WO2017133009A1 - Method for positioning human joint using depth image of convolutional neural network - Google Patents
Method for positioning human joint using depth image of convolutional neural network Download PDFInfo
- Publication number
- WO2017133009A1 WO2017133009A1 PCT/CN2016/073695 CN2016073695W WO2017133009A1 WO 2017133009 A1 WO2017133009 A1 WO 2017133009A1 CN 2016073695 W CN2016073695 W CN 2016073695W WO 2017133009 A1 WO2017133009 A1 WO 2017133009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- neural network
- convolutional neural
- joint
- heat map
- layer
- Prior art date
Links
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012549 training Methods 0.000 claims abstract description 24
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000012360 testing method Methods 0.000 claims abstract description 10
- 210000000988 bone and bone Anatomy 0.000 claims description 24
- 238000011176 pooling Methods 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 230000000644 propagated effect Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 210000003414 extremity Anatomy 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 210000003423 ankle Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000001513 elbow Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 210000002832 shoulder Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Definitions
- the invention relates to the fields of computer vision, pattern recognition and human-computer interaction, in particular to a depth image human joint positioning method based on a convolutional neural network.
- Body pose estimation and motion capture are an important research direction in the field of computer vision. Its applications include home entertainment, human-computer interaction, motion recognition, security systems, remote monitoring, intelligent monitoring, and even patient health care.
- performing pose estimation in normal RGB images or video is a very challenging task. Because the natural environment factors such as color, illumination, and occlusion cannot be robust, and the degree of freedom of the human body posture and the observation angle are different, this problem is naturally more difficult.
- a depth image is a two-dimensional grayscale image, but unlike a conventional grayscale image, the grayscale value of each pixel of the depth image reflects the millimeter distance of the object corresponding to the point in the real space from the camera.
- depth images are not affected by environmental factors such as illumination and shadows, and can effectively express the geometric structure information of objects in the real world. Therefore, research and application in computer vision and human-computer interaction The field has an important place. With the popularity of inexpensive depth cameras, research and application based on depth images has broad market and bright prospects.
- the human joint positioning method refers to determining the position of a joint point of a human body in a depth image containing a person or a human body.
- the joint points of the human body refer to the bone joints of the hands, elbows, wrists, shoulders, head, ankles, knees, buttocks, and the like. Determining the position of the joint points of the human body allows us to analyze the bone structure of the human body, and then simply judge the posture of the human body, and then recognize the movements and behaviors of the human body, which is of great significance for human-computer interaction entertainment and computer vision.
- the main object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a depth image human joint positioning method based on a convolutional neural network.
- the present invention has the following advantages and beneficial effects:
- the present invention relies on the currently well-recognized and promising technology - deep learning, which is to construct a deep convolutional neural network from a large number of training samples (these training samples contain various angles of camera placement, The camera automatically learns the effective features of the various distances of the person and the various occlusions of the character itself, without relying on the features that people manually design. Through the effective features learned, the joint position of the human body is directly returned.
- the convolutional neural network of the present invention uses a three-dimensional convolutional layer to express the motion consistency of the bone joint in the time domain; at the top layer, a loss function based on the bone relationship tree is used to express the linkage and braking between the human bone joints. Constraint relationship.
- Figure 1 is a flow chart of the present invention
- FIG. 2 is a diagram of a convolutional neural network architecture of the present invention
- Figure 3 is a schematic view of the human bone joint points of the present invention.
- the present invention is based on a depth image human joint positioning method based on a convolutional neural network, including a training process and a recognition process;
- the steps of the training process are as follows:
- the present invention proposes a deep level full convolutional neural network (shown in Figure 2) for estimating body pose joint points in depth images and depth image sequences.
- the network consists of 9 convolution layers connected in series with a downsampling layer and a normalized layer interspersed. The following will introduce each one:
- Convolutional layer refers to the convolution of an input image or feature in a two-dimensional space, which can extract some important features. Assume that the width and height of the input image are w and h, respectively, and the three-dimensional convolution kernel The size is w' x h' x m', where w', h', m' represent the width, height and number of channels, respectively.
- a feature map can be obtained after convolution. Where the value at the position of the feature map (x, y) can be expressed as
- Downsampling layer Downsampling
- This operation refers to the process of downsampling the feature map according to a certain strategy (selecting the maximum value). This is an effective process that is widely used to extract features that preserve shape and offset invariance.
- the max-pooling operation obtains the same number of sets of low-resolution feature maps by downsampling them. More, if a 2 ⁇ 2 max-pooling operation is applied to the feature map of a 1 ⁇ a 2 size, and the maximum value on the 2 ⁇ 2 non-overlapping region is extracted, we will get a size of a 1 /2 ⁇ a 2 New feature map of /2.
- ReLU Nonliearity Layer This layer uses a simple nonlinear threshold function to perform a transformation that allows only non-negative signals to pass through the input. Assume that g is the output of this layer, W is the weight of the edge of this layer, and a is the input of this layer, then we have
- Fully connected layer We added two layers of fully connected layers to the model, which can be seen as a perceptron model (hidden layer and logistic regression layer) based on the previous two-dimensional convolutional layer output.
- Each dimension element of it is connected to all sections of the first fully connected layer (hidden layer) Point and further connect all the output units.
- the output unit has a total of 2K, where K represents the number of bone nodes, and the value of the output unit is the two-dimensional coordinate position of the bone node on the depth image.
- the normalized layer refers to the normalization of the coordinates manually labeled in the dataset. Train a CNN network that detects people and then use them in the normalization layer to crop the targets in the depth map. This can reduce background interference and improve the accuracy of the final detection of bone points.
- I n represents the nth image
- L n represents the human bone point corresponding to the nth image
- our model setting K is 19, as shown in Figure 3.
- l k (x k , y k ) is the position of the kth skeletal point.
- stride is the step size
- offset is the offset
- an extra is set.
- stride is the step size
- hp k represents the probability that the value is at the kth skeletal point position in I n and takes the value [0, 1].
- the corresponding K heat maps are obtained by the network proposed by the present invention.
- the K heat maps are arranged in a fixed order according to the body parts, so that it is convenient to compare with the real joint heat map and learn the predicted heat map corresponding to the real joint heat map.
- the method of determining the size of the heat map and calculating the appropriate size of the input image is used here.
- the size of the heat map s hp ⁇ s hp is determined by experience, and our model sets it to 50 ⁇ 50. Then the size of the input image s I ⁇ s I is defined as follows:
- the first layer is a normalized layer that normalizes input images of different sizes into a uniform size for subsequent propagation. Processing. Then through the full convolution network as shown in Figure 2, the output size is (batch_size, K, S hp , S hp ), where batch_size is the number of trainings for batch training.
- Backpropagation requires first finding the residual J( ⁇ ) between the heat map of the forward propagation output and the true joint heat map, and then finding its gradient for the parameter ⁇
- the ⁇ is updated by a random gradient descent algorithm to minimize the residual, and the residual loss function J( ⁇ ) is defined as follows.
- pred_coord is the predicted coordinate
- gt_coord is the real coordinate
- subscript is the index of the skeleton point.
- the subscript ls (left shoulder) in the denominator indicates the left shoulder
- the rh (right hip) indicates the right hip, that is, the entire denominator indicates the length of the body posture torso.
- the true meaning of this evaluation is that the distance between the predicted coordinates and the real coordinates should be less than a certain ratio of the true torso length in the human body pose of the image. In our model, r is 20.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Social Psychology (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
Abstract
A method for positioning a human joint using a depth image of a convolutional neural network comprises a training process and a recognition process. The training process comprises the following steps: 1) inputting a training sample; 2) initializing a deep convolutional neural network and a parameter thereof, the parameter including a weight and an offset of each edge; and 3) and obtaining, using a forward algorithm and a backward algorithm, and by means of learning using the training sample, a parameter of a constructed convolutional neural network. The recognition process comprises the following steps: 4) inputting a test sample; 5) and performing regression on the input test sample by using the trained convolutional neural network, to obtain the position of a human joint therein. By using a deep convolutional neural network and big data, the present invention can overcome multiple challenges such as blocking and noise, and achieve a high accuracy rate. In addition, by means of parallel computing, the present invention enables accurate positioning of a human joint in real time.
Description
本发明涉及计算机视觉、模式识别和人机交互领域,特别涉及一种基于卷积神经网络的深度图像人体关节定位方法。The invention relates to the fields of computer vision, pattern recognition and human-computer interaction, in particular to a depth image human joint positioning method based on a convolutional neural network.
体姿势估计和动作捕捉是计算机视觉领域的一个重要研究方向。它的应用领域包括家庭娱乐、人机交互、动作识别、安全系统、远程监控、智能监控、甚至还有病人健康护理等。然而在普通的RGB图像或视频中进行人体姿势估计是一件非常具有挑战性的工作。因为对于颜色、光照、遮挡等自然环境因素无法做到鲁棒,再加上人体姿势太多的自由度和观测角度的不同,使得这个问题自然是难上加难。Body pose estimation and motion capture are an important research direction in the field of computer vision. Its applications include home entertainment, human-computer interaction, motion recognition, security systems, remote monitoring, intelligent monitoring, and even patient health care. However, performing pose estimation in normal RGB images or video is a very challenging task. Because the natural environment factors such as color, illumination, and occlusion cannot be robust, and the degree of freedom of the human body posture and the observation angle are different, this problem is naturally more difficult.
深度图像是一种二维的灰度图,但与传统的灰度图像不同,深度图像的每个像素点的灰度值反映的是该点对应的物体在真实空间中距离摄像机的毫米距离。相比于传统的彩色二维图像,深度图像具有不受光照、阴影等环境因素影响的特点,能有效地表达真实世界中物体的几何结构信息,因此在计算机视觉和人机交互的研究与应用领域具有重要地位。随着廉价深度摄像机的普及,基于深度图像的研究和应用具有广阔的市场和光明的前景。A depth image is a two-dimensional grayscale image, but unlike a conventional grayscale image, the grayscale value of each pixel of the depth image reflects the millimeter distance of the object corresponding to the point in the real space from the camera. Compared with traditional color two-dimensional images, depth images are not affected by environmental factors such as illumination and shadows, and can effectively express the geometric structure information of objects in the real world. Therefore, research and application in computer vision and human-computer interaction The field has an important place. With the popularity of inexpensive depth cameras, research and application based on depth images has broad market and bright prospects.
深度图像人体关节定位方法是指,在一张包含人物或人体的深度图像中,确定人体关节点位置。这里人体关节点是指:手、肘部、腕部、肩部、头部、踝部、膝盖、臀部等人的骨骼关节。确定人体关节点的位置使得我们能够解析出人体的骨骼结构,进而简单判断人体的姿势,在进而识别人的动作和行为,这对人机互动娱乐和计算机视觉来说具有重要意义。Depth image The human joint positioning method refers to determining the position of a joint point of a human body in a depth image containing a person or a human body. Here, the joint points of the human body refer to the bone joints of the hands, elbows, wrists, shoulders, head, ankles, knees, buttocks, and the like. Determining the position of the joint points of the human body allows us to analyze the bone structure of the human body, and then simply judge the posture of the human body, and then recognize the movements and behaviors of the human body, which is of great significance for human-computer interaction entertainment and computer vision.
深度图像人体关节定位主要存在以下难点:Depth image Human joint positioning has the following difficulties:
1)深度图像具有解析度低、机械噪声大的缺陷。使手工设计的特征来定位人体关节无法取得较好的效果。1) The depth image has a defect of low resolution and large mechanical noise. The use of hand-designed features to locate human joints does not yield good results.
2)人体关节的定位因摄像机的摆放角度不同、摄像机与人物的距离不同、人物自身的遮挡程度不同,要达到准确鲁棒非常困难。2) The positioning of the human joint is very difficult to achieve accurate and robust due to the different angles of the camera, the distance between the camera and the character, and the degree of occlusion of the character itself.
3)人体的骨骼关节之间存在约束关系:人物的肢体运动时,肢体与肢体之间
存在着联动和制动等约束关系,而学习和表达出这种联动约束关系非常困难。3) There is a constraint between the bones and joints of the human body: when the limbs of the person move, between the limbs and the limbs
There are constraints such as linkage and braking, and it is very difficult to learn and express such linkage constraints.
4)人体的骨骼关节的定位与跟踪难以融合。目前人物的位置和姿势定位都是针对单张深度图像,原因在于难以表达出骨骼关节在时域上的运动一致性。4) The positioning and tracking of the human bone joints is difficult to fuse. At present, the position and posture of the character are directed to a single depth image because it is difficult to express the motion consistency of the bone joint in the time domain.
上述难点使得实现准确鲁棒进行人体关节定位的目标还有一定的差距,因此,解决上述难点非常必要。The above difficulties make the goal of achieving accurate and robust human joint positioning still have a certain gap. Therefore, it is necessary to solve the above difficulties.
发明内容Summary of the invention
本发明的主要目的在于克服现有技术的缺点与不足,提供一种基于卷积神经网络的深度图像人体关节定位方法。The main object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a depth image human joint positioning method based on a convolutional neural network.
为了到达上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1、本发明依靠了目前备受瞩目且具有潜力的技术——深度学习,即构建深层次的卷积神经网络,来从大量的训练样本(这些训练样本包含了摄像机摆放的多种角度、摄像机与人途的多种距离和人物自身的多种遮挡程度)中自动学习出有效的特征,而不在依赖人们手工设计的特征。通过学习出的有效特征,直接回归出人体的关节点位置。1. The present invention relies on the currently well-recognized and promising technology - deep learning, which is to construct a deep convolutional neural network from a large number of training samples (these training samples contain various angles of camera placement, The camera automatically learns the effective features of the various distances of the person and the various occlusions of the character itself, without relying on the features that people manually design. Through the effective features learned, the joint position of the human body is directly returned.
2、本发明的卷积神经网络使用三维卷积层来表达骨骼关节在时域上的运动一致性;在顶层使用基于骨骼关系树的损失函数来表达人体骨骼关节之间的联动和制动等约束关系。2. The convolutional neural network of the present invention uses a three-dimensional convolutional layer to express the motion consistency of the bone joint in the time domain; at the top layer, a loss function based on the bone relationship tree is used to express the linkage and braking between the human bone joints. Constraint relationship.
图1本发明的流程图;Figure 1 is a flow chart of the present invention;
图2本发明卷积神经网络架构图;2 is a diagram of a convolutional neural network architecture of the present invention;
图3本发明人体骨骼关节点示意图。
Figure 3 is a schematic view of the human bone joint points of the present invention.
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below with reference to the embodiments and drawings, but the embodiments of the present invention are not limited thereto.
实施例Example
如图1所示,本发明基于卷积神经网络的深度图像人体关节定位方法,包括训练过程和识别过程;As shown in FIG. 1, the present invention is based on a depth image human joint positioning method based on a convolutional neural network, including a training process and a recognition process;
训练过程的步骤如下:The steps of the training process are as follows:
1)输入训练样本;1) Input training samples;
2)初始化深层次的卷积神经网络及其参数,所述参数包括每层边的权重和偏置;2) Initializing a deep convolutional neural network and its parameters, the parameters including the weights and offsets of each layer edge;
3)采用前向算法和后向算法,利用训练样本学习出构建的卷积神经网络的参数;3) Using the forward algorithm and the backward algorithm, using the training samples to learn the parameters of the constructed convolutional neural network;
识别过程的步骤如下:The steps in the identification process are as follows:
4)输入测试样本;4) Enter the test sample;
5)利用训练好的卷积神经网络对输入的测试样本,回归出其中的人体关节点的位置。5) Using the trained convolutional neural network to return the position of the human joint point to the input test sample.
下面结合具体的技术方案对本发明的技术方案做进一步的阐述:The technical solution of the present invention is further elaborated below in conjunction with a specific technical solution:
1.卷积神经网络的架构1. Convolutional neural network architecture
本发明提出了一个深层次全卷积神经网络(如图2所示),来对深度图像及深度图像序列中的人体姿势关节点进行估计。该网络由9个卷积层串联组成,其中还穿插有降采样层和归一化层。下面将逐一介绍:The present invention proposes a deep level full convolutional neural network (shown in Figure 2) for estimating body pose joint points in depth images and depth image sequences. The network consists of 9 convolution layers connected in series with a downsampling layer and a normalized layer interspersed. The following will introduce each one:
二维卷积层:卷积层是指对输入的图像或特征在二维空间进行卷积,它能够提取一些重要的特征。假设输入图像的宽度和高度分别为w和h,三维卷积核
的大小为w'×h'×m',其中w',h',m'分别表示宽度,高度和通道数。卷积后可以获得一个特征图。其中位于特征图(x,y)位置处的值可以表示成,Two-dimensional convolutional layer: Convolutional layer refers to the convolution of an input image or feature in a two-dimensional space, which can extract some important features. Assume that the width and height of the input image are w and h, respectively, and the three-dimensional convolution kernel
The size is w' x h' x m', where w', h', m' represent the width, height and number of channels, respectively. A feature map can be obtained after convolution. Where the value at the position of the feature map (x, y) can be expressed as
其中p(x+i)(y+j)(s+k)表示输入的第(s+k)帧中(x+i,y+j)位置的像素值,ωijk表示卷积核的参数,b表示跟与该特征图相关的偏置。故此我们可以得到1个特征图,每个特征图的大小为(w-w'+1,h-h'+1)。由于单个卷积核只能抽取一种类型的特征,因此我们在每一层卷积层引入了多个卷积核抽取多种不同的特征。Where p (x+i)(y+j)(s+k) represents the pixel value of the (x+i,y+j) position in the (s+k)th frame of the input, and ω ijk represents the parameter of the convolution kernel , b denotes the offset associated with the feature map. Therefore, we can get 1 feature map, the size of each feature map is (w-w'+ 1, h-h'+1). Since a single convolution kernel can only extract one type of feature, we introduce multiple convolution kernels in each convolution layer to extract many different features.
降采样层:降采样我们使用max-pooling操作。该操作是指对特征图按照一定策略(选取最大值)进行降采样的过程。这是一种被广泛应用的有效过程,它能够提取出保持形状和偏移不变性的特征。对于一组特征图,max-pooling操作通过对它们降采样,得到同样数量的一组低分辨率特征图。更多地,如果在a1×a2大小的特征图上应用2×2的max-pooling操作,抽取2×2不重叠区域上的最大值,我们将得到大小为a1/2×a2/2的新特征图。Downsampling layer: Downsampling We use the max-pooling operation. This operation refers to the process of downsampling the feature map according to a certain strategy (selecting the maximum value). This is an effective process that is widely used to extract features that preserve shape and offset invariance. For a set of feature maps, the max-pooling operation obtains the same number of sets of low-resolution feature maps by downsampling them. More, if a 2 × 2 max-pooling operation is applied to the feature map of a 1 × a 2 size, and the maximum value on the 2 × 2 non-overlapping region is extracted, we will get a size of a 1 /2 × a 2 New feature map of /2.
矫正线性单元层(ReLU Nonliearity Layer):该层是采用简单的非线性阈值函数,对输入进行只允许非负信号通过的变换。假设表示g本层的输出,W表示本层边的权重,a表示本层输入,则我们有ReLU Nonliearity Layer: This layer uses a simple nonlinear threshold function to perform a transformation that allows only non-negative signals to pass through the input. Assume that g is the output of this layer, W is the weight of the edge of this layer, and a is the input of this layer, then we have
g=max(0,WTa)g=max(0,W T a)
实验证明在深层次卷积神经网络中,使用矫正线性单元层可使得训练时网络的收敛速度比传统的激励函数更快。Experiments show that in deep convolutional neural networks, the use of a corrected linear element layer can make the network convergence rate faster than the traditional excitation function.
全连接层:我们在模型中添加了两层全连接层,可以看做是在前面二维卷积层输出的基础上建立的感知机模型(隐藏层和逻辑回归层)。我们首先将从M个子网络得到的特征图串联成一个长特征向量。该向量即表示从深度图像序列中抽取到的特征。它的每一维元素都连向第一个全连接层(隐藏层)的所有节
点,并进一步全连接到所有的输出单元。输出单元共2K个,这里K表示骨骼节点的数目,输出单元的值即是骨骼节点在深度图像上的二维坐标位置。Fully connected layer: We added two layers of fully connected layers to the model, which can be seen as a perceptron model (hidden layer and logistic regression layer) based on the previous two-dimensional convolutional layer output. We first concatenate the feature maps obtained from the M subnetworks into a long feature vector. This vector represents the feature extracted from the depth image sequence. Each dimension element of it is connected to all sections of the first fully connected layer (hidden layer)
Point and further connect all the output units. The output unit has a total of 2K, where K represents the number of bone nodes, and the value of the output unit is the two-dimensional coordinate position of the bone node on the depth image.
归一化层:归一化层指的是对数据集中人工标注的坐标进行归一化操作。训练一个检测人物的CNN网络,然后在归一化层中使用,将深度图中的目标裁剪出来。这样可以减少背景的干扰,使最后对骨骼点检测的精度提高。Normalized layer: The normalized layer refers to the normalization of the coordinates manually labeled in the dataset. Train a CNN network that detects people and then use them in the normalization layer to crop the targets in the depth map. This can reduce background interference and improve the accuracy of the final detection of bone points.
2.关节热图的生成2. Generation of joint heat map
设给定的数据集为{In,Ln},n=1,...,N,N为数据集样本的总数。其中In表示第n张图像,Ln表示第n张图像对应的人体骨骼点,Ln={lk},k=1,...,K,K表示共有K个被标注的人体骨骼点,我们的模型设置K为19,详见图3。lk=(xk,yk),为第k个骨骼点的位置。假设第k个骨骼点的热图为hpk,lk映射在hpk上的坐标lhk=(xhk,yhk)表示如下:Let the given data set be {I n , L n }, n=1,...,N,N be the total number of data set samples. Where I n represents the nth image, L n represents the human bone point corresponding to the nth image, L n ={l k }, k=1,...,K,K represents a total of K labeled human bones Point, our model setting K is 19, as shown in Figure 3. l k = (x k , y k ) is the position of the kth skeletal point. Assuming that the heat map of the kth skeletal point is hp k , the coordinates lk k ((hh k , yh k ) of l k mapped on hp k are expressed as follows:
xk=stride×xhk+offset (1.1)x k =stride×xh k +offset (1.1)
yk=stride×yhk+offset (1.2)y k =stride×yh k +offset (1.2)
其中,stride表示步长,offset表示偏移量,额外设定一个来决定橙色小菱形的大小。hpk中的每一个值表示该值在In中第k个骨骼点位置的概率,取值为[0,1]。生成热图的算法如下所示。Where stride is the step size, offset is the offset, and an extra is set. To determine the size of the orange small diamond. Each value in hp k represents the probability that the value is at the kth skeletal point position in I n and takes the value [0, 1]. The algorithm for generating a heat map is as follows.
3.模型的训练3. Model training
即给定一张图片,通过本发明提出的网络得到对应的K个热图。我们假定这K个热图按人体部位排成固定的顺序,这样可以方便和真实的关节热图进行比对并学习出与真实关节热图对应的预测热图。为了归一化输入图像的大小,这里采用先确定热图的大小,再算出输入图像合适大小的方法。热图的大小shp×shp由经验决定,我们的模型设置其为50×50。则输入图像的大小sI×sI定义如下:That is, given a picture, the corresponding K heat maps are obtained by the network proposed by the present invention. We assume that the K heat maps are arranged in a fixed order according to the body parts, so that it is convenient to compare with the real joint heat map and learn the predicted heat map corresponding to the real joint heat map. In order to normalize the size of the input image, the method of determining the size of the heat map and calculating the appropriate size of the input image is used here. The size of the heat map s hp ×s hp is determined by experience, and our model sets it to 50×50. Then the size of the input image s I × s I is defined as follows:
sI=(shp-1)×stride+offset×2+1 (3.1)s I =(s hp -1)×stride+offset×2+1 (3.1)
对上式,由于在真实关节热图训练数据中,人体的部位会很容易靠近图像边缘,因此在输入图像的周围加上大小为offset的填充。我们模型的输入为图像和其对应的K个真实关节热图,输出为相应的对K个骨骼点的预测热图。这样做不仅使模型的复杂性减少(避免为每个热图训练一个R‐CNN),还可以让各个热图的权值共享。For the above formula, since the part of the human body is easily approached to the edge of the image in the real joint heat map training data, a pad of a size of offset is added around the input image. The input to our model is the image and its corresponding K real joint heat maps, and the output is the corresponding predicted heat map for the K bone points. Not only does this reduce the complexity of the model (avoiding training one R-CNN for each heat map), but it also allows the weights of the individual heat maps to be shared.
前向传播:Forward propagation:
将数据集中的每一帧图像都沿我们定义好的R‐CNN模型传播运算,第一层为一个归一化层,能将不同大小的输入图像归一化为统一的大小,方便后续传播时的处理。随后便通过如附图2所示的全卷积网络,输出的大小为(batch_size,K,Shp,Shp),其中batch_size为批量训练的训练个数。Each frame of the dataset is propagated along our defined R-CNN model. The first layer is a normalized layer that normalizes input images of different sizes into a uniform size for subsequent propagation. Processing. Then through the full convolution network as shown in Figure 2, the output size is (batch_size, K, S hp , S hp ), where batch_size is the number of trainings for batch training.
反向传播:Backpropagation:
前向传播完成后,获得如上所述的输出。反向传播则需要先求出正向传播输出的热图和真实关节热图之间的残差J(ω),然后求得其对于参数ω的梯度并采用随机梯度下降的算法更新ω以最小化残差,残差的损失函数J(ω)定
义如下。After the forward propagation is completed, the output as described above is obtained. Backpropagation requires first finding the residual J(ω) between the heat map of the forward propagation output and the true joint heat map, and then finding its gradient for the parameter ω The ω is updated by a random gradient descent algorithm to minimize the residual, and the residual loss function J(ω) is defined as follows.
其中||·||F为弗罗贝尼乌斯范数,Ypred为预测的热图,Ygt为真实的关节热图Where ||·|| F is the Frobenius norm, Y pred is the predicted heat map, and Y gt is the true joint heat map
然而仅仅把这样的误差反向传播得到的最终效果并不好,原因在于背景的区域远远大于前景的区域。因此我们增加一个比例因子,即在反向传播时按某个比例将背景的残差置为0,可以使前景和背景的比例接近。例如,热图大小为50×50,里面的小菱形区域为5×5,那么前景和背景的比例则为1:100。我们的模型设置一个值为0.012的比例因子ratio作用在背景上,在反向传播时,前景和背景的比例会由1:100变为1:1.2。However, the final effect of simply backpropagating such errors is not good because the background area is much larger than the foreground area. Therefore, we add a scale factor, that is, to set the residual of the background to 0 in a certain proportion during backpropagation, which can make the ratio of the foreground to the background close. For example, the heat map size is 50×50, and the small diamond area inside is 5×5, then the ratio of foreground to background is 1:100. Our model sets a scale factor ratio of 0.012 on the background. In the backpropagation, the ratio of foreground to background changes from 1:100 to 1:1.2.
模型的学习过程总结为算法2:The learning process of the model is summarized as Algorithm 2:
4.模型的测试4. Model testing
给定一张测试图像,输入训练好的模型中,可获得19个骨骼点的热图。对每个热图,找出其最大的响应值,即为人体的一个骨骼点。最后通过式(1.1)与(1.2),将该坐标变换回原始图像下,即可得到19个人体骨骼点的坐标。评测标
准如下:Given a test image, enter the trained model and get a heat map of 19 bone points. For each heat map, find out its maximum response value, which is a bone point of the human body. Finally, by transforming the coordinates back to the original image by equations (1.1) and (1.2), the coordinates of the 19 human skeleton points can be obtained. Evaluation mark
The standard is as follows:
其中,pred_coord为预测到的坐标,gt_coord为真实坐标,下标为骨骼点的索引。分母中下标ls(left shoulder)表示的是左肩膀,rh(right hip)表示的是右臀部,即整个分母表示的是人体姿势躯干的长度。这个评测真实意即预测坐标和真实坐标之间的距离应该小于该图像人体姿势中真实躯干长度的某个比例,我们的模型中取r为20。Among them, pred_coord is the predicted coordinate, gt_coord is the real coordinate, and the subscript is the index of the skeleton point. The subscript ls (left shoulder) in the denominator indicates the left shoulder, and the rh (right hip) indicates the right hip, that is, the entire denominator indicates the length of the body posture torso. The true meaning of this evaluation is that the distance between the predicted coordinates and the real coordinates should be less than a certain ratio of the true torso length in the human body pose of the image. In our model, r is 20.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and combinations thereof may be made without departing from the spirit and scope of the invention. Simplifications should all be equivalent replacements and are included in the scope of the present invention.
Claims (9)
- 一种基于卷积神经网络的深度图像人体关节定位方法,其特征在于,包括训练过程和识别过程;A depth image human joint positioning method based on convolutional neural network, characterized in that it comprises a training process and a recognition process;训练过程的步骤如下:The steps of the training process are as follows:1)输入训练样本;1) Input training samples;2)初始化深层次的卷积神经网络及其参数,所述参数包括每层边的权重和偏置;2) Initializing a deep convolutional neural network and its parameters, the parameters including the weights and offsets of each layer edge;3)采用前向算法和后向算法,利用训练样本学习出构建的卷积神经网络的参数;3) Using the forward algorithm and the backward algorithm, using the training samples to learn the parameters of the constructed convolutional neural network;识别过程的步骤如下:The steps in the identification process are as follows:4)输入测试样本;4) Enter the test sample;5)利用训练好的卷积神经网络对输入的测试样本,回归出其中的人体关节点的位置。5) Using the trained convolutional neural network to return the position of the human joint point to the input test sample.
- 根据权利要求1所述的基于卷积神经网络的深度图像人体关节定位方法,其特征在于,所述步骤1)中的训练样本是自由角度的深度摄像机捕获的原始的包含人物的深度图像及其标注的集合。The depth image human body joint positioning method based on convolutional neural network according to claim 1, wherein the training sample in the step 1) is an original depth image of a person captured by a depth angle depth camera and A collection of annotations.
- 根据权利要求1所述的基于卷积神经网络的深度图像人体关节定位方法,其特征在于,所述步骤2)中的卷积神经网络具有深层次的结构,并由卷积层、降采样层、矫正线性单元层、全连接层堆叠而成,并通过归一化层进行归一化操作,该卷积神经网络的顶层直接输出人体关节点的位置。The method for positioning a human body joint based on a depth image based on a convolutional neural network according to claim 1, wherein the convolutional neural network in the step 2) has a deep hierarchical structure and is composed of a convolutional layer and a downsampling layer. The correcting linear unit layer and the fully connected layer are stacked and normalized by the normalized layer, and the top layer of the convolutional neural network directly outputs the position of the human joint point.
- 根据权利要求3所述的基于卷积神经网络的深度图像人体关节定位方法,其特征在于,所述卷积层是指对输入的图像或特征在二维空间进行卷积,提取重要的特征;The convolutional neural network-based depth image human joint positioning method according to claim 3, wherein the convolution layer refers to convolution of an input image or feature in a two-dimensional space to extract important features;所述降采样层使用max-pooling操作,该操作是指对特征图按照设定策略进行降采样的过程,用于提取出保持形状和偏移不变性的特征;The downsampling layer uses a max-pooling operation, which refers to a process of downsampling a feature map according to a set strategy, and is used to extract features that maintain shape and offset invariance;所述矫正线性单元层采用简单的非线性阈值函数,对输入进行只允许非负信号通过的变换;The correcting linear unit layer uses a simple nonlinear threshold function to perform a transformation that allows only non-negative signals to pass through the input;所述全连接层中,首先将从M个子网络得到的特征图串联成一个长特征 向量,该长特征向量即表示从深度图像序列中抽取到的特征,它的每一维元素都连向第一个全连接层的所有节点,并进一步全连接到所有的输出单元,输出单元共2K个,这里K表示骨骼节点的数目,输出单元的值即是骨骼节点在深度图像上的二维坐标位置;In the fully connected layer, the feature maps obtained from the M subnetworks are first connected in series to form a long feature. Vector, the long feature vector represents the feature extracted from the depth image sequence, each dimension element of which is connected to all nodes of the first fully connected layer, and further connected to all output units, the output unit 2K, where K represents the number of bone nodes, and the value of the output unit is the two-dimensional coordinate position of the bone node on the depth image;所述归一化层是对数据集中人工标注的坐标进行归一化操作。The normalized layer is a normalized operation of the coordinates manually labeled in the data set.
- 根据权利要求1所述的基于卷积神经网络的深度图像人体关节定位方法,其特征在于,步骤3)中,还包括关节热图的生成步骤,具体为:The depth image human body joint positioning method based on the convolutional neural network according to claim 1, wherein the step 3) further comprises a step of generating a joint heat map, specifically:设给定的数据集为{In,Ln},n=1,...,N,N为数据集样本的总数,其中In表示第n张图像,Ln表示第n张图像对应的人体骨骼点,Ln={lk},k=1,...,K,K表示共有K个被标注的人体骨骼点;lk=(xk,yk),为第k个骨骼点的位置,假设第k个骨骼点的热图为hpk,lk映射在hpk上的坐标lhk=(xhk,yhk)表示如下:Let the given data set be {I n , L n }, n=1,...,N,N be the total number of data set samples, where I n represents the nth image and L n represents the nth image corresponding Human bone points, L n ={l k },k=1,...,K,K represent a total of K labeled human skeleton points; l k =(x k ,y k ), the kth skeletal point position, assuming that the k-th picture shows the skeleton point heat hp k, l k mapped coordinates on HP LH k k a = (xh k, yh k) as follows:xk=stride×xhk+offset (1.1)x k =stride×xh k +offset (1.1)yk=stride×yhk+offset (1.2)y k =stride×yh k +offset (1.2)其中,stride表示步长,offset表示偏移量,额外设定一个来决定橙色小菱形的大小,hpk中的每一个值表示该值在In中第k个骨骼点位置的概率,取值为[0,1]。Where stride is the step size, offset is the offset, and an extra is set. To determine the size of the orange small diamond, each value in hp k represents the probability that the value is at the kth bone point position in I n , and the value is [0, 1].
- 根据权利要求5所述的基于卷积神经网络的深度图像人体关节定位方法,其特征在于,步骤3)中,在训练时假定K个热图按人体部位排成固定的顺序,用于将关节热图进行比对并学习出与真实关节热图对应的预测热图,为了归一化输入图像的大小,先确定热图的大小,再算出输入图像合适的大小;热图的大小shp×shp由经验决定,则输入图像的大小sI×sI定义如下:The method for positioning a human body joint based on a depth image based on a convolutional neural network according to claim 5, wherein in step 3), it is assumed that K heat maps are arranged in a fixed order according to human body parts during training, and are used for joints. The heat map is compared and the predicted heat map corresponding to the real joint heat map is learned. In order to normalize the size of the input image, the size of the heat map is first determined, and then the appropriate size of the input image is calculated; the size of the heat map s hp × s hp is determined by experience, then the size of the input image s I × s I is defined as follows:sI=(shp-1)×stride+offset×2+1 (3.1)s I= (s hp -1) ×stride+offset×2+1 (3.1)对上式,由于在真实关节热图训练数据中,人体的部位会很容易靠近图像边缘,因此在输入图像的周围加上大小为offset的填充,该模型的输入为图像和其对应的K个真实关节热图,输出为相应的对K个骨骼点的预测热图。For the above formula, since the human body part is easily approached to the edge of the image in the real joint heat map training data, a pad of size offset is added around the input image, and the input of the model is the image and its corresponding K The true joint heat map, the output is the corresponding predicted heat map for the K bone points.
- 根据权利要求6所述的基于卷积神经网络的深度图像人体关节定位方法, 其特征在于,向前算法具体为:The method for positioning a depth image human joint based on a convolutional neural network according to claim 6, The feature is that the forward algorithm is specifically:将数据集中的每一帧图像都沿定义好的R‐CNN模型传播运算,第一层为一个归一化层,能将不同大小的输入图像归一化为统一的大小,方便后续传播时的处理,随后便通过全卷积网络,输出的大小为(batch_size,K,Shp,Shp),其中batch_size为批量训练的训练个数;Each frame of the data set is propagated along the defined R-CNN model. The first layer is a normalized layer, which can normalize the input images of different sizes into a uniform size, which is convenient for subsequent propagation. Processing, then through the full convolution network, the output size is (batch_size, K, S hp , S hp ), where batch_size is the number of training for batch training;向后算法具体为:The backward algorithm is specifically:反向传播则需要先求出正向传播输出的热图和真实关节热图之间的残差J(ω),然后求得其对于参数ω的梯度并采用随机梯度下降的算法更新ω以最小化残差,残差的损失函数J(ω)定义如下;Backpropagation requires first finding the residual J(ω) between the heat map of the forward propagation output and the real joint heat map, and then finding its gradient for the parameter ω And the algorithm of random gradient descent is used to update ω to minimize the residual, and the loss function J(ω) of the residual is defined as follows;其中||·||F为弗罗贝尼乌斯范数,Ypred为预测的热图,Ygt为真实的关节热图。Where ||·|| F is the Frobenius norm, Y pred is the predicted heat map, and Y gt is the true joint heat map.
- 根据权利要求1所述的基于卷积神经网络的深度图像人体关节定位方法,其特征在于,所述步骤4)中,测试样本是自由角度的深度摄像机捕获的原始的深度图像。The depth image human body joint positioning method based on convolutional neural network according to claim 1, wherein in the step 4), the test sample is an original depth image captured by a depth angle depth camera.
- 根据权利要求5所述的基于卷积神经网络的深度图像人体关节定位方法,其特征在于,步骤5)中,回归出其中的人体关节点的位置的具体方法为:The method for positioning a human body joint according to a convolutional neural network according to claim 5, wherein in step 5), the specific method for retrieving the position of the joint point of the human body is:给定一张测试图像,输入训练好的模型中,可获骨骼点的热图,对每个热图,找出其最大的响应值,即为人体的一个骨骼点,最后通过式(1.1)与(1.2),将该坐标变换回原始图像下,即可得到体骨骼点的坐标,评测标准如下:Given a test image, enter the trained model, you can get the heat map of the bone points, find the maximum response value for each heat map, which is a bone point of the human body, and finally pass the formula (1.1) And (1.2), the coordinates are transformed back to the original image, the coordinates of the body skeleton points can be obtained, and the evaluation criteria are as follows:其中,pred_coord为预测到的坐标,gt_coord为真实坐标,下标为骨骼点的索引,分母中下标ls表示的是左肩膀,rh表示的是右臀部,即整个分母表示的 是人体姿势躯干的长度。 Among them, pred_coord is the predicted coordinate, gt_coord is the real coordinate, the subscript is the index of the skeleton point, the subscript ls in the denominator indicates the left shoulder, and rh indicates the right hip, that is, the whole denominator It is the length of the body posture torso.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610081141.XA CN105787439B (en) | 2016-02-04 | 2016-02-04 | A kind of depth image human synovial localization method based on convolutional neural networks |
CN201610081141.X | 2016-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017133009A1 true WO2017133009A1 (en) | 2017-08-10 |
Family
ID=56402733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/073695 WO2017133009A1 (en) | 2016-02-04 | 2016-02-05 | Method for positioning human joint using depth image of convolutional neural network |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105787439B (en) |
WO (1) | WO2017133009A1 (en) |
Cited By (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107886049A (en) * | 2017-10-16 | 2018-04-06 | 江苏省气象服务中心 | A kind of visibility identification method for early warning based on camera probe |
CN108492364A (en) * | 2018-03-27 | 2018-09-04 | 百度在线网络技术(北京)有限公司 | The method and apparatus for generating model for generating image |
CN108920850A (en) * | 2018-07-09 | 2018-11-30 | 西安理工大学 | A kind of flexo pressure prediction method based on convolutional neural networks |
CN108961366A (en) * | 2018-06-06 | 2018-12-07 | 大连大学 | Based on convolution self-encoding encoder and manifold learning human motion edit methods |
CN109559345A (en) * | 2018-10-19 | 2019-04-02 | 中山大学 | A kind of clothes key point positioning system and its training, localization method |
CN109583295A (en) * | 2018-10-19 | 2019-04-05 | 河南辉煌科技股份有限公司 | A kind of notch of switch machine automatic testing method based on convolutional neural networks |
CN109584345A (en) * | 2018-11-12 | 2019-04-05 | 大连大学 | Human motion synthetic method based on convolutional neural networks |
CN109598226A (en) * | 2018-11-29 | 2019-04-09 | 安徽工业大学 | Based on Kinect colour and depth information online testing cheating judgment method |
CN109614974A (en) * | 2018-12-24 | 2019-04-12 | 浙江大学常州工业技术研究院 | A kind of data identification method of digital water meter |
CN109767434A (en) * | 2019-01-07 | 2019-05-17 | 西安电子科技大学 | Time domain detection method of small target neural network based |
CN110008816A (en) * | 2019-01-28 | 2019-07-12 | 温州大学 | A kind of method that real-time detection baby kicks quilt son |
CN110033446A (en) * | 2019-04-10 | 2019-07-19 | 西安电子科技大学 | Enhancing image quality evaluating method based on twin network |
CN110097029A (en) * | 2019-05-14 | 2019-08-06 | 西安电子科技大学 | Identity identifying method based on Highway network multi-angle of view Gait Recognition |
CN110096950A (en) * | 2019-03-20 | 2019-08-06 | 西北大学 | A kind of multiple features fusion Activity recognition method based on key frame |
CN110163048A (en) * | 2018-07-10 | 2019-08-23 | 腾讯科技(深圳)有限公司 | Identification model training method, recognition methods and the equipment of hand key point |
CN110188700A (en) * | 2019-05-31 | 2019-08-30 | 安徽大学 | Human body three-dimensional artis prediction technique based on grouped regression model |
CN110188633A (en) * | 2019-05-14 | 2019-08-30 | 广州虎牙信息科技有限公司 | Human body posture index prediction technique, device, electronic equipment and storage medium |
CN110188634A (en) * | 2019-05-14 | 2019-08-30 | 广州虎牙信息科技有限公司 | Construction method, device, electronic equipment and the storage medium of body states model |
CN110211670A (en) * | 2019-05-14 | 2019-09-06 | 广州虎牙信息科技有限公司 | Index prediction technique, device, electronic equipment and storage medium |
CN110223273A (en) * | 2019-05-16 | 2019-09-10 | 天津大学 | A kind of image repair evidence collecting method of combination discrete cosine transform and neural network |
CN110232685A (en) * | 2019-06-17 | 2019-09-13 | 合肥工业大学 | Space pelvis parameter auto-testing method based on deep learning |
CN110309722A (en) * | 2019-06-03 | 2019-10-08 | 辽宁师范大学 | Sports Video action identification method based on movement hotspot graph |
CN110334788A (en) * | 2019-07-08 | 2019-10-15 | 北京信息科技大学 | Distributed multi-antenna reader positioning system and its method based on deep learning |
CN110427877A (en) * | 2019-08-01 | 2019-11-08 | 大连海事大学 | A method of the human body three-dimensional posture estimation based on structural information |
CN110533031A (en) * | 2019-08-21 | 2019-12-03 | 成都电科慧安科技有限公司 | A kind of method of target detection identification and positioning |
CN110532928A (en) * | 2019-08-23 | 2019-12-03 | 安徽大学 | Facial critical point detection method based on facial area standardization and deformable hourglass network |
CN110570431A (en) * | 2019-09-18 | 2019-12-13 | 东北大学 | Medical image segmentation method based on improved convolutional neural network |
CN110728183A (en) * | 2019-09-09 | 2020-01-24 | 天津大学 | Human body action recognition method based on attention mechanism neural network |
CN110766746A (en) * | 2019-09-05 | 2020-02-07 | 南京理工大学 | 3D driver posture estimation method based on combined 2D-3D neural network |
CN110826453A (en) * | 2019-10-30 | 2020-02-21 | 西安工程大学 | Behavior identification method by extracting coordinates of human body joint points |
CN110929638A (en) * | 2019-11-20 | 2020-03-27 | 北京奇艺世纪科技有限公司 | Human body key point identification method and device and electronic equipment |
CN110956139A (en) * | 2019-12-02 | 2020-04-03 | 郑州大学 | Human motion action analysis method based on time series regression prediction |
CN110956141A (en) * | 2019-12-02 | 2020-04-03 | 郑州大学 | Human body continuous action rapid analysis method based on local recognition |
CN110991247A (en) * | 2019-10-31 | 2020-04-10 | 厦门思泰克智能科技股份有限公司 | Electronic component identification method based on deep learning and NCA fusion |
CN110991374A (en) * | 2019-12-10 | 2020-04-10 | 电子科技大学 | Fingerprint singular point detection method based on RCNN |
CN111008583A (en) * | 2019-11-28 | 2020-04-14 | 清华大学 | Pedestrian and rider posture estimation method assisted by limb characteristics |
CN111045861A (en) * | 2019-10-22 | 2020-04-21 | 南京海骅信息技术有限公司 | Sensor data recovery method based on deep neural network |
CN111062364A (en) * | 2019-12-28 | 2020-04-24 | 青岛理工大学 | Deep learning-based assembly operation monitoring method and device |
CN111062338A (en) * | 2019-12-19 | 2020-04-24 | 厦门商集网络科技有限责任公司 | Certificate portrait consistency comparison method and system |
CN111105439A (en) * | 2019-11-28 | 2020-05-05 | 同济大学 | Synchronous positioning and mapping method using residual attention mechanism network |
CN111160085A (en) * | 2019-11-19 | 2020-05-15 | 天津中科智能识别产业技术研究院有限公司 | Human body image key point posture estimation method |
CN111161295A (en) * | 2019-12-30 | 2020-05-15 | 神思电子技术股份有限公司 | Background stripping method for dish image |
CN111164603A (en) * | 2017-10-03 | 2020-05-15 | 富士通株式会社 | Gesture recognition system, image correction program, and image correction method |
CN111191486A (en) * | 2018-11-14 | 2020-05-22 | 杭州海康威视数字技术股份有限公司 | Drowning behavior recognition method, monitoring camera and monitoring system |
CN111191535A (en) * | 2019-12-18 | 2020-05-22 | 南京理工大学 | Pedestrian detection model construction method based on deep learning and pedestrian detection method |
EP3656302A1 (en) * | 2018-11-26 | 2020-05-27 | Lindera GmbH | System and method for human gait analysis |
CN111223549A (en) * | 2019-12-30 | 2020-06-02 | 华东师范大学 | Mobile end system and method for disease prevention based on posture correction |
CN111259735A (en) * | 2020-01-08 | 2020-06-09 | 西安电子科技大学 | Single-person attitude estimation method based on multi-stage prediction feature enhanced convolutional neural network |
CN111291593A (en) * | 2018-12-06 | 2020-06-16 | 成都品果科技有限公司 | Method for detecting human body posture |
CN111310659A (en) * | 2020-02-14 | 2020-06-19 | 福州大学 | Human body action recognition method based on enhanced graph convolution neural network |
CN111353447A (en) * | 2020-03-05 | 2020-06-30 | 辽宁石油化工大学 | Human skeleton behavior identification method based on graph convolution network |
CN111353381A (en) * | 2020-01-09 | 2020-06-30 | 西安理工大学 | Human body 3D posture estimation method facing 2D image |
CN111401106A (en) * | 2019-01-02 | 2020-07-10 | 中国移动通信有限公司研究院 | Behavior identification method, device and equipment |
CN111458688A (en) * | 2020-03-13 | 2020-07-28 | 西安电子科技大学 | Radar high-resolution range profile target identification method based on three-dimensional convolution network |
CN111462108A (en) * | 2020-04-13 | 2020-07-28 | 山西新华化工有限责任公司 | Machine learning-based head and face product design ergonomics assessment operation method |
CN111462234A (en) * | 2020-03-27 | 2020-07-28 | 北京华捷艾米科技有限公司 | Position determination method and device |
CN111507920A (en) * | 2020-04-17 | 2020-08-07 | 合肥工业大学 | Bone motion data enhancement method and system based on Kinect |
CN111523511A (en) * | 2020-05-08 | 2020-08-11 | 中国科学院合肥物质科学研究院 | Video image Chinese wolfberry branch detection method for Chinese wolfberry harvesting and clamping device |
CN111582220A (en) * | 2020-05-18 | 2020-08-25 | 中国科学院自动化研究所 | Skeleton point behavior identification system based on shift diagram convolution neural network and identification method thereof |
CN111626171A (en) * | 2020-05-21 | 2020-09-04 | 青岛科技大学 | Group behavior identification method based on video segment attention mechanism and interactive relation activity diagram modeling |
CN111652273A (en) * | 2020-04-27 | 2020-09-11 | 西安工程大学 | Deep learning-based RGB-D image classification method |
CN111667510A (en) * | 2020-06-17 | 2020-09-15 | 常州市中环互联网信息技术有限公司 | Rock climbing action evaluation system based on deep learning and attitude estimation |
CN111680613A (en) * | 2020-06-03 | 2020-09-18 | 安徽大学 | Method for detecting falling behavior of escalator passengers in real time |
CN111695457A (en) * | 2020-05-28 | 2020-09-22 | 浙江工商大学 | Human body posture estimation method based on weak supervision mechanism |
CN111709983A (en) * | 2020-06-16 | 2020-09-25 | 天津工业大学 | Bubble flow field three-dimensional reconstruction method based on convolutional neural network and light field image |
CN111709284A (en) * | 2020-05-07 | 2020-09-25 | 西安理工大学 | Dance emotion recognition method based on CNN-LSTM |
CN111753643A (en) * | 2020-05-09 | 2020-10-09 | 北京迈格威科技有限公司 | Character posture recognition method and device, computer equipment and storage medium |
CN111783711A (en) * | 2020-07-09 | 2020-10-16 | 中国科学院自动化研究所 | Skeleton behavior identification method and device based on body component layer |
CN111814661A (en) * | 2020-07-07 | 2020-10-23 | 西安电子科技大学 | Human behavior identification method based on residual error-recurrent neural network |
CN111860278A (en) * | 2020-07-14 | 2020-10-30 | 陕西理工大学 | Human behavior recognition algorithm based on deep learning |
CN111931549A (en) * | 2020-05-20 | 2020-11-13 | 浙江大学 | Human skeleton action prediction method based on multitask non-autoregressive decoding |
CN111933253A (en) * | 2020-07-14 | 2020-11-13 | 北京邮电大学 | Neural network-based marking point marking method and device for bone structure image |
CN111950412A (en) * | 2020-07-31 | 2020-11-17 | 陕西师范大学 | Hierarchical dance action attitude estimation method with sequence multi-scale depth feature fusion |
CN111965620A (en) * | 2020-08-31 | 2020-11-20 | 中国科学院空天信息创新研究院 | Gait feature extraction and identification method based on time-frequency analysis and deep neural network |
CN112037310A (en) * | 2020-08-27 | 2020-12-04 | 成都先知者科技有限公司 | Game character action recognition generation method based on neural network |
CN112069933A (en) * | 2020-08-21 | 2020-12-11 | 董秀园 | Skeletal muscle stress estimation method based on posture recognition and human body biomechanics |
CN112084934A (en) * | 2020-09-08 | 2020-12-15 | 浙江工业大学 | Behavior identification method based on two-channel depth separable convolution of skeletal data |
CN112086198A (en) * | 2020-09-17 | 2020-12-15 | 西安交通大学口腔医院 | System and method for establishing age assessment model based on deep learning technology |
WO2020250046A1 (en) * | 2019-06-14 | 2020-12-17 | Wrnch Inc. | Method and system for monocular depth estimation of persons |
CN112102451A (en) * | 2020-07-28 | 2020-12-18 | 北京云舶在线科技有限公司 | Common camera-based wearable virtual live broadcast method and equipment |
CN112149962A (en) * | 2020-08-28 | 2020-12-29 | 中国地质大学(武汉) | Risk quantitative evaluation method and system for cause behavior of construction accident |
CN112232134A (en) * | 2020-09-18 | 2021-01-15 | 杭州电子科技大学 | Human body posture estimation method based on hourglass network and attention mechanism |
CN112241726A (en) * | 2020-10-30 | 2021-01-19 | 华侨大学 | Posture estimation method based on adaptive receptive field network and joint point loss weight |
CN112287960A (en) * | 2019-07-24 | 2021-01-29 | 辉达公司 | Automatic generation of ground truth data for training or retraining machine learning models |
CN112307876A (en) * | 2019-07-25 | 2021-02-02 | 和硕联合科技股份有限公司 | Joint point detection method and device |
CN112446266A (en) * | 2019-09-04 | 2021-03-05 | 北京君正集成电路股份有限公司 | Face recognition network structure suitable for front end |
CN112541421A (en) * | 2020-12-08 | 2021-03-23 | 浙江科技学院 | Pedestrian reloading identification method in open space |
CN112633220A (en) * | 2020-12-30 | 2021-04-09 | 浙江工商大学 | Human body posture estimation method based on bidirectional serialization modeling |
CN112784736A (en) * | 2021-01-21 | 2021-05-11 | 西安理工大学 | Multi-mode feature fusion character interaction behavior recognition method |
CN112818942A (en) * | 2021-03-05 | 2021-05-18 | 清华大学 | Pedestrian action recognition method and system in vehicle driving process |
CN112836824A (en) * | 2021-03-04 | 2021-05-25 | 上海交通大学 | Monocular three-dimensional human body pose unsupervised learning method, system and medium |
CN112861808A (en) * | 2021-03-19 | 2021-05-28 | 泰康保险集团股份有限公司 | Dynamic gesture recognition method and device, computer equipment and readable storage medium |
CN112883933A (en) * | 2021-03-30 | 2021-06-01 | 广东曜城科技园管理有限公司 | Abnormal human behavior alarming method and device |
CN112883808A (en) * | 2021-01-23 | 2021-06-01 | 招商新智科技有限公司 | Method and device for detecting abnormal behavior of pedestrian riding escalator and electronic equipment |
CN112950550A (en) * | 2021-02-04 | 2021-06-11 | 广州中医药大学第一附属医院 | Deep learning-based type 2 diabetic nephropathy image classification method |
CN112949503A (en) * | 2021-03-05 | 2021-06-11 | 齐齐哈尔大学 | Site monitoring management method and system for ice and snow sports |
CN113034655A (en) * | 2021-03-11 | 2021-06-25 | 北京字跳网络技术有限公司 | Shoe fitting method and device based on augmented reality and electronic equipment |
CN113095268A (en) * | 2021-04-22 | 2021-07-09 | 中德(珠海)人工智能研究院有限公司 | Robot gait learning method, system and storage medium based on video stream |
CN113128424A (en) * | 2021-04-23 | 2021-07-16 | 浙江理工大学 | Attention mechanism-based graph convolution neural network action identification method |
CN113158970A (en) * | 2021-05-11 | 2021-07-23 | 清华大学 | Action identification method and system based on fast and slow dual-flow graph convolutional neural network |
CN113191408A (en) * | 2021-04-20 | 2021-07-30 | 西安理工大学 | Gesture recognition method based on double-flow neural network |
CN113313731A (en) * | 2021-06-10 | 2021-08-27 | 东南大学 | Three-dimensional human body posture estimation method for monocular video |
CN113469018A (en) * | 2021-06-29 | 2021-10-01 | 中北大学 | Multi-modal interaction behavior recognition method based on RGB and three-dimensional skeleton |
CN113468924A (en) * | 2020-03-31 | 2021-10-01 | 北京沃东天骏信息技术有限公司 | Key point detection model training method and device and key point detection method and device |
CN113496176A (en) * | 2020-04-07 | 2021-10-12 | 深圳爱根斯通科技有限公司 | Motion recognition method and device and electronic equipment |
CN113609993A (en) * | 2021-08-06 | 2021-11-05 | 烟台艾睿光电科技有限公司 | Attitude estimation method, device and equipment and computer readable storage medium |
CN113627259A (en) * | 2021-07-12 | 2021-11-09 | 西安理工大学 | Fine motion recognition method based on graph convolution network |
CN113781557A (en) * | 2021-08-13 | 2021-12-10 | 华中科技大学 | Construction method and application of spine mark point positioning model |
CN113903082A (en) * | 2021-10-14 | 2022-01-07 | 黑龙江省科学院智能制造研究所 | Human body gait monitoring algorithm based on dynamic time planning |
CN113989718A (en) * | 2021-10-29 | 2022-01-28 | 南京邮电大学 | Human body target detection method facing radar signal heat map |
CN113989927A (en) * | 2021-10-27 | 2022-01-28 | 东北大学 | Video group violent behavior identification method and system based on skeleton data |
CN114078149A (en) * | 2020-08-21 | 2022-02-22 | 深圳市万普拉斯科技有限公司 | Image estimation method, electronic equipment and storage medium |
CN114140828A (en) * | 2021-12-06 | 2022-03-04 | 西北大学 | Real-time lightweight 2D human body posture estimation method |
CN114373190A (en) * | 2021-12-28 | 2022-04-19 | 浙江大学台州研究院 | Intelligent recognition and automatic positioning system for human acupuncture points |
CN114419842A (en) * | 2021-12-31 | 2022-04-29 | 浙江大学台州研究院 | Artificial intelligence-based falling alarm method and device for assisting user in moving to intelligent closestool |
CN114495274A (en) * | 2022-01-25 | 2022-05-13 | 上海大学 | System and method for realizing human motion capture by using RGB camera |
CN114494341A (en) * | 2021-12-31 | 2022-05-13 | 北京理工大学 | Real-time completion method for optical motion capture mark points by fusing time-space constraints |
CN114511573A (en) * | 2021-12-29 | 2022-05-17 | 电子科技大学 | Human body analytic model and method based on multi-level edge prediction |
CN114511870A (en) * | 2020-10-27 | 2022-05-17 | 天津科技大学 | Pedestrian attribute information extraction and re-identification method combined with graph convolution neural network |
US11335023B2 (en) | 2020-05-22 | 2022-05-17 | Google Llc | Human pose estimation using neural networks and kinematic structure |
CN114529984A (en) * | 2022-01-17 | 2022-05-24 | 重庆邮电大学 | Bone action recognition method based on learnable PL-GCN and ECLSTM |
CN114549862A (en) * | 2022-03-04 | 2022-05-27 | 重庆邮电大学 | Human body point cloud framework extraction method based on multitask learning |
CN114550292A (en) * | 2022-02-21 | 2022-05-27 | 东南大学 | High-physical-reality human body motion capture method based on neural motion control |
CN114782992A (en) * | 2022-04-29 | 2022-07-22 | 常州大学 | Super-joint and multi-mode network and behavior identification method thereof |
CN115310361A (en) * | 2022-08-16 | 2022-11-08 | 中国矿业大学 | Method and system for predicting underground dust concentration of coal mine based on WGAN-CNN |
CN115455247A (en) * | 2022-09-26 | 2022-12-09 | 中国矿业大学 | Classroom collaborative learning role determination method |
CN115908987A (en) * | 2023-01-17 | 2023-04-04 | 南京理工大学 | Target detection method based on hierarchical automatic association learning |
CN111027626B (en) * | 2019-12-11 | 2023-04-07 | 西安电子科技大学 | Flow field identification method based on deformable convolution network |
CN116299170A (en) * | 2023-02-23 | 2023-06-23 | 中国人民解放军军事科学院系统工程研究院 | Multi-target passive positioning method, system and medium based on deep learning |
US11832950B2 (en) | 2015-03-23 | 2023-12-05 | Repono Pty Ltd | Muscle activity monitoring |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106127119B (en) * | 2016-06-16 | 2019-03-08 | 山东大学 | Joint probabilistic data association method based on color image and depth image multiple features |
CN106371599A (en) * | 2016-09-08 | 2017-02-01 | 清华大学 | Method and device for high-precision fingertip positioning in depth image |
CN109964237B (en) * | 2016-09-15 | 2020-07-17 | 谷歌有限责任公司 | Image depth prediction neural network |
CN106383888A (en) * | 2016-09-22 | 2017-02-08 | 深圳市唯特视科技有限公司 | Method for positioning and navigation by use of picture retrieval |
CN106548194B (en) * | 2016-09-29 | 2019-10-15 | 中国科学院自动化研究所 | The construction method and localization method of two dimensional image human joint points location model |
CN106446844B (en) * | 2016-09-29 | 2020-01-21 | 北京市商汤科技开发有限公司 | Posture estimation method and device and computer system |
CN106503642B (en) * | 2016-10-18 | 2019-09-20 | 长园长通新材料股份有限公司 | A kind of model of vibration method for building up applied to optical fiber sensing system |
CN108009466B (en) * | 2016-10-28 | 2022-03-15 | 北京旷视科技有限公司 | Pedestrian detection method and device |
WO2018076331A1 (en) * | 2016-10-31 | 2018-05-03 | 北京中科寒武纪科技有限公司 | Neural network training method and apparatus |
CN106529555B (en) * | 2016-11-04 | 2019-12-06 | 四川大学 | DR (digital radiography) sheet lung contour extraction method based on full convolution network |
CN106600577B (en) * | 2016-11-10 | 2019-10-18 | 华南理工大学 | A kind of method for cell count based on depth deconvolution neural network |
CN106558071B (en) * | 2016-11-10 | 2019-04-23 | 张昊华 | A kind of method and terminal obtaining human synovial information |
CN106780569A (en) * | 2016-11-18 | 2017-05-31 | 深圳市唯特视科技有限公司 | A kind of human body attitude estimates behavior analysis method |
CN106803090A (en) * | 2016-12-05 | 2017-06-06 | 中国银联股份有限公司 | A kind of image-recognizing method and device |
CN106650827A (en) * | 2016-12-30 | 2017-05-10 | 南京大学 | Human body posture estimation method and system based on structure guidance deep learning |
CN106709951B (en) * | 2017-01-03 | 2019-10-18 | 华南理工大学 | A kind of finger-joint localization method based on depth map |
CN106874914B (en) * | 2017-01-12 | 2019-05-14 | 华南理工大学 | A kind of industrial machinery arm visual spatial attention method based on depth convolutional neural networks |
CN106651887A (en) * | 2017-01-13 | 2017-05-10 | 深圳市唯特视科技有限公司 | Image pixel classifying method based convolutional neural network |
KR102061408B1 (en) * | 2017-03-24 | 2019-12-31 | (주)제이엘케이인스펙션 | Apparatus and method for analyzing images using semi 3d deep neural network |
CN107103613B (en) * | 2017-03-28 | 2019-11-15 | 深圳市未来媒体技术研究院 | A kind of three-dimension gesture Attitude estimation method |
CN107122754A (en) * | 2017-05-09 | 2017-09-01 | 苏州迪凯尔医疗科技有限公司 | Posture identification method and device |
CN107392097B (en) * | 2017-06-15 | 2020-07-07 | 中山大学 | Three-dimensional human body joint point positioning method of monocular color video |
CN107291232A (en) * | 2017-06-20 | 2017-10-24 | 深圳市泽科科技有限公司 | A kind of somatic sensation television game exchange method and system based on deep learning and big data |
CN107492121B (en) * | 2017-07-03 | 2020-12-29 | 广州新节奏智能科技股份有限公司 | Two-dimensional human body bone point positioning method of monocular depth video |
WO2019006591A1 (en) * | 2017-07-03 | 2019-01-10 | 广州新节奏智能科技股份有限公司 | Two-dimensional human skeleton point positioning method based on monocular depth video |
CN107495971A (en) * | 2017-07-27 | 2017-12-22 | 大连和创懒人科技有限公司 | Morbidity's alarm medical system and its detection method based on skeleton identification |
CN107563494B (en) * | 2017-08-01 | 2020-08-18 | 华南理工大学 | First-view-angle fingertip detection method based on convolutional neural network and heat map |
CN107451568A (en) * | 2017-08-03 | 2017-12-08 | 重庆邮电大学 | Use the attitude detecting method and equipment of depth convolutional neural networks |
CN107463899B (en) * | 2017-08-03 | 2019-01-29 | 北京金风科创风电设备有限公司 | Method and device for identifying edges of wind turbine components |
CN107766791A (en) * | 2017-09-06 | 2018-03-06 | 北京大学 | A kind of pedestrian based on global characteristics and coarseness local feature recognition methods and device again |
CN107833271B (en) * | 2017-09-30 | 2020-04-07 | 中国科学院自动化研究所 | Skeleton redirection method and device based on Kinect |
CN109670380B (en) | 2017-10-13 | 2022-12-27 | 华为技术有限公司 | Motion recognition and posture estimation method and device |
CN107945109B (en) * | 2017-11-06 | 2020-07-28 | 清华大学 | Image splicing method and device based on convolutional network |
CN107767419A (en) * | 2017-11-07 | 2018-03-06 | 广州深域信息科技有限公司 | A kind of skeleton critical point detection method and device |
CN108108674A (en) * | 2017-12-08 | 2018-06-01 | 浙江捷尚视觉科技股份有限公司 | A kind of recognition methods again of the pedestrian based on joint point analysis |
CN109960962B (en) * | 2017-12-14 | 2022-10-21 | 腾讯科技(深圳)有限公司 | Image recognition method and device, electronic equipment and readable storage medium |
CN109934042A (en) * | 2017-12-15 | 2019-06-25 | 吉林大学 | Adaptive video object behavior trajectory analysis method based on convolutional neural networks |
CN108577849A (en) * | 2017-12-15 | 2018-09-28 | 华东师范大学 | A kind of physiological function detection method based on mist computation model |
CN109951628A (en) * | 2017-12-21 | 2019-06-28 | 广东欧珀移动通信有限公司 | Model building method, photographic method, device, storage medium and terminal |
CN107945269A (en) * | 2017-12-26 | 2018-04-20 | 清华大学 | Complicated dynamic human body object three-dimensional rebuilding method and system based on multi-view point video |
CN108062536B (en) * | 2017-12-29 | 2020-07-24 | 纳恩博(北京)科技有限公司 | Detection method and device and computer storage medium |
CN108229418B (en) * | 2018-01-19 | 2021-04-02 | 北京市商汤科技开发有限公司 | Human body key point detection method and apparatus, electronic device, storage medium, and program |
CN108399362B (en) * | 2018-01-24 | 2022-01-07 | 中山大学 | Rapid pedestrian detection method and device |
CN108509838B (en) * | 2018-01-30 | 2022-03-25 | 中山大学 | Method for analyzing group dressing under joint condition |
CN110211015B (en) * | 2018-02-28 | 2022-12-20 | 佛山科学技术学院 | Watermark method based on characteristic object protection |
CN110222551B (en) * | 2018-03-02 | 2021-07-09 | 杭州海康威视数字技术股份有限公司 | Method and device for identifying action type, electronic equipment and storage medium |
CN108549844B (en) * | 2018-03-22 | 2021-10-26 | 华侨大学 | Multi-person posture estimation method based on fractal network and joint relative mode |
CN108520206B (en) * | 2018-03-22 | 2020-09-29 | 南京大学 | Fungus microscopic image identification method based on full convolution neural network |
CN108596056A (en) * | 2018-04-10 | 2018-09-28 | 武汉斑马快跑科技有限公司 | A kind of taxi operation behavior act recognition methods and system |
CN108615055B (en) * | 2018-04-19 | 2021-04-27 | 咪咕动漫有限公司 | Similarity calculation method and device and computer readable storage medium |
CN108549876A (en) * | 2018-04-20 | 2018-09-18 | 重庆邮电大学 | The sitting posture detecting method estimated based on target detection and human body attitude |
CN108710830B (en) * | 2018-04-20 | 2020-08-28 | 浙江工商大学 | Human body 3D posture estimation method combining dense connection attention pyramid residual error network and isometric limitation |
CN108564058B (en) * | 2018-04-25 | 2020-10-23 | 咪咕动漫有限公司 | Image processing method and device and computer readable storage medium |
CN108830145B (en) * | 2018-05-04 | 2021-08-24 | 深圳技术大学(筹) | People counting method based on deep neural network and storage medium |
CN108596904B (en) * | 2018-05-07 | 2020-09-29 | 北京长木谷医疗科技有限公司 | Method for generating positioning model and method for processing spine sagittal position image |
JP6906478B2 (en) * | 2018-05-23 | 2021-07-21 | 株式会社東芝 | Information processing equipment, information processing methods, and programs |
EP3753489B1 (en) | 2018-05-28 | 2022-01-05 | Kaia Health Software GmbH | Monitoring the performance of physical exercises |
CN110163045B (en) * | 2018-06-07 | 2024-08-09 | 腾讯科技(深圳)有限公司 | Gesture recognition method, device and equipment |
CN108960078A (en) * | 2018-06-12 | 2018-12-07 | 温州大学 | A method of based on monocular vision, from action recognition identity |
CN108629946B (en) * | 2018-06-14 | 2020-09-04 | 清华大学深圳研究生院 | Human body falling detection method based on RGBD sensor |
CN108564586A (en) * | 2018-06-22 | 2018-09-21 | 高鹏 | A kind of body curve's measurement method and system based on deep learning |
CN109019210B (en) * | 2018-06-29 | 2021-03-23 | 中国矿业大学 | Lifting system tail rope health monitoring system and method based on convolutional neural network |
CN109087329B (en) * | 2018-07-27 | 2021-10-15 | 中山大学 | Human body three-dimensional joint point estimation framework based on depth network and positioning method thereof |
CN109146969B (en) * | 2018-08-01 | 2021-01-26 | 北京旷视科技有限公司 | Pedestrian positioning method, device and processing equipment and storage medium thereof |
CN108985259B (en) | 2018-08-03 | 2022-03-18 | 百度在线网络技术(北京)有限公司 | Human body action recognition method and device |
CN109190686A (en) * | 2018-08-16 | 2019-01-11 | 电子科技大学 | A kind of human skeleton extracting method relied on based on joint |
CN109190544B (en) * | 2018-08-27 | 2020-09-08 | 华中科技大学 | Human identity recognition method based on sequence depth image |
CN109344705B (en) * | 2018-08-27 | 2023-05-23 | 广州烽火众智数字技术有限公司 | Pedestrian behavior detection method and system |
CN109176512A (en) * | 2018-08-31 | 2019-01-11 | 南昌与德通讯技术有限公司 | A kind of method, robot and the control device of motion sensing control robot |
CN109359568A (en) * | 2018-09-30 | 2019-02-19 | 南京理工大学 | A kind of human body critical point detection method based on figure convolutional network |
CN109410240A (en) * | 2018-10-09 | 2019-03-01 | 电子科技大学中山学院 | Method and device for positioning volume characteristic points and storage medium thereof |
CN109740522B (en) * | 2018-12-29 | 2023-05-02 | 广东工业大学 | Personnel detection method, device, equipment and medium |
CN109685037B (en) * | 2019-01-08 | 2021-03-05 | 北京汉王智远科技有限公司 | Real-time action recognition method and device and electronic equipment |
CN109820690B (en) * | 2019-03-11 | 2021-06-25 | 贵阳市第四人民医院 | Wearable elbow joint rehabilitation training system |
CN110068326B (en) * | 2019-04-29 | 2021-11-30 | 京东方科技集团股份有限公司 | Attitude calculation method and apparatus, electronic device, and storage medium |
CN110097024B (en) * | 2019-05-13 | 2020-12-25 | 河北工业大学 | Human body posture visual recognition method of transfer, transportation and nursing robot |
CN110210426B (en) * | 2019-06-05 | 2021-06-08 | 中国人民解放军国防科技大学 | Method for estimating hand posture from single color image based on attention mechanism |
CN110688969A (en) * | 2019-09-30 | 2020-01-14 | 上海依图网络科技有限公司 | Video frame human behavior identification method |
CN110738717B (en) * | 2019-10-16 | 2021-05-11 | 网易(杭州)网络有限公司 | Method and device for correcting motion data and electronic equipment |
CN110991340B (en) * | 2019-12-03 | 2023-02-28 | 郑州大学 | Human body action analysis method based on image compression |
CN110889858A (en) * | 2019-12-03 | 2020-03-17 | 中国太平洋保险(集团)股份有限公司 | Automobile part segmentation method and device based on point regression |
CN110889464B (en) * | 2019-12-10 | 2021-09-14 | 北京市商汤科技开发有限公司 | Neural network training method for detecting target object, and target object detection method and device |
CN111481208B (en) * | 2020-04-01 | 2023-05-12 | 中南大学湘雅医院 | Auxiliary system, method and storage medium applied to joint rehabilitation |
CN111652047B (en) * | 2020-04-17 | 2023-02-28 | 福建天泉教育科技有限公司 | Human body gesture recognition method based on color image and depth image and storage medium |
CN111695523B (en) * | 2020-06-15 | 2023-09-26 | 浙江理工大学 | Double-flow convolutional neural network action recognition method based on skeleton space-time and dynamic information |
WO2022006784A1 (en) * | 2020-07-08 | 2022-01-13 | 香港中文大学(深圳) | Human skeleton detection method, apparatus, and system, and device, and storage medium |
TWI733616B (en) * | 2020-11-04 | 2021-07-11 | 財團法人資訊工業策進會 | Reconition system of human body posture, reconition method of human body posture, and non-transitory computer readable storage medium |
CN112102945B (en) * | 2020-11-09 | 2021-02-05 | 电子科技大学 | Device for predicting severe condition of COVID-19 patient |
CN112070889B (en) * | 2020-11-13 | 2021-03-02 | 季华实验室 | Three-dimensional reconstruction method, device and system, electronic equipment and storage medium |
CN112634219B (en) * | 2020-12-17 | 2024-02-20 | 五邑大学 | Metal surface defect detection method, system, device and storage medium |
US11854305B2 (en) | 2021-05-09 | 2023-12-26 | International Business Machines Corporation | Skeleton-based action recognition using bi-directional spatial-temporal transformer |
CN113378729B (en) * | 2021-06-16 | 2024-05-10 | 西安理工大学 | Multi-scale convolution feature fusion pedestrian re-identification method based on pose embedding |
CN113743906A (en) * | 2021-09-09 | 2021-12-03 | 北京沃东天骏信息技术有限公司 | Method and device for determining service processing strategy |
CN114255337A (en) * | 2021-11-03 | 2022-03-29 | 北京百度网讯科技有限公司 | Method and device for correcting document image, electronic equipment and storage medium |
CN113855242B (en) * | 2021-12-03 | 2022-04-19 | 杭州堃博生物科技有限公司 | Bronchoscope position determination method, device, system, equipment and medium |
CN114041741B (en) * | 2022-01-13 | 2022-04-22 | 杭州堃博生物科技有限公司 | Data processing unit, processing device, surgical system, surgical instrument, and medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070126743A1 (en) * | 2005-12-01 | 2007-06-07 | Chang-Joon Park | Method for estimating three-dimensional position of human joint using sphere projecting technique |
CN103810496A (en) * | 2014-01-09 | 2014-05-21 | 江南大学 | 3D (three-dimensional) Gaussian space human behavior identifying method based on image depth information |
CN104504362A (en) * | 2014-11-19 | 2015-04-08 | 南京艾柯勒斯网络科技有限公司 | Face detection method based on convolutional neural network |
CN105069413A (en) * | 2015-07-27 | 2015-11-18 | 电子科技大学 | Human body gesture identification method based on depth convolution neural network |
CN105160310A (en) * | 2015-08-25 | 2015-12-16 | 西安电子科技大学 | 3D (three-dimensional) convolutional neural network based human body behavior recognition method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130155249A1 (en) * | 2011-12-20 | 2013-06-20 | Fluke Corporation | Thermal imaging camera for infrared rephotography |
CN105069423B (en) * | 2015-07-29 | 2018-11-09 | 北京格灵深瞳信息技术有限公司 | A kind of human body attitude detection method and device |
-
2016
- 2016-02-04 CN CN201610081141.XA patent/CN105787439B/en active Active
- 2016-02-05 WO PCT/CN2016/073695 patent/WO2017133009A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070126743A1 (en) * | 2005-12-01 | 2007-06-07 | Chang-Joon Park | Method for estimating three-dimensional position of human joint using sphere projecting technique |
CN103810496A (en) * | 2014-01-09 | 2014-05-21 | 江南大学 | 3D (three-dimensional) Gaussian space human behavior identifying method based on image depth information |
CN104504362A (en) * | 2014-11-19 | 2015-04-08 | 南京艾柯勒斯网络科技有限公司 | Face detection method based on convolutional neural network |
CN105069413A (en) * | 2015-07-27 | 2015-11-18 | 电子科技大学 | Human body gesture identification method based on depth convolution neural network |
CN105160310A (en) * | 2015-08-25 | 2015-12-16 | 西安电子科技大学 | 3D (three-dimensional) convolutional neural network based human body behavior recognition method |
Cited By (220)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11832950B2 (en) | 2015-03-23 | 2023-12-05 | Repono Pty Ltd | Muscle activity monitoring |
CN111164603A (en) * | 2017-10-03 | 2020-05-15 | 富士通株式会社 | Gesture recognition system, image correction program, and image correction method |
CN107886049A (en) * | 2017-10-16 | 2018-04-06 | 江苏省气象服务中心 | A kind of visibility identification method for early warning based on camera probe |
CN108492364B (en) * | 2018-03-27 | 2022-09-20 | 百度在线网络技术(北京)有限公司 | Method and apparatus for generating image generation model |
CN108492364A (en) * | 2018-03-27 | 2018-09-04 | 百度在线网络技术(北京)有限公司 | The method and apparatus for generating model for generating image |
CN108961366A (en) * | 2018-06-06 | 2018-12-07 | 大连大学 | Based on convolution self-encoding encoder and manifold learning human motion edit methods |
CN108920850A (en) * | 2018-07-09 | 2018-11-30 | 西安理工大学 | A kind of flexo pressure prediction method based on convolutional neural networks |
CN110163048B (en) * | 2018-07-10 | 2023-06-02 | 腾讯科技(深圳)有限公司 | Hand key point recognition model training method, hand key point recognition method and hand key point recognition equipment |
CN110163048A (en) * | 2018-07-10 | 2019-08-23 | 腾讯科技(深圳)有限公司 | Identification model training method, recognition methods and the equipment of hand key point |
CN109559345A (en) * | 2018-10-19 | 2019-04-02 | 中山大学 | A kind of clothes key point positioning system and its training, localization method |
CN109583295B (en) * | 2018-10-19 | 2022-12-06 | 河南辉煌科技股份有限公司 | Automatic detection method for switch machine notch based on convolutional neural network |
CN109559345B (en) * | 2018-10-19 | 2023-04-11 | 中山大学 | Garment key point positioning system and training and positioning method thereof |
CN109583295A (en) * | 2018-10-19 | 2019-04-05 | 河南辉煌科技股份有限公司 | A kind of notch of switch machine automatic testing method based on convolutional neural networks |
CN109584345B (en) * | 2018-11-12 | 2023-10-31 | 大连大学 | Human motion synthesis method based on convolutional neural network |
CN109584345A (en) * | 2018-11-12 | 2019-04-05 | 大连大学 | Human motion synthetic method based on convolutional neural networks |
CN111191486A (en) * | 2018-11-14 | 2020-05-22 | 杭州海康威视数字技术股份有限公司 | Drowning behavior recognition method, monitoring camera and monitoring system |
CN111191486B (en) * | 2018-11-14 | 2023-09-05 | 杭州海康威视数字技术股份有限公司 | Drowning behavior recognition method, monitoring camera and monitoring system |
EP3656302A1 (en) * | 2018-11-26 | 2020-05-27 | Lindera GmbH | System and method for human gait analysis |
CN113164098A (en) * | 2018-11-26 | 2021-07-23 | 林德拉有限责任公司 | Human gait analysis system and method |
WO2020108834A1 (en) * | 2018-11-26 | 2020-06-04 | Lindera Gmbh | System and method for human gait analysis |
CN109598226A (en) * | 2018-11-29 | 2019-04-09 | 安徽工业大学 | Based on Kinect colour and depth information online testing cheating judgment method |
CN109598226B (en) * | 2018-11-29 | 2022-09-13 | 安徽工业大学 | Online examination cheating judgment method based on Kinect color and depth information |
CN111291593A (en) * | 2018-12-06 | 2020-06-16 | 成都品果科技有限公司 | Method for detecting human body posture |
CN111291593B (en) * | 2018-12-06 | 2023-04-18 | 成都品果科技有限公司 | Method for detecting human body posture |
CN109614974B (en) * | 2018-12-24 | 2022-09-27 | 浙江大学常州工业技术研究院 | Data identification method of digital water meter |
CN109614974A (en) * | 2018-12-24 | 2019-04-12 | 浙江大学常州工业技术研究院 | A kind of data identification method of digital water meter |
CN111401106B (en) * | 2019-01-02 | 2023-03-31 | 中国移动通信有限公司研究院 | Behavior identification method, device and equipment |
CN111401106A (en) * | 2019-01-02 | 2020-07-10 | 中国移动通信有限公司研究院 | Behavior identification method, device and equipment |
CN109767434A (en) * | 2019-01-07 | 2019-05-17 | 西安电子科技大学 | Time domain detection method of small target neural network based |
CN109767434B (en) * | 2019-01-07 | 2023-04-07 | 西安电子科技大学 | Time domain weak and small target detection method based on neural network |
CN110008816A (en) * | 2019-01-28 | 2019-07-12 | 温州大学 | A kind of method that real-time detection baby kicks quilt son |
CN110008816B (en) * | 2019-01-28 | 2023-01-17 | 温州大学 | Method for detecting quilt kicked by baby in real time |
CN110096950A (en) * | 2019-03-20 | 2019-08-06 | 西北大学 | A kind of multiple features fusion Activity recognition method based on key frame |
CN110096950B (en) * | 2019-03-20 | 2023-04-07 | 西北大学 | Multi-feature fusion behavior identification method based on key frame |
CN110033446A (en) * | 2019-04-10 | 2019-07-19 | 西安电子科技大学 | Enhancing image quality evaluating method based on twin network |
CN110033446B (en) * | 2019-04-10 | 2022-12-06 | 西安电子科技大学 | Enhanced image quality evaluation method based on twin network |
CN110188634B (en) * | 2019-05-14 | 2022-11-01 | 广州虎牙信息科技有限公司 | Human body posture model construction method and device, electronic equipment and storage medium |
CN110188634A (en) * | 2019-05-14 | 2019-08-30 | 广州虎牙信息科技有限公司 | Construction method, device, electronic equipment and the storage medium of body states model |
CN110097029B (en) * | 2019-05-14 | 2022-12-06 | 西安电子科技大学 | Identity authentication method based on high way network multi-view gait recognition |
CN110211670A (en) * | 2019-05-14 | 2019-09-06 | 广州虎牙信息科技有限公司 | Index prediction technique, device, electronic equipment and storage medium |
CN110188633A (en) * | 2019-05-14 | 2019-08-30 | 广州虎牙信息科技有限公司 | Human body posture index prediction technique, device, electronic equipment and storage medium |
CN110188633B (en) * | 2019-05-14 | 2023-04-07 | 广州虎牙信息科技有限公司 | Human body posture index prediction method and device, electronic equipment and storage medium |
CN110097029A (en) * | 2019-05-14 | 2019-08-06 | 西安电子科技大学 | Identity identifying method based on Highway network multi-angle of view Gait Recognition |
CN110223273A (en) * | 2019-05-16 | 2019-09-10 | 天津大学 | A kind of image repair evidence collecting method of combination discrete cosine transform and neural network |
CN110188700B (en) * | 2019-05-31 | 2022-11-29 | 安徽大学 | Human body three-dimensional joint point prediction method based on grouping regression model |
CN110188700A (en) * | 2019-05-31 | 2019-08-30 | 安徽大学 | Human body three-dimensional artis prediction technique based on grouped regression model |
CN110309722B (en) * | 2019-06-03 | 2023-04-18 | 辽宁师范大学 | Sports video motion identification method based on motion hotspot graph |
CN110309722A (en) * | 2019-06-03 | 2019-10-08 | 辽宁师范大学 | Sports Video action identification method based on movement hotspot graph |
US11354817B2 (en) | 2019-06-14 | 2022-06-07 | Hinge Health, Inc. | Method and system for monocular depth estimation of persons |
US11875529B2 (en) | 2019-06-14 | 2024-01-16 | Hinge Health, Inc. | Method and system for monocular depth estimation of persons |
WO2020250046A1 (en) * | 2019-06-14 | 2020-12-17 | Wrnch Inc. | Method and system for monocular depth estimation of persons |
CN110232685A (en) * | 2019-06-17 | 2019-09-13 | 合肥工业大学 | Space pelvis parameter auto-testing method based on deep learning |
CN110334788B (en) * | 2019-07-08 | 2023-10-27 | 北京信息科技大学 | Distributed multi-antenna reader positioning system and method based on deep learning |
CN110334788A (en) * | 2019-07-08 | 2019-10-15 | 北京信息科技大学 | Distributed multi-antenna reader positioning system and its method based on deep learning |
CN112287960B (en) * | 2019-07-24 | 2024-03-08 | 辉达公司 | Automatic generation of ground truth data for training or retraining machine learning models |
US11783230B2 (en) | 2019-07-24 | 2023-10-10 | Nvidia Corporation | Automatic generation of ground truth data for training or retraining machine learning models |
CN112287960A (en) * | 2019-07-24 | 2021-01-29 | 辉达公司 | Automatic generation of ground truth data for training or retraining machine learning models |
US12112247B2 (en) | 2019-07-24 | 2024-10-08 | Nvidia Corporation | Automatic generation of ground truth data for training or retraining machine learning models |
CN112307876B (en) * | 2019-07-25 | 2024-01-26 | 和硕联合科技股份有限公司 | Method and device for detecting node |
CN112307876A (en) * | 2019-07-25 | 2021-02-02 | 和硕联合科技股份有限公司 | Joint point detection method and device |
CN110427877A (en) * | 2019-08-01 | 2019-11-08 | 大连海事大学 | A method of the human body three-dimensional posture estimation based on structural information |
CN110427877B (en) * | 2019-08-01 | 2022-10-25 | 大连海事大学 | Human body three-dimensional posture estimation method based on structural information |
CN110533031A (en) * | 2019-08-21 | 2019-12-03 | 成都电科慧安科技有限公司 | A kind of method of target detection identification and positioning |
CN110532928B (en) * | 2019-08-23 | 2022-11-29 | 安徽大学 | Facial key point detection method based on facial region normalization and deformable hourglass network |
CN110532928A (en) * | 2019-08-23 | 2019-12-03 | 安徽大学 | Facial critical point detection method based on facial area standardization and deformable hourglass network |
CN112446266B (en) * | 2019-09-04 | 2024-03-29 | 北京君正集成电路股份有限公司 | Face recognition network structure suitable for front end |
CN112446266A (en) * | 2019-09-04 | 2021-03-05 | 北京君正集成电路股份有限公司 | Face recognition network structure suitable for front end |
CN110766746A (en) * | 2019-09-05 | 2020-02-07 | 南京理工大学 | 3D driver posture estimation method based on combined 2D-3D neural network |
CN110728183A (en) * | 2019-09-09 | 2020-01-24 | 天津大学 | Human body action recognition method based on attention mechanism neural network |
CN110728183B (en) * | 2019-09-09 | 2023-09-22 | 天津大学 | Human body action recognition method of neural network based on attention mechanism |
CN110570431A (en) * | 2019-09-18 | 2019-12-13 | 东北大学 | Medical image segmentation method based on improved convolutional neural network |
CN111045861A (en) * | 2019-10-22 | 2020-04-21 | 南京海骅信息技术有限公司 | Sensor data recovery method based on deep neural network |
CN111045861B (en) * | 2019-10-22 | 2023-11-07 | 南京海骅信息技术有限公司 | Sensor data recovery method based on deep neural network |
CN110826453A (en) * | 2019-10-30 | 2020-02-21 | 西安工程大学 | Behavior identification method by extracting coordinates of human body joint points |
CN110826453B (en) * | 2019-10-30 | 2023-04-07 | 西安工程大学 | Behavior identification method by extracting coordinates of human body joint points |
CN110991247B (en) * | 2019-10-31 | 2023-08-11 | 厦门思泰克智能科技股份有限公司 | Electronic component identification method based on deep learning and NCA fusion |
CN110991247A (en) * | 2019-10-31 | 2020-04-10 | 厦门思泰克智能科技股份有限公司 | Electronic component identification method based on deep learning and NCA fusion |
CN111160085A (en) * | 2019-11-19 | 2020-05-15 | 天津中科智能识别产业技术研究院有限公司 | Human body image key point posture estimation method |
CN110929638A (en) * | 2019-11-20 | 2020-03-27 | 北京奇艺世纪科技有限公司 | Human body key point identification method and device and electronic equipment |
CN110929638B (en) * | 2019-11-20 | 2023-03-07 | 北京奇艺世纪科技有限公司 | Human body key point identification method and device and electronic equipment |
CN111105439A (en) * | 2019-11-28 | 2020-05-05 | 同济大学 | Synchronous positioning and mapping method using residual attention mechanism network |
CN111008583A (en) * | 2019-11-28 | 2020-04-14 | 清华大学 | Pedestrian and rider posture estimation method assisted by limb characteristics |
CN111008583B (en) * | 2019-11-28 | 2023-01-06 | 清华大学 | Pedestrian and rider posture estimation method assisted by limb characteristics |
CN111105439B (en) * | 2019-11-28 | 2023-05-02 | 同济大学 | Synchronous positioning and mapping method using residual attention mechanism network |
CN110956139B (en) * | 2019-12-02 | 2023-04-28 | 河南财政金融学院 | Human motion analysis method based on time sequence regression prediction |
CN110956141B (en) * | 2019-12-02 | 2023-02-28 | 郑州大学 | Human body continuous action rapid analysis method based on local recognition |
CN110956141A (en) * | 2019-12-02 | 2020-04-03 | 郑州大学 | Human body continuous action rapid analysis method based on local recognition |
CN110956139A (en) * | 2019-12-02 | 2020-04-03 | 郑州大学 | Human motion action analysis method based on time series regression prediction |
CN110991374A (en) * | 2019-12-10 | 2020-04-10 | 电子科技大学 | Fingerprint singular point detection method based on RCNN |
CN110991374B (en) * | 2019-12-10 | 2023-04-04 | 电子科技大学 | Fingerprint singular point detection method based on RCNN |
CN111027626B (en) * | 2019-12-11 | 2023-04-07 | 西安电子科技大学 | Flow field identification method based on deformable convolution network |
CN111191535A (en) * | 2019-12-18 | 2020-05-22 | 南京理工大学 | Pedestrian detection model construction method based on deep learning and pedestrian detection method |
CN111191535B (en) * | 2019-12-18 | 2022-08-09 | 南京理工大学 | Pedestrian detection model construction method based on deep learning and pedestrian detection method |
CN111062338B (en) * | 2019-12-19 | 2023-11-17 | 厦门商集网络科技有限责任公司 | License and portrait consistency comparison method and system |
CN111062338A (en) * | 2019-12-19 | 2020-04-24 | 厦门商集网络科技有限责任公司 | Certificate portrait consistency comparison method and system |
CN111062364B (en) * | 2019-12-28 | 2023-06-30 | 青岛理工大学 | Method and device for monitoring assembly operation based on deep learning |
CN111062364A (en) * | 2019-12-28 | 2020-04-24 | 青岛理工大学 | Deep learning-based assembly operation monitoring method and device |
CN111223549A (en) * | 2019-12-30 | 2020-06-02 | 华东师范大学 | Mobile end system and method for disease prevention based on posture correction |
CN111161295A (en) * | 2019-12-30 | 2020-05-15 | 神思电子技术股份有限公司 | Background stripping method for dish image |
CN111161295B (en) * | 2019-12-30 | 2023-11-21 | 神思电子技术股份有限公司 | Dish image background stripping method |
CN111259735A (en) * | 2020-01-08 | 2020-06-09 | 西安电子科技大学 | Single-person attitude estimation method based on multi-stage prediction feature enhanced convolutional neural network |
CN111353381A (en) * | 2020-01-09 | 2020-06-30 | 西安理工大学 | Human body 3D posture estimation method facing 2D image |
CN111353381B (en) * | 2020-01-09 | 2023-12-08 | 浙江水科文化集团有限公司 | 2D image-oriented human body 3D gesture estimation method |
CN111310659A (en) * | 2020-02-14 | 2020-06-19 | 福州大学 | Human body action recognition method based on enhanced graph convolution neural network |
CN111310659B (en) * | 2020-02-14 | 2022-08-09 | 福州大学 | Human body action recognition method based on enhanced graph convolution neural network |
CN111353447B (en) * | 2020-03-05 | 2023-07-04 | 辽宁石油化工大学 | Human skeleton behavior recognition method based on graph convolution network |
CN111353447A (en) * | 2020-03-05 | 2020-06-30 | 辽宁石油化工大学 | Human skeleton behavior identification method based on graph convolution network |
CN111458688B (en) * | 2020-03-13 | 2024-01-23 | 西安电子科技大学 | Three-dimensional convolution network-based radar high-resolution range profile target recognition method |
CN111458688A (en) * | 2020-03-13 | 2020-07-28 | 西安电子科技大学 | Radar high-resolution range profile target identification method based on three-dimensional convolution network |
CN111462234A (en) * | 2020-03-27 | 2020-07-28 | 北京华捷艾米科技有限公司 | Position determination method and device |
CN111462234B (en) * | 2020-03-27 | 2023-07-18 | 北京华捷艾米科技有限公司 | Position determining method and device |
CN113468924A (en) * | 2020-03-31 | 2021-10-01 | 北京沃东天骏信息技术有限公司 | Key point detection model training method and device and key point detection method and device |
CN113496176B (en) * | 2020-04-07 | 2024-05-14 | 深圳爱根斯通科技有限公司 | Action recognition method and device and electronic equipment |
CN113496176A (en) * | 2020-04-07 | 2021-10-12 | 深圳爱根斯通科技有限公司 | Motion recognition method and device and electronic equipment |
CN111462108B (en) * | 2020-04-13 | 2023-05-02 | 山西新华防化装备研究院有限公司 | Machine learning-based head-face product design ergonomics evaluation operation method |
CN111462108A (en) * | 2020-04-13 | 2020-07-28 | 山西新华化工有限责任公司 | Machine learning-based head and face product design ergonomics assessment operation method |
CN111507920A (en) * | 2020-04-17 | 2020-08-07 | 合肥工业大学 | Bone motion data enhancement method and system based on Kinect |
CN111507920B (en) * | 2020-04-17 | 2023-04-07 | 合肥工业大学 | Bone motion data enhancement method and system based on Kinect |
CN111652273A (en) * | 2020-04-27 | 2020-09-11 | 西安工程大学 | Deep learning-based RGB-D image classification method |
CN111709284A (en) * | 2020-05-07 | 2020-09-25 | 西安理工大学 | Dance emotion recognition method based on CNN-LSTM |
CN111523511B (en) * | 2020-05-08 | 2023-03-24 | 中国科学院合肥物质科学研究院 | Video image Chinese wolfberry branch detection method for Chinese wolfberry harvesting and clamping device |
CN111523511A (en) * | 2020-05-08 | 2020-08-11 | 中国科学院合肥物质科学研究院 | Video image Chinese wolfberry branch detection method for Chinese wolfberry harvesting and clamping device |
CN111753643B (en) * | 2020-05-09 | 2024-05-14 | 北京迈格威科技有限公司 | Character gesture recognition method, character gesture recognition device, computer device and storage medium |
CN111753643A (en) * | 2020-05-09 | 2020-10-09 | 北京迈格威科技有限公司 | Character posture recognition method and device, computer equipment and storage medium |
CN111582220A (en) * | 2020-05-18 | 2020-08-25 | 中国科学院自动化研究所 | Skeleton point behavior identification system based on shift diagram convolution neural network and identification method thereof |
CN111582220B (en) * | 2020-05-18 | 2023-05-26 | 中国科学院自动化研究所 | Bone point behavior recognition system based on shift map convolution neural network and recognition method thereof |
CN111931549B (en) * | 2020-05-20 | 2024-02-02 | 浙江大学 | Human skeleton motion prediction method based on multi-task non-autoregressive decoding |
CN111931549A (en) * | 2020-05-20 | 2020-11-13 | 浙江大学 | Human skeleton action prediction method based on multitask non-autoregressive decoding |
CN111626171A (en) * | 2020-05-21 | 2020-09-04 | 青岛科技大学 | Group behavior identification method based on video segment attention mechanism and interactive relation activity diagram modeling |
CN111626171B (en) * | 2020-05-21 | 2023-05-16 | 青岛科技大学 | Group behavior identification method based on video segment attention mechanism and interactive relation activity diagram modeling |
US11335023B2 (en) | 2020-05-22 | 2022-05-17 | Google Llc | Human pose estimation using neural networks and kinematic structure |
CN111695457A (en) * | 2020-05-28 | 2020-09-22 | 浙江工商大学 | Human body posture estimation method based on weak supervision mechanism |
CN111695457B (en) * | 2020-05-28 | 2023-05-09 | 浙江工商大学 | Human body posture estimation method based on weak supervision mechanism |
CN111680613A (en) * | 2020-06-03 | 2020-09-18 | 安徽大学 | Method for detecting falling behavior of escalator passengers in real time |
CN111680613B (en) * | 2020-06-03 | 2023-04-14 | 安徽大学 | Method for detecting falling behavior of escalator passengers in real time |
CN111709983A (en) * | 2020-06-16 | 2020-09-25 | 天津工业大学 | Bubble flow field three-dimensional reconstruction method based on convolutional neural network and light field image |
CN111667510A (en) * | 2020-06-17 | 2020-09-15 | 常州市中环互联网信息技术有限公司 | Rock climbing action evaluation system based on deep learning and attitude estimation |
CN111814661A (en) * | 2020-07-07 | 2020-10-23 | 西安电子科技大学 | Human behavior identification method based on residual error-recurrent neural network |
CN111814661B (en) * | 2020-07-07 | 2024-02-09 | 西安电子科技大学 | Human body behavior recognition method based on residual error-circulating neural network |
CN111783711B (en) * | 2020-07-09 | 2022-11-08 | 中国科学院自动化研究所 | Skeleton behavior identification method and device based on body component layer |
CN111783711A (en) * | 2020-07-09 | 2020-10-16 | 中国科学院自动化研究所 | Skeleton behavior identification method and device based on body component layer |
CN111860278A (en) * | 2020-07-14 | 2020-10-30 | 陕西理工大学 | Human behavior recognition algorithm based on deep learning |
CN111933253B (en) * | 2020-07-14 | 2022-09-23 | 北京邮电大学 | Neural network-based marking point marking method and device for bone structure image |
CN111933253A (en) * | 2020-07-14 | 2020-11-13 | 北京邮电大学 | Neural network-based marking point marking method and device for bone structure image |
CN111860278B (en) * | 2020-07-14 | 2024-05-14 | 陕西理工大学 | Human behavior recognition algorithm based on deep learning |
CN112102451B (en) * | 2020-07-28 | 2023-08-22 | 北京云舶在线科技有限公司 | Wearable virtual live broadcast method and equipment based on common camera |
CN112102451A (en) * | 2020-07-28 | 2020-12-18 | 北京云舶在线科技有限公司 | Common camera-based wearable virtual live broadcast method and equipment |
CN111950412A (en) * | 2020-07-31 | 2020-11-17 | 陕西师范大学 | Hierarchical dance action attitude estimation method with sequence multi-scale depth feature fusion |
CN111950412B (en) * | 2020-07-31 | 2023-11-24 | 陕西师范大学 | Hierarchical dance motion gesture estimation method based on sequence multi-scale depth feature fusion |
CN114078149A (en) * | 2020-08-21 | 2022-02-22 | 深圳市万普拉斯科技有限公司 | Image estimation method, electronic equipment and storage medium |
CN112069933A (en) * | 2020-08-21 | 2020-12-11 | 董秀园 | Skeletal muscle stress estimation method based on posture recognition and human body biomechanics |
CN112037310A (en) * | 2020-08-27 | 2020-12-04 | 成都先知者科技有限公司 | Game character action recognition generation method based on neural network |
CN112149962A (en) * | 2020-08-28 | 2020-12-29 | 中国地质大学(武汉) | Risk quantitative evaluation method and system for cause behavior of construction accident |
CN112149962B (en) * | 2020-08-28 | 2023-08-22 | 中国地质大学(武汉) | Risk quantitative assessment method and system for construction accident cause behaviors |
CN111965620B (en) * | 2020-08-31 | 2023-05-02 | 中国科学院空天信息创新研究院 | Gait feature extraction and identification method based on time-frequency analysis and deep neural network |
CN111965620A (en) * | 2020-08-31 | 2020-11-20 | 中国科学院空天信息创新研究院 | Gait feature extraction and identification method based on time-frequency analysis and deep neural network |
CN112084934B (en) * | 2020-09-08 | 2024-03-15 | 浙江工业大学 | Behavior recognition method based on bone data double-channel depth separable convolution |
CN112084934A (en) * | 2020-09-08 | 2020-12-15 | 浙江工业大学 | Behavior identification method based on two-channel depth separable convolution of skeletal data |
CN112086198A (en) * | 2020-09-17 | 2020-12-15 | 西安交通大学口腔医院 | System and method for establishing age assessment model based on deep learning technology |
CN112086198B (en) * | 2020-09-17 | 2023-09-26 | 西安交通大学口腔医院 | System and method for establishing age assessment model based on deep learning technology |
CN112232134A (en) * | 2020-09-18 | 2021-01-15 | 杭州电子科技大学 | Human body posture estimation method based on hourglass network and attention mechanism |
CN112232134B (en) * | 2020-09-18 | 2024-04-05 | 杭州电子科技大学 | Human body posture estimation method based on hourglass network and attention mechanism |
CN114511870A (en) * | 2020-10-27 | 2022-05-17 | 天津科技大学 | Pedestrian attribute information extraction and re-identification method combined with graph convolution neural network |
CN112241726A (en) * | 2020-10-30 | 2021-01-19 | 华侨大学 | Posture estimation method based on adaptive receptive field network and joint point loss weight |
CN112241726B (en) * | 2020-10-30 | 2023-06-02 | 华侨大学 | Posture estimation method based on self-adaptive receptive field network and joint point loss weight |
CN112541421A (en) * | 2020-12-08 | 2021-03-23 | 浙江科技学院 | Pedestrian reloading identification method in open space |
CN112633220A (en) * | 2020-12-30 | 2021-04-09 | 浙江工商大学 | Human body posture estimation method based on bidirectional serialization modeling |
CN112633220B (en) * | 2020-12-30 | 2024-01-09 | 浙江工商大学 | Human body posture estimation method based on bidirectional serialization modeling |
CN112784736A (en) * | 2021-01-21 | 2021-05-11 | 西安理工大学 | Multi-mode feature fusion character interaction behavior recognition method |
CN112784736B (en) * | 2021-01-21 | 2024-02-09 | 西安理工大学 | Character interaction behavior recognition method based on multi-modal feature fusion |
CN112883808A (en) * | 2021-01-23 | 2021-06-01 | 招商新智科技有限公司 | Method and device for detecting abnormal behavior of pedestrian riding escalator and electronic equipment |
CN112950550A (en) * | 2021-02-04 | 2021-06-11 | 广州中医药大学第一附属医院 | Deep learning-based type 2 diabetic nephropathy image classification method |
CN112950550B (en) * | 2021-02-04 | 2023-11-14 | 广州中医药大学第一附属医院 | Deep learning-based type 2 diabetes kidney disease image classification method |
CN112836824A (en) * | 2021-03-04 | 2021-05-25 | 上海交通大学 | Monocular three-dimensional human body pose unsupervised learning method, system and medium |
CN112818942B (en) * | 2021-03-05 | 2022-11-18 | 清华大学 | Pedestrian action recognition method and system in vehicle driving process |
CN112949503A (en) * | 2021-03-05 | 2021-06-11 | 齐齐哈尔大学 | Site monitoring management method and system for ice and snow sports |
CN112818942A (en) * | 2021-03-05 | 2021-05-18 | 清华大学 | Pedestrian action recognition method and system in vehicle driving process |
CN112949503B (en) * | 2021-03-05 | 2022-08-09 | 齐齐哈尔大学 | Site monitoring management method and system for ice and snow sports |
CN113034655A (en) * | 2021-03-11 | 2021-06-25 | 北京字跳网络技术有限公司 | Shoe fitting method and device based on augmented reality and electronic equipment |
CN112861808B (en) * | 2021-03-19 | 2024-01-23 | 泰康保险集团股份有限公司 | Dynamic gesture recognition method, device, computer equipment and readable storage medium |
CN112861808A (en) * | 2021-03-19 | 2021-05-28 | 泰康保险集团股份有限公司 | Dynamic gesture recognition method and device, computer equipment and readable storage medium |
CN112883933A (en) * | 2021-03-30 | 2021-06-01 | 广东曜城科技园管理有限公司 | Abnormal human behavior alarming method and device |
CN113191408A (en) * | 2021-04-20 | 2021-07-30 | 西安理工大学 | Gesture recognition method based on double-flow neural network |
CN113095268A (en) * | 2021-04-22 | 2021-07-09 | 中德(珠海)人工智能研究院有限公司 | Robot gait learning method, system and storage medium based on video stream |
CN113095268B (en) * | 2021-04-22 | 2023-11-21 | 中德(珠海)人工智能研究院有限公司 | Robot gait learning method, system and storage medium based on video stream |
CN113128424B (en) * | 2021-04-23 | 2024-05-03 | 浙江理工大学 | Method for identifying action of graph convolution neural network based on attention mechanism |
CN113128424A (en) * | 2021-04-23 | 2021-07-16 | 浙江理工大学 | Attention mechanism-based graph convolution neural network action identification method |
CN113158970A (en) * | 2021-05-11 | 2021-07-23 | 清华大学 | Action identification method and system based on fast and slow dual-flow graph convolutional neural network |
CN113158970B (en) * | 2021-05-11 | 2023-02-07 | 清华大学 | Action identification method and system based on fast and slow dual-flow graph convolutional neural network |
CN113313731A (en) * | 2021-06-10 | 2021-08-27 | 东南大学 | Three-dimensional human body posture estimation method for monocular video |
CN113469018A (en) * | 2021-06-29 | 2021-10-01 | 中北大学 | Multi-modal interaction behavior recognition method based on RGB and three-dimensional skeleton |
CN113469018B (en) * | 2021-06-29 | 2024-02-23 | 中北大学 | Multi-modal interactive behavior recognition method based on RGB and three-dimensional skeleton |
CN113627259A (en) * | 2021-07-12 | 2021-11-09 | 西安理工大学 | Fine motion recognition method based on graph convolution network |
CN113609993A (en) * | 2021-08-06 | 2021-11-05 | 烟台艾睿光电科技有限公司 | Attitude estimation method, device and equipment and computer readable storage medium |
CN113781557A (en) * | 2021-08-13 | 2021-12-10 | 华中科技大学 | Construction method and application of spine mark point positioning model |
CN113781557B (en) * | 2021-08-13 | 2024-02-06 | 华中科技大学 | Construction method and application of spine marking point positioning model |
CN113903082A (en) * | 2021-10-14 | 2022-01-07 | 黑龙江省科学院智能制造研究所 | Human body gait monitoring algorithm based on dynamic time planning |
CN113989927B (en) * | 2021-10-27 | 2024-04-26 | 东北大学 | Method and system for identifying violent behaviors of video group based on bone data |
CN113989927A (en) * | 2021-10-27 | 2022-01-28 | 东北大学 | Video group violent behavior identification method and system based on skeleton data |
CN113989718A (en) * | 2021-10-29 | 2022-01-28 | 南京邮电大学 | Human body target detection method facing radar signal heat map |
CN114140828A (en) * | 2021-12-06 | 2022-03-04 | 西北大学 | Real-time lightweight 2D human body posture estimation method |
CN114140828B (en) * | 2021-12-06 | 2024-02-02 | 西北大学 | Real-time lightweight 2D human body posture estimation method |
CN114373190B (en) * | 2021-12-28 | 2024-04-19 | 浙江大学台州研究院 | Intelligent recognition and automatic positioning system for human body acupoints |
CN114373190A (en) * | 2021-12-28 | 2022-04-19 | 浙江大学台州研究院 | Intelligent recognition and automatic positioning system for human acupuncture points |
CN114511573A (en) * | 2021-12-29 | 2022-05-17 | 电子科技大学 | Human body analytic model and method based on multi-level edge prediction |
CN114419842B (en) * | 2021-12-31 | 2024-05-10 | 浙江大学台州研究院 | Fall alarm method and device for assisting user to fall to closestool based on artificial intelligence |
CN114419842A (en) * | 2021-12-31 | 2022-04-29 | 浙江大学台州研究院 | Artificial intelligence-based falling alarm method and device for assisting user in moving to intelligent closestool |
CN114494341A (en) * | 2021-12-31 | 2022-05-13 | 北京理工大学 | Real-time completion method for optical motion capture mark points by fusing time-space constraints |
CN114529984A (en) * | 2022-01-17 | 2022-05-24 | 重庆邮电大学 | Bone action recognition method based on learnable PL-GCN and ECLSTM |
CN114495274A (en) * | 2022-01-25 | 2022-05-13 | 上海大学 | System and method for realizing human motion capture by using RGB camera |
CN114550292A (en) * | 2022-02-21 | 2022-05-27 | 东南大学 | High-physical-reality human body motion capture method based on neural motion control |
CN114549862A (en) * | 2022-03-04 | 2022-05-27 | 重庆邮电大学 | Human body point cloud framework extraction method based on multitask learning |
CN114782992A (en) * | 2022-04-29 | 2022-07-22 | 常州大学 | Super-joint and multi-mode network and behavior identification method thereof |
CN115310361B (en) * | 2022-08-16 | 2023-09-15 | 中国矿业大学 | Underground coal mine dust concentration prediction method and system based on WGAN-CNN |
CN115310361A (en) * | 2022-08-16 | 2022-11-08 | 中国矿业大学 | Method and system for predicting underground dust concentration of coal mine based on WGAN-CNN |
CN115455247B (en) * | 2022-09-26 | 2023-09-19 | 中国矿业大学 | Classroom collaborative learning role judgment method |
CN115455247A (en) * | 2022-09-26 | 2022-12-09 | 中国矿业大学 | Classroom collaborative learning role determination method |
CN115908987A (en) * | 2023-01-17 | 2023-04-04 | 南京理工大学 | Target detection method based on hierarchical automatic association learning |
CN116299170A (en) * | 2023-02-23 | 2023-06-23 | 中国人民解放军军事科学院系统工程研究院 | Multi-target passive positioning method, system and medium based on deep learning |
CN116299170B (en) * | 2023-02-23 | 2023-09-01 | 中国人民解放军军事科学院系统工程研究院 | Multi-target passive positioning method, system and medium based on deep learning |
Also Published As
Publication number | Publication date |
---|---|
CN105787439B (en) | 2019-04-05 |
CN105787439A (en) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017133009A1 (en) | Method for positioning human joint using depth image of convolutional neural network | |
CN110827342B (en) | Three-dimensional human body model reconstruction method, storage device and control device | |
CN105069413B (en) | A kind of human posture's recognition methods based on depth convolutional neural networks | |
CN107492121B (en) | Two-dimensional human body bone point positioning method of monocular depth video | |
CN111199207B (en) | Two-dimensional multi-human body posture estimation method based on depth residual error neural network | |
CN107767419A (en) | A kind of skeleton critical point detection method and device | |
CN112668531A (en) | Motion posture correction method based on motion recognition | |
CN102682452A (en) | Human movement tracking method based on combination of production and discriminant | |
CN106548194B (en) | The construction method and localization method of two dimensional image human joint points location model | |
CN117671738B (en) | Human body posture recognition system based on artificial intelligence | |
CN106815855A (en) | Based on the human body motion tracking method that production and discriminate combine | |
CN114036969B (en) | 3D human body action recognition algorithm under multi-view condition | |
CN111460976A (en) | Data-driven real-time hand motion evaluation method based on RGB video | |
Ma et al. | Human motion gesture recognition based on computer vision | |
Thang et al. | Estimation of 3-D human body posture via co-registration of 3-D human model and sequential stereo information | |
CN110738650A (en) | infectious disease infection identification method, terminal device and storage medium | |
Nguyen et al. | Combined YOLOv5 and HRNet for high accuracy 2D keypoint and human pose estimation | |
Wang et al. | Swimmer’s posture recognition and correction method based on embedded depth image skeleton tracking | |
Zhu et al. | Dance Action Recognition and Pose Estimation Based on Deep Convolutional Neural Network. | |
CN115810219A (en) | Three-dimensional gesture tracking method based on RGB camera | |
CN112102358B (en) | Non-invasive animal behavior characteristic observation method | |
Zhang | [Retracted] An Intelligent and Fast Dance Action Recognition Model Using Two‐Dimensional Convolution Network Method | |
Chen et al. | Accurate and real-time human-joint-position estimation for a patient-transfer robot using a two-level convolutional neutral network | |
Wu et al. | LIDAR-based 3D human pose estimation and action recognition for medical scenes | |
Chen et al. | A Novel Automatic Tracking Method of Moving Image Sequence Marker Points Uses Kinect and Wireless Network Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16888833 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16888833 Country of ref document: EP Kind code of ref document: A1 |