WO2017211650A1 - Substituted oxadiazoles for combating phytopathogenic fungi - Google Patents
Substituted oxadiazoles for combating phytopathogenic fungi Download PDFInfo
- Publication number
- WO2017211650A1 WO2017211650A1 PCT/EP2017/063210 EP2017063210W WO2017211650A1 WO 2017211650 A1 WO2017211650 A1 WO 2017211650A1 EP 2017063210 W EP2017063210 W EP 2017063210W WO 2017211650 A1 WO2017211650 A1 WO 2017211650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- trifluoromethyl
- oxadiazol
- benzamide
- group
- Prior art date
Links
- 0 CC(C)(C=C(C=C1)C(N(*)*)=O)C=C1c1n[o]c(C(F)(F)F)n1 Chemical compound CC(C)(C=C(C=C1)C(N(*)*)=O)C=C1c1n[o]c(C(F)(F)F)n1 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D271/00—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
- C07D271/02—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
- C07D271/06—1,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles
Definitions
- the present invention relates to novel trifluoromethyloxadiazoles of the formula I, or their N- oxides, or their agriculturally useful salts; to their use for controlling phytopathogenic fungi; to a method for combating phytopathogenic harmful fungi, which process comprises treating the fungi or the plants, the soil or seeds to be protected against fungal attack, with an effective amount of at least one compound of the formula I, or an N-oxide, or an agriculturally acceptable salt thereof; to agrochemical compositions comprising at least one compound of the formula I; and to agrochemical compositions further comprising seeds.
- WO 2017/055469 A1 and WO 2017/055473 A1 describe derivatives of trifluoromethyloxadiazoles and their use to combat phytopathogenic microorganisms.
- WO 97/30047 A1 describes certain trifluoromethyloxadiazole analogues with fungicidal activity.
- WO 2015/185485 A1 describes similar derivatives of trifluoromethyloxadiazoles and relates to their use for combating phytopathogenic microorganisms.
- EP 276432 A2 relates to 3-phenyl-5- trifluoromethyloxadiazole derivatives and to their use for combating phytopathogenic microorganisms.
- WO 97/30047 A1 describes certain trifluoromethyloxadiazole analogues with fungicidal activity, wherein the trifluoromethyloxadiazole group and an amide functional group are attached to a phenyl ring in an cvTfto-relationship.ln many cases, in particular at low application rates, the fungicidal activity of known fungicidal compounds is unsatisfactory. Based on this, it was an objective of the present invention to provide compounds having improved activity and/or a broader activity spectrum against phytopathogenic fungi. This objective is achieved by the oxadiazoles of the formula I and/or their agriculturally useful salts for controlling phytopathogenic fungi. Accordingly, the present invention relates to compounds of the formula I or the N-oxides, or the agriculturally acceptable salts thereof
- R A is independently selected from the group consisting of halogen, cyano, Ci-C6-alkyl, C1-C6- alkoxy and Ci-C6-haloalkyl;
- n 0, 1 or 2;
- R 1a is halogen or cyano ;
- Agriculturally acceptable salts of the compounds of the formula I encompass especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of the compounds I.
- Suitable cations are thus in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may be substituted with one to four Ci-C 4 -alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium,
- trimethylbenzylammonium furthermore phosphonium ions, sulfonium ions, preferably tri(Ci-C 4 - alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C 4 -alkyl)sulfoxonium.
- Anions of acceptable acid addition salts are primarily chloride, bromide, fluoride,
- Ci-C 4 -alkanoic acids preferably formate, acetate, propionate and butyrate. They can be formed by reacting a compound I with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
- Stereoisomers of the formula I can exist as one or more stereoisomers.
- the various stereoisomers include enantiomers, diastereomers, atropisomers arising from restricted rotation about a single bond of asymmetric groups and geometric isomers. They also form part of the subject matter of the present invention.
- one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers.
- the compounds of the invention may be present as a mixture of stereoisomers, e.g. a racemate, individual
- C n -C m indicates the number of carbon atoms possible in each case in the substituent or substituent moiety in question.
- moieties having no brackets in the name are bonded via the last moiety e.g. aminoCi-C 4 - alkyl is an amino group bonded via Ci-C 4 -alkyl. etc.
- halogen refers to fluorine, chlorine, bromine and iodine.
- Ci-C6-alkyl refers to a straight-chained or branched saturated hydrocarbon group having 1 to 6 carbon atoms, for example methyl, ethyl, propyl, 1 -methylethyl, butyl, 1 - methylpropyl, 2-methylpropyl, and 1 ,1 -dimethylethyl.
- Ci-C6-haloalkyl refers to a straight-chained or branched alkyl group having 1 to 6 carbon atoms (as defined above), wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, for example chloromethyl,
- Ci-C6-alkoxy refers to a straight-chain or branched alkyl group having 1 to 6 carbon atoms (as defined above) which is bonded via an oxygen, at any position in the alkyl group, for example methoxy, ethoxy, n-propoxy, 1 -methylethoxy, butoxy, 1-methylpropoxy, 2- methylpropoxy or 1 , 1 -dimethylethoxy.
- Ci-C6-haloalkoxy refers to a Ci-C6-alkoxy group as defined above, wherein some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, for example, OCH 2 F, OCHF 2 , OCFs, OCH 2 CI, OCHCI 2 , OCCI 3 , chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2- difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2- dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, OC 2 Fs, 2-fluoropropoxy, 3-fluoropropoxy, 2,2- difluoro
- phenyl-Ci-C4-alkyl refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a phenyl radical.
- Ci-C4-alkoxy-Ci-C4-alkyl refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a Ci-C4-alkoxy group (as defined above).
- Ci-C4-alkoxy group refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a Ci-C4-alkylthio group.
- Ci-Ce-alkylthio refers to straight-chain or branched alkyl groups having 1 to 6 carbon atoms (as defined above) bonded via a sulfur atom. Accordingly, the term “Ci-C6-haloalkylthio” as used herein refers to straight-chain or branched haloalkyl group having 1 to 6 carbon atoms (as defined above) bonded through a sulfur atom, at any position in the haloalkyl group.
- C3-C8-cycloalkyl-Ci-C6-alkyl refers to alkyl having 1 to 6 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a Cs-Cs-cycloalkyl group.
- hydroxyCi-C4-alkyl refers to alkyl having 1 to 4 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a OH group.
- aminoCi-C4-alkyl refers to alkyl having 1 to 4 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a NH 2 group.
- diCi-C6-alkylamino refers to an amino group, which is substituted with two residues independently selected from the group that is defined by the term Ci-C6-alkyl.
- Ci-C4-alkylamino-Ci-C4-alkyl refers to refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a Ci-C4-alkyl-NH- group which is bound through the nitrogen.
- diCi-C4-alkylamino-Ci-C4-alkyl refers to refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a (Ci-C4-alkyl)2N- group which is bound through the nitrogen.
- C2-C6-alkenyl refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and a double bond in any position, such as ethenyl, 1-propenyl, 2- propenyl (allyl), 1 -methylethenyl, 1 -butenyl, 2-butenyl, 3-butenyl, 1 -methyl-1 -propenyl, 2-methyl-
- C2-C6-alkynyl refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and containing at least one triple bond, such as ethynyl, 1-propynyl,
- Cs-Cs-cycloalkyl refers to monocyclic saturated hydrocarbon radicals having 3 to 8 carbon ring members such as cyclopropyl (C3H5), cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.
- aliphatic refers to compounds or radicals composed of carbon and hydrogen and which are non-aromatic compounds.
- An alicyclic compound or radical is an organic compound that is both aliphatic and cyclic. They contain one or more all-carbon rings which may be either saturated or unsaturated, but do not have aromatic character.
- cyclic moiety or "cyclic group'Yefer to a radical which is an alicyclic ring or an aromatic ring, such as, for example, phenyl.
- R 1a refers to aliphatic groups, cyclic groups and groups, which contain an aliphatic and a cyclic moiety in one group, such as in, for example, phenyl-Ci-C4-alkyl; therefore, in a group which contains an aliphatic and a cyclic moiety, both of these moieties may be substituted or unsubstituted independently of each other.
- R A is independently selected from the group consisting of halogen, cyano, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy and Ci-C6-haloalkoxy.
- R A is independently selected from the group consisting of halogen, cyano, Ci-C6-alkyl, Ci-C6-alkoxy, C2-C6-alkenyl and C2-C6-alkynyl; in particular from fluorine, chlorine and Ci-C6-alkyl; more particularly from fluorine, chlorine and methyl.
- n is 0 or 1. In a preferred embodiment n is 0.
- R 1 is hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8- cycloalkyl or Cs-Cs-cycloalkenyl; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1 , 2, 3, 4 or up to the maximum possible number of identical or different radicals selected from the group consisting of halogen and cyano, in particular from fluorine and chlorine.
- R 1 is hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, ethynyl or propargyl; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1 , 2, 3, 4 or up to the maximum possible number of identical or different radicals selected from the group consisting of halogen and cyano, in particular from fluorine and chlorine.
- R 1 is hydrogen, Ci-C6-alkyl or Cs-Cs-cycloalkyl; in particular methy, ethyl, n-propyl, iso-propyl or cyclopropyl; more particularly R 1 is hydrogen or methyl.
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 , 2 or 3 identical or different groups R 2a as defined or preferably defined herein.
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 , 2 or 3 identical or different groups R 2a as defined or preferably defined herein; and wherein one group R 2a is located in the 1 -position of the cyclopropyl group.
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 or 2 identical or different groups R 2a as defined or preferably defined herein.
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 or 2 identical or different groups R 2a as defined or preferably defined herein; and wherein one group R 2a is located in the 1-position of the cyclopropyl group.
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 groups R 2a as defined or preferably defined herein.
- R 2 is cyclopropyl; and wherein the cyclopropyl group is
- R 2a is independently selected from the group consisting of Ci-C6-alkyl, Ci-C6-haloalkyl and halogen; preferably from methyl, ethyl, halogen and
- trifluoromethyl more preferably from methyl, ethyl, fluorine or chlorine.
- R 2a is independently selected from the group consisting of Ci-C6-alkyl; preferably from methyl and ethyl.
- R 2a is independently selected from the group consisting of halogen; preferably from fluorine and chlorine.
- the invention relates to compounds of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:
- R A is halogen, cyano, Ci-C6-alkyl, Ci-C6-haloalkyl or Ci-C6-alkoxy; preferably halogen or
- Ci-C6-alkyl more preferably fluorine
- n 0, 1 or 2;
- R 1 is hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Cs-Cs-cycloalkyl or
- any of the aliphatic or cyclic groups are unsubstituted or substituted with 1 , 2, 3, 4 or up to the maximum possible number of identical or different radicals selected from the group consisting of halogen and cyano, in particular from fluorine and chlorine; and
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 , 2, 3 or up to the maximum possible number of identical or different groups R 2a ; wherein
- the invention relates to compounds of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:
- R A is halogen, cyano, Ci-C6-alkyl, Ci-C6-haloalkyl or Ci-C6-alkoxy; preferably halogen or Ci-C6-alkyl; more preferably fluorine;
- n 0 or 1 ;
- R 1 is hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, ethynyl, propargyl or Cs-Cs-cycloalkyl; and
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 , 2, 3 or up to the maximum possible number of identical or different groups R 2a ; wherein
- R 2a is Ci-C6-alkyl, halogen or Ci-C6-haloalkyl.
- the invention relates to compounds of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:
- n 0;
- R 1 is hydrogen or Ci-C6-alkyl
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 , 2, 3 or up to the maximum possible number of identical or different groups R 2a ; wherein
- R 2a is Ci-C6-alkyl, halogen or Ci-C6-haloalkyl; preferably methyl, ethyl, fluorine, chlorine or trifluoromethyl; more preferably methyl, ethyl or fluorine.
- the invention relates to compounds of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:
- n 0;
- R 1 is hydrogen or Ci-C6-alkyl
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 or 2 identical or different groups R 2a ; wherein
- R 2a is Ci-C6-alkyl, halogen or Ci-C6-haloalkyl; preferably methyl, ethyl, fluorine, chlorine or trifluoromethyl.
- the invention relates to compounds of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:
- n 0;
- R 1 is hydrogen or Ci-C6-alkyl
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 or 2 identical or different groups R 2a ; and wherein one group R 2a is located in the 1-position of the cyclopropyl group; wherein
- R 2a is Ci-C6-alkyl; preferably methyl or ethyl.
- the invention relates to compounds of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:
- n 0;
- R 1 is hydrogen or Ci-C6-alkyl
- R 2 is cyclopropyl; and wherein the cyclopropyl group is substituted with 1 or 2 identical or different groups R 2a ; and wherein one group R 2a is located in the 1-position of the cyclopropyl group; wherein
- R 2a is halogen; preferably fluorine or chlorine.
- the present invention relates to compounds of the formula I.A
- R 1 and R 2a are as defined or preferably defined herein for formula I.
- R 1 and R 2a are as defined or preferably defined herein for formula I.
- the invention relates to compounds of formula I .A or I.B, or the N- oxides, or the agriculturally acceptable salts thereof, wherein
- R 1 is hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, ethynyl, propargyl or Cs-Cs-cycloalkyl;
- R 2a is Ci-C6-alkyl, Ci-C6-haloalkyl or halogen; preferably methyl, ethyl, fluorine, chlorine or trifluoromethyl; more preferably methyl, ethyl or fluorine.
- the invention relates to compounds of formula I .A or I.B, or the N- oxides, or the agriculturally acceptable salts thereof, wherein
- R 1 is hydrogen or methyl
- R 2a is Ci-C6-alkyl, halogen or Ci-C6-haloalkyl; preferably methyl, ethyl, fluorine, chlorine or trifluoromethyl; more preferably methyl, ethyl or fluorine.
- R 1 and R 2 for each individual compound corresponds in each case to the definition in one line B-1 to B-473 of Table B below, namely compounds I.C.B-1 to I.C.B-473 and I.D.B-1 to I.D. B-473, are also useful to control phytopathogenic harmful fungi.
- B-236 R 1 and R 2 together with the B-265 CHs 2,2-difluorcyclopropyl nitrogen to which they are bound B-266 CHs 2,2-difluor-1-methyl- cyclopropyl
- the compounds of the formula I or compositions comprising said compounds according to the invention are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the following classes or are closely related to any of them: Ascomycota
- Basdiomycota Basidiomycetes
- Basidiomycota Basidiomycetes
- Chytridiomycota Chytridiomycetes
- Chytridiomycetes Chytridiomycetes
- Deuteromycetes Syn. Fungi imperfect!), for example, but not limited to the genus Ascochyta, Diplodia, Erysiphe, Fusarium, Phomopsis, and Pyrenophora
- Peronosporomycetes Syn. Oomycetes
- Plasmodiophoromycetes for example but not limited to the genus
- Plasmodiophora Zygomycetes, for example, but not limited to the genus Rhizopus.
- Some of the compounds of the formula I and the compositions according to the invention are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.
- the compounds I and the compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g.
- compounds I and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
- field crops such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
- plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g.
- potatoes which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil.
- These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
- treatment of plant propagation materials with compounds I and compositions thereof, respectively is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.
- cultiva plants is to be understood as including plants which have been modified by mutagenesis or genetic engineering in order to provide a new trait to a plant or to modify an already present trait.
- the compounds I and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases:
- Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape (A brassicola or brassicae), sugar beets (A tenuis), fruits, rice, soybeans, potatoes (e. g. A solan/ or A alternata), tomatoes (e. g. A so/anior A. alternata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g.
- Botrytis cinerea (teleomorph: Botryotinia fuckeliana. grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms;
- Botrytis cinerea teleomorph: Botryotinia fuckeliana. grey mold
- fruits and berries e. g. strawberries
- vegetables e. g. lettuce, carrots, celery and cabbages
- rape flowers, vines, forestry plants and wheat
- Bremia lactucae downy mildew
- Cercospora spp. (Cercospora leaf spots) on corn (e. g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. bet/cola), sugar cane, vegetables, coffee, soybeans (e. g. C. soj/ha or C. kikuchit) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum. leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C carbonum), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miyabeanus, anamorph: H.
- gossypii corn (e. g. C. gram/n/co/a: Anthracnose stalk rot), soft fruits, potatoes (e. g. C.
- Neonectria spp. on fruit trees, vines (e. g. C. liriodendri, teleomorph: Neonectria liriodendri. Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans;
- Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum),
- spp. wilt, root or stem rot
- various plants such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. so/ani( sp. glycines now syn. F. virguliforme ) and F. tucumaniae and F.
- Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P. parasitica), onions (e. g. P. destructor), tobacco ⁇ P. tabacina) and soybeans (e. g. P. manshurica);
- Monilinia spp. e. g.
- Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P.
- Plasmodiophora brassicae club root
- Plasmopara spp. e. g. P. viticola (grapevine downy mildew) on vines and P. ha/sted/ion sunflowers
- Podosphaera spp. powdery mildew
- Puccinia spp. rusts on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. horde/ (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P. kuehnii (orange rust) on sugar cane and P.
- Pyrenophora anamorph: Drechslera
- tritici-repentis tan spot
- P. teres net blotch
- Pyricularia spp. e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals
- Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum);
- Ramularia spp. e. g. R.
- collo-cygni Roso-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. bet/cola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solan/ (root and stem rot) on soybeans, R. so/ani (sheath blight) on rice or R.
- Rhizoctonia spring blight on wheat or barley
- Rhizopus sto/on/fer b ⁇ ack mold, soft rot
- Rhynchosporium secalis scald
- Sarocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e. g. S. sclerotiorum) and soybeans (e. g. S. ro/fs/ior S. sclerotiorum); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (Septoria blotch) on wheat and S. (syn.
- Stagonospora nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tucker! on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S.
- Leptosphaeria [syn. Phaeosphaer/a] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (p ⁇ um pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp.
- the compounds I and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases: Puccinia spp. (rusts) on various plants, for example, but not limited to P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye and Phakopsoraceae spp. on various plants, in particular Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans.
- Puccinia spp. rusts
- rusts rusts
- P. triticina brown or leaf rust
- P. striiformis stripe or yellow rust
- P. hordei dwarf rust
- the compounds I and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials.
- the term "protection of materials” is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.
- Ascomycetes such as Ophiostoma pp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp., Chaetomium spp., Humicola pp., Petriella spp., Trichurus spp:, Basidiomycetes such as
- Coniophora spp. Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichoderma spp., Alternaria spp., Paecilomyces spp. and Zygomycetes such as Mucorspp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.
- the method of treatment according to the invention can also be used in the field of protecting stored products or harvest against attack of fungi and microorganisms.
- the term "stored products” is understood to denote natural substances of plant or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired.
- Stored products of crop plant origin such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment.
- Also falling under the definition of stored products is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood.
- Stored products of animal origin are hides, leather, furs, hairs and the like. The combinations according the present invention can prevent
- stored products is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.
- the compounds of formula I can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention.
- the compounds I are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances.
- the application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.
- Plant propagation materials may be treated with compounds I as such or a composition comprising at least one compound I prophylactically either at or before planting or transplanting.
- the invention also relates to agrochemical compositions comprising an auxiliary and at least one compound I according to the invention.
- An agrochemical composition comprises a fungicidally effective amount of a compound I.
- effective amount denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used.
- compositions e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
- composition types are suspensions (e. g. SC, OD, FS), emulsifiable concentrates (e. g. EC), emulsions (e. g. EW, EO, ES, ME), capsules (e. g. CS, ZC), pastes, pastilles, wettable powders or dusts (e. g. WP, SP, WS, DP, DS), pressings (e. g.
- compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical
- compositions are prepared in a known manner, such as described by Mollet and
- Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
- Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e. g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin,
- tetrahydronaphthalene alkylated naphthalenes
- alcohols e. g. ethanol, propanol, butanol, benzyl alcohol, cyclohexanol
- glycols DMSO; ketones, e. g. cyclohexanone; esters, e. g.
- lactates carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates;
- Suitable solid carriers or fillers are mineral earths, e. g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e. g. cellulose, starch; fertilizers, e. g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e. g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
- mineral earths e. g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide
- polysaccharides e. g. cellulose, star
- Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1 : Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
- Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof.
- sulfonates are alkylaryl sulfonates, diphenyl sulfonates, alpha-olefin sulfonates, lignin sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyl naphthalenes, sulfosuccinates or sulfosuccinamates.
- Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters.
- Examples of phosphates are phosphate esters.
- Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
- Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof.
- alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents.
- Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.
- N-substituted fatty acid amides are fatty acid glucamides or fatty acid
- esters are fatty acid esters, glycerol esters or monoglycerides.
- sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides.
- polymeric surfactants are home- or copolymers of vinyl pyrrolidone, vinyl alcohols, or vinyl acetate.
- Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines.
- Suitable amphoteric surfactants are alkylbetains and imidazolines.
- Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide.
- Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinyl amines or polyethylene amines.
- Suitable adjuvants are compounds, which have a negligible or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target.
- examples are surfactants, mineral or vegetable oils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
- Suitable thickeners are polysaccharides (e. g. xanthan gum, carboxymethyl cellulose), inorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
- Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.
- Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
- Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
- Suitable colorants are pigments of low water solubility and water- soluble dyes.
- examples are inorganic colorants (e. g. iron oxide, titan oxide, iron
- Suitable tackifiers or binders are polyvinyl pyrrolidones, polyvinyl acetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers. Examples for composition types and their preparation are:
- a compound I and 5-15 wt% wetting agent e. g. alcohol alkoxylates
- a water-soluble solvent e. g. alcohols
- a compound I and 1-10 wt% dispersant e. g. polyvinyl pyrrolidone
- organic solvent e. g. cyclohexanone
- emulsifiers e. g. calcium dodecylbenzenesulfonate and castor oil ethoxylate
- water-insoluble organic solvent e. g. aromatic hydrocarbon
- Emulsions (EW, EO, ES)
- emulsifiers e. g. calcium dodecylbenzenesulfonate and castor oil ethoxylate
- 20-40 wt% water-insoluble organic solvent e. g. aromatic hydrocarbon
- This mixture is introduced into water ad 100 wt% by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.
- a compound I In an agitated ball mill, 20-60 wt% of a compound I are comminuted with addition of 2-10 wt% dispersants and wetting agents (e. g. sodium lignosulfonate and alcohol ethoxylate), 0.1 -2 wt% thickener (e. g. xanthan gum) and water ad 100 wt% to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e. g. polyvinyl alcohol) is added.
- dispersants and wetting agents e. g. sodium lignosulfonate and alcohol ethoxylate
- 0.1 -2 wt% thickener e. g. xanthan gum
- a compound I 50-80 wt% of a compound I are ground finely with addition of dispersants and wetting agents (e. g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
- dispersants and wetting agents e. g. sodium lignosulfonate and alcohol ethoxylate
- wt% of a compound I are ground in a rotor-stator mill with addition of 1-5 wt% dispersants (e. g. sodium lignosulfonate), 1 -3 wt% wetting agents (e. g. alcohol ethoxylate) and solid carrier (e. g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance.
- dispersants e. g. sodium lignosulfonate
- wetting agents e. g. alcohol ethoxylate
- solid carrier e. g. silica gel
- wt% of a compound I are added to 5-30 wt% organic solvent blend (e. g. fatty acid dimethyl amide and cyclohexanone), 10-25 wt% surfactant blend (e. g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
- organic solvent blend e. g. fatty acid dimethyl amide and cyclohexanone
- surfactant blend e. g. alcohol ethoxylate and arylphenol ethoxylate
- An oil phase comprising 5-50 wt% of a compound I, 0-40 wt% water insoluble organic solvent (e. g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e. g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e. g. polyvinyl alcohol). Radical polymerization results in the formation of poly(meth)acrylate microcapsules.
- an oil phase comprising 5-50 wt% of a compound I according to the invention, 0-40 wt% water insoluble organic solvent (e. g. aromatic hydrocarbon), and an isocyanate monomer (e. g. diphenylmethene-4,4'-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e. g. polyvinyl alcohol).
- a polyamine e. g.
- hexamethylenediamine results in the formation of polyurea microcapsules.
- the monomers amount to 1 -10 wt%.
- the wt% relate to the total CS composition.
- Dustable powders (DP, DS)
- 1-10 wt% of a compound I are ground finely and mixed intimately with solid carrier (e. g. finely divided kaolin) ad 100 wt%.
- solid carrier e. g. finely divided kaolin
- a compound I 0.5-30 wt% of a compound I is ground finely and associated with solid carrier (e. g. silicate) ad 100 wt%.
- solid carrier e. g. silicate
- Granulation is achieved by extrusion, spray-drying or fluidized bed.
- organic solvent e. g. aromatic hydrocarbon
- compositions types i) to xiii) may optionally comprise further auxiliaries, such as 0.1-1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1 -1 wt% anti-foaming agents, and 0.1 -1 wt% colorants.
- auxiliaries such as 0.1-1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1 -1 wt% anti-foaming agents, and 0.1 -1 wt% colorants.
- the agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, more preferably between 1 and 70%, and in particular between 10 and 60%, by weight of active substance.
- the active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
- LS solutions for seed treatment
- SE Suspoemulsions
- FS flowable concentrates
- DS powders for dry treatment
- WS water-dispersible powders for slurry treatment
- compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations.
- Methods for applying compound I and compositions thereof, respectively, onto plant propagation material, especially seeds include dressing, coating, pelleting, dusting, and soaking as well as in-furrow application methods.
- compound I or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
- the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha.
- amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required.
- the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
- oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix).
- pesticides e. g. herbicides, insecticides, fungicides, growth regulators, safeners, biopesticides
- These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
- a pesticide is generally a chemical or biological agent (such as pestidal active ingredient, compound, composition, virus, bacterium, antimicrobial or disinfectant) that through its effect deters, incapacitates, kills or otherwise discourages pests.
- Target pests can include insects, plant pathogens, weeds, mollusks, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, spread disease or are vectors for disease.
- pesticide includes also plant growth regulators that alter the expected growth, flowering, or reproduction rate of plants; defoliants that cause leaves or other foliage to drop from a plant, usually to facilitate harvest; desiccants that promote drying of living tissues, such as unwanted plant tops; plant activators that activate plant physiology for defense of against certain pests; safeners that reduce unwanted herbicidal action of pesticides on crop plants; and plant growth promoters that affect plant physiology e.g. to increase plant growth, biomass, yield or any other quality parameter of the harvestable goods of a crop plant.
- composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
- a predosage device usually from a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
- agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
- 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
- composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.
- a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.
- one embodiment of the invention is a kit for preparing a usable pesticidal composition, the kit comprising a) a composition comprising component 1 ) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component 3) as defined herein.
- Compounds of the formula I can be prepared by reacting acid chlorides of type II with the respective amine or its hydrochloride salt in an organic solvent, preferably an a non-polar hydrocarbon at temperatures between -20°C and 40°C, preferably at 0°C or at room
- hydrochloride salt it may be appropriate to add an organic base, preferably an amine to liberate the free amine in situ.
- Compounds II may be accessed by reacting carboxylic acids of formula III with an appropriate chlorinating agent, preferably thionyl chloride, either neat or in an organic solvent, preferably a non-polar hydrocarbon or a halocarbon. The reaction is best performed at elevated temperatures.
- an appropriate chlorinating agent preferably thionyl chloride, either neat or in an organic solvent, preferably a non-polar hydrocarbon or a halocarbon.
- Compounds III can be prepared by reacting amidines of formula IV with trifluoroacetic anhydride in an organic solvent, e.g. dichloromethane, or THF at temperatures between 0°C and 100°C, preferably at about 25°C, as previously described in WO 2013/008162. (CF 3 CO) 2 0, solvent
- organic solvent e.g. dichloromethane, or THF
- the compounds of formula I can be prepared according to the methods outlined below.
- Table I Compounds Ex-1 to Ex-9 of formula I, wherein n is 0, wherein the cyclopropyl ring of R 2 is substituted with one radical R 2a in position 1 or 2 as indicated by the prefix; and wherein the meaning of R 1 and R 2a are as defined in each line of Table I.
- HPLC High Performance Liquid Chromatography; HPLC-column Kinetex XB C18 1 ,7 ⁇ (50 x 2,1 mm); eluent: acetonitrile / water+0.1 % trifluoroacetic acid (gradient from 5:95 to 100 : 0 in 1.5 min at 60°C, flow gradient from 0.8 to 1 .0 ml/min in 1.5 min).
- MS Quadrupol Electrospray lonisation, 80 V (positive mode).
- Rt retention time in minutes.
- the spray solutions were prepared in several steps: The stock solution were prepared: a mixture of acetone and/or dimethylsulfoxide and the wetting agent/emulsifier Wettol, which is based on ethoxylated alkylphenoles, in a relation (volume) solvent-emulsifier of 99 to 1 was added to 25 mg of the compound to give a total of 5 ml. Water was then added to total volume of 100 ml. This stock solution was diluted with the described solvent-emulsifier-water mixture to the given concentration.
- Wettol which is based on ethoxylated alkylphenoles
- Leaves of pot-grown soy bean seedlings were inoculated with spores of Phakopsora pachyrhizi. To ensure the success of the artificial inoculation, the plants were transferred to a humid chamber with a relative humidity of about 95 % and 20 to 24 °C for 24 hours. The plants were cultivated for 3 days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. Then the plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. Then the trial plants were cultivated for 14 days in a greenhouse chamber at
- Leaves of pot-grown soy bean seedlings were inoculated with spores of Phakopsora pachyrhizi. To ensure the success of the artificial inoculation, the plants were transferred to a humid chamber with a relative humidity of about 95 % and 20 to 24 °C for 24 hours. The next day the plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. Then the trial plants were cultivated for 14 days in a greenhouse chamber at 23-27°C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
- the trial plants were cultivated for fourteen days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
- the plants were inoculated with spores of Phakopsora pachyrhizi. To ensure the success the artificial inoculation, the plants were transferred to a humid chamber with a relative humidity of about 95 % and 20 to 24 °C for
- the trial plants were cultivated for fourteen days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
- Puccinia recondita To ensure the success the artificial inoculation, the plants were transferred to a humid chamber without light and a relative humidity of 95 to 99 % and 20 to 24 °C for 24 hours. The next day the plants were cultivated for 3 days in a greenhouse chamber at 20 to 24 °C and a relative humidity between 65 and 70 %. Then the plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. Then the trial plants were cultivated for 8 days in a greenhouse chamber at 20 to 24 °C and a relative humidity between 65 and 70 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
- the first two developed leaves of pot-grown wheat seedling were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. Seven days later the plants were inoculated with spores of Puccinia recondita. To ensure the success the artificial inoculation, the plants were transferred to a humid chamber without light and a relative humidity of 95 to 99 % and 20 to 24 °C for 24 hours. Then the trial plants were cultivated for 6 days in a greenhouse chamber at 20 to 24 °C and a relative humidity between 65 and 70 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112018074559A BR112018074559A2 (en) | 2016-06-09 | 2017-05-31 | compounds, agrochemical composition, use of compounds and method to combat phytopathogenic harmful fungi |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16173720.0 | 2016-06-09 | ||
EP16173720 | 2016-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017211650A1 true WO2017211650A1 (en) | 2017-12-14 |
Family
ID=56178254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/063210 WO2017211650A1 (en) | 2016-06-09 | 2017-05-31 | Substituted oxadiazoles for combating phytopathogenic fungi |
Country Status (3)
Country | Link |
---|---|
AR (1) | AR108697A1 (en) |
BR (1) | BR112018074559A2 (en) |
WO (1) | WO2017211650A1 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019115511A1 (en) | 2017-12-14 | 2019-06-20 | Basf Se | Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles |
WO2019150219A2 (en) | 2018-01-30 | 2019-08-08 | Pi Industries Ltd. | Novel oxadiazoles |
WO2019171234A1 (en) | 2018-03-09 | 2019-09-12 | Pi Industries Ltd. | Heterocyclic compounds as fungicides |
US10492494B2 (en) | 2015-11-13 | 2019-12-03 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10499644B2 (en) | 2015-11-19 | 2019-12-10 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10501425B2 (en) | 2015-10-02 | 2019-12-10 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US10555526B2 (en) | 2015-11-05 | 2020-02-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
WO2020070610A1 (en) | 2018-10-01 | 2020-04-09 | Pi Industries Ltd. | Novel oxadiazoles |
WO2020070611A1 (en) | 2018-10-01 | 2020-04-09 | Pi Industries Ltd | Oxadiazoles as fungicides |
US10640497B2 (en) | 2015-12-02 | 2020-05-05 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US10674727B2 (en) | 2015-11-19 | 2020-06-09 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10687532B2 (en) | 2015-11-13 | 2020-06-23 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10785980B2 (en) | 2016-06-09 | 2020-09-29 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10798941B2 (en) | 2016-01-08 | 2020-10-13 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2020208510A1 (en) | 2019-04-08 | 2020-10-15 | Pi Industries Limited | Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi |
WO2020208509A1 (en) | 2019-04-08 | 2020-10-15 | Pi Industries Limited | Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi |
WO2020208511A1 (en) | 2019-04-08 | 2020-10-15 | Pi Industries Limited | Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi |
US10899724B2 (en) | 2015-10-02 | 2021-01-26 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US10986839B2 (en) | 2016-04-11 | 2021-04-27 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US11083196B2 (en) | 2016-03-24 | 2021-08-10 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US11147275B2 (en) | 2017-11-23 | 2021-10-19 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2021251274A1 (en) | 2020-06-08 | 2021-12-16 | 日本曹達株式会社 | Method for reducing or preventing effect of non-biological stress on plant |
US11206831B2 (en) | 2015-12-03 | 2021-12-28 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US11425910B2 (en) | 2017-02-21 | 2022-08-30 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US11974572B2 (en) | 2017-03-31 | 2024-05-07 | Sygenta Participations Ag | Fungicidal compositions |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0276432A2 (en) | 1986-12-12 | 1988-08-03 | Ciba-Geigy Ag | Pesticides |
WO1997030047A1 (en) | 1996-02-17 | 1997-08-21 | Agrevo Uk Limited | Fungicidal 1,2,4-oxadiazoles and analogues |
WO2006013104A1 (en) | 2004-08-05 | 2006-02-09 | Santhera Pharmaceuticals (Schweiz) Ag | Heterocyclic compounds useful as dpp- iv inhibitors |
EP1932843A1 (en) | 2006-12-14 | 2008-06-18 | sanofi-aventis | Sulfonyl-phenyl-2H-(1,2,4) oxadiazole-5-one derivatives, processes for their preparation and their use as pharmaceuticals |
WO2009074950A2 (en) | 2007-12-10 | 2009-06-18 | Actelion Pharmaceuticals Ltd | Thiophene derivatives as agonists of s1p1/edg1 |
WO2013008162A1 (en) | 2011-07-08 | 2013-01-17 | Novartis Ag | Novel trifluoromethyl-oxadiazole derivatives and their use in the treatment of disease |
WO2015185485A1 (en) | 2014-06-06 | 2015-12-10 | Basf Se | Use of substituted oxadiazoles for combating phytopathogenic fungi |
WO2016179550A1 (en) * | 2015-05-07 | 2016-11-10 | Chdi Foundation, Inc. | Histone deacetylase inhibitors and compositions and methods of use thereof |
WO2017055473A1 (en) | 2015-10-02 | 2017-04-06 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2017055469A1 (en) | 2015-10-02 | 2017-04-06 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2017076935A1 (en) * | 2015-11-04 | 2017-05-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
-
2017
- 2017-05-31 WO PCT/EP2017/063210 patent/WO2017211650A1/en active Application Filing
- 2017-05-31 BR BR112018074559A patent/BR112018074559A2/en not_active Application Discontinuation
- 2017-06-08 AR ARP170101577A patent/AR108697A1/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0276432A2 (en) | 1986-12-12 | 1988-08-03 | Ciba-Geigy Ag | Pesticides |
WO1997030047A1 (en) | 1996-02-17 | 1997-08-21 | Agrevo Uk Limited | Fungicidal 1,2,4-oxadiazoles and analogues |
WO2006013104A1 (en) | 2004-08-05 | 2006-02-09 | Santhera Pharmaceuticals (Schweiz) Ag | Heterocyclic compounds useful as dpp- iv inhibitors |
EP1932843A1 (en) | 2006-12-14 | 2008-06-18 | sanofi-aventis | Sulfonyl-phenyl-2H-(1,2,4) oxadiazole-5-one derivatives, processes for their preparation and their use as pharmaceuticals |
WO2009074950A2 (en) | 2007-12-10 | 2009-06-18 | Actelion Pharmaceuticals Ltd | Thiophene derivatives as agonists of s1p1/edg1 |
WO2013008162A1 (en) | 2011-07-08 | 2013-01-17 | Novartis Ag | Novel trifluoromethyl-oxadiazole derivatives and their use in the treatment of disease |
WO2015185485A1 (en) | 2014-06-06 | 2015-12-10 | Basf Se | Use of substituted oxadiazoles for combating phytopathogenic fungi |
WO2016179550A1 (en) * | 2015-05-07 | 2016-11-10 | Chdi Foundation, Inc. | Histone deacetylase inhibitors and compositions and methods of use thereof |
WO2017055473A1 (en) | 2015-10-02 | 2017-04-06 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2017055469A1 (en) | 2015-10-02 | 2017-04-06 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
WO2017076935A1 (en) * | 2015-11-04 | 2017-05-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
Non-Patent Citations (7)
Title |
---|
"Technical Monograph No. 2", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system" |
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 127, no. 38, 2005, pages 13150 |
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, no. 20, 2012, pages 8298 |
KNOWLES: "Agrow Reports DS243", 2005, T&F INFORMA, article "New developments in crop protection product formulation" |
KNOWLES: "Agrow Reports DS256", 2006, T&F INFORMA UK, article "Adjuvants and additives" |
MCCUTCHEON'S: "Emulsifiers & Detergents, McCutcheon's Directories", vol. 1, 2008 |
MOLLET; GRUBEMANN: "Formulation technology", 2001, WILEY VCH |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11180462B2 (en) | 2015-10-02 | 2021-11-23 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US11066375B2 (en) | 2015-10-02 | 2021-07-20 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US10899724B2 (en) | 2015-10-02 | 2021-01-26 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US10501425B2 (en) | 2015-10-02 | 2019-12-10 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US10555526B2 (en) | 2015-11-05 | 2020-02-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10687532B2 (en) | 2015-11-13 | 2020-06-23 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10492494B2 (en) | 2015-11-13 | 2019-12-03 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10674727B2 (en) | 2015-11-19 | 2020-06-09 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10499644B2 (en) | 2015-11-19 | 2019-12-10 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10640497B2 (en) | 2015-12-02 | 2020-05-05 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US11206831B2 (en) | 2015-12-03 | 2021-12-28 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US11259524B2 (en) | 2016-01-08 | 2022-03-01 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US10798941B2 (en) | 2016-01-08 | 2020-10-13 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US11083196B2 (en) | 2016-03-24 | 2021-08-10 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
US10986839B2 (en) | 2016-04-11 | 2021-04-27 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US10785980B2 (en) | 2016-06-09 | 2020-09-29 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US11425910B2 (en) | 2017-02-21 | 2022-08-30 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
US11974572B2 (en) | 2017-03-31 | 2024-05-07 | Sygenta Participations Ag | Fungicidal compositions |
US11147275B2 (en) | 2017-11-23 | 2021-10-19 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
WO2019115511A1 (en) | 2017-12-14 | 2019-06-20 | Basf Se | Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles |
US11286242B2 (en) | 2018-01-30 | 2022-03-29 | Pi Industries Ltd. | Oxadiazoles for use in controlling phytopathogenic fungi |
WO2019150219A2 (en) | 2018-01-30 | 2019-08-08 | Pi Industries Ltd. | Novel oxadiazoles |
WO2019171234A1 (en) | 2018-03-09 | 2019-09-12 | Pi Industries Ltd. | Heterocyclic compounds as fungicides |
WO2020070610A1 (en) | 2018-10-01 | 2020-04-09 | Pi Industries Ltd. | Novel oxadiazoles |
WO2020070611A1 (en) | 2018-10-01 | 2020-04-09 | Pi Industries Ltd | Oxadiazoles as fungicides |
WO2020208511A1 (en) | 2019-04-08 | 2020-10-15 | Pi Industries Limited | Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi |
WO2020208509A1 (en) | 2019-04-08 | 2020-10-15 | Pi Industries Limited | Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi |
WO2020208510A1 (en) | 2019-04-08 | 2020-10-15 | Pi Industries Limited | Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi |
WO2021251274A1 (en) | 2020-06-08 | 2021-12-16 | 日本曹達株式会社 | Method for reducing or preventing effect of non-biological stress on plant |
Also Published As
Publication number | Publication date |
---|---|
BR112018074559A2 (en) | 2019-03-12 |
AR108697A1 (en) | 2018-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017211650A1 (en) | Substituted oxadiazoles for combating phytopathogenic fungi | |
WO2017211652A1 (en) | Substituted oxadiazoles for combating phytopathogenic fungi | |
EP3468958B1 (en) | Substituted oxadiazoles for combating phytopathogenic fungi | |
CA2950084C (en) | Use of substituted oxadiazoles for combating phytopathogenic fungi | |
KR20180083419A (en) | Substituted oxadiazoles for combating phytopathogenic fungi | |
BR112018069897B1 (en) | COMPOUND OF FORMULA I, AGROCHEMICAL COMPOSITION, PROCESS FOR PREPARING COMPOUNDS OF FORMULA I, NON-THERAPEUTIC USE OF COMPOUNDS AND METHOD FOR COMBATING HARMFUL PHYTOPATHOGENIC FUNGI | |
KR20180080286A (en) | Substituted oxadiazole for combating phytopathogenic fungi | |
KR20180083417A (en) | Substituted oxadiazoles for combating phytopathogenic fungi | |
EP3370525A1 (en) | Substituted oxadiazoles for combating phytopathogenic fungi | |
WO2018108977A1 (en) | Active compound combinations | |
BR112018067426B1 (en) | COMPOUNDS OF FORMULA I, MIXTURE, AGROCHEMICAL COMPOSITION, USE OF COMPOUNDS AND METHOD TO FIGHT HARMFUL PHYTOPATOGENIC FUNGI | |
EP3953340B1 (en) | Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi | |
KR20170013995A (en) | Substituted [1,2,4]triazole compounds | |
CA2950802A1 (en) | Substituted [1,2,4]triazole and imidazole compounds as fungicides | |
BR112019011293A2 (en) | compounds of formula I, intermediates, agrochemical composition, use and method for combating phytopathogenic harmful fungi | |
EP3953341B1 (en) | Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi | |
CA2948208A1 (en) | Substituted [1,2,4]triazole and imidazole compounds as fungicides | |
WO2018134127A1 (en) | Fungicidal pyridine compounds | |
WO2021090282A1 (en) | Novel oxadiazole compounds containing fused heterocyclyl rings for controlling or preventing phytopathogenic fungi | |
CA3112924A1 (en) | Oxadiazoles as fungicides | |
EP4017852A1 (en) | Novel oxadiazole compounds containing 5- membered heteroaromatic ring for controlling or preventing phytopathogenic fungi | |
WO2022234470A1 (en) | Novel fused heterocyclic compounds for combating phytopathogenic fungi | |
BR112020008601A2 (en) | compounds, agrochemical composition, use of compounds and method to combat harmful phytopathogenic fungi | |
BR112019026423A2 (en) | compounds, intermediate compounds, agrochemical composition, use of compounds of formula i and method to combat harmful phytopathogenic fungi | |
BR112019019413A2 (en) | compounds, agrochemical composition, use of compounds and method to combat harmful phytopathogenic fungi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17727860 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018074559 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112018074559 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181128 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17727860 Country of ref document: EP Kind code of ref document: A1 |