WO2017204087A1 - 位置検知システムおよび位置検知方法 - Google Patents
位置検知システムおよび位置検知方法 Download PDFInfo
- Publication number
- WO2017204087A1 WO2017204087A1 PCT/JP2017/018731 JP2017018731W WO2017204087A1 WO 2017204087 A1 WO2017204087 A1 WO 2017204087A1 JP 2017018731 W JP2017018731 W JP 2017018731W WO 2017204087 A1 WO2017204087 A1 WO 2017204087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- station
- radio signal
- reference clock
- fixed
- mobile station
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/06—Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/021—Calibration, monitoring or correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0221—Receivers
- G01S5/02213—Receivers arranged in a network for determining the position of a transmitter
- G01S5/02216—Timing or synchronisation of the receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0035—Synchronisation arrangements detecting errors in frequency or phase
Definitions
- the present invention relates to a position detection system and a position detection method for detecting the position of a mobile station.
- the mobile stations In general, it has multiple fixed stations (base stations) and mobile stations, receives pulse signals transmitted by the mobile stations at multiple fixed stations, and calculates the positional relationship between the fixed stations and mobile stations from the difference in reception time Position detection systems are known.
- a position specifying device including a reference station, a relay station, and a mobile terminal (for example, see Patent Document 1).
- the position detection system using a pulse signal measures the reception time of the pulse signal, it is necessary to shorten the pulse width and synchronize the time of each fixed station with high accuracy in order to increase the measurement resolution.
- the pulse width is shortened, the occupied bandwidth increases, and there is a problem that complicated processing is required to synchronize each fixed station with high accuracy.
- the position specifying device described in Patent Document 1 detects the phase of the distance measurement signal and the phase of the direction measurement signal transmitted from the reference station and the relay station, and along the long side in the rectangular service area.
- the position of the mobile terminal that moves is specified.
- the position specifying device needs to control the antenna directivity between the reference station and the relay station, and there is a problem that the processing becomes complicated.
- the range in which the position of the mobile terminal can be specified is limited to a rectangular shape, there is a problem that places and conditions where the mobile terminal can be used are limited.
- the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a position detection system and a position detection method capable of simplifying the system asynchronously.
- the present invention provides a mobile station having a mobile station reference clock circuit, a radio signal transmission circuit, and a transmission antenna, a reference station reference clock circuit, a radio signal reception circuit, a reception antenna, and a radio signal.
- a position detection system comprising a reference station having a transmission circuit and a transmission antenna, and at least three or more fixed stations having a reference clock circuit for a fixed station, a radio signal reception circuit, and a reception antenna.
- the fixed station reference clock circuit of the fixed station operates asynchronously and independently, and the mobile station intermittently operates with a first radio signal and a trigger radio based on the reference clock of the mobile station reference clock circuit.
- the reference station is arranged at a predetermined position, and when the trigger radio signal transmitted by the mobile station is received, the reference station is The second radio signal based on the reference clock of the quasi-clock circuit is transmitted a plurality of times, and each of the fixed stations receives the first radio signal and the carrier included in the first radio signal and each of the fixed stations A first phase difference with respect to each of the reference clocks is received, a plurality of the second radio signals are received, a carrier included in the second radio signal, and each of the reference clocks of each of the fixed stations, Each of the plurality of second phase differences is extracted, time variation of the second phase difference is obtained based on the plurality of the extracted second phase differences, and the first radio is based on the time variation.
- Phase difference information, the reference station and each fixed station Phase difference information between the fixed station and the mobile station is obtained by canceling the phase offset of the reference clock of each fixed station and obtaining the distance information between the fixed station and the mobile station. It is characterized by calculating.
- the position of the mobile station is calculated using the phase difference information between the mobile station and each fixed station and the phase difference information between the reference station and each fixed station.
- the phase shift (difference) of the radio signal reaching each fixed station is used, a distance resolution shorter than the wavelength of the radio signal can be realized.
- the position resolution of a mobile station is detected with an increased distance resolution, it is possible to use a narrowband radio signal, so that the occupied bandwidth of the radio signal can be reduced compared to the case where a pulse signal is used. it can.
- phase offset of each reference clock of the mobile station, the reference station, and each fixed station is set. Canceled. This eliminates the need to synchronize with each fixed station, mobile station, and reference station, thereby simplifying system construction.
- the second radio signal at the timing when the first radio signal is received by obtaining the time variation of the second phase difference based on the plurality of second phase differences between the reference station and each fixed station.
- the third phase difference between the carrier included in the base station and each reference clock of each fixed station is calculated.
- the mobile station uses the first phase difference between the mobile station and each fixed station and the third phase difference between the reference station and each fixed station at the timing when the first radio signal is received.
- the phase offset of the station, reference station, and each fixed station can be canceled.
- the timing for extracting the first phase difference and the timing for calculating the third phase difference can be matched, the accuracy of phase correction can be improved and the accuracy of position detection can be improved.
- the mobile station transmits a trigger radio signal
- the reference station transmits a plurality of second radio signals when receiving the trigger radio signal transmitted by the mobile station.
- the fixed station reference clock circuits of the fixed station are configured to generate reference clocks having the same frequency.
- each fixed station reference clock circuit can be configured using the same circuit components, the cost can be suppressed.
- At least one fixed station among the three or more fixed stations has a function of the reference station and transmits a plurality of the second radio signals.
- the mobile station reference clock circuit of the mobile station has a function of generating a reference clock having two or more frequencies, and the mobile station has the two or more types of carrier frequencies.
- the reference station reference clock circuit of the reference station transmits a first radio signal, and has a function of generating a reference clock having two or more frequencies.
- the reference station has a plurality of the carrier frequencies of two or more types.
- the second radio signal is transmitted.
- the difference between the two phase differences is used as 2 It is possible to determine how many rounds the two phase differences have made. As a result, the periodicity of the phase difference becomes longer, the uncertainty around the phase is eliminated, the absolute phase can be obtained, and the position of the mobile station can be calculated with high accuracy.
- the present invention relates to a mobile station having a reference clock circuit for a mobile station, a radio signal transmission circuit, and a transmission antenna, and a reference station having a reference clock circuit for the reference station, a radio signal reception circuit, a reception antenna, a radio signal transmission circuit, and a transmission antenna. And a position detection method using a position detection system comprising a fixed station reference clock circuit, a radio signal receiving circuit, and at least three fixed stations having a receiving antenna.
- the fixed station reference clock circuit of the station operates asynchronously and independently, and the mobile station intermittently generates a first radio signal and a trigger radio signal based on a reference clock of the mobile station reference clock circuit.
- the reference station is arranged at a predetermined position, and the reference station reference clock is received when the trigger radio signal transmitted by the mobile station is received.
- a second radio signal based on a reference clock of the circuit is transmitted a plurality of times, and each of the fixed stations receives the first radio signal, and the carrier included in the first radio signal and the fixed station
- a first phase difference from each reference clock is extracted, a plurality of the second radio signals are received, and a plurality of carriers included in the second radio signal and each reference clock of each fixed station
- Each of the second phase differences is extracted, time variation of the second phase difference is obtained based on the plurality of the extracted second phase differences, and the first radio signal is obtained based on the time variation.
- the position of the mobile station is calculated using the phase difference information between the mobile station and each fixed station and the phase difference information between the reference station and each fixed station.
- the phase shift (difference) of the radio signal reaching each fixed station is used, a distance resolution shorter than the wavelength of the radio signal can be realized.
- the position resolution of a mobile station is detected with an increased distance resolution, it is possible to use a narrowband radio signal, so that the occupied bandwidth of the radio signal can be reduced compared to the case where a pulse signal is used. it can.
- phase offset of each reference clock of the mobile station, the reference station, and each fixed station is set. Canceled. This eliminates the need to synchronize with each fixed station, mobile station, and reference station, thereby simplifying system construction.
- the fixed station reference clock circuits of the fixed station are configured to generate reference clocks having the same frequency.
- each fixed station reference clock circuit can be configured using the same circuit components, the cost can be suppressed.
- At least one fixed station out of the three or more fixed stations has a function of the reference station and transmits a plurality of the second radio signals.
- the mobile station reference clock circuit of the mobile station has a function of generating a reference clock having two or more frequencies, and the mobile station has the two or more types of carrier frequencies.
- the reference station reference clock circuit of the reference station transmits a first radio signal, and has a function of generating a reference clock having two or more frequencies.
- the reference station has a plurality of the carrier frequencies of two or more types.
- the second radio signal is transmitted.
- the difference between the two phase differences is used as 2 It is possible to determine how many rounds the two phase differences have made. As a result, the periodicity of the phase difference becomes longer, the uncertainty around the phase is eliminated, the absolute phase can be obtained, and the position of the mobile station can be calculated with high accuracy.
- the position detection system 1 includes a mobile station 2, a reference station 3, a first fixed station 4, a second fixed station 5, a third fixed station 6, a server 7, and the like.
- the mobile station 2 and the first fixed station 4 are separated by a distance r1
- the mobile station 2 and the second fixed station 5 are separated by a distance r2
- the mobile station 2 and the third fixed station 6 are separated from each other. Is separated by a distance r3.
- the mobile station 2 is a movable wireless terminal that becomes a detection target, for example.
- the mobile station 2 includes a mobile station reference clock circuit 2A, a control circuit 2B, a radio signal transmission circuit 2C, a transmission antenna 2D, and the like.
- the mobile station 2 transmits a first radio signal S 1 toward the fixed stations 4 to 6 and transmits a trigger radio signal St toward the reference station 3.
- the mobile station reference clock circuit 2A includes, for example, an oscillator.
- the mobile station reference clock circuit 2A generates a reference clock (CLK) Cm having an angular frequency ⁇ m (carrier frequency) as a reference for the first radio signal S1 and the trigger radio signal St for the transmission antenna 2D.
- CLK reference clock
- the control circuit 2B is configured by, for example, a microcomputer. The control circuit 2B controls the timing at which the mobile station 2 intermittently transmits the first radio signal S1 and the trigger radio signal St.
- the radio signal transmission circuit 2C includes, for example, a modulation circuit and an amplifier.
- the input side of the radio signal transmission circuit 2C is connected to the control circuit 2B, and the output side of the radio signal transmission circuit 2C is connected to the transmission antenna 2D.
- the radio signal transmission circuit 2C generates the first radio signal S1 and the trigger radio signal St based on the reference clock Cm.
- the transmission antenna 2D is composed of various antennas that can radiate the first radio signal S1 and the trigger radio signal St.
- the transmitting antenna 2D transmits the first radio signal S1 toward the fixed stations 4 to 6 and transmits the trigger radio signal St toward the reference station 3.
- the trigger radio signal St may be the same as the first radio signal S1, and may be a radio signal that is different from the first radio signal S1 by various signal modulations, for example.
- the carrier phase Pm included in the first radio signal S1 transmitted by the mobile station 2 is expressed by the following equation 1 assuming that the angular frequency ⁇ m, the time t, and the phase offset ⁇ m.
- the phase offset means a phase shift caused by the mobile station 2, the reference station 3, and the fixed stations 4 to 6 operating asynchronously and independently.
- the reference station 3 is arranged at a predetermined position. As shown in FIG. 5, the reference station 3 has a reference station reference clock circuit 3A, a control circuit 3B, a radio signal transmission circuit 3C, a radio signal reception circuit 3D, a transmission / reception switching circuit 3E, a transmission / reception antenna 3F, and the like. is doing. When the reference station 3 receives the trigger radio signal St transmitted from the mobile station 2, the reference station 3 transmits the second radio signal S2 to the fixed stations 4 to 6 a plurality of times.
- the reference station reference clock circuit 3A includes, for example, an oscillator.
- the reference station reference clock circuit 3A generates a reference clock Cs having an angular frequency ⁇ s (carrier frequency) as a reference for the second radio signal S2 with respect to the transmission / reception antenna 3F.
- the control circuit 3B is configured by, for example, a microcomputer. The control circuit 3B controls an operation in which the reference station 3 receives the trigger radio signal St and intermittently transmits the second radio signal S2.
- the wireless signal transmission circuit 3C is connected to the control circuit 3B and the transmission / reception switching circuit 3E.
- the wireless signal transmission circuit 3C includes a modulation circuit, an amplifier, and the like, for example.
- the radio signal transmission circuit 3C generates a second radio signal S2 based on the reference clock Cs.
- the radio signal receiving circuit 3D is connected to the control circuit 3B and the transmission / reception switching circuit 3E.
- the radio signal receiving circuit 3D includes, for example, an amplifier and a filter.
- the radio signal receiving circuit 3D amplifies the trigger radio signal St received by the transmission / reception antenna 3F, removes noise from the trigger radio signal St, and outputs it to the control circuit 3B.
- the transmission / reception switching circuit 3E connects between the radio signal transmission circuit 3C and the radio signal reception circuit 3D and the transmission / reception antenna 3F.
- the transmission / reception switching circuit 3E switches transmission / reception according to a command from the control circuit 3B, outputs the second radio signal S2 from the radio signal transmission circuit 3C to the transmission / reception antenna 3F, and wirelessly transmits the trigger radio signal St received by the transmission / reception antenna 3F.
- the signal is output to the signal receiving circuit 3D.
- the transmission / reception antenna 3F is composed of various antennas that can receive the trigger radio signal St and emit the second radio signal S2.
- the transmitting / receiving antenna 3F transmits the second radio signal S2 to the fixed stations 4 to 6 a plurality of times.
- the carrier phase Ps included in the second radio signal S2 transmitted by the reference station 3 is expressed by the following equation (2) assuming that the angular frequency ⁇ s, the time t, and the phase offset ⁇ s.
- the first fixed station 4 is arranged at a predetermined location. As shown in FIG. 3, the first fixed station 4 includes a fixed station reference clock circuit 4A, a control circuit 4B, a radio signal receiving circuit 4C, a receiving antenna 4D, and the like. The first fixed station 4 receives the first radio signal S 1 transmitted from the mobile station 2 and a plurality of second radio signals S 2 transmitted from the reference station 3.
- the fixed station reference clock circuit 4A includes, for example, an oscillator.
- the fixed station reference clock circuit 4A generates a reference clock Cf1 having an angular frequency ⁇ f1 at which the first fixed station 4 operates.
- the control circuit 4B is configured by, for example, a microcomputer. The control circuit 4B controls the operation of detecting the phase difference ⁇ mf1 between the reference clock Cf1 and the first radio signal S1 and the phase differences ⁇ sbf1 and ⁇ scf1 between the reference clock Cf1 and the plurality of second radio signals S2.
- phase Pf1 of the reference clock Cf1 of the first fixed station 4 is expressed by the following equation 3 assuming that the angular frequency ⁇ f1, the time t, and the phase offset ⁇ f1.
- the radio signal receiving circuit 4C is connected to the receiving antenna 4D and the control circuit 4B.
- the radio signal receiving circuit 4C includes, for example, mixers 4C1 and 4C2, a phase shifter 4C3, a phase detection circuit (not shown), and the like.
- the radio signal receiving circuit 4C includes a phase difference ⁇ mf1 between the carrier phase Pm included in the first radio signal S1 received by the receiving antenna 4D and the phase Pf1 of the reference clock Cf1, and a plurality of second signals received by the receiving antenna 4D. Phase differences ⁇ sbf1 and ⁇ scf1 between the carrier phase Ps included in the radio signal S2 and the phase Pf1 of the reference clock Cf1 are extracted.
- the radio signal receiving circuit 4C mixes (down-converts) the reference clock Cf1 and the first radio signal S1 (second radio signal S2) as the received signal in the mixer 4C1 to generate an I signal. Is generated. Further, the radio signal receiving circuit 4C advances (delays) the phase of the reference clock Cf1 output from the fixed station reference clock circuit 4A by 90 ° in the phase shifter 4C3, and receives the reference clock Cf1 advanced by 90 °. The first radio signal S1 (second radio signal S2) as a signal is mixed (down-converted) in the mixer 4C2 to generate a Q signal. These I signal and Q signal are output to the phase detection circuit.
- the phase detection circuit calculates a phase difference ⁇ mf1 between the carrier phase Pm of the first radio signal S1 and the phase Pf1 of the reference clock Cf1. In addition, the phase detection circuit calculates phase differences ⁇ sbf1 and ⁇ scf1 between the carrier phase Ps of the plurality of second radio signals S2 and the phase Pf1 of the reference clock Cf1.
- the second fixed station 5 is arranged at a position different from the first fixed station 4 as a predetermined location. Similar to the first fixed station 4, the second fixed station 5 includes a fixed station reference clock circuit 5A, a control circuit 5B, a radio signal receiving circuit 5C, a receiving antenna 5D, and the like.
- the fixed station reference clock circuit 5A includes, for example, an oscillator.
- the fixed station reference clock circuit 5A generates a reference clock Cf2 having an angular frequency ⁇ f2 at which the second fixed station 5 operates.
- the control circuit 5B is configured by, for example, a microcomputer.
- the control circuit 5B controls the operation of detecting the phase difference ⁇ mf2 between the reference clock Cf2 and the first radio signal S1 and the phase differences ⁇ sbf2 and ⁇ scf2 between the reference clock Cf2 and the plurality of second radio signals S2.
- the second fixed station 5 and the first fixed station 4 operate asynchronously and independently.
- phase Pf2 of the reference clock Cf2 of the second fixed station 5 is expressed by the following equation (4) when the angular frequency ⁇ f2, the time t, and the phase offset ⁇ f2.
- the radio signal receiving circuit 5C is connected between the receiving antenna 5D and the control circuit 5B.
- the radio signal receiving circuit 5 ⁇ / b> C is configured in the same manner as the radio signal receiving circuit 4 ⁇ / b> C of the first fixed station 4.
- the radio signal receiving circuit 5C calculates a phase difference ⁇ mf2 between the carrier phase Pm of the first radio signal S1 received by the receiving antenna 5D and the phase Pf2 of the reference clock Cf2.
- the radio signal receiving circuit 5C calculates phase differences ⁇ sbf2 and ⁇ scf2 between the carrier phase Ps of the plurality of second radio signals S2 received by the receiving antenna 5D and the phase Pf2 of the reference clock Cf2.
- the third fixed station 6 is arranged at a position different from the first and second fixed stations 4 and 5 as a predetermined place. As with the first fixed station 4, the third fixed station 6 includes a fixed station reference clock circuit 6A, a control circuit 6B, a radio signal receiving circuit 6C, a receiving antenna 6D, and the like.
- the fixed station reference clock circuit 6A includes, for example, an oscillator.
- the fixed station reference clock circuit 6A generates a reference clock Cf3 having an angular frequency ⁇ f3 at which the third fixed station 6 operates.
- the control circuit 6B is configured by, for example, a microcomputer.
- the control circuit 6B controls the operation of detecting the phase difference ⁇ mf3 between the reference clock Cf3 and the first radio signal S1 and the phase differences ⁇ sbf3 and ⁇ scf3 between the reference clock Cf2 and the plurality of second radio signals S2.
- the third fixed station 6 and the first and second fixed stations 4 and 5 operate asynchronously and independently.
- phase Pf3 of the reference clock Cf3 of the third fixed station 6 is expressed by the following equation 5 assuming that the angular frequency ⁇ f3, the time t, and the phase offset ⁇ f3.
- the radio signal receiving circuit 6C is connected between the receiving antenna 6D and the control circuit 6B.
- the radio signal receiving circuit 6 ⁇ / b> C is configured in the same manner as the radio signal receiving circuit 4 ⁇ / b> C of the first fixed station 4.
- the radio signal receiving circuit 6C calculates a phase difference ⁇ mf3 between the carrier phase Pm of the first radio signal S1 received by the receiving antenna 6D and the phase Pf3 of the reference clock Cf3.
- the radio signal receiving circuit 6C calculates phase differences ⁇ sbf3 and ⁇ scf3 between the carrier phase Ps of the plurality of second radio signals S2 received by the receiving antenna 6D and the phase Pf3 of the reference clock Cf3.
- the server 7 is connected to each fixed station 4-6.
- the server 7 is phase difference information ⁇ mf1, ⁇ mf2, ⁇ mf3, which is phase difference information between the mobile station 2 and each fixed station 4-6, and phase difference information between the reference station 3 and each fixed station 4-6.
- the position of the mobile station 2 is calculated using the phase differences ⁇ sbf1, ⁇ scf1, ⁇ sbf2, ⁇ scf2, ⁇ sbf3, and ⁇ scf3.
- the connection between the server 7 and each of the fixed stations 4 to 6 may be a wired connection using a physical cable or a wireless connection.
- Step 1 in FIG. 10 shows a specific example of the first radio signal transmission element.
- the mobile station 2 transmits a first radio signal S1 to each of the fixed stations 4-6. Further, the mobile station 2 transmits a trigger radio signal St for the reference station 3 to transmit the second radio signal S2 (see FIG. 7).
- the carrier phase Pm of the first radio signal S1 transmitted by the mobile station 2 at time t0a is expressed by the following equation (6).
- Step 2 shows a specific example of the first phase difference calculation element.
- each of the fixed stations 4 to 6 obtains a first phase difference ⁇ mf1 to ⁇ mf3 between the carrier phase Pm of the received first radio signal S1 and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3. That is, assuming that the time at which the first fixed station 4 receives the first radio signal S1 is t1a, the phase Pf1 of the reference clock Cf1 is expressed by the following Equation 7, and the carrier phase Pm of the first radio signal S1.
- the first phase difference ⁇ mf1 between the reference clock Cf1 and the phase Pf1 of the reference clock Cf1 is expressed by the following equation (8).
- the phase Pf2 of the reference clock Cf2 is expressed by the following equation (9), and the carrier phase of the first radio signal S1
- the first phase difference ⁇ mf2 between Pm and the phase Pf2 of the reference clock Cf2 is expressed by the following equation (10).
- the phase Pf3 of the reference clock Cf3 is expressed by the following equation 11 and the carrier phase of the first radio signal S1.
- the first phase difference ⁇ mf3 between Pm and the phase Pf3 of the reference clock Cf3 is expressed by the following equation (12).
- Step 3 shows a specific example of the second wireless signal transmission element.
- the reference station 3 that has received the trigger radio signal St transmits a plurality of (for example, twice) second radio signals S2 to the fixed stations 4 to 6.
- the reference station 3 that has received the trigger radio signal St at time tka may transmit the second radio signal S2 after a predetermined time has elapsed.
- time difference between time t0b and time t0c is, for example, the second phase difference fluctuation (difference between phase difference ⁇ sbf1 and phase difference ⁇ scf1, difference between phase difference ⁇ sbf2 and phase difference ⁇ scf2, phase difference ⁇ sbf3 and phase difference (Difference from phase difference ⁇ scf3) is set in a range of 2 ⁇ or less.
- the carrier phase Ps1 of the first second radio signal S2 transmitted from the reference station 3 at time t0b is expressed by the following equation (13).
- the carrier phase Ps2 of the second second radio signal S2 transmitted by the reference station 3 at time t0c is expressed by the following equation (14).
- Step 4 shows a specific example of the second phase difference calculation element.
- each of the fixed stations 4 to 6 receives the second phase differences ⁇ sbf1 to ⁇ sbf3 between the carrier phases Ps1 and Ps2 of the received second radio signal S2 and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3.
- ⁇ scf1 to ⁇ scf3 are obtained.
- the phase Pf1 of the reference clock Cf1 is expressed by the following equation (15), and the second radio signal S2
- the second phase difference ⁇ sbf1 between the carrier phase Ps1 and the phase Pf1 of the reference clock Cf1 is expressed by the following equation (16).
- the phase Pf1 of the reference clock Cf1 is expressed by the following equation 17, and the second radio signal S2
- the second phase difference ⁇ scf1 between the carrier phase Ps2 and the phase Pf1 of the reference clock Cf1 is expressed by the following equation (18).
- the phase Pf2 of the reference clock Cf2 is expressed by the following equation (19), and the second radio signal S2
- the second phase difference ⁇ sbf2 between the carrier phase Ps1 and the phase Pf2 of the reference clock Cf2 is expressed by the following equation (20).
- the phase Pf2 of the reference clock Cf2 is expressed by the following equation (21), and the second radio signal S2
- the second phase difference ⁇ scf2 between the carrier phase Ps2 and the phase Pf2 of the reference clock Cf2 is expressed by the following equation (22).
- the phase Pf3 of the reference clock Cf3 is expressed by the following equation 23
- the second radio signal S2 The second phase difference ⁇ sbf3 between the carrier phase Ps1 and the phase Pf3 of the reference clock Cf3 is expressed by the following equation (24).
- the phase Pf3 of the reference clock Cf3 is expressed by the following equation (25), and the second radio signal S2
- the second phase difference ⁇ scf3 between the carrier phase Ps2 and the phase Pf3 of the reference clock Cf3 is expressed by the following equation (26).
- Step 5 shows a specific example of the third phase difference calculation element.
- the first to third fixed stations 4 to 6 are based on the plurality of second phase differences ⁇ sbf1 to ⁇ sbf3, ⁇ scf1 to ⁇ scf3 obtained by the first to third fixed stations 4 to 6.
- time variations ⁇ 1 / ⁇ t, ⁇ 2 / ⁇ t, ⁇ 3 / ⁇ t of the second phase differences ⁇ sbf1 to ⁇ sbf3, ⁇ scf1 to ⁇ scf3 are obtained.
- the first to third fixed stations 4 to 6 receive the second radio signal S2 at the timing when the first radio signal S1 is received based on the time fluctuations ⁇ 1 / ⁇ t, ⁇ 2 / ⁇ t, ⁇ 3 / ⁇ t.
- Third phase differences ⁇ saf1 to ⁇ saf3 between the carrier phase Ps and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3 are obtained.
- the first fixed station 4 uses the extrapolation method based on the information on the second phase differences ⁇ sbf1 and ⁇ scf1 obtained at times t1b and t1c.
- the third phase difference ⁇ saf1 at time t1a when S1 is received is calculated (see Equation 30).
- the second fixed station 5 receives the first radio signal S1 based on the information on the second phase differences ⁇ sbf2 and ⁇ scf2 obtained at times t2b and t2c, and the third phase difference at time t2a.
- ⁇ saf2 is calculated (see Equation 31).
- the third fixed station 6 receives the first radio signal S1 based on the information on the second phase differences ⁇ sbf3 and ⁇ scf3 obtained at times t3b and t3c.
- ⁇ saf3 is calculated (see Equation 32).
- the relationship between the time t0b and the time t0c, between the time t1b and the time t1c, between the time t2b and the time t2c, and between the time t3b and the time t3c is expressed by the following equation (27): From Equation 27, Equation 28 and Equation 29 are derived.
- Step 6 shows a specific example of the phase offset canceling element.
- the server 7 uses the first phase differences ⁇ mf1, ⁇ mf2 and the third phase differences ⁇ saf1, ⁇ saf2 obtained by the first and second fixed stations 4, 5 to use the mobile station 2 and the reference station. 3 and the phase offsets ⁇ m, ⁇ s, ⁇ f1, and ⁇ f2 of the reference clocks Cm, Cs, Cf1, and Cf2 in the first and second fixed stations 4 and 5 are canceled. That is, as shown in the following equation 33, the first and third positions obtained by the second fixed station 5 are obtained from the first and third phase difference information obtained by the first fixed station 4. By subtracting the phase difference information, a phase difference ⁇ 21 in which the phase offsets ⁇ m, ⁇ s, ⁇ f1, and ⁇ f2 between the mobile station 2, the reference station 3, and the first and second fixed stations 4 and 5 are canceled is calculated.
- Step 7 shows a specific example of the carrier phase difference calculation element.
- the server 7 uses the phase difference ⁇ 21 that is information obtained by canceling the phase offsets ⁇ m, ⁇ s, ⁇ f1, and ⁇ f2 to determine the carrier level between the first fixed station 4 and the second fixed station 5.
- the phase difference ⁇ 21 is calculated. That is, based on the above equation 33, the carrier phase difference ⁇ 21 is calculated as shown in the following equation 34.
- Equation 34 ⁇ s (t1b ⁇ t2b) shown in the second term on the right side of Equation 34 is obtained in advance from the relationship between the reference station 3 and the fixed stations 4 and 5 arranged at predetermined positions. Thereby, the server 7 calculates the carrier phase difference ⁇ 21.
- Step 8 shows a specific example of the distance difference calculation element.
- the server 7 uses the carrier phase difference ⁇ 21 to determine the distance r 1 between the first fixed station 4 and the mobile station 2 and the distance between the second fixed station 5 and the mobile station 2.
- the carrier phase difference ⁇ 21 is obtained, the arrival time difference of the first radio signal S1 (or the second radio signal S2) in each of the fixed stations 4 and 5 is obtained, so that, for example, TDOA (Time Differential Of Arrival ) Method, the distance difference ⁇ r12, which is distance information, can be obtained.
- TDOA Time Differential Of Arrival
- the carrier phase difference ⁇ 21 appears periodically every 2 ⁇ , the absolute value of the carrier phase difference ⁇ 21 cannot be obtained directly, and there is an uncertainty of 2n ⁇ (where n is an integer), and the distance to the carrier phase difference ⁇ 21
- the difference ⁇ r12 is also infinite. For example, as shown in FIG. 8, when the wavelength of the first radio signal S1 and lambda 1, the carrier phase difference ⁇ 21 is every time a 2 [pi, integral multiple of the distance difference ⁇ r12 wavelength lambda 1 is calculated.
- the position detection system 1 calibrates the carrier phase difference ⁇ 21 in a state where the position of the mobile station 2 is specified, and follows it as a variation from the position. As a result, the position detection system 1 can uniquely obtain the carrier phase difference ⁇ 21 and obtain a hyperbola of the distance difference ⁇ r12 in which the mobile station 2 can exist as shown in FIG.
- Step 9 shows a specific example of the phase offset canceling element.
- the server 7 uses the first phase differences ⁇ mf1 and ⁇ mf3 and the third phase differences ⁇ saf1 and ⁇ saf3 obtained by the first and third fixed stations 4 and 6 to use the mobile station 2 and the reference station. 3 and the phase offsets ⁇ m, ⁇ s, ⁇ f1, and ⁇ f2 of the reference clocks Cm, Cs, Cf1, and Cf2 in the first and third fixed stations 4 and 6 are canceled. That is, as shown in the following Expression 35, the first and third positions obtained by the third fixed station 6 are obtained from the first and third phase difference information obtained by the first fixed station 4. By subtracting the phase difference information, a phase difference ⁇ 31 in which the phase offsets ⁇ m, ⁇ s, ⁇ f1, and ⁇ f3 between the mobile station 2, the reference station 3, and the first and third fixed stations 4 and 6 are canceled is calculated.
- Step 10 shows a specific example of the carrier phase difference calculation element.
- the server 7 uses the phase difference ⁇ 31 which is information obtained by canceling the phase offsets ⁇ m, ⁇ s, ⁇ f 1, ⁇ f 3, so that the carrier level between the first fixed station 4 and the third fixed station 6 is A phase difference ⁇ 31 is calculated. That is, based on the above equation 35, the carrier phase difference ⁇ 31 is calculated as shown in the following equation 36.
- Equation 36 ⁇ s (t1b ⁇ t3b) shown in the second term on the right side of Equation 36 is obtained in advance from the relationship between the reference station 3 and the fixed stations 4 and 6 arranged at a predetermined position. Thereby, the server 7 calculates the carrier phase difference ⁇ 31.
- Step 11 shows a specific example of the distance difference calculation element.
- the distance difference ⁇ r13 can be obtained from the carrier phase difference ⁇ 31 using the TDOA method.
- Step 12 shows a specific example of the mobile station position calculation element.
- the server 7 calculates the position of the mobile station 2 from the obtained two distance differences ⁇ r12 and ⁇ r13. That is, as shown in FIG. 9, the server 7 can obtain the position of the mobile station 2 from the intersection of the hyperbola of the distance difference ⁇ r12 and the hyperbola of the distance difference ⁇ r13.
- the position detection system 1 includes the phase difference information between the mobile station 2 and the fixed stations 4 to 6 and the reference station 3 and the fixed stations 4 to 6.
- the position of the mobile station 2 is calculated using the phase difference information.
- the carrier phase differences ⁇ 21 and ⁇ 31 of the first radio signal S1 reaching each of the fixed stations 4 to 6 are used, a distance resolution shorter than the wavelength ⁇ 1 of the first radio signal S1 is realized. Can do.
- the position resolution of the mobile station 2 is detected with an increased distance resolution, it is possible to use a narrowband radio signal, so that the occupied bandwidth of the radio signal is reduced compared to the case where a pulse signal is used. Can do.
- the position detection system 1 also includes a first phase difference ⁇ mf1 to ⁇ mf3 between the mobile station 2 and each fixed station 4 to 6, and a third phase difference between the reference station 3 and each fixed station 4 to 6.
- ⁇ saf1 to ⁇ saf3 the phase offsets ⁇ m, ⁇ s, ⁇ f1 to ⁇ f3 of the mobile station 2, the reference station 3, and the fixed stations 4 to 6 are canceled. This eliminates the need to synchronize with each of the fixed stations 4 to 6, the mobile station 2, and the reference station 3, so that system construction can be simplified.
- the position detection system 1 includes the second phase differences ⁇ sbf1 to ⁇ sbf3 based on the plurality of second phase differences ⁇ sbf1 to ⁇ sbf3 and ⁇ scf1 to ⁇ scf3 between the reference station 3 and the fixed stations 4 to 6. Time variations ⁇ 1 / ⁇ t, ⁇ 2 / ⁇ t, and ⁇ 3 / ⁇ t of ⁇ scf1 to ⁇ scf3 are obtained. Then, the position detection system 1 receives the third of the carrier phase Ps included in the second radio signal S2 and the reference clocks Cf1 to Cf3 of the fixed stations 4 to 6 at the timing when the first radio signal S1 is received.
- phase differences ⁇ saf1 to ⁇ saf3 are calculated.
- the phase offsets ⁇ m, ⁇ s, ⁇ f1 to ⁇ f3 of the mobile station 2, the reference station 3, and the fixed stations 4 to 6 can be canceled.
- the timing for extracting the first phase differences ⁇ mf1 to ⁇ mf3 and the timing for calculating the third phase differences ⁇ saf1 to ⁇ saf3 can be matched, so that the accuracy of phase correction is improved and the accuracy of position detection is improved. it can.
- phase offsets ⁇ m, ⁇ s, ⁇ f1 to ⁇ f3 of the mobile station 2, the reference station 3, and the fixed stations 4 to 6 can be canceled.
- each fixed station 4-6 receives the time t1a, t2a, t3a at which each fixed station 4-6 receives the first radio signal S1 from the mobile station 2 and the second radio signal S2 from the reference station 3.
- the intervals (t1c-t1a, t2c-t2a, t3c-t3a) with the reception times t1c, t2c, t3c can be shortened.
- the accuracy of phase correction can be improved and the accuracy of position detection can be increased.
- FIGS. 11 to 13 show a position detection system according to a second embodiment of the present invention.
- the feature of the second embodiment is that the first fixed station is configured to have the function of a reference station. Note that in the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
- the position detection system 21 according to the second embodiment is configured in substantially the same manner as the position detection system 1 according to the first embodiment. For this reason, the position detection system 21 includes a mobile station 2, a first fixed station 22, a second fixed station 5, a third fixed station 6, a server 7, and the like. However, the first fixed station 22 includes a radio signal transmission circuit 22C and a transmission / reception antenna 22F in order to have the function of a reference station. This is different from the first embodiment.
- the first fixed station 22 is arranged at a position different from the second and third fixed stations 5 and 6 as a predetermined position. As shown in FIG. 12, the first fixed station 22 includes a fixed station reference clock circuit 22A, a control circuit 22B, a radio signal transmission circuit 22C, a radio signal reception circuit 22D, a transmission / reception switching circuit 22E, A transmission / reception antenna 22F and the like are included. The first fixed station 22 also has the function of a reference station, and transmits a second radio signal S2 to the fixed stations 5 and 6.
- the fixed station reference clock circuit 22A includes, for example, an oscillator.
- the fixed station reference clock circuit 22A generates a reference clock Cf1 having an angular frequency ⁇ f1 (carrier frequency) as a reference of the second radio signal S2 with respect to the transmission / reception antenna 22F.
- the control circuit 22B is configured by, for example, a microcomputer. The control circuit 22B controls an operation in which the first fixed station 22 intermittently transmits the second radio signal S2.
- the radio signal transmission circuit 22C is connected to the control circuit 22B and the transmission / reception switching circuit 22E.
- the radio signal transmission circuit 22C includes, for example, a modulation circuit and an amplifier.
- the radio signal transmission circuit 22C generates the second radio signal S2 based on the reference clock Cf1.
- the radio signal receiving circuit 22D is connected to the control circuit 22B and the transmission / reception switching circuit 22E.
- the radio signal receiving circuit 22D includes, for example, a mixer, a phase shifter (both not shown) and the like.
- the radio signal receiving circuit 22D calculates a phase difference ⁇ mf1 between the carrier phase Pm of the first radio signal S1 received by the transmission / reception antenna 22F and the phase Pf1 of the reference clock Cf1.
- the transmission / reception switching circuit 22E connects the radio signal transmission circuit 22C, the radio signal reception circuit 22D, and the transmission / reception antenna 22F.
- the transmission / reception switching circuit 22E switches transmission / reception according to a command from the control circuit 22B, outputs the second radio signal S2 from the radio signal transmission circuit 22C to the transmission / reception antenna 22F, and receives the first radio signal S1 received by the transmission / reception antenna 22F. Is output to the radio signal receiving circuit 22D.
- the transmitting / receiving antenna 22F is composed of various antennas that can radiate the second radio signal S2.
- the transmitting / receiving antenna 22F transmits the second radio signal S2 to the fixed stations 5 and 6.
- the position detection system 21 according to the second embodiment calculates the position of the mobile station 2 using the position detection method shown in FIG.
- the first fixed station 22 receives the times t1b and t1c when the first fixed station 22 transmits the second radio signal S2, and the first fixed station 22 receives the second radio signal S2.
- the second phase differences ⁇ sbf1 and ⁇ scf1 are calculated as the time to perform. That is, the carrier phase Ps of the second radio signal S2 transmitted by the first fixed station 22 and the phase Pf1 of the second radio signal S2 received by the first fixed station 22 are the same because the time is the same. It becomes a phase and is expressed by the following equation 37.
- the second phase differences ⁇ sbf1 and ⁇ scf1 in the first fixed station 22 are values represented by the following equation (38).
- the third phase difference ⁇ saf1 using the extrapolation method is represented by the following formula 39 based on the information of the second phase differences ⁇ sbf1 and ⁇ scf1 obtained by the above formula 38.
- phase difference ⁇ 21 obtained by canceling the phase offsets ⁇ m, ⁇ f1, and ⁇ f2 between the mobile station 2 and the first and second fixed stations 22 and 5 is expressed by the above-described formula 8, formula 10, formula 31, formula 39, and formula 39.
- formula 40 is used.
- phase difference ⁇ 31 obtained by canceling the phase offsets ⁇ m, ⁇ f1, and ⁇ f3 between the mobile station 2 and the first and third fixed stations 22 and 6 is expressed by the above-described equations (8), (12), (32), Using the equation (39), the following equation (41) is given.
- the first fixed station 22 has a function of a reference station and transmits the second radio signal S2.
- the second radio signal S2 transmitted from the first fixed station 22 can be used to cancel the phase offsets ⁇ m and ⁇ f1 to ⁇ f3 of the mobile station 2 and each of the fixed stations 4 to 6, so that the reference station can be set separately. There is no need to provide it. As a result, since the system can be easily constructed, the cost can be suppressed.
- FIGS. 1 and 14 to 16 show a position detection system according to a third embodiment of the present invention.
- a feature of the third embodiment is that the mobile station transmits a first radio signal having two or more types of carrier frequencies, and the reference station transmits a second radio signal having two or more types of carrier frequencies. It is in. Note that in the third embodiment, the same components as those in the first and second embodiments described above are denoted by the same reference numerals, and the description thereof is omitted.
- the position detection system 31 according to the third embodiment is configured in substantially the same manner as the position detection system 1 according to the first embodiment. Therefore, the position detection system 31 includes the mobile station 2, the reference station 3, the first fixed station 4, the second fixed station 5, the third fixed station 6, the server 7, and the like. .
- the mobile station 2 transmits first radio signals S1 and S1 ′ having two types of carrier frequencies (angular frequencies) to the fixed stations 4 to 6.
- the mobile station reference clock circuit 2A of the mobile station 2 generates reference clocks Cm and Cm ′ having two frequencies. That is, the mobile station reference clock circuit 2A has a reference clock Cm having an angular frequency ⁇ m serving as a reference for the first radio signal S1 and a reference clock Cm ′ having an angular frequency ⁇ m ′ serving as a reference for the first radio signal S1 ′. And generate
- the reference station 3 transmits the second radio signals S2 and S2 ′ having two types of carrier frequencies (angular frequencies) toward the fixed stations 4 to 6.
- the reference clock circuit 3A for the reference station 3 generates reference clocks Cs and Cs ′ having two frequencies. That is, the reference station reference clock circuit 3A has a reference clock Cs having an angular frequency ⁇ s serving as a reference for the second radio signal S2 and a reference clock Cs ′ having an angular frequency ⁇ s ′ serving as a reference for the second radio signal S2 ′. Is generated.
- Step 21 in FIG. 16 shows a specific example of the first radio signal transmission element.
- the mobile station 2 transmits the first radio signal S1 to each of the fixed stations 4 to 6, and the reference station 3 transmits a trigger radio signal St for transmitting the second radio signal S2. (See FIG. 14).
- Step 22 shows a specific example of the first phase difference calculation element.
- each of the fixed stations 4 to 6 obtains phase differences ⁇ mf1 to ⁇ mf3 between the carrier phase Pm of the received first radio signal S1 and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3 (Expression 6) Thru
- Step 23 shows a specific example of the second wireless signal transmission element.
- the reference station 3 that has received the trigger radio signal St transmits a plurality of (for example, twice) second radio signals S2 to the fixed stations 4 to 6.
- the reference station 3 that has received the trigger radio signal St at time tka may transmit the second radio signal S2 after a predetermined time has elapsed (see Equations 13 and 14).
- Step 24 shows a specific example of the second phase difference calculation element.
- each of the fixed stations 4 to 6 receives the second phase differences ⁇ sbf1 to ⁇ sbf3 between the carrier phases Ps1 and Ps2 of the received second radio signal S2 and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3.
- ⁇ scf1 to ⁇ scf3 are obtained (see Equations 15 to 26).
- Step 25 shows a specific example of the first wireless signal transmission element.
- the mobile station 2 transmits a first radio signal S1 'having a carrier frequency different from that of the first radio signal S1 toward the fixed stations 4-6. That is, the mobile station reference clock circuit 2A generates a reference clock Cm ′ having an angular frequency ⁇ m ′ as a reference of the first radio signal S1 ′, and transmits the first radio signal S1 ′ via the transmission antenna 2D.
- the carrier phase Pm ′ of the first radio signal S1 ′ transmitted from the mobile station 2 at time t0d is expressed by the following equation (42).
- Step 26 shows a specific example of the first phase difference calculation element.
- each of the fixed stations 4 to 6 obtains a phase difference ⁇ mf1 ′ to ⁇ mf3 ′ between the carrier phase Pm ′ of the received first radio signal S1 ′ and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3. . That is, if the time when the first fixed station 4 receives the first radio signal S1 ′ is t1d, the phase Pf1 of the reference clock Cf1 is expressed by the following equation 43, and the carrier of the first radio signal S1 ′ The phase difference ⁇ mf1 ′ between the phase Pm ′ and the phase Pf1 of the reference clock Cf1 is expressed by the following equation (44).
- the phase Pf2 of the reference clock Cf2 is expressed by the following equation 45, and the first radio signal S1 ′
- the phase difference ⁇ mf2 ′ between the carrier phase Pm ′ and the phase Pf2 of the reference clock Cf2 is expressed by the following equation (46).
- the phase Pf3 of the reference clock Cf3 is expressed by the following equation 47, and the first radio signal S1 ′
- the phase difference ⁇ mf3 ′ between the carrier phase Pm ′ and the phase Pf3 of the reference clock Cf3 is expressed by the following equation (48).
- Step 27 shows a specific example of the second wireless signal transmission element.
- the reference station 3 that has received the trigger radio signal St ′ sends a plurality of second radio signals S2 ′ (for example, different in carrier frequency from the second radio signal S2) toward the fixed stations 4 to 6 (for example, 2) send. That is, the reference station reference clock circuit 3A generates a reference clock Cs ′ having an angular frequency ⁇ s ′ that serves as a reference for the second radio signal S2 ′, and transmits the second radio signal S2 ′ via the transmission / reception antenna 3F. .
- the reference station 3 that has received the trigger radio signal St ′ at time tkd may transmit the second radio signal S2 ′ after a predetermined time has elapsed.
- the time difference between time t0e and time t0f is, for example, the second phase difference fluctuation (difference between phase difference ⁇ sef1 and phase difference ⁇ sff1, difference between phase difference ⁇ sef2 and phase difference ⁇ sff2, phase difference ⁇ sef3 and (Difference with phase difference ⁇ sff3) is set in a range of 2 ⁇ or less.
- the carrier phase Ps1 ′ of the first second radio signal S2 ′ transmitted from the reference station 3 at time t0e is expressed by the following equation (49).
- the carrier phase Ps2 ′ of the second second radio signal S2 ′ transmitted by the reference station 3 at time t0f is expressed by the following equation (50).
- Step 28 shows a specific example of the second phase difference calculation element.
- each of the fixed stations 4 to 6 receives the second phase difference ⁇ sef1 between the carrier phases Ps1 ′ and Ps2 ′ of the received second radio signal S2 ′ and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3.
- ⁇ ⁇ sef3, ⁇ sff1 ⁇ ⁇ sff3 are obtained.
- the phase Pf1 of the reference clock Cf1 is expressed by the following equation 51, and the second radio signal S2
- the second phase difference ⁇ sef1 between the carrier phase Ps1 ′ and the phase Pf1 of the reference clock Cf1 is expressed by the following equation (52).
- the phase Pf1 of the reference clock Cf1 is expressed by the following equation 53, and the second radio signal S2
- the second phase difference ⁇ sff1 between the carrier phase Ps2 'and the phase Pf1 of the reference clock Cf1 is expressed by the following equation (54).
- the phase Pf2 of the reference clock Cf2 is expressed by the following equation 55
- the second radio signal The second phase difference ⁇ sef2 between the carrier phase Ps1 ′ of S2 ′ and the phase Pf2 of the reference clock Cf2 is expressed by the following equation 56.
- the phase Pf2 of the reference clock Cf2 is expressed by the following equation 57, and the second radio signal S2
- the second phase difference ⁇ sff2 between the carrier phase Ps2 ′ of ′ and the phase Pf2 of the reference clock Cf2 is expressed by the following equation (58).
- the phase Pf3 of the reference clock Cf3 is expressed by the following equation 59
- the second radio signal The second phase difference ⁇ sef3 between the carrier phase Ps1 ′ of S2 ′ and the phase Pf3 of the reference clock Cf3 is expressed by the following equation (60).
- the phase Pf3 of the reference clock Cf3 is expressed by the following equation 61, and the second radio signal S2
- the second phase difference ⁇ sff3 between the carrier phase Ps2 ′ of ′ and the phase Pf3 of the reference clock Cf3 is expressed by the following equation (62).
- Step 29 shows a specific example of the third phase difference calculation element.
- the first to third fixed stations 4 to 6 make a plurality of second phase differences ⁇ sbf1 to ⁇ sbf3, ⁇ scf1 to ⁇ scf3, ⁇ sef1 to ⁇ sbf3 obtained by the first to third fixed stations 4 to 6, respectively.
- the second phase differences ⁇ sbf1 to ⁇ sbf3, ⁇ scf1 to ⁇ scf3, ⁇ sef1 to ⁇ sef3, ⁇ sff1 to ⁇ sff3, time fluctuations ⁇ 1 / ⁇ t, ⁇ 1 ′ / ⁇ t, ⁇ 2 / ⁇ t, ⁇ 2 ⁇ ⁇ 3 / ⁇ t and ⁇ 3 ′ / ⁇ t are obtained.
- the first to third fixed stations 4 to 6 receive the first radio signal based on the time variations ⁇ 1 / ⁇ t, ⁇ 2 / ⁇ t, ⁇ 3 / ⁇ t of the second phase differences ⁇ sbf1 to ⁇ sbf3, ⁇ scf1 to ⁇ scf3.
- the third phase differences ⁇ saf1 to ⁇ saf3 between the carrier phase Ps of the second radio signal S2 at the timing of receiving S1 and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3 are obtained (see formulas 30 to 32). .
- the first to third fixed stations 4 to 6 perform the first based on the time fluctuations ⁇ 1 ′ / ⁇ t, ⁇ 2 ′ / ⁇ t, ⁇ 3 ′ / ⁇ t of the second phase differences ⁇ sef1 to ⁇ sef3, ⁇ sff1 to ⁇ sff3.
- Third phase differences ⁇ sdf1 to ⁇ sdf3 between the carrier phase Ps ′ of the second radio signal S2 ′ at the timing of receiving the radio signal S1 ′ and the phases Pf1 to Pf3 of the reference clocks Cf1 to Cf3 are obtained.
- the first fixed station 4 receives the first radio signal S1 ′ using the extrapolation method based on the information of the second phase differences ⁇ sef1 and ⁇ sff1 obtained at times t1e and t1f.
- a third phase difference ⁇ sdf1 at t1d is calculated (see Equation 66).
- the second fixed station 5 receives the first radio signal S1 ′ based on the information on the second phase differences ⁇ sef2 and ⁇ sff2 obtained at times t2e and t2f.
- the phase difference ⁇ sdf2 is calculated (see Equation 67).
- the third fixed station 6 receives the first radio signal S1 ′ based on the information on the second phase differences ⁇ sef3 and ⁇ sff3 obtained at times t3e and t3f.
- the phase difference ⁇ sdf3 is calculated (see Formula 68).
- the relationship between the time t0e and the time t0f, between the time t1e and the time t1f, between the time t2e and the time t2f, and between the time t3e and the time t3f is expressed by the following equation 63 From Equation 63, Equation 64 and Equation 65 are derived.
- Step 30 shows a specific example of the phase offset canceling element.
- the server 7 uses the first phase differences ⁇ mf1, ⁇ mf1 ′, ⁇ mf2, ⁇ mf2 ′ and the third phase differences ⁇ saf1, ⁇ saf2, ⁇ sdf1,.
- ⁇ sdf2 the phase offsets ⁇ m, ⁇ s, ⁇ f1, and ⁇ f2 of the reference clocks Cm, Cs, Cf1, and Cf2 in the mobile station 2, the reference station 3, and the first and second fixed stations 4 and 5 are canceled. That is, the phase difference ⁇ 21 is calculated using the above equation 33, and the phase difference ⁇ 21 ′ is calculated using the following equation 69.
- Step 31 shows a specific example of the carrier phase difference calculation element.
- the server 7 uses the phase differences ⁇ 21 and ⁇ 21 ′, which are information obtained by canceling the phase offsets ⁇ m, ⁇ s, ⁇ f1 and ⁇ f2, between the first fixed station 4 and the second fixed station 5.
- Carrier phase differences ⁇ 21 and ⁇ 21 ′ are calculated. That is, the carrier phase difference ⁇ 21 ′ is calculated using the above equation 34, and the carrier phase difference ⁇ 21 ′ using the first radio signal S1 ′ is calculated using the following equation 70.
- Step 32 shows a specific example of the distance difference calculation element.
- the server 7 uses the carrier phase differences ⁇ 21 and ⁇ 21 ′ to determine the distance between the first fixed station 4 and the mobile station 2 and between the second fixed station 5 and the mobile station 2.
- a distance difference ⁇ r12 which is a distance of Incidentally, as shown in FIG. 15, when the wavelength of the first radio signal S1 and lambda 1, the carrier phase difference ⁇ 21 is every time a 2 [pi, integral multiple of the distance difference ⁇ r12 wavelength lambda 1 is calculated. Further, 'when the wavelength of the lambda 2, the carrier phase difference Deruta21' first radio signal S1 each time the 2 [pi, integral multiple of the distance difference ⁇ r12 wavelength lambda 2 is calculated.
- the phase difference difference DP ( ⁇ 21 ′)
- the difference DP between the carrier phase differences ⁇ 21 and ⁇ 21 ′ is repeated every 30 m. If the range that the position detection system 31 can take is within 30 m, the carrier phase differences ⁇ 21 and ⁇ 21 ′ are uniquely obtained. Can do.
- Step 33 shows a specific example of the phase offset canceling element.
- the server 7 determines that the first phase differences ⁇ mf1, ⁇ mf1 ′, ⁇ mf3, ⁇ mf3 ′ and third phase differences ⁇ saf1, ⁇ saf3, ⁇ sdf1,.
- the phase offsets ⁇ m, ⁇ s, ⁇ f1, and ⁇ f3 of the reference clocks Cm, Cs, Cf1, and Cf3 in the mobile station 2, the reference station 3, and the first and third fixed stations 4 and 6 are canceled. That is, the phase difference ⁇ 31 is calculated using the above formula 35, and the phase difference ⁇ 31 ′ is calculated using the following formula 71.
- Step 34 shows a specific example of the carrier phase difference calculation element.
- the server 7 uses the phase differences ⁇ 31 and ⁇ 31 ′, which are information obtained by canceling the phase offsets ⁇ m, ⁇ s, ⁇ f1, and ⁇ f3, between the first fixed station 4 and the third fixed station 6.
- Carrier phase differences ⁇ 31 and ⁇ 31 ′ are calculated. That is, the carrier phase difference ⁇ 31 is calculated using the above equation 36, and the carrier phase difference ⁇ 31 ′ using the first radio signal S1 ′ is calculated using the following equation 72.
- Step 35 shows a specific example of the distance difference calculation element.
- the server 7 uses the carrier phase differences ⁇ 31 and ⁇ 31 ′ to determine the distance between the first fixed station 4 and the mobile station 2 and between the third fixed station 6 and the mobile station 2.
- the distance difference ⁇ r13 which is the distance of. That is, as in the case of obtaining the distance difference ⁇ r12, the carrier phase differences ⁇ 31 and ⁇ 31 ′ can be uniquely obtained by obtaining the difference between the carrier phase difference ⁇ 31 and the carrier phase difference ⁇ 31 ′.
- Step 36 shows a specific example of the mobile station position calculation element.
- the server 7 calculates the position of the mobile station 2 from the obtained two distance differences ⁇ r12, ⁇ r13. That is, the server 7 can determine the position of the mobile station 2 from the intersection of the hyperbola of the distance difference ⁇ r12 and the hyperbola of the distance difference ⁇ r13.
- the mobile station reference clock circuit 2A has a function of generating the reference clocks Cm and Cm 'of two frequencies, and the second types of angular frequencies ⁇ m and ⁇ m'.
- One radio signal S1, S1 ' is transmitted.
- the reference clock circuit 3A for the reference station has a function of generating reference clocks Cs and Cs' having two frequencies, and second radio signals S2 and S2 'having two kinds of angular frequencies ⁇ s and ⁇ s'. Is configured to transmit.
- the carrier phase difference ⁇ 21 ( ⁇ 31) detected using one angular frequency ⁇ m, ⁇ s and the carrier phase difference ⁇ 21 ′ ( ⁇ 31 ′) detected using another angular frequency ⁇ m ′, ⁇ s ′ are:
- Each repetition period is different. Therefore, by using the difference DP between the two carrier phase differences ⁇ 21, ⁇ 21 ′ ( ⁇ 31, ⁇ 31 ′), it is possible to determine how many rounds the two carrier phase differences ⁇ 21, ⁇ 21 ′ ( ⁇ 31, ⁇ 31 ′) have made. .
- the periodicity of the phase difference becomes longer, the uncertainty around the phase is eliminated, the absolute phase can be obtained, and the position of the mobile station 2 can be calculated with high accuracy.
- the first radio signals S 1 and S 1 ′ having two types of angular frequencies ⁇ m and ⁇ m ′ by the mobile station 2 and the second radio signals S 2 and S 2 ′ having two types of angular frequencies ⁇ s and ⁇ s ′ by the reference station 3
- the phase correction accuracy can be increased by performing the phase correction using. As a result, the position of the mobile station 2 can be calculated with high accuracy.
- the position detection system 1 is configured to include the three fixed stations 4 to 6.
- the present invention is not limited to this, and the position detection system may include four or more fixed stations. The same applies to the second and third embodiments.
- each fixed station reference clock circuit, mobile station reference clock circuit, and reference station reference clock circuit may use reference clocks having the same angular frequency.
- the position detection system 1 is configured to include one mobile station 2.
- the present invention is not limited to this, and the position detection system may include two or more mobile stations.
- ID information may be added to the first radio signal transmitted from the mobile station to identify the individual. The same applies to the second or third embodiment.
- the server 7 includes a hyperbola of the distance difference ⁇ r12 between the first fixed station 4 and the second fixed station 5, and the first fixed station 4 and the third fixed station.
- the position of the mobile station 2 is obtained from the intersection of the distance difference ⁇ r13 with the station 6 and the hyperbola.
- the first fixed station 22 also has the function of a reference station and transmits the second radio signal S2 to the fixed stations 5 and 6.
- the present invention is not limited to this, and the second fixed station or the third fixed station may have the function of a reference station and transmit the second radio signal. Further, two or more fixed stations out of each fixed station may have the function of a reference station and transmit the second radio signal.
- the mobile station reference clock circuit 2A has a function of generating reference clocks Cm and Cm 'of two angular frequencies ⁇ m and ⁇ m', and the mobile station has two types of first clocks.
- the wireless signals S1, S1 ' are transmitted.
- the present invention is not limited to this, and the mobile station reference clock circuit may generate reference clocks having three or more angular frequencies, and the mobile station may transmit three or more types of first radio signals.
- the reference station reference clock circuit 3A has a function of generating reference clocks Cs and Cs' of two angular frequencies ⁇ s and ⁇ s ′, and the reference station has two types of second radios.
- the signal S2, S2 ' is transmitted.
- the present invention is not limited to this, and the reference station reference clock circuit may generate a reference clock having three or more angular frequencies, and the reference station may transmit three or more types of second radio signals.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
位置検知システム(1)は、移動局(2)と基準局(3)と各固定局(4)~(6)とサーバ(7)とを備えている。移動局(2)は第1の無線信号S1を送信し、基準局(3)は第2の無線信号S2を複数回送信する。各固定局(4)~(6)は、第1の無線信号S1に基づく第1の位相差を抽出し、また、第2の無線信号S2に基づく第2の位相差を抽出する。サーバ(7)は、複数の第2の位相差に基づいて第2の位相差の時間変動を求めて第3の位相差を算出する。サーバ(7)は、移動局(2)と各固定局(4)~(6)との間の位相差情報と、基準局(3)と各固定局(4)~(6)との間の位相差情報とを用いて、各固定局(4)~(6)の位相オフセットをキャンセルし、各固定局(4)~(6)と移動局(2)との間の距離情報を得て、移動局(2)の位置を算出する。
Description
本発明は、移動局の位置を検知する位置検知システムおよび位置検知方法に関する。
一般に、複数の固定局(基地局)と移動局とを有し、移動局が送信したパルス信号を複数の固定局で受信し、受信時刻の差から固定局と移動局との位置関係を算出する位置検知システムが知られている。
また、基準局と中継局と携帯端末とにより構成される位置特定装置が知られている(例えば、特許文献1参照)。
ところで、パルス信号を用いた位置検知システムは、パルス信号の受信時刻を測定するため、測定分解能を上げるにはパルス幅を短くし、各固定局の時刻を高精度に同期させる必要がある。しかしながら、パルス幅を短くすると占有帯域幅が広がり、さらに各固定局を高精度に同期させるには複雑な処理が必要となるという問題がある。
また、特許文献1に記載された位置特定装置は、基準局および中継局から送信された距離測定信号の位相と方向測定信号の位相とを検知して、長方形のサービスエリア内の長辺に沿って移動する携帯端末の位置を特定する構成としている。しかしながら、この位置特定装置は、方向を測定するために、基準局と中継局とのアンテナの指向性を制御する必要があり、処理が複雑になるという問題がある。また、携帯端末の位置を特定できる範囲が長方形の形状に限られているので、使用できる場所や条件が限られてしまうという問題もある。
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、非同期でシステムの簡易化が可能な位置検知システムおよび位置検知方法を提供することにある。
(1).上述した課題を解決するために、本発明は、移動局用基準クロック回路と無線信号送信回路と送信アンテナとを有する移動局と、基準局用基準クロック回路と無線信号受信回路と受信アンテナと無線信号送信回路と送信アンテナとを有する基準局と、固定局用基準クロック回路と無線信号受信回路と受信アンテナとを有する少なくとも3つ以上の固定局とから構成される位置検知システムであって、3つ以上の前記固定局の前記固定局用基準クロック回路は、それぞれ非同期で独立に動作し、前記移動局は、間欠的に前記移動局用基準クロック回路の基準クロックに基づく第1の無線信号とトリガ無線信号とを送信し、前記基準局は、予め決められた位置に配置され、前記移動局が送信した前記トリガ無線信号を受信したときに前記基準局用基準クロック回路の基準クロックに基づく第2の無線信号を複数回送信し、前記各固定局は、前記第1の無線信号を受信して該第1の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの第1の位相差をそれぞれ抽出し、複数の前記第2の無線信号を受信して該第2の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの複数の第2の位相差をそれぞれ抽出し、抽出された複数の前記第2の位相差に基づいて前記第2の位相差の時間変動を求め、該時間変動に基づいて前記第1の無線信号を受信したタイミングにおける前記第2の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの第3の位相差を算出して、前記移動局と前記各固定局との間の位相差情報と、前記基準局と前記各固定局との間の位相差情報とを用いて、前記各固定局の前記基準クロックの位相オフセットをキャンセルし、前記各固定局と前記移動局との間の距離情報を得て、前記移動局の位置を算出することを特徴としている。
本発明によれば、移動局と各固定局との間の位相差情報と、基準局と各固定局との間の位相差情報とを用いて、移動局の位置を算出する構成としている。この場合、各固定局に到達する無線信号の位相のずれ(差)を用いているので、無線信号の波長よりも短い距離分解能を実現することができる。これにより、距離分解能を高めて移動局の位置検出を行うときでも、狭帯域の無線信号を用いることができるから、パルス信号を用いた場合に比べて、無線信号の占有帯域幅を狭めることができる。
また、移動局と各固定局との間の位相差情報と、基準局と各固定局との間の位相差情報とを用いて、移動局、基準局、各固定局の各基準クロックの位相オフセットをキャンセルしている。これにより、各固定局、移動局、基準局との間で同期をとる必要が無くなるので、システム構築を簡易化することができる。
具体的には、基準局と各固定局との間の複数の第2の位相差に基づいて第2の位相差の時間変動を求め、第1の無線信号を受信したタイミングにおける第2の無線信号に含まれるキャリアと各固定局の各基準クロックとの第3の位相差を算出する構成としている。これにより、移動局と各固定局との間の第1の位相差と、第1の無線信号を受信したタイミングにおける基準局と各固定局との間の第3の位相差とを用いて、移動局、基準局、各固定局の位相オフセットをキャンセルすることができる。この結果、第1の位相差を抽出するタイミングと第3の位相差を算出するタイミングを合わせることができるので、位相補正の精度を高めて位置検出の高精度化が実現できる。
また、第1の無線信号を受信したタイミングにおける第3の位相差を算出することにより、各固定局の基準クロックの周波数が互いに異なる場合でも、移動局、基準局、各固定局の位相オフセットをキャンセルすることができる。
また、移動局はトリガ無線信号を送信し、基準局は移動局が送信したトリガ無線信号を受信したときに複数の第2の無線信号を送信する構成としている。これにより、移動局からの第1の無線信号を各固定局が受信する時刻と、基準局からの第2の無線信号を各固定局が受信する時刻との間隔を短くすることができる。この結果、各固定局の周波数偏差による位相回転を小さく抑えることができるから、位相補正の精度を高めて、位置検出の高精度化が実現できる。
(2).本発明の位置検知システムでは、前記固定局の前記固定局用基準クロック回路は、互いに同じ周波数の基準クロックを生成する構成としている。
これにより、各固定局が互いに異なる周波数の基準クロックを生成する場合と比べて、各固定局の周波数偏差を小さくすることができるので、位相補正の精度を高めて、位置検出の高精度化が実現できる。また、各固定局用基準クロック回路を同一の回路部品を用いて構成することができるので、コストを抑制することができる。
(3).本発明の位置検知システムでは、3つ以上の前記固定局のうち少なくとも1つの固定局は、前記基準局の機能を兼ね備えて、複数の前記第2の無線信号を送信する構成としている。
この場合、固定局から送信される複数の第2の無線信号を用いて各固定局の位相オフセットをキャンセルできるので、基準局を別個に設ける必要がなくなる。この結果、システムを簡易に構築できるので、コストを抑制することができる。
(4).本発明の位置検知システムでは、前記移動局の前記移動局用基準クロック回路は、2つ以上の周波数の基準クロックを生成する機能を有し、前記移動局は、2種類以上のキャリア周波数の前記第1の無線信号を送信し、前記基準局の前記基準局用基準クロック回路は、2つ以上の周波数の基準クロックを生成する機能を有し、前記基準局は、2種類以上のキャリア周波数の複数の前記第2の無線信号を送信する構成としている。
この場合、一のキャリア周波数を用いて検出した位相差と、他のキャリア周波数を用いて検出した位相差とは、それぞれの繰り返しの周期は異なるため、2つの位相差の差を用いて、2つの位相差が何周したかを求めることができる。これにより、位相差の周期性が長くなり、位相周りの不確定性が解消して絶対位相を求めることができ、高精度に移動局の位置を算出することができる。
(5).本発明は、移動局用基準クロック回路と無線信号送信回路と送信アンテナとを有する移動局と、基準局用基準クロック回路と無線信号受信回路と受信アンテナと無線信号送信回路と送信アンテナとを有する基準局と、固定局用基準クロック回路と無線信号受信回路と受信アンテナとを有する少なくとも3つ以上の固定局とから構成される位置検知システムを用いた位置検知方法であって、3つ以上の前記固定局の前記固定局用基準クロック回路は、それぞれ非同期で独立に動作し、前記移動局は、間欠的に前記移動局用基準クロック回路の基準クロックに基づく第1の無線信号とトリガ無線信号とを送信し、前記基準局は、予め決められた位置に配置され、前記移動局が送信した前記トリガ無線信号を受信したときに前記基準局用基準クロック回路の基準クロックに基づく第2の無線信号を複数回送信し、前記各固定局は、前記第1の無線信号を受信して該第1の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの第1の位相差をそれぞれ抽出し、複数の前記第2の無線信号を受信して該第2の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの複数の第2の位相差をそれぞれ抽出し、抽出された複数の前記第2の位相差に基づいて前記第2の位相差の時間変動を求め、該時間変動に基づいて前記第1の無線信号を受信したタイミングにおける前記第2の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの第3の位相差を算出して、前記移動局と前記各固定局との間の位相差情報と、前記基準局と前記各固定局との間の位相差情報とを用いて、前記各固定局の前記基準クロックの位相オフセットをキャンセルし、前記各固定局と前記移動局との間の距離情報を得て、前記移動局の位置を算出する構成としている。
本発明によれば、移動局と各固定局との間の位相差情報と、基準局と各固定局との間の位相差情報とを用いて、移動局の位置を算出する構成としている。この場合、各固定局に到達する無線信号の位相のずれ(差)を用いているので、無線信号の波長よりも短い距離分解能を実現することができる。これにより、距離分解能を高めて移動局の位置検出を行うときでも、狭帯域の無線信号を用いることができるから、パルス信号を用いた場合に比べて、無線信号の占有帯域幅を狭めることができる。
また、移動局と各固定局との間の位相差情報と、基準局と各固定局との間の位相差情報とを用いて、移動局、基準局、各固定局の各基準クロックの位相オフセットをキャンセルしている。これにより、各固定局、移動局、基準局との間で同期をとる必要が無くなるので、システム構築を簡易化することができる。
(6).本発明の位置検知方法では、前記固定局の前記固定局用基準クロック回路は、互いに同じ周波数の基準クロックを生成する構成としている。
これにより、各固定局が互いに異なる周波数の基準クロックを生成する場合と比べて、各固定局の周波数偏差を小さくすることができるので、位相補正の精度を高めて、位置検出の高精度化が実現できる。また、各固定局用基準クロック回路を同一の回路部品を用いて構成することができるので、コストを抑制することができる。
(7).本発明の位置検知方法では、3つ以上の前記固定局のうち少なくとも1つの固定局は、前記基準局の機能を兼ね備えて、複数の前記第2の無線信号を送信する構成としている。
この場合、固定局から送信される複数の第2の無線信号を用いて各固定局の位相オフセットをキャンセルできるので、基準局を別個に設ける必要がなくなる。この結果、システムを簡易に構築できるので、コストを抑制することができる。
(8).本発明の位置検知方法では、前記移動局の前記移動局用基準クロック回路は、2つ以上の周波数の基準クロックを生成する機能を有し、前記移動局は、2種類以上のキャリア周波数の前記第1の無線信号を送信し、前記基準局の前記基準局用基準クロック回路は、2つ以上の周波数の基準クロックを生成する機能を有し、前記基準局は、2種類以上のキャリア周波数の複数の前記第2の無線信号を送信する構成としている。
この場合、一のキャリア周波数を用いて検出した位相差と、他のキャリア周波数を用いて検出した位相差とは、それぞれの繰り返しの周期は異なるため、2つの位相差の差を用いて、2つの位相差が何周したかを求めることができる。これにより、位相差の周期性が長くなり、位相周りの不確定性が解消して絶対位相を求めることができ、高精度に移動局の位置を算出することができる。
以下、本発明の実施の形態による位置検知システムについて、添付図面を参照しつつ詳細に説明する。
図1ないし図10に、第1の実施の形態による位置検知システム1を示す。位置検知システム1は、移動局2と、基準局3と、第1の固定局4と、第2の固定局5と、第3の固定局6と、サーバ7等を有している。この場合、例えば、移動局2と第1の固定局4とは距離r1だけ離れ、移動局2と第2の固定局5とは距離r2だけ離れ、移動局2と第3の固定局6とは距離r3だけ離れているものとする。
移動局2は、例えば検知対象物となる移動可能な無線端末である。図2に示すように、移動局2は、移動局用基準クロック回路2Aと、制御回路2Bと、無線信号送信回路2Cと、送信アンテナ2D等を有している。この移動局2は、各固定局4~6に向けて第1の無線信号S1を送信し、基準局3に向けてトリガ無線信号Stを送信する。
移動局用基準クロック回路2Aは、例えば、発振器を備えている。この移動局用基準クロック回路2Aは、送信アンテナ2Dに対して第1の無線信号S1およびトリガ無線信号Stの基準となる角周波数ωm(キャリア周波数)の基準クロック(CLK)Cmを生成する。制御回路2Bは、例えばマイクロコンピュータ等によって構成されている。制御回路2Bは、移動局2が第1の無線信号S1およびトリガ無線信号Stを間欠的に送信するタイミング等を制御している。
無線信号送信回路2Cは、例えば変調回路、増幅器等を備えている。無線信号送信回路2Cの入力側は制御回路2Bに接続され、無線信号送信回路2Cの出力側は送信アンテナ2Dに接続されている。この無線信号送信回路2Cは、基準クロックCmに基づいて、第1の無線信号S1およびトリガ無線信号Stを生成する。送信アンテナ2Dは、第1の無線信号S1およびトリガ無線信号Stが放射可能な各種のアンテナによって構成されている。送信アンテナ2Dは、第1の無線信号S1を各固定局4~6に向けて送信し、基準局3に向けてトリガ無線信号Stを送信する。なお、トリガ無線信号Stは、第1の無線信号S1と同一でもよく、例えば各種の信号変調によって第1の無線信号S1とは別個の無線信号としてもよい。
ここで、移動局2が送信する第1の無線信号S1に含まれるキャリア位相Pmは、角周波数ωm、時刻t、位相オフセットφmとすると、以下の数1式で表される。この場合、位相オフセットとは、移動局2、基準局3、各固定局4~6が非同期で独立に動作することによる位相のずれを意味している。
基準局3は、予め決められた位置に配置されている。図5に示すように、基準局3は、基準局用基準クロック回路3Aと、制御回路3Bと、無線信号送信回路3Cと、無線信号受信回路3Dと、送受切替回路3Eと、送受信アンテナ3F等を有している。この基準局3は、移動局2が送信したトリガ無線信号Stを受信したときに、各固定局4~6に向けて、第2の無線信号S2を複数回送信する。
基準局用基準クロック回路3Aは、例えば発振器を備えている。この基準局用基準クロック回路3Aは、送受信アンテナ3Fに対して第2の無線信号S2の基準となる角周波数ωs(キャリア周波数)の基準クロックCsを生成する。制御回路3Bは、例えばマイクロコンピュータ等によって構成されている。制御回路3Bは、基準局3が、トリガ無線信号Stを受信し、第2の無線信号S2を間欠的に送信する動作等を制御している。
無線信号送信回路3Cは、制御回路3Bと送受切替回路3Eとに接続されている。この無線信号送信回路3Cは、例えば変調回路、増幅器等を備えている。この無線信号送信回路3Cは、基準クロックCsに基づいて、第2の無線信号S2を生成する。一方、無線信号受信回路3Dは、制御回路3Bと送受切替回路3Eとに接続されている。無線信号受信回路3Dは、例えば増幅器、フィルタ等を備えている。この無線信号受信回路3Dは、送受信アンテナ3Fで受信したトリガ無線信号Stを増幅すると共に、トリガ無線信号Stからノイズを除去し制御回路3Bに出力する。
送受切替回路3Eは、無線信号送信回路3Cおよび無線信号受信回路3Dと送受信アンテナ3Fとの間を接続している。この送受切替回路3Eは、制御回路3Bの指令により送受信を切替え、無線信号送信回路3Cからの第2の無線信号S2を送受信アンテナ3Fに出力し、送受信アンテナ3Fで受信したトリガ無線信号Stを無線信号受信回路3Dに出力する。送受信アンテナ3Fは、トリガ無線信号Stを受信し第2の無線信号S2が放射可能な各種のアンテナによって構成されている。送受信アンテナ3Fは、第2の無線信号S2を各固定局4~6に向けて複数回送信する。
ここで、基準局3が送信する第2の無線信号S2に含まれるキャリア位相Psは、角周波数ωs、時刻t、位相オフセットφsとすると、以下の数2式で表される。
第1の固定局4は、予め決められた場所に配置されている。図3に示すように、第1の固定局4は、固定局用基準クロック回路4Aと、制御回路4Bと、無線信号受信回路4Cと、受信アンテナ4D等を有している。この第1の固定局4は、移動局2から送信された第1の無線信号S1と、基準局3から送信された複数の第2の無線信号S2とを受信する。
固定局用基準クロック回路4Aは、例えば発振器を備えている。この固定局用基準クロック回路4Aは、第1の固定局4が作動する角周波数ωf1の基準クロックCf1を生成する。制御回路4Bは、例えばマイクロコンピュータ等によって構成されている。制御回路4Bは、基準クロックCf1と第1の無線信号S1との位相差Δφmf1と、基準クロックCf1と複数の第2の無線信号S2との位相差Δφsbf1,Δφscf1とを検出する動作を制御する。
ここで、第1の固定局4の基準クロックCf1の位相Pf1は、角周波数ωf1、時刻t、位相オフセットφf1とすると、以下の数3式で表される。
無線信号受信回路4Cは、受信アンテナ4Dと制御回路4Bとに接続されている。この無線信号受信回路4Cは、例えばミキサ4C1,4C2、移相器4C3、位相検出回路(図示せず)等を備えている。この無線信号受信回路4Cは、受信アンテナ4Dで受信した第1の無線信号S1に含まれるキャリア位相Pmと基準クロックCf1の位相Pf1との位相差Δφmf1と、受信アンテナ4Dで受信した複数の第2の無線信号S2に含まれるキャリア位相Psと基準クロックCf1の位相Pf1との位相差Δφsbf1,Δφscf1とを抽出する。
具体的に説明すると、無線信号受信回路4Cは、基準クロックCf1と受信信号としての第1の無線信号S1(第2の無線信号S2)とを、ミキサ4C1において混合(ダウンコンバート)してI信号を生成する。また、無線信号受信回路4Cは、固定局用基準クロック回路4Aから出力された基準クロックCf1を移相器4C3において位相を90°進めて(遅らせて)、この90°進めた基準クロックCf1と受信信号としての第1の無線信号S1(第2の無線信号S2)とを、ミキサ4C2において混合(ダウンコンバート)してQ信号を生成する。これらのI信号とQ信号とは、位相検出回路に出力される。位相検出回路は、第1の無線信号S1のキャリア位相Pmと基準クロックCf1の位相Pf1との位相差Δφmf1を算出する。これに加え、位相検出回路は、複数の第2の無線信号S2のキャリア位相Psと基準クロックCf1の位相Pf1との位相差Δφsbf1,Δφscf1を算出する。
第2の固定局5は、予め決められた場所として、第1の固定局4と異なる位置に配置されている。この第2の固定局5は、第1の固定局4と同様に、固定局用基準クロック回路5Aと、制御回路5Bと、無線信号受信回路5Cと、受信アンテナ5D等を有している。
固定局用基準クロック回路5Aは、例えば、発振器を備えている。この固定局用基準クロック回路5Aは、第2の固定局5が作動する角周波数ωf2の基準クロックCf2を生成する。制御回路5Bは、例えばマイクロコンピュータ等によって構成されている。制御回路5Bは、基準クロックCf2と第1の無線信号S1との位相差Δφmf2と、基準クロックCf2と複数の第2の無線信号S2との位相差Δφsbf2,Δφscf2とを検出する動作を制御する。なお、この場合、第2の固定局5と第1の固定局4とは非同期で独立に動作する。このとき、角周波数ωf2と角周波数ωf1とは、互いに同じ角周波数(ωf2=ωf1)でもよく、互いに異なる角周波数(ωf2≠ωf1)でもよい。
ここで、第2の固定局5の基準クロックCf2の位相Pf2は、角周波数ωf2、時刻t、位相オフセットφf2とすると、以下の数4式で表される。
無線信号受信回路5Cは、受信アンテナ5Dと制御回路5Bとの間に接続されている。無線信号受信回路5Cは、第1の固定局4の無線信号受信回路4Cと同様に構成されている。この無線信号受信回路5Cは、受信アンテナ5Dで受信した第1の無線信号S1のキャリア位相Pmと基準クロックCf2の位相Pf2との位相差Δφmf2を算出する。これに加え、無線信号受信回路5Cは、受信アンテナ5Dで受信した複数の第2の無線信号S2のキャリア位相Psと基準クロックCf2の位相Pf2との位相差Δφsbf2,Δφscf2を算出する。
第3の固定局6は、予め決められた場所として、第1および第2の固定局4,5と異なる位置に配置されている。この第3の固定局6は、第1の固定局4と同様に、固定局用基準クロック回路6Aと、制御回路6Bと、無線信号受信回路6Cと、受信アンテナ6D等を有している。
固定局用基準クロック回路6Aは、例えば発振器を備えている。この固定局用基準クロック回路6Aは、第3の固定局6が作動する角周波数ωf3の基準クロックCf3を生成する。制御回路6Bは、例えばマイクロコンピュータ等によって構成されている。制御回路6Bは、基準クロックCf3と第1の無線信号S1との位相差Δφmf3と、基準クロックCf2と複数の第2の無線信号S2との位相差Δφsbf3,Δφscf3とを検出する動作を制御する。なお、この場合、第3の固定局6と第1および第2の固定局4,5とは非同期で独立に動作する。このとき、角周波数ωf3と角周波数ωf1,ωf2とは、互いに同じ角周波数(ωf3=ωf1=ωf2)でもよく、互いに異なる角周波数(ωf3≠ωf1≠ωf2)でもよい。
ここで、第3の固定局6の基準クロックCf3の位相Pf3は、角周波数ωf3、時刻t、位相オフセットφf3とすると、以下の数5式で表される。
無線信号受信回路6Cは、受信アンテナ6Dと制御回路6Bとの間に接続されている。無線信号受信回路6Cは、第1の固定局4の無線信号受信回路4Cと同様に構成されている。この無線信号受信回路6Cは、受信アンテナ6Dで受信した第1の無線信号S1のキャリア位相Pmと基準クロックCf3の位相Pf3との位相差Δφmf3を算出する。これに加え、無線信号受信回路6Cは、受信アンテナ6Dで受信した複数の第2の無線信号S2のキャリア位相Psと基準クロックCf3の位相Pf3との位相差Δφsbf3,Δφscf3を算出する。
サーバ7は、各固定局4~6に接続されている。サーバ7は、移動局2と各固定局4~6との間の位相差情報である位相差Δφmf1,Δφmf2,Δφmf3と、基準局3と各固定局4~6との間の位相差情報である位相差Δφsbf1,Δφscf1,Δφsbf2,Δφscf2,Δφsbf3,Δφscf3とを用いて、移動局2の位置を算出する。なお、この場合、サーバ7と各固定局4~6との接続は、物理的なケーブルを用いた有線接続でもよいし、無線接続であっても構わない。
次に、図6ないし図10を用いて、本実施の形態による位置検知システム1の位置検知方法について説明する。
図10中のステップ1は、第1の無線信号送信要素の具体例を示している。このステップ1では、移動局2は、各固定局4~6に向けて第1の無線信号S1を送信する。さらに、移動局2は、基準局3が第2の無線信号S2を送信するためのトリガ無線信号Stを送信する(図7参照)。ここで、移動局2が、時刻t0aに送信する第1の無線信号S1のキャリア位相Pmは、以下の数6式で表される。
ステップ2は、第1の位相差算出要素の具体例を示している。このステップ2では、各固定局4~6は、受信した第1の無線信号S1のキャリア位相Pmと、基準クロックCf1~Cf3の位相Pf1~Pf3との第1の位相差Δφmf1~Δφmf3を求める。即ち、第1の固定局4が第1の無線信号S1を受信する時刻をt1aとすると、基準クロックCf1の位相Pf1は以下の数7式で表され、第1の無線信号S1のキャリア位相Pmと基準クロックCf1の位相Pf1との第1の位相差Δφmf1は以下の数8式で表される。
同様に、第2の固定局5が第1の無線信号S1を受信する時刻をt2aとすると、基準クロックCf2の位相Pf2は以下の数9式で表され、第1の無線信号S1のキャリア位相Pmと基準クロックCf2の位相Pf2との第1の位相差Δφmf2は以下の数10式で表される。
同様に、第3の固定局6が第1の無線信号S1を受信する時刻をt3aとすると、基準クロックCf3の位相Pf3は以下の数11式で表され、第1の無線信号S1のキャリア位相Pmと基準クロックCf3の位相Pf3との第1の位相差Δφmf3は以下の数12式で表される。
ステップ3は、第2の無線信号送信要素の具体例を示している。このステップ3では、トリガ無線信号Stを受信した基準局3は、各固定局4~6に向けて複数(例えば、2回)の第2の無線信号S2を送信する。この場合、トリガ無線信号Stを時刻tkaに受信した基準局3は、所定の時間経過後に第2の無線信号S2を送信すればよい。なお、時刻t0bと時刻t0cとの間の時間差は、例えば第2の位相差の変動(位相差Δφsbf1と位相差Δφscf1との差、位相差Δφsbf2と位相差Δφscf2との差、位相差Δφsbf3と位相差Δφscf3との差)が2π以下となる範囲に設定されている。
ここで、基準局3が、時刻t0bに送信する1回目の第2の無線信号S2のキャリア位相Ps1は、以下の数13式で表される。また、基準局3が、時刻t0cに送信する2回目の第2の無線信号S2のキャリア位相Ps2は、以下の数14式で表される。
ステップ4は、第2の位相差算出要素の具体例を示している。このステップ4では、各固定局4~6は、受信した第2の無線信号S2のキャリア位相Ps1,Ps2と、基準クロックCf1~Cf3の位相Pf1~Pf3との第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3を求める。即ち、第1の固定局4が1回目の第2の無線信号S2を受信する時刻をt1bとすると、基準クロックCf1の位相Pf1は以下の数15式で表され、第2の無線信号S2のキャリア位相Ps1と基準クロックCf1の位相Pf1との第2の位相差Δφsbf1は以下の数16式で表される。
また、第1の固定局4が2回目の第2の無線信号S2を受信する時刻をt1cとすると、基準クロックCf1の位相Pf1は以下の数17式で表され、第2の無線信号S2のキャリア位相Ps2と基準クロックCf1の位相Pf1との第2の位相差Δφscf1は以下の数18式で表される。
同様に、第2の固定局5が1回目の第2の無線信号S2を受信する時刻をt2bとすると、基準クロックCf2の位相Pf2は以下の数19式で表され、第2の無線信号S2のキャリア位相Ps1と基準クロックCf2の位相Pf2との第2の位相差Δφsbf2は以下の数20式で表される。
また、第2の固定局5が2回目の第2の無線信号S2を受信する時刻をt2cとすると、基準クロックCf2の位相Pf2は以下の数21式で表され、第2の無線信号S2のキャリア位相Ps2と基準クロックCf2の位相Pf2との第2の位相差Δφscf2は以下の数22式で表される。
同様に、第3の固定局6が1回目の第2の無線信号S2を受信する時刻をt3bとすると、基準クロックCf3の位相Pf3は以下の数23式で表され、第2の無線信号S2のキャリア位相Ps1と基準クロックCf3の位相Pf3との第2の位相差Δφsbf3は以下の数24式で表される。
また、第3の固定局6が2回目の第2の無線信号S2を受信する時刻をt3cとすると、基準クロックCf3の位相Pf3は以下の数25式で表され、第2の無線信号S2のキャリア位相Ps2と基準クロックCf3の位相Pf3との第2の位相差Δφscf3は以下の数26式で表される。
ステップ5は、第3の位相差算出要素の具体例を示している。このステップ5では、第1~第3の固定局4~6は、第1~第3の固定局4~6で得られた複数の第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3に基づいて、第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3の時間変動Δφ1/Δt,Δφ2/Δt,Δφ3/Δtを求める。そして、第1~第3の固定局4~6は、時間変動Δφ1/Δt,Δφ2/Δt,Δφ3/Δtに基づいて、第1の無線信号S1を受信したタイミングにおける第2の無線信号S2のキャリア位相Psと、基準クロックCf1~Cf3の位相Pf1~Pf3との第3の位相差Δφsaf1~Δφsaf3を求める。
即ち、図6に示すように、第1の固定局4は、時刻t1b,t1cで得られた第2の位相差Δφsbf1,Δφscf1の情報に基づいて、外挿法を用いて第1の無線信号S1を受信した時刻t1aにおける第3の位相差Δφsaf1を算出する(数30式参照)。同様に、第2の固定局5は、時刻t2b,t2cで得られた第2の位相差Δφsbf2,Δφscf2の情報に基づいて、第1の無線信号S1を受信した時刻t2aにおける第3の位相差Δφsaf2を算出する(数31式参照)。同様に、第3の固定局6は、時刻t3b,t3cで得られた第2の位相差Δφsbf3,Δφscf3の情報に基づいて、第1の無線信号S1を受信した時刻t3aにおける第3の位相差Δφsaf3を算出する(数32式参照)。この場合、時刻t0bと時刻t0cとの間、時刻t1bと時刻t1cとの間、時刻t2bと時刻t2cとの間、時刻t3bと時刻t3cとの間の関係は、以下の数27式で示す関係となり、数27式から数28式および数29式が導かれる。
ステップ6は、位相オフセットキャンセル要素の具体例を示している。このステップ6では、サーバ7は、第1,第2の固定局4,5で得られた第1の位相差Δφmf1,Δφmf2および第3の位相差Δφsaf1,Δφsaf2を用いて、移動局2と基準局3と第1,第2の固定局4,5とにおける基準クロックCm,Cs,Cf1,Cf2の位相オフセットφm,φs,φf1,φf2をキャンセルする。即ち、以下の数33式で示すように、第1の固定局4で得られた第1,第3の位相差情報から、第2の固定局5で得られた第1,第3の位相差情報を差し引くことで、移動局2と基準局3と第1,第2の固定局4,5との位相オフセットφm,φs,φf1,φf2をキャンセルした位相差Δφ21を算出する。
ステップ7は、キャリア位相差算出要素の具体例を示している。このステップ7では、サーバ7は、位相オフセットφm,φs,φf1,φf2をキャンセルした情報である位相差Δφ21を用いて、第1の固定局4と第2の固定局5との間のキャリア位相差Δ21を算出する。即ち、上記数33式に基づいて、以下の数34式で示すようにキャリア位相差Δ21を算出する。
ここで、数34式の右辺第2項に示すωs(t1b-t2b)は、所定の位置に配置された基準局3と各固定局4,5との関係から予め求められる。これにより、サーバ7は、キャリア位相差Δ21を算出する。
ステップ8は、距離差算出要素の具体例を示している。このステップ8では、サーバ7は、キャリア位相差Δ21を用いて、第1の固定局4と移動局2との間の距離r1と、第2の固定局5と移動局2との間の距離r2とを用いて距離差Δr12(=r1-r2)を求める。この場合、キャリア位相差Δ21が求められれば、各固定局4,5における第1の無線信号S1(または第2の無線信号S2)の到来時間差が求められるので、例えば、TDOA(Time Differential Of Arrival)方式を用いて、距離情報である距離差Δr12を求めることができる。
なお、キャリア位相差Δ21は2π毎に周期的に表れるので、キャリア位相差Δ21の絶対値は直接求められず、2nπ(但し、nは整数)の不確定性があり、キャリア位相差Δ21に対する距離差Δr12も無限に存在する。例えば、図8に示すように、第1の無線信号S1の波長をλ1とすると、キャリア位相差Δ21が2πとなる毎に、波長λ1の整数倍の距離差Δr12が算出される。
この2nπの不確定性を解消するために、位置検知システム1は、移動局2の位置を特定した状態でキャリア位相差Δ21を校正し、その位置からの変動分として追従させる。これにより、位置検知システム1は、キャリア位相差Δ21を一意に求め、図9に示すように、移動局2が存在しうる距離差Δr12の双曲線を求めることができる。
ステップ9は、位相オフセットキャンセル要素の具体例を示している。このステップ9では、サーバ7は、第1,第3の固定局4,6で得られた第1の位相差Δφmf1,Δφmf3および第3の位相差Δφsaf1,Δφsaf3を用いて、移動局2と基準局3と第1,第3の固定局4,6とにおける基準クロックCm,Cs,Cf1,Cf2の位相オフセットφm,φs,φf1,φf2をキャンセルする。即ち、以下の数35式で示すように、第1の固定局4で得られた第1,第3の位相差情報から、第3の固定局6で得られた第1,第3の位相差情報を差し引くことで、移動局2と基準局3と第1,第3の固定局4,6との位相オフセットφm,φs,φf1,φf3をキャンセルした位相差Δφ31を算出する。
ステップ10は、キャリア位相差算出要素の具体例を示している。このステップ10は、サーバ7は、位相オフセットφm,φs,φf1,φf3をキャンセルした情報である位相差Δφ31を用いて、第1の固定局4と第3の固定局6との間のキャリア位相差Δ31を算出する。即ち、上記数35式に基づいて、以下の数36式で示すようにキャリア位相差Δ31を算出する。
ここで、数36式の右辺第2項に示すωs(t1b-t3b)は、所定の位置に配置された基準局3と各固定局4,6との関係から予め求められる。これにより、サーバ7は、キャリア位相差Δ31を算出する。
ステップ11は、距離差算出要素の具体例を示している。このステップ11では、サーバ7は、キャリア位相差Δ31を用いて、第1,第3の固定局4,6と移動局2との距離差Δr13(=r1-r3)を求める。この場合、例えばTDOA方式を用いて、キャリア位相差Δ31から距離差Δr13を求めることができる。
ステップ12は、移動局位置算出要素の具体例を示している。このステップ12では、サーバ7は、求めた2つの距離差Δr12,Δr13から移動局2の位置を算出する。即ち、図9に示すように、サーバ7は、距離差Δr12の双曲線と、距離差Δr13の双曲線との交点から移動局2の位置を求めることができる。
かくして、第1の実施の形態によれば、位置検知システム1は、移動局2と各固定局4~6との間の位相差情報と、基準局3と各固定局4~6との間の位相差情報とを用いて、移動局2の位置を算出する構成としている。この場合、各固定局4~6に到達する第1の無線信号S1のキャリア位相差Δ21,Δ31を用いているので、第1の無線信号S1の波長λ1よりも短い距離分解能を実現することができる。これにより、距離分解能を高めて移動局2の位置検出を行うときでも、狭帯域の無線信号を用いることができるから、パルス信号を用いた場合に比べて、無線信号の占有帯域幅を狭めることができる。
また、位置検知システム1は、移動局2と各固定局4~6との間の第1の位相差Δφmf1~Δφmf3と、基準局3と各固定局4~6との間の第3の位相差Δφsaf1~Δφsaf3とを用いて、移動局2、基準局3および各固定局4~6の位相オフセットφm,φs,φf1~φf3をキャンセルしている。これにより、各固定局4~6、移動局2、基準局3との間で同期をとる必要が無くなるので、システム構築を簡易化することができる。
具体的には、位置検知システム1は、基準局3と各固定局4~6との間の複数の第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3に基づいて第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3の時間変動Δφ1/Δt,Δφ2/Δt,Δφ3/Δtを求めている。そして、位置検知システム1は、第1の無線信号S1を受信したタイミングにおける第2の無線信号S2に含まれるキャリア位相Psと各固定局4~6の各基準クロックCf1~Cf3との第3の位相差Δφsaf1~Δφsaf3を算出する構成としている。これにより、移動局2と各固定局4~6との間の第1の位相差Δφmf1~Δφmf3と、第1の無線信号S1を受信したタイミングにおける基準局3と各固定局4~6との間の第3の位相差Δφsaf1~Δφsaf3とを用いて、移動局2、基準局3および各固定局4~6の位相オフセットφm,φs,φf1~φf3をキャンセルすることができる。この結果、第1の位相差Δφmf1~Δφmf3を抽出するタイミングと第3の位相差Δφsaf1~Δφsaf3を算出するタイミングを合わせることができるので、位相補正の精度を高めて位置検出の高精度化が実現できる。
また、第1の無線信号S1を受信したタイミングにおける第3の位相差Δφsaf1~Δφsaf3を算出することにより、各固定局4~6の基準クロックCf1~Cf3の角周波数ωf1~ωf3が互いに異なる場合でも、移動局2、基準局3、各固定局4~6の位相オフセットφm,φs,φf1~φf3をキャンセルすることができる。
また、移動局2はトリガ無線信号Stを送信し、基準局3は移動局2が送信したトリガ無線信号Stを受信したときに複数の第2の無線信号S2を送信する構成としている。これにより、移動局2からの第1の無線信号S1を各固定局4~6が受信する時刻t1a,t2a,t3aと、基準局3からの第2の無線信号S2を各固定局4~6が受信する時刻t1c,t2c,t3cとの間隔(t1c-t1a,t2c-t2a,t3c-t3a)を短くすることができる。この結果、各固定局4~6の周波数偏差による位相回転を小さく抑えることができるから、位相補正の精度を高めて、位置検出の高精度化が実現できる。
次に、図11ないし図13に、本発明の第2の実施の形態による位置検知システムを示す。第2の実施の形態の特徴は、第1の固定局は、基準局の機能を兼ね備える構成としたことにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成については同一の符号を付し、その説明は省略する。
第2の実施の形態による位置検知システム21は、第1の実施の形態による位置検知システム1とほぼ同様に構成される。このため、位置検知システム21は、移動局2と、第1の固定局22と、第2の固定局5と、第3の固定局6と、サーバ7等を有している。但し、第1の固定局22は、基準局の機能を兼ね備えるために、無線信号送信回路22Cと送受信アンテナ22Fとを備える。この点で、第1の実施の形態とは異なっている。
第1の固定局22は、予め決められた位置として、第2および第3の固定局5,6とは異なる位置に配置されている。図12に示すように、この第1の固定局22は、固定局用基準クロック回路22Aと、制御回路22Bと、無線信号送信回路22Cと、無線信号受信回路22Dと、送受切替回路22Eと、送受信アンテナ22F等を有している。この第1の固定局22は、基準局の機能を兼ね備え、各固定局5,6に向けて、第2の無線信号S2を送信する。
固定局用基準クロック回路22Aは、例えば、発振器を備えている。この固定局用基準クロック回路22Aは、送受信アンテナ22Fに対して第2の無線信号S2の基準となる角周波数ωf1(キャリア周波数)の基準クロックCf1を生成する。制御回路22Bは、例えばマイクロコンピュータ等によって構成されている。制御回路22Bは、第1の固定局22が、第2の無線信号S2を間欠的に送信する動作等を制御している。
無線信号送信回路22Cは、制御回路22Bと送受切替回路22Eとに接続されている。この無線信号送信回路22Cは、例えば変調回路、増幅器等を備えている。無線信号送信回路22Cは、基準クロックCf1に基づいて、第2の無線信号S2を生成する。一方、無線信号受信回路22Dは、制御回路22Bと送受切替回路22Eとに接続されている。無線信号受信回路22Dは、例えばミキサ、移相器(いずれも図示せず)等を備えている。この無線信号受信回路22Dは、送受信アンテナ22Fで受信した第1の無線信号S1のキャリア位相Pmと基準クロックCf1の位相Pf1との位相差Δφmf1を算出する。
送受切替回路22Eは、無線信号送信回路22Cおよび無線信号受信回路22Dと送受信アンテナ22Fとの間を接続している。この送受切替回路22Eは、制御回路22Bの指令により送受信を切替え、無線信号送信回路22Cからの第2の無線信号S2を送受信アンテナ22Fに出力し、送受信アンテナ22Fで受信した第1の無線信号S1を無線信号受信回路22Dに出力する。送受信アンテナ22Fは、第2の無線信号S2が放射可能な各種のアンテナによって構成されている。送受信アンテナ22Fは、第2の無線信号S2を各固定局5,6に向けて送信する。
次に、第2の実施の形態による位置検知システム21の位置検知方法について説明する。第2の実施の形態による位置検知システム21は、前述した第1の実施の形態による位置検知システム1と同様に、図10に示す位置検知方法を用いて移動局2の位置を算出する。
なお、この場合、第1の固定局22は、第1の固定局22が第2の無線信号S2を送信する時刻t1b,t1cを、第1の固定局22が第2の無線信号S2を受信する時刻として、第2の位相差Δφsbf1,Δφscf1を算出する。即ち、第1の固定局22が送信する第2の無線信号S2のキャリア位相Psと、第1の固定局22が受信する第2の無線信号S2の位相Pf1は、時刻が同一であるので同位相となり、以下の数37式で表される。
従って、第1の固定局22における第2の位相差Δφsbf1,Δφscf1は、以下の数38式で示す値となる。
また、外挿法を用いた第3の位相差Δφsaf1は、上記数38式で得られた第2の位相差Δφsbf1,Δφscf1の情報に基づいて、以下の数39式で示される。
また、移動局2と第1,第2の固定局22,5との位相オフセットφm,φf1,φf2をキャンセルした位相差Δφ21は、上述した数8式、数10式、数31式、数39式を用いて、以下の数40式で示される。
同様に、移動局2と第1,第3の固定局22,6との位相オフセットφm,φf1,φf3をキャンセルした位相差Δφ31は、上述した数8式、数12式、数32式、数39式を用いて、以下の数41式で示される。
かくして、第2の実施の形態でも、第1の実施の形態とほぼ同様な作用効果を得ることができる。第2の実施の形態では、第1の固定局22は、基準局の機能を兼ね備えて、第2の無線信号S2を送信する構成としている。この場合、第1の固定局22から送信される第2の無線信号S2を用いて、移動局2および各固定局4~6の位相オフセットφm,φf1~φf3をキャンセルできるので、基準局を別個に設ける必要がなくなる。この結果、システムを簡易に構築できるので、コストを抑制することができる。
次に、図1、図14ないし図16に、本発明の第3の実施の形態による位置検知システムを示す。第3の実施の形態の特徴は、移動局は2種類以上のキャリア周波数の第1の無線信号を送信し、基準局は2種類以上のキャリア周波数の第2の無線信号を送信する構成としたことにある。なお、第3の実施の形態では、前述した第1,第2の実施の形態と同一の構成については同一の符号を付し、その説明は省略する。
第3の実施の形態による位置検知システム31は、第1の実施の形態による位置検知システム1とほぼ同様に構成される。このため、位置検知システム31は、移動局2と、基準局3と、第1の固定局4と、第2の固定局5と、第3の固定局6と、サーバ7等を有している。
ここで、移動局2は、各固定局4~6に向けて、2種類のキャリア周波数(角周波数)の第1の無線信号S1,S1′を送信する。この場合、移動局2の移動局用基準クロック回路2Aは、2つの周波数の基準クロックCm,Cm′を生成する。即ち、移動局用基準クロック回路2Aは、第1の無線信号S1の基準となる角周波数ωmの基準クロックCmと、第1の無線信号S1′の基準となる角周波数ωm′の基準クロックCm′とを生成する。
また、基準局3は、各固定局4~6に向けて、2種類のキャリア周波数(角周波数)の第2の無線信号S2,S2′を送信する。この場合、基準局3の基準局用基準クロック回路3Aは、2つの周波数の基準クロックCs,Cs′を生成する。即ち、基準局用基準クロック回路3Aは、第2の無線信号S2の基準となる角周波数ωsの基準クロックCsと、第2の無線信号S2′の基準となる角周波数ωs′の基準クロックCs′とを生成する。
次に、図14ないし図16を用いて、第3の実施の形態による位置検知システム31の位置検知方法について説明する。
図16中のステップ21は、第1の無線信号送信要素の具体例を示している。このステップ21では、移動局2は、各固定局4~6に向けて第1の無線信号S1を送信し、さらに基準局3が第2の無線信号S2を送信するためのトリガ無線信号Stを送信する(図14参照)。
ステップ22は、第1の位相差算出要素の具体例を示している。このステップ22では、各固定局4~6は、受信した第1の無線信号S1のキャリア位相Pmと、基準クロックCf1~Cf3の位相Pf1~Pf3との位相差Δφmf1~φmf3を求める(数6式ないし数12式参照)。
ステップ23は、第2の無線信号送信要素の具体例を示している。このステップ23では、トリガ無線信号Stを受信した基準局3は、各固定局4~6に向けて複数(例えば、2回)の第2の無線信号S2を送信する。この場合、トリガ無線信号Stを時刻tkaに受信した基準局3は、所定の時間経過後に第2の無線信号S2を送信すればよい(数13式および数14式参照)。
ステップ24は、第2の位相差算出要素の具体例を示している。このステップ24では、各固定局4~6は、受信した第2の無線信号S2のキャリア位相Ps1,Ps2と、基準クロックCf1~Cf3の位相Pf1~Pf3との第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3を求める(数15式ないし数26式参照)。
ステップ25は、第1の無線信号送信要素の具体例を示している。このステップ25では、移動局2は、各固定局4~6に向けて、第1の無線信号S1とはキャリア周波数が異なる第1の無線信号S1′を送信する。即ち、移動局用基準クロック回路2Aは、第1の無線信号S1′の基準となる角周波数ωm′の基準クロックCm′を生成し、送信アンテナ2Dを介して第1の無線信号S1′を送信する。ここで、移動局2が、時刻t0dに送信する第1の無線信号S1′のキャリア位相Pm′は、以下の数42式で表される。
ステップ26は、第1の位相差算出要素の具体例を示している。このステップ26では、各固定局4~6は、受信した第1の無線信号S1′のキャリア位相Pm′と、基準クロックCf1~Cf3の位相Pf1~Pf3との位相差Δφmf1′~Δφmf3′を求める。即ち、第1の固定局4が第1の無線信号S1′を受信する時刻をt1dとすると、基準クロックCf1の位相Pf1は以下の数43式で表され、第1の無線信号S1′のキャリア位相Pm′と基準クロックCf1の位相Pf1との位相差Δφmf1′は以下の数44式で表される。
同様に、第2の固定局5が第1の無線信号S1′を受信する時刻をt2dとすると、基準クロックCf2の位相Pf2は以下の数45式で表され、第1の無線信号S1′のキャリア位相Pm′と基準クロックCf2の位相Pf2との位相差Δφmf2′は以下の数46式で表される。
同様に、第3の固定局6が第1の無線信号S1′を受信する時刻をt3dとすると、基準クロックCf3の位相Pf3は以下の数47式で表され、第1の無線信号S1′のキャリア位相Pm′と基準クロックCf3の位相Pf3との位相差Δφmf3′は以下の数48式で表される。
ステップ27は、第2の無線信号送信要素の具体例を示している。このステップ27では、トリガ無線信号St′を受信した基準局3は、各固定局4~6に向けて、第2の無線信号S2とはキャリア周波数が異なる第2の無線信号S2′を複数(例えば、2回)送信する。即ち、基準局用基準クロック回路3Aは、第2の無線信号S2′の基準となる角周波数ωs′の基準クロックCs′を生成し、送受信アンテナ3Fを介して第2の無線信号S2′を送信する。この場合、トリガ無線信号St′を時刻tkdに受信した基準局3は、所定の時間経過後に第2の無線信号S2′を送信すればよい。なお、時刻t0eと時刻t0fとの間の時間差は、例えば第2の位相差の変動(位相差Δφsef1と位相差Δφsff1との差、位相差Δφsef2と位相差Δφsff2との差、位相差Δφsef3と位相差Δφsff3との差)が2π以下となる範囲に設定されている。
また、基準局3が、時刻t0eに送信する1回目の第2の無線信号S2′のキャリア位相Ps1′は、以下の数49式で表される。また、基準局3が、時刻t0fに送信する2回目の第2の無線信号S2′のキャリア位相Ps2′は、以下の数50式で表される。
ステップ28は、第2の位相差算出要素の具体例を示している。このステップ28では、各固定局4~6は、受信した第2の無線信号S2′のキャリア位相Ps1′,Ps2′と、基準クロックCf1~Cf3の位相Pf1~Pf3との第2の位相差Δφsef1~Δφsef3,Δφsff1~Δφsff3を求める。即ち、第1の固定局4が1回目の第2の無線信号S2′を受信する時刻をt1eとすると、基準クロックCf1の位相Pf1は以下の数51式で表され、第2の無線信号S2′のキャリア位相Ps1′と基準クロックCf1の位相Pf1との第2の位相差Δφsef1は以下の数52式で表される。
また、第1の固定局4が2回目の第2の無線信号S2′を受信する時刻をt1fとすると、基準クロックCf1の位相Pf1は以下の数53式で表され、第2の無線信号S2′のキャリア位相Ps2′と基準クロックCf1の位相Pf1との第2の位相差Δφsff1は以下の数54式で表される。
同様に、第2の固定局5が1回目の第2の無線信号S2′を受信する時刻をt2eとすると、基準クロックCf2の位相Pf2は以下の数55式で表され、第2の無線信号S2′のキャリア位相Ps1′と基準クロックCf2の位相Pf2との第2の位相差Δφsef2は以下の数56式で表される。
また、第2の固定局5が2回目の第2の無線信号S2′を受信する時刻をt2fとすると、基準クロックCf2の位相Pf2は以下の数57式で表され、第2の無線信号S2′のキャリア位相Ps2′と基準クロックCf2の位相Pf2との第2の位相差Δφsff2は以下の数58式で表される。
同様に、第3の固定局6が1回目の第2の無線信号S2′を受信する時刻をt3eとすると、基準クロックCf3の位相Pf3は以下の数59式で表され、第2の無線信号S2′のキャリア位相Ps1′と基準クロックCf3の位相Pf3との第2の位相差Δφsef3は以下の数60式で表される。
また、第3の固定局6が2回目の第2の無線信号S2′を受信する時刻をt3fとすると、基準クロックCf3の位相Pf3は以下の数61式で表され、第2の無線信号S2′のキャリア位相Ps2′と基準クロックCf3の位相Pf3との第2の位相差Δφsff3は以下の数62式で表される。
ステップ29は、第3の位相差算出要素の具体例を示している。このステップ29では、第1~第3の固定局4~6は、第1~第3の固定局4~6で得られた複数の第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3,Δφsef1~Δφsef3,Δφsff1~Δφsff3に基づいて、第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3,Δφsef1~Δφsef3,Δφsff1~Δφsff3の時間変動Δφ1/Δt,Δφ1′/Δt,Δφ2/Δt,Δφ2′/Δt,Δφ3/Δt,Δφ3′/Δtを求める。この場合、第1~第3の固定局4~6は、第2の位相差Δφsbf1~Δφsbf3,Δφscf1~Δφscf3の時間変動Δφ1/Δt,Δφ2/Δt,Δφ3/Δtに基づいて第1の無線信号S1を受信したタイミングにおける第2の無線信号S2のキャリア位相Psと、基準クロックCf1~Cf3の位相Pf1~Pf3との第3の位相差Δφsaf1~Δφsaf3を求める(数30式ないし数32式参照)。
また、第1~第3の固定局4~6は、第2の位相差Δφsef1~Δφsef3,Δφsff1~Δφsff3の時間変動Δφ1′/Δt,Δφ2′/Δt,Δφ3′/Δtに基づいて第1の無線信号S1′を受信したタイミングにおける第2の無線信号S2′のキャリア位相Ps′と、基準クロックCf1~Cf3の位相Pf1~Pf3との第3の位相差Δφsdf1~Δφsdf3を求める。
この場合、第1の固定局4は、時刻t1e,t1fで得られた第2の位相差Δφsef1,Δφsff1の情報に基づいて、外挿法を用いて第1の無線信号S1′を受信した時刻t1dにおける第3の位相差Δφsdf1を算出する(数66式参照)。同様に、第2の固定局5は、時刻t2e,t2fで得られた第2の位相差Δφsef2,Δφsff2の情報に基づいて、第1の無線信号S1′を受信した時刻t2dにおける第3の位相差Δφsdf2を算出する(数67式参照)。同様に、第3の固定局6は、時刻t3e,t3fで得られた第2の位相差Δφsef3,Δφsff3の情報に基づいて、第1の無線信号S1′を受信した時刻t3dにおける第3の位相差Δφsdf3を算出する(数68式参照)。この場合、時刻t0eと時刻t0fとの間、時刻t1eと時刻t1fとの間、時刻t2eと時刻t2fとの間、時刻t3eと時刻t3fとの間の関係は、以下の数63式で示す関係となり、数63式から数64式および数65式が導かれる。
ステップ30は、位相オフセットキャンセル要素の具体例を示している。このステップ30では、サーバ7は、第1,第2の固定局4,5で得られた第1の位相差Δφmf1,Δφmf1′,Δφmf2,Δφmf2′および第3の位相差Δφsaf1,Δφsaf2,Δφsdf1,Δφsdf2を用いて、移動局2と基準局3と第1,第2の固定局4,5とにおける基準クロックCm,Cs,Cf1,Cf2の位相オフセットφm,φs,φf1,φf2をキャンセルする。即ち、上記数33式を用いて位相差Δφ21を算出し、以下の数69式を用いて位相差Δφ21′を算出する。
ステップ31は、キャリア位相差算出要素の具体例を示している。このステップ31では、サーバ7は、位相オフセットφm,φs,φf1,φf2をキャンセルした情報である位相差Δφ21,Δφ21′を用いて、第1の固定局4と第2の固定局5との間のキャリア位相差Δ21,Δ21′を算出する。即ち、上記数34式を用いてキャリア位相差Δ21を算出し、以下の数70式により第1の無線信号S1′を用いたキャリア位相差Δ21′を算出する。
ステップ32は、距離差算出要素の具体例を示している。このステップ32では、サーバ7は、キャリア位相差Δ21,Δ21′を用いて、第1の固定局4と移動局2との間の距離と、第2の固定局5と移動局2との間の距離である距離差Δr12を求める。なお、図15に示すように、第1の無線信号S1の波長をλ1とすると、キャリア位相差Δ21が2πとなる毎に、波長λ1の整数倍の距離差Δr12が算出される。また、第1の無線信号S1′の波長をλ2とすると、キャリア位相差Δ21′が2πとなる毎に、波長λ2の整数倍の距離差Δr12が算出される。
この場合、キャリア位相差Δ21とキャリア位相差Δ21′とは、それぞれの繰り返し周期である基準クロックCm,Cm′の角周波数ωm,ωm′が異なっているため、位相差の差DP(=Δ21-Δ21′)を用いることにより、キャリア位相差Δ21とキャリア位相差Δ21′とが何周したかを求めることができる(図15参照)。即ち、例えば角周波数ωmが2.44GHzであり角周波数ωm′が2.45GHzである場合、各波長λ1,λ2は12.29cmと12.36cmとなる。そして、キャリア位相差Δ21,Δ21′の差DPは、30m毎に繰り返されることになり、位置検知システム31の取り得る範囲が30m以内であれば、キャリア位相差Δ21,Δ21′を一意に求めることができる。
ステップ33は、位相オフセットキャンセル要素の具体例を示している。このステップ33では、サーバ7は、第1,第3の固定局4,6で得られた第1の位相差Δφmf1,Δφmf1′,Δφmf3,Δφmf3′および第3の位相差Δφsaf1,Δφsaf3,Δφsdf1,Δφsdf3を用いて、移動局2と基準局3と第1,第3の固定局4,6とにおける基準クロックCm,Cs,Cf1,Cf3の位相オフセットφm,φs,φf1,φf3をキャンセルする。即ち、上記数35式を用いて位相差Δφ31を算出し、以下の数71式を用いて位相差Δφ31′を算出する。
ステップ34は、キャリア位相差算出要素の具体例を示している。このステップ34では、サーバ7は、位相オフセットφm,φs,φf1,φf3をキャンセルした情報である位相差Δφ31,Δφ31′を用いて、第1の固定局4と第3の固定局6との間のキャリア位相差Δ31,Δ31′を算出する。即ち、上記数36式を用いてキャリア位相差Δ31を算出し、以下の数72式により第1の無線信号S1′を用いたキャリア位相差Δ31′を算出する。
ステップ35は、距離差算出要素の具体例を示している。このステップ35では、サーバ7は、キャリア位相差Δ31,Δ31′を用いて、第1の固定局4と移動局2との間の距離と、第3の固定局6と移動局2との間の距離である距離差Δr13を求める。即ち、距離差Δr12を求めた場合と同様に、キャリア位相差Δ31とキャリア位相差Δ31′との差を求めることにより、キャリア位相差Δ31,Δ31′を一意に求めることができる。
ステップ36は、移動局位置算出要素の具体例を示している。このステップ36は、サーバ7は、求めた2つの距離差Δr12,Δr13から移動局2の位置を算出する。即ち、サーバ7は、距離差Δr12の双曲線と、距離差Δr13の双曲線との交点から移動局2の位置を求めることができる。
かくして、第3の実施の形態でも、第1の実施の形態とほぼ同様な作用効果を得ることができる。第3の実施の形態では、移動局2は、移動局用基準クロック回路2Aは2つの周波数の基準クロックCm,Cm′を生成する機能を有し、2種類の角周波数ωm,ωm′の第1の無線信号S1,S1′を送信する構成としている。また、基準局3は、基準局用基準クロック回路3Aは2つの周波数の基準クロックCs,Cs′を生成する機能を有し、2種類の角周波数ωs,ωs′の第2の無線信号S2,S2′を送信する構成としている。
この場合、一の角周波数ωm,ωsを用いて検出したキャリア位相差Δ21(Δ31)と、他の角周波数ωm′,ωs′を用いて検出したキャリア位相差Δ21′(Δ31′)とは、それぞれの繰り返しの周期は異なっている。このため、2つのキャリア位相差Δ21,Δ21′(Δ31,Δ31′)の差DPを用いて、2つのキャリア位相差Δ21,Δ21′(Δ31,Δ31′)が何周したかを求めることができる。これにより、位相差の周期性が長くなり、位相周りの不確定性が解消して絶対位相を求めることができ、高精度に移動局2の位置を算出することができる。
また、移動局2による2種類の角周波数ωm,ωm′の第1の無線信号S1,S1′と、基準局3による2種類の角周波数ωs,ωs′の第2の無線信号S2,S2′とを用いて、位相補正を行うことで、位相補正の精度を高めることができる。この結果、高精度に移動局2の位置を算出することができる。
なお、前記第1の実施の形態では、位置検知システム1は、3つの固定局4~6を備える構成とした。しかし、本発明はこれに限らず、位置検知システムは4つ以上の固定局を備える構成としてもよい。このことは、第2,第3の実施の形態についても同様である。
また、前記第1の実施の形態では、各固定局用基準クロック回路と、移動局用基準クロック回路と、基準局用基準クロック回路とは、互いに同じ角周波数の基準クロックを用いる構成としてもよい。このことは、第2または第3の実施の形態についても同様である。
また、前記第1の実施の形態では、位置検知システム1は、1つの移動局2を備える構成とした。しかし、本発明はこれに限らず、位置検知システムは2つ以上の移動局を備える構成としてもよい。この場合、例えば、移動局が送信する第1の無線信号にID情報を付加して、個体を識別させる構成とすればよい。このことは、第2または第3の実施の形態についても同様である。
また、前記第1の実施の形態では、サーバ7は、第1の固定局4と第2の固定局5との間の距離差Δr12の双曲線と、第1の固定局4と第3の固定局6との間の距離差Δr13の双曲線との交点から移動局2の位置を求める構成とした。しかし、本発明はこれに限らず、サーバ7は、第2の固定局と第3の固定局との間の距離差Δr23(=r2-r3)の双曲線をさらに求めて、距離差Δr12,Δr13,Δr23の3つの双曲線から移動局の位置を求める構成としてもよい。このことは、第2または第3の実施の形態についても同様である。
また、前記第2の実施の形態では、第1の固定局22が基準局の機能を兼ね備え、各固定局5,6に向けて、第2の無線信号S2を送信する構成とした。しかし、本発明はこれに限らず、第2の固定局または第3の固定局が基準局の機能を兼ね備えて、第2の無線信号を送信する構成としてもよい。さらに、各固定局のうち2つ以上の固定局が基準局の機能を兼ね備えて、第2の無線信号を送信する構成としてもよい。
また、前記第3の実施の形態では、移動局用基準クロック回路2Aは2つの角周波数ωm,ωm′の基準クロックCm,Cm′を生成する機能を有し、移動局は2種類の第1の無線信号S1,S1′を送信する構成としている。しかし、本発明はこれに限らず、移動局用基準クロック回路は3つ以上の角周波数の基準クロックを生成し、移動局は3種類以上の第1の無線信号を送信する構成としてもよい。
また、前記第3の実施の形態では、基準局用基準クロック回路3Aは2つの角周波数ωs,ωs′の基準クロックCs,Cs′を生成する機能を有し、基準局は2種類の第2の無線信号S2,S2′を送信する構成としている。しかし、本発明はこれに限らず、基準局用基準クロック回路は3つ以上の角周波数の基準クロックを生成し、基準局は3種類以上の第2の無線信号を送信する構成としてもよい。
1,21,31 位置検知システム
2 移動局
2A 移動局用基準クロック回路
2C,3C,22C 無線信号送信回路
2D 送信アンテナ
3 基準局
3A 基準局用基準クロック回路
3D,4C,5C,6C,22D 無線信号受信回路
3F,22F 送受信アンテナ
4,22 第1の固定局
4A,5A,6A,22A 固定局用基準クロック回路
4D,5D,6D 受信アンテナ
5 第2の固定局
6 第3の固定局
2 移動局
2A 移動局用基準クロック回路
2C,3C,22C 無線信号送信回路
2D 送信アンテナ
3 基準局
3A 基準局用基準クロック回路
3D,4C,5C,6C,22D 無線信号受信回路
3F,22F 送受信アンテナ
4,22 第1の固定局
4A,5A,6A,22A 固定局用基準クロック回路
4D,5D,6D 受信アンテナ
5 第2の固定局
6 第3の固定局
Claims (8)
- 移動局用基準クロック回路と無線信号送信回路と送信アンテナとを有する移動局と、
基準局用基準クロック回路と無線信号受信回路と受信アンテナと無線信号送信回路と送信アンテナとを有する基準局と、
固定局用基準クロック回路と無線信号受信回路と受信アンテナとを有する少なくとも3つ以上の固定局とから構成される位置検知システムであって、
3つ以上の前記固定局の前記固定局用基準クロック回路は、それぞれ非同期で独立に動作し、
前記移動局は、間欠的に前記移動局用基準クロック回路の基準クロックに基づく第1の無線信号とトリガ無線信号とを送信し、
前記基準局は、予め決められた位置に配置され、前記移動局が送信した前記トリガ無線信号を受信したときに前記基準局用基準クロック回路の基準クロックに基づく第2の無線信号を複数回送信し、
前記各固定局は、前記第1の無線信号を受信して該第1の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの第1の位相差をそれぞれ抽出し、
複数の前記第2の無線信号を受信して該第2の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの複数の第2の位相差をそれぞれ抽出し、
抽出された複数の前記第2の位相差に基づいて前記第2の位相差の時間変動を求め、該時間変動に基づいて前記第1の無線信号を受信したタイミングにおける前記第2の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの第3の位相差を算出して、
前記移動局と前記各固定局との間の位相差情報と、前記基準局と前記各固定局との間の位相差情報とを用いて、前記各固定局の前記基準クロックの位相オフセットをキャンセルし、前記各固定局と前記移動局との間の距離情報を得て、前記移動局の位置を算出することを特徴とした位置検知システム。 - 前記固定局の前記固定局用基準クロック回路は、互いに同じ周波数の基準クロックを生成する請求項1に記載の位置検知システム。
- 3つ以上の前記固定局のうち少なくとも1つの固定局は、前記基準局の機能を兼ね備えて、複数の前記第2の無線信号を送信する請求項1に記載の位置検知システム。
- 前記移動局の前記移動局用基準クロック回路は、2つ以上の周波数の基準クロックを生成する機能を有し、
前記移動局は、2種類以上のキャリア周波数の前記第1の無線信号を送信し、
前記基準局の前記基準局用基準クロック回路は、2つ以上の周波数の基準クロックを生成する機能を有し、
前記基準局は、2種類以上のキャリア周波数の複数の前記第2の無線信号を送信する請求項1に記載の位置検知システム。 - 移動局用基準クロック回路と無線信号送信回路と送信アンテナとを有する移動局と、
基準局用基準クロック回路と無線信号受信回路と受信アンテナと無線信号送信回路と送信アンテナとを有する基準局と、
固定局用基準クロック回路と無線信号受信回路と受信アンテナとを有する少なくとも3つ以上の固定局とから構成される位置検知システムを用いた位置検知方法であって、
3つ以上の前記固定局の前記固定局用基準クロック回路は、それぞれ非同期で独立に動作し、
前記移動局は、間欠的に前記移動局用基準クロック回路の基準クロックに基づく第1の無線信号とトリガ無線信号とを送信し、
前記基準局は、予め決められた位置に配置され、前記移動局が送信した前記トリガ無線信号を受信したときに前記基準局用基準クロック回路の基準クロックに基づく第2の無線信号を複数回送信し、
前記各固定局は、前記第1の無線信号を受信して該第1の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの第1の位相差をそれぞれ抽出し、
複数の前記第2の無線信号を受信して該第2の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの複数の第2の位相差をそれぞれ抽出し、
抽出された複数の前記第2の位相差に基づいて前記第2の位相差の時間変動を求め、該時間変動に基づいて前記第1の無線信号を受信したタイミングにおける前記第2の無線信号に含まれるキャリアと前記各固定局の前記各基準クロックとの第3の位相差を算出して、
前記移動局と前記各固定局との間の位相差情報と、前記基準局と前記各固定局との間の位相差情報とを用いて、前記各固定局の前記基準クロックの位相オフセットをキャンセルし、前記各固定局と前記移動局との間の距離情報を得て、前記移動局の位置を算出することを特徴とした位置検知方法。 - 前記固定局の前記固定局用基準クロック回路は、互いに同じ周波数の基準クロックを生成する請求項5に記載の位置検知方法。
- 3つ以上の前記固定局のうち少なくとも1つの固定局は、前記基準局の機能を兼ね備えて、複数の前記第2の無線信号を送信する請求項5に記載の位置検知方法。
- 前記移動局の前記移動局用基準クロック回路は、2つ以上の周波数の基準クロックを生成する機能を有し、
前記移動局は、2種類以上のキャリア周波数の前記第1の無線信号を送信し、
前記基準局の前記基準局用基準クロック回路は、2つ以上の周波数の基準クロックを生成する機能を有し、
前記基準局は、2種類以上のキャリア周波数の複数の前記第2の無線信号を送信する請求項5に記載の位置検知方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780025425.XA CN109073732B (zh) | 2016-05-25 | 2017-05-18 | 位置检测系统以及位置检测方法 |
JP2018519234A JP6708255B2 (ja) | 2016-05-25 | 2017-05-18 | 位置検知システムおよび位置検知方法 |
US16/186,661 US10495724B2 (en) | 2016-05-25 | 2018-11-12 | Position detection system and position detection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-104267 | 2016-05-25 | ||
JP2016104267 | 2016-05-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/186,661 Continuation US10495724B2 (en) | 2016-05-25 | 2018-11-12 | Position detection system and position detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204087A1 true WO2017204087A1 (ja) | 2017-11-30 |
Family
ID=60411742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018731 WO2017204087A1 (ja) | 2016-05-25 | 2017-05-18 | 位置検知システムおよび位置検知方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10495724B2 (ja) |
JP (1) | JP6708255B2 (ja) |
CN (1) | CN109073732B (ja) |
WO (1) | WO2017204087A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110174641A (zh) * | 2019-06-14 | 2019-08-27 | 中国科学院自动化研究所 | 基于时间校正的tdoa定位方法、系统、装置 |
WO2023009855A2 (en) * | 2021-07-29 | 2023-02-02 | Spearix Technologies, Inc. | Accurate clock synchronization and location detection in time-sensitive wireless networks |
WO2023186135A1 (zh) * | 2022-03-31 | 2023-10-05 | 华为技术有限公司 | 定位信息的确定方法、定位方法以及相关装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005140617A (ja) * | 2003-11-06 | 2005-06-02 | Hitachi Ltd | 測位方式及び測位システム及び無線基地局 |
JP2007510909A (ja) * | 2003-11-07 | 2007-04-26 | ウェアネット・コープ | 非同期の受信機クロックを使用して時間同期されたネットワーク性能を達成する位置検出システムおよび方法 |
JP2009133649A (ja) * | 2007-11-28 | 2009-06-18 | Fujitsu Ltd | 無線測位システム、無線測位装置および無線測位方法 |
US20140266609A1 (en) * | 2013-03-15 | 2014-09-18 | Microchip Technology Incorporated | System and Method for Locating Wireless Nodes |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02504673A (ja) * | 1987-08-10 | 1990-12-27 | ケンブリッジ・ポジショニング・システムズ・リミテッド | ナビゲーション及びトラッキングシステム |
KR100311046B1 (ko) * | 1999-05-15 | 2001-11-02 | 윤종용 | 시간/디지털 변환기, 이를 이용하는 동기 회로 및 동기 방법 |
JP4193939B2 (ja) * | 2004-03-09 | 2008-12-10 | よこはまティーエルオー株式会社 | アレーアンテナ、到来波推定装置、及び平面アレーの合成方法 |
KR100815260B1 (ko) * | 2006-07-18 | 2008-03-19 | 삼성전자주식회사 | 위상차를 이용한 방위각 측정 장치 및 방법 |
JP5683805B2 (ja) | 2009-12-04 | 2015-03-11 | 中国電力株式会社 | 位置特定装置 |
WO2012007985A1 (ja) * | 2010-07-12 | 2012-01-19 | 株式会社ニレコ | 距離測定装置及び距離測定方法 |
IT1404537B1 (it) * | 2011-02-25 | 2013-11-22 | Sisvel Technology Srl | Metodo per stimare la distanza di un ricevitore da un trasmettitore radio, relativi metodi per calcolare la posizione di un terminale mobile, terminale mobile e dispositivo. |
CN105182289A (zh) * | 2014-06-19 | 2015-12-23 | 中兴通讯股份有限公司 | 一种定位方法和设备 |
-
2017
- 2017-05-18 WO PCT/JP2017/018731 patent/WO2017204087A1/ja active Application Filing
- 2017-05-18 JP JP2018519234A patent/JP6708255B2/ja active Active
- 2017-05-18 CN CN201780025425.XA patent/CN109073732B/zh active Active
-
2018
- 2018-11-12 US US16/186,661 patent/US10495724B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005140617A (ja) * | 2003-11-06 | 2005-06-02 | Hitachi Ltd | 測位方式及び測位システム及び無線基地局 |
JP2007510909A (ja) * | 2003-11-07 | 2007-04-26 | ウェアネット・コープ | 非同期の受信機クロックを使用して時間同期されたネットワーク性能を達成する位置検出システムおよび方法 |
JP2009133649A (ja) * | 2007-11-28 | 2009-06-18 | Fujitsu Ltd | 無線測位システム、無線測位装置および無線測位方法 |
US20140266609A1 (en) * | 2013-03-15 | 2014-09-18 | Microchip Technology Incorporated | System and Method for Locating Wireless Nodes |
Also Published As
Publication number | Publication date |
---|---|
CN109073732B (zh) | 2022-10-14 |
JPWO2017204087A1 (ja) | 2018-12-20 |
JP6708255B2 (ja) | 2020-06-10 |
US10495724B2 (en) | 2019-12-03 |
CN109073732A (zh) | 2018-12-21 |
US20190079160A1 (en) | 2019-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6500981B2 (ja) | 位置検知システムおよび位置検知方法 | |
US8014791B2 (en) | Method and system for determining position of a wireless electronic device within a volume | |
CN107076842B (zh) | 使用延迟扫描定向反射器的室内位置定位 | |
US8543132B2 (en) | Method of estimating position of mobile node in wireless sensor network | |
US10057798B2 (en) | Methods and systems for measuring range between devices | |
WO2017204087A1 (ja) | 位置検知システムおよび位置検知方法 | |
JP2019039917A (ja) | 高周波発振機の監視を行うレーダフロントエンド | |
US11658798B1 (en) | Methods for time synchronization and localization in a mesh network | |
JP6692366B2 (ja) | ビームフォーミング及びmimo向け局部発振器の位相同期 | |
CN108291951A (zh) | 利用至少三个信号接收站的系统和方法 | |
US11269054B2 (en) | Partially coordinated radar system | |
JP2009092594A (ja) | 位置推定システム | |
EP3128345B1 (en) | Position-detecting system | |
JP2004333252A (ja) | 位置推定装置および位置推定方法 | |
WO2022226233A1 (en) | Methods for time synchronization and localization in a mesh network | |
US11061103B1 (en) | Navigation system, device and method using unsynchronized nodes | |
US7630728B2 (en) | Method and system for synchronizing a network of RF devices | |
EP2815249A1 (en) | Method and apparatus for estimating a distance and a location through near-field multi-frequency radio transmissions | |
US9608852B2 (en) | Base-station control device, wireless communication system, and base station | |
JP2006053054A (ja) | 移動速度測定方法及び移動速度測定方式 | |
WO2024181127A1 (ja) | 無線通信システム | |
KR20150089375A (ko) | 측위, 항법, 시각 정보 수집 시스템 및 그 방법 | |
JP2009077078A (ja) | 位置検出システム | |
van der Merwe et al. | A study of Q-range ambiguity in the Radio Interferometric Positioning System | |
RU2611581C1 (ru) | Пеленгатор СВЧ диапазона |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018519234 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17802679 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17802679 Country of ref document: EP Kind code of ref document: A1 |