an evaporator bypass section in which the refrigerant flowing out of the outdoor heat exchanger 14 flows by bypassing the second expansion valve 15, the battery evaporator 16, and the cooler core evaporator 17. The other end of the bypass pipe 35 is connected to the refrigerant outlet side of the cooler core evaporator 17 and the refrigerant suction side of the compressor 11.
  バイパス配管35にはバイパス開閉弁36が配置されている。バイパス開閉弁36は、バイパス配管35の流路開度を調整するバイパス開度調整部である。バイパス開閉弁36は電磁弁であり、制御装置40によって制御される。 The bypass pipe 35 is provided with a bypass opening / closing valve 36. The bypass opening / closing valve 36 is a bypass opening adjustment unit that adjusts the opening of the bypass pipe 35. The bypass opening / closing valve 36 is an electromagnetic valve and is controlled by the control device 40.
  制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路とを有している。制御装置40は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置40の出力側には各種制御対象機器が接続されている。制御装置40は、各種制御対象機器の作動を制御する制御部である。 The control device 40 has a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The control device 40 performs various calculations and processes based on a control program stored in the ROM. Various devices to be controlled are connected to the output side of the control device 40. The control device 40 is a control unit that controls operations of various devices to be controlled.
  制御装置40によって制御される制御対象機器は、圧縮機11、第1膨張弁13、第2膨張弁15、室外送風機18、過冷却バイパス開閉弁19a、高温側ポンプ21、絶縁油ポンプ26および低温側ポンプ31等である。 The control target devices controlled by the control device 40 include the compressor 11, the first expansion valve 13, the second expansion valve 15, the outdoor blower 18, the supercooling bypass on-off valve 19a, the high temperature side pump 21, the insulating oil pump 26, and the low temperature. A side pump 31 and the like.
  制御装置40のうち圧縮機11の電動モータを制御するソフトウェアおよびハードウェアは、冷媒吐出能力制御部である。制御装置40のうち第1膨張弁13を制御するソフトウェアおよびハードウェアは、第1絞り制御部である。制御装置40のうち第2膨張弁15を制御するソフトウェアおよびハードウェアは、第2絞り制御部である。 Software and hardware for controlling the electric motor of the compressor 11 in the control device 40 is a refrigerant discharge capacity control unit. Software and hardware for controlling the first expansion valve 13 in the control device 40 is a first throttle control unit. Software and hardware for controlling the second expansion valve 15 in the control device 40 is a second throttle control unit.
  制御装置40のうち室外送風機18を制御するソフトウェアおよびハードウェアは、外気送風能力制御部である。制御装置40のうち過冷却バイパス開閉弁19aを制御するソフトウェアおよびハードウェアは、バイパス開度制御部である。 Software and hardware for controlling the outdoor blower 18 in the control device 40 are an outside air blowing capacity control unit. Software and hardware for controlling the supercooling bypass opening / closing valve 19a in the control device 40 is a bypass opening control unit.
  制御装置40のうち高温側ポンプ21を制御するソフトウェアおよびハードウェアは、高温側熱媒体流量制御部である。制御装置40のうち絶縁油ポンプ26を制御するソフトウェアおよびハードウェアは、絶縁熱媒体流量制御部である。制御装置40のうち低温側ポンプ31を制御するソフトウェアおよびハードウェアは、低温側熱媒体流量制御部である。 The software and hardware for controlling the high temperature side pump 21 in the control device 40 is a high temperature side heat medium flow control unit. Software and hardware for controlling the insulating oil pump 26 in the control device 40 is an insulating heat medium flow control unit. Software and hardware for controlling the low temperature side pump 31 in the control device 40 is a low temperature side heat medium flow control unit.
  制御装置40の入力側には、図示しない内気温度センサ、図示しない外気温度センサ、図示しない日射量センサ等の種々の空調制御用のセンサ群が接続されている。内気温度センサは車室内温度Trを検出する。外気温度センサは外気温Tamを検出する。日射量センサは車室内の日射量Tsを検出する。 The input side of the control device 40 is connected to various air conditioning control sensors such as an inside air temperature sensor (not shown), an outside air temperature sensor (not shown), and a solar radiation amount sensor (not shown). The inside air temperature sensor detects the passenger compartment temperature Tr. The outside air temperature sensor detects the outside air temperature Tam. The solar radiation amount sensor detects the solar radiation amount Ts in the passenger compartment.
  制御装置40の入力側には、図示しない各種操作スイッチが接続されている。各種操作スイッチは図示しない操作パネルに設けられており、乗員によって操作される。操作パネルは車室内前部の計器盤付近に配置されている。制御装置40には、各種操作スイッチからの操作信号が入力される。 Various control switches (not shown) are connected to the input side of the control device 40. Various operation switches are provided on an operation panel (not shown) and are operated by a passenger. The operation panel is arranged near the instrument panel at the front of the passenger compartment. Operation signals from various operation switches are input to the control device 40.
  各種操作スイッチは、エアコンスイッチ、温度設定スイッチ等である。エアコンスイッチは、室内空調ユニットにて空気の冷却を行うか否かを設定する。温度設定スイッチは、車室内の設定温度を設定する。 The various operation switches are air conditioner switches, temperature setting switches, etc. The air conditioner switch sets whether to cool the air in the indoor air conditioning unit. The temperature setting switch sets a set temperature in the passenger compartment.
  次に、上記構成における作動を説明する。制御装置40は、目標吹出温度TAO等に基づいて空調モードを暖房モードおよび冷房モードのいずれかに切り替える。 Next, the operation in the above configuration will be described. The control device 40 switches the air conditioning mode to either the heating mode or the cooling mode based on the target blowing temperature TAO or the like.
  目標吹出温度TAOは、車室内へ吹き出す吹出空気の目標温度である。制御装置40は、目標吹出温度TAOを以下の数式に基づいて算出する。 The target blowing temperature TAO is the target temperature of the blowing air blown out into the passenger compartment. The control device 40 calculates the target blowing temperature TAO based on the following mathematical formula.
  TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C
 この数式において、Tsetは操作パネルの温度設定スイッチによって設定された車室内設定温度、Trは内気温度センサによって検出された内気温、Tamは外気温度センサによって検出された外気温、Tsは日射量センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C
In this equation, Tset is the vehicle interior set temperature set by the temperature setting switch on the operation panel, Tr is the inside air temperature detected by the inside air temperature sensor, Tam is the outside air temperature detected by the outside air temperature sensor, and Ts is the solar radiation amount sensor. Is the amount of solar radiation detected by. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
  次に、冷房モードおよび暖房モードにおける作動について説明する。冷房モードは、室外熱交換器14が冷媒を放熱させる第1モードである。暖房モードは、室外熱交換器14が冷媒に吸熱させる第2モードである。 Next, the operation in the cooling mode and the heating mode will be described. The cooling mode is a first mode in which the outdoor heat exchanger 14 releases heat from the refrigerant. The heating mode is a second mode in which the outdoor heat exchanger 14 absorbs heat from the refrigerant.
  (冷房モード)
 冷房モードでは、制御装置40が、第1膨張弁13を全開状態とし、第2膨張弁15を絞り状態とする。冷房モードでは、制御装置40は、高温側ポンプ21を停止させ、低温側ポンプ31を駆動させる。
(Cooling mode)
In the cooling mode, the control device 40 sets the first expansion valve 13 to a fully open state and sets the second expansion valve 15 to a throttle state. In the cooling mode, the control device 40 stops the high temperature side pump 21 and drives the low temperature side pump 31.
  制御装置40は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置40に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 40 determines the operating states of the various control devices connected to the control device 40 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  第2膨張弁15へ出力される制御信号については、第2膨張弁15へ流入する冷媒の過冷却度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた目標過冷却度に近づくように決定される。 With respect to the control signal output to the second expansion valve 15, a target excess value determined in advance so that the degree of supercooling of the refrigerant flowing into the second expansion valve 15 approaches the maximum coefficient of performance (so-called COP) of the cycle. It is determined to approach the degree of cooling.
  図示しないエアミックスドアのサーボモータへ出力される制御信号については、エアミックスドアがヒータコア22の空気通路を閉塞し、クーラコア32を通過した送風空気の全流量がヒータコア22をバイパスして流れるように決定される。 For the control signal output to the servo motor of the air mix door (not shown), the air mix door closes the air passage of the heater core 22 so that the total flow rate of the blown air that has passed through the cooler core 32 bypasses the heater core 22 and flows. It is determined.
  冷房モード時の冷凍サイクル装置10では、サイクルを循環する冷媒の状態については、図2のモリエル線図に示すように変化する。 In the refrigeration cycle apparatus 10 in the cooling mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  すなわち、図2の点a1に示すように、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。この際、高温側ポンプ21が停止しているので、凝縮器12に高温冷却水回路20の冷却水が循環しない。そのため、凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水と殆ど熱交換することなく、凝縮器12から流出する。 That is, the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12 as indicated by a point a1 in FIG. At this time, since the high temperature side pump 21 is stopped, the cooling water of the high temperature cooling water circuit 20 does not circulate in the condenser 12. Therefore, the refrigerant that has flowed into the condenser 12 flows out of the condenser 12 with almost no heat exchange with the cooling water in the high-temperature cooling water circuit 20.
  凝縮器12から流出した冷媒は、第1膨張弁13に流入する。この際、第1膨張弁13が冷媒通路を全開状態としているので、凝縮器12から流出した冷媒は、第1膨張弁13にて減圧されることなく、室外熱交換器14に流入する。 The refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13. At this time, since the first expansion valve 13 fully opens the refrigerant passage, the refrigerant flowing out of the condenser 12 flows into the outdoor heat exchanger 14 without being depressurized by the first expansion valve 13.
  図2の点a1および点a2に示すように、室外熱交換器14に流入した冷媒は、室外熱交換器14にて室外送風機18から送風された外気へ放熱する。 As shown at points a1 and a2 in FIG. 2, the refrigerant flowing into the outdoor heat exchanger 14 dissipates heat to the outside air blown from the outdoor blower 18 by the outdoor heat exchanger 14.
  冷房モードでは、制御装置40はバイパス開閉弁36を閉じる。これにより、図2の点a2および点a3に示すように、室外熱交換器14から流出した冷媒は、第2膨張弁15へ流入して、第2膨張弁15にて低圧冷媒となるまで減圧膨張される。図2の点a3および点a4に示すように、第2膨張弁15にて減圧された低圧冷媒は、電池用蒸発器16に流入し、絶縁油回路25の絶縁油から吸熱して蒸発する。これにより、絶縁油回路25の絶縁油が冷却されるので、電池27が冷却される。 In the cooling mode, the control device 40 closes the bypass on-off valve 36. Thus, as shown at points a2 and a3 in FIG. 2, the refrigerant flowing out of the outdoor heat exchanger 14 flows into the second expansion valve 15 and is depressurized until it becomes a low-pressure refrigerant at the second expansion valve 15. Inflated. As shown at points a3 and a4 in FIG. 2, the low-pressure refrigerant decompressed by the second expansion valve 15 flows into the battery evaporator 16, and absorbs heat from the insulating oil in the insulating oil circuit 25 to evaporate. Thereby, since the insulating oil of the insulating oil circuit 25 is cooled, the battery 27 is cooled.
  図2の点a4および点a5に示すように、電池用蒸発器16から流出した低圧冷媒は、クーラコア用蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却されるので、クーラコア32で空気が冷却される。 2, the low-pressure refrigerant that has flowed out of the battery evaporator 16 flows into the cooler core evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, since the cooling water of the low-temperature cooling water circuit 30 is cooled, the air is cooled by the cooler core 32.
  そして、図2の点a5および点a1に示すように、クーラコア用蒸発器17から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 2, the refrigerant flowing out of the cooler core evaporator 17 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
  室外熱交換器14では、熱交換部141で凝縮された冷媒が貯液部142で気液分離されるとともに余剰液相冷媒が貯えられる。冷房モードでは、制御装置40は過冷却バイパス開閉弁19aを閉じる。これにより、貯液部142から流出した液相冷媒が過冷却部143を流れて過冷却される。 In the outdoor heat exchanger 14, the refrigerant condensed in the heat exchange unit 141 is gas-liquid separated in the liquid storage unit 142, and excess liquid phase refrigerant is stored. In the cooling mode, the control device 40 closes the supercooling bypass opening / closing valve 19a. As a result, the liquid-phase refrigerant flowing out of the liquid storage unit 142 flows through the supercooling unit 143 and is supercooled.
  以上の如く、冷房モードでは、電池用蒸発器16にて低圧冷媒が絶縁油回路25の絶縁油から吸熱し、絶縁油回路25の絶縁油が電池27から吸熱する。また、冷房モードでは、クーラコア用蒸発器17にて低圧冷媒が低温冷却水回路30の冷却水から吸熱し、クーラコア32にて低温冷却水回路30の冷却水が、車室内へ送風される空気から吸熱する。したがって、冷房モードでは、電池27を冷却できるとともに車室内を冷房できる。 As described above, in the cooling mode, the low-pressure refrigerant absorbs heat from the insulating oil in the insulating oil circuit 25 and the insulating oil in the insulating oil circuit 25 absorbs heat from the battery 27 in the battery evaporator 16. In the cooling mode, the low-pressure refrigerant absorbs heat from the cooling water in the low-temperature cooling water circuit 30 in the cooler core evaporator 17, and the cooling water in the low-temperature cooling water circuit 30 is cooled in the cooler core 32 from the air blown into the vehicle interior. It absorbs heat. Therefore, in the cooling mode, the battery 27 can be cooled and the vehicle interior can be cooled.
  冷房モードでは、図2の点a3から点a5に示すように、電池用蒸発器16およびクーラコア用蒸発器17では圧力損失によって冷媒圧力が低下するので、クーラコア用蒸発器17における冷媒圧力は、電池用蒸発器16における冷媒圧力よりも低くなる。 In the cooling mode, as shown from point a3 to point a5 in FIG. 2, the refrigerant pressure in the battery evaporator 16 and the cooler core evaporator 17 decreases due to pressure loss. It becomes lower than the refrigerant pressure in the evaporator 16 for use.
  そのため、クーラコア用蒸発器17における冷媒温度は電池用蒸発器16における冷媒温度よりも低くなるので、低温冷却水回路30の冷却水温度は絶縁油回路25の絶縁油温度よりも低くなる。したがって、クーラコア32を電池27よりも低温にすることが可能になる。 Therefore, since the refrigerant temperature in the cooler core evaporator 17 is lower than the refrigerant temperature in the battery evaporator 16, the cooling water temperature in the low-temperature cooling water circuit 30 is lower than the insulating oil temperature in the insulating oil circuit 25. Therefore, the cooler core 32 can be set to a temperature lower than that of the battery 27.
  冷房モードでは、制御装置40は、絶縁油回路25の絶縁油の流量を絶縁油ポンプ26で調整する。これにより、電池27の温度を要求冷却温度(例えば10℃~40℃程度)に適切に調整できる。 In the cooling mode, the control device 40 adjusts the flow rate of the insulating oil in the insulating oil circuit 25 with the insulating oil pump 26. Thereby, the temperature of the battery 27 can be appropriately adjusted to the required cooling temperature (for example, about 10 to 40 ° C.).
  冷房モードでは、制御装置40は、低温冷却水回路30の冷却水の流量を低温側ポンプ31で調整する。これにより、クーラコア32にて冷却された空気の温度を要求冷却温度は、例えば0℃程度)に適切に調整できる。 In the cooling mode, the control device 40 adjusts the flow rate of the cooling water in the low temperature cooling water circuit 30 with the low temperature side pump 31. Thereby, the temperature of the air cooled by the cooler core 32 can be appropriately adjusted to the required cooling temperature, for example, about 0 ° C.
  (暖房モード)
 暖房モードでは、制御装置40は、第1膨張弁13を絞り状態とし、第2膨張弁15を全開状態とする。暖房モードでは、制御装置40は、高温側ポンプ21を駆動させ、低温側ポンプ31を停止させる。
(Heating mode)
In the heating mode, the control device 40 brings the first expansion valve 13 into a throttled state and the second expansion valve 15 into a fully opened state. In the heating mode, the control device 40 drives the high temperature side pump 21 and stops the low temperature side pump 31.
  制御装置40は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置40に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 40 determines the operating states of the various control devices connected to the control device 40 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  第1膨張弁13へ出力される制御信号については、第1膨張弁13へ流入する冷媒の過冷却度が、予め定められた目標過冷却度に近づくように決定される。目標過冷却度は、サイクルの成績係数(いわゆるCOP)を最大値に近づけるように定められている。 The control signal output to the first expansion valve 13 is determined so that the supercooling degree of the refrigerant flowing into the first expansion valve 13 approaches a predetermined target supercooling degree. The target degree of supercooling is determined so that the coefficient of performance of the cycle (so-called COP) approaches the maximum value.
  図示しないエアミックスドアのサーボモータへ出力される制御信号については、エアミックスドアがヒータコア22の空気通路を全開し、クーラコア32を通過した送風空気の全流量がヒータコア22の空気通路を通過するように決定される。 As for a control signal output to a servo motor of an air mix door (not shown), the air mix door fully opens the air passage of the heater core 22 so that the total flow rate of the blown air that has passed through the cooler core 32 passes through the air passage of the heater core 22. To be determined.
  暖房モードでは、サイクルを循環する冷媒の状態については、図3のモリエル線図に示すように変化する。 In the heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  すなわち、図3の点b1および点b2に示すように、圧縮機11から吐出された高圧冷媒は、凝縮器12へ流入して、高温冷却水回路20の冷却水と熱交換して放熱する。これにより、高温冷却水回路20の冷却水が加熱される。 That is, as indicated by points b1 and b2 in FIG. 3, the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12 and exchanges heat with the cooling water in the high-temperature cooling water circuit 20 to dissipate heat. Thereby, the cooling water of the high temperature cooling water circuit 20 is heated.
  図3の点b2および点b3に示すように、凝縮器12から流出した冷媒は、第1膨張弁13に流入し、低圧冷媒となるまで減圧される。そして、図3の点b3および点b4に示すように、第1膨張弁13にて減圧された低圧冷媒は、室外熱交換器14に流入して、室外送風機18から送風された外気から吸熱して蒸発する。 As shown at points b2 and b3 in FIG. 3, the refrigerant flowing out of the condenser 12 flows into the first expansion valve 13 and is depressurized until it becomes a low-pressure refrigerant. As shown at points b3 and b4 in FIG. 3, the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the outdoor heat exchanger 14 and absorbs heat from the outside air blown from the outdoor blower 18. Evaporate.
  暖房モードでは、制御装置40はバイパス開閉弁36を開ける。これにより、図3の点b4および点b1に示すように、室外熱交換器14から流出した冷媒は、第2膨張弁15、電池用蒸発器16およびクーラコア用蒸発器17をバイパスして圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 In the heating mode, the control device 40 opens the bypass opening / closing valve 36. As a result, as shown at points b4 and b1 in FIG. 3, the refrigerant flowing out of the outdoor heat exchanger 14 bypasses the second expansion valve 15, the battery evaporator 16, and the cooler core evaporator 17, thereby compressing the compressor. 11 flows to the suction side and is compressed again by the compressor 11.
  暖房モードでは、制御装置40は過冷却バイパス開閉弁19aを開ける。これにより、室外熱交換器14の貯液部142から流出した冷媒が過冷却部143をバイパスして過冷却部バイパス配管35を流れるので、冷媒の圧力損失を低減できる。 In the heating mode, the control device 40 opens the supercooling bypass opening / closing valve 19a. Thereby, since the refrigerant | coolant which flowed out from the liquid storage part 142 of the outdoor heat exchanger 14 bypasses the supercooling part 143, and flows through the supercooling part bypass piping 35, the pressure loss of a refrigerant | coolant can be reduced.
  以上の如く、暖房モードでは、凝縮器12にて高圧冷媒から高温冷却水回路20の冷却水に放熱させ、ヒータコア22にて高温冷却水回路20の冷却水から、車室内へ吹き出される空気に放熱させる。これにより、車室内を暖房できる。 As described above, in the heating mode, the condenser 12 radiates heat from the high-pressure refrigerant to the cooling water of the high-temperature cooling water circuit 20, and the heater core 22 converts the cooling water of the high-temperature cooling water circuit 20 into the air blown into the vehicle interior. Dissipate heat. Thereby, a vehicle interior can be heated.
  このように、本実施形態の車両用空調装置1では、第1膨張弁13および第2膨張弁15の絞り開度を変化させることによって、車室内の適切な冷房および暖房を実行することができ、ひいては車室内の快適な空調を実現することができる。 Thus, in the vehicle air conditioner 1 of the present embodiment, appropriate cooling and heating of the vehicle interior can be performed by changing the throttle opening of the first expansion valve 13 and the second expansion valve 15. As a result, comfortable air conditioning in the passenger compartment can be realized.
  本実施形態の冷凍サイクル装置は、クーラコア32と電池27と低温冷却水回路30と低温側ポンプ31とを備える。クーラコア32および電池27は、第2膨張弁15で減圧された冷媒の冷熱を利用して冷却される。低温冷却水回路30は、クーラコア用蒸発器17で冷却された冷却水をクーラコア32および電池27のうちクーラコア32のみに循環させる。低温側ポンプ31は、クーラコア32に流入する冷却水の流量を調整する。 The refrigeration cycle apparatus of the present embodiment includes a cooler core 32, a battery 27, a low-temperature cooling water circuit 30, and a low-temperature side pump 31. The cooler core 32 and the battery 27 are cooled using the cold heat of the refrigerant decompressed by the second expansion valve 15. The low-temperature cooling water circuit 30 circulates the cooling water cooled by the cooler core evaporator 17 only to the cooler core 32 of the cooler core 32 and the battery 27. The low temperature side pump 31 adjusts the flow rate of the cooling water flowing into the cooler core 32.
  これによると、冷媒を分配することなくクーラコア32および電池27を冷却でき、低温側ポンプ31によってクーラコア32の温度を制御できる。そのため、2つの蒸発器に冷媒を分配する上記特許文献1の従来技術と比較して、冷媒回路を簡素化でき、温度制御を容易化でき、冷媒や冷凍機油の滞留を抑制できる。 According to this, the cooler core 32 and the battery 27 can be cooled without distributing the refrigerant, and the temperature of the cooler core 32 can be controlled by the low temperature side pump 31. Therefore, compared with the prior art disclosed in Patent Document 1 in which the refrigerant is distributed to the two evaporators, the refrigerant circuit can be simplified, temperature control can be facilitated, and stagnation of the refrigerant and refrigerating machine oil can be suppressed.
  しかも、低温冷却水回路30の冷却水は、クーラコア32および電池27のうちクーラコア32のみに循環し、電池27に循環しないので、クーラコア32および電池27の要求(例えば、要求冷却温度や絶縁性といった要求)を満足させることが容易になる。 In addition, the cooling water of the low-temperature cooling water circuit 30 circulates only to the cooler core 32 of the cooler core 32 and the battery 27 and does not circulate to the battery 27. Therefore, requirements of the cooler core 32 and the battery 27 (for example, required cooling temperature, insulation, etc.) It is easy to satisfy (request).
  本実施形態の冷凍サイクル装置は、絶縁油回路25と絶縁油ポンプ26とを備える。絶縁油回路25は、電池用蒸発器16で冷却された絶縁油を電池27に循環させる。絶縁油ポンプ26は、電池27に流入する絶縁油の流量を調整する。電池用蒸発器16およびクーラコア用蒸発器17は、冷媒の流れにおいて互いに直列に配置されている。 The refrigeration cycle apparatus of the present embodiment includes an insulating oil circuit 25 and an insulating oil pump 26. The insulating oil circuit 25 circulates the insulating oil cooled by the battery evaporator 16 to the battery 27. The insulating oil pump 26 adjusts the flow rate of the insulating oil flowing into the battery 27. The battery evaporator 16 and the cooler core evaporator 17 are arranged in series with each other in the refrigerant flow.
  これによると、絶縁油ポンプ26が絶縁油の流量を調整することによって電池27の温度を容易に調整できる。 According to this, the temperature of the battery 27 can be easily adjusted by the insulating oil pump 26 adjusting the flow rate of the insulating oil.
  本実施形態では、電池用蒸発器16は、冷媒の流れにおいてクーラコア用蒸発器17よりも上流側に配置されている。これによると、電池用蒸発器16およびクーラコア用蒸発器17での圧力損失によって、電池用蒸発器16における冷媒圧力がクーラコア用蒸発器17における冷媒圧力よりも高くなるので、電池用蒸発器16における冷媒温度がクーラコア用蒸発器17における冷媒温度よりも高くなる。そのため、電池27およびクーラコア32のそれぞれの要求冷却温度に合わせて、電池27の温度帯をクーラコア32の温度帯よりも高くできる。 In the present embodiment, the battery evaporator 16 is disposed upstream of the cooler core evaporator 17 in the refrigerant flow. According to this, since the refrigerant pressure in the battery evaporator 16 becomes higher than the refrigerant pressure in the cooler core evaporator 17 due to the pressure loss in the battery evaporator 16 and the cooler core evaporator 17, in the battery evaporator 16 The refrigerant temperature becomes higher than the refrigerant temperature in the cooler core evaporator 17. Therefore, the temperature zone of the battery 27 can be made higher than the temperature zone of the cooler core 32 in accordance with the respective required cooling temperatures of the battery 27 and the cooler core 32.
  (第2実施形態)
 上記実施形態では、電池27は、絶縁油が流通する絶縁油流路を有しており、絶縁油によって冷却されるが、本実施形態では、図4に示すように、電池27は、電池冷却器50に対して熱伝導可能に接触配置されており、電池冷却器50によって冷却される。
(Second Embodiment)
In the above embodiment, the battery 27 has an insulating oil passage through which the insulating oil flows, and is cooled by the insulating oil. However, in this embodiment, as shown in FIG. The battery 50 is placed in contact with the battery 50 so as to conduct heat and is cooled by the battery cooler 50.
  電池冷却器50は、第2膨張弁15を流出した低圧冷媒に電池27から吸熱させることによって低圧冷媒を蒸発させる蒸発器である。電池冷却器50は、冷媒の流れにおいて、クーラコア用蒸発器17よりも上流側に配置されている。電池冷却器50は他の部品を介さず直接クーラコア用蒸発器17を連結されている。そのため、電池冷却器50から流出した低圧冷媒はクーラコア用蒸発器17に流入する。 The battery cooler 50 is an evaporator that evaporates low-pressure refrigerant by causing the low-pressure refrigerant flowing out of the second expansion valve 15 to absorb heat from the battery 27. The battery cooler 50 is disposed upstream of the cooler core evaporator 17 in the refrigerant flow. The battery cooler 50 is directly connected to the cooler core evaporator 17 without any other components. Therefore, the low-pressure refrigerant flowing out from the battery cooler 50 flows into the cooler core evaporator 17.
  電池冷却器50は、第2膨張弁15を流出した低圧冷媒が流通する冷媒流通機器である。電池冷却器50は、第2膨張弁15を流出した低圧冷媒によって冷却される冷却対象機器である。電池冷却器50は第2冷却対象機器である。電池冷却器50は、車載機器を冷却するための車載機器冷却器である。 The battery cooler 50 is a refrigerant circulation device through which the low-pressure refrigerant that has flowed out of the second expansion valve 15 circulates. The battery cooler 50 is a device to be cooled that is cooled by the low-pressure refrigerant that has flowed out of the second expansion valve 15. The battery cooler 50 is a second cooling target device. The battery cooler 50 is an in-vehicle device cooler for cooling the in-vehicle device.
  電池冷却器50およびクーラコア用蒸発器17では圧力損失によって冷媒圧力が低下するので、クーラコア用蒸発器17における冷媒圧力は、電池冷却器50における冷媒圧力よりも低くなる。 In the battery cooler 50 and the cooler core evaporator 17, the refrigerant pressure decreases due to pressure loss, so the refrigerant pressure in the cooler core evaporator 17 is lower than the refrigerant pressure in the battery cooler 50.
  そのため、クーラコア用蒸発器17における冷媒温度は電池冷却器50における冷媒温度よりも低くなるので、低温冷却水回路30の冷却水温度は電池冷却器50の絶縁油温度よりも低くなる。したがって、クーラコア32を電池27よりも低温にすることが可能になる。 Therefore, since the refrigerant temperature in the cooler core evaporator 17 is lower than the refrigerant temperature in the battery cooler 50, the cooling water temperature in the low-temperature cooling water circuit 30 is lower than the insulating oil temperature in the battery cooler 50. Therefore, the cooler core 32 can be set to a temperature lower than that of the battery 27.
  第2膨張弁15の冷媒出口側かつ電池冷却器50の冷媒入口側には電池バイパス配管51の一端が接続されている。電池バイパス配管51の他端は、電池冷却器50の冷媒出口側かつクーラコア用蒸発器17の冷媒入口側に接続されている。電池バイパス配管51は、第2膨張弁15から流出した冷媒が電池冷却器50をバイパスして流れる電池バイパス部である。 One end of a battery bypass pipe 51 is connected to the refrigerant outlet side of the second expansion valve 15 and the refrigerant inlet side of the battery cooler 50. The other end of the battery bypass pipe 51 is connected to the refrigerant outlet side of the battery cooler 50 and the refrigerant inlet side of the cooler core evaporator 17. The battery bypass pipe 51 is a battery bypass section in which the refrigerant flowing out from the second expansion valve 15 flows by bypassing the battery cooler 50.
  電池バイパス配管51には電池バイパス開閉弁52が配置されている。電池バイパス開閉弁52は、電池バイパス配管51の流路開度を調整する電池バイパス開度調整部である。電池バイパス開閉弁52は電磁弁であり、制御装置40によって制御される。 A battery bypass opening / closing valve 52 is disposed in the battery bypass pipe 51. The battery bypass opening / closing valve 52 is a battery bypass opening degree adjusting unit that adjusts the opening degree of the battery bypass pipe 51. The battery bypass on-off valve 52 is an electromagnetic valve and is controlled by the control device 40.
  電池バイパス配管51および電池バイパス開閉弁52は、電池27に流入する絶縁油の流量を調整する第2流量調整部である。すなわち、電池バイパス開閉弁52が電池バイパス配管51の流路開度を大きくすると電池冷却器50を流れる冷媒の流量が少なくなる。したがって、電池バイパス開閉弁52が電池バイパス配管51の流路開度を調整することによって電池冷却器50の温度を調整でき、ひいては電池27の温度を調整できる。 The battery bypass pipe 51 and the battery bypass on / off valve 52 are a second flow rate adjusting unit that adjusts the flow rate of the insulating oil flowing into the battery 27. That is, when the battery bypass opening / closing valve 52 increases the opening degree of the battery bypass pipe 51, the flow rate of the refrigerant flowing through the battery cooler 50 is reduced. Therefore, the battery bypass opening / closing valve 52 can adjust the temperature of the battery cooler 50 by adjusting the opening degree of the battery bypass pipe 51, and thus the temperature of the battery 27 can be adjusted.
  本実施形態の冷凍サイクル装置は、電池冷却器50を備える。電池冷却器50は、電池27に対して熱伝導可能に接触し、第2膨張弁15から流出した冷媒が流通する。電池冷却器50およびクーラコア用蒸発器17は、冷媒の流れにおいて互いに直列に配置されている。これによると、上記第1実施形態と同様に電池27を冷却できる。 The refrigeration cycle apparatus of the present embodiment includes a battery cooler 50. The battery cooler 50 is in contact with the battery 27 so as to conduct heat, and the refrigerant flowing out of the second expansion valve 15 flows. The battery cooler 50 and the cooler core evaporator 17 are arranged in series with each other in the flow of the refrigerant. According to this, the battery 27 can be cooled as in the first embodiment.
  本実施形態では、電池冷却器50は、冷媒の流れにおいてクーラコア用蒸発器17よりも上流側に配置されている。 In the present embodiment, the battery cooler 50 is disposed upstream of the cooler core evaporator 17 in the refrigerant flow.
  これによると、電池冷却器50およびクーラコア用蒸発器17での圧力損失によって、電池冷却器50における冷媒圧力がクーラコア用蒸発器17における冷媒圧力よりも高くなるので、電池冷却器50における冷媒温度がクーラコア用蒸発器17における冷媒温度よりも高くなる。そのため、電池27およびクーラコア32のそれぞれの要求冷却温度に合わせて、電池27の温度帯をクーラコア32の温度帯よりも高くできる。 According to this, since the refrigerant pressure in the battery cooler 50 becomes higher than the refrigerant pressure in the cooler core evaporator 17 due to the pressure loss in the battery cooler 50 and the cooler core evaporator 17, the refrigerant temperature in the battery cooler 50 is increased. It becomes higher than the refrigerant temperature in the cooler core evaporator 17. Therefore, the temperature zone of the battery 27 can be made higher than the temperature zone of the cooler core 32 in accordance with the respective required cooling temperatures of the battery 27 and the cooler core 32.
  本実施形態では、電池バイパス配管51は、冷媒が電池冷却器50をバイパスして流れる冷媒流路を形成している。これにより、電池27の温度を良好に調整できる。 In the present embodiment, the battery bypass pipe 51 forms a refrigerant flow path through which the refrigerant bypasses the battery cooler 50. Thereby, the temperature of the battery 27 can be adjusted favorably.
  (第3実施形態)
 上記第1実施形態では、絶縁油回路25の絶縁油は、冷凍サイクル装置10の低圧冷媒で冷却されるが、本実施形態では、図5に示すように、絶縁油回路25の絶縁油は、低温冷却水回路30の冷却水で冷却される。
(Third embodiment)
In the first embodiment, the insulating oil of the insulating oil circuit 25 is cooled by the low-pressure refrigerant of the refrigeration cycle apparatus 10, but in this embodiment, as shown in FIG. Cooled by the cooling water of the low-temperature cooling water circuit 30.
  本実施形態の冷凍サイクル装置10は、上記第1実施形態の電池用蒸発器16の代わりに、絶縁油冷却用熱交換器55を備えている。絶縁油冷却用熱交換器55は、低温冷却水回路30の冷却水と絶縁油回路25の絶縁油とを熱交換させて絶縁油回路25の絶縁油(換言すれば第2熱媒体)を冷却する第2熱媒体冷却用熱交換器である。 The refrigeration cycle apparatus 10 of the present embodiment includes an insulating oil cooling heat exchanger 55 instead of the battery evaporator 16 of the first embodiment. The heat exchanger 55 for cooling the insulating oil cools the insulating oil of the insulating oil circuit 25 (in other words, the second heat medium) by exchanging heat between the cooling water of the low-temperature cooling water circuit 30 and the insulating oil of the insulating oil circuit 25. The second heat medium cooling heat exchanger.
  絶縁油冷却用熱交換器55では、冷却水が顕熱変化にて絶縁油から吸熱する。すなわち、絶縁油冷却用熱交換器55では、冷却水が絶縁油から吸熱しても冷却水が液相のままで相変化しない。絶縁油冷却用熱交換器55で冷却された絶縁油回路25の絶縁油が電池27を流通することによって電池27が冷却される。 In the heat exchanger 55 for cooling the insulating oil, the cooling water absorbs heat from the insulating oil by sensible heat change. That is, in the heat exchanger 55 for cooling the insulating oil, even if the cooling water absorbs heat from the insulating oil, the cooling water remains in a liquid phase and does not change phase. The insulating oil in the insulating oil circuit 25 cooled by the insulating oil cooling heat exchanger 55 flows through the battery 27, whereby the battery 27 is cooled.
  絶縁油冷却用熱交換器55は、低温冷却水回路30の冷却水の流れにおいて、クーラコア32の下流側に配置されている。クーラコア32および絶縁油冷却用熱交換器55では、冷却水が顕熱変化にて吸熱するので、絶縁油冷却用熱交換器55における冷却水温度はクーラコア32における冷却水温度よりも高くなる。そのため、電池27およびクーラコア32のそれぞれの要求冷却温度に合わせて、電池27の温度帯をクーラコア32の温度帯よりも高くできる。 The insulating oil cooling heat exchanger 55 is arranged on the downstream side of the cooler core 32 in the flow of the cooling water in the low-temperature cooling water circuit 30. In the cooler core 32 and the insulating oil cooling heat exchanger 55, the cooling water absorbs heat by sensible heat change, so that the cooling water temperature in the insulating oil cooling heat exchanger 55 is higher than the cooling water temperature in the cooler core 32. Therefore, the temperature zone of the battery 27 can be made higher than the temperature zone of the cooler core 32 in accordance with the respective required cooling temperatures of the battery 27 and the cooler core 32.
  低温冷却水回路30において、クーラコア用蒸発器17の冷却水出口側かつクーラコア32の冷却水入口側にはクーラコアバイパス配管56の一端が接続されている。クーラコアバイパス配管56の他端は、クーラコア32の冷却水出口側かつ絶縁油冷却用熱交換器55の冷却水入口側に接続されている。クーラコアバイパス配管56は、クーラコア用蒸発器17から流出した冷却水がクーラコア32をバイパスして流れるクーラコアバイパス部である。 In the low-temperature cooling water circuit 30, one end of a cooler core bypass pipe 56 is connected to the cooling water outlet side of the cooler core evaporator 17 and the cooling water inlet side of the cooler core 32. The other end of the cooler core bypass pipe 56 is connected to the coolant outlet side of the cooler core 32 and to the coolant inlet side of the heat exchanger 55 for cooling the insulating oil. The cooler core bypass pipe 56 is a cooler core bypass section in which the cooling water flowing out from the cooler core evaporator 17 flows by bypassing the cooler core 32.
  クーラコアバイパス配管56にはクーラコアバイパス開閉弁57が配置されている。クーラコアバイパス開閉弁57は、クーラコアバイパス配管56の流路開度を調整するクーラコアバイパス開度調整部である。クーラコアバイパス開閉弁57は電磁弁であり、制御装置40によって制御される。 In the cooler core bypass pipe 56, a cooler core bypass opening / closing valve 57 is arranged. The cooler core bypass opening / closing valve 57 is a cooler core bypass opening degree adjusting unit that adjusts the opening degree of the cooler core bypass pipe 56. The cooler core bypass opening / closing valve 57 is an electromagnetic valve and is controlled by the control device 40.
  クーラコアバイパス配管56およびクーラコアバイパス開閉弁57は、クーラコア32に流入する冷却水の流量を調整する第1流量調整部である。すなわち、クーラコアバイパス開閉弁57がクーラコアバイパス配管56の流路開度を大きくするとクーラコア32を流れる冷媒の流量が少なくなる。したがって、クーラコアバイパス開閉弁57がクーラコアバイパス配管56の流路開度を調整することによってクーラコア32の温度を調整できる。 The cooler core bypass pipe 56 and the cooler core bypass opening / closing valve 57 are a first flow rate adjusting unit that adjusts the flow rate of the cooling water flowing into the cooler core 32. That is, when the cooler core bypass opening / closing valve 57 increases the opening degree of the cooler core bypass pipe 56, the flow rate of the refrigerant flowing through the cooler core 32 decreases. Therefore, the temperature of the cooler core 32 can be adjusted by the cooler core bypass opening / closing valve 57 adjusting the opening degree of the cooler core bypass pipe 56.
  本実施形態の冷凍サイクル装置は、絶縁油冷却用熱交換器55と絶縁油回路25とを備える。絶縁油冷却用熱交換器55は、冷却水と絶縁油とを熱交換させて絶縁油を冷却させる。絶縁油回路25は、絶縁油冷却用熱交換器55で冷却された絶縁油を電池27に循環させる。これにより、上記実施形態と同様に電池27を冷却できる。 The refrigeration cycle apparatus of the present embodiment includes a heat exchanger 55 for insulating oil cooling and an insulating oil circuit 25. The heat exchanger 55 for cooling the insulating oil cools the insulating oil by exchanging heat between the cooling water and the insulating oil. The insulating oil circuit 25 circulates the insulating oil cooled by the insulating oil cooling heat exchanger 55 to the battery 27. Thereby, the battery 27 can be cooled similarly to the said embodiment.
  本実施形態では、絶縁油冷却用熱交換器55は、冷却水の流れにおいてクーラコア32よりも下流側に配置されている。これによると、クーラコア32および絶縁油冷却用熱交換器55で冷却水が熱交換することによって、絶縁油冷却用熱交換器55における冷却水温度がクーラコア32における冷却水温度よりも高くなる。そのため、電池27およびクーラコア32のそれぞれの要求冷却温度に合わせて、電池27の温度帯をクーラコア32の温度帯よりも高くできる。 In this embodiment, the insulating oil cooling heat exchanger 55 is disposed downstream of the cooler core 32 in the flow of the cooling water. According to this, when the cooling water exchanges heat between the cooler core 32 and the insulating oil cooling heat exchanger 55, the cooling water temperature in the insulating oil cooling heat exchanger 55 becomes higher than the cooling water temperature in the cooler core 32. Therefore, the temperature zone of the battery 27 can be made higher than the temperature zone of the cooler core 32 in accordance with the respective required cooling temperatures of the battery 27 and the cooler core 32.
  本実施形態では、クーラコアバイパス配管56は、低温冷却水回路30において、冷却水がクーラコア32をバイパスして流れる冷却水流路を形成している。これにより、クーラコア32における冷却水の流量を、絶縁油冷却用熱交換器55における冷却水の流量に対して独立して調整できるので、クーラコア32の温度を良好に調整できる。 In the present embodiment, the cooler core bypass pipe 56 forms a cooling water flow path in which the cooling water flows through the cooler core 32 in the low-temperature cooling water circuit 30. Thereby, since the flow volume of the cooling water in the cooler core 32 can be adjusted independently with respect to the flow volume of the cooling water in the heat exchanger 55 for insulating oil cooling, the temperature of the cooler core 32 can be adjusted favorably.
  本実施形態では、絶縁油ポンプ26を備える。絶縁油ポンプ26は、電池27に流入する絶縁油の流量を調整する。これにより、電池27の温度を良好に調整できる。 In this embodiment, an insulating oil pump 26 is provided. The insulating oil pump 26 adjusts the flow rate of the insulating oil flowing into the battery 27. Thereby, the temperature of the battery 27 can be adjusted favorably.
  (他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
(Other embodiments)
The above embodiments can be combined as appropriate. The above embodiment can be variously modified as follows, for example.
  (1)上記各実施形態では、電池27を絶縁油で冷却するが、種々の絶縁媒体で冷却してもよい。例えば、フッ素系不活性液体等の絶縁熱媒体で電池27を冷却してもよい。 (1) In each of the above embodiments, the battery 27 is cooled with insulating oil, but may be cooled with various insulating media. For example, the battery 27 may be cooled with an insulating heat medium such as a fluorine-based inert liquid.
  (2)上記各実施形態の電池27の代わりに電池冷却用熱交換器が冷凍サイクル装置10に配置されていてもよい。電池冷却用熱交換器は、電池(換言すれば車載機器)を冷却するための車載機器冷却器である。例えば、電池冷却用熱交換器は、電池へ送風される空気と絶縁油とを熱交換させることによって、電池へ送風される空気を冷却する熱交換器である。 (2) A battery cooling heat exchanger may be disposed in the refrigeration cycle apparatus 10 instead of the battery 27 of each of the above embodiments. The battery cooling heat exchanger is an in-vehicle device cooler for cooling a battery (in other words, an in-vehicle device). For example, a battery-cooling heat exchanger is a heat exchanger that cools air blown to a battery by exchanging heat between air blown to the battery and insulating oil.
  (3)上記各実施形態では、冷却対象機器が電池27およびクーラコア32であるが、冷却対象機器はインバータやインタークーラ等の種々の車載機器であってもよい。 (3) In the above embodiments, the cooling target devices are the battery 27 and the cooler core 32, but the cooling target devices may be various in-vehicle devices such as an inverter and an intercooler.
  インバータは、電池から供給された直流電力を交流電力に変換して走行用モータに出力する電力変換部である。インタークーラは、過給機で圧縮されて高温になったエンジン吸気と冷却水とを熱交換してエンジン吸気を冷却する熱交換器である。 The inverter is a power conversion unit that converts DC power supplied from the battery into AC power and outputs it to the traveling motor. The intercooler is a heat exchanger that cools the engine intake air by exchanging heat between the engine intake air that has been compressed by the supercharger and has reached a high temperature and the coolant.
  (4)上記各実施形態では、熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。 (4) In each of the above embodiments, cooling water is used as the heat medium, but various media such as oil may be used as the heat medium.
  熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水のように凝固点を低下させて不凍液にする作用効果に加えて、次のような作用効果を得ることができる。 Nano fluid may be used as the heat medium. A nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed. By mixing the nanoparticles with the heat medium, the following effects can be obtained in addition to the effect of lowering the freezing point and making the antifreeze liquid like cooling water using ethylene glycol.
  すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。 That is, the effect of improving the thermal conductivity in a specific temperature range, the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature The effect which improves the fluidity | liquidity of can be acquired.
  このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。 Such operational effects vary depending on the particle configuration, particle shape, blending ratio, and additional substances of the nanoparticles.
  これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。 According to this, since the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
  また、熱媒体の熱容量を増加させることができるので、熱媒体自体の顕熱による蓄冷熱量を増加させることができる。 Also, since the heat capacity of the heat medium can be increased, it is possible to increase the amount of cold stored heat due to sensible heat of the heat medium itself.
  蓄冷熱量を増加させることにより、圧縮機11を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理装置の省動力化が可能になる。 Even if the compressor 11 is not operated by increasing the amount of cold storage heat, it is possible to control the temperature and cooling of the equipment using the cold storage heat for a certain amount of time. Can be realized.
  ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。 The aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained. The aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
  ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT、グラフェン、グラファイトコアシェル型ナノ粒子、およびAuナノ粒子含有CNTなどを用いることができる。 Nanoparticles containing any of Au, Ag, Cu, and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT, graphene, graphite core-shell nanoparticle, Au nanoparticle-containing CNT, and the like can be used as the constituent atoms of the nanoparticle.
  CNTはカーボンナノチューブである。グラファイトコアシェル型ナノ粒子は、上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体である。 CNT is a carbon nanotube. The graphite core-shell nanoparticle is a particle body having a structure such as a carbon nanotube surrounding the atom.
  (5)上記各実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、種々の冷媒を用いてもよい。

 
(5) In the refrigeration cycle apparatus 10 of each of the above embodiments, a chlorofluorocarbon refrigerant is used as the refrigerant. However, the type of the refrigerant is not limited to this, and various refrigerants may be used.

Claims (10)

  1.  冷媒を吸入して圧縮し吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱器(14)と、
     前記放熱器で放熱された前記冷媒を減圧させる減圧部(15)と、
     前記減圧部で減圧された前記冷媒と熱媒体とを熱交換させて前記熱媒体を冷却させる蒸発器(17)と、
     前記減圧部で減圧された前記冷媒の冷熱を利用して冷却される第1冷却対象機器(32)および第2冷却対象機器(27)と、
     前記蒸発器で冷却された前記熱媒体を前記第1冷却対象機器および前記第2冷却対象機器のうち前記第1冷却対象機器のみに循環させる熱媒体回路(30)と、
     前記第1冷却対象機器に流入する前記熱媒体の流量を調整する流量調整部(31、56、57)とを備える冷凍サイクル装置。
    A compressor (11) for sucking and compressing and discharging refrigerant;
    A radiator (14) for radiating heat from the refrigerant discharged from the compressor;
    A decompression section (15) for decompressing the refrigerant radiated by the radiator;
    An evaporator (17) for exchanging heat between the refrigerant decompressed by the decompression unit and the heat medium to cool the heat medium;
    A first cooling target device (32) and a second cooling target device (27) that are cooled using the cold of the refrigerant decompressed by the decompression unit;
    A heat medium circuit (30) for circulating the heat medium cooled by the evaporator only to the first cooling target device among the first cooling target device and the second cooling target device;
    A refrigeration cycle apparatus comprising: a flow rate adjusting unit (31, 56, 57) for adjusting a flow rate of the heat medium flowing into the first cooling target device.
  2.  前記熱媒体は第1熱媒体であり、
     前記蒸発器(17)は第1蒸発器であり、
     前記熱媒体回路(30)は第1熱媒体回路であり、
     前記流量調整部(31)は第1流量調整部であり、
     さらに、前記減圧部から流出した前記冷媒と第2熱媒体とを熱交換させて前記第2熱媒体を冷却させる第2蒸発器(16)と、
     前記第2蒸発器で冷却された前記第2熱媒体を前記第2冷却対象機器に循環させる第2熱媒体回路(25)と、
     前記第2冷却対象機器に流入する前記第2熱媒体の流量を調整する第2流量調整部(26)とを備え、
     前記第1蒸発器および前記第2蒸発器は、前記冷媒の流れにおいて互いに直列に配置されている請求項1に記載の冷凍サイクル装置。
    The heat medium is a first heat medium;
    The evaporator (17) is a first evaporator,
    The heat medium circuit (30) is a first heat medium circuit;
    The flow rate adjusting unit (31) is a first flow rate adjusting unit,
    Furthermore, a second evaporator (16) that cools the second heat medium by exchanging heat between the refrigerant flowing out of the decompression unit and the second heat medium;
    A second heat medium circuit (25) for circulating the second heat medium cooled by the second evaporator to the second object to be cooled;
    A second flow rate adjustment unit (26) for adjusting the flow rate of the second heat medium flowing into the second cooling target device,
    The refrigeration cycle apparatus according to claim 1, wherein the first evaporator and the second evaporator are arranged in series with each other in the flow of the refrigerant.
  3.  前記第1冷却対象機器(32)は、車室内へ送風される空気と前記第1熱媒体とを熱交換させる空気冷却用熱交換器であり、
     前記第2冷却対象機器(27)は、車両に搭載される車載機器、または前記車載機器を冷却するための車載機器冷却器であり、
     前記第2蒸発器は、前記冷媒の流れにおいて前記第1蒸発器よりも上流側に配置されている請求項2に記載の冷凍サイクル装置。
    The first cooling target device (32) is an air cooling heat exchanger that exchanges heat between the air blown into the vehicle interior and the first heat medium,
    The second cooling target device (27) is a vehicle-mounted device mounted on a vehicle or a vehicle-mounted device cooler for cooling the vehicle-mounted device,
    The refrigeration cycle apparatus according to claim 2, wherein the second evaporator is disposed upstream of the first evaporator in the refrigerant flow.
  4.  前記第2冷却対象機器に対して熱伝導可能に接触し、前記減圧部から流出した前記冷媒が流通する冷媒流通機器(50)を備え、
     前記冷媒流通機器および前記蒸発器は、前記冷媒の流れにおいて互いに直列に配置されている請求項1に記載の冷凍サイクル装置。
    A refrigerant circulation device (50) that is in contact with the second cooling target device so as to be capable of conducting heat and through which the refrigerant that has flowed out of the decompression unit flows,
    The refrigeration cycle apparatus according to claim 1, wherein the refrigerant circulation device and the evaporator are arranged in series with each other in the flow of the refrigerant.
  5.  前記第1冷却対象機器は、車室内へ送風される空気と前記熱媒体とを熱交換させる空気冷却用熱交換器(32)であり、
     前記第2冷却対象機器(27)は、車両に搭載される車載機器、または前記車載機器を冷却するための車載機器冷却器であり、
     前記冷媒流通機器は、前記冷媒の流れにおいて前記蒸発器よりも上流側に配置されている請求項4に記載の冷凍サイクル装置。
    The first cooling target device is an air cooling heat exchanger (32) for exchanging heat between the air blown into the passenger compartment and the heat medium,
    The second cooling target device (27) is a vehicle-mounted device mounted on a vehicle or a vehicle-mounted device cooler for cooling the vehicle-mounted device,
    The refrigeration cycle apparatus according to claim 4, wherein the refrigerant circulation device is disposed upstream of the evaporator in the refrigerant flow.
  6.  前記流量調整部は、前記冷媒が前記冷媒流通機器をバイパスして流れるバイパス部(51)を有している請求項4または5に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 4 or 5, wherein the flow rate adjustment unit includes a bypass unit (51) in which the refrigerant flows by bypassing the refrigerant circulation device.
  7.  前記熱媒体は第1熱媒体であり、
     前記熱媒体回路は第1熱媒体回路(30)であり、
     さらに、前記第1熱媒体と第2熱媒体とを熱交換させて前記第2熱媒体を冷却させる第2熱媒体冷却用熱交換器(55)と、
     前記第2熱媒体冷却用熱交換器で冷却された前記第2熱媒体を前記第2冷却対象機器に循環させる第2熱媒体回路(25)とを備える請求項1に記載の冷凍サイクル装置。
    The heat medium is a first heat medium;
    The heat medium circuit is a first heat medium circuit (30);
    Furthermore, a second heat medium cooling heat exchanger (55) that heat-exchanges the first heat medium and the second heat medium to cool the second heat medium;
    The refrigeration cycle apparatus according to claim 1, further comprising a second heat medium circuit (25) that circulates the second heat medium cooled by the second heat medium cooling heat exchanger to the second object to be cooled.
  8.  前記第1冷却対象機器(32)は、車室内へ送風される空気と前記第2熱媒体とを熱交換させる空気冷却用熱交換器であり、
     前記第2冷却対象機器(27)は、車両に搭載される車載機器、または前記車載機器を冷却するための車載機器冷却器であり、
     前記第2熱媒体冷却用熱交換器は、前記第1熱媒体の流れにおいて前記空気冷却用熱交換器(32)よりも下流側に配置されている請求項7に記載の冷凍サイクル装置。
    The first cooling target device (32) is an air cooling heat exchanger that exchanges heat between the air blown into the vehicle interior and the second heat medium,
    The second cooling target device (27) is a vehicle-mounted device mounted on a vehicle or a vehicle-mounted device cooler for cooling the vehicle-mounted device,
    The refrigeration cycle apparatus according to claim 7, wherein the second heat medium cooling heat exchanger is disposed downstream of the air cooling heat exchanger (32) in the flow of the first heat medium.
  9.  前記流量調整部は、前記第1熱媒体回路(30)において、前記第1熱媒体が前記空気冷却用熱交換器(32)をバイパスして流れるバイパス部(56)を有している請求項8に記載の冷凍サイクル装置。 The flow rate adjusting section includes a bypass section (56) in the first heat medium circuit (30), wherein the first heat medium flows bypassing the air cooling heat exchanger (32). The refrigeration cycle apparatus according to 8.
  10.  前記流量調整部(56、57)は第1流量調整部であり、
     さらに、前記第2冷却対象機器に流入する前記第2熱媒体の流量を調整する第2流量調整部(26)を備える請求項7ないし9のいずれか1つに記載の冷凍サイクル装置。

     
    The flow rate adjusting units (56, 57) are first flow rate adjusting units,
    Furthermore, the refrigerating-cycle apparatus as described in any one of Claim 7 thru | or 9 provided with the 2nd flow volume adjustment part (26) which adjusts the flow volume of the said 2nd heat medium which flows into a said 2nd cooling object apparatus.

PCT/JP2017/023912 2016-08-29 2017-06-29 Refrigeration cycle device WO2018042859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-166594 2016-08-29
JP2016166594A JP2018035951A (en) 2016-08-29 2016-08-29 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018042859A1 true WO2018042859A1 (en) 2018-03-08

Family

ID=61300676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023912 WO2018042859A1 (en) 2016-08-29 2017-06-29 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2018035951A (en)
WO (1) WO2018042859A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110898A (en) * 2015-12-10 2017-06-22 株式会社デンソー Refrigeration cycle device
CN111867862A (en) * 2018-05-28 2020-10-30 三电汽车空调系统株式会社 Air conditioner for vehicle
CN112367804A (en) * 2020-10-26 2021-02-12 北京计算机技术及应用研究所 Active control micro-channel phase change heat dissipation system
EP4311988A1 (en) * 2022-07-29 2024-01-31 Carrier Corporation A transport refrigeration system with a thermal management system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7098866B2 (en) * 2018-05-28 2022-07-12 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP7153174B2 (en) * 2018-05-28 2022-10-14 サンデン株式会社 Vehicle air conditioner
JP2021017114A (en) * 2019-07-18 2021-02-15 トヨタ自動車株式会社 Vehicle cooling system
JP7079354B1 (en) 2021-01-29 2022-06-01 マレリ株式会社 Temperature control system
WO2023054441A1 (en) * 2021-09-29 2023-04-06 伸和コントロールズ株式会社 Cooling system
JP2023066287A (en) * 2021-10-28 2023-05-15 伸和コントロールズ株式会社 Cooling system, semiconductor manufacturing system, etching method and device manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267494A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Cooler
JPH1148766A (en) * 1997-08-06 1999-02-23 Denso Corp Refrigerating cycle device
JPH11286211A (en) * 1998-04-02 1999-10-19 Matsushita Electric Ind Co Ltd Vehicle air conditioner
JP2002195609A (en) * 2000-12-26 2002-07-10 Matsushita Electric Ind Co Ltd Deep freezer
JP2005504686A (en) * 2001-10-12 2005-02-17 プジョー・シトロエン・オトモビル・ソシエテ・アノニム Temperature control device for electric or hybrid vehicles
JP2008039306A (en) * 2006-08-07 2008-02-21 Daikin Ind Ltd Hot water circulation heating system performing heating by circulating hot water in building
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
JP2011105150A (en) * 2009-11-18 2011-06-02 Hitachi Ltd Air conditioner for vehicle
JP2012172917A (en) * 2011-02-22 2012-09-10 Nippon Soken Inc Cooling device
JP2015016706A (en) * 2013-07-09 2015-01-29 株式会社デンソー Vehicle air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267494A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Cooler
JPH1148766A (en) * 1997-08-06 1999-02-23 Denso Corp Refrigerating cycle device
JPH11286211A (en) * 1998-04-02 1999-10-19 Matsushita Electric Ind Co Ltd Vehicle air conditioner
JP2002195609A (en) * 2000-12-26 2002-07-10 Matsushita Electric Ind Co Ltd Deep freezer
JP2005504686A (en) * 2001-10-12 2005-02-17 プジョー・シトロエン・オトモビル・ソシエテ・アノニム Temperature control device for electric or hybrid vehicles
JP2008039306A (en) * 2006-08-07 2008-02-21 Daikin Ind Ltd Hot water circulation heating system performing heating by circulating hot water in building
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
JP2011105150A (en) * 2009-11-18 2011-06-02 Hitachi Ltd Air conditioner for vehicle
JP2012172917A (en) * 2011-02-22 2012-09-10 Nippon Soken Inc Cooling device
JP2015016706A (en) * 2013-07-09 2015-01-29 株式会社デンソー Vehicle air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110898A (en) * 2015-12-10 2017-06-22 株式会社デンソー Refrigeration cycle device
CN111867862A (en) * 2018-05-28 2020-10-30 三电汽车空调系统株式会社 Air conditioner for vehicle
CN112367804A (en) * 2020-10-26 2021-02-12 北京计算机技术及应用研究所 Active control micro-channel phase change heat dissipation system
CN112367804B (en) * 2020-10-26 2022-10-28 北京计算机技术及应用研究所 Active control micro-channel phase change heat dissipation system
EP4311988A1 (en) * 2022-07-29 2024-01-31 Carrier Corporation A transport refrigeration system with a thermal management system

Also Published As

Publication number Publication date
JP2018035951A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US11498391B2 (en) Air conditioner
CN108779942B (en) Refrigeration cycle device
US11299014B2 (en) Refrigeration cycle device
CN108369042B (en) Refrigeration cycle device
WO2018042859A1 (en) Refrigeration cycle device
JP6708099B2 (en) Refrigeration cycle equipment
JP6838527B2 (en) Vehicle air conditioner
CN108291473B (en) Cooling system for vehicle
WO2015015726A1 (en) Air conditioning device for vehicle
CN110914082B (en) Air conditioner
JP2017137044A (en) Heat management device for vehicle
US10989447B2 (en) Refrigeration cycle device
CN109642755B (en) Refrigeration cycle device
JP5971202B2 (en) Refrigeration cycle equipment
WO2017130846A1 (en) Heat management device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845869

Country of ref document: EP

Kind code of ref document: A1