Nothing Special   »   [go: up one dir, main page]

WO2017135016A1 - 眼科装置及び眼科検査システム - Google Patents

眼科装置及び眼科検査システム Download PDF

Info

Publication number
WO2017135016A1
WO2017135016A1 PCT/JP2017/001100 JP2017001100W WO2017135016A1 WO 2017135016 A1 WO2017135016 A1 WO 2017135016A1 JP 2017001100 W JP2017001100 W JP 2017001100W WO 2017135016 A1 WO2017135016 A1 WO 2017135016A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
eye
unit
measurement
optical system
Prior art date
Application number
PCT/JP2017/001100
Other languages
English (en)
French (fr)
Inventor
林 健史
宏太 藤井
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to US16/066,157 priority Critical patent/US10743760B2/en
Priority to DE112017000663.5T priority patent/DE112017000663T5/de
Publication of WO2017135016A1 publication Critical patent/WO2017135016A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes

Definitions

  • This invention relates to an ophthalmic apparatus and an ophthalmic examination system.
  • Patent Document 1 discloses a spherical power of an eye to be examined by analyzing a ring image obtained by projecting a ring-shaped light beam for measuring eye refractive power onto the fundus of the eye to be examined and detecting the return light.
  • An ophthalmologic apparatus for obtaining an astigmatism power and an astigmatism axis angle is disclosed.
  • the distortion of the shape of the ring image may be caused not only by the diseased part of the fundus but also by the intermediate translucent body including the crystalline lens. Therefore, it may not be possible to specify the cause of the decrease in accuracy such as the spherical power of the eye to be examined by simply analyzing the ring image.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an ophthalmologic apparatus and an ophthalmic examination system capable of improving the accuracy of objective measurement values.
  • the ophthalmologic apparatus includes an objective lens, an objective measurement optical system, an interference optical system, and an image forming unit.
  • the objective measurement optical system irradiates light to the subject eye via the objective lens, and detects return light from the subject eye.
  • the interference optical system divides the light from the light source into reference light and measurement light, and measures it on the eye to be examined via the objective lens so that it overlaps at least part of the light irradiation area of the eye to be examined by the objective measurement optical system Light is irradiated, interference light between the return light and the reference light is generated, and the generated interference light is detected.
  • the image forming unit forms a tomographic image of the eye to be examined based on the detection result of the interference light by the interference optical system.
  • the ophthalmic examination system includes a left examination unit for examining the left subject eye and a right examination unit for examining the right subject eye, and at least one of the left examination unit and the right examination unit is The ophthalmologic apparatus which concerns on embodiment is included.
  • the ophthalmic apparatus and the ophthalmic examination system according to the present invention it is possible to improve the accuracy of the objective measurement value.
  • the ophthalmologic apparatus which concerns on embodiment can perform at least one of arbitrary subjective tests and arbitrary objective measurements.
  • information such as a visual target
  • the subjective examination includes a subjective examination such as a distance examination, a near examination, a contrast examination, a glare examination, and a visual field examination.
  • objective measurement light is irradiated on the eye to be examined, and information on the eye to be examined is acquired based on the detection result of the return light.
  • the objective measurement includes measurement for obtaining the characteristics of the eye to be examined and photographing for obtaining an image of the eye to be examined.
  • OCT optical coherence tomography
  • the ophthalmologic apparatus can execute a distance test and a near-field test as a subjective test, and can execute an objective refraction measurement, a corneal shape measurement, an OCT imaging, and the like as an objective measurement.
  • the configuration of the ophthalmologic apparatus according to the embodiment is not limited to this.
  • an ophthalmologic apparatus can perform OCT imaging using a swept source OCT technique.
  • OCT imaging may use a type other than the swept source, for example, a spectral domain OCT technique.
  • a time domain type OCT technique can also be used.
  • the ophthalmologic apparatus includes a face receiving portion fixed to the base and a gantry that can move back and forth and from side to side with respect to the base.
  • the gantry is provided with a head unit in which an optical system for inspecting (measuring) the eye to be examined is housed.
  • the face receiving unit and the head unit can be relatively moved. Further, the ophthalmologic apparatus can automatically move the face receiving portion and the head portion relative to each other by executing alignment described later.
  • FIGS. 1 to 3 show configuration examples of the optical system of the ophthalmologic apparatus according to the embodiment.
  • the ophthalmologic apparatus as an optical system for inspecting the eye E, includes a Z alignment system 1, an XY alignment system 2, a kerato measurement system 3, a target projection system 4, an observation system 5, a reflex measurement projection system 6, and a reflex measurement.
  • a light receiving system 7 and an OCT optical system 8 are included.
  • the ophthalmologic apparatus includes a processing unit 9.
  • the processing unit 9 controls each unit of the ophthalmologic apparatus.
  • the processing unit 9 can execute various arithmetic processes.
  • the processing unit 9 includes a processor.
  • the functions of the processor are, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, SPLD (Simple Programmable L). And a circuit such as a field programmable gate array (FPGA).
  • the processing unit 9 realizes the function according to the embodiment by reading and executing a program stored in a storage circuit or a storage device, for example.
  • the observation system 5 captures a moving image of the anterior segment of the eye E.
  • Light (infrared light) from the anterior eye part of the eye E passes through the objective lens 51, passes through the dichroic mirror 52, and passes through the aperture of the diaphragm 53.
  • the light that has passed through the aperture of the diaphragm 53 passes through the half mirror 22, passes through the relay lenses 55 and 56, and passes through the half mirror 76.
  • the light transmitted through the half mirror 76 is imaged on the imaging surface of the imaging element 59 (area sensor) by the imaging lens 58.
  • the imaging element 59 performs imaging and signal output at a predetermined rate.
  • An output (video signal) of the image sensor 59 is input to the processing unit 9.
  • the processing unit 9 displays the anterior segment image E ′ based on the video signal on the display screen 10 a of the display unit 10.
  • the anterior segment image E ′ is, for example, an infrared moving image.
  • the observation system 5 may include an illumination light source for illuminating the anterior segment.
  • the Z alignment system 1 irradiates the eye E with light (infrared light) for alignment in the optical axis direction (front-rear direction, Z direction) of the observation system 5.
  • the light output from the Z alignment light source 11 is applied to the cornea K of the eye E, reflected by the cornea K, and imaged on the line sensor 13 by the imaging lens 12.
  • the processing unit 9 obtains the position of the corneal apex of the eye E based on the projection position of the light on the line sensor 13, and executes Z alignment based on this.
  • the XY alignment system 2 irradiates the eye E with light (infrared light) for alignment in a direction (left-right direction (X direction), vertical direction (Y direction)) orthogonal to the optical axis of the observation system 5.
  • the XY alignment system 2 includes an XY alignment light source 21 provided in an optical path branched from the observation system 5 by a half mirror 22. The light output from the XY alignment light source 21 is reflected by the half mirror 22 and irradiated to the eye E through the observation system 5. The reflected light from the cornea K is guided to the image sensor 59 through the observation system 5.
  • This reflected light image (bright spot image) is included in the anterior segment image E ′.
  • the processing unit 9 displays the anterior segment image E ′ including the bright spot image Br and the alignment mark AL on the display screen 10 a.
  • a user such as an examiner or a subject performs an operation of moving the optical system so as to guide the bright spot image Br in the alignment mark AL.
  • the processing unit 9 controls a mechanism for moving the optical system so that the displacement of the bright spot image Br with respect to the alignment mark AL is cancelled.
  • the kerato measurement system 3 projects a ring-shaped light beam (infrared light) for measuring the shape of the cornea K onto the cornea K.
  • the kerato plate 31 is disposed between the objective lens 51 and the eye E.
  • a kerato ring light source 32 is provided on the back side of the kerato plate 31 (objective lens 51 side).
  • a ring-shaped light beam is projected onto the cornea K by illuminating the kerato plate 31 with light from the kerato ring light source 32.
  • the reflected light (keratling image) is detected by the image sensor 59 together with the anterior segment image.
  • the processing unit 9 calculates a corneal shape parameter by performing a known calculation based on the keratoling image.
  • the target projection system 4 presents various targets such as a fixation target and a target for subjective examination to the eye E.
  • the liquid crystal panel 41 displays a pattern representing a visual target under the control of the processing unit 9.
  • Light (visible light) output from the liquid crystal panel 41 passes through the relay lens 42 and the focusing lens 43 and passes through the dichroic mirror 81.
  • the light transmitted through the dichroic mirror 81 passes through the relay lens 44, the pupil lens 45 and the VCC lens 46, is reflected by the reflection mirror 47, passes through the dichroic mirror 69, and is reflected by the dichroic mirror 52.
  • the light reflected by the dichroic mirror 52 passes through the objective lens 51 and is projected onto the fundus oculi Ef.
  • the focusing lens 43 is movable along the optical axis of the target projection system 4. The position of the focusing lens 43 is adjusted so that the liquid crystal panel 41 and the fundus oculi Ef are optically conjugate.
  • the VCC lens 46 can adjust the astigmatism of the eye to be examined (that is, the aberration of the eye to be examined can be corrected). Specifically, the VCC lens 46 is controlled by the processing unit 9 and can change the astigmatism power and the astigmatic axis angle added to the eye E, and at least the astigmatism power and the astigmatism axis of the eyeball aberration of the eye to be examined. The angle can be corrected. Thereby, the astigmatism state of the eye E is corrected.
  • the liquid crystal panel 41 can display a pattern representing a fixation target for fixing the eye E under the control of the processing unit 9. By sequentially changing the display position of the pattern representing the fixation target on the liquid crystal panel 41, the fixation position can be moved to induce fixation.
  • the target projection system 4 may include a glare inspection optical system for projecting glare light onto the eye E together with the above-described target.
  • the processing unit 9 controls the liquid crystal panel 41, the focusing lens 43, and the VCC lens 46 based on the result of objective measurement.
  • the processing unit 9 causes the liquid crystal panel 41 to display the visual target selected by the examiner or the processing unit 9. Thereby, the target is presented to the subject. The subject responds to the target.
  • the processing unit 9 Upon receiving the response content, the processing unit 9 performs further control and calculation of the subjective test value. For example, in the visual acuity measurement, the processing unit 9 selects and presents the next target based on the response to the Landolt ring or the like, and repeats this to determine the visual acuity value.
  • objective measurement such as objective refraction measurement
  • a landscape chart is projected onto the fundus oculi Ef. Alignment is performed while the subject is staring at the scenery chart, and the eye refractive power is measured in a clouded state.
  • the reflex measurement projection system 6 and the reflex measurement light receiving system 7 are used for objective refraction measurement (ref measurement).
  • the reflex measurement projection system 6 projects a ring-shaped light beam (infrared light) for objective measurement onto the fundus oculi Ef.
  • the ring-shaped light beam includes a light beam having a shape in which a part of the ring is interrupted.
  • the ref measurement light receiving system 7 receives the return light from the eye E of the ring-shaped light flux.
  • the light source unit 60 includes a reflex measurement light source 61, a condenser lens 62, a conical prism 63, and a ring aperture plate 64.
  • the light source unit 60 is movable along the optical axis of the reflex measurement projection system 6.
  • the reflex measurement light source 61 is disposed at a position optically conjugate with the fundus oculi Ef.
  • the light output from the reflex measurement light source 61 passes through the condenser lens 62, passes through the conical prism 63, passes through the ring-shaped opening of the ring aperture plate 64, and becomes a ring-shaped light beam.
  • the ring-shaped light beam formed by the ring aperture plate 64 passes through the relay lens 65 and the pupil lens 66, is reflected by the reflecting surface of the perforated prism 67, passes through the rotary prism 68, and is reflected by the dichroic mirror 69.
  • the light reflected by the dichroic mirror 69 is reflected by the dichroic mirror 52, passes through the objective lens 51, and is projected onto the fundus oculi Ef.
  • the rotary prism 68 is used to average the light amount distribution of the ring-shaped light flux with respect to the blood vessels of the fundus oculi Ef and the diseased part.
  • the return light of the ring-shaped light beam projected on the fundus oculi Ef passes through the objective lens 51 and is reflected by the dichroic mirrors 52 and 69.
  • the return light reflected by the dichroic mirror 69 passes through the rotary prism 68, passes through the hole of the perforated prism 67, passes through the pupil lens 71, and is reflected by the reflecting mirror 72.
  • the light reflected by the reflection mirror 72 passes through the relay lens 73 and the focusing lens 74 and is reflected by the reflection mirror 75.
  • the light reflected by the reflection mirror 75 is reflected by the half mirror 76 and imaged on the imaging surface of the imaging element 59 by the imaging lens 58.
  • the processing unit 9 calculates the spherical power S, the astigmatism power C, and the astigmatism axis angle A of the eye E by performing a known calculation based on the output from the image sensor 59.
  • the processing unit 9 moves the light source unit 60 and the focusing lens 74 in the optical axis direction to positions where the reflex measurement light source 61, the fundus oculi Ef, and the image sensor 59 are conjugate. . Further, the processing unit 9 moves the focusing lens 43 in the optical axis direction in conjunction with the movement of the light source unit 60 and the focusing lens 74. The processing unit 9 may move the focusing lens 82 of the OCT optical system 8 in the optical axis direction in conjunction with the movement of the light source unit 60 and the focusing lens 74.
  • the OCT optical system 8 is an optical system for performing OCT imaging.
  • the position of the focusing lens 82 is adjusted so that the end face of the optical fiber f2 is conjugated to the fundus oculi Ef and the optical system based on the result of the reflex measurement performed before the OCT imaging.
  • the optical path of the OCT optical system 8 is coupled to the optical path of the target projection system 4 by a dichroic mirror 81. Thereby, the optical axes of the OCT optical system 8 and the target projection system 4 can be coupled coaxially.
  • the OCT optical system 8 includes an OCT unit 90.
  • an OCT light source 91 is a wavelength sweep type (wavelength scanning type) light source capable of sweeping (scanning) the wavelength of emitted light in the same manner as a general swept source type OCT apparatus. It is comprised including.
  • the swept wavelength light source includes a laser light source including a resonator.
  • the OCT light source 91 temporally changes the output wavelength in the near-infrared wavelength band that cannot be visually recognized by the human eye.
  • the light (infrared light, broadband light) L0 output from the OCT light source 91 is split into measurement light LS and reference light LR by a fiber coupler 92 guided through an optical fiber f1.
  • the measurement light LS is guided to the collimating lens 86 through the optical fiber f2.
  • the reference light LR is guided to the reference optical path length changing unit 94 through the optical fiber f4.
  • the reference optical path length changing unit 94 changes the optical path length of the reference light LR.
  • the reference light LR guided to the reference optical path length changing unit 94 is converted into a parallel light beam by the collimating lens 95 and guided to the corner cube 96.
  • the corner cube 96 folds the traveling direction of the reference light LR made into a parallel light beam by the collimating lens 95 in the reverse direction.
  • the optical path of the reference light LR incident on the corner cube 96 and the optical path of the reference light LR emitted from the corner cube 96 are parallel. Further, the corner cube 96 is movable in a direction along the incident optical path and the outgoing optical path of the reference light LR. By this movement, the length of the optical path of the reference light LR is changed.
  • the reference light LR emitted from the corner cube 96 is converted from a parallel light beam into a focused light beam by the collimator lens 97, enters the optical fiber f5, and is guided to the fiber coupler 93.
  • a delay member or a dispersion compensation member may be provided between the collimating lens 95 and the corner cube 96 or between the corner cube 96 and the collimating lens 97.
  • the delay member is an optical member for matching the optical path length (optical distance) of the reference light LR with the optical path length of the measurement light LS.
  • the dispersion compensation member is an optical member for matching the dispersion characteristics between the reference light LR and the measurement light LS.
  • the measurement light LS converted into a parallel light beam by the collimator lens 86 is deflected one-dimensionally or two-dimensionally by the optical scanner 84.
  • the optical scanner 84 includes a galvanometer mirror 84X and a galvanometer mirror 84Y.
  • the galvanometer mirror 84X deflects the measurement light LS so as to scan the fundus oculi Ef in the X direction.
  • the galvanometer mirror 84Y deflects the measurement light LS deflected by the galvanometer mirror 84X so as to scan the fundus oculi Ef in the Y direction.
  • Examples of the scanning mode of the measurement light LS by the optical scanner 84 include horizontal scanning, vertical scanning, cross scanning, radial scanning, circular scanning, concentric scanning, and helical scanning.
  • the measurement light LS deflected by the optical scanner 84 is reflected by the dichroic mirror 81 via the reflection mirror 83 and the focusing lens 82.
  • the measurement light LS reflected by the dichroic mirror 81 is guided to the dichroic mirror 52 through the target projection system 4 and reflected by the dichroic mirror 52.
  • the light reflected by the dichroic mirror 52 passes through the objective lens 51 and is irradiated to the eye E.
  • the measurement light LS is scattered (including reflection) at various depth positions of the eye E.
  • the return light of the measurement light LS including such backscattered light travels in the reverse direction on the same path as the forward path, is guided to the fiber coupler 92, and reaches the fiber coupler 93 via the optical fiber f3.
  • the fiber coupler 93 generates interference light by combining (interfering) the measurement light LS incident via the optical fiber f3 and the reference light LR incident via the optical fiber f5.
  • the fiber coupler 93 branches the interference light between the measurement light LS and the reference light LR at a predetermined branching ratio (for example, 1: 1), thereby generating a pair of interference lights LC.
  • the pair of interference lights LC emitted from the fiber coupler 93 are guided to the detector 98 by optical fibers f6 and f7, respectively.
  • the detector 98 is, for example, a balanced photodiode (BPD) that has a pair of photodetectors that respectively detect a pair of interference lights LC and outputs a difference between detection results obtained by these. Based on the clock generated in synchronization with the output timing of each wavelength swept (scanned) within a predetermined wavelength range by the OCT light source 91, the difference between the detection results output from the detector 98 is sampled.
  • This sampling data is sent to the arithmetic processing unit 120 of the processing unit 9. For example, for each series of wavelength scans (for each A line), the arithmetic processing unit 120 forms a reflection intensity profile in each A line by performing Fourier transform or the like on the spectrum distribution based on the sampling data. Further, the arithmetic processing unit 120 forms image data by imaging the reflection intensity profile of each A line.
  • BPD balanced photodiode
  • the OCT optical system 8 divides the light L0 from the OCT light source 91 into the reference light LR and the measurement light LS, irradiates the eye E with the measurement light LS, and the return light and the reference light LR.
  • An interference optical system that generates the interference light LC and detects the generated interference light.
  • the interference optical system irradiates the eye E with the measurement light LS via the objective lens 51 and the VCC lens 46.
  • Such an OCT optical system 8 is coupled to the optical path of the target projection system 4 by a dichroic mirror 81.
  • the optical system is configured to pass the measurement light through the hole of the perforated prism. It is necessary to consider the vignetting of the return light.
  • the OCT optical system 8 is coupled to another optical system (reflective measurement projection system 6 and reflex measurement light receiving system 7) that uses light having a wavelength close to the wavelength of the measurement light, separation becomes difficult because the wavelengths are close to each other. , Efficiency will be reduced.
  • the configuration of the optical system can be simplified and the degree of freedom in designing the optical system is improved. Can be made. Moreover, it becomes easy to add another optical system, and it can be set as the structure provided with the expandability.
  • the measurement light LS is irradiated to the fundus oculi Ef through the VCC lens 46 and is more easily converged to one point at the measurement site. Become.
  • an interference signal based on the detection result of the interference light can be acquired with sufficient intensity with an optimal lateral resolution.
  • the intermediate position between the VCC lens 46 and the pupil lens 45 is disposed at a position optically conjugate with the pupil of the eye E (pupil conjugate position Q).
  • an intermediate position between the galvanometer mirror 84X and the galvanometer mirror 84Y is disposed at a position optically conjugate with the pupil of the eye E to be examined.
  • the focusing lens 82 is moved in the optical axis direction so that the fundus oculi Ef of the eye E and the fiber end surface of the optical fiber f2 are in an optically conjugate position (fundus conjugate position P).
  • the fundus conjugate position P can be made closer, and the target projection system 4 and The OCT optical system 8 can be made small.
  • FIG. 4 illustrates an example of a functional block diagram of a processing system of the ophthalmologic apparatus according to the embodiment.
  • the processing unit 9 includes a control unit 110 and an arithmetic processing unit 120.
  • the ophthalmologic apparatus according to the embodiment includes a display unit 170, an operation unit 180, a communication unit 190, and a movement mechanism 200.
  • the moving mechanism 200 is an optical system such as a Z alignment system 1, an XY alignment system 2, a kerato measurement system 3, a target projection system 4, an observation system 5, a reflex measurement projection system 6, a reflex measurement light receiving system 7, and an OCT optical system 8.
  • the moving mechanism 200 is provided with an actuator that generates a driving force for moving the moving mechanism 200 and a transmission mechanism that transmits the driving force.
  • the actuator is constituted by, for example, a pulse motor.
  • the transmission mechanism is configured by, for example, a combination of gears, a rack and pinion, or the like.
  • the control unit 110 main control unit 111) controls the moving mechanism 200 by sending a control signal to the actuator.
  • the control unit 110 includes a processor and controls each unit of the ophthalmologic apparatus.
  • the control unit 110 includes a main control unit 111 and a storage unit 112.
  • the storage unit 112 stores in advance a computer program for controlling the ophthalmologic apparatus.
  • the computer program includes a light source control program, a detector control program, an optical scanner control program, an optical system control program, an arithmetic processing program, a user interface program, and the like.
  • the control unit 110 executes control processing.
  • the main control unit 111 performs various controls of the ophthalmologic apparatus as a measurement control unit.
  • Controls for the Z alignment system 1 include control of the Z alignment light source 11 and control of the line sensor 13.
  • Control of the Z alignment light source 11 includes turning on and off the light source, adjusting the light amount, adjusting the aperture, and the like.
  • Control of the line sensor 13 includes exposure adjustment of the detection element, gain adjustment, detection rate adjustment, and the like. Thereby, lighting and non-lighting of the Z alignment light source 11 are switched, or the amount of light is changed.
  • the main control unit 111 takes in a signal detected by the line sensor 13 and specifies a projection position of light on the line sensor 13 based on the taken-in signal.
  • the main control unit 111 obtains the position of the corneal apex of the eye E based on the specified projection position, and controls the moving mechanism 200 based on this to move the head unit in the front-rear direction (Z alignment).
  • Control over the XY alignment system 2 includes control of the XY alignment light source 21.
  • Control of the XY alignment light source 21 includes turning on / off the light source, adjusting the light amount, adjusting the aperture, and the like. Thereby, lighting and non-lighting of the XY alignment light source 21 are switched, or the light amount is changed.
  • the main control unit 111 captures a signal detected by the image sensor 59 and specifies the position of the bright spot image based on the return light of the light from the XY alignment light source 21 based on the captured signal.
  • the main control unit 111 controls the moving mechanism 200 so as to cancel the displacement of the bright spot image position with respect to a predetermined target position (for example, the center position of the alignment mark), and moves the head part in the horizontal and vertical directions. (XY alignment).
  • Control for the kerato measurement system 3 includes control of the kerato ring light source 32 and the like.
  • Control of the kerating light source 32 includes turning on and off the light source, adjusting the light amount, adjusting the aperture, and the like. Thereby, the lighting and non-lighting of the kerato ring light source 32 are switched or the light amount is changed.
  • the main control unit 111 causes the arithmetic processing unit 120 to execute a known calculation on the keratoling image detected by the image sensor 59. Thereby, the corneal shape parameter of the eye E is obtained.
  • Control over the target projection system 4 includes control of the liquid crystal panel 41, control of the focusing lens 43, control of the VCC lens 46, and the like.
  • Control of the liquid crystal panel 41 includes turning on / off the display of the visual target and the fixation target, and switching the display position of the fixation target. Thereby, a visual target or a fixation target is projected onto the fundus oculi Ef of the eye E to be examined.
  • Control of the focusing lens 43 includes movement control of the focusing lens 43 in the optical axis direction.
  • the target projection system 4 includes a moving mechanism that moves the focusing lens 43 in the optical axis direction.
  • the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the focusing lens 43 in the optical axis direction. Thereby, the position of the focusing lens 43 is adjusted so that the liquid crystal panel 41 and the fundus oculi Ef are optically conjugate.
  • the control of the VCC lens 46 includes control for changing the astigmatism power and the astigmatism axis angle.
  • the VCC lens 46 includes a pair of concave and convex cylinder lenses provided so as to be relatively rotatable about the optical axis.
  • the main control unit 111 relatively rotates the pair of cylinder lenses so as to correct the astigmatism state (astigmatism power, astigmatism axis angle) of the eye E to be obtained separately such as a reflex measurement described later.
  • Control for the observation system 5 includes control of the image sensor 59 and the like.
  • the control of the image sensor 59 includes exposure adjustment, gain adjustment, detection rate adjustment, and the like of the image sensor 59.
  • the main control unit 111 captures a signal detected by the image sensor 59 and causes the arithmetic processing unit 120 to execute processing such as image formation based on the captured signal.
  • the main control unit 111 can control the illumination light source.
  • Control for the reflex measurement projection system 6 includes control of the light source unit 60 and control of the rotary prism 68.
  • Control of the light source unit 60 includes control of the reflex measurement light source 61 and control of the light source unit 60.
  • Control of the reflex measurement light source 61 includes turning on / off the light source, adjusting the light amount, adjusting the aperture, and the like. Thereby, lighting and non-lighting of the reflex measurement light source 61 are switched, or the light quantity is changed.
  • Control of the light source unit 60 includes movement control of the light source unit 60 in the optical axis direction.
  • the reflex measurement projection system 6 includes a moving mechanism that moves the light source unit 60 in the optical axis direction.
  • the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the light source unit 60 in the optical axis direction.
  • the control of the rotary prism 68 includes rotation control of the rotary prism 68 and the like.
  • a rotation mechanism that rotates the rotary prism 68 is provided, and the main control unit 111 rotates the rotary prism 68 by controlling the rotation mechanism.
  • Control of the reflex measurement light receiving system 7 includes control of the focusing lens 74 and the like.
  • Control of the focusing lens 74 includes movement control of the focusing lens 74 in the optical axis direction.
  • the reflex measurement light receiving system 7 includes a moving mechanism that moves the focusing lens 74 in the optical axis direction. Similar to the moving mechanism 200, the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the focusing lens 74 in the optical axis direction.
  • the main control unit 111 moves the light source unit 60 and the focusing lens 74 to the optical axis according to the refractive power of the eye E, for example, so that the reflex measurement light source 61, the fundus oculi Ef, and the image sensor 59 are optically conjugate. It is possible to move in the direction.
  • Control for the OCT optical system 8 includes control of the OCT light source 91, control of the optical scanner 84, control of the focusing lens 82, control of the corner cube 96, control of the detector 98, and the like.
  • Control of the OCT light source 91 includes turning on and off the light source, adjusting the light amount, adjusting the aperture, and the like.
  • Control of the optical scanner 84 includes control of the scanning position, scanning range, and scanning speed by the galvanometer mirror 84X, and control of the scanning position, scanning range, and scanning speed by the galvanometer mirror 84Y.
  • Control of the focusing lens 82 includes movement control of the focusing lens 82 in the optical axis direction.
  • the OCT optical system 8 includes a moving mechanism that moves the focusing lens 82 in the optical axis direction. Similar to the moving mechanism 200, the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the focusing lens 82 in the optical axis direction. For example, after moving the focusing lens 82 in conjunction with the movement of the focusing lens 43, the main control unit 111 may move only the focusing lens 82 based on the intensity of the interference signal. Control of the corner cube 96 includes movement control of the corner cube 96 in the optical axis direction.
  • the OCT optical system 8 includes a moving mechanism that moves the corner cube 96 in the optical axis direction. Similar to the moving mechanism 200, the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the corner cube 96 in the optical axis direction. Thereby, the length of the optical path of the reference light LR is changed.
  • the control of the detector 98 includes exposure adjustment of the detection element, gain adjustment, detection rate adjustment, and the like.
  • the main control unit 111 samples the signal detected by the detector 98 and causes the arithmetic processing unit 120 (image forming unit 122) to execute processing such as image formation based on the sampled signal.
  • the main control unit 111 includes a display control unit 111A.
  • the display control unit 111A causes the display unit 170 to display various types of information.
  • Information displayed on the display unit 170 includes objective measurement results and subjective examination results acquired using the optical system, images based on image data formed by the image forming unit 122 (such as tomographic images), and data. There are images and information subjected to image processing and data processing by the processing unit 123.
  • the display control unit 111A can superimpose these various types of information and display them on the display unit 170, or can display part of the information.
  • the main control unit 111 performs a process of writing data to the storage unit 112 and a process of reading data from the storage unit 112.
  • the storage unit 112 stores various data.
  • the data stored in the storage unit 112 includes, for example, subjective test results, objective measurement results, tomographic image data, fundus image data, eye information to be examined, and the like.
  • the eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information.
  • the storage unit 112 stores various programs and data for operating the ophthalmologic apparatus.
  • the arithmetic processing unit 120 includes an eye refractive power calculation unit 121, an image forming unit 122, a data processing unit 123, and a part specifying unit 124.
  • the eye refractive power calculation unit 121 is a ring image (pattern image) obtained by the imaging element 59 receiving the return light of the ring-shaped light beam (ring-shaped measurement pattern) projected onto the fundus oculi Ef by the reflex measurement projection system 6. ).
  • the eye refractive power calculation unit 121 obtains the barycentric position of the ring image from the luminance distribution in the image in which the obtained ring image is drawn, and obtains the luminance distribution along a plurality of scanning directions extending radially from the barycentric position.
  • the ring image is specified from this luminance distribution.
  • the eye refractive power calculation unit 121 obtains an approximate ellipse of the specified ring image, and substitutes the major axis and minor axis of the approximate ellipse into known formulas to thereby obtain the spherical power S, the astigmatic power C, and the astigmatic axis angle. Find A.
  • the eye refractive power calculation unit 121 can specify a ring image from a new data group obtained by deleting a part of the data group used for specifying the ring image. Further, the eye refractive power calculation unit 121 may specify a ring image from a new data group obtained by replacing a part of the data group used for specifying the ring image with interpolation data. . In this case, the interpolation data is acquired by interpolation processing using data other than a part of the data group. The eye refractive power calculation unit 121 obtains an approximate ellipse of the specified new ring image, and obtains a new spherical power S, astigmatism power C, and astigmatic axis angle A from the approximate ellipse.
  • the “part of the data group” to be deleted or interpolated is the measurement result (for example, luminance distribution) in the part specified by the part specifying unit 124 described later, data obtained from the measurement result, or designated by the user It is data.
  • a measurement result that reduces the accuracy of the spherical power S or the like can be deleted or interpolated from the measurement result (for example, luminance distribution in a predetermined scanning direction) obtained by the eye refractive power measurement.
  • a decrease in accuracy such as spherical power S obtained by measurement can be suppressed.
  • the eye refractive power calculation unit 121 can obtain the eye refractive power parameter based on the deformation and displacement of the ring image with respect to the reference pattern.
  • the eye refractive power calculation unit 121 specifies a new ring image deformation and displacement by deleting or interpolating a part of the deformation and displacement of the ring image with respect to the reference pattern as described above, and the specified ring image.
  • the eye refractive power parameter is obtained based on the deformation and displacement.
  • the eye refractive power calculation unit 121 calculates the corneal refractive power, the corneal astigmatism, and the corneal astigmatism axis angle based on the keratoling image acquired by the observation system 5. For example, the eye refractive power calculation unit 121 calculates the corneal curvature radius of the strong main meridian and the weak main meridian on the front surface of the cornea by analyzing the keratling image, and calculates the parameter based on the corneal curvature radius.
  • the image forming unit 122 forms tomographic image data of the fundus oculi Ef based on the signal detected by the detector 98. That is, the image forming unit 122 forms image data of the eye E based on the detection result of the interference light LC by the interference optical system.
  • This process includes processes such as filter processing, FFT (Fast Fourier Transform), and the like, similar to the conventional swept source type OCT.
  • the image data acquired in this way is a data set including a group of image data formed by imaging reflection intensity profiles in a plurality of A lines (paths of the measurement light LS in the eye E). is there.
  • the data processing unit 123 performs various data processing (image processing) and analysis processing on the tomographic image formed by the image forming unit 122. For example, the data processing unit 123 executes correction processing such as image brightness correction and dispersion correction. In addition, the data processing unit 123 performs various types of image processing and analysis processing on an image (anterior eye image or the like) obtained using the observation system 5.
  • the data processing unit 123 can form volume data (voxel data) of the eye E by performing known image processing such as interpolation processing for interpolating pixels between tomographic images.
  • image processing such as interpolation processing for interpolating pixels between tomographic images.
  • the data processing unit 123 performs a rendering process on the volume data to form a pseudo three-dimensional image when viewed from a specific viewing direction.
  • the data processing unit 123 performs a segmentation process that identifies a plurality of partial data sets corresponding to a plurality of tissues of the eye to be examined, for example, by analyzing the three-dimensional data set formed by the image forming unit 122. Is possible.
  • the segmentation process is an image process for specifying a specific tissue or tissue boundary.
  • the data processing unit 123 obtains the gradient of the pixel value (luminance value) in each A-mode image included in the three-dimensional data set, and identifies a position where the gradient is large as the tissue boundary.
  • the A-mode image is one-dimensional image data extending in the fundus depth direction (Z direction).
  • the data processing unit 123 identifies a plurality of partial data sets corresponding to a plurality of layer tissues of the fundus by analyzing a three-dimensional data set representing the fundus (retina, choroid, etc.) and the vitreous body. To do.
  • Each partial data set is defined by stratum tissue boundaries.
  • layer tissue specified as a partial data set include inner boundary membrane, nerve fiber layer, ganglion cell layer, inner reticular layer, inner granule layer, outer reticular layer, outer granule layer, outer boundary membrane constituting retina
  • a partial data set corresponding to a Bruch's membrane, choroid, sclera, vitreous body, or the like can be specified. It is also possible to specify a partial data set corresponding to a lesioned part. Examples of lesions include exfoliations, edema, bleeding, tumors, drusen and the like.
  • the part specifying unit 124 specifies the target part of the eye to be examined based on the return light from the eye E detected using the reflex measurement light receiving system 7.
  • the attention site includes a disease site, a designated site having a form designated by the user, and the like.
  • the site specifying unit 124 specifies a disease site according to the distortion or deformation of the ring image specified by the eye refractive power calculation unit 121.
  • the part specifying unit 124 calculates a residual (deviation amount) from the approximate ellipse in the ring image specified by the eye refractive power calculating unit 121, and sets a residual equal to or larger than a predetermined threshold among the obtained residuals as an outlier. To detect.
  • the part specifying unit 124 specifies a part where an outlier is detected (or a region including the part) as a disease part. Further, the part specifying unit 124 can specify a part where the amount of reflected light has decreased from the ring image specified by the eye refractive power calculating unit 121 as a diseased part. In this case, the part specifying unit 124 refers to the image formed by the image forming unit 122 and specifies a region including a part where the luminance change of the part projected by the reflex measurement projection system 6 is equal to or greater than a predetermined threshold as a disease part. To do.
  • the site specifying unit 124 may specify a disease site based on the light amount distribution of the specified ring image (for example, the light amount distribution on a straight line passing through the center of the ring image) and the bias. For example, the site specifying unit 124 specifies a disease site based on the contrast of the ring image. In this case, it is possible to identify a portion where the difference between the maximum value and the minimum value of the light amount distribution of the ring image is equal to or less than a predetermined threshold as a diseased part. Such an eye to be examined with low contrast is suspected of being a cataract eye and can be an OCT imaging target.
  • the part specifying unit 124 can specify, for example, a part deviated from the approximate ellipse in the form specified by the user as the specified part in the ring image specified by the eye refractive power calculation unit 121.
  • the site specifying unit 124 can specify a disease site based on the detection result of the interference light by the OCT optical system 8.
  • the region specifying unit 124 includes a plurality of layer tissues of the fundus oculi Ef detected by the segmentation process performed on the tomographic image formed based on the detection result of the interference light by the OCT optical system 8, and the normal eye A standard value (standard thickness) of a plurality of layer tissues in the fundus is compared, and a part having a difference of a predetermined threshold value or more is specified as a diseased part or an abnormal part.
  • the display unit 170 displays information under the control of the control unit 110 as a user interface unit.
  • the display unit 170 includes the display unit 10 shown in FIG.
  • the operation unit 180 is used as a user interface unit for operating the ophthalmologic apparatus.
  • the operation unit 180 includes various hardware keys (joysticks, buttons, switches, etc.) provided in the ophthalmologic apparatus.
  • the operation unit 180 may include various software keys (buttons, icons, menus, etc.) displayed on the touch panel display screen 10a.
  • At least a part of the display unit 170 and the operation unit 180 may be integrally configured.
  • a typical example is a touch panel display screen 10a.
  • the communication unit 190 has a function for communicating with an external device (not shown).
  • the communication unit 190 may be provided in the processing unit 9, for example.
  • the communication unit 190 has a configuration corresponding to the form of communication with an external device.
  • the target projection system 4 is an example of a “subjective inspection optical system” according to this embodiment.
  • the OCT optical system 8 is an example of an “interference optical system” according to this embodiment.
  • the reflex measurement projection system 6, the reflex measurement light receiving system 7, and a part of the observation system 5 are examples of the “objective measurement optical system” according to this embodiment.
  • the part specifying unit 124 is an example of a “target part specifying unit” according to the embodiment.
  • FIG. 5 shows a flowchart of an operation example of the ophthalmologic apparatus according to this embodiment.
  • 6A, 6B, and 7 to 10 are operation explanatory views of the ophthalmologic apparatus according to the embodiment.
  • the head portion After fixing the subject's face at the face receiving portion, the head portion is moved to the inspection position of the eye E by XY alignment by the XY alignment system 2 and Z alignment by the Z alignment system 1.
  • the inspection position is a position where the eye E can be inspected.
  • the processing unit 9 (the control unit 110) acquires an imaging signal of the anterior segment image formed on the imaging surface of the imaging element 59, and displays the anterior segment on the display unit 170 (the display screen 10a of the display unit 10).
  • the partial image E ′ is displayed.
  • the head portion is moved to the inspection position of the eye E by the XY alignment and the Z alignment.
  • the movement of the head unit is executed by the control unit 110 in accordance with an instruction from the control unit 110, but may be executed by the control unit 110 in accordance with an operation or instruction by a user.
  • control unit 110 moves the reflex measurement light source 61, the focusing lens 74, and the focusing lens 43 to move along the optical axis to the origin, for example, a position corresponding to 0D.
  • the control unit 110 displays a fixation target on the liquid crystal panel 41. Thereby, the eye E is gaze at a desired fixation position.
  • control part 110 performs objective measurement. That is, the control unit 110 causes the reflex measurement projection system 6 to project a ring-shaped light beam onto the fundus oculi Ef of the eye E, and causes the imaging element 59 to detect return light through the reflex measurement light receiving system 7.
  • the control unit 110 causes the eye refractive power calculation unit 121 to analyze the ring image based on the return light detected in S3.
  • the eye refractive power calculation unit 121 identifies the ring image as described above, obtains an approximate ellipse of the identified ring image, and substitutes the major axis and minor axis of the approximate ellipse into a known formula to obtain the spherical power S, Astigmatism power C and astigmatism axis angle A are obtained.
  • the calculated spherical power S and the like are stored in the storage unit 112.
  • the shape of the ring image R1 based on the return light becomes a shape with almost no residual from the approximate ellipse.
  • the eye E is a diseased eye in which edema (disease site) is present on the fundus oculi Ef
  • the shape of the base ring image R2 is a shape in which a large residual from the approximate ellipse exists in the vicinity of the diseased part.
  • the part specifying unit 124 obtains a residual (shift amount) from the approximate ellipse in the ring image based on the return light detected in S3 as described above, and among the obtained residuals, a residual equal to or larger than a predetermined threshold value is obtained. The difference is detected as an outlier.
  • the part specifying unit 124 specifies a part where an outlier is detected as a disease part.
  • FIG. 7 shows an example of the shape of a ring image based on the return light from the ring-shaped light beam projected onto the fundus oculi Ef of the diseased eye.
  • the horizontal axis represents an angle formed by a straight line connecting the center of gravity position and the sample point of the ring image with the reference line in a predetermined direction as a reference, and the vertical axis represents a sample of the ring image from the center of gravity position. Represents the distance to the point.
  • a portion Rf where a large residual exists is specified as a disease site.
  • the control unit 110 can execute the kerato measurement.
  • the control unit 110 turns on the keratoling light source 32 and causes the eye refractive power calculation unit 121 to analyze the keratoling image detected by the image sensor 59.
  • the eye refractive power calculation unit 121 calculates the corneal curvature radius by analyzing the keratling image as described above, and calculates the corneal refractive power, the corneal astigmatism, and the corneal astigmatism axis angle from the calculated corneal curvature radius.
  • the calculated corneal refractive power and the like are stored in the storage unit 112.
  • the display control unit 111A causes the display unit 170 to display the objective measurement result obtained in S4.
  • the objective measurement results displayed on the display unit 170 include the spherical power S, the astigmatism power C, the astigmatism axis angle A, the corneal refractive power, the corneal astigmatism, and the corneal astigmatism axis angle.
  • the display control unit 111A may display the information SI representing the diseased part specified in S4 together with the anterior segment image E ′ of the eye E to be examined. For example, the display control unit 111A identifies and displays the diseased part specified by the part specifying unit 124 in S4. Examples of the identification display of the disease site include highlighting. The highlighted display of a diseased part includes a blinking display of the diseased part, a color-coded display that makes the color of the diseased part different from the color of the other part, and the like. Further, the display control unit 111A may cause the display unit 170 to display information indicating the diseased part only when the diseased part is specified by the part specifying unit 124 in S4. Alternatively, by performing a touch operation on the ring-shaped light beam projection portion drawn together with the anterior eye image E ′, information indicating the specified ring image and the specified diseased part may be displayed.
  • control unit 110 determines whether to perform tomographic imaging. For example, the control unit 110 determines whether to perform tomographic imaging based on an operation performed on the operation unit 180 by the user referring to the information displayed on the display unit 170 in S5. When it is determined that tomographic imaging is to be performed (S6: Y), the operation of the ophthalmologic apparatus proceeds to S7. When it is determined that tomographic imaging is not performed (S6: N), the operation of the ophthalmologic apparatus ends (end).
  • the ophthalmologic apparatus can be controlled so that the control unit 110 automatically performs tomographic imaging based on the objective measurement result obtained in S4.
  • the control unit 110 may control the ophthalmologic apparatus so as to automatically perform tomography.
  • the control unit 110 covers the ring-shaped luminous flux irradiated to the fundus oculi Ef by the reflex measurement projection system 6 so as to overlap at least part of the irradiation region. A scan position and a scan direction are obtained so that the optometry E is irradiated with measurement light. In this embodiment, as shown in FIG. 9, the control unit 110 obtains a scan position and a scan direction by a plurality of radial scans so as to cross the vicinity of the diseased site specified in S4.
  • control unit 110 may obtain the scan position so as to scan with one or more circle scans so as to cross the vicinity of the diseased site specified in S4.
  • the diameter of the circle scan can be the diameter of the ring passing through the center of the width of the ring-shaped light beam projected onto the fundus oculi Ef by the reflex measurement projection system 6.
  • the control unit 110 controls the optical scanner 84 so as to scan the fundus oculi Ef with the measurement light LS at the scan position and scan direction obtained in S7.
  • the control unit 110 causes the arithmetic processing unit 120 to form a tomographic image of the diseased part based on the detection result of the interference light obtained by the scan in S8.
  • the scan time can be greatly shortened.
  • the OCT optical system 8 is coaxial with the reflex measurement projection system 6, the center of the ring-shaped light beam and the center of the scan are always the same, so that the diseased part on which the ring-shaped light beam is projected is scanned accurately. be able to.
  • the data processing unit 123 performs segmentation processing on the tomographic image by analyzing the data set formed in S9, and detects a plurality of layer tissues in the fundus oculi Ef.
  • standard values standard thickness
  • the site specifying unit 124 or the data processing unit 123) compares the thicknesses of the plurality of layer tissues detected by the segmentation processing with the standard data stored in the storage unit 112, and determines a portion having a difference equal to or greater than a predetermined threshold. Identify as an abnormal site. As shown in FIG.
  • FIG. 10 shows a state where the normal part T2 and the abnormal thickness part T1 as the abnormal part are specified for the fundus oculi Ef on which the ring-shaped light beam r3 is projected.
  • the user may specify an abnormal part of the eye E by observing the tomographic image displayed on the display unit 170 and specify the part using the operation unit 180.
  • the eye refractive power calculation unit 121 newly specifies a ring image by deleting or interpolating data in the abnormal part specified in S10 from the data group for specifying the ring image acquired in S3.
  • the eye refractive power calculation unit 121 obtains an approximate ellipse of the newly specified ring image, and obtains a new spherical power S, astigmatism power C, and astigmatic axis angle A from the approximate ellipse.
  • the display control unit 111A causes the display unit 170 to display the spherical power S, the astigmatism power C, and the astigmatic axis angle A newly obtained in S10 together with the tomographic image and the abnormal part in S11. This is the end of the operation of the ophthalmologic apparatus (end).
  • the control part 110 may perform a subjective examination.
  • the control unit 110 controls the focusing lens 43 and the VCC lens 46 so that the spherical power S, the astigmatic power C, and the astigmatic axis angle A obtained in S4 are corrected.
  • the control unit 110 displays a desired target by controlling the liquid crystal panel 41 based on a user instruction to the operation unit 180, for example.
  • the subject responds to the visual target projected onto the fundus oculi Ef. For example, in the case of a visual target for visual acuity measurement, the visual acuity value of the eye to be examined is determined by the response of the subject.
  • the selection of the target and the response of the subject to the selection are repeatedly performed based on the judgment of the examiner or the control unit 110.
  • the examiner or control unit 110 determines a visual acuity value or a prescription value (S, C, A) based on a response from the subject.
  • a reflection mirror and two relay lenses may be disposed between the galvanometer mirror 84Y and the galvanometer mirror 84X.
  • a galvano mirror 84X is disposed at the focal position upstream of one of the relay lenses.
  • a galvanometer mirror 84Y is disposed at the focal position downstream of the other relay lens 87A.
  • the reflection mirror is arranged to guide the measurement light LS deflected by the galvanometer mirror 84X to the galvanometer mirror 84Y.
  • Each of the galvanometer mirror 84Y and the galvanometer mirror 84X is disposed at a position optically conjugate with the pupil of the eye E (pupil conjugate position Q).
  • both the galvanometer mirrors 84X and 84Y are arranged at the pupil conjugate position Q, it becomes possible to detect the interference light with a lateral resolution higher than that of the embodiment.
  • the galvanometer mirrors 84X and 84Y are arranged at optically conjugate positions, the tomogram with higher image quality can be obtained by increasing the intensity of the interference signal while maintaining the conjugate relationship even when the focusing lens 82 is moved. Can be acquired.
  • the ophthalmologic apparatus according to the embodiment or its modification can be applied to an ophthalmic examination system capable of examining both eyes.
  • FIG. 11 is a block diagram of a configuration example of an ophthalmic examination system to which the ophthalmologic apparatus according to the embodiment or its modification is applied.
  • the ophthalmic examination system includes a measurement head 300.
  • the measuring head 300 is suspended from above by a holding part 350 supported by a support member (not shown).
  • the measurement head 300 includes a moving mechanism 310, a left inspection unit 320L, and a right inspection unit 320R.
  • An optometry window (not shown) is formed in each of the left examination unit 320L and the right examination unit 320R.
  • the subject's left eye (left subject eye) is examined through an optometry window provided in the left examination unit 320L.
  • the subject's right eye (right subject eye) is examined through an optometry window provided in the right examination unit 320R.
  • the left inspection unit 320L and the right inspection unit 320R are moved three-dimensionally by the moving mechanism 310 independently or in conjunction with each other. At least one of the left examination unit 320L and the right examination unit 320R is provided with an ophthalmologic apparatus according to the embodiment or its modification.
  • the moving mechanism 310 includes horizontal moving mechanisms 311L and 311R, rotating mechanisms 312L and 312R, and vertical moving mechanisms 313L and 313R.
  • the horizontal movement mechanism 311L moves the rotation mechanism 312L, the vertical movement mechanism 313L, and the left inspection unit 320L in the horizontal direction (lateral direction (X direction), front-rear direction (Z direction)). Thereby, the horizontal position of the optometry window can be adjusted according to the arrangement position of the left eye to be examined.
  • the horizontal movement mechanism 311L has a known configuration using, for example, a driving unit or a driving force transmission unit that transmits a driving force generated by the driving unit, and receives a control signal from a control device (not shown) to rotate the mechanism. 312L etc. are moved in the horizontal direction.
  • the horizontal movement mechanism 311L can be manually moved in the horizontal direction by the rotation mechanism 312L or the like in response to an operation by the operator.
  • the horizontal movement mechanism 311R moves the rotation mechanism 312R, the vertical movement mechanism 313R, and the right inspection unit 320R in the horizontal direction. Thereby, the horizontal position of the optometry window can be adjusted according to the arrangement position of the right eye to be examined.
  • the horizontal movement mechanism 311R has the same configuration as the horizontal movement mechanism 311L, and moves the rotation mechanism 312R and the like in the horizontal direction in response to a control signal from a control device (not shown).
  • the horizontal movement mechanism 311R can be manually moved in the horizontal direction by the rotation mechanism 312R or the like in response to an operation by the operator.
  • the rotation mechanism 312L rotates the vertical movement mechanism 313L and the left inspection unit 320L about a left-eye rotation axis (left rotation axis) extending in the vertical direction (substantially vertical direction).
  • the angle formed by the rotation axis and the horizontal plane can be changed.
  • the rotation mechanism 312L has a known configuration using, for example, a driving unit or a driving force transmission unit that transmits a driving force generated by the driving unit, and receives the control signal from a control device (not shown) to perform the rotation.
  • the left inspection unit 320L and the like are rotated around the axis.
  • the rotation mechanism 312L can also manually rotate the left inspection unit 320L and the like around the rotation axis in response to an operation by the operator.
  • the rotation mechanism 312R rotates the vertical movement mechanism 313R and the right inspection unit 320R around a rotation axis for the right eye (right rotation axis) extending in the vertical direction.
  • the angle formed by the rotation axis and the horizontal plane can be changed.
  • the right-eye rotation axis is an axis that is disposed at a position separated from the left-eye rotation axis by a predetermined distance. The distance between the left eye rotation axis and the right eye rotation axis is adjustable.
  • the rotation mechanism 312R has the same configuration as the rotation mechanism 312L, and receives a control signal from a control device (not shown) to rotate the right inspection unit 320R and the like around the rotation axis.
  • the rotation mechanism 312R can receive the operation by the operator and manually rotate the right inspection unit 320R and the like around the rotation axis.
  • Rotating the left inspection unit 320L and the right inspection unit 320R by the rotation mechanisms 312L and 312R makes it possible to relatively change the orientation of the left inspection unit 320L and the right inspection unit 320R.
  • the left inspection unit 320L and the right inspection unit 320R are rotated in opposite directions around the eyeball rotation points of the left and right eyes of the subject. Thereby, the eye to be examined can be converged.
  • the vertical movement mechanism 313L moves the left inspection unit 320L in the vertical direction (vertical direction, Y direction). Thereby, the position in the height direction of the optometry window can be adjusted according to the arrangement position of the eye to be examined.
  • the vertical movement mechanism 313L has a known configuration using, for example, a driving means or a driving force transmission means for transmitting a driving force generated by the driving means, and receives a control signal from a control device (not shown) to receive a left inspection unit. Move 320L up and down.
  • the vertical movement mechanism 313L can manually move the left inspection unit 320L in the vertical direction in response to an operation by the operator.
  • the vertical movement mechanism 313R moves the right inspection unit 320R in the vertical direction. Thereby, the position in the height direction of the optometry window can be adjusted according to the arrangement position of the eye to be examined.
  • the vertical movement mechanism 313R may move the right inspection unit 320R in conjunction with the movement by the vertical movement mechanism 313L, or may move the right inspection unit 320R independently of the movement by the vertical movement mechanism 313L.
  • the vertical movement mechanism 313R has the same configuration as the vertical movement mechanism 313L, and moves the right inspection unit 320R in the vertical direction in response to a control signal from a control device (not shown).
  • the vertical movement mechanism 313R can receive the operation by the operator and manually move the right inspection unit 320R in the vertical direction.
  • the left inspection unit 320L and the right inspection unit 320R can be operated individually.
  • the ophthalmologic apparatus includes an objective lens (objective lens 51), an objective measurement optical system (a part of the reflex measurement projection system 6, a reflex measurement light receiving system 7, and an observation system 5), and an interference optical system (OCT optical). System 8) and an image forming unit (image forming unit 122).
  • the objective measurement optical system irradiates light to the eye to be examined (the eye to be examined E) through the objective lens, and detects return light from the eye to be examined.
  • the interference optical system divides light (light L0) from the light source (OCT light source 91) into reference light (reference light LR) and measurement light (measurement light LS), and the light of the eye to be examined by the objective measurement optical system.
  • the measurement eye is irradiated with measurement light through the objective lens so that it overlaps at least part of the irradiation area, and interference light (interference light LC) between the return light and reference light is generated, and the generated interference light is detected.
  • interference light LC interference light between the return light and reference light
  • the image forming unit forms a tomographic image of the eye to be examined based on the detection result of the interference light by the interference optical system.
  • the measurement light is irradiated through the objective lens so as to overlap at least part of the irradiation region of the light irradiated to the eye to be examined through the objective lens in order to perform the objective measurement,
  • a tomographic image of the eye to be examined can be formed by detecting the interference light based on the return light.
  • a tomographic image in the vicinity of the irradiation area of the light for objective measurement can be acquired, and the relationship between the objective measurement result and the tomographic image is observed to obtain other information obtained by objective measurement. It becomes possible to improve the accuracy of the sensed measurement value.
  • the presence or absence of an abnormality of the fundus is determined by observing a tomographic image, and whether the cause is in the fundus or an intermediate translucent body including a lens Etc. can be assisted.
  • the ophthalmologic apparatus includes a target region specifying unit (region specifying unit 124) that specifies a target region of the subject eye based on the return light from the subject eye detected by the objective measurement optical system,
  • the interference optical system may irradiate measurement light to the target site specified by the target site specifying unit.
  • the target region is identified from the return light from the subject's eye detected by the objective measurement optical system, and the measurement light is emitted to the identified target region.
  • a tomographic image at a site to be noted can be easily acquired by measurement.
  • the objective measurement optical system projects a ring-shaped measurement pattern onto the fundus (fundus Ef) of the eye to be examined
  • the attention site specifying unit is a pattern image based on the return light from the fundus
  • the site of interest may be specified based on the above.
  • the attention site specifying unit may take the attention site based on the detection result of the interference light.
  • the region of interest is specified based on the detection result of the interference light based on the return light of the measurement light irradiated to the eye to be examined, for example, the region to be noted by objective refractive power measurement Can be easily identified.
  • the interference optical system includes an optical scanner (optical scanner 84) that deflects the measurement light, and the optical scanner scans the target region specified by the target region specifying unit with the measurement light.
  • a control unit (control unit 110) that controls the above may be included.
  • the optical scanner is controlled so as to scan the region to be noted by the objective measurement with the measurement light, the region to be noted by the objective measurement such as the objective refractive power measurement is determined. It is easy to obtain a tomographic image in the vicinity. In addition, since the specified region of interest is scanned, the scan time can be greatly reduced.
  • control unit may control the optical scanner so as to scan the region of interest with measurement light in a radial or circle shape.
  • the tomographic image of the site of interest is acquired by radial scanning or circle scanning, it is possible to determine the objective measurement result based on the tomographic image at the site where the objective measurement has been performed. It becomes possible.
  • the ophthalmologic apparatus includes a display control unit (display control unit 111A) that displays an image based on the return light of the light emitted by the objective measurement optical system on the display unit.
  • the site of interest specified by the site specifying unit may be identified and displayed.
  • the ophthalmologic apparatus includes an eye refractive power calculation unit (eye refractive power calculation unit 121) that obtains refractive power of the subject eye based on return light from the subject eye detected by the objective measurement optical system.
  • the eye refractive power calculation unit may obtain a new refractive power by deleting or interpolating the measurement result at the site of interest acquired by the objective measurement optical system and recalculating the refractive power of the eye to be examined. .
  • the measurement result acquired by the objective measurement optical system includes the detection result of the return light from the eye detected by the objective measurement optical system, the objective measurement value generated based on the detection result, and the like. May be the result of the calculation.
  • the new refractive power is calculated by deleting or interpolating the measurement result at the target region, the refraction of the eye to be examined which is not affected by the measurement result at the abnormal region such as a diseased region.
  • the force can be acquired, and the accuracy of the objective measurement value obtained by the objective measurement can be improved.
  • the ophthalmic examination system includes a left examination unit for examining the left subject eye and a right examination unit for examining the right subject eye, and at least one of the left examination unit and the right examination unit. Includes the ophthalmic device described above.
  • an ophthalmic examination system capable of improving the accuracy of objective measurement values for both eyes with a simple configuration can be provided.
  • the optical scanner 84 is controlled to scan the projection part of the ring-shaped light beam projected onto the fundus oculi Ef.
  • the ophthalmologic apparatus according to the embodiment or its modification is described.
  • the configuration is not limited to this.
  • the light scanner 84 may be controlled so that a measurement light beam is projected onto the anterior eye portion of the eye E and the projection site is scanned.
  • an image rotator that can rotate around the optical axis of the OCT optical system 8 may be provided instead of the galvanometer mirror 84Y.
  • the interference optical system has been described as performing OCT imaging, but measurement may be performed by OCT.
  • the interference optical system may measure the axial length, corneal pressure, anterior chamber depth, lens thickness, and the like by OCT.
  • an intraocular pressure measurement function is realized by a tonometer
  • the fundus imaging function is realized by a fundus camera, a scanning ophthalmoscope (SLO), etc.
  • the anterior ocular imaging function is realized by a slit lamp, etc.
  • the OCT function is optical
  • the ultrasonic inspection function is realized by an ultrasonic diagnostic apparatus or the like.
  • the present invention can be applied to an apparatus (multifunction machine) having two or more of such functions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)

Abstract

実施形態に係る眼科装置は、対物レンズと、他覚測定光学系と、干渉光学系と、画像形成部とを含む。他覚測定光学系は、対物レンズを介して被検眼に光を照射し、被検眼からの戻り光を検出する。干渉光学系は、光源からの光を参照光と測定光とに分割し、他覚測定光学系による被検眼の光の照射領域の少なくとも一部に重なるように対物レンズを介して被検眼に測定光を照射し、その戻り光と参照光との干渉光を生成し、生成された干渉光を検出する。画像形成部は、干渉光学系による干渉光の検出結果に基づいて被検眼の断層像を形成する。

Description

眼科装置及び眼科検査システム
 この発明は、眼科装置及び眼科検査システムに関する。
 被検眼に対して他覚測定を実行可能な眼科装置が知られている。例えば、特許文献1には、被検眼の眼底に眼屈折力測定用のリング状の光束を投影し、その戻り光を検出することによって得られるリング像を解析することにより、被検眼の球面度数、乱視度数及び乱視軸角度を求める眼科装置が開示されている。
特開2006-187482号公報
 しかしながら、被検眼の眼底に疾患部位が存在する場合、この疾患部位に測定用のリング状の光束が投影されると、眼底からの戻り光を検出することにより得られるリング像の形状の歪みや変形が大きくなる。それにより、求められる被検眼の球面度数、乱視度数及び乱視軸角度の精度が低下するという問題がある。このような他覚測定値のばらつきは、他覚測定値を反映させて実行される自覚検査の検査精度にも影響を与えることもある。
 また、リング像の形状の歪み等は、眼底の疾患部位だけではなく、水晶体を含む中間透光体に原因がある場合がある。従って、リング像を解析するだけでは、求められた被検眼の球面度数等の精度が低下した原因を特定することができない場合がある。
 本発明は、上記の問題点を解決するためになされたものであり、他覚測定値の精度を向上させることが可能な眼科装置及び眼科検査システムを提供することを目的とする。
 実施形態に係る眼科装置は、対物レンズと、他覚測定光学系と、干渉光学系と、画像形成部とを含む。他覚測定光学系は、対物レンズを介して被検眼に光を照射し、被検眼からの戻り光を検出する。干渉光学系は、光源からの光を参照光と測定光とに分割し、他覚測定光学系による被検眼の光の照射領域の少なくとも一部に重なるように対物レンズを介して被検眼に測定光を照射し、その戻り光と参照光との干渉光を生成し、生成された干渉光を検出する。画像形成部は、干渉光学系による干渉光の検出結果に基づいて被検眼の断層像を形成する。
 実施形態に係る眼科検査システムは、左被検眼を検査するための左検査ユニットと、右被検眼を検査するための右検査ユニットと、を含み、左検査ユニット及び右検査ユニットの少なくとも一方は、実施形態に係る眼科装置を含む。
 この発明に係る眼科装置及び眼科検査システムによれば、他覚測定値の精度を向上させることが可能になる。
実施形態に係る眼科装置の光学系の構成例を示す概略図である。 実施形態に係る眼科装置の光学系の構成例を示す概略図である。 実施形態に係る眼科装置の光学系の構成例を示す概略図である。 実施形態に係る眼科装置の処理系の構成例を示す概略図である。 実施形態に係る眼科装置の動作例のフロー図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置が適用された眼科検査システムの構成例を示す概略図である。
 この発明に係る眼科装置及び眼科検査システムの実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
<眼科装置>
 実施形態に係る眼科装置は、任意の自覚検査及び任意の他覚測定の少なくとも一方を実行可能である。自覚検査では、被検者に情報(視標など)が呈示され、その情報に対する被検者の応答に基づいて結果が取得される。自覚検査には、遠用検査、近用検査、コントラスト検査、グレアー検査等の自覚屈折測定や、視野検査などがある。他覚測定では、被検眼に光を照射し、その戻り光の検出結果に基づいて被検眼に関する情報が取得される。他覚測定には、被検眼の特性を取得するための測定と、被検眼の画像を取得するための撮影とが含まれる。他覚測定には、他覚屈折測定、角膜形状測定、眼圧測定、眼底撮影、光コヒーレンストモグラフィ(Optical Coherence Tomography:以下、OCT)を用いた断層像撮影(OCT撮影)、OCTを用いた計測等がある。
 以下、実施形態に係る眼科装置は、自覚検査として、遠用検査、近用検査などを実行可能であり、且つ、他覚測定として、他覚屈折測定、角膜形状測定、OCT撮影などを実行可能な装置であるものとする。しかしながら、実施形態に係る眼科装置の構成は、これに限定されるものではない。
 また、OCT撮影においてフーリエドメインタイプのOCTの手法を用いる場合について説明する。特に、以下の実施形態に係る眼科装置は、スウェプトソースOCTの手法を用いてOCT撮影を行うことが可能である。なお、OCT撮影は、スウェプトソース以外のタイプ、例えばスペクトラルドメインOCTの手法を用いてもよい。また、以下の実施形態におけるOCT撮影は、タイムドメインタイプのOCTの手法を用いることも可能である。
<構成>
 実施形態に係る眼科装置は、ベースに固定された顔受け部と、ベースに対して前後左右に移動可能な架台とを備えている。架台には、被検眼の検査(測定)を行うための光学系が収納されたヘッド部が設けられている。検者側の位置に配置された操作部に対して操作を行うことにより、顔受け部とヘッド部とを相対移動することができる。また、眼科装置は、後述のアライメントを実行することにより顔受け部とヘッド部とを自動で相対移動することができる。
 図1~図3に、実施形態に係る眼科装置の光学系の構成例を示す。眼科装置は、被検眼Eの検査を行うための光学系として、Zアライメント系1、XYアライメント系2、ケラト測定系3、視標投影系4、観察系5、レフ測定投影系6、レフ測定受光系7及びOCT光学系8を含む。また、眼科装置は処理部9を含む。
(処理部9)
 処理部9は、眼科装置の各部を制御する。また、処理部9は、各種演算処理を実行可能である。処理部9はプロセッサを含む。プロセッサの機能は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路により実現される。処理部9は、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
(観察系5)
 観察系5は、被検眼Eの前眼部を動画撮影する。被検眼Eの前眼部からの光(赤外光)は、対物レンズ51を通過し、ダイクロイックミラー52を透過し、絞り53の開口を通過する。絞り53の開口を通過した光は、ハーフミラー22を透過し、リレーレンズ55及び56を通過し、ハーフミラー76を透過する。ハーフミラー76を透過した光は、結像レンズ58により撮像素子59(エリアセンサー)の撮像面に結像される。撮像素子59は、所定のレートで撮像及び信号出力を行う。撮像素子59の出力(映像信号)は処理部9に入力される。処理部9は、この映像信号に基づく前眼部像E’を表示部10の表示画面10aに表示させる。前眼部像E’は、例えば赤外動画像である。観察系5は、前眼部を照明するための照明光源を含んでいてもよい。
(Zアライメント系1)
 Zアライメント系1は、観察系5の光軸方向(前後方向、Z方向)におけるアライメントを行うための光(赤外光)を被検眼Eに照射する。Zアライメント光源11から出力された光は、被検眼Eの角膜Kに照射され、角膜Kにより反射され、結像レンズ12によりラインセンサー13に結像される。角膜頂点の位置が前後方向に変化すると、ラインセンサー13に対する光の投影位置が変化する。処理部9は、ラインセンサー13に対する光の投影位置に基づいて被検眼Eの角膜頂点の位置を求め、これに基づきZアライメントを実行する。
(XYアライメント系2)
 XYアライメント系2は、観察系5の光軸に直交する方向(左右方向(X方向)、上下方向(Y方向))のアライメントを行うための光(赤外光)を被検眼Eに照射する。XYアライメント系2は、ハーフミラー22により観察系5から分岐された光路に設けられたXYアライメント光源21を含む。XYアライメント光源21から出力された光は、ハーフミラー22により反射され、観察系5を通じて被検眼Eに照射される。その角膜Kによる反射光は、観察系5を通じて撮像素子59に導かれる。
 この反射光の像(輝点像)は前眼部像E’に含まれる。処理部9は、図1に示すように、輝点像Brを含む前眼部像E’とアライメントマークALとを表示画面10aに表示させる。手動でXYアライメントを行う場合、検者又は被検者等のユーザは、アライメントマークAL内に輝点像Brを誘導するように光学系の移動操作を行う。自動でアライメントを行う場合、処理部9は、アライメントマークALに対する輝点像Brの変位がキャンセルされるように、光学系を移動させるための機構を制御する。
(ケラト測定系3)
 ケラト測定系3は、角膜Kの形状を測定するためのリング状光束(赤外光)を角膜Kに投影する。ケラト板31は、対物レンズ51と被検眼Eとの間に配置されている。ケラト板31の背面側(対物レンズ51側)にはケラトリング光源32が設けられている。ケラトリング光源32からの光でケラト板31を照明することにより、角膜Kにリング状光束が投影される。その反射光(ケラトリング像)は撮像素子59により前眼部像とともに検出される。処理部9は、このケラトリング像を基に公知の演算を行うことで角膜形状パラメータを算出する。
(視標投影系4)
 視標投影系4は、固視標や自覚検査用の視標等の各種視標を被検眼Eに呈示する。液晶パネル41は、処理部9からの制御を受け、視標を表すパターンを表示する。液晶パネル41から出力された光(可視光)は、リレーレンズ42及び合焦レンズ43を通過し、ダイクロイックミラー81を透過する。ダイクロイックミラー81を透過した光は、リレーレンズ44、瞳レンズ45及びVCCレンズ46を通過し、反射ミラー47により反射され、ダイクロイックミラー69を透過し、ダイクロイックミラー52により反射される。ダイクロイックミラー52により反射された光は、対物レンズ51を通過して眼底Efに投影される。
 合焦レンズ43は、視標投影系4の光軸に沿って移動可能である。液晶パネル41と眼底Efとが光学的に共役となるように合焦レンズ43の位置が調整される。VCCレンズ46は、被検眼の非点収差を調整可能である(すなわち、被検眼の収差を補正可能である)。具体的には、VCCレンズ46は、処理部9からの制御を受け、被検眼Eに付加する乱視度数及び乱視軸角度を変更可能であり、被検眼の眼球収差のうち少なくとも乱視度数及び乱視軸角度を補正可能である。それにより、被検眼Eの乱視状態が矯正される。
 液晶パネル41は、処理部9からの制御を受け、被検眼Eを固視させるための固視標を表すパターンを表示することが可能である。液晶パネル41において固視標を表すパターンの表示位置を順次に変更することで固視位置を移動し、固視を誘導することができる。また、視標投影系4は、前述の視標とともにグレアー光を被検眼Eに投影するためのグレアー検査光学系を含んでもよい。
 自覚検査を行う場合、処理部9は、他覚測定の結果に基づき液晶パネル41、合焦レンズ43及びVCCレンズ46を制御する。処理部9は、検者又は処理部9により選択された視標を液晶パネル41に表示させる。それにより、当該視標が被検者に呈示される。被検者は視標に対する応答を行う。応答内容の入力を受けて、処理部9は、更なる制御や、自覚検査値の算出を行う。例えば、視力測定において、処理部9は、ランドルト環等に対する応答に基づいて、次の視標を選択して呈示し、これを繰り返し行うことで視力値を決定する。
 他覚測定(他覚屈折測定など)においては、風景チャートが眼底Efに投影される。この風景チャートを被検者に凝視させつつアライメントが行われ、雲霧視状態で眼屈折力が測定される。
(レフ測定投影系6及びレフ測定受光系7)
 レフ測定投影系6及びレフ測定受光系7は他覚屈折測定(レフ測定)に用いられる。レフ測定投影系6は、他覚測定用のリング状光束(赤外光)を眼底Efに投影する。この明細書において、リング状光束はリングの一部が途切れた形状の光束も含む。レフ測定受光系7は、このリング状光束の被検眼Eからの戻り光を受光する。
 光源ユニット60は、レフ測定光源61、コンデンサレンズ62、円錐プリズム63及びリング開口板64を含む。光源ユニット60は、レフ測定投影系6の光軸に沿って移動可能である。レフ測定光源61は、眼底Efと光学的に共役な位置に配置される。レフ測定光源61から出力された光は、コンデンサレンズ62を通過し、円錐プリズム63を透過し、リング開口板64のリング状開口部を通過してリング状光束となる。リング開口板64により形成されたリング状光束は、リレーレンズ65及び瞳レンズ66を通過し、穴開きプリズム67の反射面により反射され、ロータリープリズム68を通過し、ダイクロイックミラー69により反射される。ダイクロイックミラー69により反射された光は、ダイクロイックミラー52により反射され、対物レンズ51を通過して眼底Efに投影される。
 ロータリープリズム68は、眼底Efの血管や疾患部位に対するリング状光束の光量分布を平均化させるために用いられる。
 眼底Efに投影されたリング状光束の戻り光は、対物レンズ51を通過し、ダイクロイックミラー52及び69により反射される。ダイクロイックミラー69により反射された戻り光は、ロータリープリズム68を通過し、穴開きプリズム67の穴部を通過し、瞳レンズ71を通過し、反射ミラー72により反射される。反射ミラー72により反射された光は、リレーレンズ73及び合焦レンズ74を通過し、反射ミラー75により反射される。反射ミラー75により反射された光は、ハーフミラー76により反射され、結像レンズ58により撮像素子59の撮像面に結像される。処理部9は、撮像素子59からの出力を基に公知の演算を行うことで被検眼Eの球面度数S、乱視度数C及び乱視軸角度Aを算出する。
 処理部9は、算出された屈折値に基づいて、レフ測定光源61と眼底Efと撮像素子59とが共役となる位置に、光源ユニット60と合焦レンズ74とをそれぞれ光軸方向に移動させる。更に、処理部9は、光源ユニット60及び合焦レンズ74の移動に連動して合焦レンズ43をその光軸方向に移動させる。また、処理部9は、光源ユニット60及び合焦レンズ74の移動に連動してOCT光学系8の合焦レンズ82をその光軸方向に移動させてもよい。
(OCT光学系8)
 OCT光学系8は、OCT撮影を行うための光学系である。OCT撮影よりも前に実施されたレフ測定結果に基づいて、光ファイバーf2の端面が眼底Efと光学系に共役となるように合焦レンズ82の位置が調整される。
 OCT光学系8の光路は、ダイクロイックミラー81により視標投影系4の光路に結合される。それにより、OCT光学系8及び視標投影系4のそれぞれの光軸を同軸で結合することができる。
 OCT光学系8は、OCTユニット90を含む。図2に示すように、OCTユニット90において、OCT光源91は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を掃引(走査)可能な波長掃引型(波長走査型)光源を含んで構成される。波長掃引型光源は、共振器を含むレーザー光源を含んで構成される。OCT光源91は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。
 OCT光源91から出力された光(赤外光、広帯域光)L0は、光ファイバーf1を通じて導かれたファイバーカプラー92により測定光LSと参照光LRとに分割される。測定光LSは、光ファイバーf2を通じてコリメートレンズ86に導かれる。一方、参照光LRは、光ファイバーf4を通じて参照光路長変更部94に導かれる。
 参照光路長変更部94は、参照光LRの光路長を変更する。参照光路長変更部94に導かれた参照光LRは、コリメートレンズ95により平行光束とされてコーナーキューブ96に導かれる。コーナーキューブ96は、コリメートレンズ95により平行光束とされた参照光LRの進行方向を逆方向に折り返す。コーナーキューブ96に入射する参照光LRの光路と、コーナーキューブ96から出射する参照光LRの光路とは平行である。また、コーナーキューブ96は、参照光LRの入射光路及び出射光路に沿う方向に移動可能とされている。この移動により参照光LRの光路の長さが変更される。コーナーキューブ96から出射する参照光LRは、コリメートレンズ97によって平行光束から集束光束に変換されて光ファイバーf5に入射し、ファイバーカプラー93に導かれる。コリメートレンズ95とコーナーキューブ96との間やコーナーキューブ96とコリメートレンズ97との間に、遅延部材や分散補償部材が設けられていてもよい。遅延部材は、参照光LRの光路長(光学距離)と測定光LSの光路長とを合わせるための光学部材である。分散補償部材は、参照光LRと測定光LSとの間の分散特性を合わせるための光学部材である。
 コリメートレンズ86により平行光束とされた測定光LSは、光スキャナー84により1次元的又は2次元的に偏向される。光スキャナー84は、ガルバノミラー84Xと、ガルバノミラー84Yとを含む。ガルバノミラー84Xは、眼底EfをX方向にスキャンするように測定光LSを偏向する。ガルバノミラー84Yは、眼底EfをY方向にスキャンするように、ガルバノミラー84Xにより偏向された測定光LSを偏向する。このような光スキャナー84による測定光LSの走査態様としては、例えば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋スキャンなどがある。
 光スキャナー84により偏向された測定光LSは、反射ミラー83及び合焦レンズ82を経由して、ダイクロイックミラー81により反射される。ダイクロイックミラー81により反射された測定光LSは、視標投影系4を通じてダイクロイックミラー52に導かれ、ダイクロイックミラー52により反射される。ダイクロイックミラー52により反射された光は、対物レンズ51を通過して被検眼Eに照射される。測定光LSは、被検眼Eの様々な深さ位置において散乱(反射を含む)される。このような後方散乱光を含む測定光LSの戻り光は、往路と同じ経路を逆向きに進行してファイバーカプラー92に導かれ、光ファイバーf3を経由してファイバーカプラー93に到達する。
 ファイバーカプラー93は、光ファイバーf3を介して入射された測定光LSと、光ファイバーf5を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバーカプラー93は、所定の分岐比(例えば1:1)で、測定光LSと参照光LRとの干渉光を分岐することにより、一対の干渉光LCを生成する。ファイバーカプラー93から出射した一対の干渉光LCは、それぞれ光ファイバーf6及びf7により検出器98に導かれる。
 検出器98は、例えば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを有し、これらによる検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode:BPD)である。OCT光源91により所定の波長範囲内で掃引(走査)される各波長の出力タイミングに同期して生成されたクロックに基づいて、検出器98から出力された検出結果の差分がサンプリングされる。このサンプリングデータは、処理部9の演算処理部120に送られる。演算処理部120は、例えば一連の波長走査毎に(Aライン毎に)、サンプリングデータに基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。更に、演算処理部120は、各Aラインの反射強度プロファイルを画像化することにより画像データを形成する。
 以上のように、OCT光学系8は、OCT光源91からの光L0を参照光LRと測定光LSとに分割し、被検眼Eに測定光LSを照射し、その戻り光と参照光LRとの干渉光LCを生成し、生成された干渉光を検出する干渉光学系を含む。この干渉光学系は、対物レンズ51及びVCCレンズ46を介して被検眼Eに測定光LSを照射する。
 このようなOCT光学系8は、ダイクロイックミラー81により視標投影系4の光路に結合される。例えば穴開きプリズムを用いてOCT光学系8の光路を他の光学系の光路に結合する場合、穴開きプリズムの穴部に測定光を通過させるように光学系が構成されるため、測定光やその戻り光のケラレ等を考慮する必要が生じる。また、OCT光学系8を測定光の波長に近い波長の光を用いる他の光学系(レフ測定投影系6及びレフ測定受光系7)に結合する場合、互いに波長が近くなるため分離が難しくなり、効率が低下してしまう。これに対して、OCT光学系8の光路をダイクロイックミラー81を用いて他の光学系の光路に結合するようにしたので、光学系の構成を簡素化でき、光学系の設計の自由度を向上させることができる。また、他の光学系を追加しやすくなり、拡張性を備えた構成とすることができる。
 更に、VCCレンズ46よりも光源側(上流側)で上記の2つの光路を結合するようにしたので、VCCレンズ46を通じて測定光LSが眼底Efに照射され、測定部位においてより一点に収束されやすくなる。それにより、最適な横分解能で、干渉光の検出結果に基づく干渉信号を十分な強度で取得できるようになる。
 図3に示すように、VCCレンズ46と瞳レンズ45との中間位置は、被検眼Eの瞳と光学的に共役な位置(瞳共役位置Q)に配置されている。同様に、ガルバノミラー84Xとガルバノミラー84Yとの中間位置は、被検眼Eの瞳と光学的に共役な位置に配置されている。更に、被検眼Eの眼底Efと光ファイバーf2のファイバー端面とが光学的に共役な位置(眼底共役位置P)となるように合焦レンズ82が光軸方向に移動される。瞳レンズ45よりも光源側でOCT光学系8の光路と視標投影系4の光路とを結合するようにしたので、眼底共役位置Pを近くすることが可能になり、視標投影系4やOCT光学系8を小さくすることができる。
(処理系の構成)
 実施形態に係る眼科装置の処理系について説明する。眼科装置の処理系の機能的構成の例を図4に示す。図4は、実施形態に係る眼科装置の処理系の機能ブロック図の一例を表したものである。処理部9は、制御部110と演算処理部120とを含む。また、実施形態に係る眼科装置は、表示部170と、操作部180と、通信部190と、移動機構200とを含む。
 移動機構200は、Zアライメント系1、XYアライメント系2、ケラト測定系3、視標投影系4、観察系5、レフ測定投影系6、レフ測定受光系7及びOCT光学系8等の光学系が収納されたヘッド部を前後左右方向に移動させるための機構である。例えば、移動機構200には、移動機構200を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。アクチュエータは、例えばパルスモータにより構成される。伝達機構は、例えば歯車の組み合わせやラック・アンド・ピニオンなどによって構成される。制御部110(主制御部111)は、アクチュエータに対して制御信号を送ることにより移動機構200に対する制御を行う。
(制御部110)
 制御部110は、プロセッサを含み、眼科装置の各部を制御する。制御部110は、主制御部111と、記憶部112とを含む。記憶部112には、眼科装置を制御するためのコンピュータプログラムがあらかじめ格納される。コンピュータプログラムには、光源制御用プログラム、検出器制御用プログラム、光スキャナー制御用プログラム、光学系制御用プログラム、演算処理用プログラム及びユーザインターフェイス用プログラムなどが含まれる。このようなコンピュータプログラムに従って主制御部111が動作することにより、制御部110は制御処理を実行する。
 主制御部111は、測定制御部として眼科装置の各種制御を行う。Zアライメント系1に対する制御には、Zアライメント光源11の制御、ラインセンサー13の制御などがある。Zアライメント光源11の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。ラインセンサー13の制御には、検出素子の露光調整やゲイン調整や検出レート調整などがある。それにより、Zアライメント光源11の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、ラインセンサー13により検出された信号を取り込み、取り込まれた信号に基づいてラインセンサー13に対する光の投影位置を特定する。主制御部111は、特定された投影位置に基づいて被検眼Eの角膜頂点の位置を求め、これに基づき移動機構200を制御してヘッド部を前後方向に移動させる(Zアライメント)。
 XYアライメント系2に対する制御には、XYアライメント光源21の制御などがある。XYアライメント光源21の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。それにより、XYアライメント光源21の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、撮像素子59により検出された信号を取り込み、取り込まれた信号に基づいてXYアライメント光源21からの光の戻り光に基づく輝点像の位置を特定する。主制御部111は、所定の目標位置(例えば、アライメントマークの中心位置)に対する輝点像の位置との変位がキャンセルされるように移動機構200を制御してヘッド部を左右上下方向に移動させる(XYアライメント)。
 ケラト測定系3に対する制御には、ケラトリング光源32の制御などがある。ケラトリング光源32の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。それにより、ケラトリング光源32の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、撮像素子59により検出されたケラトリング像に対する公知の演算を演算処理部120に実行させる。それにより、被検眼Eの角膜形状パラメータが求められる。
 視標投影系4に対する制御には、液晶パネル41の制御、合焦レンズ43の制御、VCCレンズ46の制御などがある。液晶パネル41の制御には、視標や固視標の表示のオン・オフや、固視標の表示位置の切り替えなどがある。それにより、被検眼Eの眼底Efに視標や固視標が投影される。合焦レンズ43の制御には、合焦レンズ43の光軸方向への移動制御などがある。例えば、視標投影系4は、合焦レンズ43を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、合焦レンズ43を光軸方向に移動させる。それにより、液晶パネル41と眼底Efとが光学的に共役となるように合焦レンズ43の位置が調整される。VCCレンズ46の制御には、乱視度数及び乱視軸角度の変更制御などがある。VCCレンズ46は、その光軸を中心として相対的に回転可能に設けられた凹凸一対のシリンダーレンズを含む。主制御部111は、例えば後述のレフ測定など別途に得られた被検眼Eの乱視状態(乱視度数、乱視軸角度)を矯正するように一対のシリンダーレンズを相対的に回転させる。
 観察系5に対する制御には、撮像素子59の制御などがある。撮像素子59の制御には、撮像素子59の露光調整やゲイン調整や検出レート調整などがある。主制御部111は、撮像素子59により検出された信号を取り込み、取り込まれた信号に基づく画像の形成等の処理を演算処理部120に実行させる。なお、観察系5が照明光源を含んで構成されている場合、主制御部111は照明光源を制御することが可能である。
 レフ測定投影系6に対する制御には、光源ユニット60の制御、ロータリープリズム68の制御などがある。光源ユニット60の制御には、レフ測定光源61の制御や光源ユニット60の制御などがある。レフ測定光源61の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。それにより、レフ測定光源61の点灯と非点灯とが切り替えられたり、光量が変更されたりする。光源ユニット60の制御には、光源ユニット60の光軸方向への移動制御などがある。例えば、レフ測定投影系6は、光源ユニット60を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、光源ユニット60を光軸方向に移動させる。ロータリープリズム68の制御には、ロータリープリズム68の回転制御などがある。例えば、ロータリープリズム68を回転させる回転機構が設けられており、主制御部111は、この回転機構を制御することによりロータリープリズム68を回転させる。
 レフ測定受光系7に対する制御には、合焦レンズ74の制御などがある。合焦レンズ74の制御には、合焦レンズ74の光軸方向への移動制御などがある。例えば、レフ測定受光系7は、合焦レンズ74を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、合焦レンズ74を光軸方向に移動させる。主制御部111は、レフ測定光源61と眼底Efと撮像素子59とが光学的に共役となるように、例えば被検眼Eの屈折力に応じて光源ユニット60及び合焦レンズ74をそれぞれ光軸方向に移動させることが可能となる。
 OCT光学系8に対する制御には、OCT光源91の制御、光スキャナー84の制御、合焦レンズ82の制御、コーナーキューブ96の制御、検出器98の制御などがある。OCT光源91の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。光スキャナー84の制御には、ガルバノミラー84Xによる走査位置や走査範囲や走査速度の制御、ガルバノミラー84Yによる走査位置や走査範囲や走査速度の制御などがある。合焦レンズ82の制御には、合焦レンズ82の光軸方向への移動制御などがある。例えば、OCT光学系8は、合焦レンズ82を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、合焦レンズ82を光軸方向に移動させる。主制御部111は、例えば、合焦レンズ43の移動に連動して合焦レンズ82を移動させた後、干渉信号の強度に基づいて合焦レンズ82だけを移動させるようにしてもよい。コーナーキューブ96の制御には、コーナーキューブ96の光軸方向への移動制御などがある。例えば、OCT光学系8は、コーナーキューブ96を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、コーナーキューブ96を光軸方向に移動させる。それにより、参照光LRの光路の長さが変更される。検出器98の制御には、検出素子の露光調整やゲイン調整や検出レート調整などがある。主制御部111は、検出器98により検出された信号をサンプリングし、サンプリングされた信号に基づく画像の形成等の処理を演算処理部120(画像形成部122)に実行させる。
 主制御部111は、表示制御部111Aを含む。表示制御部111Aは、各種情報を表示部170に表示させる。表示部170に表示される情報には、上記の光学系を用いて取得された他覚測定結果や自覚検査結果、画像形成部122により形成された画像データに基づく画像(断層像など)、データ処理部123により画像処理やデータ処理が施された画像や情報などがある。表示制御部111Aは、これらの各種情報を重畳して表示部170に表示させたり、その一部を識別表示させたりすることが可能である。
 また、主制御部111は、記憶部112にデータを書き込む処理や、記憶部112からデータを読み出す処理を行う。
(記憶部112)
 記憶部112は、各種のデータを記憶する。記憶部112に記憶されるデータとしては、例えば自覚検査の検査結果、他覚測定の測定結果、断層像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部112には、眼科装置を動作させるための各種プログラムやデータが記憶されている。
(演算処理部120)
 演算処理部120は、眼屈折力算出部121と、画像形成部122と、データ処理部123と、部位特定部124とを含む。
 眼屈折力算出部121は、レフ測定投影系6により眼底Efに投影されたリング状光束(リング状の測定パターン)の戻り光を撮像素子59が受光することにより得られたリング像(パターン像)を解析する。例えば、眼屈折力算出部121は、得られたリング像が描出された画像における輝度分布からリング像の重心位置を求め、この重心位置から放射状に延びる複数の走査方向に沿った輝度分布を求め、この輝度分布からリング像を特定する。続いて、眼屈折力算出部121は、特定されたリング像の近似楕円を求め、この近似楕円の長径及び短径を公知の式に代入することによって球面度数S、乱視度数C及び乱視軸角度Aを求める。
 眼屈折力算出部121は、上記のリング像を特定するために用いられたデータ群の一部を削除することにより得られた新たなデータ群からリング像を特定することが可能である。また、眼屈折力算出部121は、上記のリング像を特定するために用いられたデータ群の一部を補間データに置き換えることにより得られた新たなデータ群からリング像を特定してもよい。この場合、補間データは、データ群の一部以外のデータを用いた補間処理により取得される。眼屈折力算出部121は、特定された新たなリング像の近似楕円を求め、この近似楕円からの新なた球面度数S、乱視度数C及び乱視軸角度Aを求める。削除又は補間される「データ群の一部」は、後述の部位特定部124により特定された部位における測定結果(例えば、輝度分布)又は当該測定結果から得られたデータや、ユーザにより指定されたデータである。それにより、眼屈折力測定により得られた測定結果(例えば、所定の走査方向の輝度分布)から球面度数S等の精度を低下させるような測定結果を削除又は補間することができ、眼屈折力測定により得られる球面度数S等の精度の低下を抑えることができる。
 或いは、眼屈折力算出部121は、基準パターンに対するリング像の変形及び変位に基づいて眼屈折力のパラメータを求めることができる。この場合、眼屈折力算出部121は、基準パターンに対するリング像の変形及び変位の一部を上記のように削除又は補間して新たなリング像の変形及び変位を特定し、特定されたリング像の変形及び変位に基づいて眼屈折力のパラメータを求める。
 また、眼屈折力算出部121は、観察系5により取得されたケラトリング像に基づいて、角膜屈折力、角膜乱視度及び角膜乱視軸角度を算出する。例えば、眼屈折力算出部121は、ケラトリング像を解析することにより角膜前面の強主経線や弱主経線の角膜曲率半径を算出し、角膜曲率半径に基づいて上記パラメータを算出する。
 画像形成部122は、検出器98により検出された信号に基づいて、眼底Efの断層像の画像データを形成する。すなわち、画像形成部122は、干渉光学系による干渉光LCの検出結果に基づいて被検眼Eの画像データを形成する。この処理には、従来のスウェプトソースタイプのOCTと同様に、フィルタ処理、FFT(Fast Fourier Transform)などの処理が含まれている。このようにして取得される画像データは、複数のAライン(被検眼E内における各測定光LSの経路)における反射強度プロファイルを画像化することにより形成された一群の画像データを含むデータセットである。
 画質を向上させるために、同じパターンでのスキャンを複数回繰り返して収集された複数のデータセットを重ね合わせる(加算平均する)ことができる。
 データ処理部123は、画像形成部122により形成された断層像に対して各種のデータ処理(画像処理)や解析処理を施す。例えば、データ処理部123は、画像の輝度補正や分散補正等の補正処理を実行する。また、データ処理部123は、観察系5を用い得られた画像(前眼部像等)に対して各種の画像処理や解析処理を施す。
 データ処理部123は、断層像の間の画素を補間する補間処理などの公知の画像処理を実行することにより、被検眼Eのボリュームデータ(ボクセルデータ)を形成することができる。ボリュームデータに基づく画像を表示させる場合、データ処理部123は、このボリュームデータに対してレンダリング処理を施して、特定の視線方向から見たときの擬似的な3次元画像を形成する。
 データ処理部123は、例えば、画像形成部122により形成された3次元のデータセットを解析することにより、被検眼の複数の組織に相当する複数の部分データセットを特定するセグメンテーション処理を実行することが可能である。セグメンテーション処理は、特定の組織や組織境界を特定するための画像処理である。データ処理部123は、例えば、3次元のデータセットに含まれる各Aモード画像における画素値(輝度値)の勾配を求め、勾配が大きい位置を組織境界として特定する。なお、Aモード画像は、眼底の深さ方向(Z方向)に延びる1次元画像データである。
 この実施形態では、データ処理部123は、眼底(網膜、脈絡膜等)及び硝子体を表す3次元のデータセットを解析することにより、眼底の複数の層組織に相当する複数の部分データセットを特定する。各部分データセットは、層組織の境界によって画成される。部分データセットとして特定される層組織の例として、網膜を構成する、内境界膜、神経線維層、神経節細胞層、内網状層、内顆粒層、外網状層、外顆粒層、外境界膜、視細胞層、網膜色素上皮層がある。他の例として、ブルッフ膜、脈絡膜、強膜、硝子体等に相当する部分データセットを特定することができる。また、病変部に相当する部分データセットを特定することも可能である。病変部の例として、剥離部、浮腫、出血、腫瘍、ドルーゼンなどがある。
 部位特定部124は、レフ測定受光系7を用いて検出された被検眼Eからの戻り光に基づいて、被検眼の注目部位を特定する。注目部位には、疾患部位や、ユーザにより指定された形態を有する指定部位などがある。例えば、部位特定部124は、眼屈折力算出部121により特定されたリング像の歪みや変形に応じて疾患部位を特定する。部位特定部124は、眼屈折力算出部121により特定されたリング像において近似楕円からの残差(ずれ量)を求め、求められた残差のうち所定の閾値以上の残差を外れ値として検出する。部位特定部124は、外れ値が検出された部分(又は当該部分を含む領域)を疾患部位として特定する。また、部位特定部124は、眼屈折力算出部121により特定されたリング像から反射光量が低下した部分を疾患部位として特定することが可能である。この場合、部位特定部124は、画像形成部122により形成された画像を参照し、レフ測定投影系6により投影された部位の輝度変化が所定の閾値以上の部分を含む領域を疾患部位として特定する。また、部位特定部124は、特定されたリング像の光量分布(例えば、リング像の中心部を通る直線上の光量分布)や偏りに基づいて疾患部位を特定するようにしてもよい。例えば、部位特定部124は、リング像のコントラストに基づいて疾患部位を特定する。この場合、リング像の光量分布の最大値と最小値との差が所定の閾値以下の部分を疾患部位として特定することが可能である。このようなコントラストが低い被検眼は白内障眼の疑いがあり、OCT撮影対象とすることができる。或いは、部位特定部124は、例えば、眼屈折力算出部121により特定されたリング像において、ユーザにより指定された形態で近似楕円からずれた部分を指定部位として特定することが可能である。また、部位特定部124は、OCT光学系8による干渉光の検出結果に基づいて疾患部位を特定することが可能である。例えば、部位特定部124は、OCT光学系8による干渉光の検出結果に基づいて形成された断層像に対して施されたセグメンテーション処理により検出された眼底Efの複数の層組織と、健常眼の眼底における複数の層組織の標準値(標準厚)とを比較し、所定の閾値以上の差がある部分を疾患部位又は異常部位として特定する。
(表示部170、操作部180)
 表示部170は、ユーザインターフェイス部として、制御部110による制御を受けて情報を表示する。表示部170は、図1などに示す表示部10を含む。
 操作部180は、ユーザインターフェイス部として、眼科装置を操作するために使用される。操作部180は、眼科装置に設けられた各種のハードウェアキー(ジョイスティック、ボタン、スイッチなど)を含む。また、操作部180は、タッチパネル式の表示画面10aに表示される各種のソフトウェアキー(ボタン、アイコン、メニューなど)を含んでもよい。
 表示部170及び操作部180の少なくとも一部が一体的に構成されていてもよい。その典型例として、タッチパネル式の表示画面10aがある。
(通信部190)
 通信部190は、図示しない外部装置と通信するための機能を有する。通信部190は、例えば処理部9に設けられていてもよい。通信部190は、外部装置との通信の形態に応じた構成を有する。
 視標投影系4は、この実施形態に係る「自覚検査光学系」の一例である。OCT光学系8は、この実施形態に係る「干渉光学系」の一例である。レフ測定投影系6、レフ測定受光系7及び観察系5の一部(ハーフミラー76、結像レンズ58及び撮像素子59)は、この実施形態に係る「他覚測定光学系」の一例である。部位特定部124は、実施形態に係る「注目部位特定部」の一例である。
<動作例>
 この実施形態に係る眼科装置の動作例について説明する。
 図5に、この実施形態に係る眼科装置の動作例のフロー図を示す。図6A、図6B、図7~図10は、実施形態に係る眼科装置の動作説明図である。
(S1)
 被検者の顔を顔受け部で固定した後、XYアライメント系2によるXYアライメントとZアライメント系1によるZアライメントとによりヘッド部が被検眼Eの検査位置に移動される。検査位置とは、被検眼Eの検査を行うことが可能な位置である。例えば、処理部9(制御部110)は、撮像素子59の撮像面上に結像された前眼部像の撮像信号を取得し、表示部170(表示部10の表示画面10a)に前眼部像E’を表示させる。その後、上記のXYアライメントとZアライメントとによりヘッド部が被検眼Eの検査位置に移動される。ヘッド部の移動は、制御部110による指示に従って、制御部110によって実行されるが、ユーザによる操作若しくは指示に従って制御部110によって実行されてもよい。
 また、制御部110は、レフ測定光源61、合焦レンズ74及び合焦レンズ43を連動させて、光軸に沿って原点、例えば、0Dに相当する位置に移動させる。
(S2)
 制御部110は、液晶パネル41に固視標を表示させる。それにより、所望の固視位置に被検眼Eを注視させる。
(S3)
 次に、制御部110は、他覚測定を実行する。すなわち、制御部110は、レフ測定投影系6によりリング状光束を被検眼Eの眼底Efに投影させ、レフ測定受光系7を通じて撮像素子59により戻り光を検出させる。
(S4)
 次に、制御部110は、S3において検出された戻り光に基づくリング像を眼屈折力算出部121に解析させる。眼屈折力算出部121は、上記のようにリング像を特定し、特定されたリング像の近似楕円を求め、この近似楕円の長径及び短径を公知の式に代入することによって球面度数S、乱視度数C及び乱視軸角度Aを求める。制御部110では、算出された球面度数Sなどが記憶部112に記憶される。
 被検眼Eが健常眼の場合(図6A)、眼底Efにリング状光束r1が投影されると、その戻り光に基づくリング像R1の形状は近似楕円からの残差がほとんどない形状になる。これに対して、被検眼Eが眼底Efに浮腫(疾患部位)が存在する疾患眼である場合(図6B)、眼底Efにリング状光束r2が投影されると、眼底Efからの戻り光に基づくリング像R2の形状は疾患部位の近傍に近似楕円からの大きな残差が存在する形状になる。そこで、部位特定部124は、上記のようにS3において検出された戻り光に基づくリング像において近似楕円からの残差(ずれ量)を求め、求められた残差のうち所定の閾値以上の残差を外れ値として検出する。部位特定部124は、外れ値が検出された部分を疾患部位として特定する。
 図7は、疾患眼の眼底Efに投影されたリング状光束からの戻り光に基づくリング像の形状の一例を表す。図7では、横軸が、所定方向の基準線を基準として、重心位置とリング像のサンプル点とを結ぶ直線と基準線とのなす角度を表し、縦軸が、重心位置からリング像のサンプル点までの距離を表す。図7において、大きな残差が存在する部分Rfが疾患部位として特定される。
 また、レフ測定前又はレフ測定後に、制御部110は、ケラト測定を実行することが可能である。この場合、制御部110は、ケラトリング光源32を点灯させ、撮像素子59により検出されたケラトリング像を眼屈折力算出部121に解析させる。眼屈折力算出部121は、上記のようにケラトリング像を解析することにより角膜曲率半径を算出し、算出された角膜曲率半径から角膜屈折力、角膜乱視度及び角膜乱視軸角度を算出する。制御部110では、算出された角膜屈折力などが記憶部112に記憶される。
(S5)
 表示制御部111Aは、S4において得られた他覚測定結果を表示部170に表示させる。表示部170に表示される他覚測定結果には、球面度数S、乱視度数C及び乱視軸角度A、角膜屈折力、角膜乱視度及び角膜乱視軸角度などがある。
 また、表示制御部111Aは、S4において特定された疾患部位を表す情報SIを被検眼Eの前眼部像E’と共に表示させてもよい。例えば、表示制御部111Aは、S4において部位特定部124により特定された疾患部位を識別表示させる。疾患部位の識別表示の態様には、強調表示などがある。疾患部位の強調表示には、疾患部位の点滅表示、疾患部位の色とその他の部位の色とを異ならせる色分け表示、その両方などがある。また、表示制御部111Aは、S4において部位特定部124により疾患部位が特定されたときだけ疾患部位を表す情報を表示部170に表示させてもよい。或いは、前眼部像E’と共に描出されたリング状光束投影部分に対してタッチ操作を行うことにより、特定されたリング像や特定された疾患部位を表す情報を表示させてもよい。
(S6)
 次に、制御部110は、断層像撮影を行うか否かを判定する。例えば、S5において表示部170に表示された情報を参照したユーザによる操作部180に対する操作に基づいて、制御部110は、断層像撮影を行うか否かを判定する。断層像撮影を行うと判定されたとき(S6:Y)、眼科装置の動作はS7に移行する。断層像撮影を行わないと判定されたとき(S6:N)、眼科装置の動作は終了する(エンド)。
 また、制御部110が、S4において得られた他覚測定結果に基づいて自動で断層像撮影を行うように眼科装置の制御を行うことが可能である。例えば、部位特定部124により疾患部位が特定された場合、制御部110は、自動で断層像撮影を行うように眼科装置の制御を行ってもよい。
(S7)
 S6において断層像撮影を行うと判定されたとき(S6:Y)、制御部110は、レフ測定投影系6により眼底Efに照射されたリング状光束の照射領域の少なくとも一部に重なるように被検眼Eに測定光を照射するようにスキャン位置とスキャン方向とを求める。この実施形態では、制御部110は、図9に示すように、S4において特定された疾患部位付近を横切るように複数の放射線状スキャンによるスキャン位置とスキャン方向とを求める。
 なお、制御部110は、S4において特定された疾患部位付近を横切るように1以上のサークルスキャンでスキャンするようにスキャン位置を求めてもよい。サークルスキャンの直径は、レフ測定投影系6により眼底Efに投影されるリング状光束の幅の中心を通るリングの直径とすることができる。
(S8)
 制御部110は、S7において求められたスキャン位置とスキャン方向で眼底Efを測定光LSでスキャンするように光スキャナー84を制御する。
(S9)
 制御部110は、S8におけるスキャンにより得られた干渉光の検出結果に基づいて演算処理部120に疾患部位の断層像を形成させる。この実施形態では、特定された疾患部位に対するスキャンであるため、スキャン時間を大幅に短縮することができる。また、OCT光学系8はレフ測定投影系6と共軸であるため、リング状光束の中心とスキャンの中心とは常に同じとなるため、リング状光束が投影された疾患部位を正確にスキャンすることができる。
(S10)
 データ処理部123は、S9において形成されたデータセットを解析することにより断層像に対してセグメンテーション処理を行い、眼底Efにおける複数の層組織を検出する。記憶部112には、健常眼の眼底における複数の層組織の標準値(標準厚)が標準データ(Normative Data)としてあらかじめ記憶されている。部位特定部124(又はデータ処理部123)は、セグメンテーション処理により検出された複数の層組織の厚さと記憶部112に記憶された標準データとを比較し、所定の閾値以上の差がある部分を異常部位として特定する。表示制御部111Aは、図10に示すように、特定された異常部位をS9において形成された断層像と共に表示部170に識別表示させる。図10では、リング状光束r3が投影された眼底Efについて、正常部位T2と、異常部位としての厚み異常部位T1とが特定された様子が表されている。
 なお、ユーザは、表示部170に表示された断層像を観察することにより被検眼Eの異常部位を特定し、操作部180を用いて当該部位を指定するようにしてもよい。
(S11)
 眼屈折力算出部121は、S3において取得されたリング像を特定するためのデータ群から、S10において特定された異常部位におけるデータの削除又は補間を行うことにより、新たにリング像を特定する。眼屈折力算出部121は、新たに特定されたリング像の近似楕円を求め、この近似楕円からの新なた球面度数S、乱視度数C及び乱視軸角度Aを求める。
(S12)
 表示制御部111Aは、S10において新たに求められた球面度数S、乱視度数C及び乱視軸角度AをS11における断層像及び異常部位と共に表示部170に表示させる。以上で、眼科装置の動作は終了である(エンド)。
 なお、S6において断層像撮影行わないと判定されたとき(S6:N)、制御部110は、自覚検査を実行してもよい。この場合、制御部110は、S4において求められた球面度数S、乱視度数C及び乱視軸角度Aが矯正されるように合焦レンズ43及びVCCレンズ46を制御する。次に、制御部110は、例えば、操作部180に対するユーザの指示に基づき、液晶パネル41を制御することにより所望の視標を表示させる。被検者は、眼底Efに投影された視標に対する応答を行う。例えば、視力測定用の視標の場合には、被検者の応答により被検眼の視力値が決定される。視標の選択とそれに対する被検者の応答が、検者又は制御部110の判断により繰り返し行われる。検者又は制御部110は、被検者からの応答に基づいて視力値或いは処方値(S、C、A)を決定する。
<<変形例>>
 実施形態に係る眼科装置の光学系の構成は、図1及び図2において説明した構成に限定されるものではない。
 例えば、OCT光学系8における光スキャナー84において、ガルバノミラー84Yとガルバノミラー84Xとの間に反射ミラー及び2つのリレーレンズが配置されていてもよい。一方のリレーレンズの上流側の焦点位置にガルバノミラー84Xが配置されている。他方のリレーレンズ87Aの下流側の焦点位置にガルバノミラー84Yが配置されている。反射ミラーは、ガルバノミラー84Xにより偏向された測定光LSをガルバノミラー84Yに導くように配置されている。ガルバノミラー84Y及びガルバノミラー84Xのそれぞれは、被検眼Eの瞳と光学的に共役な位置(瞳共役位置Q)に配置されている。この場合、ガルバノミラー84X及び84Yの双方が瞳共役位置Qに配位置されるため、実施形態よりも高い横分解能で干渉光の検出が可能になる。また、ガルバノミラー84X及び84Yが光学的に共役な位置に配置されているため、合焦レンズ82を移動しても共役関係を維持しつつ、干渉信号の強度を高めてより高画質な断層像の取得が可能になる。
 実施形態又はその変形例に係る眼科装置は、両眼を検査可能な眼科検査システムに適用すること可能である。
<眼科検査システム>
 図11に、実施形態又はその変形例に係る眼科装置が適用された眼科検査システムの構成例のブロック図である。
 眼科検査システムは、測定ヘッド300を含む。測定ヘッド300は、図示しない支持部材により支持された保持部350により上方から吊り下げられる。測定ヘッド300は、移動機構310と、左検査ユニット320Lと、右検査ユニット320Rとを含む。左検査ユニット320L及び右検査ユニット320Rのそれぞれには、図示しない検眼窓が形成されている。被検者の左眼(左被検眼)は、左検査ユニット320Lに設けられた検眼窓を通じて検査が行われる。被検者の右眼(右被検眼)は、右検査ユニット320Rに設けられた検眼窓を通じて検査が行われる。
 左検査ユニット320L及び右検査ユニット320Rは、移動機構310により独立に又は連動して3次元的に移動される。左検査ユニット320L及び右検査ユニット320Rの少なくとも一方には、実施形態又はその変形例に係る眼科装置が設けられる。
 移動機構310は、水平動機構311L、311Rと、回動機構312L、312Rと、上下動機構313L、313Rとを含む。
 水平動機構311Lは、回動機構312L、上下動機構313L及び左検査ユニット320Lを水平方向(横方向(X方向)、前後方向(Z方向))に移動する。それにより、左被検眼の配置位置に応じて、検眼窓の水平方向の位置を調整することができる。水平動機構311Lは、例えば、駆動手段や駆動手段により発生された駆動力を伝達する駆動力伝達手段などを用いた公知の構成を備え、図示しない制御装置からの制御信号を受けて回動機構312L等を水平方向に移動する。水平動機構311Lは、操作者による操作を受け、回動機構312L等を水平方向に手動で移動することも可能である。
 水平動機構311Rは、回動機構312R、上下動機構313R及び右検査ユニット320Rを水平方向に移動する。それにより、右被検眼の配置位置に応じて、検眼窓の水平方向の位置を調整することができる。水平動機構311Rは、水平動機構311Lと同様の構成を備え、図示しない制御装置からの制御信号を受けて回動機構312R等を水平方向に移動する。水平動機構311Rは、操作者による操作を受け、回動機構312R等を水平方向に手動で移動することも可能である。
 回動機構312Lは、鉛直方向(略鉛直方向)に延びる左眼用の回動軸(左回動軸)を中心に上下動機構313L及び左検査ユニット320Lを回動する。この回動軸と水平面とのなす角は、変更可能である。回動機構312Lは、例えば、駆動手段や駆動手段により発生された駆動力を伝達する駆動力伝達手段などを用いた公知の構成を備え、図示しない制御装置からの制御信号を受けて当該回動軸を中心に左検査ユニット320L等を回動する。回動機構312Lは、操作者による操作を受け、当該回動軸を中心に左検査ユニット320L等を手動で回動することも可能である。
 回動機構312Rは、鉛直方向に延びる右眼用の回動軸(右回動軸)を中心に上下動機構313R及び右検査ユニット320Rを回動する。この回動軸と水平面とのなす角は、変更可能である。右眼用の回動軸は、左眼用の回動軸から所定の距離だけ離間した位置に配置された軸である。左眼用の回動軸と右眼用の回動軸との間の距離は、調整可能である。回動機構312Rは、回動機構312Lと同様の構成を備え、図示しない制御装置からの制御信号を受けて当該回動軸を中心に右検査ユニット320R等を回動する。回動機構312Rは、操作者による操作を受け、当該回動軸を中心に右検査ユニット320R等を手動で回動することも可能である。
 回動機構312L、312Rにより左検査ユニット320L及び右検査ユニット320Rを回動することにより、左検査ユニット320Lと右検査ユニット320Rとの向きを相対的に変更することが可能である。例えば、左検査ユニット320Lと右検査ユニット320Rとが、被検者の左右眼の眼球回旋点を中心にそれぞれ逆方向に回転される。それにより、被検眼を輻輳させることができる。
 上下動機構313Lは、左検査ユニット320Lを上下方向(鉛直方向、Y方向)に移動する。それにより、被検眼の配置位置に応じて、検眼窓の高さ方向の位置を調整することができる。上下動機構313Lは、例えば、駆動手段や駆動手段により発生された駆動力を伝達する駆動力伝達手段などを用いた公知の構成を備え、図示しない制御装置からの制御信号を受けて左検査ユニット320Lを上下方向に移動する。上下動機構313Lは、操作者による操作を受け、左検査ユニット320Lを上下方向に手動で移動することも可能である。
 上下動機構313Rは、右検査ユニット320Rを上下方向に移動する。それにより、被検眼の配置位置に応じて、検眼窓の高さ方向の位置を調整することができる。上下動機構313Rは、上下動機構313Lによる移動に連動して右検査ユニット320Rを移動してもよいし、上下動機構313Lによる移動とは独立に右検査ユニット320Rを移動してもよい。上下動機構313Rは、上下動機構313Lと同様の構成を備え、図示しない制御装置からの制御信号を受けて右検査ユニット320Rを上下方向に移動する。上下動機構313Rは、操作者による操作を受け、右検査ユニット320Rを上下方向に手動で移動することも可能である。
 左検査ユニット320L及び右検査ユニット320Rは、個別に動作可能である。
 このような眼科検査システムによれば、両眼について自覚検査や他覚測定を簡便に行うことができる。
(作用・効果)
 実施形態に係る眼科装置及び眼科検査システムの作用及び効果について説明する。
 実施形態に係る眼科装置は、対物レンズ(対物レンズ51)と、他覚測定光学系(レフ測定投影系6、レフ測定受光系7及び観察系5の一部)と、干渉光学系(OCT光学系8)と、画像形成部(画像形成部122)とを含む。他覚測定光学系は、対物レンズを介して被検眼(被検眼E)に光を照射し、被検眼からの戻り光を検出する。干渉光学系は、光源(OCT光源91)からの光(光L0)を参照光(参照光LR)と測定光(測定光LS)とに分割し、他覚測定光学系による被検眼の光の照射領域の少なくとも一部に重なるように対物レンズを介して被検眼に測定光を照射し、その戻り光と参照光との干渉光(干渉光LC)を生成し、生成された干渉光を検出する。画像形成部は、干渉光学系による干渉光の検出結果に基づいて被検眼の断層像を形成する。
 このような構成によれば、他覚測定を行うために対物レンズを介して被検眼に照射された光の照射領域の少なくとも一部に重なるように測定光を対物レンズを介して照射し、その戻り光との基づく干渉光を検出して被検眼の断層像を形成することができる。それにより、他覚測定を行うための光の照射領域の近傍の断層像を取得することができるので、他覚測定結果と断層像との関連性を観察して他覚測定により得られた他覚測定値の精度向上を図ることが可能になる。例えば、他覚測定結果に問題があると判断された場合、断層像を観察することで眼底の異常の有無を判断し、その原因が眼底にあるか、水晶体を含む中間透光体にあるか等の判断を補助することができる。
 また、実施形態に係る眼科装置は、他覚測定光学系により検出された被検眼からの戻り光に基づいて、被検眼の注目部位を特定する注目部位特定部(部位特定部124)を含み、干渉光学系は、注目部位特定部により特定された注目部位に対して測定光を照射してもよい。
 このような構成によれば、他覚測定光学系により検出された被検眼からの戻り光から注目部位を特定し、特定された注目部位に対して測定光を照射するようにしたので、他覚測定により注目すべき部位における断層像を簡便に取得することができる。
 また、実施形態に係る眼科装置では、他覚測定光学系は、被検眼の眼底(眼底Ef)にリング状の測定パターンを投影し、注目部位特定部は、眼底からの戻り光に基づくパターン像に基づいて注目部位を特定してもよい。
 このような構成によれば、被検眼の眼底に投影されたリング状の測定パターンの戻り光に基づくパターン像に基づいて注目部位を特定するようにしたので、例えば他覚屈折力測定により注目すべき部位を容易に特定することが可能になる。
 また、実施形態に係る眼科装置では、注目部位特定部は、干渉光の検出結果に基づいて注目部位をとくていしてもよい。
 このような構成によれば、被検眼に照射された測定光の戻り光に基づく干渉光の検出結果に基づいて注目部位を特定するようにしたので、例えば他覚屈折力測定により注目すべき部位を容易に特定することが可能になる。
 また、実施形態に係る眼科装置では、干渉光学系は、測定光を偏向する光スキャナー(光スキャナー84)を含み、注目部位特定部により特定された注目部位を測定光でスキャンするように光スキャナーを制御する制御部(制御部110)を含んでもよい。
 このような構成によれば、他覚測定により注目すべき部位を測定光でスキャンするように光スキャナーを制御するようにしたので、他覚屈折力測定等の他覚測定により注目すべき部位の近傍における断層像の取得が容易になる。また、特定された注目部位に対するスキャンを行うため、スキャン時間を大幅に短縮することができる。
 また、実施形態に係る眼科装置では、制御部は、注目部位を測定光で放射状又はサークル状にスキャンするように光スキャナーを制御してもよい。
 このような構成によれば、放射状スキャン又はサークルスキャンにより注目部位の断層像を取得するようにしたので、他覚測定が行われた部位における断層像に基づいて他覚測定結果を判断することが可能になる。
 また、実施形態に係る眼科装置は、他覚測定光学系により照射された光の戻り光に基づく画像を表示部に表示させる表示制御部(表示制御部111A)を含み、表示制御部は、注目部位特定部により特定された注目部位を識別表示させてもよい。
 このような構成によれば、注目部位を識別表示させるようにしたので、他覚測定の精度向上を補助することができる。
 また、実施形態に係る眼科装置は、他覚測定光学系により検出された被検眼からの戻り光に基づいて被検眼の屈折力を求める眼屈折力算出部(眼屈折力算出部121)を含み、眼屈折力算出部は、他覚測定光学系により取得された注目部位における測定結果を削除又は補間して被検眼の屈折力の算出を再度実行することにより新たな屈折力を求めてもよい。
 ここで、他覚測定光学系により取得された測定結果は、他覚測定光学系により検出された被検眼からの戻り光の検出結果や、当該検出結果に基づいて生成された他覚測定値などの演算結果であってよい。このような構成によれば、注目部位における測定結果を削除又は補間して新たな屈折力の算出を行うようにしたので、疾患部位等の異常部位における測定結果に影響を受けない被検眼の屈折力を取得することが可能になり、他覚測定により得られた他覚測定値の精度向上が可能になる。
 また、実施形態に係る眼科検査システムは、左被検眼を検査するための左検査ユニットと、右被検眼を検査するための右検査ユニットと、を含み、左検査ユニット及び右検査ユニットの少なくとも一方は、上記記載の眼科装置を含む。
 このような構成によれば、簡素な構成で、両眼について他覚測定値の精度を向上させることが可能な眼科検査システムを提供することができる。
(その他の変形例)
 以上に示された実施形態は、この発明を実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内において任意の変形、省略、追加等を施すことが可能である。
 上記の実施形態又はその変形例では、眼底Efに投影されたリング状光束の投影部位をスキャンするように光スキャナー84を制御する場合について説明したが、実施形態又はその変形例に係る眼科装置の構成はこれに限定されるものではない。例えば、被検眼Eの前眼部に測定用の光束を投影し、その投影部位をスキャンするように光スキャナー84を制御してもよい。
 上記の実施形態又はその変形例において、ガルバノミラー84Yに代えて、OCT光学系8の光軸を中心に回転可能なイメージローテーターが設けられていてもよい。
 上記の実施形態又はその変形例では、干渉光学系はOCT撮影を行うものとして説明したが、OCTにより計測を行うものであってもよい。例えば、干渉光学系は、OCTにより、眼軸長、角膜圧、前房深度、水晶体厚などを計測するものであってもよい。
 眼圧測定機能、眼底撮影機能、前眼部撮影機能、光干渉断層撮影(OCT)機能、超音波検査機能など、眼科分野において使用可能な任意の機能を有する装置に対して、上記の実施形態に係る発明を適用することが可能である。なお、眼圧測定機能は眼圧計等により実現され、眼底撮影機能は眼底カメラや走査型検眼鏡(SLO)等により実現され、前眼部撮影機能はスリットランプ等により実現され、OCT機能は光干渉断層計等により実現され、超音波検査機能は超音波診断装置等により実現される。また、このような機能のうち2つ以上を具備した装置(複合機)に対してこの発明を適用することも可能である。
4 視標投影系
5 観察系
6 レフ測定投影系
7 レフ測定受光系
8 OCT光学系
51 対物レンズ
122 画像形成部

 

Claims (9)

  1.  対物レンズと、
     前記対物レンズを介して被検眼に光を照射し、前記被検眼からの戻り光を検出する他覚測定光学系と、
     光源からの光を参照光と測定光とに分割し、前記他覚測定光学系による前記被検眼の前記光の照射領域の少なくとも一部に重なるように前記対物レンズを介して前記被検眼に前記測定光を照射し、その戻り光と前記参照光との干渉光を生成し、生成された前記干渉光を検出する干渉光学系と、
     前記干渉光学系による前記干渉光の検出結果に基づいて前記被検眼の断層像を形成する画像形成部と、
     を含む眼科装置。
  2.  前記他覚測定光学系により検出された前記被検眼からの戻り光に基づいて、前記被検眼の注目部位を特定する注目部位特定部を含み、
     前記干渉光学系は、前記注目部位特定部により特定された前記注目部位に対して前記測定光を照射する
     ことを特徴とする請求項1に記載の眼科装置。
  3.  前記他覚測定光学系は、前記被検眼の眼底にリング状の測定パターンを投影し、
     前記注目部位特定部は、前記眼底からの戻り光に基づくパターン像に基づいて前記注目部位を特定する
     ことを特徴とする請求項2に記載の眼科装置。
  4.  前記注目部位特定部は、前記干渉光の検出結果に基づいて前記注目部位を特定する
     ことを特徴とする請求項2に記載の眼科装置。
  5.  前記干渉光学系は、前記測定光を偏向する光スキャナーを含み、
     前記注目部位特定部により特定された前記注目部位を前記測定光でスキャンするように前記光スキャナーを制御する制御部を含む
     ことを特徴とする請求項3又は請求項4に記載の眼科装置。
  6.  前記制御部は、前記注目部位を前記測定光で放射状又はサークル状にスキャンするように前記光スキャナーを制御する
     ことを特徴とする請求項5に記載の眼科装置。
  7.  前記他覚測定光学系により照射された光の戻り光に基づく画像を表示部に表示させる表示制御部を含み、
     前記表示制御部は、前記注目部位特定部により特定された前記注目部位を識別表示させる
     ことを特徴とする請求項2~請求項6のいずれか一項に記載の眼科装置。
  8.  前記他覚測定光学系により検出された前記被検眼からの戻り光に基づいて前記被検眼の屈折力を求める眼屈折力算出部を含み、
     前記眼屈折力算出部は、前記他覚測定光学系により取得された前記注目部位における測定結果を削除又は補間して前記被検眼の屈折力の算出を再度実行することにより新たな屈折力を求める
     ことを特徴とする請求項2~請求項7のいずれか一項に記載の眼科装置。
  9.  左被検眼を検査するための左検査ユニットと、
     右被検眼を検査するための右検査ユニットと、
     を含み、
     前記左検査ユニット及び前記右検査ユニットの少なくとも一方は、請求項1~請求項8のいずれか一項に記載の眼科装置を含む
     ことを特徴とする眼科検査システム。

     
PCT/JP2017/001100 2016-02-04 2017-01-13 眼科装置及び眼科検査システム WO2017135016A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/066,157 US10743760B2 (en) 2016-02-04 2017-01-13 Ophthalmological device and ophthalmological inspection system
DE112017000663.5T DE112017000663T5 (de) 2016-02-04 2017-01-13 Ophthalmologisches Gerät und Ophthalmologisches Untersuchungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019389A JP6616704B2 (ja) 2016-02-04 2016-02-04 眼科装置及び眼科検査システム
JP2016-019389 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135016A1 true WO2017135016A1 (ja) 2017-08-10

Family

ID=59499561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001100 WO2017135016A1 (ja) 2016-02-04 2017-01-13 眼科装置及び眼科検査システム

Country Status (4)

Country Link
US (1) US10743760B2 (ja)
JP (1) JP6616704B2 (ja)
DE (1) DE112017000663T5 (ja)
WO (1) WO2017135016A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883463B2 (ja) * 2017-04-26 2021-06-09 株式会社トプコン 眼科装置
WO2019178483A1 (en) * 2018-03-16 2019-09-19 REBIScan, Inc. Apparatus and method for ophthalmic neural scanning
JP7097199B2 (ja) * 2018-03-16 2022-07-07 株式会社トプコン 画像解析装置、画像解析方法、及び眼科装置
JP7201855B2 (ja) * 2018-03-30 2023-01-10 株式会社トプコン 眼科装置、及び眼科情報処理プログラム
JP7116572B2 (ja) * 2018-03-30 2022-08-10 株式会社トプコン 眼科装置、及び眼科情報処理プログラム
JP7128065B2 (ja) * 2018-09-05 2022-08-30 株式会社トプコン 画像解析装置、画像解析方法、及び眼科装置
JP2020058647A (ja) * 2018-10-11 2020-04-16 株式会社ニコン 画像処理方法、画像処理装置、及び画像処理プログラム
JP7218858B2 (ja) * 2018-11-27 2023-02-07 国立大学法人 筑波大学 画像解析装置、画像解析装置の作動方法、及び眼科装置
JP7292032B2 (ja) * 2018-12-28 2023-06-16 株式会社トプコン 眼科装置
US11134836B2 (en) * 2019-01-16 2021-10-05 Topcon Corporation Ophthalmologic information processing apparatus, ophthalmologic apparatus and ophthalmologic information processing method
JP2024044015A (ja) * 2022-09-20 2024-04-02 株式会社トプコン 眼科装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115300A (ja) * 2009-12-02 2011-06-16 Nidek Co Ltd 眼屈折力測定装置
JP2014128306A (ja) * 2012-12-27 2014-07-10 Topcon Corp 眼科撮影装置
JP2015128630A (ja) * 2009-09-30 2015-07-16 株式会社ニデック 眼底観察装置及び眼底観察プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073196A1 (ja) 2005-01-07 2006-07-13 Nidek Co., Ltd. 眼屈折力測定装置
JP4666461B2 (ja) 2005-01-07 2011-04-06 株式会社ニデック 眼屈折力測定装置
US8672480B2 (en) 2009-09-30 2014-03-18 Nidek Co., Ltd. Ophthalmic photographing apparatus
JP5762712B2 (ja) * 2010-09-30 2015-08-12 株式会社ニデック 眼科観察システム
US9295386B2 (en) 2013-04-03 2016-03-29 Kabushiki Kaisha Topcon Ophthalmologic apparatus
US9380937B2 (en) 2013-04-03 2016-07-05 Kabushiki Kaisha Topcon Ophthalmologic apparatus
US9526415B2 (en) * 2013-04-03 2016-12-27 Kabushiki Kaisha Topcon Ophthalmologic apparatus
US9370301B2 (en) 2013-04-03 2016-06-21 Kabushiki Kaisha Topcon Ophthalmologic apparatus
US9295387B2 (en) 2013-04-03 2016-03-29 Kabushiki Kaisha Topcon Ophthalmologic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128630A (ja) * 2009-09-30 2015-07-16 株式会社ニデック 眼底観察装置及び眼底観察プログラム
JP2011115300A (ja) * 2009-12-02 2011-06-16 Nidek Co Ltd 眼屈折力測定装置
JP2014128306A (ja) * 2012-12-27 2014-07-10 Topcon Corp 眼科撮影装置

Also Published As

Publication number Publication date
DE112017000663T5 (de) 2018-10-25
US20190008380A1 (en) 2019-01-10
JP2017136216A (ja) 2017-08-10
JP6616704B2 (ja) 2019-12-04
US10743760B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
JP6616704B2 (ja) 眼科装置及び眼科検査システム
US11253148B2 (en) Ophthalmological device and ophthalmological inspection system
US20190059723A1 (en) Ophthalmologic apparatus and method of controlling the same
EP3607871B1 (en) Ophthalmologic apparatus and method of controlling the same
JP2022176282A (ja) 眼科装置、及びその制御方法
JP2017136217A (ja) 眼科装置及び眼科検査システム
JP7394948B2 (ja) 眼科装置
JP6833081B2 (ja) 眼科装置及び眼科検査システム
JP2022060588A (ja) 眼科装置、及び眼科装置の制御方法
JP7164328B2 (ja) 眼科装置、及び眼科装置の制御方法
JP7202807B2 (ja) 眼科装置
JP7201855B2 (ja) 眼科装置、及び眼科情報処理プログラム
US11298019B2 (en) Ophthalmologic apparatus and method for controlling the same
JP7030577B2 (ja) 眼科装置
JP7281877B2 (ja) 眼科装置
JP7103813B2 (ja) 眼科装置
JP7244211B2 (ja) 眼科装置、及び眼科装置の制御方法
JP7116572B2 (ja) 眼科装置、及び眼科情報処理プログラム
JP7202819B2 (ja) 眼科装置、及びその制御方法
JP7133995B2 (ja) 眼科装置、及びその制御方法
JP2023126596A (ja) 眼科装置、及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000663

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747178

Country of ref document: EP

Kind code of ref document: A1