Nothing Special   »   [go: up one dir, main page]

WO2017130918A1 - 非水電解質二次電池及び非水電解質二次電池の製造方法 - Google Patents

非水電解質二次電池及び非水電解質二次電池の製造方法 Download PDF

Info

Publication number
WO2017130918A1
WO2017130918A1 PCT/JP2017/002188 JP2017002188W WO2017130918A1 WO 2017130918 A1 WO2017130918 A1 WO 2017130918A1 JP 2017002188 W JP2017002188 W JP 2017002188W WO 2017130918 A1 WO2017130918 A1 WO 2017130918A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
layer
carbonaceous particles
electrolyte secondary
Prior art date
Application number
PCT/JP2017/002188
Other languages
English (en)
French (fr)
Inventor
美紀 加古
博 降矢
青木 寿之
裕章 遠藤
卓 千澤
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2017564242A priority Critical patent/JP7119373B2/ja
Publication of WO2017130918A1 publication Critical patent/WO2017130918A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a method for producing a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries (hereinafter also referred to as “secondary batteries”) are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density. Has been.
  • HEV hybrid electric vehicles
  • hybrid industrial machines heavy machinery, construction machinery, etc.
  • input / output characteristics are required even in a low temperature environment.
  • the secondary battery generally has a pair of electrodes (a negative electrode and a positive electrode) in which a mixture layer containing an active material is laminated on a current collecting layer such as a metal foil, and these are electrically connected by a separator. It isolate
  • carbonaceous particles such as hard carbon are used together with the binder.
  • a non-aqueous solvent-based binder has been conventionally used, but an aqueous binder such as styrene-butadiene rubber is being used from the viewpoint of reducing manufacturing cost and environmental load (for example, see International Publication No. 2013/125710). .
  • the secondary battery using the water-based binder disclosed in Patent Document 1 tends to have high initial input / output resistance and may have insufficient input / output characteristics at low temperatures. For this reason, it is considered difficult to apply to a HEV power source or the like that requires input / output characteristics such as supplying a large current in a short time of several seconds to several tens of seconds.
  • the present invention has been made based on the above-described circumstances, and can provide high input / output characteristics even when an aqueous binder is used for the negative electrode, and can be applied to a HEV power source or the like. It is an object to provide a manufacturing method thereof.
  • the invention made to solve the above problems is a non-aqueous electrolyte secondary battery comprising a negative electrode having a negative electrode mixture layer, the negative electrode mixture layer containing carbonaceous particles and carboxymethylcellulose sodium salt, An average particle diameter of the carbonaceous particles is 7 ⁇ m or less.
  • Another invention made to solve the above problems is a method for producing a non-aqueous electrolyte secondary battery comprising a negative electrode having a negative electrode mixture layer and a negative electrode current collecting layer, the carbonaceous particles and carboxymethyl cellulose sodium salt And a mixture layer containing the carbonaceous particles, wherein the carbonaceous particles have an average particle diameter of 7 ⁇ m or less.
  • carbonaceous particles means carbon particles having an interlayer distance (d002) determined by a wide-angle X-ray diffraction method of 3.40 mm or more.
  • the “average particle size” means a particle size having a cumulative degree of 50% (D50) in a volume standard particle size distribution.
  • the non-aqueous electrolyte secondary battery of the present invention can obtain high input / output characteristics in a low temperature environment.
  • the non-aqueous electrolyte secondary battery manufacturing method of the present invention can manufacture a non-aqueous electrolyte secondary battery with high input / output characteristics under a low temperature environment.
  • FIG. 1 is a schematic cross-sectional view showing a nonaqueous electrolyte secondary battery in one embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the average particle diameter of the carbonaceous particles and the direct current resistance at low temperatures in the examples.
  • FIG. 3 is a conceptual diagram illustrating a power storage device including a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • non-aqueous electrolyte secondary battery hereinafter also referred to as “secondary battery”
  • manufacturing method thereof according to the present invention will be described in detail with reference to the drawings.
  • FIG. 1 shows a structural unit of the secondary battery 5 of the present invention.
  • the secondary battery 5 includes a negative electrode 1 a having a negative electrode current collecting layer 2 a and a negative electrode mixture layer 3 a and a positive electrode 1 b having a positive electrode current collecting layer 2 b and a positive electrode mixture layer 3 b through a separator 4. Power storage elements arranged.
  • the negative electrode mixture layer 3a contains carbonaceous particles and carboxymethylcellulose sodium salt (hereinafter also referred to as “CMC-Na salt”).
  • the secondary battery 5 may include a case (not shown) that stores the power storage element.
  • the secondary battery 5 is filled with a nonaqueous electrolyte (electrolytic solution) in a case.
  • the negative electrode 1a includes a negative electrode current collecting layer 2a and a negative electrode mixture layer 3a that covers the surface of the negative electrode current collecting layer 2a. Moreover, the negative electrode 1a may have an intermediate layer (not shown) between the negative electrode current collecting layer 2a and the negative electrode mixture layer 3a.
  • each component of the negative electrode 1a will be described in detail.
  • the negative electrode current collecting layer 2a is a conductive layer.
  • a metal such as copper, nickel, stainless steel, nickel-plated steel, or an alloy thereof is used. Among these, copper and a copper alloy are preferable from the balance between high conductivity and cost.
  • foil, a vapor deposition film, etc. are mentioned as a formation form of the negative electrode current collection layer 2a, and foil is preferable from the surface of cost. That is, the negative electrode current collecting layer 2a is preferably a copper foil. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the lower limit of the average thickness of the negative electrode current collecting layer 2a is preferably 5 ⁇ m, and more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the negative electrode current collecting layer 2a is preferably 50 ⁇ m, and more preferably 40 ⁇ m.
  • the average thickness of the negative electrode current collecting layer 2a is smaller than the lower limit, the strength of the negative electrode current collecting layer 2a is insufficient, and it may be difficult to form the negative electrode 1a.
  • the average thickness of the negative electrode current collecting layer 2a exceeds the upper limit, the thickness of the other components may be insufficient to keep the thickness of the secondary battery constant.
  • middle layer is a coating layer of the surface of a current collection layer, and reduces the contact resistance of the negative electrode current collection layer 2a and the negative mix layer 3a by containing electroconductive particles, such as a carbon particle.
  • the presence or absence of the intermediate layer and the configuration of the intermediate layer are not particularly limited.
  • middle layer it can form with the composition containing a resin binder, electroconductive particle, and a nonelectroconductive inorganic particle, for example.
  • “Conductive” means that the volume resistivity measured in accordance with JIS-H-0505 (1975) is 107 ⁇ ⁇ cm or less, and “nonconductive” means that the volume It means that the resistivity is over 107 ⁇ ⁇ cm.
  • the negative electrode mixture layer 3a can be formed from a so-called negative electrode mixture containing a negative electrode active material, and includes carbonaceous particles as a negative electrode active material and CMC-Na salt as a thickener. Moreover, the negative mix layer 3a may contain arbitrary components, such as a electrically conductive agent, a binder, and a filler, as needed.
  • the negative electrode mixture layer 3a contains carbonaceous particles having an average particle diameter of 7 ⁇ m or less and the CMC-Na salt, high input / output characteristics can be obtained even when an aqueous binder is used for the negative electrode. Therefore, according to the secondary battery, it is possible to provide a battery having excellent input / output characteristics at low cost and low environmental load.
  • the negative electrode mixture layer 3a contains the carbonaceous particles having an average particle diameter of 7 ⁇ m or less and the CMC-Na salt improves the input / output resistance of the secondary battery is not necessarily clear. Is inferred. That is, when the negative electrode mixture layer 3a contains the carbonaceous particles and the CMC-Na salt, sodium ions contained in the salt react with lithium ions in the electrolytic solution or a decomposition product of the electrolytic solution, so that the ionic conductivity is increased. It is believed that a good solid electrolyte interface (SEI) film is formed on the surface of the carbonaceous particles.
  • SEI solid electrolyte interface
  • the SEI film By forming the SEI film on the surface of the carbonaceous particles, lithium ions are transferred through the SEI film, and the movement of the lithium ions is facilitated. If the SEI film is too thick, the input / output resistance increases, but the SEI film contains sodium ions and the average particle diameter of the carbonaceous particles is 7 ⁇ m or less, so that the SEI film has an appropriate thickness. It is considered to be. As a result, even if an aqueous binder is used, it is considered that the initial input / output resistance and the input / output characteristics at a low temperature are excellent.
  • “low temperature” means a temperature range of 0 ° C. or lower.
  • Non-graphitizable carbon is a substance that is generally difficult to become graphite even when heated in an inert atmosphere, and is arranged so that fine graphite crystals face in different directions. It is a carbon material having a gap of several nanometers in between, and means a carbonaceous particle having an interlayer distance (d002) determined by wide-angle X-ray diffraction method of 3.60 mm or more.
  • the lower limit of the average particle diameter of the carbonaceous particles is preferably 1 ⁇ m, more preferably 1.5 ⁇ m.
  • the upper limit of the average particle diameter of the carbonaceous particles is 7 ⁇ m, and 4 ⁇ m is more preferable.
  • the average particle diameter of the carbonaceous particles is smaller than the lower limit, the production cost of the carbonaceous particles may increase.
  • the average particle diameter of the carbonaceous particles exceeds the upper limit, the input / output resistance at a low temperature of the secondary battery may be increased.
  • the lower limit of the specific surface area of the carbonaceous particles measured by the BET method is preferably 1.0 m2 / g, more preferably 1.5 m2 / g, further preferably 2.0 m2 / g, and even more preferably 5.0 m2 / g. preferable.
  • an upper limit of the specific surface area 9.0 m2 / g is preferable, 8.5 m2 / g is more preferable, and 8.0 m2 / g is more preferable.
  • the “specific surface area” means a specific surface area (BET specific surface area) determined by the BET method.
  • the upper limit of the carbonaceous particle content is preferably 99% by mass, and more preferably 97% by mass.
  • CMC-Na salt increases the viscosity of the mixture as a thickener, and helps to fix the negative electrode mixture layer 3a to the negative electrode current collecting layer 2a.
  • the lower limit of the degree of etherification of the CMC-Na salt is preferably 0.4, more preferably 0.45, and even more preferably 0.5.
  • the upper limit of the degree of etherification is preferably 1.4, more preferably 1.35, and still more preferably 1.3.
  • the negative electrode mixture layer 3a may contain a thickener other than the CMC-Na salt.
  • thickeners other than CMC-Na salt include carboxymethyl cellulose having a salt other than sodium salt, methyl cellulose (MC), cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP). ), Polyvinyl alcohol (PVA), and the like.
  • the lower limit of the content of the CMC-Na salt in the negative electrode mixture layer 3a is preferably 0.3% by mass, and more preferably 0.5% by mass.
  • the upper limit of the content of the CMC-Na salt is preferably 5% by mass, and more preferably 3% by mass.
  • the binder is for fixing the carbonaceous particles to the negative electrode current collecting layer 2a.
  • an aqueous binder can be used, and a non-aqueous solvent binder or the like may further be included.
  • An aqueous binder means a binder that can be dissolved or dispersed in an aqueous solvent when preparing a mixture.
  • the aqueous solvent means water or a mixed solvent mainly composed of water. Examples of the solvent other than water constituting the mixed solvent include organic solvents (such as lower alcohols and lower ketones) that can be uniformly mixed with water.
  • the non-aqueous solvent binder means a binder that can be dissolved or dispersed in a non-aqueous solvent when adjusting the mixture. Examples of the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP).
  • binder known ones can be used, such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • tetrafluoroethylene-hexafluoropropylene copolymer tetrafluoroethylene-hexafluoropropylene copolymer.
  • FEP ethylene-tetrafluoroethylene copolymer
  • EFE ethylene-tetrafluoroethylene copolymer
  • SBR styrene butadiene rubber
  • EPDM acrylic acid-modified SBR
  • EPDM ethylene-propylene-diene rubber
  • PVDC polyvinylidene fluoride
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEO-PPO polyethylene oxide-propi Emissions oxide copolymer
  • an aqueous binder is preferable from the viewpoint of reducing manufacturing cost and environmental load.
  • aqueous binders styrene butadiene rubber (SBR) is preferable from the viewpoint of binding properties.
  • SBR styrene butadiene rubber
  • the lower limit of the binder content in the negative electrode mixture layer 3a is preferably 1% by mass, and more preferably 2% by mass.
  • the upper limit of the binder content is preferably 10% by mass, and more preferably 5% by mass.
  • the filler is not particularly limited as long as it does not adversely affect battery performance.
  • Examples of the main component of the filler include silica, alumina, zeolite, and glass.
  • the positive electrode 1b includes a positive electrode current collecting layer 2b and a positive electrode mixture layer 3b that covers the surface of the positive electrode current collecting layer 2b. Moreover, the positive electrode 1b may have an intermediate
  • the positive electrode current collecting layer 2b can have the same configuration as the negative electrode current collecting layer 2a, but the material is preferably aluminum or an aluminum alloy. That is, the positive electrode current collecting layer 2b is preferably an aluminum foil. Examples of aluminum or aluminum alloy include A1085P and A3003P defined in JIS-H-4000 (2014).
  • the positive electrode mixture layer 3b can be formed from a so-called positive electrode mixture containing a positive electrode active material. Moreover, the positive mix which forms the positive mix layer 3b contains arbitrary components, such as a electrically conductive agent, a binder, a thickener, and a filler, as needed.
  • active material particles contained in the positive electrode mixture layer 3b known particles that are usually used in secondary batteries can be used.
  • active material particles powder of an active material capable of inserting and extracting lithium ions is used.
  • Specific active materials include general formula Li1-aM1O2 (0 ⁇ a ⁇ 1, M1 is Ni, Mn, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, Sn, Mg, Mo or Zr)
  • LiM4PO4 M4 is Mn, Fe or Co
  • LibM52O4 M
  • the compound represented by the general formula include, for example, lithium cobaltate (LiCoO2), lithium manganate (LiMn2O4), lithium nickelate (LiNiO2), and Co—Mn—Ni ternary lithium compound (LiNixMnyCozO2). And olivine-based lithium compound (LiFePO4).
  • metal chalcogenides such as V2O5, V6O13, TiS2, etc. other than the compounds represented by the above general formula, composite oxides of the above-mentioned compounds, etc. may be used. Can do.
  • the positive electrode active material may be used by mixing two or more kinds described above.
  • a woven fabric, a nonwoven fabric, a porous resin film, or the like is used as the separator 4.
  • a porous resin film is preferable.
  • the main component of the porous resin film is preferably a polyolefin such as polyethylene or polypropylene from the viewpoint of strength.
  • the separator 4 may be a porous resin film having an insulating layer formed on one side or both sides.
  • the insulating layer is an insulating porous layer.
  • As the insulating layer for example, a porous layer containing an inorganic oxide, a porous layer containing resin beads, a porous layer containing a heat-resistant resin such as an aramid resin, or the like can be used. Among these, a porous layer containing an inorganic oxide is preferable.
  • the insulating layer may contain a binder or a thickener as necessary. The binder and the thickener contained in the insulating layer are not particularly limited, and for example, the same materials as those used for the mixture layer (positive electrode mixture layer or negative electrode mixture layer) can be used.
  • inorganic oxide known ones can be used, but inorganic oxides excellent in chemical stability are preferred.
  • examples of such inorganic oxides include alumina, titania, zirconia, magnesia, silica, boehmite and the like.
  • a known method for forming the insulating layer a known method can be employed. For example, an insulating layer-forming mixture containing an inorganic oxide and a binder is applied to one or both sides of the porous resin film. By drying, an insulating layer can be formed.
  • Nonaqueous electrolyte (electrolytic solution) is prepared by dissolving an electrolyte salt in a solvent described below.
  • solvents usually used for non-aqueous electrolyte secondary batteries can be used.
  • examples of such a solvent include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Two or more of these may be mixed and used.
  • a mixture of propylene carbonate (PC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) is preferable.
  • electrolyte salt constituting the non-aqueous electrolyte electrolytic solution
  • known ones usually used for non-aqueous electrolyte secondary batteries can be used.
  • an electrolyte salt LiBF4, LiPF6, L Examples include iClO4, LiCF3SO3, LiN (CF3SO2) 2, LiN (C2F5SO2) 2, LiN (CF3SO2), (C4F9SO2), LiC (CF3SO2) 3, LiC (C2F5SO2) 3, and the like. Two or more of these may be used.
  • LiPF6 is preferable as the electrolyte salt from the viewpoint of good ion conductivity.
  • the lower limit of the concentration of the electrolyte salt in the solvent is preferably 0.5 mol / l, more preferably 0.7 mol / l. Moreover, as an upper limit of the said density
  • the manufacturing method of the secondary battery includes a step of forming a negative electrode mixture layer 3a containing carbonaceous particles and carboxymethylcellulose sodium salt on the negative electrode current collection layer 2a, and a formation of the positive electrode mixture layer 3b on the positive electrode current collection layer 2b. And the process of mainly comprising.
  • the negative electrode 1a can be formed by applying a negative electrode mixture to the negative electrode current collecting layer 2a.
  • the negative electrode mixture layer 3a is formed by applying the negative electrode mixture to the negative electrode current collecting layer 2a and drying it.
  • the negative electrode mixture may contain an optional component such as a binder in addition to the above-mentioned carbonaceous particles and CMC-Na salt.
  • the negative electrode mixture preferably further contains a solvent.
  • a solvent for example, an aqueous solvent such as water or a mixed solvent mainly composed of water; an organic solvent such as N-methylpyrrolidone or toluene can be used.
  • the average particle size of the CMC-Na salt can be, for example, 30 ⁇ m or more and 100 ⁇ m or less.
  • the average particle size of the CMC-Na salt can be calculated from the cumulative volume ratio in the measurement using a sieve (JIS standard) or particle size distribution.
  • the lower limit of the viscosity at 25 ° C. of an aqueous solution having a CMC-Na salt concentration of 1 mass% is preferably 100 mPa ⁇ s, more preferably 200 mPa ⁇ s, further preferably 300 mPa ⁇ s, and the upper limit of the viscosity is 8000 mPa ⁇ s.
  • ⁇ S is preferred, 5000 mPa ⁇ s is more preferred, and 2300 mPa ⁇ s is even more preferred.
  • the drying temperature is preferably 50 ° C. or higher and 150 ° C. or lower, for example. Moreover, as drying time, it is preferable to set it as 1 minute or more and 60 minutes or less, for example.
  • the positive electrode 1b can be formed by applying a positive electrode mixture to the positive electrode current collecting layer 2b.
  • the positive electrode mixture layer 3b is formed by applying the positive electrode mixture to the positive electrode current collecting layer 2b and drying it. Drying conditions can be the same as in the negative electrode mixture layer forming step.
  • stacked the positive mix layer 3b it is preferable to press each of the negative electrode current collection layer 2a which laminated
  • the secondary battery of the present invention is not limited to the above embodiment.
  • the secondary battery may be configured to include only a pair of positive electrodes and negative electrodes, or may be configured to include a plurality of pairs of positive electrodes and negative electrodes.
  • the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 can be configured using an assembled battery including the secondary battery 5.
  • the power storage device 30 can be used as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • non-graphitizable carbon (average particle size (D50): 2.5 ⁇ m, specific surface area: 7.9 m 2 / g) as carbonaceous particles as the negative electrode active material, styrene butadiene rubber as the binder, and thickening CMC-Na salt (viscosity at a concentration of 1% by mass: 600 mPa ⁇ s, etherification degree: 0.6) was used as an agent, 95 parts by mass of carbonaceous particles, 3 parts by mass of a binder, 2 parts by mass of a thickener, And water were kneaded to prepare a negative electrode mixture.
  • CMC-Na salt viscosity at a concentration of 1% by mass: 600 mPa ⁇ s, etherification degree: 0.6
  • the average particle size was measured using a laser diffraction particle size distribution measuring device (SALD-2200, manufactured by Shimadzu Corporation) as a measuring device and Wing SALD-2200 as measurement control software.
  • SALD-2200 laser diffraction particle size distribution measuring device
  • a scattering-type measurement mode is adopted, and laser light is irradiated to a wet cell in which a dispersion liquid in which a sample to be measured (carbonaceous particles) is dispersed in a dispersion solvent circulates and scattered from the measurement sample. Get light distribution. Then, the scattered light distribution is approximated by a lognormal distribution, and the particle diameter corresponding to a cumulative degree of 50% (D50) is defined as the average particle diameter.
  • D50 cumulative degree of 50%
  • the particle size of 50% cumulative (D50) in the particle size distribution of the volume standard is 100 carbonaceous particles avoiding extremely large carbonaceous particles and extremely small carbonaceous particles from the SEM image of the electrode plate. It has been confirmed that the particle diameter almost coincides with the particle size measured by extracting the.
  • the specific surface area was determined by the N2 adsorption method using a TiStar 3000 type (manufactured by Micromeritics) as a measuring device.
  • a specific measurement method a multi-point method (5-point plot) is adopted, and the specific surface area is measured by measuring in a range where the relative vapor pressure (P / P0) is 0.05 or more and 0.2 or less. To do.
  • the sample is kept in a nitrogen flow environment at 150 ° C. for 1 hour and dried.
  • the negative electrode mixture was applied to the surface of a copper foil (thickness 10 ⁇ m) as a negative electrode current collecting layer and dried to form a negative electrode mixture layer, whereby the negative electrode of Example 1 was obtained.
  • CMC-NH4 salt carboxymethylcellulose ammonium salt
  • RVPa ⁇ s degree of etherification: 0.6
  • Comparative Examples 6 and 7 A negative electrode of Comparative Example 6 was obtained in the same manner as in Example 1 except that graphite (average particle diameter (D50): 7.9 ⁇ m) that was not carbonaceous particles was used as the negative electrode active material. Similarly, a negative electrode of Comparative Example 7 was obtained in the same manner as Comparative Example 2 except that the graphite was used as the negative electrode active material.
  • the negative electrodes of Examples 1 to 4 and Comparative Examples 1 to 7 were evaluated by the following methods. First, these negative electrodes, a positive electrode containing 90 parts by mass of LiNi0.33Co0.33Mn0.33O2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive additive, and 5 parts by mass of polyvinylidene fluoride, a polyethylene separator, A battery was prepared using an electrolyte in which LiPF6 was dissolved in 1.2 mol / L in a solvent in which PC, DMC, and EMC were mixed at a volume ratio of 30%: 30%: 40%. The nominal capacity of the battery was 450 mAh.
  • these batteries were charged to 4.2 V with a constant current of 1 CmA at 25 ° C., and further charged for 3 hours in total with a constant voltage of 4.2 V, and then discharged to a final voltage of 2.25 V with a constant current of 1 CmA.
  • the initial discharge capacity was measured.
  • the state of charge (SOC) of the battery was adjusted to 50% by charging 50% of the initial capacity, and kept at ⁇ 10 ° C. for 4 hours.
  • the voltage when discharging for 10 seconds at 2 CmA (I1) (E1), the voltage when discharging for 10 seconds at 0.5 CmA (I2) (E2), and the voltage when discharging for 10 seconds at 1 CmA (I3) (E3) ) Were measured respectively.
  • the DC resistance was calculated using these measured values (E1, E2, E3). Specifically, the measured values E1, E2, and E3 are plotted on a graph with the horizontal axis representing current and the vertical axis representing voltage, and these three points are approximated by a regression line (approximation line) by the least square method, The slope of the straight line was defined as a DC resistance of 50% SOC at ⁇ 10 ° C. The results are shown in Table 1 and FIG.
  • CMC-Na salt is used as the thickener for the negative electrode
  • CMC-NH4 salt is used as the thickener by making the average particle size of the carbonaceous particles 7 ⁇ m or less. It can be seen that the direct current resistance at a low temperature is small and the output characteristics are improved as compared with the case of the conventional case.
  • a battery having a negative electrode containing carbonaceous particles and CMC-Na salt has a negative output containing carbonaceous particles and CMC-NH4 salt, with the output characteristics at low temperatures reversed when the average particle diameter of the carbonaceous particles is around 8 ⁇ m. It can be seen that the direct current resistance at a low temperature is smaller than that of the battery and the output characteristics are improved.
  • the resistance value can be greatly reduced by setting the average particle diameter of the carbonaceous particles to 4 ⁇ m or less.
  • the resistance value can be greatly reduced by setting the specific surface area of the carbonaceous particles to 5 m 2 / g or more.
  • the non-aqueous electrolyte secondary battery according to the present invention is suitable as a lithium ion secondary battery for HEV, for example, because high input / output characteristics can be obtained in a low temperature environment even when an aqueous binder is used for the negative electrode. Used for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

低温環境下において高い入出力特性が得られる非水電解質二次電池及びその製造方法の提供を目的とする。本発明の非水電解質二次電池は、負極合剤層を有する負極を備える非水電解質二次電池であって、前記負極合剤層は、炭素質粒子及びカルボキシメチルセルロースナトリウム塩を含有し、前記炭素質粒子の平均粒子径は、7μm以下であることを特徴とする。

Description

非水電解質二次電池及び非水電解質二次電池の製造方法
 本発明は、非水電解質二次電池及び非水電解質二次電池の製造方法に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池(以下、「二次電池」ともいう。)は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。
 前記用途のうち、ハイブリッド電気自動車(以下、「HEV」ともいう。)やハイブリッド式の産業機械(重機、建機等)に用いられる二次電池においては、高い入出力特性が要求される。特に、HEV等の分野においては、このような入出力特性が低温環境下でも要求される。
 ここで、前記二次電池は、一般的には金属箔等の集電層に活物質を含む合剤層を積層した一対の電極(負極及び正極)を有し、これらをセパレータで電気的に隔離し、負極及び正極間でイオンの受け渡しを行うことで充放電するよう構成されている。
 負極の合剤層には、ハードカーボン等の炭素質粒子がそのバインダーと共に用いられる。バインダーとしては、非水溶剤系のバインダーが従来用いられてきたが、製造コストや環境負荷の低減の観点からスチレンブタジエンゴム等の水系バインダーが使用されつつある(例えば国際公開2013/125710号参照)。
国際公開2013/125710号
 特許文献1に開示される水系バインダーを用いた二次電池は、初期の入出力抵抗が高くなり易く、また低温での入出力特性は不十分となる恐れがある。そのため、数秒から数十秒の短時間に大電流を供給するといった入出力特性が要求されるHEV用電源等への適用が困難であると考えられる。
 本発明は、上述のような事情に基づいてなされたものであり、負極に水系バインダーを用いても高い入出力特性が得られ、HEV用電源等への適用が可能な非水電解質二次電池及びその製造方法の提供を目的とする。
 前記課題を解決するためになされた発明は、負極合剤層を有する負極を備える非水電解質二次電池であって、前記負極合剤層は、炭素質粒子及びカルボキシメチルセルロースナトリウム塩を含有し、前記炭素質粒子の平均粒子径は、7μm以下であることを特徴とする非水電解質二次電池である。
 前記課題を解決するためになされた別の発明は、負極合剤層と負極集電層とを有する負極を備える非水電解質二次電池の製造方法であって、炭素質粒子とカルボキシメチルセルロースナトリウム塩とを含む合剤層を負極集電層に形成する工程を有し、前記炭素質粒子の平均粒子径は、7μm以下であることを特徴とする。
 ここで、「炭素質粒子」とは、広角X線回析法により決定される層間距離(d002)が3.40Å以上の炭素粒子を意味する。「平均粒子径」とは、体積標準の粒度分布における累積度50%(D50)の粒子径を意味する。
 本発明の非水電解質二次電池は、低温環境下において高い入出力特性を得ることができる。
 また、本発明の非水電解質二次電池の製造方法は、低温環境下において高い入出力特性が得られる非水電解質二次電池を製造することができる。
図1は、本発明の一実施形態における非水電解質二次電池を示す模式的断面図である。 図2は、実施例の炭素質粒子の平均粒子径と低温での直流抵抗との関係を示すグラフである。 図3は、本発明の一実施形態における非水電解質二次電池を備える蓄電装置を示す概念図である。
 以下、本発明に係る非水電解質二次電池(以下、「二次電池」ともいう。)及びその製造方法の実施形態について図面を参照しつつ詳説する。
[非水電解質二次電池]
 図1は、本発明の二次電池5の構造単位を示すものである。二次電池5は、図1に示すように負極集電層2a及び負極合剤層3aを有する負極1aと、正極集電層2b及び正極合剤層3bを有する正極1bとがセパレータ4を介して配置される蓄電要素を備える。負極合剤層3aは、炭素質粒子及びカルボキシメチルセルロースナトリウム塩(以下、「CMC-Na塩」ともいう)を含有する。二次電池5は、蓄電要素を収納するケース(図示せず)を備えていてもよい。二次電池5は、ケース内に非水電解質(電解液)が充填される。
<負極>
 負極1aは、負極集電層2aと、この負極集電層2aの表面を被覆する負極合剤層3aとを備える。また、負極1aは負極集電層2aと負極合剤層3aとの間に図示しない中間層を有していてもよい。以下、負極1aの各構成要素について詳細に説明する。
(負極集電層)
 負極集電層2aは導電性を有する層である。負極集電層2aの材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられる。これらの中でも、導電性の高さとコストとのバランスから銅及び銅合金が好ましい。また、負極集電層2aの形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、負極集電層2aとしては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
 負極集電層2aの平均厚さの下限としては、5μmが好ましく、10μmがより好ましい。一方、負極集電層2aの平均厚さの上限としては、50μmが好ましく、40μmがより好ましい。負極集電層2aの平均厚さが前記下限より小さい場合、負極集電層2aの強度が不足し、負極1aの形成が困難になるおそれがある。逆に、負極集電層2aの平均
厚さが前記上限を超える場合、二次電池の厚さを一定に収めるために他の構成要素の厚さが不足するおそれがある。
(中間層)
 中間層は、集電層の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで負極集電層2aと負極合剤層3aとの接触抵抗を低減する。本発明においては、中間層の有無や該中間層の構成は特に限定されない。中間層の構成としては、例えば、樹脂バインダー、導電性粒子、及び非導電性無機粒子を含有する組成物により形成することができる。なお、「導電性」とは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が107Ω・cm以下であることを意味し、「非導電性」とは、前記体積抵抗率が107Ω・cm超であることを意味する。
(負極合剤層)
 負極合剤層3aは、負極活物質を含むいわゆる負極合剤から形成することができ、負極活物質としての炭素質粒子及び増粘剤としてのCMC-Na塩を含む。また、負極合剤層3aは、必要に応じて導電剤、バインダー、フィラー等の任意成分を含んでもよい。当該二次電池は、負極合剤層3aが平均粒子径7μm以下の炭素質粒子とCMC-Na塩とを含むことにより、負極に水系バインダーを用いても高い入出力特性が得られる。そのため、当該二次電池によれば、低コスト及び低環境負荷で入出力特性に優れる電池を提供できる。
 負極合剤層3aが平均粒子径7μm以下の炭素質粒子とCMC-Na塩とを含むことで、二次電池の入出力抵抗が改善される理由については必ずしも明確ではないが、例えば以下のように推察される。すなわち、負極合剤層3aが炭素質粒子とCMC-Na塩とを含むことで、この塩に含まれるナトリウムイオンが電解液中のリチウムイオンや電解液分解物と反応して、イオン伝導性が良好な固体電解質界面(SEI)皮膜が炭素質粒子の表面上に形成されると考えられる。炭素質粒子の表面上にSEI皮膜が形成されることにより、SEI皮膜を介してリチウムイオンの受け渡しが行われ、リチウムイオンの移動が容易になる。SEI皮膜は厚すぎても入出力抵抗が増大してしまうが、SEI皮膜がナトリウムイオンを含み、かつ炭素質粒子の平均粒子径が7μm以下であることによりSEI皮膜の厚さが適切な厚さとなると考えられる。その結果、水系バインダーを用いても初期の入出力抵抗及び低温での入出力特性に優れると考えられる。なお、本発明でいう「低温」とは、0℃以下の温度領域のことを意味する。
[炭素質粒子]
 炭素質粒子としては、例えば、難黒鉛化性炭素(ハードカーボン);コークス、熱分解炭素等の易黒鉛化性炭素(ソフトカーボン)等が挙げられる。これらの中でも難黒鉛化性炭素が好ましい。炭素質粒子が難黒鉛化性炭素を含むことで、当該二次電池の入出力特性を高めることができる。なお、難黒鉛化性炭素とは、一般に不活性雰囲気中で加熱しても黒鉛になり難い物質であって、微小な黒鉛の結晶がそれぞれ異なる方向を向くように配置され、結晶と結晶との間に数nmの大きさの空隙がある炭素材料であり、広角X線回析法により決定される層間距離(d002)が3.60Å以上の炭素質粒子を意味する。
 炭素質粒子の平均粒子径の下限としては、1μmが好ましく、1.5μmがより好ましい。一方、炭素質粒子の平均粒子径の上限としては、7μmであり、4μmがより好ましい。炭素質粒子の平均粒子径が前記下限より小さい場合、該炭素質粒子の製造コストが高くなるおそれがある。逆に、炭素質粒子の平均粒子径が前記上限を超える場合、二次電池の低温での入出力抵抗が上昇するおそれがある。
 炭素質粒子のBET法により測定した比表面積の下限としては、1.0m2/gが好ま
しく、1.5m2/gがより好ましく、2.0m2/gがさらに好ましく、5.0m2/gがさらにより好ましい。また、前記比表面積の上限としては、9.0m2/gが好ましく、8.5m2/gがより好ましく、8.0m2/gがさらに好ましい。前記比表面積が前記上限を超える場合、電解液との反応が促進されるおそれがある。なお、「比表面積」とは、BET法により求められる比表面積(BET比表面積)を意味する。
 負極合剤層3aにおける炭素質粒子の含有量の下限としては、80質量%が好ましく、90質量%がより好ましい。一方、炭素質粒子の含有量の上限としては、99質量%が好ましく、97質量%がより好ましい。炭素質粒子の含有量を前記範囲とすることで、当該二次電池の電気容量を高めることができる。
[CMC-Na塩]
 CMC-Na塩は、増粘剤として合剤の粘度を増加させるものであり、負極合剤層3aを負極集電層2aに固定することを助力する。
 CMC-Na塩のエーテル化度の下限としては、0.4が好ましく、0.45がより好ましく、0.5がさらに好ましい。前記エーテル化度の上限としては、1.4が好ましく、1.35がより好ましく、1.3がさらに好ましい。CMC-Na塩のエーテル化度を前記範囲とすることにより、負極合剤の負極集電層2aへの塗工性を向上させることができ、負極合剤層3aの負極集電層2aへの結着力を高めることができる。また、CMC-Na塩のエーテル化度は、無水グルコース1単位あたりに結合しているカルボキシメチル基の置換度をアルカリ度または酸度で測定することにより算出することができる。なお、CMC-Na塩のエーテル化度の上限値は、理論的には3.0まで可能であるが、製造が非常に困難である。
 負極合剤層3aは、CMC-Na塩以外の増粘剤を含有してもよい。CMC-Na塩以外の増粘剤としては、例えば、ナトリウム塩以外の塩を有するカルボキシメチルセルロース、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、ポリビニルアルコール(PVA)等が挙げられる。
 負極合剤層3aにおけるCMC-Na塩の含有量の下限としては、0.3質量%が好ましく、0.5質量%がより好ましい。一方、CMC-Na塩の含有量の上限としては、5質量%が好ましく、3質量%がより好ましい。CMC-Na塩の含有量が前記下限未満の場合、負極合剤層3aの負極集電層2aへの固定が不十分となるおそれがある。逆に、CMC-Na塩の含有量が前記上限を超える場合、当該二次電池の電気容量が低下するおそれがある。
[バインダー]
 バインダーは、炭素質粒子を負極集電層2aに固定するためのものである。バインダーとしては、水系バインダーを用いることができ、非水溶媒系バインダー等をさらに含んでいてもよい。
 水系バインダーとは、合剤を調整する際に、水系溶媒に溶解又は分散可能なバインダーを意味する。なお、水系溶媒とは、水、又は、水を主体とする混合溶媒を意味する。混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコールや低級ケトン等)を例示することができる。また、非水溶媒系バインダーとは、合剤を調整する際に、非水系溶媒に溶解又は分散可能なバインダーを意味する。非水系溶媒としては、N-メチル-2-ピロリドン(NMP)等を例示することができる。
 バインダーとしては、公知のものを使用することができ、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、酢酸ビニル共重合体、スチレンブタジエンゴム(SBR)、アクリル酸変性SBR、エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、フッ素ゴム、アラビアゴム、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレン、ポリプロピレン、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド-プロピレンオキサイド共重合体(PEO-PPO)等を用いることができる。
 バインダーとしては、製造コストや環境負荷の低減の観点から水系バインダーが好ましい。また、水系バインダーの中でも結着性の観点から、スチレンブタジエンゴム(SBR)が好ましい。バインダーがスチレンブタジエンゴムを含むことにより、負極合剤層3aの負極集電層2aへの結着力を高めることができる。
 負極合剤層3aにおけるバインダーの含有量の下限としては、1質量%が好ましく、2質量%がより好ましい。一方、バインダーの含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。バインダーの含有量を前記範囲とすることで、当該二次電池の電気容量を高めることができる。
[その他の成分]
 前記フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。
<正極>
 正極1bは、正極集電層2bと、この正極集電層2bの表面を被覆する正極合剤層3bとを備える。また、正極1bは、負極1aと同様、正極集電層2bと正極合剤層3bとの間に中間層を有していてもよい。この中間層は負極1aの中間層と同様の構成とすることができる。
(正極集電層)
 正極集電層2bは、負極集電層2aと同様の構成とすることができるが、材質としては、アルミニウム又はアルミニウム合金が好ましい。つまり、正極集電層2bとしてはアルミニウム箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。
(正極合剤層)
 正極合剤層3bは、正極活物質を含むいわゆる正極合剤から形成することができる。また、正極合剤層3bを形成する正極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。
 正極合剤層3bに含まれる活物質粒子としては、二次電池に通常用いられる公知のものが使用できる。このような活物質粒子としては、リチウムイオンを吸蔵及び離脱することができる活物質の紛体が用いられる。具体的な活物質としては、一般式Li1-aM1O2(0≦a≦1、M1はNi、Mn、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Sn、Mg、Mo又はZr)で表される化合物、一般式Li1-aNixM2yM3zO2(0≦a≦1、M2、M3はMn、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Sn、Mg、Mo又はZrで、かつM2≠M3、x+y+z=1、0<x≦1、0≦y<1、0≦z<1)、一般式LiM4PO4(M4はMn、Fe又はCo)で表される
化合物、一般式LibM52O4(M5は遷移金属、0≦b≦2)で表される化合物等が挙げられる。また、前記一般式Li1-aNixM2yM3zO2で表される化合物のうち、LiNixMnyCozO2(x+y+z=1、0<x<1、0<y<1、0<z<1)で表される化合物がさらに好ましい。
 前記一般式で表される化合物の具体例としては、例えばコバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn2O4)、ニッケル酸リチウム(LiNiO2)、Co-Mn-Niの3元系リチウム化合物(LiNixMnyCozO2)、オリビン系リチウム化合物(LiFePO4)等を挙げることができる。
 また、正極活物質としては、MnO2、FeO2、TiO2等のほか、前記一般式で表される化合物以外のV2O5、V6O13、TiS2等の金属カルコゲン化物や、上述した化合物の複合酸化物等も用いることができる。
 また、正極活物質は、上述した二種以上を混合して用いてもよい。
<セパレータ>
 セパレータ4としては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも多孔質樹脂フィルムが好ましい。多孔質樹脂フィルムの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましい。
 セパレータ4には、片面または両面に絶縁層が形成された多孔質樹脂フィルムを用いてもよい。絶縁層は、絶縁性の多孔質層である。絶縁層としては、例えば、無機酸化物を含有する多孔質層、樹脂ビーズを含有する多孔質層、アラミド樹脂等の耐熱性樹脂を含有する多孔質層等を採用することができる。これらの中でも、無機酸化物を含有する多孔質層が好ましい。絶縁層は、必要に応じてバインダーや増粘剤を含んでいてもよい。絶縁層に含有されるバインダーや増粘剤としては、それぞれ特に制限されず、例えば合剤層(正極合剤層あるいは負極合剤層)に用いられるものと同様のものを用いることができる。
 無機酸化物としては、公知のものを使用できるが、化学的安定性に優れている無機酸化物が好ましい。このような無機酸化物としては、例えば、アルミナ、チタニア、ジルコニア、マグネシア、シリカ、ベーマイト等が挙げられる。
 絶縁層を形成する方法としては、公知のものを採用することができ、例えば、無機酸化物およびバインダーを含有する絶縁層形成用合剤を、多孔質樹脂フィルムの片面または両面に塗工して乾燥することにより、絶縁層を形成することができる。
<非水電解質>
 非水電解質(電解液)は、以下に説明する溶媒に電解質塩を溶解させることにより調製される。
 非水電解質(電解液)を構成する溶媒としては、非水電解質二次電池に通常用いられる公知のものが使用できる。このような溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が挙げられる。これら二種以上を混合して用いてもよい。このような溶媒として、プロピレンカーボネート(PC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを混合したものが好ましい。
 非水電解質(電解液)を構成する電解質塩としては、非水電解質二次電池に通常用いられる公知のものが使用できる。このような電解質塩として、LiBF4、LiPF6、L
iClO4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(CF3SO2)、(C4F9SO2)、LiC(CF3SO2)3、LiC(C2F5SO2)3等が挙げられる。これら二種以上を用いてもよい。特に、良好なイオン伝導性の観点から、電解質塩としてはLiPF6が好ましい。
 溶媒中における電解質塩の濃度の下限としては、0.5mol/lが好ましく、0.7mol/lがより好ましい。また、前記濃度の上限としては、1.5mol/lが好ましく、1.3mol/lがより好ましい。溶媒中における電解質塩の濃度を前記範囲とすることで、良好なイオン導電率を得ることができる。
[二次電池の製造方法]
 当該二次電池の製造方法は、炭素質粒子とカルボキシメチルセルロースナトリウム塩とを含む負極合剤層3aを負極集電層2aに形成する工程と、正極合剤層3bを正極集電層2bに形成する工程とを主に備える。
<負極合剤層形成工程>
 本工程では、負極集電層2aへの負極合剤の塗工により負極1aを形成することができる。具体的には、負極集電層2aに負極合剤を塗工して乾燥することにより負極合剤層3aを形成する。
 負極合剤は、上述の炭素質粒子及びCMC-Na塩以外に、バインダー等の任意成分を含んでいてもよい。負極合剤は、さらに溶剤を含むと良い。この溶剤としては、例えば、水、水を主体とする混合溶媒等の水系溶剤;N-メチルピロリドン、トルエン等の有機系溶剤を用いることができる。
 CMC-Na塩の平均粒子径としては、例えば30μm以上100μm以下とすることができる。CMC-Na塩の平均粒子径は、篩(JIS規格)または粒度分布による測定における累積体積比から算出することができる。
 CMC-Na塩の濃度1質量%の水溶液の25℃での粘度の下限としては、100mPa・sが好ましく、200mPa・sがより好ましく、300mPa・sがさらに好ましく、前記粘度の上限としては、8000mPa・sが好ましく、5000mPa・sがより好ましく、2300mPa・sがさらに好ましい。前記粘度を前記範囲とすることで、負極合剤の負極集電層2aへの塗工性を向上させることができ、負極合剤層3aの結着性を高めることができる。
 乾燥の温度としては、例えば50℃以上150℃以下とすることが好ましい。また、乾燥の時間としては、例えば1分以上60分以下とすることが好ましい。
<正極合剤層形成工程>
 本工程では、正極集電層2bへの正極合剤の塗工により正極1bを形成することができる。具体的には、正極集電層2bに正極合剤を塗工して乾燥することにより正極合剤層3bを形成する。乾燥の条件としては、前記負極合剤層形成工程と同様とすることができる。
 なお、前記乾燥後、負極合剤層3aを積層した負極集電層2a及び正極合剤層3bを積層した正極集電層2bのそれぞれをロール等によりプレスすることが好ましい。
<その他の工程>
 上述のようにして得られた負極1a及び正極1bをケース(不図示)に組み付け、ケー
ス内に電解液を充填し、このケースを密閉する。
[その他の実施形態]
 本発明の二次電池は、前記実施形態に限定されるものではない。当該二次電池は、一対のみの正極及び負極を備える構成としてもよいし、複数対の正極及び負極を備える構成としてもよい。
<蓄電装置>
 本発明の二次電池を、単数或いは複数個用いることにより、組電池を構成することができ、当該組電池を用いて蓄電装置を構成することができる。蓄電装置の一実施形態を図3に示す。蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、二次電池5を備えた組電池を用いて構成することができる。蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として用いることができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 まず、負極活物質である炭素質粒子として、難黒鉛化性炭素(平均粒子径(D50):2.5μm、比表面積:7.9m2/g)と、バインダーとして、スチレンブタジエンゴムと、増粘剤として、CMC-Na塩(1質量%濃度における粘度:600mPa・s、エーテル化度:0.6)とを用い、炭素質粒子95質量部、バインダー3質量部、増粘剤2質量部、及び水を混練して負極合剤を調整した。
 なお、平均粒子径は、測定装置としてレーザー回折式粒度分布測定装置(SALD-2200、島津製作所社製)、測定制御ソフトとしてWing SALD-2200を用いて測定した。具体的な測定手法としては、散乱式の測定モードを採用し、測定対象試料(炭素質粒子)が分散溶媒中に分散する分散液が循環する湿式セルにレーザー光を照射し、測定試料から散乱光分布を得る。そして、散乱光分布を対数正規分布により近似し、累積度50%(D50)にあたる粒子径を平均粒子径とする。なお、当該体積標準の粒度分布における累積度50%(D50)の粒子径は、極板のSEM画像から、極端に大きい炭素質粒子及び極端に小さい炭素質粒子を避けて100個の炭素質粒子を抽出して測定する粒子径とほぼ一致することが確認されている。
 また、比表面積は、測定装置として、TiStar3000型(Micromeritics社製)を用い、N2吸着法により求めた。具体的な測定手法としては、多点法(5点プロット)を採用し、相対蒸気圧(P/P0)が0.05以上0.2以下の範囲にて測定を行うことで比表面積を測定する。なお、比表面積の測定前には、試料を150℃の窒素フロー環境下に1時間保持して乾燥させる処理を行う。
 前記負極合剤を、負極集電層としての銅箔(厚み10μm)の表面に塗工し、乾燥して、負極合剤層を形成し、実施例1の負極を得た。
[実施例2~4、比較例1]
 炭素質粒子の平均粒子径を表1のようにした以外は、実施例1と同様にして、実施例2~4及び比較例1の負極を得た。また、各炭素質粒子の比表面積を表1に示す。
[比較例2~5]
 増粘剤として、カルボキシメチルセルロースアンモニウム塩(以下、「CMC-NH4塩」ともいう。)(1質量%濃度における粘度:600mPa・s、エーテル化度:0.6)を用いた以外は、実施例2~4及び比較例1と同様にして、比較例2~5の負極を得た。
[比較例6、7]
 負極活物質として、炭素質粒子ではない黒鉛(平均粒子径(D50):7.9μm)を用いた以外は、実施例1と同様にして、比較例6の負極を得た。同様に、負極活物質として前記黒鉛を用いた以外は、比較例2と同様にして、比較例7の負極を得た。
[評価]
 実施例1~4及び比較例1~7の負極について、以下の方法で評価を行った。まず、これらの負極と、正極活物質としてLiNi0.33Co0.33Mn0.33O2を90質量部、導電助剤としてアセチレンブラックを5質量部、ポリフッ化ビニリデンを5質量部含む正極と、ポリエチレン製のセパレータと、PC、DMC及びEMCを体積比で30%:30%:40%で混合した溶剤にLiPF6を1.2mol/L溶かした電解質とを用いて電池を作製した。また、電池の公称容量は450mAhとした。
 次に、これらの電池を25℃において1CmAの定電流で4.2Vまで充電し、さらに4.2Vの定電圧で合計3時間充電した後、1CmAの定電流で終止電圧2.25Vまで放電を行うことにより、初期放電容量を測定した。さらに、初期放電容量の確認試験後の各電池について、初期容量の50%を充電することで電池の充電状態(SOC)を50%に調整し、-10℃にて4時間保持した後、0.2CmA(I1)で10秒間放電した時の電圧(E1)、0.5CmA(I2)で10秒間放電した時の電圧(E2)、及び1CmA(I3)で10秒間放電した時の電圧(E3)をそれぞれ測定した。これらの測定値(E1、E2、E3)を用いて、直流抵抗を算出した。具体的には、横軸を電流、縦軸を電圧とするグラフ上に、前記測定値E1、E2、E3をプロットし、それら3点を最小二乗法による回帰直線(近似直線)により近似し、その直線の傾きを-10℃でのSOCが50%の直流抵抗とした。結果を表1及び図2に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図2に示されるように、負極の増粘剤としてCMC-Na塩を用い、さらに炭素質粒子の平均粒子径を7μm以下とすることで、増粘剤としてCMC-NH4塩を用いた場合に比べ、低温での直流抵抗が小さく出力特性が向上することがわかる。炭素質粒子およびCMC-Na塩を含む負極を備えた電池は、炭素質粒子の平均粒子径が8μm近傍において低温での出力特性が逆転し、炭素質粒子およびCMC-NH4塩を含む負極を備えた電池と比べて低温での直流抵抗が小さく出力特性が向上することがわかる。
 また、炭素質粒子の平均粒子径を4μm以下とすることで、抵抗値を大きく低減できることがわかる。
 また、炭素質粒子の比表面積を5m2/g以上とすることで、抵抗値を大きく低減できることがわかる。
 また、活物質として炭素質粒子でない黒鉛を用いた比較例6、7では、増粘剤の違いによる抵抗の差異がほとんど見られなかった。従って、上述の抵抗値の低減効果は、炭素質粒子をCMC-Na塩と組み合わせることによって奏されると推測される。
 以上のように、本発明に係る非水電解質二次電池は、負極に水系バインダーを用いても、低温環境下において高い入出力特性が得られるため、例えばHEV用のリチウムイオン二次電池として好適に用いられる。
1a 負極
1b 正極
2a 負極集電層
2b 正極集電層
3a 負極合剤層
3b 正極合剤層
4 セパレータ
5 非水電解質二次電池
20 蓄電ユニット
30 蓄電装置

Claims (5)

  1.  負極合剤層を有する負極を備える非水電解質二次電池であって、
     前記負極合剤層は、炭素質粒子及びカルボキシメチルセルロースナトリウム塩を含有し、
     前記炭素質粒子の平均粒子径は、7μm以下であることを特徴とする非水電解質二次電池。
  2.  前記炭素質粒子の平均粒子径は、4μm以下である、請求項1に記載の非水電解質二次電池。
  3.  前記炭素質粒子は、難黒鉛化性炭素を含む、請求項1又は請求項2に記載の非水電解質二次電池。
  4.  前記カルボキシメチルセルロースナトリウム塩のエーテル化度は、1.3以下である、請求項1から請求項3のいずれか1項に記載の非水電解質二次電池。
  5.  負極合剤層と負極集電層とを有する負極を備える非水電解質二次電池の製造方法であって、
     炭素質粒子とカルボキシメチルセルロースナトリウム塩とを含む合剤層を負極集電層に形成する工程を有し、
     前記炭素質粒子の平均粒子径は、7μm以下であることを特徴とする非水電解質二次電池の製造方法。
     
     
PCT/JP2017/002188 2016-01-29 2017-01-23 非水電解質二次電池及び非水電解質二次電池の製造方法 WO2017130918A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017564242A JP7119373B2 (ja) 2016-01-29 2017-01-23 非水電解質二次電池及び非水電解質二次電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016699 2016-01-29
JP2016-016699 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130918A1 true WO2017130918A1 (ja) 2017-08-03

Family

ID=59398188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002188 WO2017130918A1 (ja) 2016-01-29 2017-01-23 非水電解質二次電池及び非水電解質二次電池の製造方法

Country Status (2)

Country Link
JP (1) JP7119373B2 (ja)
WO (1) WO2017130918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203429A1 (ja) * 2019-03-29 2020-10-08 株式会社Gsユアサ 非水電解質蓄電素子用の負極、非水電解質蓄電素子、及びこれらの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208731A (ja) * 1997-01-17 1998-08-07 Toyota Central Res & Dev Lab Inc リチウム二次電池用電極
JP2010098020A (ja) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd リチウムイオンキャパシターの負極被膜及び電極被膜形成用塗料組成物
JP2010199281A (ja) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd 蓄電デバイスおよびその製造方法
JP2013045984A (ja) * 2011-08-26 2013-03-04 Nippon Zeon Co Ltd 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP2016157609A (ja) * 2015-02-25 2016-09-01 株式会社Gsユアサ 蓄電素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765149B2 (ja) * 1996-02-29 2006-04-12 王子製紙株式会社 パルプ、紙及び塗被紙
JPH10228896A (ja) * 1997-02-13 1998-08-25 Nec Corp 非水電解液二次電池
KR100515593B1 (ko) * 2001-04-17 2005-09-16 주식회사 엘지화학 구형 탄소 및 이의 제조방법
JP4746275B2 (ja) * 2004-02-13 2011-08-10 株式会社東芝 非水電解質二次電池
JP2009084099A (ja) * 2007-09-28 2009-04-23 Sumitomo Bakelite Co Ltd 炭素材の製造方法、炭素材及びこれを用いたリチウムイオン二次電池用負極材
US20170162874A1 (en) * 2014-03-31 2017-06-08 Kureha Corporation Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and vehicle
CN106165161A (zh) * 2014-03-31 2016-11-23 株式会社吴羽 非水电解质二次电池负极材料、非水电解质二次电池用负极合剂、非水电解质二次电池用负极电极、非水电解质二次电池以及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208731A (ja) * 1997-01-17 1998-08-07 Toyota Central Res & Dev Lab Inc リチウム二次電池用電極
JP2010098020A (ja) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd リチウムイオンキャパシターの負極被膜及び電極被膜形成用塗料組成物
JP2010199281A (ja) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd 蓄電デバイスおよびその製造方法
JP2013045984A (ja) * 2011-08-26 2013-03-04 Nippon Zeon Co Ltd 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP2016157609A (ja) * 2015-02-25 2016-09-01 株式会社Gsユアサ 蓄電素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203429A1 (ja) * 2019-03-29 2020-10-08 株式会社Gsユアサ 非水電解質蓄電素子用の負極、非水電解質蓄電素子、及びこれらの製造方法

Also Published As

Publication number Publication date
JP7119373B2 (ja) 2022-08-17
JPWO2017130918A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
CN110651386B (zh) 电化学装置用负极活性材料、包含所述负极活性材料的负极和包含所述负极的电化学装置
KR101811935B1 (ko) 비수 전해액 이차 전지
CN106537663B (zh) 非水电解质二次电池用负极材料以及负极活性物质颗粒的制造方法
KR101671131B1 (ko) 비수 전해액 이차 전지
JP6188158B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池
JP5375975B2 (ja) 電池用電極、当該電池用電極を備えた電池、及び、当該電池用電極の製造方法
WO2014141552A1 (ja) 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR101579700B1 (ko) 비수 전해액 이차 전지 및 그 이용
US10431814B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing the same
JP5359444B2 (ja) リチウムイオン二次電池
US20160294006A1 (en) Nonaqueous electrolyte secondary cell and method for producing same
CN106575746B (zh) 非水电解质二次电池
JP6899312B2 (ja) 非水電解質、及び非水電解質蓄電素子
JP7143006B2 (ja) 二次電池用負極活物質の製造方法、二次電池用負極及びこれを含むリチウム二次電池
CN115668530A (zh) 正极及蓄电元件
US20190305317A1 (en) Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries
CN110521030B (zh) 非水电解质蓄电元件
JP7119373B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP6766742B2 (ja) リチウムイオン二次電池
KR20140008957A (ko) 접착력과 고율 특성이 향상된 음극 및 이를 포함하는 리튬 이차 전지
JP2018032477A (ja) 非水電解質蓄電素子及びその製造方法
JP2017126488A (ja) 非水電解液二次電池用非水電解液及び非水電解液二次電池
JP2021132020A (ja) リチウム二次電池用負極及びリチウム二次電池
JP6120068B2 (ja) 非水電解液二次電池の製造方法
WO2024195471A1 (ja) 正極、及び、リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744148

Country of ref document: EP

Kind code of ref document: A1