WO2017212844A1 - Battery degradation determination device and charger - Google Patents
Battery degradation determination device and charger Download PDFInfo
- Publication number
- WO2017212844A1 WO2017212844A1 PCT/JP2017/017471 JP2017017471W WO2017212844A1 WO 2017212844 A1 WO2017212844 A1 WO 2017212844A1 JP 2017017471 W JP2017017471 W JP 2017017471W WO 2017212844 A1 WO2017212844 A1 WO 2017212844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- determination
- deterioration
- secondary battery
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery deterioration determination device and a charger for determining the degree of deterioration of a secondary battery.
- Patent Document 1 discloses a battery pass / fail discrimination device that discriminates whether or not a secondary battery is abnormal.
- a pulsating current containing a direct current component and an alternating current component flows between the positive electrode and the negative electrode of the secondary battery
- the voltage generated between the positive electrode and the negative electrode includes an alternating voltage component.
- the battery quality determination device described in Patent Literature 1 determines whether or not the secondary battery is abnormal based on the magnitude of the AC voltage component.
- Patent Document 2 discloses a light emission control circuit that controls light emission of a plurality of light emitting diodes (LEDs).
- the light emission control circuit described in Patent Document 2 applies a voltage to both ends of an LED circuit composed of a plurality of LEDs connected in series, and causes the LEDs to emit light in the number corresponding to the voltage.
- the battery quality determination device described in Patent Document 1 it can be determined whether or not the secondary battery is abnormal. However, even if this battery quality determination device is used, it is impossible to know how much the secondary battery has deteriorated. For example, it is not possible to know a measure of the usable time after the secondary battery is fully charged.
- An object of the present invention is to provide a battery deterioration determination device and a charger that can visually determine the degree of deterioration of a secondary battery.
- the storage battery deterioration determination device of the present invention is: When an electric current containing an alternating current component flows between the positive electrode and the negative electrode of the secondary battery, the alternating voltage component contained in the voltage generated between the positive electrode and the negative electrode is extracted, and the secondary battery is based on the alternating voltage component
- a determination voltage generation unit that generates a determination voltage for determining the degree of deterioration of
- a deterioration display unit that displays a degree of deterioration of the secondary battery based on the determination voltage generated by the determination voltage generation unit; It is characterized by providing.
- the storage battery deterioration determination device of the present invention is The determination voltage generator generates the determination voltage by amplifying and rectifying the AC voltage component,
- the deterioration display unit causes the plurality of LEDs to emit light according to the degree of deterioration of the secondary battery based on the plurality of LEDs connected in series and the determination voltage generated by the determination voltage generation unit.
- An LED light emission control unit It is characterized by that.
- the storage battery deterioration determination device of the present invention is The LED light emission control unit causes more LEDs to emit light as the secondary battery is more deteriorated.
- the storage battery deterioration determination device of the present invention is Whether or not the secondary battery is abnormal is determined based on the determination voltage generated by the determination voltage generation unit and a predetermined threshold voltage, and is normal when the secondary battery is determined to be normal.
- An abnormality determination unit that generates a display voltage of a predetermined level to be generated and generates a display voltage of a level according to the degree of deterioration of the secondary battery when the secondary battery is determined to be abnormal
- the deterioration display unit displays the presence / absence of the secondary battery and the degree of deterioration based on the display voltage generated by the abnormality determination unit instead of the determination voltage generated by the determination voltage generation unit, It is characterized by that.
- the storage battery deterioration determination device of the present invention is The deterioration display unit includes a plurality of LEDs connected in series, and an LED light emission control unit configured to emit the plurality of LEDs according to the number corresponding to the display voltage generated by the abnormality determination unit,
- the abnormality determination unit sets the display voltage to the predetermined level that turns off the plurality of LEDs, and determines the determination voltage. Generating the display voltage at a level that turns on a number of LEDs according to the degree of deterioration of the secondary battery when the voltage is greater than the predetermined threshold voltage, based on the determination voltage; It is characterized by that.
- the storage battery deterioration determination device of the present invention is The determination voltage generator generates the determination voltage by amplifying and rectifying the AC voltage component,
- the abnormality determination unit A threshold voltage setting circuit including a variable resistor, wherein the predetermined threshold voltage is set by setting the variable resistor to a predetermined resistance value;
- a first PNP transistor having a base and a collector connected to each other, a second PNP transistor having a base connected to the first PNP transistor, and the first PNP transistor and the second PNP transistor.
- a current mirror circuit in which the determination voltage generated by the determination voltage generator is input to both emitters of the transistor;
- a second diode having an anode connected to the collector of the first PNP transistor; One end is connected to the cathodes of both the first diode and the second diode, and the other end is connected to a power supply line to which a reference potential that is a negative potential of the secondary battery is applied.
- the storage battery deterioration determination device of the present invention is The determination voltage generator is An amplifying unit for amplifying the AC voltage component or the first intermediate AC voltage obtained by amplifying the AC voltage component to generate a second intermediate AC voltage; An inverting unit that generates an inverted AC voltage obtained by inverting the polarity of the second intermediate AC voltage generated by the amplifying unit; Based on the second intermediate AC voltage generated by the amplifying unit and the inverted AC voltage generated by the inverting unit, the second intermediate AC voltage is doubled and rectified to generate the determination voltage.
- a two-fold amplification unit It is characterized by providing.
- the charger of the present invention is The battery deterioration determination device described above; A power source for passing the current between the positive electrode and the negative electrode of the secondary battery; It is characterized by providing.
- the degree of deterioration of the secondary battery can be visually determined.
- FIG. 1 shows an example of the configuration of the battery deterioration determination device 100 and the charger 1 according to the first embodiment of the present invention.
- 1st Embodiment is an example in case the rated voltage of the secondary battery 201 is 12V.
- the charger 1 includes a power source 200 and a battery deterioration determination device 100.
- the charger 1 charges a secondary battery 201 such as a lead storage battery or a lithium ion battery.
- the power source 200 includes, for example, a bridge type full-wave rectifier circuit.
- the power source 200 rectifies the single-phase AC voltage and outputs a pulsating voltage between the positive electrode and the negative electrode.
- the voltage of the pulsating current the voltage of the positive electrode is 0 V or more with reference to the potential of the negative electrode.
- the positive electrode and the negative electrode of the power supply 200 are connected to the power supply line L1 and the power supply line L2, respectively.
- the potential of the power supply line L2 is referred to as a reference potential.
- Secondary battery 201 has a positive electrode and a negative electrode connected to power supply line L1 and power supply line L2, respectively.
- the secondary battery 201 is charged while the instantaneous value of the pulsating voltage output from the power source 200 reaches a voltage at which the secondary battery 201 is charged.
- the secondary battery 201 is used for a long time and deteriorates as charging and discharging are repeated, and the resistance value between the positive electrode and the negative electrode gradually increases.
- the power source 200 is not limited to a pulsating current, and may be a pulsed current or a square wave (rectangular wave) current.
- the pulsating current, the pulse current, and the square wave (rectangular wave) current are examples of currents including an alternating current component in the present invention.
- the battery deterioration determination device 100 includes a determination voltage generation unit 110 and a deterioration display unit 130.
- the determination voltage generation unit 110 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200.
- the power source 200 causes a pulsating current including a direct current component and an alternating current component to flow through the power supply line L1 and the power supply line L2 (between the positive electrode and the negative electrode of the secondary battery 201), between the positive electrode and the negative electrode of the secondary battery 201
- An AC voltage component is included in the voltage generated at.
- Determination voltage generation unit 110 extracts the AC component.
- the determination voltage generation unit 110 generates a determination voltage for determining the degree of deterioration of the secondary battery 201 based on the AC voltage component.
- the determination voltage generator 110 outputs a determination voltage from the output terminal OUT.
- the determination voltage generation unit 110 will be described in detail later.
- the deterioration display unit 130 displays the degree of deterioration of the secondary battery 201 based on the determination voltage generated by the determination voltage generation unit 110.
- the deterioration display unit 130 can be composed of, for example, LEDs 1 to 5 which are light emitting diodes, and an LED light emission control unit 131.
- the LEDs 1 to 5 are connected in series, for example.
- the anode of LED2 is connected to the cathode of LED1.
- the anode of LED 3 is connected to the cathode of LED 2. Thereafter, the LEDs 3 to 5 are connected in the same manner.
- the present invention is not limited to this, and the LED 1 to LED 5 may be individually connected to the LED light emission control unit 131, and the LED light emission control unit 131 may individually control the light emission and extinction of the LED 1 to LED 5.
- the LED light emission control unit 131 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200.
- the LED light emission control unit 131 receives the determination voltage output from the determination voltage generation unit 110 at the input terminal IN.
- the LED light emission control unit 131 causes the LEDs 1 to 5 to emit light according to the degree of deterioration of the secondary battery based on the determination voltage. At this time, more LEDs emit light as the secondary battery 110 is more deteriorated.
- the LED light emission control unit 131 will be described in detail later.
- the determination voltage generation unit 110 and the deterioration display unit 130 can be realized by digital processing except for a part thereof. When these are realized by digital processing, for example, an FPGA (Field-Programmable Gate Array), a DSP (Digital Signal Processor), a microprocessor, or the like can be used. Further, the determination voltage generation unit 110 and the deterioration display unit 130 can be realized by an analog circuit. Below, the example which implement
- the amplitude of the AC component of the voltage generated between the positive electrode and the negative electrode when the secondary battery 201 is significantly deteriorated is, for example, about 20 mV.
- the forward voltage drop of red, orange, yellow and green LEDs is about 2V.
- the LEDs 1 to LED5 are LEDs of these colors and the LEDs 1 to LED5 are connected in series, in order to cause all of the LEDs 1 to LED5 to emit light when the secondary battery 201 is significantly deteriorated, for example, 10V
- the determination voltage generation unit 110 needs to amplify the AC voltage component included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 by, for example, 500 times or more.
- FIG. 2 shows an example of the configuration of the determination voltage generation unit 110.
- the determination voltage generation unit 110 generates a determination voltage by amplifying and rectifying an AC voltage component included in a voltage generated between the positive electrode and the negative electrode of the secondary battery 201.
- the determination voltage generator 110 outputs a determination voltage from the output terminal OUT.
- the determination voltage generation unit 110 includes a capacitor C1, a transformer T1, an amplification unit 111, an inversion unit 112, and a double amplification unit 113.
- One end of the capacitor C1 is connected to the power supply line L1, and the other end is connected to one end of the primary winding of the transformer T1.
- the other end of the primary winding of the transformer T1 is connected to the power supply line L2.
- Capacitor C1 extracts an AC voltage component included in a voltage generated between the positive electrode and the negative electrode of secondary battery 201 (between power supply line L1 and power supply line L2).
- the transformer T1 amplifies the AC voltage component extracted by the capacitor C1 by about 10 times, for example, and generates a first intermediate AC voltage.
- the amplifying unit 111 includes a resistor R1, a resistor R2, a capacitor C2, an operational amplifier OP1, a variable resistor VR1, a variable resistor VR2, and a capacitor C3.
- the resistor R1 has one end connected to the power supply line L1 and the other end connected to one end of the resistor R2.
- the other end of the resistor R2 is connected to the power supply line L2.
- the resistor R1 and the resistor R2 divide the voltage between the power supply line L1 and the power supply line L2, and generate an intermediate voltage, preferably about half of the voltage between the power supply line L1 and the power supply line L2, at their connection portion.
- One end of the capacitor C2 is connected to a connection portion between the resistor R1 and the resistor R2, and the other end is connected to the power supply line L2.
- the capacitor C2 absorbs ripples and noise from the voltage at the connection portion between the resistor R1 and the resistor R2.
- one end of the secondary winding is connected to the non-inverting input end of the operational amplifier OP1, and the other end of the secondary winding is connected to a connection portion between the resistor R1 and the resistor R2.
- a voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is generated at the other end of the transformer T1.
- the positive power supply terminal of the operational amplifier OP1 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2.
- the output terminal of the operational amplifier OP1 is connected to one end of the variable resistor VR2.
- the other end of the variable resistor VR2 is connected to the inverting input end of the operational amplifier OP1 and one end of the variable resistor VR1.
- the other end of the variable resistor VR1 is connected to one end of the capacitor C3.
- the other end of the capacitor C3 is connected to the power supply line L2.
- the operational amplifier OP1 operates as a non-inverting amplifier having an amplification degree determined by the resistance values of the variable resistor VR1 and the variable resistor VR2.
- An addition voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP1.
- the operational amplifier OP1 amplifies the first intermediate AC voltage in the positive direction.
- the operational amplifier OP1 amplifies the first intermediate AC voltage in the negative direction. In this way, the amplifying unit 111 amplifies the first intermediate AC voltage by about 25 times, for example, to generate a second intermediate AC voltage.
- the operational amplifier OP1 is operated as a non-inverting amplifier.
- the operational amplifier OP1 may be operated as an inverting amplifier.
- the inverting unit 112 includes a capacitor C4, a resistor R3, a resistor R4, and an operational amplifier OP2.
- One end of the capacitor C4 is connected to the output end of the operational amplifier OP1, and the other end is connected to one end of the resistor R3.
- the other end of the resistor R3 is connected to the inverting input end of the operational amplifier OP2 and one end of the resistor R4.
- the other end of the resistor R4 is connected to the output end of the operational amplifier OP2.
- the resistance values of the resistors R3 and R4 are the same.
- the positive power supply terminal of the operational amplifier OP2 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2.
- the inverting input terminal of the operational amplifier OP2 is connected to a connection portion between the other end of the resistor R3 and one end of the resistor R4, and an intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP2.
- the operational amplifier OP2 operates as an inverting amplifier having an amplification factor of 1.
- the operational amplifier OP2 generates an inverted AC voltage in which the positive and negative polarities of the second intermediate AC voltage generated by the amplifier 111 are inverted.
- the double amplification unit 113 includes a capacitor C5, a capacitor C6, a diode D1, a diode D2, a diode D3, and a capacitor C7.
- the diode D3 has an anode connected to the power supply line L2 and a cathode connected to the anode of the diode D2.
- the cathode of the diode D2 is connected to the anode of the diode D1.
- the cathode of the diode D1 is connected to the output terminal OUT.
- One end of the capacitor C5 is connected to the output end of the operational amplifier OP1, and the other end is connected to a connection portion between the anode of the diode D1 and the cathode of the diode D2.
- the double amplification unit 113 operates as a double voltage amplifier.
- the double amplification unit 113 amplifies and rectifies the second intermediate AC voltage by a factor of two based on the second intermediate AC voltage generated by the amplification unit 111 and the inverted AC voltage generated by the inverter 112.
- the generated DC voltage is output from the output terminal OUT.
- the DC voltage output from the output terminal OUT is a determination voltage for determining the degree of deterioration of the secondary battery 201.
- the determination voltage generation unit 110 converts, for example, 10 AC voltage components included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 by the amplification unit 111, the inversion unit 112, and the double amplification unit 113, respectively.
- a decision voltage is generated by amplifying about 500 times, about 25 times and 2 times, and a total of about 500 times, and outputting it from the output terminal OUT.
- FIG. 3 shows an example of the configuration of the deterioration display unit 130.
- the deterioration display unit 130 includes an LED light emission control unit 131.
- the LED light emission control unit 131 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200.
- the LED emission controller 131 includes an NPN bipolar transistor Q1, a resistor R5, N-channel enhancement type field effect transistors FET1 to FET5, diodes D4 to D8, resistors R6 to R10, an NPN bipolar transistor Q2, and a resistor R11. NPN bipolar transistor Q3 and resistor R12.
- the determination voltage output from the output terminal OUT of the determination voltage generator 110 is input to the input terminal IN.
- the transistor Q1 has a base B connected to the input terminal IN, a collector C connected to the power supply line L1, and an emitter E connected to the anode of the LED1.
- the resistor R5 has one end connected to the power supply line L1 and the other end connected to the anodes of the diodes D4 to D8 and the collector C of the transistor Q2.
- the current path (the path between the drain D and the source S) of the FET 1 is connected in parallel with the LED 1. That is, the drain D and the source S of the FET 1 are connected to the anode and the cathode of the LED 1, respectively.
- the gate G of the FET 1 is connected to one end of the resistor R6 and the cathode of the diode D4.
- the other end of the resistor R6 is connected to the source S of the FET1.
- LED1 is turned on when the current path of FET1 is non-conductive, and LED1 is turned off when the current path of FET1 is conductive.
- connection of LED2, FET2, diode D5, and resistor R7 is the same as that of LED1, FET1, diode D4, and resistor R6. Also, the connection between LED3, FET3, diode D6, and resistor R8, the connection between LED4, FET4, diode D7, and resistor R9, and the connection between LED5, FET5, diode D8, and resistor R10 are the same as LED1, FET1, and diode D4. The same as the resistor R6.
- the transistor Q2 has a base B connected to the cathode of the LED 5, a collector C connected to the other end of the resistor R5, and an emitter E connected to one end of the resistor R11. The other end of the resistor R11 is connected to the power supply line L2.
- the transistor Q3 has a base B connected to the cathode of the LED 5, the base B of the transistor Q2, and its collector C.
- the collector C is connected to the cathode of the LED 5, its own base B, and the base B of the transistor Q2. Is connected to one end of the resistor R12.
- the other end of the resistor R12 is connected to the power supply line L2. Note that the resistance value of the resistor R11 is about ten times the resistance value of the resistor R12.
- the light emission control of the LEDs 1 to 5 in the LED light emission control unit 131 will be described in detail.
- the voltage applied to the series connection circuit of the LEDs 1 to LED5 is the highest (hereinafter, this voltage is referred to as the highest voltage).
- the base B of the transistor Q2 is forward-biased by the potential generated at the collector C of the transistor Q3 by the path between the collector C and the emitter E of the transistor Q1 and the current flowing through the LEDs 1 to LED5, and between the collector C and the emitter E of the transistor Q2 becomes conductive.
- the potential of the collector C of the transistor Q2 is the same as the reference potential (the potential of the power supply line L2).
- the collector C and the emitter E of the transistor Q2 do not have to be in a completely conductive state (semi-conductive or the like).
- the potential of the gate G of the FET1 to FET5 may be any potential that does not cause the current paths to conduct.
- the potential of the collector C of the transistor Q2 is slightly higher than the reference potential.
- “the same potential as the reference potential” and “a potential slightly higher than the reference potential” are collectively referred to as “equivalent potential”.
- the anodes of the diodes D4 to D8 are also at the same potential as the reference potential, no forward bias potential is applied to the gates G of the FET1 to FET5, the current paths of the FET1 to FET5 become non-conductive, and the LEDs 1 to LED5 All emit light.
- the potential of the collector C of the transistor Q2 rises, forward biases the gate G of the FET 5, the current path of the FET 5 becomes conductive, a current flows between the collector C and the emitter E of the transistor Q3, and the collector C of the transistor Q3 Although the potential recovers a little, the base B of the transistor Q2 is not forward biased, and the collector potential of the transistor Q2 rises.
- the gate G of only the FET 5 is forward-biased, and the FET 5 becomes conductive, and a voltage lower than the forward voltage drop is applied to both ends of the LED 5 to become non-conductive and stop light emission.
- the potentials of the gates G of the FET1 to FET5 rise as the same potential with reference to the reference potential, but the current paths of the FET1 to FET4 are not conducted, and the LEDs 1 to LED4 continue to emit light.
- the reason why only the FET 5 is conductive is that the potential of the source S of the FET 5 is the potential of the collector C of the transistor Q3 and is low.
- the potential of the source S of the FET 4 is the potential of the drain D of the FET 5 and is slightly higher than the potential of the source S of the FET 5. For this reason, the potential of the gate G with respect to the source S of the FET 4 is lower than that of the FET 5, and the FET 4 does not conduct even if the FET 5 conducts. Accordingly, the LED 4 emits light.
- FET4 Since FET4 is not conducting, the potential of the source S of FET3, FET2, and FET1 is the cathode potential of LED3, LED2, and LED1, respectively, the potential of the source S is high, and the potentials of the gates G of FET3, FET2, and FET1 are also in order. Not biased.
- the current paths of FET3, FET2, and FET1 are also non-conductive, and LED3, LED2, and LED1 emit light.
- FET5 does not become a complete conduction state but retains a certain resistance value. This is because a negative feedback circuit is formed by the collector C of the transistor Q2, the gate G of the FET 5, the source S of the FET 5, and the base B of the transistor Q2, and the potential of the collector C (base B) of the transistor Q3 is kept constant. This is because the conduction resistance value between the drain D and the source S of the FET 5 is balanced at a certain value.
- the FET 5 forms a source follower circuit with the transistor Q3 and the resistor R12 as loads.
- This negative feedback circuit has an effect of making the potential of the collector C (base B) of the transistor Q3 constant.
- the resistance value between the collector C and the emitter E of the transistor Q2 is also balanced at a constant value. Everything is balanced with this negative feedback circuit.
- the voltage across the resistor R12 is constant. Therefore, the transistor Q3 may not be provided and one end of the resistor R12 may be directly connected to the source S of the FET 5.
- the FET 5 When the FET 5 is not fully conductive, the FET 5 replaces the current path of the LED 5, the current flows as usual, the LED 5 stops emitting light, and the other light emitting diodes (LED4 to LED1) maintain the light emission.
- the voltage drop in the current path of the FET 5 due to the conduction of the FET 5 is smaller than the forward voltage drop of the light emitting diode. In this state, the LED 5 does not emit light.
- the potential of the source S of the FET 4 is increased by the voltage drop between the drain D and the source S of the FET 5. For this reason, the potential between the gate G and the source S of the FET 4 is lower than the conduction potential, and the FET 4 does not conduct. If FET4 does not conduct, FET3, FET2, and FET1 do not conduct.
- LED3, LED2, and LED1 stop emitting light in order. That is, when the voltage applied to the series connection circuit of LED1 to LED5 is decreased by the forward voltage drop of the light emitting diode, the light emission is stopped in the order of LED5 ⁇ LED4 ⁇ LED3 ⁇ LED2 ⁇ LED1 and the forward voltage drop of the light emitting diode is decreased. If it rises, it will light-emit in order of LED1->LED2->LED3->LED4-> LED5.
- the second embodiment is an example when the rated voltage of the secondary battery 201 is 380V.
- a voltage of 12 V is supplied to the power supply line L3 from a constant voltage circuit (not shown).
- the determination voltage generation unit 210 and the deterioration display unit 230 are connected to the power supply line L3 and the power supply line L2, and operate with a voltage supplied from a constant voltage circuit (not shown).
- the difference between the determination voltage generation unit 210 and the determination voltage generation unit 110 according to the first embodiment is as follows.
- the power supply 201 supplies a pulsating current including a direct current component and an alternating current component to the power supply line L1 and the power supply line L2 (between the positive electrode and the negative electrode of the secondary battery 201)
- the positive and negative electrodes of the secondary battery 201 The AC voltage component generated between them reaches, for example, about 600 mV.
- the determination voltage generation unit 210 does not have the transformer T1.
- the determination voltage generation unit 210 includes a resistor R13 and a resistor R14.
- the resistor R13 has one end connected to the power supply line L3 and the other end connected to one end of the resistor R14.
- the other end of the resistor R14 is connected to the power supply line L2.
- the resistor R13 and the resistor R14 divide the voltage 12V between the power supply line L3 and the power supply line L2 to generate a first intermediate voltage, preferably about 6V, at their connection portion.
- One end of the capacitor C1 is connected to the power supply line L1, and the other end is connected to a connection portion between the resistor R13 and the resistor R14. Therefore, the voltage at the connection portion between the resistor R13 and the resistor R14 is a voltage obtained by adding an AC voltage component to the first intermediate voltage, and the added voltage is input to the non-inverting input terminal of the operational amplifier OP1.
- the positive power supply terminals of the operational amplifier OP1 and the operational amplifier OP2 of the amplifier 111 are connected to the power supply line L3, and the negative power supply terminals are connected to the power supply line L2.
- One end of the resistor R1 is connected to the power supply line L3, and a second intermediate voltage of preferably about 6V is generated at a connection portion between the resistor R1 and the resistor R2.
- the second intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP2.
- the determination voltage generation unit 210 has the same configuration as the determination voltage generation unit 110.
- the deterioration display unit 230 includes an LED light emission control unit 231 and light emitting diodes LED1 to LED5.
- the LED light emission control unit 231 is different from the LED light emission control unit 131 according to the first embodiment in that the collector C of the transistor Q1 and one end of the resistor R5 are connected to the power supply line L3. Except for this point, the LED light emission control unit 231 has the same configuration as the LED light emission control unit 131.
- FIG. 6 shows an example of the configuration of the battery deterioration determination device 101 and the charger 2 according to the third embodiment of the present invention.
- 3rd Embodiment is an example in case the rated voltage of the secondary battery 201 is 12V.
- the charger 2 includes a power source 200 and a battery deterioration diagnosis device 101.
- the charger 2 charges a secondary battery 201 such as a lead storage battery or a lithium ion battery.
- the battery deterioration diagnosis apparatus 101 includes a determination voltage generation unit 110, an abnormality determination unit 120, and a deterioration display unit 130.
- the battery deterioration diagnosis apparatus 101 is different from the battery deterioration diagnosis apparatus 100 according to the first embodiment in that it includes an abnormality determination unit 120.
- the configurations of the determination voltage generation unit 110 and the deterioration display unit 130 are the same in the battery deterioration determination device 101 and the battery deterioration diagnosis device 100.
- the determination voltage generation unit 110 outputs a determination voltage from the output terminal OUT.
- a determination voltage is input to the input terminal IN.
- Abnormality determination unit 120 determines whether or not secondary battery 201 is abnormal based on the determination voltage and a predetermined threshold voltage. Then, the abnormality determination unit 120 generates a display voltage of a predetermined level indicating that the secondary battery 201 is normal when it is determined as normal. Moreover, the abnormality determination part 120 produces
- the abnormality determination unit 120 outputs a display voltage from the output terminal OUT.
- the deterioration display unit 130 displays the presence / absence of the abnormality and the degree of deterioration of the secondary battery 201 based on the display voltage generated by the abnormality determination unit 120, not the determination voltage generated by the determination voltage generation unit 110.
- the deterioration display unit 130 includes light emitting diodes LED1 to LED5.
- Abnormality determination unit 120 determines that secondary battery 201 is normal when the determination voltage generated by determination voltage generation unit 110 is equal to or lower than a predetermined threshold voltage. Then, the abnormality determination unit 120 sets the display voltage to a predetermined level (for example, a reference potential). On the other hand, when the determination voltage is larger than the predetermined threshold voltage, abnormality determination unit 120 determines that secondary battery 201 is abnormal. And the abnormality discrimination
- the display voltage generated by the abnormality determination unit 120 is input to the input terminal IN.
- the LED light emission control unit 131 causes the LEDs 1 to 5 to emit light by the number corresponding to the display voltage. Specifically, the LED light emission control unit 131 turns off all of the LEDs 1 to 5 when the display voltage generated by the abnormality determination unit 120 is at a predetermined level (for example, a reference potential). Thereby, the person who looks at the battery deterioration diagnostic apparatus 100 can know that the secondary battery 201 is normal. In other cases, that is, when the determination voltage is greater than the predetermined threshold voltage, the LED light emission control unit 131 causes the LEDs 1 to 5 to emit light in the number corresponding to the degree of deterioration of the secondary battery. At this time, more LEDs emit light as the secondary battery 201 is more deteriorated. Thereby, the person who looks at the battery deterioration diagnosis apparatus 100 can know that the secondary battery 201 is abnormal and the degree of the deterioration.
- a predetermined level for example, a reference
- the LED light emission control unit 131 turns off all the LEDs when the determination voltage is equal to or lower than the threshold voltage.
- the LED light emission controller 131 causes the LEDs 1 to 3 to emit light.
- the LED light emission control unit 131 causes the LEDs 1 to 4 to emit light.
- the LED light emission control unit 131 causes all the LEDs 1 to 5 to emit light.
- the abnormality determination unit 120 can be realized by digital processing using an FPGA, DSP, microprocessor, or the like. Further, the abnormality determination unit 120 can be realized by an analog circuit. Hereinafter, an example in which the abnormality determination unit 120 is realized by an analog circuit will be described in detail.
- FIG. 7 shows an example of the configuration of the abnormality determination unit 120.
- the abnormality determination unit 120 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200.
- the abnormality determination unit 120 receives the determination voltage generated by the determination voltage generation unit 110 at the input terminal IN, and outputs a display voltage from the output terminal OUT.
- the abnormality determination unit 120 includes a variable resistor VR21, a variable resistor VR22, an NPN transistor Q21, a diode D21, a current mirror circuit including a PNP transistor Q22 and a PNP transistor Q23, a diode D22, a resistor R21, and a resistor R22. And have.
- the variable resistor VR21 has one end connected to the power supply line L1 and the other end connected to one end of the variable resistor VR22. The other end of the variable resistor VR22 is connected to the power supply line L2.
- the variable resistor VR21 and the variable resistor VR22 divide the voltage between the power supply line L1 and the power supply line L2, and generate a predetermined threshold voltage at the connection portion thereof.
- a predetermined threshold voltage can be set by setting variable resistance VR21 and / or variable resistance VR22 to a predetermined resistance value.
- the circuit constituted by the variable resistor VR21 and the variable resistor VR22 is an example of the threshold voltage setting circuit of the present invention.
- the NPN transistor Q21 has a base B connected to a connection portion between the variable resistor VR21 and the variable resistor VR22, a collector C connected to the power supply line L1, and an emitter E connected to the anode of the diode D21.
- the NPN transistor Q21 is an emitter follower.
- the PNP transistor Q22 and the PNP transistor Q23 constitute a current mirror circuit.
- the base B and the collector C are connected to the PNP transistor Q22.
- the bases B of the PNP transistor Q22 and the PNP transistor Q23 are connected to each other. Both emitters E of the PNP transistor Q22 and the PNP transistor Q23 are connected to the input terminal IN, and the determination voltage generated by the determination voltage generator 110 is input to both the emitters E.
- the anode of the diode D22 is connected to the collector C of the PNP transistor Q22.
- the cathode of the diode D21 and the cathode of the diode D22 are connected.
- the resistor R21 has one end connected to the cathodes of both the diode D21 and the diode D22, and the other end connected to the power supply line L2 to which the reference potential is applied.
- One end of a resistor R22 is connected to the collector C of the PNP transistor Q23.
- the other end of the resistor R22 is connected to the power supply line L2.
- a connection portion between the collector C of the PNP transistor Q23 and one end of the resistor R22 is connected to the output terminal OUT.
- a threshold voltage is input to the base B, and a voltage lower than the threshold voltage by the base-emitter voltage is generated in the emitter E.
- the diode D21 reduces the voltage of its emitter E by the forward voltage drop.
- a voltage lower than the threshold voltage by the sum of the base-emitter voltage and the forward voltage drop is referred to as a threshold voltage level voltage.
- a voltage lower than the determination voltage by the emitter-collector voltage is generated at the collector C of the PNP transistor Q22.
- Diode D22 reduces the voltage at its collector C by a forward voltage drop.
- a voltage lower than the determination voltage by the sum of the emitter-collector voltage and the forward voltage drop is referred to as a determination voltage level voltage.
- a connection portion between the cathode of the diode D21, the cathode of the diode D22, and one end of the resistor R21 (hereinafter, referred to as one end of the resistor R21) is a higher one of the threshold voltage level and the determination voltage level voltage.
- one end of the resistor R21 becomes a voltage at the threshold voltage level.
- the diode D21 is in a forward bias state, and the diode D22 is in a reverse bias state.
- the base current does not flow through the PNP transistor Q22 and the PNP transistor Q23. Accordingly, since no current flows between the emitter and collector of the PNP transistor Q23, a display at the same level as the reference potential is displayed at the connection portion of the collector C of the PNP transistor Q23 and one end of the resistor R22 (hereinafter referred to as one end of the resistor R22). A voltage is generated.
- one end of the resistor R21 becomes a voltage at the determination voltage level.
- the diode D21 is in a reverse bias state, and the diode D22 is in a forward bias state.
- a current flows between the emitter and collector of the PNP transistor Q22.
- a base current flows through the PNP transistor Q22 and the PNP transistor Q23. Accordingly, since a current also flows between the emitter and collector of the PNP transistor Q23, a display voltage lower than the determination voltage by the emitter-collector voltage is generated at one end of the resistor R22.
- FIG. 8 shows an example of the configuration of the abnormality determination unit 220 included in the battery deterioration determination device according to the fourth embodiment of the present invention.
- the fourth embodiment is an example when the rated voltage of the secondary battery 201 is 380V.
- the battery deterioration determination device according to the fourth embodiment includes a determination voltage generation unit 210 and a deterioration display unit 230 of the battery deterioration determination device according to the second embodiment, in addition to the abnormality determination unit 220.
- a voltage of 12 V is supplied to the power supply line L3 from a constant voltage circuit (not shown).
- the determination voltage generation unit 210, the abnormality determination unit 220, and the LED light emission control unit 231 are connected to the power supply line L3 and the power supply line L2, and operate with a voltage supplied from a constant voltage circuit (not shown).
- the abnormality determination unit 220 is different from the abnormality determination unit 120 according to the first embodiment in that the collector C of the NPN transistor Q21 and one end of the variable resistor VR21 are connected to the power supply line L3. . Except for this point, the abnormality determination unit 220 has the same configuration as the abnormality determination unit 120.
- LED1 to LED5 an example of five light emitting diodes (LED1 to LED5) has been described.
- the present invention may be applied even when two to four light emitting diodes or five or more light emitting diodes are connected in series. Can be applied.
- the degree of deterioration of the secondary battery can be visually determined. That is, by using the charger according to the present invention, it is possible to visually determine the degree of deterioration during charging of the secondary battery. Further, according to the third embodiment and the fourth embodiment, it is possible to determine the presence or absence of abnormality of the secondary battery and to visually determine the degree of deterioration in the case of abnormality. That is, by using the charger according to the third embodiment and the fourth embodiment, it is possible to determine whether or not there is an abnormality during charging of the secondary battery, and if it is abnormal, visually check the degree of deterioration. Can be determined.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
A storage battery degradation determination device 100 allows the degree of degradation of a secondary battery 201 to be determined visually. A power source 200 sends a current between a positive electrode and a negative electrode of the secondary battery 201, said current including an alternating current component. When the current including the alternating current component flows between the positive electrode and the negative electrode of the secondary battery 201, a voltage that is produced between the positive electrode and the negative electrode includes an alternating voltage component. A determination voltage generation unit 110 extracts this alternating voltage component, amplifies and rectifies the same, and generates a determination voltage. On the basis of the determination voltage generated by the determination voltage generation unit 110, an LED light emission control unit 131 causes a number of LEDs LED1-LED5 to emit light, said number corresponding to the degree of degradation of the secondary battery.
Description
本発明は、二次電池の劣化の程度を判定する電池劣化判定装置および充電器に関する。
The present invention relates to a battery deterioration determination device and a charger for determining the degree of deterioration of a secondary battery.
特許文献1は、二次電池が異常であるか否かを判別する電池良否判別装置を開示する。二次電池の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるとき、正極と負極の間に生じる電圧には交流電圧成分が含まれる。特許文献1に記載の電池良否判別装置は、その交流電圧成分の大きさに基づいて、二次電池が異常であるか否かを判別する。
Patent Document 1 discloses a battery pass / fail discrimination device that discriminates whether or not a secondary battery is abnormal. When a pulsating current containing a direct current component and an alternating current component flows between the positive electrode and the negative electrode of the secondary battery, the voltage generated between the positive electrode and the negative electrode includes an alternating voltage component. The battery quality determination device described in Patent Literature 1 determines whether or not the secondary battery is abnormal based on the magnitude of the AC voltage component.
また、特許文献2は、複数の発光ダイオード(LED:Light Emitting Diode)の発光を制御する発光制御回路を開示する。特許文献2に記載の発光制御回路は、直列に接続された複数のLEDからなるLED回路の両端に電圧を印加し、その電圧に応じた個数だけLEDを発光させる。
Patent Document 2 discloses a light emission control circuit that controls light emission of a plurality of light emitting diodes (LEDs). The light emission control circuit described in Patent Document 2 applies a voltage to both ends of an LED circuit composed of a plurality of LEDs connected in series, and causes the LEDs to emit light in the number corresponding to the voltage.
特許文献1に記載の電池良否判別装置を用いれば、二次電池が異常であるか否かを判別することができる。しかし、この電池良否判別装置を用いても、その二次電池がどの程度劣化しているかを知ることはできない。例えば、その二次電池を満充電にした後に使用可能な時間の目安を知ることはできない。
If the battery quality determination device described in Patent Document 1 is used, it can be determined whether or not the secondary battery is abnormal. However, even if this battery quality determination device is used, it is impossible to know how much the secondary battery has deteriorated. For example, it is not possible to know a measure of the usable time after the secondary battery is fully charged.
本発明の目的は、二次電池の劣化の程度を目視で判定することができる電池劣化判定装置および充電器を提供することである。
An object of the present invention is to provide a battery deterioration determination device and a charger that can visually determine the degree of deterioration of a secondary battery.
上記目的を達成するために、本発明の蓄電池劣化判定装置は、
二次電池の正極と負極の間に交流電流成分を含む電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分に基づいて前記二次電池の劣化の程度を判定するための判定電圧を生成する判定電圧生成部と、
前記判定電圧生成部で生成された判定電圧に基づいて前記二次電池の劣化の程度を表示する劣化表示部と、
を備えることを特徴とする。 In order to achieve the above object, the storage battery deterioration determination device of the present invention is:
When an electric current containing an alternating current component flows between the positive electrode and the negative electrode of the secondary battery, the alternating voltage component contained in the voltage generated between the positive electrode and the negative electrode is extracted, and the secondary battery is based on the alternating voltage component A determination voltage generation unit that generates a determination voltage for determining the degree of deterioration of
A deterioration display unit that displays a degree of deterioration of the secondary battery based on the determination voltage generated by the determination voltage generation unit;
It is characterized by providing.
二次電池の正極と負極の間に交流電流成分を含む電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分に基づいて前記二次電池の劣化の程度を判定するための判定電圧を生成する判定電圧生成部と、
前記判定電圧生成部で生成された判定電圧に基づいて前記二次電池の劣化の程度を表示する劣化表示部と、
を備えることを特徴とする。 In order to achieve the above object, the storage battery deterioration determination device of the present invention is:
When an electric current containing an alternating current component flows between the positive electrode and the negative electrode of the secondary battery, the alternating voltage component contained in the voltage generated between the positive electrode and the negative electrode is extracted, and the secondary battery is based on the alternating voltage component A determination voltage generation unit that generates a determination voltage for determining the degree of deterioration of
A deterioration display unit that displays a degree of deterioration of the secondary battery based on the determination voltage generated by the determination voltage generation unit;
It is characterized by providing.
好ましくは、本発明の蓄電池劣化判定装置は、
前記判定電圧生成部が、前記交流電圧成分を増幅して整流することにより、前記判定電圧を生成し、
前記劣化表示部が、直列に接続された複数のLEDと、前記判定電圧生成部で生成される判定電圧に基づいて前記複数のLEDを前記二次電池の劣化の程度に応じた個数だけ発光させるLED発光制御部とを有する、
ことを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The determination voltage generator generates the determination voltage by amplifying and rectifying the AC voltage component,
The deterioration display unit causes the plurality of LEDs to emit light according to the degree of deterioration of the secondary battery based on the plurality of LEDs connected in series and the determination voltage generated by the determination voltage generation unit. An LED light emission control unit,
It is characterized by that.
前記判定電圧生成部が、前記交流電圧成分を増幅して整流することにより、前記判定電圧を生成し、
前記劣化表示部が、直列に接続された複数のLEDと、前記判定電圧生成部で生成される判定電圧に基づいて前記複数のLEDを前記二次電池の劣化の程度に応じた個数だけ発光させるLED発光制御部とを有する、
ことを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The determination voltage generator generates the determination voltage by amplifying and rectifying the AC voltage component,
The deterioration display unit causes the plurality of LEDs to emit light according to the degree of deterioration of the secondary battery based on the plurality of LEDs connected in series and the determination voltage generated by the determination voltage generation unit. An LED light emission control unit,
It is characterized by that.
好ましくは、本発明の蓄電池劣化判定装置は、
前記LED発光制御部が、前記二次電池の劣化が激しいほど多くのLEDを発光させることを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The LED light emission control unit causes more LEDs to emit light as the secondary battery is more deteriorated.
前記LED発光制御部が、前記二次電池の劣化が激しいほど多くのLEDを発光させることを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The LED light emission control unit causes more LEDs to emit light as the secondary battery is more deteriorated.
好ましくは、本発明の蓄電池劣化判定装置は、
前記判定電圧生成部で生成された判定電圧と所定のしきい電圧とに基づいて前記二次電池の異常の有無を判別し、前記二次電池が正常と判別された場合に正常であることを示す所定のレベルの表示電圧を生成し、前記二次電池が異常と判別された場合に前記二次電池の劣化の程度に応じたレベルの表示電圧を前記判定電圧に基づいて生成する異常判別部を備え、
前記劣化表示部が、前記判定電圧生成部で生成された判定電圧ではなく、前記異常判別部で生成された表示電圧に基づいて前記二次電池の異常の有無および劣化の程度を表示する、
ことを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
Whether or not the secondary battery is abnormal is determined based on the determination voltage generated by the determination voltage generation unit and a predetermined threshold voltage, and is normal when the secondary battery is determined to be normal. An abnormality determination unit that generates a display voltage of a predetermined level to be generated and generates a display voltage of a level according to the degree of deterioration of the secondary battery when the secondary battery is determined to be abnormal With
The deterioration display unit displays the presence / absence of the secondary battery and the degree of deterioration based on the display voltage generated by the abnormality determination unit instead of the determination voltage generated by the determination voltage generation unit,
It is characterized by that.
前記判定電圧生成部で生成された判定電圧と所定のしきい電圧とに基づいて前記二次電池の異常の有無を判別し、前記二次電池が正常と判別された場合に正常であることを示す所定のレベルの表示電圧を生成し、前記二次電池が異常と判別された場合に前記二次電池の劣化の程度に応じたレベルの表示電圧を前記判定電圧に基づいて生成する異常判別部を備え、
前記劣化表示部が、前記判定電圧生成部で生成された判定電圧ではなく、前記異常判別部で生成された表示電圧に基づいて前記二次電池の異常の有無および劣化の程度を表示する、
ことを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
Whether or not the secondary battery is abnormal is determined based on the determination voltage generated by the determination voltage generation unit and a predetermined threshold voltage, and is normal when the secondary battery is determined to be normal. An abnormality determination unit that generates a display voltage of a predetermined level to be generated and generates a display voltage of a level according to the degree of deterioration of the secondary battery when the secondary battery is determined to be abnormal With
The deterioration display unit displays the presence / absence of the secondary battery and the degree of deterioration based on the display voltage generated by the abnormality determination unit instead of the determination voltage generated by the determination voltage generation unit,
It is characterized by that.
好ましくは、本発明の蓄電池劣化判定装置は、
前記劣化表示部が、直列に接続された複数のLEDと、前記異常判別部で生成された表示電圧に応じた個数だけ当該複数のLEDを発光させるLED発光制御部とを有し、
前記異常判別部が、前記判定電圧生成部で生成された判定電圧が前記所定のしきい電圧以下である場合に前記表示電圧を前記複数のLEDを全て消灯させる前記所定のレベルとし、前記判定電圧が前記所定のしきい電圧より大きい場合に前記二次電池の劣化の程度に応じた個数のLEDを点灯させるレベルの前記表示電圧を前記判定電圧に基づいて生成する、
ことを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The deterioration display unit includes a plurality of LEDs connected in series, and an LED light emission control unit configured to emit the plurality of LEDs according to the number corresponding to the display voltage generated by the abnormality determination unit,
When the determination voltage generated by the determination voltage generation unit is equal to or lower than the predetermined threshold voltage, the abnormality determination unit sets the display voltage to the predetermined level that turns off the plurality of LEDs, and determines the determination voltage. Generating the display voltage at a level that turns on a number of LEDs according to the degree of deterioration of the secondary battery when the voltage is greater than the predetermined threshold voltage, based on the determination voltage;
It is characterized by that.
前記劣化表示部が、直列に接続された複数のLEDと、前記異常判別部で生成された表示電圧に応じた個数だけ当該複数のLEDを発光させるLED発光制御部とを有し、
前記異常判別部が、前記判定電圧生成部で生成された判定電圧が前記所定のしきい電圧以下である場合に前記表示電圧を前記複数のLEDを全て消灯させる前記所定のレベルとし、前記判定電圧が前記所定のしきい電圧より大きい場合に前記二次電池の劣化の程度に応じた個数のLEDを点灯させるレベルの前記表示電圧を前記判定電圧に基づいて生成する、
ことを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The deterioration display unit includes a plurality of LEDs connected in series, and an LED light emission control unit configured to emit the plurality of LEDs according to the number corresponding to the display voltage generated by the abnormality determination unit,
When the determination voltage generated by the determination voltage generation unit is equal to or lower than the predetermined threshold voltage, the abnormality determination unit sets the display voltage to the predetermined level that turns off the plurality of LEDs, and determines the determination voltage. Generating the display voltage at a level that turns on a number of LEDs according to the degree of deterioration of the secondary battery when the voltage is greater than the predetermined threshold voltage, based on the determination voltage;
It is characterized by that.
好ましくは、本発明の蓄電池劣化判定装置は、
前記判定電圧生成部が、前記交流電圧成分を増幅して整流することにより、前記判定電圧を生成し、
前記異常判別部が、
可変抵抗を含み、当該可変抵抗が所定の抵抗値に設定されることにより前記所定のしきい電圧が設定されるしきい電圧設定回路と、
前記しきい電圧設定回路で設定されたしきい電圧がベースに入力されるエミッタフォロアのNPNトランジスタと、
アノードが前記NPNトランジスタのエミッタに接続された第1のダイオードと、
ベースとコレクタが接続された第1のPNPトランジスタと当該第1のPNPトランジスタとベース同士が接続された第2のPNPトランジスタとで構成されており、前記第1のPNPトランジスタと前記第2のPNPトランジスタの両方のエミッタに前記判定電圧生成部で生成された判定電圧が入力されるカレントミラー回路と、
アノードが前記第1のPNPトランジスタのコレクタに接続された第2のダイオードと、
前記第1のダイオードと前記第2のダイオードの両方のカソードに一端が接続されており、前記二次電池の負極の電位である基準電位が印加される電源ラインに他端が接続された第1の抵抗と、
前記第2のPNPトランジスタのコレクタに一端が接続されており、前記電源ラインに他端が接続されており、当該一端に前記表示電圧を生じる第2の抵抗と、
を備える、
ことを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The determination voltage generator generates the determination voltage by amplifying and rectifying the AC voltage component,
The abnormality determination unit
A threshold voltage setting circuit including a variable resistor, wherein the predetermined threshold voltage is set by setting the variable resistor to a predetermined resistance value;
An emitter follower NPN transistor to which the threshold voltage set by the threshold voltage setting circuit is input to the base;
A first diode having an anode connected to the emitter of the NPN transistor;
A first PNP transistor having a base and a collector connected to each other, a second PNP transistor having a base connected to the first PNP transistor, and the first PNP transistor and the second PNP transistor. A current mirror circuit in which the determination voltage generated by the determination voltage generator is input to both emitters of the transistor;
A second diode having an anode connected to the collector of the first PNP transistor;
One end is connected to the cathodes of both the first diode and the second diode, and the other end is connected to a power supply line to which a reference potential that is a negative potential of the secondary battery is applied. Resistance of
One end connected to the collector of the second PNP transistor, the other end connected to the power supply line, and a second resistor for generating the display voltage at the one end;
Comprising
It is characterized by that.
前記判定電圧生成部が、前記交流電圧成分を増幅して整流することにより、前記判定電圧を生成し、
前記異常判別部が、
可変抵抗を含み、当該可変抵抗が所定の抵抗値に設定されることにより前記所定のしきい電圧が設定されるしきい電圧設定回路と、
前記しきい電圧設定回路で設定されたしきい電圧がベースに入力されるエミッタフォロアのNPNトランジスタと、
アノードが前記NPNトランジスタのエミッタに接続された第1のダイオードと、
ベースとコレクタが接続された第1のPNPトランジスタと当該第1のPNPトランジスタとベース同士が接続された第2のPNPトランジスタとで構成されており、前記第1のPNPトランジスタと前記第2のPNPトランジスタの両方のエミッタに前記判定電圧生成部で生成された判定電圧が入力されるカレントミラー回路と、
アノードが前記第1のPNPトランジスタのコレクタに接続された第2のダイオードと、
前記第1のダイオードと前記第2のダイオードの両方のカソードに一端が接続されており、前記二次電池の負極の電位である基準電位が印加される電源ラインに他端が接続された第1の抵抗と、
前記第2のPNPトランジスタのコレクタに一端が接続されており、前記電源ラインに他端が接続されており、当該一端に前記表示電圧を生じる第2の抵抗と、
を備える、
ことを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The determination voltage generator generates the determination voltage by amplifying and rectifying the AC voltage component,
The abnormality determination unit
A threshold voltage setting circuit including a variable resistor, wherein the predetermined threshold voltage is set by setting the variable resistor to a predetermined resistance value;
An emitter follower NPN transistor to which the threshold voltage set by the threshold voltage setting circuit is input to the base;
A first diode having an anode connected to the emitter of the NPN transistor;
A first PNP transistor having a base and a collector connected to each other, a second PNP transistor having a base connected to the first PNP transistor, and the first PNP transistor and the second PNP transistor. A current mirror circuit in which the determination voltage generated by the determination voltage generator is input to both emitters of the transistor;
A second diode having an anode connected to the collector of the first PNP transistor;
One end is connected to the cathodes of both the first diode and the second diode, and the other end is connected to a power supply line to which a reference potential that is a negative potential of the secondary battery is applied. Resistance of
One end connected to the collector of the second PNP transistor, the other end connected to the power supply line, and a second resistor for generating the display voltage at the one end;
Comprising
It is characterized by that.
好ましくは、本発明の蓄電池劣化判定装置は、
前記判定電圧生成部が、
前記交流電圧成分または前記交流電圧成分が増幅された第1の中間交流電圧を増幅して第2の中間交流電圧を生成する増幅部と、
前記増幅部で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する反転部と、
前記増幅部で生成される第2の中間交流電圧と前記反転部で生成される反転交流電圧とに基づいて前記第2の中間交流電圧を2倍に増幅して整流し、前記判定電圧を生成する2倍増幅部と、
を備えることを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The determination voltage generator is
An amplifying unit for amplifying the AC voltage component or the first intermediate AC voltage obtained by amplifying the AC voltage component to generate a second intermediate AC voltage;
An inverting unit that generates an inverted AC voltage obtained by inverting the polarity of the second intermediate AC voltage generated by the amplifying unit;
Based on the second intermediate AC voltage generated by the amplifying unit and the inverted AC voltage generated by the inverting unit, the second intermediate AC voltage is doubled and rectified to generate the determination voltage. A two-fold amplification unit,
It is characterized by providing.
前記判定電圧生成部が、
前記交流電圧成分または前記交流電圧成分が増幅された第1の中間交流電圧を増幅して第2の中間交流電圧を生成する増幅部と、
前記増幅部で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する反転部と、
前記増幅部で生成される第2の中間交流電圧と前記反転部で生成される反転交流電圧とに基づいて前記第2の中間交流電圧を2倍に増幅して整流し、前記判定電圧を生成する2倍増幅部と、
を備えることを特徴とする。 Preferably, the storage battery deterioration determination device of the present invention is
The determination voltage generator is
An amplifying unit for amplifying the AC voltage component or the first intermediate AC voltage obtained by amplifying the AC voltage component to generate a second intermediate AC voltage;
An inverting unit that generates an inverted AC voltage obtained by inverting the polarity of the second intermediate AC voltage generated by the amplifying unit;
Based on the second intermediate AC voltage generated by the amplifying unit and the inverted AC voltage generated by the inverting unit, the second intermediate AC voltage is doubled and rectified to generate the determination voltage. A two-fold amplification unit,
It is characterized by providing.
また、本発明の充電器は、
上述した電池劣化判定装置と、
二次電池の正極と負極の間に前記電流を流す電源と、
を備えることを特徴とする。 The charger of the present invention is
The battery deterioration determination device described above;
A power source for passing the current between the positive electrode and the negative electrode of the secondary battery;
It is characterized by providing.
上述した電池劣化判定装置と、
二次電池の正極と負極の間に前記電流を流す電源と、
を備えることを特徴とする。 The charger of the present invention is
The battery deterioration determination device described above;
A power source for passing the current between the positive electrode and the negative electrode of the secondary battery;
It is characterized by providing.
本発明によれば、二次電池の劣化の程度を目視で判定することができる。
According to the present invention, the degree of deterioration of the secondary battery can be visually determined.
以下、本発明の実施形態に係る電池劣化判定装置および充電器について図面を参照しながら詳細に説明する。なお、実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。
Hereinafter, a battery deterioration determination device and a charger according to an embodiment of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiments, common constituent elements are denoted by the same reference numerals, and repeated explanation is omitted.
図1は、本発明の第1の実施形態に係る電池劣化判定装置100および充電器1の構成の一例を示す。第1の実施形態は、二次電池201の定格電圧が12Vである場合の例である。
充電器1は、電源200と電池劣化判定装置100とを有する。充電器1は、鉛蓄電池やリチウムイオン電池等の二次電池201を充電する。 FIG. 1 shows an example of the configuration of the batterydeterioration determination device 100 and the charger 1 according to the first embodiment of the present invention. 1st Embodiment is an example in case the rated voltage of the secondary battery 201 is 12V.
The charger 1 includes apower source 200 and a battery deterioration determination device 100. The charger 1 charges a secondary battery 201 such as a lead storage battery or a lithium ion battery.
充電器1は、電源200と電池劣化判定装置100とを有する。充電器1は、鉛蓄電池やリチウムイオン電池等の二次電池201を充電する。 FIG. 1 shows an example of the configuration of the battery
The charger 1 includes a
電源200は、例えばブッリジ型全波整流回路を含む。電源200は、単相交流電圧を整流し、正極と負極の間に脈流の電圧を出力する。脈流の電圧は、負極の電位を基準として、正極の電圧が0V以上である。電源200の正極と負極は、それぞれ電源ラインL1と電源ラインL2に接続される。以下、電源ラインL2の電位を基準電位という。
The power source 200 includes, for example, a bridge type full-wave rectifier circuit. The power source 200 rectifies the single-phase AC voltage and outputs a pulsating voltage between the positive electrode and the negative electrode. As for the voltage of the pulsating current, the voltage of the positive electrode is 0 V or more with reference to the potential of the negative electrode. The positive electrode and the negative electrode of the power supply 200 are connected to the power supply line L1 and the power supply line L2, respectively. Hereinafter, the potential of the power supply line L2 is referred to as a reference potential.
二次電池201は、その正極と負極がそれぞれ電源ラインL1と電源ラインL2に接続される。電源200の出力する脈流の電圧の瞬時値が、二次電池201が充電される程度の電圧に達している間に、二次電池201は充電される。
二次電池201は、長時間使用され、充放電を繰り返すに連れて劣化し、正極と負極の間の抵抗値が徐々に増加する。このため、劣化した二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるとき、その二次電池201の正極と負極の間に生じる電圧の交流成分の振幅は、二次電池201が正常である場合に比べて増大する。二次電池201が劣化するに連れてその正極と負極の間に発生する電圧の交流成分の振幅は、徐々に増加し、例えば20mV程度に達する。
なお、電源200は、脈流電流に限らず、パルス電流や方形波(矩形波)電流を流すものであってもよい。脈流電流、パルス電流、および方形波(矩形波)電流は、本発明における交流電流成分を含む電流の例である。Secondary battery 201 has a positive electrode and a negative electrode connected to power supply line L1 and power supply line L2, respectively. The secondary battery 201 is charged while the instantaneous value of the pulsating voltage output from the power source 200 reaches a voltage at which the secondary battery 201 is charged.
Thesecondary battery 201 is used for a long time and deteriorates as charging and discharging are repeated, and the resistance value between the positive electrode and the negative electrode gradually increases. For this reason, when a pulsating current containing a direct current component and an alternating current component flows between the positive electrode and the negative electrode of the deteriorated secondary battery 201, the alternating current component of the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 Is increased as compared with the case where the secondary battery 201 is normal. As the secondary battery 201 deteriorates, the amplitude of the AC component of the voltage generated between the positive electrode and the negative electrode gradually increases and reaches, for example, about 20 mV.
Thepower source 200 is not limited to a pulsating current, and may be a pulsed current or a square wave (rectangular wave) current. The pulsating current, the pulse current, and the square wave (rectangular wave) current are examples of currents including an alternating current component in the present invention.
二次電池201は、長時間使用され、充放電を繰り返すに連れて劣化し、正極と負極の間の抵抗値が徐々に増加する。このため、劣化した二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるとき、その二次電池201の正極と負極の間に生じる電圧の交流成分の振幅は、二次電池201が正常である場合に比べて増大する。二次電池201が劣化するに連れてその正極と負極の間に発生する電圧の交流成分の振幅は、徐々に増加し、例えば20mV程度に達する。
なお、電源200は、脈流電流に限らず、パルス電流や方形波(矩形波)電流を流すものであってもよい。脈流電流、パルス電流、および方形波(矩形波)電流は、本発明における交流電流成分を含む電流の例である。
The
The
電池劣化判定装置100は、判定電圧生成部110と、劣化表示部130とを有する。
判定電圧生成部110は電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。電源200が電源ラインL1と電源ラインL2(二次電池201の正極と負極の間)に直流電流成分と交流電流成分とを含む脈流電流を流すとき、二次電池201の正極と負極の間に生じる電圧には交流電圧成分が含まれる。判定電圧生成部110はその交流成分を抽出する。そして、判定電圧生成部110は、その交流電圧成分に基づいて二次電池201の劣化の程度を判定するための判定電圧を生成する。判定電圧生成部110は、出力端子OUTから判定電圧を出力する。判定電圧生成部110については後で詳細に説明する。 The batterydeterioration determination device 100 includes a determination voltage generation unit 110 and a deterioration display unit 130.
The determinationvoltage generation unit 110 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200. When the power source 200 causes a pulsating current including a direct current component and an alternating current component to flow through the power supply line L1 and the power supply line L2 (between the positive electrode and the negative electrode of the secondary battery 201), between the positive electrode and the negative electrode of the secondary battery 201 An AC voltage component is included in the voltage generated at. Determination voltage generation unit 110 extracts the AC component. Then, the determination voltage generation unit 110 generates a determination voltage for determining the degree of deterioration of the secondary battery 201 based on the AC voltage component. The determination voltage generator 110 outputs a determination voltage from the output terminal OUT. The determination voltage generation unit 110 will be described in detail later.
判定電圧生成部110は電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。電源200が電源ラインL1と電源ラインL2(二次電池201の正極と負極の間)に直流電流成分と交流電流成分とを含む脈流電流を流すとき、二次電池201の正極と負極の間に生じる電圧には交流電圧成分が含まれる。判定電圧生成部110はその交流成分を抽出する。そして、判定電圧生成部110は、その交流電圧成分に基づいて二次電池201の劣化の程度を判定するための判定電圧を生成する。判定電圧生成部110は、出力端子OUTから判定電圧を出力する。判定電圧生成部110については後で詳細に説明する。 The battery
The determination
劣化表示部130は、判定電圧生成部110で生成された判定電圧に基づいて二次電池201の劣化の程度を表示する。
劣化表示部130は、例えば、発光ダイオードであるLED1~LED5と、LED発光制御部131とで構成することができる。
LED1~LED5は、例えば、直列に接続される。この場合、LED1のカソードにLED2のアノードが接続される。LED2のカソードにLED3のアノードが接続される。以下、同様にしてLED3~LED5が接続される。なお、これに限らず、LED1~LED5が個々にLED発光制御部131に接続されており、LED発光制御部131がLED1~LED5の発光と消灯を個別に制御する構成とすることもできる。 Thedeterioration display unit 130 displays the degree of deterioration of the secondary battery 201 based on the determination voltage generated by the determination voltage generation unit 110.
Thedeterioration display unit 130 can be composed of, for example, LEDs 1 to 5 which are light emitting diodes, and an LED light emission control unit 131.
The LEDs 1 to 5 are connected in series, for example. In this case, the anode of LED2 is connected to the cathode of LED1. The anode of LED 3 is connected to the cathode of LED 2. Thereafter, the LEDs 3 to 5 are connected in the same manner. However, the present invention is not limited to this, and the LED 1 to LED 5 may be individually connected to the LED lightemission control unit 131, and the LED light emission control unit 131 may individually control the light emission and extinction of the LED 1 to LED 5.
劣化表示部130は、例えば、発光ダイオードであるLED1~LED5と、LED発光制御部131とで構成することができる。
LED1~LED5は、例えば、直列に接続される。この場合、LED1のカソードにLED2のアノードが接続される。LED2のカソードにLED3のアノードが接続される。以下、同様にしてLED3~LED5が接続される。なお、これに限らず、LED1~LED5が個々にLED発光制御部131に接続されており、LED発光制御部131がLED1~LED5の発光と消灯を個別に制御する構成とすることもできる。 The
The
The LEDs 1 to 5 are connected in series, for example. In this case, the anode of LED2 is connected to the cathode of LED1. The anode of LED 3 is connected to the cathode of LED 2. Thereafter, the LEDs 3 to 5 are connected in the same manner. However, the present invention is not limited to this, and the LED 1 to LED 5 may be individually connected to the LED light
LED発光制御部131は、電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。LED発光制御部131には、入力端子INに判定電圧生成部110の出力する判定電圧が入力される。LED発光制御部131は、判定電圧に基づいてLED1~LED5を二次電池の劣化の程度に応じた個数だけ発光させる。このとき、二次電池110の劣化が激しいほど多くのLEDが発光する。LED発光制御部131については後で詳細に説明する。
The LED light emission control unit 131 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200. The LED light emission control unit 131 receives the determination voltage output from the determination voltage generation unit 110 at the input terminal IN. The LED light emission control unit 131 causes the LEDs 1 to 5 to emit light according to the degree of deterioration of the secondary battery based on the determination voltage. At this time, more LEDs emit light as the secondary battery 110 is more deteriorated. The LED light emission control unit 131 will be described in detail later.
判定電圧生成部110と劣化表示部130は、一部を除き、デジタル処理で実現することができる。これらをデジタル処理で実現する場合には、例えば、FPGA(Field-Programmable Gate Array)、DSP(Digital Signal Processor)、マイクロプロセッサ等を用いて実現することができる。
また、判定電圧生成部110と劣化表示部130は、アナログ回路で実現することもできる。以下では、判定電圧生成部110とLED発光制御部131とをアナログ回路で実現する例について詳細に説明する。 The determinationvoltage generation unit 110 and the deterioration display unit 130 can be realized by digital processing except for a part thereof. When these are realized by digital processing, for example, an FPGA (Field-Programmable Gate Array), a DSP (Digital Signal Processor), a microprocessor, or the like can be used.
Further, the determinationvoltage generation unit 110 and the deterioration display unit 130 can be realized by an analog circuit. Below, the example which implement | achieves the determination voltage generation part 110 and the LED light emission control part 131 with an analog circuit is demonstrated in detail.
また、判定電圧生成部110と劣化表示部130は、アナログ回路で実現することもできる。以下では、判定電圧生成部110とLED発光制御部131とをアナログ回路で実現する例について詳細に説明する。 The determination
Further, the determination
上述したように、二次電池201が著しく劣化したときにその正極と負極の間に発生する電圧の交流成分の振幅は、例えば20mV程度である。一方、赤、橙、黄、緑のLEDの順方向電圧降下は2V程度である。このため、LED1~LED5がこれらの色のLEDであり、LED1~LED5が直列に接続されている場合、二次電池201が著しく劣化したときにLED1~LED5を全て発光させるためには、例えば10V以上の電圧をLED1~LED5からなるLED回路に印加しなければならない。従って、判定電圧生成部110は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を例えば500倍以上に増幅する必要がある。
As described above, the amplitude of the AC component of the voltage generated between the positive electrode and the negative electrode when the secondary battery 201 is significantly deteriorated is, for example, about 20 mV. On the other hand, the forward voltage drop of red, orange, yellow and green LEDs is about 2V. For this reason, when the LEDs 1 to LED5 are LEDs of these colors and the LEDs 1 to LED5 are connected in series, in order to cause all of the LEDs 1 to LED5 to emit light when the secondary battery 201 is significantly deteriorated, for example, 10V The above voltage must be applied to the LED circuit composed of LED1 to LED5. Therefore, the determination voltage generation unit 110 needs to amplify the AC voltage component included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 by, for example, 500 times or more.
図2は、判定電圧生成部110の構成の一例を示す。
判定電圧生成部110は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を増幅して整流することにより、判定電圧を生成する。判定電圧生成部110は、出力端子OUTから判定電圧を出力する。
判定電圧生成部110は、コンデンサC1と、変圧器T1と、増幅部111と、反転部112と、2倍増幅部113とを有する。
コンデンサC1は、一端が電源ラインL1に接続され、他端が変圧器T1の1次巻線の一端に接続される。変圧器T1の1次巻線の他端は、電源ラインL2に接続される。コンデンサC1は、二次電池201の正極と負極の間(電源ラインL1と電源ラインL2の間)に生じる電圧に含まれる交流電圧成分を抽出する。変圧器T1は、コンデンサC1によって抽出された交流電圧成分を例えば10倍程度増幅して第1の中間交流電圧を生成する。 FIG. 2 shows an example of the configuration of the determinationvoltage generation unit 110.
The determinationvoltage generation unit 110 generates a determination voltage by amplifying and rectifying an AC voltage component included in a voltage generated between the positive electrode and the negative electrode of the secondary battery 201. The determination voltage generator 110 outputs a determination voltage from the output terminal OUT.
The determinationvoltage generation unit 110 includes a capacitor C1, a transformer T1, an amplification unit 111, an inversion unit 112, and a double amplification unit 113.
One end of the capacitor C1 is connected to the power supply line L1, and the other end is connected to one end of the primary winding of the transformer T1. The other end of the primary winding of the transformer T1 is connected to the power supply line L2. Capacitor C1 extracts an AC voltage component included in a voltage generated between the positive electrode and the negative electrode of secondary battery 201 (between power supply line L1 and power supply line L2). The transformer T1 amplifies the AC voltage component extracted by the capacitor C1 by about 10 times, for example, and generates a first intermediate AC voltage.
判定電圧生成部110は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を増幅して整流することにより、判定電圧を生成する。判定電圧生成部110は、出力端子OUTから判定電圧を出力する。
判定電圧生成部110は、コンデンサC1と、変圧器T1と、増幅部111と、反転部112と、2倍増幅部113とを有する。
コンデンサC1は、一端が電源ラインL1に接続され、他端が変圧器T1の1次巻線の一端に接続される。変圧器T1の1次巻線の他端は、電源ラインL2に接続される。コンデンサC1は、二次電池201の正極と負極の間(電源ラインL1と電源ラインL2の間)に生じる電圧に含まれる交流電圧成分を抽出する。変圧器T1は、コンデンサC1によって抽出された交流電圧成分を例えば10倍程度増幅して第1の中間交流電圧を生成する。 FIG. 2 shows an example of the configuration of the determination
The determination
The determination
One end of the capacitor C1 is connected to the power supply line L1, and the other end is connected to one end of the primary winding of the transformer T1. The other end of the primary winding of the transformer T1 is connected to the power supply line L2. Capacitor C1 extracts an AC voltage component included in a voltage generated between the positive electrode and the negative electrode of secondary battery 201 (between power supply line L1 and power supply line L2). The transformer T1 amplifies the AC voltage component extracted by the capacitor C1 by about 10 times, for example, and generates a first intermediate AC voltage.
増幅部111は、抵抗R1と、抵抗R2と、コンデンサC2と、オペアンプOP1と、可変抵抗VR1と、可変抵抗VR2と、コンデンサC3とを有する。
抵抗R1は、一端が電源ラインL1に接続され、他端が抵抗R2の一端に接続される。抵抗R2の他端は電源ラインL2に接続される。抵抗R1と抵抗R2は、電源ラインL1と電源ラインL2間の電圧を分圧し、それらの接続部分に電源ラインL1と電源ラインL2間の電圧の好ましくは半分程度の中間電圧を生じる。
コンデンサC2は、一端が抵抗R1と抵抗R2の接続部分に接続され、他端が電源ラインL2に接続される。コンデンサC2は、抵抗R1と抵抗R2の接続部分の電圧からリップルやノイズを吸収する。
変圧器T1は、2次巻線の一端がオペアンプOP1の非反転入力端に接続され、2次巻線の他端が抵抗R1と抵抗R2の接続部分に接続される。変圧器T1の他端には、第1の中間交流電圧と中間電圧が加算された電圧が生じる。 The amplifyingunit 111 includes a resistor R1, a resistor R2, a capacitor C2, an operational amplifier OP1, a variable resistor VR1, a variable resistor VR2, and a capacitor C3.
The resistor R1 has one end connected to the power supply line L1 and the other end connected to one end of the resistor R2. The other end of the resistor R2 is connected to the power supply line L2. The resistor R1 and the resistor R2 divide the voltage between the power supply line L1 and the power supply line L2, and generate an intermediate voltage, preferably about half of the voltage between the power supply line L1 and the power supply line L2, at their connection portion.
One end of the capacitor C2 is connected to a connection portion between the resistor R1 and the resistor R2, and the other end is connected to the power supply line L2. The capacitor C2 absorbs ripples and noise from the voltage at the connection portion between the resistor R1 and the resistor R2.
In the transformer T1, one end of the secondary winding is connected to the non-inverting input end of the operational amplifier OP1, and the other end of the secondary winding is connected to a connection portion between the resistor R1 and the resistor R2. A voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is generated at the other end of the transformer T1.
抵抗R1は、一端が電源ラインL1に接続され、他端が抵抗R2の一端に接続される。抵抗R2の他端は電源ラインL2に接続される。抵抗R1と抵抗R2は、電源ラインL1と電源ラインL2間の電圧を分圧し、それらの接続部分に電源ラインL1と電源ラインL2間の電圧の好ましくは半分程度の中間電圧を生じる。
コンデンサC2は、一端が抵抗R1と抵抗R2の接続部分に接続され、他端が電源ラインL2に接続される。コンデンサC2は、抵抗R1と抵抗R2の接続部分の電圧からリップルやノイズを吸収する。
変圧器T1は、2次巻線の一端がオペアンプOP1の非反転入力端に接続され、2次巻線の他端が抵抗R1と抵抗R2の接続部分に接続される。変圧器T1の他端には、第1の中間交流電圧と中間電圧が加算された電圧が生じる。 The amplifying
The resistor R1 has one end connected to the power supply line L1 and the other end connected to one end of the resistor R2. The other end of the resistor R2 is connected to the power supply line L2. The resistor R1 and the resistor R2 divide the voltage between the power supply line L1 and the power supply line L2, and generate an intermediate voltage, preferably about half of the voltage between the power supply line L1 and the power supply line L2, at their connection portion.
One end of the capacitor C2 is connected to a connection portion between the resistor R1 and the resistor R2, and the other end is connected to the power supply line L2. The capacitor C2 absorbs ripples and noise from the voltage at the connection portion between the resistor R1 and the resistor R2.
In the transformer T1, one end of the secondary winding is connected to the non-inverting input end of the operational amplifier OP1, and the other end of the secondary winding is connected to a connection portion between the resistor R1 and the resistor R2. A voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is generated at the other end of the transformer T1.
オペアンプOP1の正電源端は電源ラインL1に接続され、その負電源端は電源ラインL2に接続される。オペアンプOP1の出力端は、可変抵抗VR2の一端に接続される。可変抵抗VR2の他端は、オペアンプOP1の反転入力端と可変抵抗VR1の一端とに接続される。可変抵抗VR1の他端はコンデンサC3の一端に接続される。コンデンサC3の他端は電源ラインL2に接続される。可変抵抗VR1と可変抵抗VR2の抵抗値は、両方とも変更することができる。
上述した構成により、オペアンプOP1は可変抵抗VR1と可変抵抗VR2の抵抗値で決まる増幅度の非反転増幅器として動作する。オペアンプOP1の非反転入力端には、第1の中間交流電圧と中間電圧が加算された加算電圧が入力される。加算電圧が中間電圧より大きい場合、オペアンプOP1は第1の中間交流電圧を正の方向に増幅する。一方、加算電圧が中間電圧より小さい場合、オペアンプOP1は第1の中間交流電圧を負の方向に増幅する。
このようにして、増幅部111は、第1の中間交流電圧を例えば25倍程度増幅して第2の中間交流電圧を生成する。
なお、本実施形態では、オペアンプOP1を非反転増幅器として動作させる例を示すが、オペアンプOP1を反転増幅器として動作させる構成とすることもできる。 The positive power supply terminal of the operational amplifier OP1 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2. The output terminal of the operational amplifier OP1 is connected to one end of the variable resistor VR2. The other end of the variable resistor VR2 is connected to the inverting input end of the operational amplifier OP1 and one end of the variable resistor VR1. The other end of the variable resistor VR1 is connected to one end of the capacitor C3. The other end of the capacitor C3 is connected to the power supply line L2. Both the resistance values of the variable resistor VR1 and the variable resistor VR2 can be changed.
With the above-described configuration, the operational amplifier OP1 operates as a non-inverting amplifier having an amplification degree determined by the resistance values of the variable resistor VR1 and the variable resistor VR2. An addition voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP1. When the addition voltage is larger than the intermediate voltage, the operational amplifier OP1 amplifies the first intermediate AC voltage in the positive direction. On the other hand, when the addition voltage is smaller than the intermediate voltage, the operational amplifier OP1 amplifies the first intermediate AC voltage in the negative direction.
In this way, the amplifyingunit 111 amplifies the first intermediate AC voltage by about 25 times, for example, to generate a second intermediate AC voltage.
In the present embodiment, the operational amplifier OP1 is operated as a non-inverting amplifier. However, the operational amplifier OP1 may be operated as an inverting amplifier.
上述した構成により、オペアンプOP1は可変抵抗VR1と可変抵抗VR2の抵抗値で決まる増幅度の非反転増幅器として動作する。オペアンプOP1の非反転入力端には、第1の中間交流電圧と中間電圧が加算された加算電圧が入力される。加算電圧が中間電圧より大きい場合、オペアンプOP1は第1の中間交流電圧を正の方向に増幅する。一方、加算電圧が中間電圧より小さい場合、オペアンプOP1は第1の中間交流電圧を負の方向に増幅する。
このようにして、増幅部111は、第1の中間交流電圧を例えば25倍程度増幅して第2の中間交流電圧を生成する。
なお、本実施形態では、オペアンプOP1を非反転増幅器として動作させる例を示すが、オペアンプOP1を反転増幅器として動作させる構成とすることもできる。 The positive power supply terminal of the operational amplifier OP1 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2. The output terminal of the operational amplifier OP1 is connected to one end of the variable resistor VR2. The other end of the variable resistor VR2 is connected to the inverting input end of the operational amplifier OP1 and one end of the variable resistor VR1. The other end of the variable resistor VR1 is connected to one end of the capacitor C3. The other end of the capacitor C3 is connected to the power supply line L2. Both the resistance values of the variable resistor VR1 and the variable resistor VR2 can be changed.
With the above-described configuration, the operational amplifier OP1 operates as a non-inverting amplifier having an amplification degree determined by the resistance values of the variable resistor VR1 and the variable resistor VR2. An addition voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP1. When the addition voltage is larger than the intermediate voltage, the operational amplifier OP1 amplifies the first intermediate AC voltage in the positive direction. On the other hand, when the addition voltage is smaller than the intermediate voltage, the operational amplifier OP1 amplifies the first intermediate AC voltage in the negative direction.
In this way, the amplifying
In the present embodiment, the operational amplifier OP1 is operated as a non-inverting amplifier. However, the operational amplifier OP1 may be operated as an inverting amplifier.
反転部112は、コンデンサC4と、抵抗R3と、抵抗R4と、オペアンプOP2とを有する。
コンデンサC4は、一端がオペアンプOP1の出力端に接続され、他端が抵抗R3の一端に接続される。抵抗R3の他端は、オペアンプOP2の反転入力端と抵抗R4の一端とに接続される。抵抗R4の他端は、オペアンプOP2の出力端に接続される。抵抗R3と抵抗R4の抵抗値は同一である。
オペアンプOP2の正電源端は電源ラインL1に接続され、その負電源端は電源ラインL2に接続される。オペアンプOP2の反転入力端は、抵抗R3の他端と抵抗R4の一端との接続部分に接続され、オペアンプOP2の非反転入力端には中間電圧が入力される。
上述した構成により、オペアンプOP2は増幅度が1倍の反転増幅器として動作する。オペアンプOP2は、増幅部111で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する。 The invertingunit 112 includes a capacitor C4, a resistor R3, a resistor R4, and an operational amplifier OP2.
One end of the capacitor C4 is connected to the output end of the operational amplifier OP1, and the other end is connected to one end of the resistor R3. The other end of the resistor R3 is connected to the inverting input end of the operational amplifier OP2 and one end of the resistor R4. The other end of the resistor R4 is connected to the output end of the operational amplifier OP2. The resistance values of the resistors R3 and R4 are the same.
The positive power supply terminal of the operational amplifier OP2 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2. The inverting input terminal of the operational amplifier OP2 is connected to a connection portion between the other end of the resistor R3 and one end of the resistor R4, and an intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP2.
With the above-described configuration, the operational amplifier OP2 operates as an inverting amplifier having an amplification factor of 1. The operational amplifier OP2 generates an inverted AC voltage in which the positive and negative polarities of the second intermediate AC voltage generated by theamplifier 111 are inverted.
コンデンサC4は、一端がオペアンプOP1の出力端に接続され、他端が抵抗R3の一端に接続される。抵抗R3の他端は、オペアンプOP2の反転入力端と抵抗R4の一端とに接続される。抵抗R4の他端は、オペアンプOP2の出力端に接続される。抵抗R3と抵抗R4の抵抗値は同一である。
オペアンプOP2の正電源端は電源ラインL1に接続され、その負電源端は電源ラインL2に接続される。オペアンプOP2の反転入力端は、抵抗R3の他端と抵抗R4の一端との接続部分に接続され、オペアンプOP2の非反転入力端には中間電圧が入力される。
上述した構成により、オペアンプOP2は増幅度が1倍の反転増幅器として動作する。オペアンプOP2は、増幅部111で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する。 The inverting
One end of the capacitor C4 is connected to the output end of the operational amplifier OP1, and the other end is connected to one end of the resistor R3. The other end of the resistor R3 is connected to the inverting input end of the operational amplifier OP2 and one end of the resistor R4. The other end of the resistor R4 is connected to the output end of the operational amplifier OP2. The resistance values of the resistors R3 and R4 are the same.
The positive power supply terminal of the operational amplifier OP2 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2. The inverting input terminal of the operational amplifier OP2 is connected to a connection portion between the other end of the resistor R3 and one end of the resistor R4, and an intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP2.
With the above-described configuration, the operational amplifier OP2 operates as an inverting amplifier having an amplification factor of 1. The operational amplifier OP2 generates an inverted AC voltage in which the positive and negative polarities of the second intermediate AC voltage generated by the
2倍増幅部113は、コンデンサC5と、コンデンサC6と、ダイオードD1と、ダイオードD2と、ダイオードD3と、コンデンサC7とを有する。
ダイオードD3は、アノードが電源ラインL2に接続され、カソードがダイオードD2のアノードに接続される。ダイオードD2のカソードは、ダイオードD1のアノードに接続される。ダイオードD1のカソードは出力端子OUTに接続される。
コンデンサC5は、一端がオペアンプOP1の出力端に接続され、他端がダイオードD1のアノードとダイオードD2のカソードとの接続部分に接続される。コンデンサC6は、一端がオペアンプOP2の出力端に接続され、他端がダイオードD2のアノードとダイオードD3のカソードとの接続部分に接続される。
コンデンサC7は、出力端子OUTと電源ラインL2との間に接続される。コンデンサC7は、ダイオードD1のカソードから出力される電圧を平滑化する。
上述した構成により、2倍増幅部113は2倍電圧増幅器として動作する。2倍増幅部113は、増幅部111で生成される第2の中間交流電圧と反転部112で生成される反転交流電圧とに基づいて第2の中間交流電圧を2倍に増幅して整流し、生成された直流電圧を出力端子OUTから出力する。出力端子OUTから出力される直流電圧が、二次電池201の劣化の程度を判定するための判定電圧である。 Thedouble amplification unit 113 includes a capacitor C5, a capacitor C6, a diode D1, a diode D2, a diode D3, and a capacitor C7.
The diode D3 has an anode connected to the power supply line L2 and a cathode connected to the anode of the diode D2. The cathode of the diode D2 is connected to the anode of the diode D1. The cathode of the diode D1 is connected to the output terminal OUT.
One end of the capacitor C5 is connected to the output end of the operational amplifier OP1, and the other end is connected to a connection portion between the anode of the diode D1 and the cathode of the diode D2. One end of the capacitor C6 is connected to the output terminal of the operational amplifier OP2, and the other end is connected to a connection portion between the anode of the diode D2 and the cathode of the diode D3.
The capacitor C7 is connected between the output terminal OUT and the power supply line L2. The capacitor C7 smoothes the voltage output from the cathode of the diode D1.
With the configuration described above, thedouble amplification unit 113 operates as a double voltage amplifier. The double amplification unit 113 amplifies and rectifies the second intermediate AC voltage by a factor of two based on the second intermediate AC voltage generated by the amplification unit 111 and the inverted AC voltage generated by the inverter 112. The generated DC voltage is output from the output terminal OUT. The DC voltage output from the output terminal OUT is a determination voltage for determining the degree of deterioration of the secondary battery 201.
ダイオードD3は、アノードが電源ラインL2に接続され、カソードがダイオードD2のアノードに接続される。ダイオードD2のカソードは、ダイオードD1のアノードに接続される。ダイオードD1のカソードは出力端子OUTに接続される。
コンデンサC5は、一端がオペアンプOP1の出力端に接続され、他端がダイオードD1のアノードとダイオードD2のカソードとの接続部分に接続される。コンデンサC6は、一端がオペアンプOP2の出力端に接続され、他端がダイオードD2のアノードとダイオードD3のカソードとの接続部分に接続される。
コンデンサC7は、出力端子OUTと電源ラインL2との間に接続される。コンデンサC7は、ダイオードD1のカソードから出力される電圧を平滑化する。
上述した構成により、2倍増幅部113は2倍電圧増幅器として動作する。2倍増幅部113は、増幅部111で生成される第2の中間交流電圧と反転部112で生成される反転交流電圧とに基づいて第2の中間交流電圧を2倍に増幅して整流し、生成された直流電圧を出力端子OUTから出力する。出力端子OUTから出力される直流電圧が、二次電池201の劣化の程度を判定するための判定電圧である。 The
The diode D3 has an anode connected to the power supply line L2 and a cathode connected to the anode of the diode D2. The cathode of the diode D2 is connected to the anode of the diode D1. The cathode of the diode D1 is connected to the output terminal OUT.
One end of the capacitor C5 is connected to the output end of the operational amplifier OP1, and the other end is connected to a connection portion between the anode of the diode D1 and the cathode of the diode D2. One end of the capacitor C6 is connected to the output terminal of the operational amplifier OP2, and the other end is connected to a connection portion between the anode of the diode D2 and the cathode of the diode D3.
The capacitor C7 is connected between the output terminal OUT and the power supply line L2. The capacitor C7 smoothes the voltage output from the cathode of the diode D1.
With the configuration described above, the
このようにして、判定電圧生成部110は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を、増幅部111と反転部112と2倍増幅部113で例えばそれぞれ10倍程度と25倍程度と2倍、合計で500倍程度増幅して判定電圧を生成し、それを出力端子OUTから出力する。
In this way, the determination voltage generation unit 110 converts, for example, 10 AC voltage components included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 by the amplification unit 111, the inversion unit 112, and the double amplification unit 113, respectively. A decision voltage is generated by amplifying about 500 times, about 25 times and 2 times, and a total of about 500 times, and outputting it from the output terminal OUT.
図3は、劣化表示部130の構成の一例を示す。劣化表示部130は、LED発光制御部131を含む。
LED発光制御部131は、電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。
LED発光制御部131は、NPNバイポーラトランジスタQ1と、抵抗R5と、Nチャネルエンハンスメント型電界効果トランジスタFET1~FET5と、ダイオードD4~D8と、抵抗R6~R10と、NPNバイポーラトランジスタQ2と、抵抗R11と、NPNバイポーラトランジスタQ3と、抵抗R12とを有する。 FIG. 3 shows an example of the configuration of thedeterioration display unit 130. The deterioration display unit 130 includes an LED light emission control unit 131.
The LED lightemission control unit 131 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200.
TheLED emission controller 131 includes an NPN bipolar transistor Q1, a resistor R5, N-channel enhancement type field effect transistors FET1 to FET5, diodes D4 to D8, resistors R6 to R10, an NPN bipolar transistor Q2, and a resistor R11. NPN bipolar transistor Q3 and resistor R12.
LED発光制御部131は、電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。
LED発光制御部131は、NPNバイポーラトランジスタQ1と、抵抗R5と、Nチャネルエンハンスメント型電界効果トランジスタFET1~FET5と、ダイオードD4~D8と、抵抗R6~R10と、NPNバイポーラトランジスタQ2と、抵抗R11と、NPNバイポーラトランジスタQ3と、抵抗R12とを有する。 FIG. 3 shows an example of the configuration of the
The LED light
The
入力端子INには、判定電圧生成部110の出力端子OUTから出力される判定電圧が入力される。トランジスタQ1は、ベースBが入力端子INに接続され、コレクタCが電源ラインL1に接続され、エミッタEがLED1のアノードに接続される。
抵抗R5は、一端が電源ラインL1に接続され、他端がダイオードD4~D8の各アノードとトランジスタQ2のコレクタCに接続される。
FET1の電流路(ドレインDとソースSの間の経路)は、LED1と並列に接続される。すなわち、FET1のドレインDとソースSはそれぞれLED1のアノードとカソードに接続される。FET1のゲートGは、抵抗R6の一端とダイオードD4のカソードとに接続される。抵抗R6の他端はFET1のソースSに接続される。FET1の電流路が非導通のときにLED1は点灯し、FET1の電流路が導通しているときにLED1は消灯する。 The determination voltage output from the output terminal OUT of thedetermination voltage generator 110 is input to the input terminal IN. The transistor Q1 has a base B connected to the input terminal IN, a collector C connected to the power supply line L1, and an emitter E connected to the anode of the LED1.
The resistor R5 has one end connected to the power supply line L1 and the other end connected to the anodes of the diodes D4 to D8 and the collector C of the transistor Q2.
The current path (the path between the drain D and the source S) of the FET 1 is connected in parallel with the LED 1. That is, the drain D and the source S of the FET 1 are connected to the anode and the cathode of the LED 1, respectively. The gate G of the FET 1 is connected to one end of the resistor R6 and the cathode of the diode D4. The other end of the resistor R6 is connected to the source S of the FET1. LED1 is turned on when the current path of FET1 is non-conductive, and LED1 is turned off when the current path of FET1 is conductive.
抵抗R5は、一端が電源ラインL1に接続され、他端がダイオードD4~D8の各アノードとトランジスタQ2のコレクタCに接続される。
FET1の電流路(ドレインDとソースSの間の経路)は、LED1と並列に接続される。すなわち、FET1のドレインDとソースSはそれぞれLED1のアノードとカソードに接続される。FET1のゲートGは、抵抗R6の一端とダイオードD4のカソードとに接続される。抵抗R6の他端はFET1のソースSに接続される。FET1の電流路が非導通のときにLED1は点灯し、FET1の電流路が導通しているときにLED1は消灯する。 The determination voltage output from the output terminal OUT of the
The resistor R5 has one end connected to the power supply line L1 and the other end connected to the anodes of the diodes D4 to D8 and the collector C of the transistor Q2.
The current path (the path between the drain D and the source S) of the FET 1 is connected in parallel with the LED 1. That is, the drain D and the source S of the FET 1 are connected to the anode and the cathode of the LED 1, respectively. The gate G of the FET 1 is connected to one end of the resistor R6 and the cathode of the diode D4. The other end of the resistor R6 is connected to the source S of the FET1. LED1 is turned on when the current path of FET1 is non-conductive, and LED1 is turned off when the current path of FET1 is conductive.
LED2とFET2とダイオードD5と抵抗R7との接続は、LED1とFET1とダイオードD4と抵抗R6と同様である。また、LED3とFET3とダイオードD6と抵抗R8との接続、LED4とFET4とダイオードD7と抵抗R9との接続、およびLED5とFET5とダイオードD8と抵抗R10との接続も、LED1とFET1とダイオードD4と抵抗R6と同様である。
トランジスタQ2は、ベースBがLED5のカソードに接続され、コレクタCが抵抗R5の他端に接続され、エミッタEが抵抗R11の一端に接続される。抵抗R11の他端は電源ラインL2に接続される。トランジスタQ3は、ベースBがLED5のカソードとトランジスタQ2のベースBと自身のコレクタCとに接続され、コレクタCがLED5のカソードと自身のベースBとトランジスタQ2のベースBとに接続され、エミッタEが抵抗R12の一端に接続される。抵抗R12の他端は電源ラインL2に接続される。なお、抵抗R11の抵抗値は抵抗R12の抵抗値の10倍程度の大きさである。 Connection of LED2, FET2, diode D5, and resistor R7 is the same as that of LED1, FET1, diode D4, and resistor R6. Also, the connection between LED3, FET3, diode D6, and resistor R8, the connection between LED4, FET4, diode D7, and resistor R9, and the connection between LED5, FET5, diode D8, and resistor R10 are the same as LED1, FET1, and diode D4. The same as the resistor R6.
The transistor Q2 has a base B connected to the cathode of the LED 5, a collector C connected to the other end of the resistor R5, and an emitter E connected to one end of the resistor R11. The other end of the resistor R11 is connected to the power supply line L2. The transistor Q3 has a base B connected to the cathode of the LED 5, the base B of the transistor Q2, and its collector C. The collector C is connected to the cathode of the LED 5, its own base B, and the base B of the transistor Q2. Is connected to one end of the resistor R12. The other end of the resistor R12 is connected to the power supply line L2. Note that the resistance value of the resistor R11 is about ten times the resistance value of the resistor R12.
トランジスタQ2は、ベースBがLED5のカソードに接続され、コレクタCが抵抗R5の他端に接続され、エミッタEが抵抗R11の一端に接続される。抵抗R11の他端は電源ラインL2に接続される。トランジスタQ3は、ベースBがLED5のカソードとトランジスタQ2のベースBと自身のコレクタCとに接続され、コレクタCがLED5のカソードと自身のベースBとトランジスタQ2のベースBとに接続され、エミッタEが抵抗R12の一端に接続される。抵抗R12の他端は電源ラインL2に接続される。なお、抵抗R11の抵抗値は抵抗R12の抵抗値の10倍程度の大きさである。 Connection of LED2, FET2, diode D5, and resistor R7 is the same as that of LED1, FET1, diode D4, and resistor R6. Also, the connection between LED3, FET3, diode D6, and resistor R8, the connection between LED4, FET4, diode D7, and resistor R9, and the connection between LED5, FET5, diode D8, and resistor R10 are the same as LED1, FET1, and diode D4. The same as the resistor R6.
The transistor Q2 has a base B connected to the cathode of the LED 5, a collector C connected to the other end of the resistor R5, and an emitter E connected to one end of the resistor R11. The other end of the resistor R11 is connected to the power supply line L2. The transistor Q3 has a base B connected to the cathode of the LED 5, the base B of the transistor Q2, and its collector C. The collector C is connected to the cathode of the LED 5, its own base B, and the base B of the transistor Q2. Is connected to one end of the resistor R12. The other end of the resistor R12 is connected to the power supply line L2. Note that the resistance value of the resistor R11 is about ten times the resistance value of the resistor R12.
以下、LED発光制御部131におけるLED1~LED5の発光制御について詳細に説明する。
(1)二次電池201の劣化が著しく、LED1~LED5が全部発光する場合
このとき、LED1~LED5の直列接続回路にかかる電圧は最も高い(以下、この電圧を最高電圧という。)。トランジスタQ1のコレクタCとエミッタE間の経路、およびLED1~LED5を流れる電流により、トランジスタQ3のコレクタCに発生する電位でトランジスタQ2のベースBが順バイアスされ、トランジスタQ2のコレクタCとエミッタE間が導通状態となる。このため、トランジスタQ2のコレクタCの電位は、基準電位(電源ラインL2の電位)と同電位となる。
ただし、トランジスタQ2のコレクタCとエミッタE間は完全な導通状態である必要はない(半導通など)。FET1~FET5のゲートGの電位がそれらの電流路を導通させない電位であれば良い。このとき、トランジスタQ2のコレクタCの電位は、基準電位より少し高めの電位である。以下、「基準電位と同電位」と「基準電位より少し高めの電位」などを総称して、「同等の電位」という。
このとき、ダイオードD4~D8のアノードも、基準電位と同等の電位であり、FET1~FET5のゲートGに順バイアス電位は印加されず、FET1~FET5の電流路は非導通となり、LED1~LED5は全て発光する。 Hereinafter, the light emission control of the LEDs 1 to 5 in the LED lightemission control unit 131 will be described in detail.
(1) When thesecondary battery 201 is significantly deteriorated and all of the LEDs 1 to LED5 emit light At this time, the voltage applied to the series connection circuit of the LEDs 1 to LED5 is the highest (hereinafter, this voltage is referred to as the highest voltage). The base B of the transistor Q2 is forward-biased by the potential generated at the collector C of the transistor Q3 by the path between the collector C and the emitter E of the transistor Q1 and the current flowing through the LEDs 1 to LED5, and between the collector C and the emitter E of the transistor Q2 Becomes conductive. For this reason, the potential of the collector C of the transistor Q2 is the same as the reference potential (the potential of the power supply line L2).
However, the collector C and the emitter E of the transistor Q2 do not have to be in a completely conductive state (semi-conductive or the like). The potential of the gate G of the FET1 to FET5 may be any potential that does not cause the current paths to conduct. At this time, the potential of the collector C of the transistor Q2 is slightly higher than the reference potential. Hereinafter, “the same potential as the reference potential” and “a potential slightly higher than the reference potential” are collectively referred to as “equivalent potential”.
At this time, the anodes of the diodes D4 to D8 are also at the same potential as the reference potential, no forward bias potential is applied to the gates G of the FET1 to FET5, the current paths of the FET1 to FET5 become non-conductive, and the LEDs 1 to LED5 All emit light.
(1)二次電池201の劣化が著しく、LED1~LED5が全部発光する場合
このとき、LED1~LED5の直列接続回路にかかる電圧は最も高い(以下、この電圧を最高電圧という。)。トランジスタQ1のコレクタCとエミッタE間の経路、およびLED1~LED5を流れる電流により、トランジスタQ3のコレクタCに発生する電位でトランジスタQ2のベースBが順バイアスされ、トランジスタQ2のコレクタCとエミッタE間が導通状態となる。このため、トランジスタQ2のコレクタCの電位は、基準電位(電源ラインL2の電位)と同電位となる。
ただし、トランジスタQ2のコレクタCとエミッタE間は完全な導通状態である必要はない(半導通など)。FET1~FET5のゲートGの電位がそれらの電流路を導通させない電位であれば良い。このとき、トランジスタQ2のコレクタCの電位は、基準電位より少し高めの電位である。以下、「基準電位と同電位」と「基準電位より少し高めの電位」などを総称して、「同等の電位」という。
このとき、ダイオードD4~D8のアノードも、基準電位と同等の電位であり、FET1~FET5のゲートGに順バイアス電位は印加されず、FET1~FET5の電流路は非導通となり、LED1~LED5は全て発光する。 Hereinafter, the light emission control of the LEDs 1 to 5 in the LED light
(1) When the
However, the collector C and the emitter E of the transistor Q2 do not have to be in a completely conductive state (semi-conductive or the like). The potential of the gate G of the FET1 to FET5 may be any potential that does not cause the current paths to conduct. At this time, the potential of the collector C of the transistor Q2 is slightly higher than the reference potential. Hereinafter, “the same potential as the reference potential” and “a potential slightly higher than the reference potential” are collectively referred to as “equivalent potential”.
At this time, the anodes of the diodes D4 to D8 are also at the same potential as the reference potential, no forward bias potential is applied to the gates G of the FET1 to FET5, the current paths of the FET1 to FET5 become non-conductive, and the LEDs 1 to LED5 All emit light.
(2)二次電池201が正常であり、LED1~LED5が全部発光を停止する場合
このとき、LED1~LED5の直列接続回路にかかる電圧は最も低い。LED1~LED5は、FET1~FET5の各電流路により短絡(バイパス)されている。トランジスタQ2のベースBは順バイアス(電流値)されず、または順バイアス(電流値)が小さくなり、トランジスタQ2のコレクタCとエミッタE間が非導通または導通抵抗値が大となり、コレクタCの電位が上昇し、FET1~FET5のすべてのゲートGを順バイアスする。このため、FET1~FET5の電流路はすべて導通し、LED1~LED5は全て発光を停止する。 (2) When thesecondary battery 201 is normal and the LEDs 1 to LED5 all stop emitting light At this time, the voltage applied to the series connection circuit of the LEDs 1 to LED5 is the lowest. LED1 to LED5 are short-circuited (bypassed) by the current paths of FET1 to FET5. The base B of the transistor Q2 is not forward-biased (current value), or the forward-bias (current value) becomes small, the collector C and the emitter E of the transistor Q2 are not conducting or the conducting resistance value is large, and the potential of the collector C Rises and forward biases all the gates G of FET1 to FET5. For this reason, all of the current paths of the FET1 to FET5 are conducted, and the LEDs 1 to LED5 all stop emitting light.
このとき、LED1~LED5の直列接続回路にかかる電圧は最も低い。LED1~LED5は、FET1~FET5の各電流路により短絡(バイパス)されている。トランジスタQ2のベースBは順バイアス(電流値)されず、または順バイアス(電流値)が小さくなり、トランジスタQ2のコレクタCとエミッタE間が非導通または導通抵抗値が大となり、コレクタCの電位が上昇し、FET1~FET5のすべてのゲートGを順バイアスする。このため、FET1~FET5の電流路はすべて導通し、LED1~LED5は全て発光を停止する。 (2) When the
(3)二次電池201の劣化が激しく、LED1~LED4が発光し、LED5が発光を停止する場合
このとき、LED1~LED5の直列接続回路には、最高電圧よりLED5の順方向電圧降下分だけ低い電圧がかかっている。LED1~LED5の直列接続回路にかかる電圧が低下したことにより、トランジスタQ3のコレクタCの電位は少し低下する。このため、トランジスタQ2のベースBは順バイアスが不充分となり、そのコレクタCとエミッタE間が非導通となるように働く。
従って、トランジスタQ2のコレクタCの電位は上昇し、FET5のゲートGを順バイアスし、FET5の電流路は導通し、トランジスタQ3のコレクタCとエミッタE間に電流が流れ、トランジスタQ3のコレクタCの電位は少し回復するが、トランジスタQ2のベースBは順バイアスされず、トランジスタQ2のコレクタの電位は上昇する。FET5のみのゲートGが順バイアスされてFET5は導通し、LED5の両端に順方向電圧降下より低い電圧が印加されて非導通となり発光を停止する。 (3) When thesecondary battery 201 is severely deteriorated, LED1 to LED4 emit light, and LED5 stops emitting light At this time, the series connection circuit of LED1 to LED5 has a forward voltage drop of LED5 from the maximum voltage. A low voltage is applied. Since the voltage applied to the series connection circuit of LED1 to LED5 is lowered, the potential of the collector C of the transistor Q3 is slightly lowered. For this reason, the base B of the transistor Q2 is insufficiently forward-biased so that the collector C and the emitter E are not electrically connected.
Therefore, the potential of the collector C of the transistor Q2 rises, forward biases the gate G of the FET 5, the current path of the FET 5 becomes conductive, a current flows between the collector C and the emitter E of the transistor Q3, and the collector C of the transistor Q3 Although the potential recovers a little, the base B of the transistor Q2 is not forward biased, and the collector potential of the transistor Q2 rises. The gate G of only the FET 5 is forward-biased, and the FET 5 becomes conductive, and a voltage lower than the forward voltage drop is applied to both ends of the LED 5 to become non-conductive and stop light emission.
このとき、LED1~LED5の直列接続回路には、最高電圧よりLED5の順方向電圧降下分だけ低い電圧がかかっている。LED1~LED5の直列接続回路にかかる電圧が低下したことにより、トランジスタQ3のコレクタCの電位は少し低下する。このため、トランジスタQ2のベースBは順バイアスが不充分となり、そのコレクタCとエミッタE間が非導通となるように働く。
従って、トランジスタQ2のコレクタCの電位は上昇し、FET5のゲートGを順バイアスし、FET5の電流路は導通し、トランジスタQ3のコレクタCとエミッタE間に電流が流れ、トランジスタQ3のコレクタCの電位は少し回復するが、トランジスタQ2のベースBは順バイアスされず、トランジスタQ2のコレクタの電位は上昇する。FET5のみのゲートGが順バイアスされてFET5は導通し、LED5の両端に順方向電圧降下より低い電圧が印加されて非導通となり発光を停止する。 (3) When the
Therefore, the potential of the collector C of the transistor Q2 rises, forward biases the gate G of the FET 5, the current path of the FET 5 becomes conductive, a current flows between the collector C and the emitter E of the transistor Q3, and the collector C of the transistor Q3 Although the potential recovers a little, the base B of the transistor Q2 is not forward biased, and the collector potential of the transistor Q2 rises. The gate G of only the FET 5 is forward-biased, and the FET 5 becomes conductive, and a voltage lower than the forward voltage drop is applied to both ends of the LED 5 to become non-conductive and stop light emission.
このとき、FET1~FET5のゲートGの電位は基準電位を基準として同一電位として上昇するが、FET1~FET4の電流路は導通せず、LED1~LED4は発光を継続する。
FET5のみが導通する理由は、FET5のソースSの電位は、トランジスタQ3のコレクタCの電位であり低電位である。一方、FET4のソースSの電位は、FET5のドレインDの電位であり、FET5のソースSの電位より少し高電位である。このため、FET4のソースSに対するゲートGの電位はFET5のものより低電位であり、FET5が導通してもFET4は導通しない。従って、LED4は発光する。 At this time, the potentials of the gates G of the FET1 to FET5 rise as the same potential with reference to the reference potential, but the current paths of the FET1 to FET4 are not conducted, and the LEDs 1 to LED4 continue to emit light.
The reason why only the FET 5 is conductive is that the potential of the source S of the FET 5 is the potential of the collector C of the transistor Q3 and is low. On the other hand, the potential of the source S of theFET 4 is the potential of the drain D of the FET 5 and is slightly higher than the potential of the source S of the FET 5. For this reason, the potential of the gate G with respect to the source S of the FET 4 is lower than that of the FET 5, and the FET 4 does not conduct even if the FET 5 conducts. Accordingly, the LED 4 emits light.
FET5のみが導通する理由は、FET5のソースSの電位は、トランジスタQ3のコレクタCの電位であり低電位である。一方、FET4のソースSの電位は、FET5のドレインDの電位であり、FET5のソースSの電位より少し高電位である。このため、FET4のソースSに対するゲートGの電位はFET5のものより低電位であり、FET5が導通してもFET4は導通しない。従って、LED4は発光する。 At this time, the potentials of the gates G of the FET1 to FET5 rise as the same potential with reference to the reference potential, but the current paths of the FET1 to FET4 are not conducted, and the LEDs 1 to LED4 continue to emit light.
The reason why only the FET 5 is conductive is that the potential of the source S of the FET 5 is the potential of the collector C of the transistor Q3 and is low. On the other hand, the potential of the source S of the
FET4は導通していないので、FET3、FET2、FET1のソースSの電位は、それぞれLED3、LED2、LED1のカソード電位であり、ソースSの電位は高くFET3、FET2、FET1のゲートGの電位も順バイアスされない。FET3、FET2、FET1の電流路も非導通であり、LED3、LED2、LED1は発光する。
Since FET4 is not conducting, the potential of the source S of FET3, FET2, and FET1 is the cathode potential of LED3, LED2, and LED1, respectively, the potential of the source S is high, and the potentials of the gates G of FET3, FET2, and FET1 are also in order. Not biased. The current paths of FET3, FET2, and FET1 are also non-conductive, and LED3, LED2, and LED1 emit light.
FET5は完全導通状態とならないで、ある程度の抵抗値を保持する。これは、トランジスタQ2のコレクタC、FET5のゲートG、FET5のソースS、トランジスタQ2のベースBの回路で負帰還回路を構成し、トランジスタQ3のコレクタC(ベースB)の電位を一定に保持し、FET5のドレインDとソースS間の導通抵抗値をある一定の値で均衡させるからである。
FET5 does not become a complete conduction state but retains a certain resistance value. This is because a negative feedback circuit is formed by the collector C of the transistor Q2, the gate G of the FET 5, the source S of the FET 5, and the base B of the transistor Q2, and the potential of the collector C (base B) of the transistor Q3 is kept constant. This is because the conduction resistance value between the drain D and the source S of the FET 5 is balanced at a certain value.
また、この負帰還回路で、FET5はトランジスタQ3と抵抗R12を負荷としてソースフォロア回路を構成している。この負帰還回路は、トランジスタQ3のコレクタC(ベースB)の電位を一定にする作用がある。
この負帰還回路によって、トランジスタQ2のコレクタCとエミッタE間の抵抗値も一定の値で均衡する。すべては、この負帰還回路で均衡する。
なお、トランジスタQ3が無く、抵抗R12の一端がFET5のソースS(LED5のカソード、トランジスタQ2のベース)に接続されている構成であっても、抵抗R12を流れる電流を一定にする作用があるので、抵抗R12の両端の電圧は一定となる。従って、トランジスタQ3が無く、抵抗R12の一端がFET5のソースSに直接接続されている構成であってもよい。 In this negative feedback circuit, the FET 5 forms a source follower circuit with the transistor Q3 and the resistor R12 as loads. This negative feedback circuit has an effect of making the potential of the collector C (base B) of the transistor Q3 constant.
By this negative feedback circuit, the resistance value between the collector C and the emitter E of the transistor Q2 is also balanced at a constant value. Everything is balanced with this negative feedback circuit.
Even if the transistor Q3 is not provided and one end of the resistor R12 is connected to the source S of the FET 5 (the cathode of the LED 5, the base of the transistor Q2), the current flowing through the resistor R12 can be made constant. The voltage across the resistor R12 is constant. Therefore, the transistor Q3 may not be provided and one end of the resistor R12 may be directly connected to the source S of the FET 5.
この負帰還回路によって、トランジスタQ2のコレクタCとエミッタE間の抵抗値も一定の値で均衡する。すべては、この負帰還回路で均衡する。
なお、トランジスタQ3が無く、抵抗R12の一端がFET5のソースS(LED5のカソード、トランジスタQ2のベース)に接続されている構成であっても、抵抗R12を流れる電流を一定にする作用があるので、抵抗R12の両端の電圧は一定となる。従って、トランジスタQ3が無く、抵抗R12の一端がFET5のソースSに直接接続されている構成であってもよい。 In this negative feedback circuit, the FET 5 forms a source follower circuit with the transistor Q3 and the resistor R12 as loads. This negative feedback circuit has an effect of making the potential of the collector C (base B) of the transistor Q3 constant.
By this negative feedback circuit, the resistance value between the collector C and the emitter E of the transistor Q2 is also balanced at a constant value. Everything is balanced with this negative feedback circuit.
Even if the transistor Q3 is not provided and one end of the resistor R12 is connected to the source S of the FET 5 (the cathode of the LED 5, the base of the transistor Q2), the current flowing through the resistor R12 can be made constant. The voltage across the resistor R12 is constant. Therefore, the transistor Q3 may not be provided and one end of the resistor R12 may be directly connected to the source S of the FET 5.
FET5は完全導通ではないが導通することで、LED5の電流路をFET5が代替し、電流は通常どおり流れ、LED5は発光を停止し、その他の発光ダイオード(LED4~LED1)は発光を維持する。
FET5の導通によるFET5の電流路の電圧降下は、発光ダイオードの順方向電圧降下より小さい。この状態ではLED5は発光しない。FET4のソースSの電位は、FET5のドレインDとソースS間の電圧降下分上昇している。このため、FET4のゲートGとソースS間の電位は導通電位よりも低くなり、FET4は導通しない。FET4が導通しなければ、FET3、FET2、FET1も導通しない。 When the FET 5 is not fully conductive, the FET 5 replaces the current path of the LED 5, the current flows as usual, the LED 5 stops emitting light, and the other light emitting diodes (LED4 to LED1) maintain the light emission.
The voltage drop in the current path of the FET 5 due to the conduction of the FET 5 is smaller than the forward voltage drop of the light emitting diode. In this state, the LED 5 does not emit light. The potential of the source S of theFET 4 is increased by the voltage drop between the drain D and the source S of the FET 5. For this reason, the potential between the gate G and the source S of the FET 4 is lower than the conduction potential, and the FET 4 does not conduct. If FET4 does not conduct, FET3, FET2, and FET1 do not conduct.
FET5の導通によるFET5の電流路の電圧降下は、発光ダイオードの順方向電圧降下より小さい。この状態ではLED5は発光しない。FET4のソースSの電位は、FET5のドレインDとソースS間の電圧降下分上昇している。このため、FET4のゲートGとソースS間の電位は導通電位よりも低くなり、FET4は導通しない。FET4が導通しなければ、FET3、FET2、FET1も導通しない。 When the FET 5 is not fully conductive, the FET 5 replaces the current path of the LED 5, the current flows as usual, the LED 5 stops emitting light, and the other light emitting diodes (LED4 to LED1) maintain the light emission.
The voltage drop in the current path of the FET 5 due to the conduction of the FET 5 is smaller than the forward voltage drop of the light emitting diode. In this state, the LED 5 does not emit light. The potential of the source S of the
(4)二次電池201の劣化がやや激しく、LED1~LED3が発光し、LED4とLED5が発光を停止する場合
このとき、LED1~LED5の直列接続回路には、最高電圧よりLED5とLED4の順方向電圧降下分だけ低い電圧がかかっている。このため、FET4がFET5と同様に動作することとなる。負帰還回路もFET4が同様な動作をする。
従って、FET4は完全導通ではないが導通し、この導通による電位降下値は、LED4の順方向電圧降下より小さいため、LED4には順方向電圧降下より低い電圧が印加されてLED4は発光を停止する。 (4) When thesecondary battery 201 is slightly deteriorated, LED1 to LED3 emit light, and LED4 and LED5 stop emitting light. At this time, the series connection circuit of LED1 to LED5 has the order of LED5 and LED4 from the highest voltage. Low voltage is applied by the direction voltage drop. For this reason, the FET 4 operates in the same manner as the FET 5. In the negative feedback circuit, the FET 4 performs the same operation.
Accordingly, theFET 4 is not fully conductive but the potential drop due to this conduction is smaller than the forward voltage drop of the LED 4, so that a voltage lower than the forward voltage drop is applied to the LED 4 and the LED 4 stops emitting light. .
このとき、LED1~LED5の直列接続回路には、最高電圧よりLED5とLED4の順方向電圧降下分だけ低い電圧がかかっている。このため、FET4がFET5と同様に動作することとなる。負帰還回路もFET4が同様な動作をする。
従って、FET4は完全導通ではないが導通し、この導通による電位降下値は、LED4の順方向電圧降下より小さいため、LED4には順方向電圧降下より低い電圧が印加されてLED4は発光を停止する。 (4) When the
Accordingly, the
LED1~LED5の直列接続回路にかかる電圧が更に低下すると、LED3、LED2、LED1が順番に発光を停止する。すなわち、LED1~LED5の直列接続回路にかかる電圧が発光ダイオードの順方向電圧降下分ずつ低下すると、LED5→LED4→LED3→LED2→LED1の順に発光を停止し、発光ダイオードの順方向電圧降下分ずつ上昇すると、LED1→LED2→LED3→LED4→LED5の順に発光する。
なお、LED1~LED5の直列接続回路にかかる電圧が最高電圧より微少電圧δV(0<δV<発光ダイオードの順方向電圧降下)だけ低いとき、FET5は不完全導通で、FET5とLED5とに電流が流れる場合がある。この微少電圧だけ低い場合でも負帰還が働いている。 When the voltage applied to the series connection circuit of LED1 to LED5 further decreases, LED3, LED2, and LED1 stop emitting light in order. That is, when the voltage applied to the series connection circuit of LED1 to LED5 is decreased by the forward voltage drop of the light emitting diode, the light emission is stopped in the order of LED5 → LED4 → LED3 → LED2 → LED1 and the forward voltage drop of the light emitting diode is decreased. If it rises, it will light-emit in order of LED1->LED2->LED3->LED4-> LED5.
When the voltage applied to the series connection circuit of LED1 to LED5 is lower than the maximum voltage by a minute voltage δV (0 <δV <the forward voltage drop of the light emitting diode), FET5 is incompletely conductive, and current flows between FET5 and LED5. May flow. Negative feedback works even when this minute voltage is low.
なお、LED1~LED5の直列接続回路にかかる電圧が最高電圧より微少電圧δV(0<δV<発光ダイオードの順方向電圧降下)だけ低いとき、FET5は不完全導通で、FET5とLED5とに電流が流れる場合がある。この微少電圧だけ低い場合でも負帰還が働いている。 When the voltage applied to the series connection circuit of LED1 to LED5 further decreases, LED3, LED2, and LED1 stop emitting light in order. That is, when the voltage applied to the series connection circuit of LED1 to LED5 is decreased by the forward voltage drop of the light emitting diode, the light emission is stopped in the order of LED5 → LED4 → LED3 → LED2 → LED1 and the forward voltage drop of the light emitting diode is decreased. If it rises, it will light-emit in order of LED1->LED2->LED3->LED4-> LED5.
When the voltage applied to the series connection circuit of LED1 to LED5 is lower than the maximum voltage by a minute voltage δV (0 <δV <the forward voltage drop of the light emitting diode), FET5 is incompletely conductive, and current flows between FET5 and LED5. May flow. Negative feedback works even when this minute voltage is low.
図4と図5は、それぞれ本発明の第2の実施形態に係る電池劣化判定装置に含まれる判定電圧生成部210と劣化表示部230の構成の一例を示す。第2の実施形態は、二次電池201の定格電圧が380Vである場合の例である。
電源ラインL3には、図示しない定電圧回路から12Vの電圧が供給される。判定電圧生成部210と劣化表示部230は、電源ラインL3と電源ラインL2に接続され、図示しない定電圧回路から供給される電圧で動作する。 4 and 5 show examples of the configurations of the determination voltage generation unit 210 and the deterioration display unit 230 included in the battery deterioration determination device according to the second embodiment of the present invention, respectively. The second embodiment is an example when the rated voltage of thesecondary battery 201 is 380V.
A voltage of 12 V is supplied to the power supply line L3 from a constant voltage circuit (not shown). The determination voltage generation unit 210 and the deterioration display unit 230 are connected to the power supply line L3 and the power supply line L2, and operate with a voltage supplied from a constant voltage circuit (not shown).
電源ラインL3には、図示しない定電圧回路から12Vの電圧が供給される。判定電圧生成部210と劣化表示部230は、電源ラインL3と電源ラインL2に接続され、図示しない定電圧回路から供給される電圧で動作する。 4 and 5 show examples of the configurations of the determination voltage generation unit 210 and the deterioration display unit 230 included in the battery deterioration determination device according to the second embodiment of the present invention, respectively. The second embodiment is an example when the rated voltage of the
A voltage of 12 V is supplied to the power supply line L3 from a constant voltage circuit (not shown). The determination voltage generation unit 210 and the deterioration display unit 230 are connected to the power supply line L3 and the power supply line L2, and operate with a voltage supplied from a constant voltage circuit (not shown).
判定電圧生成部210が第1の実施形態に係る判定電圧生成部110と異なる点は以下の通りである。
電源201が電源ラインL1と電源ラインL2に(二次電池201の正極と負極の間)に直流電流成分と交流電流成分とを含む脈流電流を流すとき、二次電池201の正極と負極の間に生じる交流電圧成分は例えば600mV程度に達する。このため、判定電圧生成部210は、変圧器T1を有していない。
判定電圧生成部210は、抵抗R13と抵抗R14とを有する。抵抗R13は、一端が電源ラインL3に接続され、他端が抵抗R14の一端に接続される。抵抗R14の他端は電源ラインL2に接続される。抵抗R13と抵抗R14は、電源ラインL3と電源ラインL2間の電圧12Vを分圧してそれらの接続部分に好ましくは6V程度の第1の中間電圧を生じる。コンデンサC1は、一端が電源ラインL1に接続され、他端が抵抗R13と抵抗R14の接続部分に接続される。このため、抵抗R13と抵抗R14との接続部分の電圧は第1の中間電圧に交流電圧成分が加算された電圧となり、その加算された電圧がオペアンプOP1の非反転入力端に入力される。
増幅部111のオペアンプOP1とオペアンプOP2の正電源端は電源ラインL3に接続されており、負電源端は電源ラインL2に接続されている。抵抗R1の一端は電源ラインL3に接続されており、抵抗R1と抵抗R2の接続部分には好ましくは6V程度の第2の中間電圧を生じる。オペアンプOP2の非反転入力端には第2の中間電圧が入力される。
上述した点以外は、判定電圧生成部210は判定電圧生成部110と同一の構成である。 The difference between the determination voltage generation unit 210 and the determinationvoltage generation unit 110 according to the first embodiment is as follows.
When thepower supply 201 supplies a pulsating current including a direct current component and an alternating current component to the power supply line L1 and the power supply line L2 (between the positive electrode and the negative electrode of the secondary battery 201), the positive and negative electrodes of the secondary battery 201 The AC voltage component generated between them reaches, for example, about 600 mV. For this reason, the determination voltage generation unit 210 does not have the transformer T1.
The determination voltage generation unit 210 includes a resistor R13 and a resistor R14. The resistor R13 has one end connected to the power supply line L3 and the other end connected to one end of the resistor R14. The other end of the resistor R14 is connected to the power supply line L2. The resistor R13 and the resistor R14 divide the voltage 12V between the power supply line L3 and the power supply line L2 to generate a first intermediate voltage, preferably about 6V, at their connection portion. One end of the capacitor C1 is connected to the power supply line L1, and the other end is connected to a connection portion between the resistor R13 and the resistor R14. Therefore, the voltage at the connection portion between the resistor R13 and the resistor R14 is a voltage obtained by adding an AC voltage component to the first intermediate voltage, and the added voltage is input to the non-inverting input terminal of the operational amplifier OP1.
The positive power supply terminals of the operational amplifier OP1 and the operational amplifier OP2 of theamplifier 111 are connected to the power supply line L3, and the negative power supply terminals are connected to the power supply line L2. One end of the resistor R1 is connected to the power supply line L3, and a second intermediate voltage of preferably about 6V is generated at a connection portion between the resistor R1 and the resistor R2. The second intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP2.
Except for the points described above, the determination voltage generation unit 210 has the same configuration as the determinationvoltage generation unit 110.
電源201が電源ラインL1と電源ラインL2に(二次電池201の正極と負極の間)に直流電流成分と交流電流成分とを含む脈流電流を流すとき、二次電池201の正極と負極の間に生じる交流電圧成分は例えば600mV程度に達する。このため、判定電圧生成部210は、変圧器T1を有していない。
判定電圧生成部210は、抵抗R13と抵抗R14とを有する。抵抗R13は、一端が電源ラインL3に接続され、他端が抵抗R14の一端に接続される。抵抗R14の他端は電源ラインL2に接続される。抵抗R13と抵抗R14は、電源ラインL3と電源ラインL2間の電圧12Vを分圧してそれらの接続部分に好ましくは6V程度の第1の中間電圧を生じる。コンデンサC1は、一端が電源ラインL1に接続され、他端が抵抗R13と抵抗R14の接続部分に接続される。このため、抵抗R13と抵抗R14との接続部分の電圧は第1の中間電圧に交流電圧成分が加算された電圧となり、その加算された電圧がオペアンプOP1の非反転入力端に入力される。
増幅部111のオペアンプOP1とオペアンプOP2の正電源端は電源ラインL3に接続されており、負電源端は電源ラインL2に接続されている。抵抗R1の一端は電源ラインL3に接続されており、抵抗R1と抵抗R2の接続部分には好ましくは6V程度の第2の中間電圧を生じる。オペアンプOP2の非反転入力端には第2の中間電圧が入力される。
上述した点以外は、判定電圧生成部210は判定電圧生成部110と同一の構成である。 The difference between the determination voltage generation unit 210 and the determination
When the
The determination voltage generation unit 210 includes a resistor R13 and a resistor R14. The resistor R13 has one end connected to the power supply line L3 and the other end connected to one end of the resistor R14. The other end of the resistor R14 is connected to the power supply line L2. The resistor R13 and the resistor R14 divide the voltage 12V between the power supply line L3 and the power supply line L2 to generate a first intermediate voltage, preferably about 6V, at their connection portion. One end of the capacitor C1 is connected to the power supply line L1, and the other end is connected to a connection portion between the resistor R13 and the resistor R14. Therefore, the voltage at the connection portion between the resistor R13 and the resistor R14 is a voltage obtained by adding an AC voltage component to the first intermediate voltage, and the added voltage is input to the non-inverting input terminal of the operational amplifier OP1.
The positive power supply terminals of the operational amplifier OP1 and the operational amplifier OP2 of the
Except for the points described above, the determination voltage generation unit 210 has the same configuration as the determination
劣化表示部230は、LED発光制御部231と、発光ダイオードLED1~LED5とを含む。
LED発光制御部231は、トランジスタQ1のコレクタCと抵抗R5の一端とが電源ラインL3に接続されている点が第1の実施形態に係るLED発光制御部131と異なる。この点を除き、LED発光制御部231はLED発光制御部131と同一の構成である。 The deterioration display unit 230 includes an LED lightemission control unit 231 and light emitting diodes LED1 to LED5.
The LED lightemission control unit 231 is different from the LED light emission control unit 131 according to the first embodiment in that the collector C of the transistor Q1 and one end of the resistor R5 are connected to the power supply line L3. Except for this point, the LED light emission control unit 231 has the same configuration as the LED light emission control unit 131.
LED発光制御部231は、トランジスタQ1のコレクタCと抵抗R5の一端とが電源ラインL3に接続されている点が第1の実施形態に係るLED発光制御部131と異なる。この点を除き、LED発光制御部231はLED発光制御部131と同一の構成である。 The deterioration display unit 230 includes an LED light
The LED light
図6は、本発明の第3の実施形態に係る電池劣化判定装置101および充電器2の構成の一例を示す。第3の実施形態は、二次電池201の定格電圧が12Vである場合の例である。
充電器2は、電源200と電池劣化診断装置101とを有する。充電器2は、鉛蓄電池やリチウムイオン電池等の二次電池201を充電する。 FIG. 6 shows an example of the configuration of the batterydeterioration determination device 101 and the charger 2 according to the third embodiment of the present invention. 3rd Embodiment is an example in case the rated voltage of the secondary battery 201 is 12V.
The charger 2 includes apower source 200 and a battery deterioration diagnosis device 101. The charger 2 charges a secondary battery 201 such as a lead storage battery or a lithium ion battery.
充電器2は、電源200と電池劣化診断装置101とを有する。充電器2は、鉛蓄電池やリチウムイオン電池等の二次電池201を充電する。 FIG. 6 shows an example of the configuration of the battery
The charger 2 includes a
電池劣化診断装置101は、判定電圧生成部110と、異常判別部120と、劣化表示部130とを有する。
電池劣化診断装置101は、異常判別部120を有する点が第1の実施形態に係る電池劣化診断装置100と異なる。判定電圧生成部110と劣化表示部130の構成は、電池劣化判定装置101と電池劣化診断装置100とで同一である。 The batterydeterioration diagnosis apparatus 101 includes a determination voltage generation unit 110, an abnormality determination unit 120, and a deterioration display unit 130.
The batterydeterioration diagnosis apparatus 101 is different from the battery deterioration diagnosis apparatus 100 according to the first embodiment in that it includes an abnormality determination unit 120. The configurations of the determination voltage generation unit 110 and the deterioration display unit 130 are the same in the battery deterioration determination device 101 and the battery deterioration diagnosis device 100.
電池劣化診断装置101は、異常判別部120を有する点が第1の実施形態に係る電池劣化診断装置100と異なる。判定電圧生成部110と劣化表示部130の構成は、電池劣化判定装置101と電池劣化診断装置100とで同一である。 The battery
The battery
上述したように、判定電圧生成部110は、出力端子OUTから判定電圧を出力する。
異常判別部120は、入力端子INに判定電圧が入力される。異常判別部120は、判定電圧と所定のしきい電圧とに基づいて二次電池201の異常の有無を判別する。そして、異常判別部120は、二次電池201が正常と判別された場合に正常であることを示す所定のレベルの表示電圧を生成する。また、異常判別部120は、二次電池201が異常と判別された場合に二次電池201の劣化の程度に応じたレベルの表示電圧を判定電圧に基づいて生成する。異常判別部120は、出力端子OUTから表示電圧を出力する。
劣化表示部130は、判定電圧生成部110で生成された判定電圧ではなく、異常判別部120で生成された表示電圧に基づいて二次電池201の異常の有無および劣化の程度を表示する。 As described above, the determinationvoltage generation unit 110 outputs a determination voltage from the output terminal OUT.
In theabnormality determination unit 120, a determination voltage is input to the input terminal IN. Abnormality determination unit 120 determines whether or not secondary battery 201 is abnormal based on the determination voltage and a predetermined threshold voltage. Then, the abnormality determination unit 120 generates a display voltage of a predetermined level indicating that the secondary battery 201 is normal when it is determined as normal. Moreover, the abnormality determination part 120 produces | generates the display voltage of the level according to the grade of deterioration of the secondary battery 201 based on the determination voltage, when the secondary battery 201 is determined to be abnormal. The abnormality determination unit 120 outputs a display voltage from the output terminal OUT.
Thedeterioration display unit 130 displays the presence / absence of the abnormality and the degree of deterioration of the secondary battery 201 based on the display voltage generated by the abnormality determination unit 120, not the determination voltage generated by the determination voltage generation unit 110.
異常判別部120は、入力端子INに判定電圧が入力される。異常判別部120は、判定電圧と所定のしきい電圧とに基づいて二次電池201の異常の有無を判別する。そして、異常判別部120は、二次電池201が正常と判別された場合に正常であることを示す所定のレベルの表示電圧を生成する。また、異常判別部120は、二次電池201が異常と判別された場合に二次電池201の劣化の程度に応じたレベルの表示電圧を判定電圧に基づいて生成する。異常判別部120は、出力端子OUTから表示電圧を出力する。
劣化表示部130は、判定電圧生成部110で生成された判定電圧ではなく、異常判別部120で生成された表示電圧に基づいて二次電池201の異常の有無および劣化の程度を表示する。 As described above, the determination
In the
The
例えば、劣化表示部130は発光ダイオードLED1~LED5を有する。
異常判別部120は、判定電圧生成部110で生成された判定電圧が所定のしきい電圧以下である場合、二次電池201は正常と判別する。そして、異常判別部120は、表示電圧を所定のレベル(例えば、基準電位)とする。一方、異常判別部120は、判定電圧が所定のしきい電圧より大きい場合、二次電池201は異常と判別する。そして、異常判別部120は、二次電池201の劣化の程度に応じた個数のLEDを点灯させるレベルの表示電圧を判定電圧に基づいて生成する。 For example, thedeterioration display unit 130 includes light emitting diodes LED1 to LED5.
Abnormality determination unit 120 determines that secondary battery 201 is normal when the determination voltage generated by determination voltage generation unit 110 is equal to or lower than a predetermined threshold voltage. Then, the abnormality determination unit 120 sets the display voltage to a predetermined level (for example, a reference potential). On the other hand, when the determination voltage is larger than the predetermined threshold voltage, abnormality determination unit 120 determines that secondary battery 201 is abnormal. And the abnormality discrimination | determination part 120 produces | generates the display voltage of the level which lights the number of LED according to the grade of the deterioration of the secondary battery 201 based on a determination voltage.
異常判別部120は、判定電圧生成部110で生成された判定電圧が所定のしきい電圧以下である場合、二次電池201は正常と判別する。そして、異常判別部120は、表示電圧を所定のレベル(例えば、基準電位)とする。一方、異常判別部120は、判定電圧が所定のしきい電圧より大きい場合、二次電池201は異常と判別する。そして、異常判別部120は、二次電池201の劣化の程度に応じた個数のLEDを点灯させるレベルの表示電圧を判定電圧に基づいて生成する。 For example, the
LED発光制御部131は、入力端子INに異常判別部120で生成された表示電圧が入力される。LED発光制御部131は、表示電圧に応じた個数だけLED1~LED5を発光させる。
具体的には、LED発光制御部131は、異常判別部120で生成された表示電圧が所定のレベル(例えば、基準電位)であるとき、LED1~LED5を全て消灯させる。これにより、電池劣化診断装置100を見る人は、二次電池201が正常であることを知ることができる。
それ以外の場合、すなわち、判定電圧が所定のしきい電圧より大きい場合には、LED発光制御部131は、二次電池の劣化の程度に応じた個数だけLED1~LED5を発光させる。このとき、二次電池201の劣化が激しいほど多くのLEDが発光する。これにより、電池劣化診断装置100を見る人は、二次電池201が異常であること、およびその劣化の程度を知ることができる。 In the LED lightemission control unit 131, the display voltage generated by the abnormality determination unit 120 is input to the input terminal IN. The LED light emission control unit 131 causes the LEDs 1 to 5 to emit light by the number corresponding to the display voltage.
Specifically, the LED lightemission control unit 131 turns off all of the LEDs 1 to 5 when the display voltage generated by the abnormality determination unit 120 is at a predetermined level (for example, a reference potential). Thereby, the person who looks at the battery deterioration diagnostic apparatus 100 can know that the secondary battery 201 is normal.
In other cases, that is, when the determination voltage is greater than the predetermined threshold voltage, the LED lightemission control unit 131 causes the LEDs 1 to 5 to emit light in the number corresponding to the degree of deterioration of the secondary battery. At this time, more LEDs emit light as the secondary battery 201 is more deteriorated. Thereby, the person who looks at the battery deterioration diagnosis apparatus 100 can know that the secondary battery 201 is abnormal and the degree of the deterioration.
具体的には、LED発光制御部131は、異常判別部120で生成された表示電圧が所定のレベル(例えば、基準電位)であるとき、LED1~LED5を全て消灯させる。これにより、電池劣化診断装置100を見る人は、二次電池201が正常であることを知ることができる。
それ以外の場合、すなわち、判定電圧が所定のしきい電圧より大きい場合には、LED発光制御部131は、二次電池の劣化の程度に応じた個数だけLED1~LED5を発光させる。このとき、二次電池201の劣化が激しいほど多くのLEDが発光する。これにより、電池劣化診断装置100を見る人は、二次電池201が異常であること、およびその劣化の程度を知ることができる。 In the LED light
Specifically, the LED light
In other cases, that is, when the determination voltage is greater than the predetermined threshold voltage, the LED light
例えば、しきい電圧がLEDを3個発光させる電圧に相当する場合、判定電圧がそのしきい電圧以下であるとき、LED発光制御部131はLEDを全て消灯させる。二次電池201が劣化し、判定電圧がそのしきい電圧をわずかに超えるとき、LED発光制御部131はLED1~LED3を発光させる。そして、二次電池201の劣化がその状態よりも少し激しいとき、LED発光制御部131はLED1~LED4を発光させる。二次電池201の劣化が更に激しいとき、LED発光制御部131はLED1~LED5を全て発光させる。
For example, when the threshold voltage corresponds to a voltage for causing three LEDs to emit light, the LED light emission control unit 131 turns off all the LEDs when the determination voltage is equal to or lower than the threshold voltage. When the secondary battery 201 deteriorates and the determination voltage slightly exceeds the threshold voltage, the LED light emission controller 131 causes the LEDs 1 to 3 to emit light. When the deterioration of the secondary battery 201 is a little more severe than that state, the LED light emission control unit 131 causes the LEDs 1 to 4 to emit light. When the secondary battery 201 is further deteriorated, the LED light emission control unit 131 causes all the LEDs 1 to 5 to emit light.
異常判別部120は、FPGA、DSP、マイクロプロセッサ等を用いてデジタル処理で実現することができる。
また、異常判別部120は、アナログ回路で実現することもできる。以下に、異常判別部120をアナログ回路で実現する例について詳細に説明する。 Theabnormality determination unit 120 can be realized by digital processing using an FPGA, DSP, microprocessor, or the like.
Further, theabnormality determination unit 120 can be realized by an analog circuit. Hereinafter, an example in which the abnormality determination unit 120 is realized by an analog circuit will be described in detail.
また、異常判別部120は、アナログ回路で実現することもできる。以下に、異常判別部120をアナログ回路で実現する例について詳細に説明する。 The
Further, the
図7は、異常判別部120の構成の一例を示す。
異常判別部120は、電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。異常判別部120は、入力端子INに判定電圧生成部110で生成された判定電圧が入力され、出力端子OUTから表示電圧を出力する。
異常判別部120は、可変抵抗VR21、可変抵抗VR22と、NPNトランジスタQ21と、ダイオードD21と、PNPトランジスタQ22およびPNPトランジスタQ23で構成されるカレントミラー回路と、ダイオードD22と、抵抗R21と、抵抗R22とを有する。
可変抵抗VR21は、一端が電源ラインL1に接続され、他端が可変抵抗VR22の一端に接続される。可変抵抗VR22の他端は電源ラインL2に接続される。可変抵抗VR21と可変抵抗VR22は、電源ラインL1と電源ラインL2間の電圧を分圧し、それらの接続部分に所定のしきい電圧を生じる。可変抵抗VR21および/または可変抵抗VR22を所定の抵抗値に設定することにより所定のしきい電圧を設定することができる。なお、可変抵抗VR21と可変抵抗VR22で構成される回路は、本発明のしきい電圧設定回路の一例である。 FIG. 7 shows an example of the configuration of theabnormality determination unit 120.
Theabnormality determination unit 120 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200. The abnormality determination unit 120 receives the determination voltage generated by the determination voltage generation unit 110 at the input terminal IN, and outputs a display voltage from the output terminal OUT.
Theabnormality determination unit 120 includes a variable resistor VR21, a variable resistor VR22, an NPN transistor Q21, a diode D21, a current mirror circuit including a PNP transistor Q22 and a PNP transistor Q23, a diode D22, a resistor R21, and a resistor R22. And have.
The variable resistor VR21 has one end connected to the power supply line L1 and the other end connected to one end of the variable resistor VR22. The other end of the variable resistor VR22 is connected to the power supply line L2. The variable resistor VR21 and the variable resistor VR22 divide the voltage between the power supply line L1 and the power supply line L2, and generate a predetermined threshold voltage at the connection portion thereof. A predetermined threshold voltage can be set by setting variable resistance VR21 and / or variable resistance VR22 to a predetermined resistance value. The circuit constituted by the variable resistor VR21 and the variable resistor VR22 is an example of the threshold voltage setting circuit of the present invention.
異常判別部120は、電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。異常判別部120は、入力端子INに判定電圧生成部110で生成された判定電圧が入力され、出力端子OUTから表示電圧を出力する。
異常判別部120は、可変抵抗VR21、可変抵抗VR22と、NPNトランジスタQ21と、ダイオードD21と、PNPトランジスタQ22およびPNPトランジスタQ23で構成されるカレントミラー回路と、ダイオードD22と、抵抗R21と、抵抗R22とを有する。
可変抵抗VR21は、一端が電源ラインL1に接続され、他端が可変抵抗VR22の一端に接続される。可変抵抗VR22の他端は電源ラインL2に接続される。可変抵抗VR21と可変抵抗VR22は、電源ラインL1と電源ラインL2間の電圧を分圧し、それらの接続部分に所定のしきい電圧を生じる。可変抵抗VR21および/または可変抵抗VR22を所定の抵抗値に設定することにより所定のしきい電圧を設定することができる。なお、可変抵抗VR21と可変抵抗VR22で構成される回路は、本発明のしきい電圧設定回路の一例である。 FIG. 7 shows an example of the configuration of the
The
The
The variable resistor VR21 has one end connected to the power supply line L1 and the other end connected to one end of the variable resistor VR22. The other end of the variable resistor VR22 is connected to the power supply line L2. The variable resistor VR21 and the variable resistor VR22 divide the voltage between the power supply line L1 and the power supply line L2, and generate a predetermined threshold voltage at the connection portion thereof. A predetermined threshold voltage can be set by setting variable resistance VR21 and / or variable resistance VR22 to a predetermined resistance value. The circuit constituted by the variable resistor VR21 and the variable resistor VR22 is an example of the threshold voltage setting circuit of the present invention.
NPNトランジスタQ21は、ベースBが可変抵抗VR21と可変抵抗VR22の接続部分に接続され、コレクタCが電源ラインL1に接続され、エミッタEがダイオードD21のアノードに接続される。NPNトランジスタQ21は、エミッタフォロアである。
PNPトランジスタQ22とPNPトランジスタQ23とはカレントミラー回路を構成する。PNPトランジスタQ22は、ベースBとコレクタCが接続されている。PNPトランジスタQ22とPNPトランジスタQ23はベースB同士が接続されている。PNPトランジスタQ22とPNPトランジスタQ23の両方のエミッタEは入力端子INに接続されており、これら両エミッタEには判定電圧生成部110で生成された判定電圧が入力される。
PNPトランジスタQ22のコレクタCには、ダイオードD22のアノードが接続される。ダイオードD21のカソードとダイオードD22のカソードは接続されている。抵抗R21は、ダイオードD21とダイオードD22の両方のカソードに一端が接続され、基準電位が印加される電源ラインL2に他端が接続される。
PNPトランジスタQ23のコレクタCには、抵抗R22の一端が接続される。抵抗R22の他端は、電源ラインL2に接続される。PNPトランジスタQ23のコレクタCと抵抗R22の一端の接続部分は出力端子OUTに接続される。 The NPN transistor Q21 has a base B connected to a connection portion between the variable resistor VR21 and the variable resistor VR22, a collector C connected to the power supply line L1, and an emitter E connected to the anode of the diode D21. The NPN transistor Q21 is an emitter follower.
The PNP transistor Q22 and the PNP transistor Q23 constitute a current mirror circuit. The base B and the collector C are connected to the PNP transistor Q22. The bases B of the PNP transistor Q22 and the PNP transistor Q23 are connected to each other. Both emitters E of the PNP transistor Q22 and the PNP transistor Q23 are connected to the input terminal IN, and the determination voltage generated by thedetermination voltage generator 110 is input to both the emitters E.
The anode of the diode D22 is connected to the collector C of the PNP transistor Q22. The cathode of the diode D21 and the cathode of the diode D22 are connected. The resistor R21 has one end connected to the cathodes of both the diode D21 and the diode D22, and the other end connected to the power supply line L2 to which the reference potential is applied.
One end of a resistor R22 is connected to the collector C of the PNP transistor Q23. The other end of the resistor R22 is connected to the power supply line L2. A connection portion between the collector C of the PNP transistor Q23 and one end of the resistor R22 is connected to the output terminal OUT.
PNPトランジスタQ22とPNPトランジスタQ23とはカレントミラー回路を構成する。PNPトランジスタQ22は、ベースBとコレクタCが接続されている。PNPトランジスタQ22とPNPトランジスタQ23はベースB同士が接続されている。PNPトランジスタQ22とPNPトランジスタQ23の両方のエミッタEは入力端子INに接続されており、これら両エミッタEには判定電圧生成部110で生成された判定電圧が入力される。
PNPトランジスタQ22のコレクタCには、ダイオードD22のアノードが接続される。ダイオードD21のカソードとダイオードD22のカソードは接続されている。抵抗R21は、ダイオードD21とダイオードD22の両方のカソードに一端が接続され、基準電位が印加される電源ラインL2に他端が接続される。
PNPトランジスタQ23のコレクタCには、抵抗R22の一端が接続される。抵抗R22の他端は、電源ラインL2に接続される。PNPトランジスタQ23のコレクタCと抵抗R22の一端の接続部分は出力端子OUTに接続される。 The NPN transistor Q21 has a base B connected to a connection portion between the variable resistor VR21 and the variable resistor VR22, a collector C connected to the power supply line L1, and an emitter E connected to the anode of the diode D21. The NPN transistor Q21 is an emitter follower.
The PNP transistor Q22 and the PNP transistor Q23 constitute a current mirror circuit. The base B and the collector C are connected to the PNP transistor Q22. The bases B of the PNP transistor Q22 and the PNP transistor Q23 are connected to each other. Both emitters E of the PNP transistor Q22 and the PNP transistor Q23 are connected to the input terminal IN, and the determination voltage generated by the
The anode of the diode D22 is connected to the collector C of the PNP transistor Q22. The cathode of the diode D21 and the cathode of the diode D22 are connected. The resistor R21 has one end connected to the cathodes of both the diode D21 and the diode D22, and the other end connected to the power supply line L2 to which the reference potential is applied.
One end of a resistor R22 is connected to the collector C of the PNP transistor Q23. The other end of the resistor R22 is connected to the power supply line L2. A connection portion between the collector C of the PNP transistor Q23 and one end of the resistor R22 is connected to the output terminal OUT.
NPNトランジスタQ21は、しきい電圧がベースBに入力され、しきい電圧よりベースエミッタ間電圧だけ低い電圧がエミッタEに生じる。ダイオードD21は、そのエミッタEの電圧を順方向電圧降下だけ低下させる。以下では、しきい電圧よりベースエミッタ間電圧と順方向電圧降下の和だけ低い電圧をしきい電圧レベルの電圧という。
また、PNPトランジスタQ22のコレクタCには、判定電圧よりエミッタコレクタ間電圧だけ低い電圧が生じる。ダイオードD22は、そのコレクタCの電圧を順方向電圧降下だけ低下させる。以下では、判定電圧よりエミッタコレクタ間電圧と順方向電圧降下の和だけ低い電圧を判定電圧レベルの電圧という。
ダイオードD21のカソードとダイオードD22のカソードと抵抗R21の一端との接続部分(以下、抵抗R21の一端という。)は、しきい電圧レベルの電圧と判定電圧レベルの電圧のいずれか高い方の電圧となる。 In the NPN transistor Q21, a threshold voltage is input to the base B, and a voltage lower than the threshold voltage by the base-emitter voltage is generated in the emitter E. The diode D21 reduces the voltage of its emitter E by the forward voltage drop. Hereinafter, a voltage lower than the threshold voltage by the sum of the base-emitter voltage and the forward voltage drop is referred to as a threshold voltage level voltage.
A voltage lower than the determination voltage by the emitter-collector voltage is generated at the collector C of the PNP transistor Q22. Diode D22 reduces the voltage at its collector C by a forward voltage drop. Hereinafter, a voltage lower than the determination voltage by the sum of the emitter-collector voltage and the forward voltage drop is referred to as a determination voltage level voltage.
A connection portion between the cathode of the diode D21, the cathode of the diode D22, and one end of the resistor R21 (hereinafter, referred to as one end of the resistor R21) is a higher one of the threshold voltage level and the determination voltage level voltage. Become.
また、PNPトランジスタQ22のコレクタCには、判定電圧よりエミッタコレクタ間電圧だけ低い電圧が生じる。ダイオードD22は、そのコレクタCの電圧を順方向電圧降下だけ低下させる。以下では、判定電圧よりエミッタコレクタ間電圧と順方向電圧降下の和だけ低い電圧を判定電圧レベルの電圧という。
ダイオードD21のカソードとダイオードD22のカソードと抵抗R21の一端との接続部分(以下、抵抗R21の一端という。)は、しきい電圧レベルの電圧と判定電圧レベルの電圧のいずれか高い方の電圧となる。 In the NPN transistor Q21, a threshold voltage is input to the base B, and a voltage lower than the threshold voltage by the base-emitter voltage is generated in the emitter E. The diode D21 reduces the voltage of its emitter E by the forward voltage drop. Hereinafter, a voltage lower than the threshold voltage by the sum of the base-emitter voltage and the forward voltage drop is referred to as a threshold voltage level voltage.
A voltage lower than the determination voltage by the emitter-collector voltage is generated at the collector C of the PNP transistor Q22. Diode D22 reduces the voltage at its collector C by a forward voltage drop. Hereinafter, a voltage lower than the determination voltage by the sum of the emitter-collector voltage and the forward voltage drop is referred to as a determination voltage level voltage.
A connection portion between the cathode of the diode D21, the cathode of the diode D22, and one end of the resistor R21 (hereinafter, referred to as one end of the resistor R21) is a higher one of the threshold voltage level and the determination voltage level voltage. Become.
しきい電圧レベルの電圧が判定電圧レベルの電圧より高いとき、抵抗R21の一端はしきい電圧レベルの電圧となる。このとき、ダイオードD21は順バイアス状態となり、ダイオードD22は逆バイアス状態となる。PNPトランジスタQ22のエミッタコレクタ間には電流が流れない。このため、PNPトランジスタQ22とPNPトランジスタQ23はベース電流が流れない。従って、PNPトランジスタQ23のエミッタコレクタ間にも電流が流れないため、PNPトランジスタQ23のコレクタCと抵抗R22の一端の接続部分(以下、抵抗R22の一端という。)に、基準電位と同じレベルの表示電圧が生じる。
逆に、判定電圧レベルの電圧がしきい電圧レベルの電圧より高いとき、抵抗R21の一端は判定電圧レベルの電圧となる。このとき、ダイオードD21は逆バイアス状態となり、ダイオードD22は順バイアス状態となる。PNPトランジスタQ22のエミッタコレクタ間に電流が流れる。このため、PNPトランジスタQ22とPNPトランジスタQ23はベース電流が流れる。従って、PNPトランジスタQ23のエミッタコレクタ間にも電流が流れるため、抵抗R22の一端に、判定電圧よりエミッタコレクタ間電圧だけ低い表示電圧が生じる。 When the voltage at the threshold voltage level is higher than the voltage at the determination voltage level, one end of the resistor R21 becomes a voltage at the threshold voltage level. At this time, the diode D21 is in a forward bias state, and the diode D22 is in a reverse bias state. No current flows between the emitter and collector of the PNP transistor Q22. For this reason, the base current does not flow through the PNP transistor Q22 and the PNP transistor Q23. Accordingly, since no current flows between the emitter and collector of the PNP transistor Q23, a display at the same level as the reference potential is displayed at the connection portion of the collector C of the PNP transistor Q23 and one end of the resistor R22 (hereinafter referred to as one end of the resistor R22). A voltage is generated.
Conversely, when the voltage at the determination voltage level is higher than the voltage at the threshold voltage level, one end of the resistor R21 becomes a voltage at the determination voltage level. At this time, the diode D21 is in a reverse bias state, and the diode D22 is in a forward bias state. A current flows between the emitter and collector of the PNP transistor Q22. For this reason, a base current flows through the PNP transistor Q22 and the PNP transistor Q23. Accordingly, since a current also flows between the emitter and collector of the PNP transistor Q23, a display voltage lower than the determination voltage by the emitter-collector voltage is generated at one end of the resistor R22.
逆に、判定電圧レベルの電圧がしきい電圧レベルの電圧より高いとき、抵抗R21の一端は判定電圧レベルの電圧となる。このとき、ダイオードD21は逆バイアス状態となり、ダイオードD22は順バイアス状態となる。PNPトランジスタQ22のエミッタコレクタ間に電流が流れる。このため、PNPトランジスタQ22とPNPトランジスタQ23はベース電流が流れる。従って、PNPトランジスタQ23のエミッタコレクタ間にも電流が流れるため、抵抗R22の一端に、判定電圧よりエミッタコレクタ間電圧だけ低い表示電圧が生じる。 When the voltage at the threshold voltage level is higher than the voltage at the determination voltage level, one end of the resistor R21 becomes a voltage at the threshold voltage level. At this time, the diode D21 is in a forward bias state, and the diode D22 is in a reverse bias state. No current flows between the emitter and collector of the PNP transistor Q22. For this reason, the base current does not flow through the PNP transistor Q22 and the PNP transistor Q23. Accordingly, since no current flows between the emitter and collector of the PNP transistor Q23, a display at the same level as the reference potential is displayed at the connection portion of the collector C of the PNP transistor Q23 and one end of the resistor R22 (hereinafter referred to as one end of the resistor R22). A voltage is generated.
Conversely, when the voltage at the determination voltage level is higher than the voltage at the threshold voltage level, one end of the resistor R21 becomes a voltage at the determination voltage level. At this time, the diode D21 is in a reverse bias state, and the diode D22 is in a forward bias state. A current flows between the emitter and collector of the PNP transistor Q22. For this reason, a base current flows through the PNP transistor Q22 and the PNP transistor Q23. Accordingly, since a current also flows between the emitter and collector of the PNP transistor Q23, a display voltage lower than the determination voltage by the emitter-collector voltage is generated at one end of the resistor R22.
図8は、本発明の第4の実施形態に係る電池劣化判定装置に含まれる異常判別部220の構成の一例を示す。第4の実施形態は、二次電池201の定格電圧が380Vである場合の例である。
第4の実施形態に係る電池劣化判定装置は、異常判別部220に加えて、第2の実施形態に係る電池劣化判定装置の判定電圧生成部210と劣化表示部230とで構成される。
電源ラインL3には、図示しない定電圧回路から12Vの電圧が供給される。判定電圧生成部210と異常判別部220とLED発光制御部231は、電源ラインL3と電源ラインL2に接続され、図示しない定電圧回路から供給される電圧で動作する。 FIG. 8 shows an example of the configuration of the abnormality determination unit 220 included in the battery deterioration determination device according to the fourth embodiment of the present invention. The fourth embodiment is an example when the rated voltage of thesecondary battery 201 is 380V.
The battery deterioration determination device according to the fourth embodiment includes a determination voltage generation unit 210 and a deterioration display unit 230 of the battery deterioration determination device according to the second embodiment, in addition to the abnormality determination unit 220.
A voltage of 12 V is supplied to the power supply line L3 from a constant voltage circuit (not shown). The determination voltage generation unit 210, the abnormality determination unit 220, and the LED lightemission control unit 231 are connected to the power supply line L3 and the power supply line L2, and operate with a voltage supplied from a constant voltage circuit (not shown).
第4の実施形態に係る電池劣化判定装置は、異常判別部220に加えて、第2の実施形態に係る電池劣化判定装置の判定電圧生成部210と劣化表示部230とで構成される。
電源ラインL3には、図示しない定電圧回路から12Vの電圧が供給される。判定電圧生成部210と異常判別部220とLED発光制御部231は、電源ラインL3と電源ラインL2に接続され、図示しない定電圧回路から供給される電圧で動作する。 FIG. 8 shows an example of the configuration of the abnormality determination unit 220 included in the battery deterioration determination device according to the fourth embodiment of the present invention. The fourth embodiment is an example when the rated voltage of the
The battery deterioration determination device according to the fourth embodiment includes a determination voltage generation unit 210 and a deterioration display unit 230 of the battery deterioration determination device according to the second embodiment, in addition to the abnormality determination unit 220.
A voltage of 12 V is supplied to the power supply line L3 from a constant voltage circuit (not shown). The determination voltage generation unit 210, the abnormality determination unit 220, and the LED light
異常判別部220は、図8に示すように、NPNトランジスタQ21のコレクタCと可変抵抗VR21の一端とが電源ラインL3に接続されている点が第1の実施形態に係る異常判別部120と異なる。この点を除き、異常判別部220は異常判別部120と同一の構成である。
As shown in FIG. 8, the abnormality determination unit 220 is different from the abnormality determination unit 120 according to the first embodiment in that the collector C of the NPN transistor Q21 and one end of the variable resistor VR21 are connected to the power supply line L3. . Except for this point, the abnormality determination unit 220 has the same configuration as the abnormality determination unit 120.
なお、上述した実施形態では発光ダイオードが5個(LED1~LED5)の例について説明したが、発光ダイオードが2個~4個、または5個以上直列に接続されている場合であっても本発明を適用することができる。
In the above-described embodiment, an example of five light emitting diodes (LED1 to LED5) has been described. However, the present invention may be applied even when two to four light emitting diodes or five or more light emitting diodes are connected in series. Can be applied.
以上説明したように、本発明によれば、二次電池の劣化の程度を目視で判定することができる。すなわち、本発明にかかる充電器を用いることにより、二次電池の充電中にその劣化の程度を目視で判定することができる。
また、第3の実施形態と第4の実施形態によれば、二次電池の異常の有無を判別するとともに、異常である場合にはその劣化の程度を目視で判定することができる。すなわち、第3の実施形態と第4の実施形態に係る充電器を用いることにより、二次電池の充電中に異常の有無を判別するとともに、異常である場合にはその劣化の程度を目視で判定することができる。 As described above, according to the present invention, the degree of deterioration of the secondary battery can be visually determined. That is, by using the charger according to the present invention, it is possible to visually determine the degree of deterioration during charging of the secondary battery.
Further, according to the third embodiment and the fourth embodiment, it is possible to determine the presence or absence of abnormality of the secondary battery and to visually determine the degree of deterioration in the case of abnormality. That is, by using the charger according to the third embodiment and the fourth embodiment, it is possible to determine whether or not there is an abnormality during charging of the secondary battery, and if it is abnormal, visually check the degree of deterioration. Can be determined.
また、第3の実施形態と第4の実施形態によれば、二次電池の異常の有無を判別するとともに、異常である場合にはその劣化の程度を目視で判定することができる。すなわち、第3の実施形態と第4の実施形態に係る充電器を用いることにより、二次電池の充電中に異常の有無を判別するとともに、異常である場合にはその劣化の程度を目視で判定することができる。 As described above, according to the present invention, the degree of deterioration of the secondary battery can be visually determined. That is, by using the charger according to the present invention, it is possible to visually determine the degree of deterioration during charging of the secondary battery.
Further, according to the third embodiment and the fourth embodiment, it is possible to determine the presence or absence of abnormality of the secondary battery and to visually determine the degree of deterioration in the case of abnormality. That is, by using the charger according to the third embodiment and the fourth embodiment, it is possible to determine whether or not there is an abnormality during charging of the secondary battery, and if it is abnormal, visually check the degree of deterioration. Can be determined.
以上、本発明の実施形態について説明したが、設計または製造上の都合やその他の要因によって必要となる様々な修正や組み合わせは、請求項に記載されている発明や発明の実施形態に記載されている具体例に対応する発明の範囲に含まれる。
Although the embodiments of the present invention have been described above, various modifications and combinations necessary for design or manufacturing convenience and other factors are described in the claimed invention and the embodiments of the invention. It is included in the scope of the invention corresponding to the specific example.
1、2…充電器、100、101…電池劣化判定装置、110…判定電圧生成部、111…増幅部、112…反転部、113…2倍増幅部、120…異常判別部、130…劣化表示部、131…LED発光制御部、200…電源、201…二次電池、210…判定電圧生成部、220…異常判別部、230…劣化表示部、231…LED発光制御部、LED1~LED5…発光ダイオード
DESCRIPTION OF SYMBOLS 1, 2 ... Charger, 100, 101 ... Battery deterioration determination apparatus, 110 ... Determination voltage generation part, 111 ... Amplification part, 112 ... Inversion part, 113 ... Double amplification part, 120 ... Abnormality determination part, 130 ... Deterioration display , 131 ... LED light emission control unit, 200 ... power supply, 201 ... secondary battery, 210 ... determination voltage generation unit, 220 ... abnormality determination unit, 230 ... deterioration display unit, 231 ... LED light emission control unit, LED1 to LED5 ... light emission diode
Claims (8)
- 二次電池の正極と負極の間に交流電流成分を含む電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分に基づいて前記二次電池の劣化の程度を判定するための判定電圧を生成する判定電圧生成部と、
前記判定電圧生成部で生成された判定電圧に基づいて前記二次電池の劣化の程度を表示する劣化表示部と、
を備えることを特徴とする電池劣化判定装置。 When an electric current containing an alternating current component flows between the positive electrode and the negative electrode of the secondary battery, the alternating voltage component contained in the voltage generated between the positive electrode and the negative electrode is extracted, and the secondary battery is based on the alternating voltage component A determination voltage generation unit that generates a determination voltage for determining the degree of deterioration of
A deterioration display unit that displays a degree of deterioration of the secondary battery based on the determination voltage generated by the determination voltage generation unit;
A battery deterioration determination device comprising: - 前記判定電圧生成部が、前記交流電圧成分を増幅して整流することにより、前記判定電圧を生成し、
前記劣化表示部が、直列に接続された複数のLEDと、前記判定電圧生成部で生成される判定電圧に基づいて前記複数のLEDを前記二次電池の劣化の程度に応じた個数だけ発光させるLED発光制御部とを有する、
ことを特徴とする請求項1に記載の電池劣化判定装置。 The determination voltage generator generates the determination voltage by amplifying and rectifying the AC voltage component,
The deterioration display unit causes the plurality of LEDs to emit light according to the degree of deterioration of the secondary battery based on the plurality of LEDs connected in series and the determination voltage generated by the determination voltage generation unit. An LED light emission control unit,
The battery deterioration determination device according to claim 1. - 前記LED発光制御部が、前記二次電池の劣化が激しいほど多くのLEDを発光させることを特徴とする請求項2に記載の電池劣化判定装置。 The battery deterioration determination apparatus according to claim 2, wherein the LED light emission control unit causes more LEDs to emit light as the deterioration of the secondary battery is more severe.
- 前記判定電圧生成部で生成された判定電圧と所定のしきい電圧とに基づいて前記二次電池の異常の有無を判別し、前記二次電池が正常と判別された場合に正常であることを示す所定のレベルの表示電圧を生成し、前記二次電池が異常と判別された場合に前記二次電池の劣化の程度に応じたレベルの表示電圧を前記判定電圧に基づいて生成する異常判別部を備え、
前記劣化表示部が、前記判定電圧生成部で生成された判定電圧ではなく、前記異常判別部で生成された表示電圧に基づいて前記二次電池の異常の有無および劣化の程度を表示する、
ことを特徴とする請求項1に記載の電池劣化判定装置。 Whether or not the secondary battery is abnormal is determined based on the determination voltage generated by the determination voltage generation unit and a predetermined threshold voltage, and is normal when the secondary battery is determined to be normal. An abnormality determination unit that generates a display voltage of a predetermined level to be generated and generates a display voltage of a level according to the degree of deterioration of the secondary battery when the secondary battery is determined to be abnormal With
The deterioration display unit displays the presence / absence of the secondary battery and the degree of deterioration based on the display voltage generated by the abnormality determination unit instead of the determination voltage generated by the determination voltage generation unit,
The battery deterioration determination device according to claim 1. - 前記劣化表示部が、直列に接続された複数のLEDと、前記異常判別部で生成された表示電圧に応じた個数だけ当該複数のLEDを発光させるLED発光制御部とを有し、
前記異常判別部が、前記判定電圧生成部で生成された判定電圧が前記所定のしきい電圧以下である場合に前記表示電圧を前記複数のLEDを全て消灯させる前記所定のレベルとし、前記判定電圧が前記所定のしきい電圧より大きい場合に前記二次電池の劣化の程度に応じた個数のLEDを点灯させるレベルの前記表示電圧を前記判定電圧に基づいて生成する、
ことを特徴とする請求項4に記載の電池劣化判定装置。 The deterioration display unit includes a plurality of LEDs connected in series, and an LED light emission control unit configured to emit the plurality of LEDs according to the number corresponding to the display voltage generated by the abnormality determination unit,
When the determination voltage generated by the determination voltage generation unit is equal to or lower than the predetermined threshold voltage, the abnormality determination unit sets the display voltage to the predetermined level that turns off the plurality of LEDs, and determines the determination voltage. Generating the display voltage at a level that turns on a number of LEDs according to the degree of deterioration of the secondary battery when the voltage is greater than the predetermined threshold voltage, based on the determination voltage;
The battery deterioration determination device according to claim 4. - 前記判定電圧生成部が、前記交流電圧成分を増幅して整流することにより、前記判定電圧を生成し、
前記異常判別部が、
可変抵抗を含み、当該可変抵抗が所定の抵抗値に設定されることにより前記所定のしきい電圧が設定されるしきい電圧設定回路と、
前記しきい電圧設定回路で設定されたしきい電圧がベースに入力されるエミッタフォロアのNPNトランジスタと、
アノードが前記NPNトランジスタのエミッタに接続された第1のダイオードと、
ベースとコレクタが接続された第1のPNPトランジスタと当該第1のPNPトランジスタとベース同士が接続された第2のPNPトランジスタとで構成されており、前記第1のPNPトランジスタと前記第2のPNPトランジスタの両方のエミッタに前記判定電圧生成部で生成された判定電圧が入力されるカレントミラー回路と、
アノードが前記第1のPNPトランジスタのコレクタに接続された第2のダイオードと、
前記第1のダイオードと前記第2のダイオードの両方のカソードに一端が接続されており、前記二次電池の負極の電位である基準電位が印加される電源ラインに他端が接続された第1の抵抗と、
前記第2のPNPトランジスタのコレクタに一端が接続されており、前記電源ラインに他端が接続されており、当該一端に前記表示電圧を生じる第2の抵抗と、
を備える、
ことを特徴とする請求項4または5に記載の電池劣化判定装置。 The determination voltage generator generates the determination voltage by amplifying and rectifying the AC voltage component,
The abnormality determination unit
A threshold voltage setting circuit including a variable resistor, wherein the predetermined threshold voltage is set by setting the variable resistor to a predetermined resistance value;
An emitter follower NPN transistor to which the threshold voltage set by the threshold voltage setting circuit is input to the base;
A first diode having an anode connected to the emitter of the NPN transistor;
A first PNP transistor having a base and a collector connected to each other, a second PNP transistor having a base connected to the first PNP transistor, and the first PNP transistor and the second PNP transistor. A current mirror circuit in which the determination voltage generated by the determination voltage generator is input to both emitters of the transistor;
A second diode having an anode connected to the collector of the first PNP transistor;
One end is connected to the cathodes of both the first diode and the second diode, and the other end is connected to a power supply line to which a reference potential that is a negative potential of the secondary battery is applied. Resistance of
One end connected to the collector of the second PNP transistor, the other end connected to the power supply line, and a second resistor for generating the display voltage at the one end;
Comprising
The battery deterioration determination apparatus according to claim 4 or 5, wherein - 前記判定電圧生成部が、
前記交流電圧成分または前記交流電圧成分が増幅された第1の中間交流電圧を増幅して第2の中間交流電圧を生成する増幅部と、
前記増幅部で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する反転部と、
前記増幅部で生成される第2の中間交流電圧と前記反転部で生成される反転交流電圧とに基づいて前記第2の中間交流電圧を2倍に増幅して整流し、前記判定電圧を生成する2倍増幅部と、
を備えることを特徴とする請求項1ないし6のいずれか1項に記載の電池劣化判定装置。 The determination voltage generator is
An amplifying unit for amplifying the AC voltage component or the first intermediate AC voltage obtained by amplifying the AC voltage component to generate a second intermediate AC voltage;
An inverting unit that generates an inverted AC voltage obtained by inverting the polarity of the second intermediate AC voltage generated by the amplifying unit;
Based on the second intermediate AC voltage generated by the amplifying unit and the inverted AC voltage generated by the inverting unit, the second intermediate AC voltage is doubled and rectified to generate the determination voltage. A two-fold amplification unit,
The battery deterioration determination device according to any one of claims 1 to 6, further comprising: - 請求項1ないし7のいずれか1項に記載の電池劣化判定装置と、
二次電池の正極と負極の間に前記電流を流す電源と、
を備えることを特徴とする充電器。 The battery deterioration determination device according to any one of claims 1 to 7,
A power source for passing the current between the positive electrode and the negative electrode of the secondary battery;
A charger comprising:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-115854 | 2016-06-10 | ||
JP2016115854A JP2017219495A (en) | 2016-06-10 | 2016-06-10 | Battery degradation determination device and charger |
JP2016-164211 | 2016-08-25 | ||
JP2016164211A JP2018031678A (en) | 2016-08-25 | 2016-08-25 | Battery deterioration diagnosis device and charger |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017212844A1 true WO2017212844A1 (en) | 2017-12-14 |
Family
ID=60578543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/017471 WO2017212844A1 (en) | 2016-06-10 | 2017-05-09 | Battery degradation determination device and charger |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017212844A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5324293A (en) * | 1976-08-19 | 1978-03-06 | Fujitsu Ltd | Dri ving circuit for light emitting diode |
JPH1021968A (en) * | 1996-07-04 | 1998-01-23 | Nec Corp | Secondary battery pack |
JP2000341867A (en) * | 1999-05-28 | 2000-12-08 | Ntt Data Corp | Method and apparatus for discriminating state of secondary battery |
JP2004014403A (en) * | 2002-06-10 | 2004-01-15 | Nippon Soken Inc | Deterioration determining device of rechargeable battery, vehicle and program provided with it and method for deterioration determination |
JP2017078600A (en) * | 2015-10-19 | 2017-04-27 | 河村電器産業株式会社 | Storage battery degradation diagnostic device |
-
2017
- 2017-05-09 WO PCT/JP2017/017471 patent/WO2017212844A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5324293A (en) * | 1976-08-19 | 1978-03-06 | Fujitsu Ltd | Dri ving circuit for light emitting diode |
JPH1021968A (en) * | 1996-07-04 | 1998-01-23 | Nec Corp | Secondary battery pack |
JP2000341867A (en) * | 1999-05-28 | 2000-12-08 | Ntt Data Corp | Method and apparatus for discriminating state of secondary battery |
JP2004014403A (en) * | 2002-06-10 | 2004-01-15 | Nippon Soken Inc | Deterioration determining device of rechargeable battery, vehicle and program provided with it and method for deterioration determination |
JP2017078600A (en) * | 2015-10-19 | 2017-04-27 | 河村電器産業株式会社 | Storage battery degradation diagnostic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6291009B2 (en) | Voltage control device | |
KR101301087B1 (en) | Apparatus for driving light emitting diode | |
US20080291699A1 (en) | Low-Loss Rectifier with Optically Coupled Gate Shunting | |
KR100790650B1 (en) | Power supply for positive and negative output voltages | |
US20170354001A1 (en) | Led lighting device using ac power supply | |
US8044597B2 (en) | Drive circuit of fluorescent display | |
JP6332629B2 (en) | LED power supply and LED lighting device | |
JP2007318881A (en) | Power supply unit for lighting of led | |
US8907583B1 (en) | LED driving device | |
WO2018074470A1 (en) | Battery deterioration diagnosis device, charger, and battery deterioration diagnosis method | |
JP2018031678A (en) | Battery deterioration diagnosis device and charger | |
WO2017212844A1 (en) | Battery degradation determination device and charger | |
KR20190003446A (en) | Reverse polarity series type led and drive circuit | |
JP2017219495A (en) | Battery degradation determination device and charger | |
US9632116B2 (en) | DC reverse polarity detection | |
US9622308B2 (en) | Lighting device, illumination device, and lighting fixture | |
JP6207771B2 (en) | LED lighting circuit powered by current source | |
KR101653595B1 (en) | Apparatus for driving light emitting diode | |
TW201208490A (en) | LED drive circuit | |
JP5914874B2 (en) | LED lighting device | |
US8760887B2 (en) | Power supply circuit | |
JP7100954B2 (en) | Power converter and control device | |
JP6635513B2 (en) | Switching power supply | |
RU2279754C1 (en) | One-phased bridge transistor inverter | |
RU2300775C1 (en) | Light-sound indicator of low voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17810026 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17810026 Country of ref document: EP Kind code of ref document: A1 |