Nothing Special   »   [go: up one dir, main page]

WO2017126153A1 - Optical fingerprint authentication device - Google Patents

Optical fingerprint authentication device Download PDF

Info

Publication number
WO2017126153A1
WO2017126153A1 PCT/JP2016/075653 JP2016075653W WO2017126153A1 WO 2017126153 A1 WO2017126153 A1 WO 2017126153A1 JP 2016075653 W JP2016075653 W JP 2016075653W WO 2017126153 A1 WO2017126153 A1 WO 2017126153A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light
layer
image sensor
organic electroluminescence
Prior art date
Application number
PCT/JP2016/075653
Other languages
French (fr)
Japanese (ja)
Inventor
一由 小俣
司 八木
夏樹 山本
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017562426A priority Critical patent/JPWO2017126153A1/en
Publication of WO2017126153A1 publication Critical patent/WO2017126153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1172Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present invention relates to an optical fingerprint authentication apparatus that performs personal authentication by an optical method using a fingerprint. More specifically, the present invention relates to an optical fingerprint authentication device including a fingerprint information reading unit using an organic electroluminescence element as a light source for illumination and using a photoelectric conversion method as an image sensor for detection.
  • a light emitting diode (hereinafter abbreviated as LED) is disposed as a light source for illumination next to a solid-state imaging device on a wiring board, and the light is emitted from the LED for illumination.
  • a method is disclosed in which light enters the finger and scattered light passes through the fingerprint and enters the solid-state imaging device to recognize the fingerprint pattern.
  • an illumination LED is arranged next to a solid-state imaging device, and light emitted from the illumination LED passes through a protective member and enters the inside of the finger.
  • a method for recognizing a fingerprint pattern by passing through a protective member and entering a solid-state imaging device is disclosed.
  • an image sensor solid-state imaging device
  • a protective member are stacked on a circuit board, and a finger is brought into close contact with the surface of the protective member.
  • a method of disposing an illumination LED on a substrate next to a light sensor and applying the light to a finger through a light guide is disclosed.
  • Patent Document 1 discloses a fingerprint input device that uses an LED as a light source for illumination and captures a fingerprint pattern generated by scattered light inside the finger with the image sensor while moving the relative position between the finger and the image sensor. ing.
  • Patent Document 2 is an optical fingerprint input device that irradiates light from an LED onto a finger surface and receives reflected light from the finger surface with an image sensor, and includes an imaging chip having a specific structure. A configuration is proposed.
  • each fingerprint authentication device proposed above uses an LED as a light source for illumination, it is necessary to incorporate a light guide plate or the like as the illumination unit, resulting in a thick structure. From the viewpoint of reducing the thickness of the device, it has been a major obstacle.
  • the fingerprint authentication device using LEDs has a complicated manufacturing process, which has been a cause of cost increase.
  • the LED has a problem that it is difficult to process into a shape having a curved surface such as a circle or an ellipse due to its structure.
  • the present invention has been made in view of the above problems, and its solution is to provide an organic electroluminescence panel as an illumination light source and a photoelectric conversion type image sensor having at least an organic photoelectric conversion layer as an image sensor. It is an object of the present invention to provide an optical fingerprint authentication device that has an organic electroluminescence element of various shapes as an illumination light source with a simple configuration and can be manufactured at low cost.
  • the present inventor has at least a light source and an image sensor, and an organic electroluminescence panel having an organic electroluminescence element (hereinafter also referred to as an organic EL element) as the light source ( Hereinafter, it is also referred to as an organic EL panel.)
  • an optical fingerprint authentication device having a fingerprint information reading unit having at least an organic photoelectric conversion layer as an image sensor, a thin and simple configuration can be used. Accordingly, the present inventors have found that an optical fingerprint authentication device that has various shapes of organic electroluminescence elements as illumination light sources and can be manufactured at low cost can be realized.
  • An optical fingerprint authentication device having at least a light source and an image sensor and detecting diffused light by the image sensor, As the light source, it has an organic electroluminescence panel,
  • the organic electroluminescence panel is composed of a light emitting part region constituted by an organic electroluminescence element and a light transmissive non-light emitting part.
  • the image sensor includes at least an organic photoelectric conversion layer, and the image sensor includes a non-light-emitting portion of the organic electroluminescence panel or a fingerprint information reading unit disposed adjacent to the non-light-emitting portion.
  • the image sensor includes at least a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film transistor.
  • optical fingerprint authentication device according to claim 1 or 2, wherein the image sensor is independently installed on a light emitting surface side of the organic electroluminescence panel.
  • the counter electrode, the organic photoelectric conversion layer, and the pixel electrode constituting the image sensor are all non-light emitting portions of the organic electroluminescence panel and are formed on the same plane as the organic electroluminescence element.
  • Item 5 The optical fingerprint authentication device according to any one of Items 2 to 4.
  • the organic electroluminescence element has an organic functional layer unit between a pair of opposing electrodes, wherein one of the electrodes is a light transmissive electrode and the other is a non-light transmissive electrode.
  • the optical fingerprint authentication device according to any one of items 1 to 6.
  • the light transmissive electrode is made of an oxide semiconductor or a thin metal or alloy.
  • the organic electroluminescence panel is configured such that an organic electroluminescence element having a continuous configuration is arranged in an outer peripheral region, and a central portion is the light transmissive non-light emitting portion.
  • the optical fingerprint authentication device according to any one of the above.
  • the organic electroluminescence panel has a plurality of organic electroluminescence elements arranged in parallel in a stripe shape, and has the light-transmissive non-light emitting portion between the stripe-shaped organic electroluminescence elements.
  • the optical fingerprint authentication device according to any one of items 1 to 8, characterized in that:
  • the organic electroluminescence panel has a plurality of independent organic electroluminescence elements in an outer peripheral region, and has the light transmissive non-light emitting portion in a central portion.
  • the optical fingerprint authentication device according to any one of the above.
  • an optical fingerprint authentication device that has an organic electroluminescence element of various shapes according to the purpose as an illumination light source and can be manufactured at low cost with a thin and simple configuration.
  • optical fingerprint authentication apparatus having the configuration defined in the present invention and the mechanism of the effects thereof are presumed as follows.
  • an LED has been widely used as the light irradiation light source, but the LED has an advantage in terms of the light source life, but from the light emission principle, the structure However, it has a problem that it becomes thicker or it is extremely difficult to process into various shapes.
  • the present inventor has found that the above-mentioned problems can be solved by applying an organic electroluminescence panel having an organic EL element as a light source as a method for solving such a problem.
  • an organic EL element having an arbitrary light emission pattern can be formed by utilizing the characteristics of the organic EL element as a thin film light emitting element and the formation method (for example, chemical vapor deposition method or wet coating method). It is possible to design a fingerprint information reading unit having detection areas of various shapes required for a fingerprint authentication apparatus, and it is possible to cope with fingerprint authentication apparatuses having various needs. In addition, by realizing a uniform light irradiation light source having various shapes, the recognition rate of the fingerprint authentication device can be improved.
  • an image sensor having at least an organic photoelectric conversion layer is used as an image sensor for detecting diffused light from a fingerprint portion of a finger to be authenticated. More specifically, a counter electrode, an organic photoelectric conversion layer, a pixel electrode.
  • a photoelectric conversion type image sensor composed of a thin film transistor an excellent photoelectric conversion efficiency with respect to diffused light from the fingerprint portion is exhibited, and an organic EL is formed when forming a fingerprint information reading portion.
  • Each layer can be made of the same material, simplifying the manufacturing process and materials Sharing enables simultaneous formation of a single step, it is possible to realize a reduction in manufacturing cost.
  • Schematic sectional view showing an example of a configuration of a fingerprint information reading unit provided with an organic EL panel of a top emission type applicable to the present invention (Embodiment 1)
  • Embodiment 2 Schematic sectional view showing another example of a configuration of a fingerprint information reading unit provided with an organic EL panel of an upper surface (cathode side) emission method applicable to the present invention
  • Embodiment 3 Schematic sectional view
  • the optical fingerprint authentication device of the present invention is an optical fingerprint authentication device that has at least a light source and an image sensor, and detects diffused light by the image sensor, and has an organic electroluminescence panel as the light source,
  • the organic electroluminescence panel is composed of a light emitting part region constituted by an organic electroluminescence element and a light transmissive non-light emitting part, and the image sensor has at least an organic photoelectric conversion layer, and the image sensor
  • the organic electroluminescence panel includes a non-light-emitting portion or a fingerprint information reading portion disposed adjacent to the non-light-emitting portion. This feature is a technical feature common to or corresponding to the claimed invention.
  • the photoelectric conversion efficiency by comprising at least a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film transistor as an image sensor. This is preferable in that an excellent image sensor can be realized.
  • the configuration in which the image sensor is disposed on the light emitting surface side of the organic EL panel or on the side opposite to the light emitting surface can be adapted to light emitting methods corresponding to various uses and can be applied. This is a preferred embodiment from the viewpoint of widening the width.
  • At least one of the counter electrode, the organic photoelectric conversion layer, and the pixel electrode constituting the image sensor is a non-light emitting portion of the organic EL panel and is formed on the same plane as the organic EL element, or the counter electrode,
  • the configuration in which the organic photoelectric conversion layer and the pixel electrode are all formed on the same plane as the organic EL element makes it possible to correspond to a light emitting method according to various uses, and the range of applicable options is widened.
  • the materials for forming the anode, organic functional layer, and cathode of the organic EL element and the materials for forming the counter electrode, the organic photoelectric conversion layer, and the pixel electrode can be used in common, thereby reducing manufacturing costs and simplifying the manufacturing process. It is preferable in that it can be achieved.
  • the organic EL element has an organic functional layer unit between a pair of opposed electrodes, and one of the electrodes is a light transmissive electrode and the other is a non-light transmissive electrode. This is preferable from the standpoint that irradiation light can be applied to the fingerprint detection unit and the light receiving sensitivity of the image sensor can be increased.
  • the transparent electrode constituting the organic EL element is preferably composed of an oxide semiconductor or a thin-film metal or alloy because an electrode having high light transmittance and excellent conductivity can be obtained.
  • forming a light transmissive electrode in the light transmissive non-light-emitting portion or having a light transmissive electrode and an organic functional layer unit makes the manufacturing method of the optical fingerprint authentication device easier. It is preferable from a viewpoint that can be made.
  • an organic EL element having a continuous configuration is arranged in the outer peripheral area, and a light-transmitting non-light-emitting element is provided in the center.
  • Part forming method, or arranging a plurality of stripe organic EL elements in parallel and forming a light-transmitting non-light emitting part between the organic EL elements, and a plurality of independent organic EL elements in the outer peripheral region Is a preferable form from the viewpoint of efficiently obtaining optical information necessary for fingerprint authentication.
  • the organic electroluminescence panel emits light having a wavelength in the visible light region, or has a specification for emitting light having a wavelength in the infrared region, from the viewpoint of expanding the usage.
  • the “organic EL panel” as used in the present invention refers to a structure composed of a light emitting portion formed of an organic EL element and a light-transmitting non-light emitting portion on the same plane.
  • the “organic EL element” as used in the present invention is a surface light source that irradiates a specimen surface (specifically, a fingerprint surface) with light for fingerprint authentication, and is mainly a pair of opposing surfaces on a transparent substrate. Controls mainly the transport of electrons or holes between a pair of electrodes and a pair of electrodes having light transmission properties (anode and cathode), or a light transmission electrode and a non-light transmission electrode. It has an organic functional layer unit composed of a carrier transporting functional layer and a light emitting layer, and further has a sealing member provided thereon. However, description and description of the sealing member may be omitted for convenience of explanation. In the following description, description and description of a control circuit and wiring for controlling light emission of the organic EL element are omitted.
  • the “organic functional layer unit” in the present invention will be described later with reference to FIG. 2.
  • the first carrier transporting functional layer group 1 for example, a hole injection layer, a hole is formed on a substrate.
  • a transport layer, a light emitting layer containing a phosphorescent compound, and the like, and a second carrier transport function layer group 2 for example, a hole blocking layer, an electron transport layer, an electron injection layer, and the like. Refers to the configuration.
  • the “light emitting area” refers to a region where all of the anode, the organic functional layer unit, and the cathode exist in the layer thickness direction.
  • the “anode” is an electrode to which (+) is applied as a voltage, and may be referred to as “anode” or “first electrode”.
  • the “cathode” is an electrode to which ( ⁇ ) is applied as a voltage, and may be referred to as “cathode” or “second electrode”.
  • the “image sensor” in the present invention refers to a photoelectric conversion type image sensor having a function of detecting diffused light from a fingerprint portion, and mainly includes a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film.
  • a transistor abbreviation: TFT is used.
  • the photoelectric conversion element (abbreviation: PED, Photo electronic device) referred to in the present invention means an element mainly composed of a counter electrode, an organic photoelectric conversion layer, and a pixel electrode.
  • light transmittance as used in the present invention means that the light transmittance at a wavelength of 550 nm is 60% or more, preferably 70% or more, and more preferably 80% or more.
  • Non-light-transmitting means that the light transmittance at a wavelength of 550 nm is 40% or less, preferably 30% or less, and more preferably 20% or less.
  • the optical fingerprint authentication apparatus of the present invention mainly has a light source and an image sensor, and an organic EL panel composed of a light emitting part region constituted by an organic EL element and a light transmissive non-light emitting part as a light source. And a fingerprint information reading unit having a configuration in which a photoelectric conversion type image sensor is disposed in the non-light-emitting unit or at a position adjacent to the non-light-emitting unit.
  • FIG. 1A and FIG. 1B are schematic views showing an example of the entire configuration of a fingerprint reading unit constituting the optical fingerprint authentication device of the present invention.
  • FIG. 1A shows a light-transmitting non-light emitting part (12) of an organic EL panel (P) as a fingerprint information reading part, and a photoelectric conversion element (PED) which is an image sensor (S) on the same plane as the organic EL element.
  • PED photoelectric conversion element
  • a fingerprint information reading unit (100) of an optical fingerprint authentication device includes an organic EL panel (P) composed of an organic EL element (OLED) and a light-transmitting non-light emitting unit (12), and the light.
  • a photoelectric conversion element (PED), which is a constituent member of the image sensor (S), is disposed inside the transmissive non-light-emitting portion (12).
  • a TFT unit (53) composed of a base material and TFT is disposed at the lower part thereof, thereby constituting an image sensor (S).
  • Reference numeral 11 denotes a glass substrate for holding a finger (F) surface to be touched.
  • the fingerprint information reading unit (100) of the optical fingerprint authentication apparatus includes an organic EL panel (P) composed of an organic EL element (OLED) and a light-transmitting non-light emitting unit (12),
  • a photoelectric conversion element (PED) which is a constituent member of the image sensor (S)
  • a TFT unit (53) composed of a base material and a TFT are laminated to constitute an image sensor (S).
  • 1A and 1B shows a method of emitting light (L1) on the upper surface side, and light (L1) from an organic EL element (OLED) which is a light source constituting the organic EL panel (P). ), And irradiates the fingerprint surface of the finger (F) with the light reflected from the fingerprint surface (L2, also referred to as an optical signal) to transmit light of the organic EL panel (P).
  • the optical information is read by the image sensor (S) through the non-light emitting portion (12), and the image information read by the image sensor (S) is analyzed and stored, although not shown in the figure.
  • the fingerprint is authenticated by comparing with the fingerprint information (registered).
  • Organic EL element >> [Basic structure of organic EL element]
  • the basic configuration of the organic EL element constituting the organic EL panel according to the present invention will be described with reference to the drawings.
  • FIG. 2 is a schematic cross-sectional view showing a basic configuration including an organic functional layer unit of an organic EL element applicable to the present invention.
  • the organic EL element (OLED) according to the present invention shown in FIG. 2 is an organic functional layer unit including a light emitting layer on a transparent substrate (1) having light transparency, for example, a glass substrate or a flexible resin substrate. A structure in which (U) is laminated is shown.
  • FIG. 2 shows an example in which a gas barrier layer (2) is formed on a transparent substrate (1) having optical transparency.
  • an anode (3) is formed as a first electrode
  • a first carrier transporting functional layer group composed of, for example, a hole injection layer, a hole transport layer, etc. 1 (4), a light emitting layer (5), and a second carrier transporting functional layer group 2 (6) composed of, for example, an electron transporting layer, an electron injecting layer, and the like are sequentially laminated to form an organic functional layer unit (U ).
  • a cathode (7) is provided as a second electrode on the organic functional layer unit (U).
  • substrate (10) which has the contact bonding layer (8) and a gas barrier layer (9) is arrange
  • the anode (3) as the first electrode is a transparent electrode having the light transmittance defined above
  • the cathode ( 7) is a non-light-transmissive electrode, which is an example of a method of performing light irradiation (L1) on the finger (F) from the finger surface side where the anode (3) is disposed.
  • the light emitting area (13) means that the anode (3), the organic functional layer unit (U), particularly the light emitting layer (5), and the cathode (7) are all on the same plane. An area that exists.
  • the optical transparency as the first electrode is formed on the transparent substrate (1) having the gas barrier layer (2).
  • a carrier transport function layer group 1 (4) composed of, for example, a hole injection layer, a hole transport layer, and the like, and a light emitting layer (5), for example, an electron transport layer, an electron injection layer
  • the light emitting region is constituted by the organic functional layer group (U) in which the carrier transporting functional layer group 2 (6) composed of, for example, is laminated.
  • a sealing substrate (10) having a cathode (7) as a second electrode, a sealing adhesive layer (8), and a gas barrier layer (9) is provided on the upper part.
  • the anode (3) is made non-light transmissive and the cathode (7) is made light transmissive. Further, if necessary, both the anode (3) and the cathode (7) may be constituted by light transmissive electrodes.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the intermediate layer may be a charge generation layer or a multi-photon unit configuration.
  • tandem organic EL element can also be used.
  • tandem type include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International Publication No. 2005 / 009087, JP 2006-228712, JP 2006-24791, JP 2006-49393, JP 2006-49394, JP 2006-49396, JP 2011-96679. JP, JP 2005-340187, JP 4711424, JP 34966681, JP 3884564, Patent No.
  • the transparent substrate (1) applicable to the organic EL element (OLED) is not particularly limited as long as it is a light-transmitting substrate, and examples thereof include glass and plastic.
  • Examples of the light-transmitting substrate (1) applicable to the present invention include glass, quartz, and a resin substrate. More preferably, it is a flexible resin base material from the viewpoint of imparting flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose.
  • Cellulose esters such as triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate, and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol , Syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyetherketone, polyimide, Ether sulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Examples thereof include cycloolefin resins such as Apel (trade name, manufactured by Mitsui Chemicals).
  • TAC triacetate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • a film is preferably used as a resin substrate having flexibility.
  • the resin substrate may be an unstretched film or a stretched film.
  • the resin base material applicable to the present invention can be manufactured by a conventionally known general film forming method.
  • an unstretched resin base material that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched resin base material is transported in the direction of the resin base material (vertical axis direction) by a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like.
  • a stretched resin substrate can be produced by stretching in a direction perpendicular to the conveying direction of the resin substrate (horizontal axis direction, TD direction).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the resin base material, but is preferably in the range of 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • the thickness of the resin substrate is preferably a thin resin substrate in the range of 3 to 200 ⁇ m, more preferably in the range of 10 to 150 ⁇ m, and particularly preferably in the range of 20 to 120 ⁇ m. Is within.
  • the anode constituting the organic EL element is preferably a light transmissive electrode.
  • the anode is preferably composed of an oxide semiconductor or a metal or alloy of a thin film.
  • Ag, Au, etc. A metal or an alloy containing a metal as a main component, CuI, indium-tin composite oxide (ITO), or an oxide semiconductor such as SnO 2 or ZnO can be given.
  • a vacuum evaporation method for example, resistance heating evaporation method, electron beam evaporation method, ion plating method, ion beam evaporation method, etc.
  • sputtering method reactive sputtering method
  • molecular beam epitaxy method examples include plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, laser CVD, and thermal CVD.
  • the purity of silver is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
  • the light-transmitting anode is a layer composed mainly of silver.
  • the anode may be composed of silver alone or an alloy containing silver (Ag).
  • alloys include silver-magnesium (Ag-Mg), silver-copper (Ag-Cu), silver-palladium (Ag-Pd), silver-palladium-copper (Ag-Pd-Cu), silver -Indium (Ag-In) and the like.
  • an anode having a light transmission property composed mainly of silver and having a thickness in the range of 2 to 20 nm.
  • the thickness is preferably in the range of 4 to 12 nm.
  • a thickness of 20 nm or less is preferable because the absorption component and reflection component of the light-transmitting anode are kept low and high light transmittance is maintained.
  • the layer composed mainly of silver in the present invention means that the silver content in the light-transmitting anode is 60% by mass or more, preferably the silver content is 80% by mass. More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
  • “light transmittance” in the anode having light transmittance according to the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the light-transmitting anode may have a structure in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
  • the lower portion is formed from the viewpoint of improving the uniformity of the silver film of the light-transmitting anode to be formed.
  • the underlayer is not particularly limited as long as it can suppress the aggregation of silver when forming an anode made of silver or an alloy containing silver as a main component.
  • an organic layer having a nitrogen atom or a sulfur atom A layer containing a compound is preferred, and a method of forming a light-transmitting anode on the underlayer is a preferred embodiment.
  • Organic functional layer unit (Light emitting layer)
  • a phosphorescent light emitting compound or a fluorescent compound can be used as the light emitting material.
  • a phosphorescent light emitting compound is used as the light emitting material.
  • the contained structure is preferable.
  • This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate
  • the light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
  • a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
  • a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer.
  • the structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
  • ⁇ Host compound> As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • a known host compound may be used alone, or a plurality of types of host compounds may be used.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • a fluorescent compound both a fluorescent compound or a fluorescent material
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C.
  • a preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
  • Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
  • Carrier transport functional group Next, a charge injection layer, a hole transport layer, an electron transport layer, and a blocking layer will be described in this order as representative examples of the layers constituting the carrier transport functional layer group.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer and an electron injection layer.
  • the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer.
  • the present invention is characterized in that the charge injection layer is disposed adjacent to the light-transmitting electrode. When used in an intermediate electrode, it is sufficient that at least one of the adjacent electron injection layer and hole injection layer satisfies the requirements of the present invention.
  • the hole injection layer is a layer disposed adjacent to the anode, which is a light-transmitting electrode, in order to lower the driving voltage and improve the light emission luminance.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • the electron injection layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the cathode is composed of the light-transmitting electrode according to the present invention Is provided adjacent to the light-transmitting electrode, and “Organic EL element and its forefront of industrialization” (issued on November 30, 1998 by NTT)
  • the electrode material “(pages 123 to 166) is described in detail.
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq).
  • Metals represented by strontium and aluminum alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc.
  • the electrode which has the light transmittance in this invention is a cathode
  • organic materials such as a metal complex
  • the electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the hole transport layer is made of a hole transport material having a function of transporting holes.
  • the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • hole transport material those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping impurities into the material of the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes
  • a metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • blocking layer examples include a hole blocking layer and an electron blocking layer.
  • the blocking layer is a layer provided as necessary. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the cathode according to the present invention is a light-transmitting electrode that functions to supply holes to the carrier transporting functional layer group and the light-emitting layer, and is a metal, alloy, organic or inorganic conductive compound, or a mixture thereof.
  • a metal, alloy, organic or inorganic conductive compound for example, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 and An oxide semiconductor such as SnO 2 can be given.
  • the cathode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the second electrode is several hundred ⁇ / sq.
  • the film thickness is usually selected from the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the gas barrier layer (2) may be not only an inorganic material film but also a film made of a composite material with an organic material or a hybrid film obtained by laminating these films.
  • water vapor permeability (environmental conditions: 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) in accordance with JIS (Japanese Industrial Standard) -K7129 (2008) About 0.01 g / m 2 ⁇ 24 h or less
  • oxygen permeability according to JIS-K7126 (2006) is about 0.01 ml / m 2 ⁇ 24 h ⁇ atm] or less
  • electrical resistivity is 1 ⁇ 10 12 ⁇ ⁇ cm
  • an insulating film having gas barrier properties and light transmittance such that the light transmittance is about 80% or more in the visible light region is preferable.
  • any material for forming the gas barrier layer (2) can be used as long as it can suppress the intrusion of a gas such as water or oxygen into the organic EL element, which causes deterioration of the organic EL element. .
  • the main raw material is a silicon compound such as silicon nitride or silicon oxide.
  • a conventionally known film forming method can be appropriately selected and used.
  • a vacuum deposition method, a sputtering method, a magnetron sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plate method can be used.
  • Coating method, plasma polymerization method, atmospheric pressure plasma polymerization method (see JP 2004-68143 A), plasma CVD (Chemical Vapor Deposition) method, laser CVD method, thermal CVD method, ALD (atomic layer deposition) method, A wet coating method using polysilazane or the like can also be applied.
  • ⁇ Sealing material> In the organic EL panel (P) shown in FIG. 2, an example in which a sealing member is further formed on the organic EL panel (P) including the organic EL element (OLED) formed up to the cathode (7). Is shown.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be concave or flat. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a flexible glass substrate, a resin substrate, a resin film, a metal film (metal foil), and the like.
  • the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the resin substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • sealing adhesive polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives can be used. You may use a hardening
  • a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
  • the sealing member a resin substrate and a crow substrate can be preferably used from the viewpoint of reducing the thickness of the organic EL element.
  • the resin substrate has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / m 2 .multidot.m at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm (1 atm is 1.01325 ⁇ 10 5 a Pa) equal to or lower than a temperature of 25 ⁇ 0.5 ° C.
  • water vapor permeability at a relative humidity of 90 ⁇ 2% RH is preferably not more than 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase.
  • the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
  • the organic functional layer unit in the organic EL element is completely covered, and the anode (3) which is the first electrode and the cathode (7) which is the second electrode in the organic EL element are exposed, and the light is exposed.
  • a sealing film can also be provided over a permeable substrate.
  • the image sensor according to the present invention is a photoelectric conversion system having at least an organic photoelectric conversion layer, and is preferably composed of at least a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film transistor (TFT).
  • TFT thin film transistor
  • FIG. 3 is a schematic sectional view showing an example of the configuration of an image sensor applicable to the present invention.
  • FIG. 3 shows a method in which diffused light (L2) from the fingerprint portion is irradiated from the upper surface side (finger surface side).
  • the counter electrode (52), the organic photoelectric conversion layer (51), and the pixel electrode (54) are arranged from the surface side where the diffused light (L2) reaches, and the photoelectric conversion element ( PED).
  • a TFT (56) is disposed at a position facing the pixel electrode (54), and a connection portion (55) is connected therebetween.
  • the pixel electrode (54), the connecting portion (55), and the TFT (56) are arranged in the insulating layer (57), and a base material (58) is provided below the insulating layer (57).
  • a configuration including the connection portion (55), the TFT (56), and the insulating layer (57) is referred to as a TFT unit (53).
  • the base material (58) may be described as a constituent element of the TFT unit (53).
  • optical image sensor (S) including the organic photoelectric conversion layer that can be applied to the present invention
  • specific configurations of the optical image sensor (S) including the organic photoelectric conversion layer that can be applied to the present invention include, for example, Japanese Unexamined Patent Application Publication Nos. 2008-067034, 2009-207062, and Japanese Unexamined Patent Application Publication No. 2009-207062.
  • the counter electrode (52) constituting the image sensor is an electrode facing the pixel electrode (54), and is provided so as to cover the organic photoelectric conversion layer (51).
  • An optical functional layer including an organic photoelectric conversion layer (51) is provided between the pixel electrode (54) and the counter electrode (52).
  • the counter electrode (52T) causes the light to enter the organic photoelectric conversion layer (51).
  • the conductive material is transparent to the reflected light (L2).
  • the counter electrode (52T) serves as a counter electrode voltage supply unit that applies a predetermined voltage to the counter electrode (52T) via a connection unit (not shown) disposed outside the organic photoelectric conversion layer (51). Connected (not shown).
  • the light-transmissive counter electrode (52T) is preferably composed of a transparent conductive film, and examples thereof include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof. Specific examples include tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), conductive metal oxides such as titanium oxide, and metal nitrides such as TiN.
  • ITO Indium Tin Oxide
  • Pt platinum
  • silver Ag
  • Cr chromium
  • Ni nickel
  • Al aluminum
  • ITO organic conductive compounds
  • Particularly preferable materials for the transparent conductive film are ITO, IZO, tin oxide, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, antimony-doped zinc oxide (AZO), gallium-doped zinc oxide ( Any material of GZO) can be mentioned.
  • the counter electrode (52) is used. May be light transmissive or non-light transmissive.
  • the surface resistance of the counter electrode (52, 52T) is 10 k ⁇ / sq.
  • the signal readout circuit (not shown) is a CMOS type. Or less, more preferably 1 k ⁇ / sq. It is as follows. In the case of a CCD type, 1 k ⁇ / sq. Or less, more preferably 0.1 k ⁇ / sq. It is as follows.
  • the light transmittance is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, more preferably 95% or more, at the visible light wavelength. It is.
  • the voltage applied to the counter electrode (54) is about 5 to 20V.
  • the counter electrode (52) in the image sensor (S) according to the present invention may have the same configuration as the anode (3) that constitutes the above-described organic EL element, as illustrated in FIGS. Good. Further, as exemplified in FIGS. 6 to 8 and FIGS. 11 to 13 to be described later, the same structure as the cathode (7) constituting the organic EL element described above may be used.
  • the organic photoelectric conversion layer (51) includes an organic photoelectric organic material, and has a function of converting into signal charges corresponding to the amount of received light. It is preferable that the organic photoelectric conversion layer (51) contains an organic photoelectric conversion material in that a desired spectral sensitivity can be easily obtained.
  • the organic photoelectric conversion layer (51) preferably has a configuration including a p-type organic semiconductor and an n-type organic semiconductor among organic materials.
  • the exciton dissociation efficiency can be increased by joining a p-type organic semiconductor and an n-type organic semiconductor to form a donor / acceptor interface.
  • the organic photoelectric conversion layer (51) of the structure which joined the p-type organic semiconductor and the n-type organic semiconductor can express high photoelectric conversion efficiency.
  • an organic photoelectric conversion layer (51) in which a p-type organic semiconductor and an n-type organic semiconductor are mixed is preferable because the junction interface between the two increases and the photoelectric conversion efficiency is improved.
  • the p-type organic semiconductor is a donor organic semiconductor.
  • the compound include compounds that are mainly represented by a hole-transporting organic compound and easily donate electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic semiconductor as long as it is an electron-donating organic compound.
  • the p-type organic semiconductor include, for example, triarylamine compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, triphenylmethane compounds, carbazole compounds, polysilane compounds, thiophene compounds, phthalocyanine compounds, cyanine compounds, Merocyanine compounds, oxonol compounds, polyamine compounds, indole compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, condensed aromatic carbocyclic compounds (eg, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene Derivatives), and metal complexes having nitrogen-containing heterocyclic compounds as ligands.
  • it is not restricted to the compound described above, If it is an organic compound with an ionization potential smaller than the organic compound used as an n-type (accept
  • An n-type organic semiconductor is an acceptor semiconductor and refers to a compound having a property of easily accepting electrons, typified by an electron transport compound. More specifically, an n-type semiconductor refers to a compound having a higher electron affinity when two compounds are used in contact with each other. Therefore, any compound can be used as the acceptor compound as long as it is an electron-accepting compound.
  • n-type semiconductor for example, a condensed aromatic carbocyclic compound (For example, a naphthalene derivative, anthracene derivative, a phenanthrene derivative, a tetracene derivative, a pyrene derivative, a perylene derivative, a fluoranthene derivative etc.), a nitrogen atom, an oxygen atom , 5- to 7-membered heterocyclic compounds containing a sulfur atom (for example, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole Imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole
  • Organic dyes can also be used as p-type organic semiconductors or n-type organic semiconductors.
  • Examples of applicable organic dyes include cyanine dyes, styryl dyes, hemicyanine dyes, merocyanine dyes (including zero methine merocyanine (simple merocyanine)), trinuclear merocyanine dyes, tetranuclear merocyanine dyes, rhodacyanine dyes, complex cyanine dyes, Complex merocyanine dye, allopolar dye, oxonol dye, hemioxonol dye, squalium dye, croconium dye, azamethine dye, coumarin dye, arylidene dye, anthraquinone dye, triphenylmethane dye, azo dye, azomethine dye, spiro compound, metallocene dye, Fluorenone dye, fulgide dye, perylene dye, perinone dye
  • fullerene or a fullerene derivative excellent in electron transportability As the n-type organic semiconductor, it is preferable to use fullerene or a fullerene derivative excellent in electron transportability.
  • the organic photoelectric conversion layer (51) contains fullerene or a fullerene derivative
  • electrons generated by photoelectric conversion can be quickly transported to the pixel electrode (54) or the counter electrode (52) via the fullerene molecule or fullerene derivative molecule.
  • fullerene molecules or fullerene derivative molecules are connected to form an electron path, the electron transport property is improved and high-speed response of the photoelectric conversion element can be obtained.
  • the organic photoelectric conversion layer (51) when a triarylamine compound described in, for example, Japanese Patent No. 4213832 is used as a p-type organic semiconductor mixed with fullerene or a fullerene derivative, a high SN ratio of the photoelectric conversion element Is particularly preferable.
  • an organic functional layer unit (U) constituting an organic EL element As the organic photoelectric conversion layer (51) according to the present invention, as described in FIGS. 7, 8, 12, and 13, which will be described later, an organic functional layer unit (U) constituting an organic EL element, and its configuration This is one of the preferable forms from the viewpoint that the manufacturing cost of the fingerprint information reading unit can be reduced.
  • the pixel electrode (54) generates charges generated in the organic photoelectric conversion layer (51) between the pixel electrode (54) and the counter electrode (52) facing the pixel electrode (54) by irradiation of reflected light (L2) from the fingerprint surface. It is an electrode for electric charge collection for collecting the. As shown in FIG. 3, the pixel electrode (54) is connected to the TFT portion (56) via the connection portion (55).
  • the TFT portion (56), which is this signal readout circuit, is provided on the base material (58) corresponding to each of the plurality of pixel electrodes (54), and is collected by the corresponding pixel electrode (54). A signal corresponding to the electric charge is read out.
  • the electric charge collected by each pixel electrode (54) becomes a signal in the TFT section (56) of each corresponding pixel, and an image is synthesized from signals acquired from a plurality of pixels.
  • the pixel electrode (54) is formed on the insulating layer (57) by sputtering or the like and then etched through a mask to form a predetermined pattern.
  • the pixel electrode (54) of the organic photoelectric conversion layer (51) is formed. Before the formation, the interlayer insulating film is exposed between the pixel electrodes (54).
  • the material for forming the pixel electrode (54) is not particularly limited as long as it is a conductive material generally used as an electrode.
  • Metal nitrides such as titanium nitride (TiN), metals such as gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), and these metals And conductive metal oxide mixtures or laminates, organic conductive compounds such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO.
  • the material for the pixel electrode (54) is any one of titanium oxynitride, titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride.
  • the size of the pixel electrode (54) is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less. More preferably, it is 1.5 ⁇ m or less.
  • the gap between the pixel electrodes (54) is preferably 0.3 ⁇ m or less, more preferably 0.25 ⁇ m or less, and further preferably 0.2 ⁇ m or less.
  • the pixel electrode (54) in the image sensor (S) according to the present invention may have the same configuration as the anode (3) that constitutes the organic EL element described above, as illustrated in FIGS. Good. Further, in the case of a top emission method as shown in FIGS. 4 to 8 described later, the pixel electrode (54) may be either light transmissive or non-light transmissive. In the bottom emission method as shown in FIGS. 9 to 13 described later, the pixel electrode (54) is light transmissive.
  • TFT thin layer transistor
  • a gate electrode integrated with an address wiring is formed on an insulating substrate by sputtering, and a gate insulating film made of a silicon oxide film, amorphous silicon (a A semiconductor layer made of -Si) and a channel protective film made of a silicon nitride film are sequentially laminated. Subsequently, an n-type amorphous silicon film (n + a-Si film) doped with phosphorus is formed on the channel protective film and the semiconductor layer by plasma CVD.
  • the TFT can be formed by removing the n + a-Si film above the channel.
  • Base material Although there is no restriction
  • Examples of the resin material constituting the resin base material include the same resin base materials that can be applied to the organic EL element described above.
  • polyethylene terephthalate abbreviation: PET
  • polyethylene naphthalate abbreviation: PEN
  • Polyesters such as polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate and cellulose nitrate.
  • polyvinylidene chloride polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, polyester Methylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, Examples thereof include cycloolefin resins such as Arton (trade name, manufactured by JSR) and Apel (trade name, manufactured by Mitsui Chemicals).
  • polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), and the like are used as constituent materials.
  • the film is preferably used as a resin base material having flexibility.
  • the thickness of the resin base material is not particularly limited because it is appropriately selected depending on the application, but is typically in the range of 1 to 800 ⁇ m, preferably in the range of 10 to 200 ⁇ m.
  • the thin film glass constituting the image sensor those formed by various molding methods can be used.
  • a thin film glass formed by a rollout method, a redraw method, a downdraw method, a float method, or the like can be used.
  • the average thickness of the thin film glass is preferably in the range of 5 to 200 ⁇ m, more preferably in the range of 5 to 100 ⁇ m. When the thickness is less than 5 ⁇ m, handling such as conveyance is difficult, and when the thickness exceeds 200 ⁇ m, the value of the thin film is diminished.
  • the thin film glass is not particularly limited as long as it is a multicomponent oxide glass.
  • soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz, An alkali glass etc. can be mentioned.
  • the base material (58) that constitutes the image sensor is a gas barrier layer that constitutes the organic EL element (58). You may combine with the transparent base material (1) which has 2).
  • the thickness of the resin substrate is preferably a thin resin substrate in the range of 3 to 200 ⁇ m, more preferably in the range of 10 to 150 ⁇ m, and particularly preferably in the range of 20 to 120 ⁇ m. Is within.
  • the electron blocking layer is a layer for suppressing injection of electrons from the pixel electrode (54) to the organic photoelectric conversion layer (51), and has a function of suppressing dark current.
  • the electron blocking layer may be composed of a plurality of layers, for example, a first blocking layer and a second blocking layer. As described above, by forming the electron blocking layer into a plurality of layers, an interface is formed between the first blocking layer and the second blocking layer, and discontinuity occurs in the intermediate level existing in each layer. It becomes difficult for the charge carrier to move through the level, and dark current can be suppressed.
  • the electron blocking layer may be a single layer.
  • An electron donating organic material can be used for the electron blocking layer.
  • TPD N, N′-bis (3-methylphen
  • a polymer such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, or a derivative thereof can be used. Any compound having sufficient hole transportability can be used.
  • An inorganic material can also be used as the electron blocking layer.
  • an inorganic material has a dielectric constant larger than that of an organic material, when it is used for the electron blocking layer 51, a large voltage is applied to the photoelectric conversion layer, and the photoelectric conversion efficiency can be increased.
  • Materials that can be used as an electron blocking layer include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, and oxide. Examples include indium silver and iridium oxide.
  • the fingerprint information reading unit is characterized in that it is composed of a light emitting part region constituted by an organic EL element, a light transmissive non-light emitting part region, and an image sensor (S).
  • a fingerprint information reading unit configured by a light emitting unit region (light emitting area), an organic EL panel configured by a non-emission unit, and an image sensor will be described.
  • FIG. 4 is a schematic cross-sectional view (embodiment 1) showing an example of the configuration of a fingerprint information reading unit of an optical fingerprint authentication apparatus including an organic EL panel of a top emission type applicable to the present invention.
  • the fingerprint information reading unit (100) shown in FIG. 4 has an upper surface on the finger surface side as a specimen, and irradiates the finger surface (not shown) with irradiation light (L1) on the upper surface side from the organic EL element (OLED).
  • the reflected light (L2) from the finger surface is read by the image sensor (S) to perform fingerprint authentication.
  • the fingerprint information reading unit (100) shown in FIG. 4 is configured such that the image sensor (S) according to the present invention is independently installed on the surface opposite to the light emitting surface of the organic EL panel (P). An example is shown.
  • an organic EL panel (P) disposed on the upper surface side has the configuration of the organic EL element (OLED) described in FIG. 2 and is an image sensor (58) carried by a base material (58).
  • S) Organic EL elements (OLEDs) are arranged in a separated state to form independent light emitting areas (13). Specifically, a unit of the image sensor (S) is formed on the base material (58), and the anode (3), the organic functional layer unit (U), the cathode (7T), and the like are formed thereon, for example.
  • a plurality of organic EL elements (OLED) are arranged.
  • the organic EL element (OLED) is sealed with a sealing adhesive layer (8), and is sealed with a sealing substrate (10) having, for example, a gas barrier layer (9) on the outermost surface.
  • the area where all of the anode (3), the organic functional layer unit (U) and the cathode (7) are present is the light emitting area (13), and the area between them is a light-transmitting non-transmitting area. It is a light emission part (12).
  • An image sensor (S) for receiving reflected light is disposed below the organic EL panel (P).
  • the counter electrode (52T) organic photoelectric conversion is performed from the light receiving surface side.
  • the layer (51) and the pixel electrode (54) constitute a photoelectric conversion element (PED).
  • a TFT unit (53) in which TFTs (56, not shown) are arranged in an insulating layer (57, not shown) is provided. In the method of emitting light on the upper surface side shown in FIG.
  • At least the cathode (7T) constituting the organic EL element (OLED) and the counter electrode (52T) constituting the image sensor (S) are transparent electrodes, and the organic EL element
  • the anode (3) of (OLED) and the pixel electrode (54) of the image sensor (S) may be light transmissive or non-light transmissive.
  • FIG. 5 is a schematic cross-sectional view (embodiment 2) showing another example of the configuration of the fingerprint information reading unit provided with the top (cathode side) light emitting type organic EL panel applicable to the present invention.
  • the fingerprint information reading unit (100) having the configuration shown in FIG. 5 is an example of a top emission type, and the counter electrode (52T) constituting the image sensor (S) is different from the configuration of the first embodiment described in FIG. It is an example formed in the non-light-emitting part (12) of the organic EL panel.
  • the counter electrode (52T) is the organic EL panel (P).
  • the non-light-emitting part (12) shows an example formed on the same plane as the organic EL element (OLED).
  • the cathode (7T) and the counter electrode (52T) located on the light emission side are both configured as light transmissive electrodes.
  • the counter electrode (52T) And an electrode having the same configuration as the anode (3) constituting the organic EL element (OLED), and in such a configuration, the anode (3T) and the counter electrode (52T)
  • the organic EL element is a double-sided light emission method.
  • FIG. 6 is a schematic sectional view (embodiment 3) showing another example of the configuration of the fingerprint information reading unit provided with the top (cathode side) light emitting type organic EL panel applicable to the present invention.
  • the fingerprint information reading unit (100) having the configuration shown in FIG. 6 is an example of a top emission type, and the counter electrode (52T) forming the image sensor (S) is different from the configuration of the first embodiment described in FIG. It is an example formed in the non-light-emitting part (12) of the organic EL panel.
  • the counter electrode is a non-light emitting portion of the organic EL panel and is formed on the same plane as the organic EL element. An example is shown.
  • the cathode (7T) and the counter electrode (52T) positioned on the light emitting side are both configured as light transmissive electrodes.
  • the counter electrode (52T ) And the cathode (7T) constituting the organic EL element (OLED) are shown as an electrode having the same configuration, and both the cathode (7T) and the counter electrode (52T) are the light-transmitting electrodes having the same configuration.
  • FIG. 7 is a schematic cross-sectional view (Embodiment 4) showing another example of the configuration of the fingerprint information reading unit provided with the top (cathode side) light emitting organic EL panel applicable to the present invention.
  • the fingerprint information reading unit (100) having the configuration shown in FIG. 7 is an example of a top emission type, and in addition to the configuration of the third embodiment described in FIG. 6, an organic photoelectric conversion layer ( 51) is formed in the non-light emitting part (12) of the organic EL panel.
  • two components of the counter electrode and the organic photoelectric conversion layer are the non-light emitting portion of the organic EL panel, and the organic EL element. Is an example formed on the same plane.
  • the counter electrode (52T) is composed of a light transmissive electrode similar to the cathode (7T) located on the light emitting side, and the organic photoelectric conversion layer (51) is further formed.
  • the organic functional layer unit (U) that constitutes the organic EL element (OLED) is formed in the same configuration as the organic EL element (OLED) in that the manufacturing cost can be reduced due to the common formation process. is there.
  • FIG. 8 is a schematic cross-sectional view (Embodiment 5) showing another example of the configuration of the fingerprint information reading unit provided with the top (cathode side) light emitting organic EL panel applicable to the present invention.
  • the fingerprint information reading unit (100) having the configuration shown in FIG. 8 is an example of a top emission type, and the organic photoelectric conversion layer constituting the image sensor (S) is different from the configurations of the embodiments described with reference to FIGS. This is an example in which all the constituent elements of (51) are formed in the non-light emitting portion (12) of the organic EL panel.
  • the counter electrode (52T), the organic photoelectric conversion layer (51), and the pixel electrode (54) constituting the image sensor (S) according to the present invention are all non-light emitting portions (12) of the organic EL panel (P).
  • a configuration example formed on the same plane as the organic EL element (OLED) is shown.
  • a counter electrode (52T) is made into the same structure as the cathode (7T) of an organic EL element (OLED), and an organic photoelectric converting layer ( 51) is the same configuration as the organic functional layer unit (U) of the organic EL element (OLED), and the pixel electrode (54) is the same as the anode (3) of the organic EL element (OLED).
  • Forming such forming materials in common is a preferable aspect in that the manufacturing is easy and the manufacturing cost can be reduced by the common formation process.
  • FIG. 9 is a schematic cross-sectional view (embodiment 6) showing an example of a fingerprint information reading unit provided with a bottom surface (anode side) light emitting type organic EL panel applicable to the present invention.
  • the organic EL panel (P) having the configuration shown in FIG. 9 has a lower surface on the finger surface side that is a specimen, and irradiates light (L1) to the lower surface side of the organic EL element (OLED) with respect to the finger surface (not shown).
  • This is a method for performing fingerprint authentication by irradiating and reading reflected light (L2) from the finger surface with an image sensor (S).
  • the basic configuration of the fingerprint information reading unit (100) is the same as that of the first embodiment described above with reference to FIG. 4, but since it is a bottom emission type, the anode (3T) constituting the organic EL element (OLED)
  • the pixel electrode (54T) constituting the image sensor (S) is formed of a light transmissive electrode.
  • the cathode (7) constituting the organic EL element (OLED) and the corresponding electrode (52) constituting the image sensor (S) may be light transmissive or non-light transmissive.
  • FIG. 10 is a schematic cross-sectional view (Embodiment 7) showing another example of the configuration of the fingerprint information reading unit including the lower surface (anode side) light emitting type organic EL panel applicable to the present invention.
  • the basic configuration of the fingerprint information reading unit (100) having the configuration shown in FIG. 10 is the same as that of the second embodiment described above with reference to FIG. 5. However, since it is a bottom emission type, an organic EL element (OLED) is used.
  • the anode (3T) that constitutes the pixel electrode (54T) that constitutes the image sensor (S) is composed of a light transmissive electrode.
  • the counter electrode (52T) and the anode (3T) constituting the organic EL element (OLED) are the same configuration as the light transmissive electrode.
  • both the anode (3T) and the counter electrode (52T) are made of light-transmitting electrodes having the same configuration, so that the manufacturing cost can be reduced by sharing the formation process.
  • the cathode (7) constituting the organic EL element (OLED) may be light transmissive or non-light transmissive.
  • FIG. 11 is a schematic cross-sectional view (Embodiment 8) showing another example of the configuration of the fingerprint information reading unit including the lower surface (anode side) light emitting type organic EL panel applicable to the present invention.
  • the basic configuration of the fingerprint information reading unit (100) having the configuration shown in FIG. 11 is the same as that of the fourth embodiment described above with reference to FIG. 7, but since it is a bottom emission type, an organic EL element (OLED) is used.
  • the anode (3T) that constitutes the pixel electrode (54T) that constitutes the image sensor (S) is composed of a light transmissive electrode.
  • FIG. 12 is a schematic cross-sectional view (Embodiment 9) showing another example of the configuration of the fingerprint information reading unit including the lower surface (anode side) light emitting type organic EL panel applicable to the present invention.
  • the basic configuration of the fingerprint information reading unit (100) having the configuration shown in FIG. 12 is the same as that of the fourth embodiment described above with reference to FIG. 7, but since it is a bottom emission type, an organic EL element (OLED) is used.
  • the anode (3T) that constitutes the pixel electrode (54T) that constitutes the image sensor (S) is composed of a light transmissive electrode.
  • the counter electrode (52) and the cathode (7) constituting the organic EL element (OLED), the organic photoelectric conversion layer (51), and the organic EL element (OLED) are configured.
  • Forming the organic functional layer unit (U) having the same structure is a preferable aspect in that the manufacturing cost can be reduced by sharing the formation process.
  • FIG. 13 is a schematic cross-sectional view (Embodiment 10) showing another example of the configuration of the fingerprint information reading unit provided with the lower surface (anode side) light emitting organic EL panel applicable to the present invention.
  • the basic configuration of the fingerprint information reading unit (100) having the configuration shown in FIG. 13 is the same as that of the fifth embodiment described above with reference to FIG. 8, but since it is a bottom emission type, an organic EL element (OLED) is used.
  • the anode (3T) that constitutes the pixel electrode (54T) that constitutes the image sensor (S) is composed of a light transmissive electrode.
  • the organic functional layer unit (U) and the pixel electrode (54T) are the same as the anode (3T) of the organic EL element (OLED), and such a forming material is formed in common.
  • this is a preferable aspect in that the manufacturing is easy and the manufacturing cost can be reduced by the common formation process.
  • FIG. 14 is a schematic configuration diagram (Embodiment 11) showing an example of the configuration of an optical fingerprint authentication apparatus including a fingerprint information reading unit having an organic EL panel including a donut-shaped organic EL element.
  • the schematic cross-sectional view of the fingerprint information reading unit (100) described in A of FIG. 14 has the same configuration as the fingerprint information reading unit (100) constituting the optical fingerprint authentication device described above with reference to FIG.
  • An organic EL panel (P) composed of an organic EL element (OLED) and a light-transmitting non-light emitting portion (12), and a photoelectric conversion element (PED) configured as exemplified in FIG. 8 or FIG.
  • the structure is formed in the light-transmitting non-light emitting portion (12).
  • a TFT unit (53) composed of a resin base material and TFT is disposed below the organic EL panel (P), and an image sensor for reading fingerprint information of a finger (F) as a specimen by an optical method.
  • Is configured. 11 is a glass substrate for holding a finger.
  • Irradiated light (L1) is emitted from the organic EL element (OLED) to the fingerprint surface of the finger (F), and reflected light (L2), which is an optical signal, is composed of a photoelectric conversion element (PED) and a TFT unit (53).
  • PED photoelectric conversion element
  • TFT unit 53
  • an elliptical organic EL panel (P) Is a method in which a continuous donut-shaped organic EL element (OLED) is disposed on the outer peripheral portion of the substrate, and a non-light-emitting portion (12) is formed in the central gap portion of the organic EL element (OLED).
  • the fingerprint pattern can be measured by a wide opening.
  • FIG. 14C is a bottom view of the fingerprint information reading unit (100) having the configuration shown in FIG. 14A.
  • the doughnut-shaped organic EL element (OLED) and its non-existence are shown for the finger (F) as the specimen.
  • the photoelectric conversion element (PED) is disposed in the light emitting region, and the TFT unit (53) is disposed on the entire lower surface thereof.
  • the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
  • FIG. 15 is a schematic configuration diagram (Embodiment 12) showing an example of a configuration of an optical fingerprint authentication apparatus including a fingerprint information reading unit having an organic EL panel including a donut-shaped organic EL element.
  • the schematic cross-sectional view of the fingerprint information reading unit (100) described in A of FIG. 15 has the same configuration as the fingerprint information reading unit (100) that constitutes the optical fingerprint authentication device described above with reference to FIG.
  • an organic EL panel (P) composed of an organic EL element (OLED) as illustrated in FIGS. 4 to 6 and a light-transmitting non-light emitting part (12), and a photoelectric conversion element (PED) below the organic EL panel (PED)
  • a TFT unit (53) composed of a resin base material and a TFT is arranged to constitute an image sensor for reading fingerprint information of a finger (F) as a specimen by an optical method.
  • 11 is a glass substrate for holding a finger.
  • Irradiated light (L1) is emitted from the organic EL element (OLED) to the fingerprint surface of the finger (F), and reflected light (L2), which is an optical signal, is composed of a photoelectric conversion element (PED) and a TFT unit (53).
  • PED photoelectric conversion element
  • TFT unit 53
  • the shape of the organic EL panel (P1) including the organic EL element (OLED) in the fingerprint information reading unit (100) having such a configuration is the same as the shape shown in FIG. 14B described above.
  • FIG. 15 is a bottom view of the fingerprint information reading unit (100) shown in A of FIG. 15, with a donut-shaped organic EL element (OLED) and a whole surface of the finger (F) as a specimen.
  • OLED organic EL element
  • F whole surface of the finger
  • PED photoelectric conversion element
  • TFT unit (53) is arranged on the entire lower surface.
  • FIG. 15C the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
  • FIG. 16 is a schematic configuration diagram (embodiment 13) showing an example of a fingerprint information reading unit (100) having an organic EL panel having a rectangular organic EL element and an image sensor.
  • the schematic cross-sectional view shown by A in FIG. 16 is the same as the configuration shown in A in FIG. 14, but as shown by B in FIG. 16 and C in FIG.
  • the EL element (OLED) and the photoelectric conversion element (PED) are characterized by a rectangular shape.
  • the optical fingerprint authentication apparatus having such a configuration is difficult to cover the entire circular fingerprint, but is an effective method for detecting an important fingerprint center pattern.
  • the organic EL panel (P) has a rectangular shape, and a rectangular organic EL element (OLED) that is continuous at the end thereof is arranged.
  • a non-light-emitting portion (12) having an area is formed, and a rectangular photoelectric conversion element (PED) is arranged inside the non-light-emitting portion (12) according to the form of the non-light-emitting portion (12), as shown in FIG.
  • a rectangular TFT unit (53) is disposed on the entire lower surface.
  • FIG. 16C the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
  • an organic EL element (OLED) having a specific shape for example, a donut shape or a rectangular shape
  • an anode (3), an organic functional layer unit (U) and the cathode (7) are, for example, vacuum deposition methods (for example, resistance heating vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method), sputtering method, reactive sputtering method, molecular beam
  • a mask member having a desired shape by a wet coating method such as an epitaxy method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, or a screen printing method.
  • the function of the organic functional layer unit (U) can be deactivated by ultraviolet irradiation, and an organic EL element having a desired shape
  • FIG. 17 is a schematic configuration diagram (embodiment 14) showing an example of a fingerprint information reading unit (100) having an organic EL panel in which strip-shaped organic EL elements are spaced apart on four sides and an image sensor.
  • independent strip-shaped organic EL elements are arranged on each of the four sides of the rectangular organic EL panel (P). It is a structure, and the shape of the non-light-emitting part (12) and the photoelectric conversion element (PED) is also a rectangle.
  • FIG. 17C is a bottom view of the fingerprint information reading unit (100) shown in FIG. 17A, and is an organic EL element (OLED) in which the finger (F) as a specimen is arranged on four sides apart from each other. ), A photoelectric conversion element (PED) is disposed in the non-light emitting portion, and a rectangular TFT unit (53) is disposed on the entire lower surface thereof.
  • OLED organic EL element
  • PED photoelectric conversion element
  • FIG. 18 is a schematic configuration diagram (Embodiment 15) showing an example of a fingerprint information reading unit (100) having a circular organic EL panel having a rectangular non-light emitting portion at the center and a rectangular image sensor.
  • the outer periphery of the organic EL panel (P) of the fifteenth embodiment is elliptical as in FIG. 14, but the non-light emitting portion (12) disposed in the center and the photoelectric
  • the conversion element (PED) is a rectangle similar to FIG. 16 is shown.
  • FIG. 18 is a bottom view of the fingerprint information reading unit (100) shown in A of FIG. 18, and a donut-shaped organic EL element (OLED) and its non-light emission with respect to the finger (F) as a specimen.
  • a rectangular photoelectric conversion element (PED) is arranged in the part (12), and a TFT unit (53) is arranged on the entire lower surface.
  • PED photoelectric conversion element
  • FIG. 18C the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
  • FIG. 19 is a schematic configuration diagram (embodiment 16) showing an example of a fingerprint information reading unit (100) having an organic EL panel in which a plurality of organic EL elements are arranged in parallel in a stripe shape and an image sensor.
  • 19B is a configuration in which a plurality of rectangular organic EL elements (OLEDs) having different sizes are arranged in parallel in a stripe shape on an elliptical organic EL panel (P).
  • OLEDs organic EL elements
  • FIG. 19C is a bottom view of the fingerprint information reading unit (100) shown in FIG. 19A, and a plurality of rectangular organic EL elements (OLEDs) having different sizes with respect to the finger (F) as a specimen.
  • the photoelectric conversion element (PED) is disposed on the non-light emitting portion (12), and the TFT unit (53) is disposed on the entire lower surface thereof.
  • the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
  • the opening ratio (%) which is the ratio occupied by the image sensor (S) with respect to the total area of the organic EL panel (P), is preferably 50% or more, and more preferably 60% or more. Yes, particularly preferably 70% or more. As the aperture ratio increases, the total amount of light emitted by the organic EL element (OLED) decreases, and therefore it is preferable to apply an organic EL element (OLED) having a high light emission intensity.
  • organic EL element having high light emission intensity
  • OLED organic EL element having high light emission intensity
  • an organic EL element having a tandem structure in which two or more organic functional layer units including a light emitting layer are stacked via an intermediate layer or an intermediate electrode can be exemplified.
  • FIG. 20 is a schematic configuration diagram (Embodiment 17) showing an example of a fingerprint information reading unit (100) having an organic EL panel in which a plurality of organic EL elements are arranged apart from each other on the outer periphery and an image sensor.
  • a plurality of rectangular organic EL elements are independently arranged on the outer periphery of an elliptical organic EL panel (P), and the organic EL element (OLED)
  • a non-light emitting portion (12) is formed between and in the center.
  • FIG. 20C is a bottom view of the fingerprint information reading unit (100) shown in FIG. 20A, and a plurality of rectangular organic EL elements (OLEDs) are arranged circumferentially with respect to the finger (F) as the specimen. Are arranged in a separated state, a photoelectric conversion element (PED) is arranged in the non-light emitting portion (12), and a TFT unit (53) is arranged on the entire lower surface thereof.
  • PED photoelectric conversion element
  • TFT unit (53) is arranged on the entire lower surface thereof.
  • the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
  • Such a configuration is preferable in that a high aperture ratio can be obtained as compared with the striped configuration illustrated in FIG.
  • FIG. 21 is a schematic diagram illustrating an example of an array pattern of the pixel electrodes (54) in the photoelectric conversion element (PED) constituting the image sensor, and a plurality of pixel electrodes (54) independent in the photoelectric conversion element (PED).
  • a method of taking a regular two-dimensional array is preferable.
  • Specific methods of fingerprint authentication using the optical fingerprint authentication device of the present invention include, for example, Japanese Patent Application Laid-Open Nos. 2003-256377, 2004-005619, 2004-246586, and 2005. -063246, JP-A-2005-118289, JP-A-2006-244224, JP-A-2007-289457, JP-A-2007-328511, JP-A-2008-009821, and JP-A-2008-171238.
  • the methods described in Japanese Patent Laid-Open No. 2009-271825, Japanese Patent Laid-Open No. 2011-141880, and the like can be appropriately selected and applied.
  • the optical fingerprint authentication device of the present invention comprises an organic EL panel as an illumination light source and a photoelectric conversion type image sensor having an organic photoelectric conversion layer as an image sensor, and has a thin and simple configuration, and various types can be used depending on the purpose.
  • This is an optical fingerprint authentication device that has a shaped organic electroluminescence element as an illumination light source and can be manufactured at low cost. It can be used for personal authentication using fingerprint patterns in bank ATMs, mobile phones, personal digital assistants, personal computers, etc. It can be suitably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electroluminescent Light Sources (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention addresses the problem of providing a highly economical optical fingerprint authentication device having a thin and simple structure and utilizing as an illumination light source organic electroluminescence elements of various shapes suitable for different purposes. The present optical fingerprint authentication device has at least a light source and an image sensor, and detects diffused light by use of the image sensor, and is characterized in that the device has an organic electroluminescence panel as the light source, wherein the organic electroluminescence panel comprises a light-emitting region configured with organic electroluminescence elements, and a light-transmissive non-light-emitting section; and the image sensor has at least an organic photoelectric conversion layer and is equipped with a fingerprint read unit which is disposed in the non-light-emitting section of the organic electroluminescence panel or adjacent to the non-light-emitting section.

Description

光学式指紋認証装置Optical fingerprint authentication device
 本発明は、指紋を利用して光学方式により個人認証を行う光学式指紋認証装置に関する。さらに詳しくは、本発明は、照明用の光源として有機エレクトロルミネッセンス素子を用い、検出用のイメージセンサーとして光電変換方式を用いた指紋情報読み取り部を具備した光学式指紋認証装置に関する。 The present invention relates to an optical fingerprint authentication apparatus that performs personal authentication by an optical method using a fingerprint. More specifically, the present invention relates to an optical fingerprint authentication device including a fingerprint information reading unit using an organic electroluminescence element as a light source for illumination and using a photoelectric conversion method as an image sensor for detection.
 近年、銀行のATM(Automated Teller Machine、現金自動支払機)、携帯電話機、PDA(Personal Data Assistant,携帯情報端末)、パーソナルコンピュータ等において、使用者を特定する方法の一つとして、使用者の指紋、静脈、声紋、虹彩等の生体パターンを用いた個人認証の必要性が増大している。その中でも指紋は最も歴史が古く実績のある生体認証方法である。古くから全反射プリズムを用いた指紋入力装置が実用化されているが、小型化が難しいためノートパソコンやPDA、携帯電話機などの携帯端末には不向きであった。そのため薄型化、小型化の進んだ様々な指紋入力装置が開示されている。 In recent years, as one of the methods for identifying a user in a bank ATM (Automated Teller Machine), a mobile phone, a PDA (Personal Data Assistant, a personal digital assistant), a user's fingerprint There is an increasing need for personal authentication using biological patterns such as veins, voiceprints, and irises. Among them, fingerprint is the oldest and proven biometric authentication method. A fingerprint input device using a total reflection prism has been put into practical use for a long time, but it has been difficult to reduce the size of the fingerprint input device, and is not suitable for portable terminals such as notebook computers, PDAs, and mobile phones. For this reason, various fingerprint input devices that have been made thinner and smaller have been disclosed.
 例えば、特許3684233号公報には、配線基板上の固体撮像素子の横に照明用光源として発光ダイオード(Light Emitting Diode、以下、LEDと略記する。)を配置し、当該照明用のLEDから出た光が指内部に入り、散乱光が指紋を通過して固体撮像素子に入り、指紋パターンを認識する方法が開示されている。 For example, in Japanese Patent No. 3684233, a light emitting diode (hereinafter abbreviated as LED) is disposed as a light source for illumination next to a solid-state imaging device on a wiring board, and the light is emitted from the LED for illumination. A method is disclosed in which light enters the finger and scattered light passes through the fingerprint and enters the solid-state imaging device to recognize the fingerprint pattern.
 また、特開2005-18595号公報には、固体撮像素子の横に照明用LEDが配置され、当該照明用LEDから出た光が保護部材を通過して指内部に入り、散乱光が指紋、保護部材を通過して固体撮像素子に入り、指紋パターンを認識する方法が開示されている。 In JP 2005-18595 A, an illumination LED is arranged next to a solid-state imaging device, and light emitted from the illumination LED passes through a protective member and enters the inside of the finger. A method for recognizing a fingerprint pattern by passing through a protective member and entering a solid-state imaging device is disclosed.
 また、特開2003-233805号公報や特開2005-38406号公報には、回路基板上にイメージセンサー(固体撮像素子)、保護部材を積層し、保護部材表面に指を密着させる方法で、回路基板上であって光センサーの横に照明用LEDが配置され、その光を、ライトガイドを通して指に当てる方法が開示されている。 Further, in Japanese Patent Laid-Open Nos. 2003-233805 and 2005-38406, an image sensor (solid-state imaging device) and a protective member are stacked on a circuit board, and a finger is brought into close contact with the surface of the protective member. A method of disposing an illumination LED on a substrate next to a light sensor and applying the light to a finger through a light guide is disclosed.
 また、特許文献1には、照明用光源としてLEDを使用し、指と撮像素子の相対位置を移動させながら、指内部の散乱光により生じる指紋パターンを撮像素子で撮影する指紋入力装置が開示されている。 Patent Document 1 discloses a fingerprint input device that uses an LED as a light source for illumination and captures a fingerprint pattern generated by scattered light inside the finger with the image sensor while moving the relative position between the finger and the image sensor. ing.
 また、特許文献2には、LEDからの光を指面に照射し、指面からの反射光を撮像素子で受光する光学式指紋入力装置で、特定の構造を有する撮像チップを具備している構成が提案されている。 Further, Patent Document 2 is an optical fingerprint input device that irradiates light from an LED onto a finger surface and receives reflected light from the finger surface with an image sensor, and includes an imaging chip having a specific structure. A configuration is proposed.
 しかしながら、上記で提案されている各指紋認証装置においては、照明用の光源としてLEDを使用しているため、照明部としては、導光板の組み入れ等が必要となり、その結果、厚い構成となるため、装置の薄型化という観点からは、大きな障害となっていた。また、LEDを用いた指紋認証装置は、製造工程が複雑であり、コスト上昇の要因となっていた。加えて、LEDは、その構造に起因し、円形や楕円状といった曲面を有する形状への加工が難しいという問題を抱えている。 However, since each fingerprint authentication device proposed above uses an LED as a light source for illumination, it is necessary to incorporate a light guide plate or the like as the illumination unit, resulting in a thick structure. From the viewpoint of reducing the thickness of the device, it has been a major obstacle. In addition, the fingerprint authentication device using LEDs has a complicated manufacturing process, which has been a cause of cost increase. In addition, the LED has a problem that it is difficult to process into a shape having a curved surface such as a circle or an ellipse due to its structure.
特開2007-328511号公報JP 2007-328511 A 特開2005-118289号公報JP 2005-118289 A
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、照明光源として有機エレクトロルミネッセンスパネルと、イメージセンサーとして少なくとも有機光電変換層を有する光電変換方式のイメージセンサーを具備し、薄型で簡易な構成で、目的に応じて様々な形状の有機エレクトロルミネッセンス素子を照明光源として有し、低コストで作製が可能な光学式指紋認証装置を提供することである。 The present invention has been made in view of the above problems, and its solution is to provide an organic electroluminescence panel as an illumination light source and a photoelectric conversion type image sensor having at least an organic photoelectric conversion layer as an image sensor. It is an object of the present invention to provide an optical fingerprint authentication device that has an organic electroluminescence element of various shapes as an illumination light source with a simple configuration and can be manufactured at low cost.
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、少なくとも光源とイメージセンサーを有し、当該光源として、有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)を有する有機エレクトロルミネッセンスパネル(以下、有機ELパネルともいう。)を適用し、イメージセンサーとして少なくとも有機光電変換層を有する構成の指紋情報読み取り部を具備している光学式指紋認証装置により、薄型で簡易な構成で、目的に応じて様々な形状の有機エレクトロルミネッセンス素子を照明光源として有し、低コストで作製が可能な光学式指紋認証装置を実現することができることを見出した。 As a result of intensive studies in view of the above problems, the present inventor has at least a light source and an image sensor, and an organic electroluminescence panel having an organic electroluminescence element (hereinafter also referred to as an organic EL element) as the light source ( Hereinafter, it is also referred to as an organic EL panel.) With an optical fingerprint authentication device having a fingerprint information reading unit having at least an organic photoelectric conversion layer as an image sensor, a thin and simple configuration can be used. Accordingly, the present inventors have found that an optical fingerprint authentication device that has various shapes of organic electroluminescence elements as illumination light sources and can be manufactured at low cost can be realized.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.少なくとも光源とイメージセンサーを有し、拡散光を当該イメージセンサーにより検出する光学式指紋認証装置であって、
 前記光源として、有機エレクトロルミネッセンスパネルを有し、
 当該有機エレクトロルミネッセンスパネルは、有機エレクトロルミネッセンス素子により構成される発光部領域と、光透過性の非発光部より構成され、
 前記イメージセンサーが、少なくとも有機光電変換層を有し、かつ
 前記イメージセンサーが、前記有機エレクトロルミネッセンスパネルの非発光部又は前記非発光部に隣接して配置されている指紋情報読み取り部を具備している
 ことを特徴とする光学式指紋認証装置。
1. An optical fingerprint authentication device having at least a light source and an image sensor and detecting diffused light by the image sensor,
As the light source, it has an organic electroluminescence panel,
The organic electroluminescence panel is composed of a light emitting part region constituted by an organic electroluminescence element and a light transmissive non-light emitting part.
The image sensor includes at least an organic photoelectric conversion layer, and the image sensor includes a non-light-emitting portion of the organic electroluminescence panel or a fingerprint information reading unit disposed adjacent to the non-light-emitting portion. An optical fingerprint authentication device characterized by that.
 2.前記イメージセンサーは、少なくとも対向電極、有機光電変換層、画素電極及び薄膜トランジスターにより構成されていることを特徴とする第1項に記載の光学式指紋認証装置。 2. 2. The optical fingerprint authentication device according to claim 1, wherein the image sensor includes at least a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film transistor.
 3.前記イメージセンサーが、前記有機エレクトロルミネッセンスパネルの発光面とは反対の面側に、独立して設置されていることを特徴とする第1項又は第2項に記載の光学式指紋認証装置。 3. The optical fingerprint authentication device according to claim 1 or 2, wherein the image sensor is independently installed on a surface opposite to a light emitting surface of the organic electroluminescence panel.
 4.前記イメージセンサーが、前記有機エレクトロルミネッセンスパネルの発光面側に、独立して設置されていることを特徴とする第1項又は第2項に記載の光学式指紋認証装置。 4. The optical fingerprint authentication device according to claim 1 or 2, wherein the image sensor is independently installed on a light emitting surface side of the organic electroluminescence panel.
 5.前記イメージセンサーを構成する対向電極、有機光電変換層及び画素電極の少なくとも一つが、前記有機エレクトロルミネッセンスパネルの非発光部に形成されていることを特徴とする第2項から第4項までのいずれか一項に記載の光学式指紋認証装置。 5. Any one of Items 2 to 4, wherein at least one of the counter electrode, the organic photoelectric conversion layer, and the pixel electrode constituting the image sensor is formed in a non-light emitting portion of the organic electroluminescence panel. An optical fingerprint authentication device according to claim 1.
 6.前記イメージセンサーを構成する対向電極、有機光電変換層及び画素電極の全てが、前記有機エレクトロルミネッセンスパネルの非発光部で、有機エレクトロルミネッセンス素子と同一平面上に形成されていることを特徴とする第2項から第4項までのいずれか一項に記載の光学式指紋認証装置。 6. The counter electrode, the organic photoelectric conversion layer, and the pixel electrode constituting the image sensor are all non-light emitting portions of the organic electroluminescence panel and are formed on the same plane as the organic electroluminescence element. Item 5. The optical fingerprint authentication device according to any one of Items 2 to 4.
 7.前記有機エレクトロルミネッセンス素子が、一対の対向する電極間に有機機能層ユニットを有し、前記電極の一方が光透過性の電極であり、他方が非光透過性の電極であることを特徴とする第1項から第6項までのいずれか一項に記載の光学式指紋認証装置。 7. The organic electroluminescence element has an organic functional layer unit between a pair of opposing electrodes, wherein one of the electrodes is a light transmissive electrode and the other is a non-light transmissive electrode. The optical fingerprint authentication device according to any one of items 1 to 6.
 8.前記光透過性の電極が、酸化物半導体又は薄膜の金属若しくは合金で構成されていることを特徴とする第7項に記載の光学式指紋認証装置。 8. 8. The optical fingerprint authentication device according to claim 7, wherein the light transmissive electrode is made of an oxide semiconductor or a thin metal or alloy.
 9.前記有機エレクトロルミネッセンスパネルが、外周部領域に、連続した構成の有機エレクトロルミネッセンス素子が配置され、中央部が前記光透過性の非発光部であることを特徴とする第1項から第8項までのいずれか一項に記載の光学式指紋認証装置。 9. The organic electroluminescence panel is configured such that an organic electroluminescence element having a continuous configuration is arranged in an outer peripheral region, and a central portion is the light transmissive non-light emitting portion. The optical fingerprint authentication device according to any one of the above.
 10.前記有機エレクトロルミネッセンスパネルが、ストライプ状に並列配置された複数の有機エレクトロルミネッセンス素子を有し、かつ前記ストライプ状の有機エレクトロルミネッセンス素子の間に、前記光透過性の非発光部を有していることを特徴とする第1項から第8項までのいずれか一項に記載の光学式指紋認証装置。 10. The organic electroluminescence panel has a plurality of organic electroluminescence elements arranged in parallel in a stripe shape, and has the light-transmissive non-light emitting portion between the stripe-shaped organic electroluminescence elements. The optical fingerprint authentication device according to any one of items 1 to 8, characterized in that:
 11.前記有機エレクトロルミネッセンスパネルが、外周部領域に、独立した複数の有機エレクトロルミネッセンス素子を有し、中央部に前記光透過性の非発光部を有することを特徴とする第1項から第8項までのいずれか一項に記載の光学式指紋認証装置。 11. The organic electroluminescence panel has a plurality of independent organic electroluminescence elements in an outer peripheral region, and has the light transmissive non-light emitting portion in a central portion. The optical fingerprint authentication device according to any one of the above.
 12.前記有機エレクトロルミネッセンスパネルが、可視光領域の波長の光を発光することを特徴とする第1項から第11項までのいずれか一項に記載の光学式指紋認証装置。 12. The optical fingerprint authentication device according to any one of Items 1 to 11, wherein the organic electroluminescence panel emits light having a wavelength in a visible light region.
 13.前記有機エレクトロルミネッセンスパネルが、赤外領域の波長の光を発光することを特徴とする第1項から第11項までのいずれか一項に記載の光学式指紋認証装置。 13. The optical fingerprint authentication device according to any one of Items 1 to 11, wherein the organic electroluminescence panel emits light having a wavelength in an infrared region.
 本発明によれば、薄型で簡易な構成で、目的に応じて様々な形状の有機エレクトロルミネッセンス素子を照明光源として有し、低コストで作製が可能な光学式指紋認証装置を提供することができる。 According to the present invention, it is possible to provide an optical fingerprint authentication device that has an organic electroluminescence element of various shapes according to the purpose as an illumination light source and can be manufactured at low cost with a thin and simple configuration. .
 本発明で規定する構成からなる光学式指紋認証装置の技術的特徴とその効果の発現機構は、以下のように推察される。 The technical features of the optical fingerprint authentication apparatus having the configuration defined in the present invention and the mechanism of the effects thereof are presumed as follows.
 従来の光学式指紋認証装置においては、前述のように光照射光源としては、LEDが広く使用されてきたが、LEDは光源寿命という点では利点を有しているが、その発光原理から、構造として厚くなること、あるいは、様々な形状への加工が極めて困難であるという問題を抱えていた。 In the conventional optical fingerprint authentication device, as described above, an LED has been widely used as the light irradiation light source, but the LED has an advantage in terms of the light source life, but from the light emission principle, the structure However, it has a problem that it becomes thicker or it is extremely difficult to process into various shapes.
 本発明者は、この様の問題を解決する方法として、光源に有機EL素子を具備している有機エレクトロルミネッセンスパネルと適用することにより、上記課題を解決することができることを見いだしたものである。 The present inventor has found that the above-mentioned problems can be solved by applying an organic electroluminescence panel having an organic EL element as a light source as a method for solving such a problem.
 すなわち、有機EL素子の薄膜発光素子としての特徴を生かすとともに、その形成方法(例えば、化学蒸着法や湿式塗布方式)により、任意の発光パターンを有する有機EL素子の形成を行うことができ、光学式指紋認証装置に要求される様々な形状の検出エリアを有する指紋情報読み取り部を設計することができ、様々なニーズの指紋認証装置に対応することが可能となった。また、様々な形状で、かつ均一な光照射光源を実現することで、指紋認証装置の認識率の向上が可能となる。 That is, an organic EL element having an arbitrary light emission pattern can be formed by utilizing the characteristics of the organic EL element as a thin film light emitting element and the formation method (for example, chemical vapor deposition method or wet coating method). It is possible to design a fingerprint information reading unit having detection areas of various shapes required for a fingerprint authentication apparatus, and it is possible to cope with fingerprint authentication apparatuses having various needs. In addition, by realizing a uniform light irradiation light source having various shapes, the recognition rate of the fingerprint authentication device can be improved.
 加えて、認証の対象である指の指紋部からの拡散光を検知するイメージセンサーとして、少なくとも有機光電変換層を有するイメージセンサーを用いること、更に詳しくは、対向電極、有機光電変換層、画素電極及び薄膜トランジスターにより構成されている光電変換方式のイメージセンサーを適用することにより、指紋部からの拡散光に対し優れた光電変換効率を発現するとともに、指紋情報読み取り部を形成する際に、有機EL素子を構成している陽極とイメージセンサーの対向電極、有機EL素子を構成している陰極とイメージセンサーの対向電極、あるいは有機EL素子を構成している有機機能層ユニットとイメージセンサーの有機光電変換層を、それぞれ同一の構成材料で形成することが可能であり、製造時の工程の簡略化、材料の共有化、一つの工程での同時形成が可能となり、製造コストの低減を実現することができる。 In addition, an image sensor having at least an organic photoelectric conversion layer is used as an image sensor for detecting diffused light from a fingerprint portion of a finger to be authenticated. More specifically, a counter electrode, an organic photoelectric conversion layer, a pixel electrode In addition, by applying a photoelectric conversion type image sensor composed of a thin film transistor, an excellent photoelectric conversion efficiency with respect to diffused light from the fingerprint portion is exhibited, and an organic EL is formed when forming a fingerprint information reading portion. Organic photoelectric conversion of image sensor and organic functional layer unit constituting the organic EL element and the counter electrode of the anode and the image sensor constituting the element, the cathode constituting the organic EL element and the counter electrode of the image sensor, or the organic EL element Each layer can be made of the same material, simplifying the manufacturing process and materials Sharing enables simultaneous formation of a single step, it is possible to realize a reduction in manufacturing cost.
本発明の光学式指紋認証装置を構成する指紋情報読み取り部の全体構成の一例を示す概略図Schematic which shows an example of the whole structure of the fingerprint information reading part which comprises the optical fingerprint authentication apparatus of this invention 本発明の光学式指紋認証装置を構成する指紋情報読み取り部の全体構成の他の一例を示す概略図Schematic which shows another example of the whole structure of the fingerprint information reading part which comprises the optical fingerprint authentication apparatus of this invention. 本発明に適用可能な有機EL素子の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of an organic EL element applicable to the present invention 本発明に適用可能なイメージセンサーの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of an image sensor applicable to the present invention 本発明に適用可能な上面発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の一例を示す概略断面図(実施形態1)Schematic sectional view showing an example of a configuration of a fingerprint information reading unit provided with an organic EL panel of a top emission type applicable to the present invention (Embodiment 1) 本発明に適用可能な上面(陰極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態2)Schematic sectional view showing another example of a configuration of a fingerprint information reading unit provided with an organic EL panel of an upper surface (cathode side) emission method applicable to the present invention (Embodiment 2) 本発明に適用可能な上面(陰極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態3)Schematic sectional view showing another example of a configuration of a fingerprint information reading unit provided with an organic EL panel of an upper surface (cathode side) emission method applicable to the present invention (Embodiment 3) 本発明に適用可能な上面(陰極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態4)Schematic sectional view showing another example of the configuration of the fingerprint information reading unit provided with the organic EL panel of the upper surface (cathode side) emission method applicable to the present invention (Embodiment 4) 本発明に適用可能な上面(陰極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態5)Schematic sectional view showing another example of a configuration of a fingerprint information reading unit provided with an organic EL panel of an upper surface (cathode side) light emission method applicable to the present invention (Embodiment 5) 本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の一例を示す概略断面図(実施形態6)Schematic sectional view showing an example of a fingerprint information reading unit provided with a lower surface (anode side) light emitting type organic EL panel applicable to the present invention (Embodiment 6) 本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態7)Schematic sectional view showing another example of a configuration of a fingerprint information reading unit provided with a bottom surface (anode side) light emitting type organic EL panel applicable to the present invention (Embodiment 7) 本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態8)Schematic sectional view showing another example of a configuration of a fingerprint information reading unit provided with a bottom surface (anode side) light emitting type organic EL panel applicable to the present invention (Embodiment 8) 本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態9)Schematic sectional view showing another example of a configuration of a fingerprint information reading unit provided with an organic EL panel of a lower surface (anode side) light emission method applicable to the present invention (Embodiment 9) 本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態10)Schematic sectional view showing another example of the configuration of the fingerprint information reading unit provided with the lower surface (anode side) light emitting type organic EL panel applicable to the present invention (Embodiment 10) ドーナツ状の有機EL素子を具備した有機ELパネルを有する指紋情報読み取り部を具備した光学式指紋認証装置の構成の一例を示す概略構成図(実施形態11)Schematic configuration diagram showing an example of the configuration of an optical fingerprint authentication device provided with a fingerprint information reading unit having an organic EL panel provided with a donut-shaped organic EL element (Embodiment 11) ドーナツ状の有機EL素子を具備した有機ELパネルを有する指紋情報読み取り部を具備した光学式指紋認証装置の他の構成の一例を示す概略構成図(実施形態12)Schematic configuration diagram showing an example of another configuration of an optical fingerprint authentication device including a fingerprint information reading unit having an organic EL panel including a donut-shaped organic EL element (Embodiment 12) 長方形型の有機EL素子を具備した有機ELパネルを有する指紋情報読み取り部を具備した光学式指紋認証装置の構成の一例を示す概略構成図(実施形態13)Schematic configuration diagram showing an example of the configuration of an optical fingerprint authentication apparatus having a fingerprint information reading unit having an organic EL panel having a rectangular organic EL element (Embodiment 13) 短冊状の有機EL素子を4辺に配置した有機ELパネルを有する指紋情報読み取り部を具備した光学式指紋認証装置の構成の一例を示す概略構成図(実施形態14)Schematic configuration diagram showing an example of the configuration of an optical fingerprint authentication device including a fingerprint information reading unit having an organic EL panel in which strip-shaped organic EL elements are arranged on four sides (Embodiment 14) 中心に長方形の非発光部を設けた円形の有機ELパネルを有する指紋情報読み取り部を具備した光学式指紋認証装置の構成の一例を示す概略構成図(実施形態15)Schematic configuration diagram showing an example of the configuration of an optical fingerprint authentication device provided with a fingerprint information reading unit having a circular organic EL panel provided with a rectangular non-light emitting unit in the center (Embodiment 15) 複数の短冊状の有機EL素子をストライプ状に並列配置した有機ELパネルを有する指紋情報読み取り部を具備した光学式指紋認証装置の構成の一例を示す概略構成図(実施形態16)Schematic configuration diagram showing an example of a configuration of an optical fingerprint authentication device including a fingerprint information reading unit having an organic EL panel in which a plurality of strip-shaped organic EL elements are arranged in parallel in a stripe shape (Embodiment 16) 外周部に複数の有機EL素子を離間して配置した有機ELパネルを有する光学指紋情報読み取り部を具備した式指紋認証装置の構成の一例を示す概略構成図(実施形態17)Schematic configuration diagram showing an example of the configuration of an expression fingerprint authentication device having an optical fingerprint information reading unit having an organic EL panel in which a plurality of organic EL elements are arranged on the outer peripheral portion apart from each other (Embodiment 17) イメージセンサーにおける画素電極の配列パターンの一例を示す模式図Schematic diagram showing an example of an array pattern of pixel electrodes in an image sensor
 本発明の光学式指紋認証装置は、少なくとも光源とイメージセンサーを有し、拡散光を当該イメージセンサーにより検出する光学式指紋認証装置であって、前記光源として、有機エレクトロルミネッセンスパネルを有し、当該有機エレクトロルミネッセンスパネルは、有機エレクトロルミネッセンス素子により構成される発光部領域と、光透過性の非発光部より構成され、前記イメージセンサーは、少なくとも有機光電変換層を有し、前記イメージセンサーは、前記有機エレクトロルミネッセンスパネルの非発光部又は前記非発光部に隣接して配置されている指紋情報読み取り部を具備していることを特徴とする。この特徴は、各請求項に係る発明に共通する又は対応する技術的特徴である。 The optical fingerprint authentication device of the present invention is an optical fingerprint authentication device that has at least a light source and an image sensor, and detects diffused light by the image sensor, and has an organic electroluminescence panel as the light source, The organic electroluminescence panel is composed of a light emitting part region constituted by an organic electroluminescence element and a light transmissive non-light emitting part, and the image sensor has at least an organic photoelectric conversion layer, and the image sensor The organic electroluminescence panel includes a non-light-emitting portion or a fingerprint information reading portion disposed adjacent to the non-light-emitting portion. This feature is a technical feature common to or corresponding to the claimed invention.
 本発明の実施形態としては、本発明の目的とする効果をより発現できる観点から、イメージセンサーとして、少なくとも対向電極、有機光電変換層、画素電極及び薄膜トランジスターにより構成することが、光電変換効率に優れたイメージセンサーを実現することができる点で好ましい。 As an embodiment of the present invention, from the viewpoint that the effects of the present invention can be more manifested, it is possible to improve the photoelectric conversion efficiency by comprising at least a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film transistor as an image sensor. This is preferable in that an excellent image sensor can be realized.
 また、イメージセンサーが、有機ELパネルの発光面側、あるいは発光面とは反対側に配置されている構成であることが、様々な用途に応じた発光方式に対応させることができ、適用できる選択肢の幅が広がる観点から好ましい態様である。 In addition, the configuration in which the image sensor is disposed on the light emitting surface side of the organic EL panel or on the side opposite to the light emitting surface can be adapted to light emitting methods corresponding to various uses and can be applied. This is a preferred embodiment from the viewpoint of widening the width.
 また、イメージセンサーを構成する対向電極、有機光電変換層及び画素電極の少なくとも一つが、有機ELパネルの非発光部で、有機EL素子と同一平面上に形成されていること、あるいは、対向電極、有機光電変換層及び画素電極の全てが有機EL素子と同一平面上に形成されている構成とすることが、様々な用途に応じた発光方式に対応させることができ、適用できる選択肢の幅が広がるとともに、有機EL素子の陽極、有機機能層、陰極の形成材料と、対向電極、有機光電変換層、画素電極の形成材料を共通化することができ、作製における製造コストの低減及び製造工程の簡略化等を達成することができる点で好ましい。 In addition, at least one of the counter electrode, the organic photoelectric conversion layer, and the pixel electrode constituting the image sensor is a non-light emitting portion of the organic EL panel and is formed on the same plane as the organic EL element, or the counter electrode, The configuration in which the organic photoelectric conversion layer and the pixel electrode are all formed on the same plane as the organic EL element makes it possible to correspond to a light emitting method according to various uses, and the range of applicable options is widened. At the same time, the materials for forming the anode, organic functional layer, and cathode of the organic EL element and the materials for forming the counter electrode, the organic photoelectric conversion layer, and the pixel electrode can be used in common, thereby reducing manufacturing costs and simplifying the manufacturing process. It is preferable in that it can be achieved.
 また、有機EL素子が、一対の対向する電極間に有機機能層ユニットを有し、前記電極の一方が光透過性の電極であり、他方が非光透過性の電極とする構成が、効率よく照射光を指紋検出部に照射することができ、かつイメージセンサーの受光感度を高めることができる観点から好ましい。 The organic EL element has an organic functional layer unit between a pair of opposed electrodes, and one of the electrodes is a light transmissive electrode and the other is a non-light transmissive electrode. This is preferable from the standpoint that irradiation light can be applied to the fingerprint detection unit and the light receiving sensitivity of the image sensor can be increased.
 また、有機EL素子を構成する透明電極としては、酸化物半導体又は薄膜の金属若しくは合金で構成することが、高い光透過性と導電性に優れた電極を得ることができる点で好ましい。 Further, the transparent electrode constituting the organic EL element is preferably composed of an oxide semiconductor or a thin-film metal or alloy because an electrode having high light transmittance and excellent conductivity can be obtained.
 また、光透過性の非発光部に光透過性の電極を形成すること、あるいは光透過性の電極及び有機機能層ユニットを有する構成とすることが、光学式指紋認証装置の製造方法をより簡便にできる観点から好ましい。 In addition, forming a light transmissive electrode in the light transmissive non-light-emitting portion or having a light transmissive electrode and an organic functional layer unit makes the manufacturing method of the optical fingerprint authentication device easier. It is preferable from a viewpoint that can be made.
 また、本発明の光学式指紋認証装置を構成する有機ELパネルにおける有機EL素子の配置パターンとしては、外周部領域に連続した構成の有機EL素子を配置し、中央部に光透過性の非発光部を形成する方法、あるいは、複数のストライプ状の有機EL素子を並列配置し、有機EL素子間に光透過性の非発光部を形成する方法、外周部領域に、独立した複数の有機EL素子を配置し、中央部に非発光部を形成する方法等が、効率的に指紋認証に必要な光学情報を得ることができる観点から好ましい形態である。 In addition, as an arrangement pattern of the organic EL elements in the organic EL panel constituting the optical fingerprint authentication device of the present invention, an organic EL element having a continuous configuration is arranged in the outer peripheral area, and a light-transmitting non-light-emitting element is provided in the center. Part forming method, or arranging a plurality of stripe organic EL elements in parallel and forming a light-transmitting non-light emitting part between the organic EL elements, and a plurality of independent organic EL elements in the outer peripheral region Is a preferable form from the viewpoint of efficiently obtaining optical information necessary for fingerprint authentication.
 また、有機エレクトロルミネッセンスパネルが可視光領域の波長の光を発光すること、あるいは、赤外領域の波長の光を発光する仕様であることが、使用用途を拡大することができる観点から好ましい。 In addition, it is preferable that the organic electroluminescence panel emits light having a wavelength in the visible light region, or has a specification for emitting light having a wavelength in the infrared region, from the viewpoint of expanding the usage.
 以下の説明において、本発明でいう「有機ELパネル」とは、同一平面上に、有機EL素子により形成される発光部と、光透過性の非発光部より構成されているものをいう。 In the following description, the “organic EL panel” as used in the present invention refers to a structure composed of a light emitting portion formed of an organic EL element and a light-transmitting non-light emitting portion on the same plane.
 本発明でいう「有機EL素子」とは、指紋認証するため、検体面(具体的には、指紋面)に光照射する面光源であり、主には透明基材上に、対向する一対の光透過性を有する電極(陽極及び陰極)、あるいは光透過性の電極と非光透過性の電極から構成される電極対と、当該一対の電極間に、主に電子又は正孔の輸送を制御するキャリア輸送機能層と発光層により構成される有機機能層ユニットを有し、更にその上部に封止部材を設けた構成をいう。ただし、説明の都合で、封止部材の記載や説明を省略する場合がある。また、以下の説明においては、有機EL素子の発光を制御する制御回路や配線の記載や説明は省略する。 The “organic EL element” as used in the present invention is a surface light source that irradiates a specimen surface (specifically, a fingerprint surface) with light for fingerprint authentication, and is mainly a pair of opposing surfaces on a transparent substrate. Controls mainly the transport of electrons or holes between a pair of electrodes and a pair of electrodes having light transmission properties (anode and cathode), or a light transmission electrode and a non-light transmission electrode. It has an organic functional layer unit composed of a carrier transporting functional layer and a light emitting layer, and further has a sealing member provided thereon. However, description and description of the sealing member may be omitted for convenience of explanation. In the following description, description and description of a control circuit and wiring for controlling light emission of the organic EL element are omitted.
 本発明でいう「有機機能層ユニット」とは、後述の図2で説明するが、一例としては、基材上に、第1のキャリア輸送機能層群1(例えば、正孔注入層、正孔輸送層等)と、リン光性化合物等を含有する発光層と、第2のキャリア輸送機能層群2(例えば、正孔阻止層、電子輸送層、電子注入層等)が積層配置されている構成をいう。 The “organic functional layer unit” in the present invention will be described later with reference to FIG. 2. As an example, the first carrier transporting functional layer group 1 (for example, a hole injection layer, a hole is formed on a substrate. A transport layer, a light emitting layer containing a phosphorescent compound, and the like, and a second carrier transport function layer group 2 (for example, a hole blocking layer, an electron transport layer, an electron injection layer, and the like) are stacked. Refers to the configuration.
 本発明でいう「発光エリア」とは、層厚方向で、陽極、有機機能層ユニット及び陰極の全てが存在している領域をいう。 In the present invention, the “light emitting area” refers to a region where all of the anode, the organic functional layer unit, and the cathode exist in the layer thickness direction.
 本発明でいう「陽極」とは、電圧として(+)を印加する電極であり、「アノード」あるいは「第1の電極」という場合がある。また、「陰極」とは、電圧として(-)を印加する電極であり、「カソード」または「第2の電極」という場合がある。 In the present invention, the “anode” is an electrode to which (+) is applied as a voltage, and may be referred to as “anode” or “first electrode”. The “cathode” is an electrode to which (−) is applied as a voltage, and may be referred to as “cathode” or “second electrode”.
 また、本発明でいう「イメージセンサー」とは、指紋部からの拡散光を検知する機能を有する光電変換方式のイメージセンサーをいい、主には、対向電極、有機光電変換層、画素電極及び薄膜トランジスター(略称:TFT)により構成されているものをいう。 In addition, the “image sensor” in the present invention refers to a photoelectric conversion type image sensor having a function of detecting diffused light from a fingerprint portion, and mainly includes a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film. A transistor (abbreviation: TFT) is used.
 また、本発明でいう光電変換素子(略称:PED、Photo electronic device)とは、主には対向電極、有機光電変換層及び画素電極により構成されているものをいう。 In addition, the photoelectric conversion element (abbreviation: PED, Photo electronic device) referred to in the present invention means an element mainly composed of a counter electrode, an organic photoelectric conversion layer, and a pixel electrode.
 また、本発明でいう「光透過性」とは、波長550nmにおける光透過率が60%以上であることをいい、好ましくは70%以上であり、さらに好ましくは80%以上である。また、「非光透過性」とは、波長550nmにおける光透過率が40%以下であることをいい、好ましくは30%以下であり、さらに好ましくは20%以下である。 Further, “light transmittance” as used in the present invention means that the light transmittance at a wavelength of 550 nm is 60% or more, preferably 70% or more, and more preferably 80% or more. “Non-light-transmitting” means that the light transmittance at a wavelength of 550 nm is 40% or less, preferably 30% or less, and more preferably 20% or less.
 以下、本発明の構成要素、及び本発明を実施するための形態について、図を交えて詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。なお、各図の説明において、構成要素の末尾に括弧内で記載した数字は、各図における符号を表す。 Hereinafter, constituent elements of the present invention and modes for carrying out the present invention will be described in detail with reference to the drawings. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value. In the description of each figure, the number described in parentheses at the end of the constituent element represents the code in each figure.
 《光学式指紋認証装置の基本構成》
 本発明の光学式指紋認証装置は、主に光源とイメージセンサーを有し、光源として、有機EL素子により構成される発光部領域と、光透過性の非発光部により構成される有機ELパネルを有し、前記非発光部内部又は前記非発光部に隣接している位置に光電変換方式のイメージセンサーが配置されている構成の指紋情報読み取り部を具備していることを特徴とする。
<Basic configuration of optical fingerprint authentication device>
The optical fingerprint authentication apparatus of the present invention mainly has a light source and an image sensor, and an organic EL panel composed of a light emitting part region constituted by an organic EL element and a light transmissive non-light emitting part as a light source. And a fingerprint information reading unit having a configuration in which a photoelectric conversion type image sensor is disposed in the non-light-emitting unit or at a position adjacent to the non-light-emitting unit.
 図1A及び図1Bは、本発明の光学式指紋認証装置を構成する指紋読み取り部の全体構成の一例を示す概略図である。 FIG. 1A and FIG. 1B are schematic views showing an example of the entire configuration of a fingerprint reading unit constituting the optical fingerprint authentication device of the present invention.
 図1Aは、指紋情報読み取り部として、有機ELパネル(P)の光透過性の非発光部(12)で、有機EL素子と同一平面上にイメージセンサー(S)である光電変換素子(PED)を配置した一例を示してある。 FIG. 1A shows a light-transmitting non-light emitting part (12) of an organic EL panel (P) as a fingerprint information reading part, and a photoelectric conversion element (PED) which is an image sensor (S) on the same plane as the organic EL element. An example in which is arranged is shown.
 図1Aにおいて、光学式指紋認証装置の指紋情報読み取り部(100)は、有機EL素子(OLED)と光透過性の非発光部(12)より構成される有機ELパネル(P)と、当該光透過性の非発光部(12)の内部に、イメージセンサー(S)の構成部材である光電変換素子(PED)が配置されている。更にその下部には、基材とTFTにより構成されているTFTユニット(53)が配置され、イメージセンサー(S)を構成している。11は、指触する指(F)面を保持するためのガラス基板である。 In FIG. 1A, a fingerprint information reading unit (100) of an optical fingerprint authentication device includes an organic EL panel (P) composed of an organic EL element (OLED) and a light-transmitting non-light emitting unit (12), and the light. A photoelectric conversion element (PED), which is a constituent member of the image sensor (S), is disposed inside the transmissive non-light-emitting portion (12). Further, a TFT unit (53) composed of a base material and TFT is disposed at the lower part thereof, thereby constituting an image sensor (S). Reference numeral 11 denotes a glass substrate for holding a finger (F) surface to be touched.
 図1Bにおいて、光学式指紋認証装置の指紋情報読み取り部(100)としては、有機EL素子(OLED)と光透過性の非発光部(12)より構成される有機ELパネル(P)と、その下部に、イメージセンサー(S)の構成部材である光電変換素子(PED)と、基材とTFTにより構成されているTFTユニット(53)が積層配置され、イメージセンサー(S)を構成している。 In FIG. 1B, the fingerprint information reading unit (100) of the optical fingerprint authentication apparatus includes an organic EL panel (P) composed of an organic EL element (OLED) and a light-transmitting non-light emitting unit (12), In the lower part, a photoelectric conversion element (PED) which is a constituent member of the image sensor (S) and a TFT unit (53) composed of a base material and a TFT are laminated to constitute an image sensor (S). .
 図1A及び図1Bで示す構成では、上面側に光(L1)を発光する方式を示しており、有機ELパネル(P)を構成している光源である有機EL素子(OLED)より光(L1、照射光ともいう。)を放出して、指(F)の指紋面に照射し、指紋面からの反射光(L2、光信号ともいう。)を、有機ELパネル(P)の光透過性の非発光部(12)を通過させて、イメージセンサー(S)でその光学情報を読み取り、図には示していないが、イメージセンサー(S)で読み取った画像情報を解析し、保存してある(登録してある)指紋情報と比較判断して、指紋の認証を行う。 1A and 1B shows a method of emitting light (L1) on the upper surface side, and light (L1) from an organic EL element (OLED) which is a light source constituting the organic EL panel (P). ), And irradiates the fingerprint surface of the finger (F) with the light reflected from the fingerprint surface (L2, also referred to as an optical signal) to transmit light of the organic EL panel (P). The optical information is read by the image sensor (S) through the non-light emitting portion (12), and the image information read by the image sensor (S) is analyzed and stored, although not shown in the figure. The fingerprint is authenticated by comparing with the fingerprint information (registered).
 《指紋読み取り部の各構成要素》
 次いで、本発明の光学式指紋認証装置を構成する有機EL素子及びイメージセンサーの構成の詳細について説明する。
<Each component of fingerprint reader>
Next, details of the configuration of the organic EL element and the image sensor constituting the optical fingerprint authentication device of the present invention will be described.
 《有機EL素子》
 [有機EL素子の基本構成]
 以下、本発明に係る有機ELパネルを構成する有機EL素子の基本的な構成について、図を交えて説明する。
<< Organic EL element >>
[Basic structure of organic EL element]
Hereinafter, the basic configuration of the organic EL element constituting the organic EL panel according to the present invention will be described with reference to the drawings.
 図2は、本発明に適用可能な有機EL素子の有機機能層ユニットを含めた基本的な構成を示す概略断面図である。 FIG. 2 is a schematic cross-sectional view showing a basic configuration including an organic functional layer unit of an organic EL element applicable to the present invention.
 図2で示す本発明に係る有機EL素子(OLED)は、光透過性を有する透明基材(1)、例えば、ガラス基材又はフレキシブル性樹脂基材上に、発光層を含む有機機能層ユニット(U)を積層した構造を示してある。 The organic EL element (OLED) according to the present invention shown in FIG. 2 is an organic functional layer unit including a light emitting layer on a transparent substrate (1) having light transparency, for example, a glass substrate or a flexible resin substrate. A structure in which (U) is laminated is shown.
 図2において、光透過性を有する透明基材(1)上に、ガスバリアー層(2)を形成している例を示してある。当該ガスバリアー層(2)上に、第1電極として陽極(3)を形成し、その上に、例えば、正孔注入層、正孔輸送層等から構成される第1のキャリア輸送機能層群1(4)、発光層(5)及び、例えば、電子輸送層、電子注入層等から構成される第2のキャリア輸送機能層群2(6)を順次積層して、有機機能層ユニット(U)を構成している。更に、有機機能層ユニット(U)の上部に、第2電極として、陰極(7)が設けられている。そして、上記積層体全体を被覆する構造で、封止用接着層(8)及びガスバリアー層(9)を有する封止基板(10)が配置されて、有機EL素子(OLED)を構成している。 FIG. 2 shows an example in which a gas barrier layer (2) is formed on a transparent substrate (1) having optical transparency. On the gas barrier layer (2), an anode (3) is formed as a first electrode, and a first carrier transporting functional layer group composed of, for example, a hole injection layer, a hole transport layer, etc. 1 (4), a light emitting layer (5), and a second carrier transporting functional layer group 2 (6) composed of, for example, an electron transporting layer, an electron injecting layer, and the like are sequentially laminated to form an organic functional layer unit (U ). Further, a cathode (7) is provided as a second electrode on the organic functional layer unit (U). And the sealing board | substrate (10) which has the contact bonding layer (8) and a gas barrier layer (9) is arrange | positioned by the structure which coat | covers the said laminated body whole, and comprises an organic EL element (OLED). Yes.
 図2に示す構成において、例えば、下面側が発光面である場合には、第1電極である陽極(3)が上記で規定する光透過率を有する透明電極であり、第2電極である陰極(7)が、非光透過性の電極であり、陽極(3)が配置されている指面側から、指(F)に光照射(L1)を行う方法の一例である。 In the configuration shown in FIG. 2, for example, when the lower surface side is a light emitting surface, the anode (3) as the first electrode is a transparent electrode having the light transmittance defined above, and the cathode ( 7) is a non-light-transmissive electrode, which is an example of a method of performing light irradiation (L1) on the finger (F) from the finger surface side where the anode (3) is disposed.
 発光エリア(13)とは、図2で示すように、陽極(3)と、有機機能層ユニット(U)、特には発光層(5)と、陰極(7)の全てが、同一面上に存在する領域をいう。 As shown in FIG. 2, the light emitting area (13) means that the anode (3), the organic functional layer unit (U), particularly the light emitting layer (5), and the cathode (7) are all on the same plane. An area that exists.
 [有機EL素子の構成要素]
 はじめに、本発明の有機ELパネルを構成する有機EL素子の主要構成要素の詳細について説明する。
[Components of organic EL element]
First, the detail of the main component of the organic EL element which comprises the organic EL panel of this invention is demonstrated.
 本発明に係る光透過性を有する有機EL素子(OLED)においては、図2で説明したように、ガスバリアー層(2)を有する透明基板(1)上に、第1電極である光透過性を有する陽極(3)、次いで、例えば、正孔注入層、正孔輸送層等から構成されるキャリア輸送機能層群1(4)、発光層(5)、例えば、電子輸送層、電子注入層等から構成されるキャリア輸送機能層群2(6)が積層されている有機機能層群(U)により、発光領域を構成している。そして、さらに上部に、第2電極である陰極(7)、封止用接着層(8)及びガスバリアー層(9)を有する封止基板(10)が設けられている。 In the organic EL element (OLED) having optical transparency according to the present invention, as described in FIG. 2, the optical transparency as the first electrode is formed on the transparent substrate (1) having the gas barrier layer (2). Next, a carrier transport function layer group 1 (4) composed of, for example, a hole injection layer, a hole transport layer, and the like, and a light emitting layer (5), for example, an electron transport layer, an electron injection layer The light emitting region is constituted by the organic functional layer group (U) in which the carrier transporting functional layer group 2 (6) composed of, for example, is laminated. Further, a sealing substrate (10) having a cathode (7) as a second electrode, a sealing adhesive layer (8), and a gas barrier layer (9) is provided on the upper part.
 以下に、有機EL素子の構成の代表例を示す。 The following is a typical example of the configuration of the organic EL element.
 (i)光透過性を有する陽極(3)/有機機能層ユニット(U)〔キャリア輸送機能層群1(4:正孔注入輸送層)/発光層(5)/キャリア輸送機能層群2(6:電子注入輸送層)〕/非光透過性を有する陰極(7)
 (ii)光透過性を有する陽極(3)/有機機能層ユニット(U)〔キャリア輸送機能層群1(4:正孔注入輸送層)/発光層(5)/キャリア輸送機能層群2(6:正孔阻止層/電子注入輸送層)〕/非光透過性を有する陰極(7)
 (iii)光透過性を有する陽極(3)/有機機能層ユニット(U)〔キャリア輸送機能層群1(4:正孔注入輸送層/電子阻止層)/発光層(5)/キャリア輸送機能層群2(6:正孔阻止層/電子注入輸送層)〕/非光透過性を有する陰極(7)
 (iv)光透過性を有する陽極(3)/有機機能層ユニット(U)〔キャリア輸送機能層群1(4:正孔注入層/正孔輸送層)/発光層(5)/キャリア輸送機能層群2(6:電子輸送層/電子注入層)〕/非光透過性を有する陰極(7)
 (v)光透過性を有する陽極(3)/有機機能層ユニット(U)〔キャリア輸送機能層群1(4:正孔注入層/正孔輸送層)/発光層(5)/キャリア輸送機能層群2(6:正孔阻止層/電子輸送層/電子注入層)〕/非光透過性を有する陰極(7)
 (vi)光透過性を有する陽極(3)/有機機能層ユニット(U)〔キャリア輸送機能層群1(4:正孔注入層/正孔輸送層/電子阻止層)/発光層(5)/キャリア輸送機能層群2(6:正孔阻止層/電子輸送層/電子注入層)〕/非光透過性を有する陰極(7)
 上記(i)~(vi)で説明した構成では、陽極(3)を光透過性、陰極(7)を非光透過性として説明したが、上面側に発光する方式では、その構成は逆となり、陽極(3)を非光透過性、陰極(7)を光透過性として構成する。更に、必要に応じて、陽極(3)及び陰極(7)の双方を、光透過性の電極で構成してもよい。
(I) Light-transmitting anode (3) / organic functional layer unit (U) [carrier transport functional layer group 1 (4: hole injection transport layer) / light emitting layer (5) / carrier transport functional layer group 2 ( 6: Electron injection transport layer)] / Non-light-transmissive cathode (7)
(Ii) Light-transmitting anode (3) / organic functional layer unit (U) [carrier transport functional layer group 1 (4: hole injection transport layer) / light emitting layer (5) / carrier transport functional layer group 2 ( 6: hole blocking layer / electron injecting and transporting layer)] / non-light-transmitting cathode (7)
(Iii) Light-transmitting anode (3) / organic functional layer unit (U) [carrier transport functional layer group 1 (4: hole injection transport layer / electron blocking layer) / light emitting layer (5) / carrier transport function Layer group 2 (6: hole blocking layer / electron injecting and transporting layer)] / non-light-transmitting cathode (7)
(Iv) Light-transmitting anode (3) / organic functional layer unit (U) [carrier transport functional layer group 1 (4: hole injection layer / hole transport layer) / light emitting layer (5) / carrier transport function Layer group 2 (6: electron transport layer / electron injection layer)] / non-light-transmitting cathode (7)
(V) Light-transmitting anode (3) / organic functional layer unit (U) [carrier transport functional layer group 1 (4: hole injection layer / hole transport layer) / light emitting layer (5) / carrier transport function Layer group 2 (6: hole blocking layer / electron transport layer / electron injection layer)] / non-light-transmitting cathode (7)
(Vi) Light-transmitting anode (3) / organic functional layer unit (U) [carrier transport functional layer group 1 (4: hole injection layer / hole transport layer / electron blocking layer) / light emitting layer (5) / Carrier transport functional layer group 2 (6: hole blocking layer / electron transport layer / electron injection layer)] / non-light transmissive cathode (7)
In the configuration described in (i) to (vi) above, the anode (3) is described as being light transmissive and the cathode (7) is non-light transmissive. However, in the method of emitting light on the upper surface side, the configuration is reversed. The anode (3) is made non-light transmissive and the cathode (7) is made light transmissive. Further, if necessary, both the anode (3) and the cathode (7) may be constituted by light transmissive electrodes.
 更に、発光層間には非発光性の中間層を有していてもよい。中間層は電荷発生層であってもよく、マルチフォトンユニット構成であってもよい。 Further, a non-light emitting intermediate layer may be provided between the light emitting layers. The intermediate layer may be a charge generation layer or a multi-photon unit configuration.
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。 As for the outline of the organic EL element applicable to the present invention, for example, JP2013-157634A, JP2013-168552A, JP2013-177361A, JP2013-187221A, JP JP 2013-191644 A, JP 2013-191804 A, JP 2013-225678 A, JP 2013-235994 A, JP 2013-243234 A, JP 2013-243236 A, JP 2013-2013 A. JP 242366, JP 2013-243371, JP 2013-245179, JP 2014-003249, JP 2014-003299, JP 2014-013910, JP 2014-017493. Gazette, JP 2014-017494 A It can be mentioned configurations described in equal.
 また、タンデム型の有機EL素子とすることもでき、タンデム型の具体例としては、例えば、米国特許第6,337,492号明細書、米国特許第7,420,203号明細書、米国特許第7,473,923号明細書、米国特許第6,872,472号明細書、米国特許第6,107,734号明細書、米国特許第6,337,492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。 A tandem organic EL element can also be used. Specific examples of the tandem type include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International Publication No. 2005 / 009087, JP 2006-228712, JP 2006-24791, JP 2006-49393, JP 2006-49394, JP 2006-49396, JP 2011-96679. JP, JP 2005-340187, JP 4711424, JP 34966681, JP 3884564, Patent No. 4213169, JP 2010-197219 A, JP 2009-076929 A, JP 2008-078414 A, JP 2007-059848 A, JP 2003-272860 A, JP 2003-045676 A. Examples of the element configuration and constituent materials described in the publication, International Publication No. 2005/094130, and the like are included, but the present invention is not limited thereto.
 更に、有機EL素子を構成する各層について説明する。 Further, each layer constituting the organic EL element will be described.
 〔透明基材〕
 有機EL素子(OLED)に適用可能な透明基材(1)としては、光透過性を有する基材であれば特に制限はなく、例えば、ガラス、プラスチック等の種類を挙げることができる。
(Transparent substrate)
The transparent substrate (1) applicable to the organic EL element (OLED) is not particularly limited as long as it is a light-transmitting substrate, and examples thereof include glass and plastic.
 本発明に適用可能な光透過性を有する基材(1)としては、ガラス、石英、樹脂基材を挙げることができる。更に好ましくは、有機EL素子にフレキシブル性を付与することができる観点からフレキシブル性樹脂基材である。 Examples of the light-transmitting substrate (1) applicable to the present invention include glass, quartz, and a resin substrate. More preferably, it is a flexible resin base material from the viewpoint of imparting flexibility to the organic EL element.
 本発明に適用可能な樹脂基材を構成する樹脂材料としては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名、JSR社製)及びアペル(商品名、三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the resin material constituting the resin base material applicable to the present invention include polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose. Cellulose esters such as triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate, and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol , Syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyetherketone, polyimide, Ether sulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Examples thereof include cycloolefin resins such as Apel (trade name, manufactured by Mitsui Chemicals).
 これら樹脂基材のうち、コストや入手の容易性の点では、ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)等を構成材料とするフィルムが、フレキシブル性を有する樹脂基材として好ましく用いられる。 Among these resin base materials, in terms of cost and availability, polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), and the like are used as constituent materials. A film is preferably used as a resin substrate having flexibility.
 また、上記の樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 The resin substrate may be an unstretched film or a stretched film.
 本発明に適用可能な樹脂基材は、従来公知の一般的な製膜方法により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の樹脂基材を製造することができる。また、未延伸の樹脂基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、樹脂基材の搬送方向(縦軸方向、MD方向)、又は樹脂基材の搬送方向と直角の方向(横軸方向、TD方向)に延伸することにより、延伸樹脂基材を製造することができる。この場合の延伸倍率は、樹脂基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍の範囲内であることが好ましい。 The resin base material applicable to the present invention can be manufactured by a conventionally known general film forming method. For example, an unstretched resin base material that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. In addition, the unstretched resin base material is transported in the direction of the resin base material (vertical axis direction) by a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. , MD direction), or a stretched resin substrate can be produced by stretching in a direction perpendicular to the conveying direction of the resin substrate (horizontal axis direction, TD direction). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the resin base material, but is preferably in the range of 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 樹脂基材の厚さとしては、3~200μmの範囲内にある薄膜の樹脂基材であることが好ましいが、より好ましくは10~150μmの範囲内であり、特に好ましくは、20~120μmの範囲内である。 The thickness of the resin substrate is preferably a thin resin substrate in the range of 3 to 200 μm, more preferably in the range of 10 to 150 μm, and particularly preferably in the range of 20 to 120 μm. Is within.
 また、本発明に係る光透過性を有する基材として適用可能なガラス基材としては、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。 Further, as a glass substrate applicable as a light-transmitting substrate according to the present invention, soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz Etc.
 〔第1電極:陽極〕
 有機EL素子を構成する陽極としては光透過性の電極であることが好ましく、例えば、酸化物半導体又は薄膜の金属若しくは合金で構成されていることが好ましい形態であり、例えば、Ag、Au等の金属又は金属を主成分とする合金、CuI、あるいはインジウム・スズの複合酸化物(ITO)、SnOやZnO等の酸化物半導体を挙げることができる。
[First electrode: Anode]
The anode constituting the organic EL element is preferably a light transmissive electrode. For example, the anode is preferably composed of an oxide semiconductor or a metal or alloy of a thin film. For example, Ag, Au, etc. A metal or an alloy containing a metal as a main component, CuI, indium-tin composite oxide (ITO), or an oxide semiconductor such as SnO 2 or ZnO can be given.
 陽極の形成方法としては、例えば、真空蒸着法(例えば、抵抗加熱蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等)、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法等を挙げることができる。 As a method for forming the anode, for example, a vacuum evaporation method (for example, resistance heating evaporation method, electron beam evaporation method, ion plating method, ion beam evaporation method, etc.), sputtering method, reactive sputtering method, molecular beam epitaxy method, Examples include plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, laser CVD, and thermal CVD.
 光透過性を有する陽極を、銀を主成分として構成する場合、銀の純度としては、99%以上であることが好ましい。また、銀の安定性を確保するためにパラジウム(Pd)、銅(Cu)及び金(Au)等が添加されていてもよい。 When the light-transmitting anode is composed mainly of silver, the purity of silver is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
 光透過性を有する陽極は銀を主成分として構成されている層であるが、具体的には、銀単独で形成しても、あるいは銀(Ag)を含有する合金から構成されていてもよい。そのような合金としては、例えば、銀-マグネシウム(Ag-Mg)、銀-銅(Ag-Cu)、銀-パラジウム(Ag-Pd)、銀-パラジウム-銅(Ag-Pd-Cu)、銀-インジウム(Ag-In)などが挙げられる。 The light-transmitting anode is a layer composed mainly of silver. Specifically, the anode may be composed of silver alone or an alloy containing silver (Ag). . Examples of such alloys include silver-magnesium (Ag-Mg), silver-copper (Ag-Cu), silver-palladium (Ag-Pd), silver-palladium-copper (Ag-Pd-Cu), silver -Indium (Ag-In) and the like.
 上記陽極を構成する各構成材料の中でも、本発明に係る有機EL素子を構成する陽極としては、銀を主成分として構成し、厚さが2~20nmの範囲内にある光透過性を有する陽極であることが好ましいが、更に好ましくは厚さが4~12nmの範囲内である。厚さが20nm以下であれば、光透過性を有する陽極の吸収成分及び反射成分が低く抑えられ、高い光透過率が維持されるため好ましい。 Among the constituent materials constituting the anode, as the anode constituting the organic EL device according to the present invention, an anode having a light transmission property composed mainly of silver and having a thickness in the range of 2 to 20 nm. The thickness is preferably in the range of 4 to 12 nm. A thickness of 20 nm or less is preferable because the absorption component and reflection component of the light-transmitting anode are kept low and high light transmittance is maintained.
 本発明でいう銀を主成分として構成されている層とは、光透過性を有する陽極中の銀の含有量が60質量%以上であることをいい、好ましくは銀の含有量が80質量%以上であり、より好ましくは銀の含有量が90質量%以上であり、特に好ましくは銀の含有量が98質量%以上である。また、本発明に係る光透過性を有する陽極でいう「光透過性」とは、波長550nmでの光透過率が50%以上であることをいう。 The layer composed mainly of silver in the present invention means that the silver content in the light-transmitting anode is 60% by mass or more, preferably the silver content is 80% by mass. More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more. Further, “light transmittance” in the anode having light transmittance according to the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
 光透過性を有する陽極においては、銀を主成分として構成されている層が、必要に応じて複数の層に分けて積層された構成であっても良い。 The light-transmitting anode may have a structure in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
 また、本発明においては、陽極が、銀を主成分として構成する光透過性を有する陽極である場合には、形成する光透過性を有する陽極の銀膜の均一性を高める観点から、その下部に、下地層を設けることが好ましい。下地層としては、特に制限はないが、銀又は銀を主成分とする合金からなる陽極の成膜に際し、銀の凝集を抑制できるものであれば良く、例えば、窒素原子又は硫黄原子を有する有機化合物を含有する層であることが好ましく、当該下地層上に、光透過性を有する陽極を形成する方法が好ましい態様である。 In the present invention, when the anode is a light-transmitting anode composed mainly of silver, the lower portion is formed from the viewpoint of improving the uniformity of the silver film of the light-transmitting anode to be formed. It is preferable to provide an underlayer. The underlayer is not particularly limited as long as it can suppress the aggregation of silver when forming an anode made of silver or an alloy containing silver as a main component. For example, an organic layer having a nitrogen atom or a sulfur atom A layer containing a compound is preferred, and a method of forming a light-transmitting anode on the underlayer is a preferred embodiment.
 〔有機機能層ユニット〕
 (発光層)
 有機EL素子(OLED)を構成する発光層(5)は、発光材料としてリン光発光化合物、あるいは蛍光性化合物を用いることができるが、本発明においては、特に、発光材料としてリン光発光化合物が含有されている構成が好ましい。
[Organic functional layer unit]
(Light emitting layer)
In the light emitting layer (5) constituting the organic EL element (OLED), a phosphorescent light emitting compound or a fluorescent compound can be used as the light emitting material. In the present invention, in particular, a phosphorescent light emitting compound is used as the light emitting material. The contained structure is preferable.
 この発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であってもよい。 This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には非発光性の中間層を有していることが好ましい。 Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内がさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。 The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. In addition, the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers.
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)及びインクジェット法等の公知の方法により形成することができる。 The light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
 また発光層は、複数の発光材料を混合してもよく、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)とを同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホスト等ともいう)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。 In the light emitting layer, a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer. The structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
 〈ホスト化合物〉
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
<Host compound>
As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、あるいは、複数種のホスト化合物を用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
 〈発光材料〉
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)及び蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられるが、特に、リン光発光性化合物を用いることが、高い発光効率を得ることができる観点から好ましい。
<Light emitting material>
As the light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (both a fluorescent compound or a fluorescent material) are used. In particular, it is preferable to use a phosphorescent compound from the viewpoint of obtaining high luminous efficiency.
 〈リン光発光性化合物〉
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
<Phosphorescent compound>
A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
 本発明においては、少なくとも一つの発光層が、二種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であってもよい。 In the present invention, at least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78, 1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. Examples thereof include compounds described in US Patent No. 0202194, US Patent Application Publication No. 2007/0087321, US Patent Application Publication No. 2005/0244673, and the like.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6687266号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7396598号明細書、米国特許出願公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2009/000673, US Pat. No. 7,332,232, US Patent Application Publication No. 2009/0039776, US Pat. No. 6,687,266. US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2008/0015355, US Patent No. 7396598, US Patent Application Publication No. 2003/0138667, US Patent No. 7090928. The compounds described in the description and the like can be mentioned.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許出願公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許出願公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2006/056418, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2006/082742, US Patent Application Publication No. 2005/0260441. U.S. Pat. No. 7,534,505, U.S. Patent Application Publication No. 2007/0190359, U.S. Pat. No. 7,338,722, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/103874, etc. Mention may also be made of the compounds described.
 さらには、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。 Furthermore, International Publication No. 2005/076380, International Publication No. 2008/140115, International Publication No. 2011/134013, International Publication No. 2010/086089, International Publication No. 2012/020327, International Publication No. 2011/051404. Further, compounds described in International Publication No. 2011/073149, JP2009-114086, JP2003-81988, JP2002-363552, and the like can also be mentioned.
 本発明においては、好ましいリン光発光性化合物としてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。 In the present invention, preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。 The phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
 〈蛍光発光性化合物〉
 蛍光発光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
<Fluorescent compound>
Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
 〔キャリア輸送機能層群〕
 次いで、キャリア輸送機能層群を構成する各層の代表例として、電荷注入層、正孔輸送層、電子輸送層及び阻止層の順に説明する。
[Carrier transport functional group]
Next, a charge injection layer, a hole transport layer, an electron transport layer, and a blocking layer will be described in this order as representative examples of the layers constituting the carrier transport functional layer group.
 (電荷注入層)
 電荷注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層と電子注入層とがある。
(Charge injection layer)
The charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (November 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer and an electron injection layer.
 電荷注入層としては、一般には、正孔注入層であれば、陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に存在させることができるが、本発明においては、光透過性を有する電極に隣接して電荷注入層を配置させることを特徴とする。また、中間電極で用いられる場合は、隣接する電子注入層及び正孔注入層の少なくとも一方が、本発明の要件を満たしていれば良い。 In general, the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer. However, the present invention is characterized in that the charge injection layer is disposed adjacent to the light-transmitting electrode. When used in an intermediate electrode, it is sufficient that at least one of the adjacent electron injection layer and hole injection layer satisfies the requirements of the present invention.
 正孔注入層は、駆動電圧低下や発光輝度向上のために、光透過性を有する電極である陽極に隣接して配置される層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The hole injection layer is a layer disposed adjacent to the anode, which is a light-transmitting electrode, in order to lower the driving voltage and improve the light emission luminance. The “organic EL element and its industrialization front line (1998 November The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123-166) of “Month 30th, NTS Corporation”.
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT(ポリエチレンジオキシチオフェン)/PSS(ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer (e.g., PEDOT (polyethylenedioxythiophene) / PSS (polystyrene sulfonic acid), aniline copolymers, polyaniline, polythiophene, etc.) and the like can be mentioned.
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include benzidine type represented by α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ″). Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
 電子注入層は、駆動電圧低下や発光輝度向上のために、陰極と発光層との間に設けられる層のことであり、陰極が本発明に係る光透過性を有する電極で構成されている場合には、当該光透過性を有する電極に隣接して設けられ、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The electron injection layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. When the cathode is composed of the light-transmitting electrode according to the present invention Is provided adjacent to the light-transmitting electrode, and “Organic EL element and its forefront of industrialization” (issued on November 30, 1998 by NTT) The electrode material "(pages 123 to 166) is described in detail.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデン、酸化アルミニウム等に代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、本発明における光透過性を有する電極が陰極の場合は、金属錯体等の有機材料が特に好適に用いられる。電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲が好ましい。 Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq). Moreover, when the electrode which has the light transmittance in this invention is a cathode, organic materials, such as a metal complex, are used especially suitably. The electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 μm.
 (正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes. In a broad sense, the hole injection layer and the electron blocking layer also have the function of a hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー及びチオフェンオリゴマー等が挙げられる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン及びN-フェニルカルバゾール等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N -Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and the like.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよい。 For the hole transport layer, the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning. The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping impurities into the material of the hole transport layer. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer because an element with lower power consumption can be manufactured.
 (電子輸送層)
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の一種又は二種以上からなる単一構造であってもよい。 The electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single structure composed of one or more of the above materials.
 (阻止層)
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明したキャリア輸送機能層ユニット3の各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
(Blocking layer)
Examples of the blocking layer include a hole blocking layer and an electron blocking layer. In addition to the constituent layers of the carrier transport functional layer unit 3 described above, the blocking layer is a layer provided as necessary. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 〔第2電極:陰極〕
 本発明に係る陰極は、キャリア輸送機能層群や発光層に正孔を供給するために機能する光透過性を有する電極であり、金属、合金、有機又は無機の導電性化合物若しくはこれらの混合物として、例えば、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO及びSnO等の酸化物半導体などが挙げられる。
[Second electrode: cathode]
The cathode according to the present invention is a light-transmitting electrode that functions to supply holes to the carrier transporting functional layer group and the light-emitting layer, and is a metal, alloy, organic or inorganic conductive compound, or a mixture thereof. For example, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 and An oxide semiconductor such as SnO 2 can be given.
 陰極は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させて作製することができる。また、第2電極としてのシート抵抗は、数百Ω/sq.以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲で選ばれる。 The cathode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering. The sheet resistance as the second electrode is several hundred Ω / sq. The film thickness is usually selected from the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 〔その他の構成要素〕
 〈ガスバリアー層〉
 透明基材(1)の片面又は両面、少なくとも陽極(第1電極)が形成される側の全面には、光透過性のあるガスバリアー層(2)を形成することにより、水分や酸素など、有機EL素子の構成材料に対し劣化をもたらす成分の侵入を抑制することができる。
[Other components]
<Gas barrier layer>
By forming a gas permeable gas barrier layer (2) on one side or both sides of the transparent substrate (1), at least on the entire surface where the anode (first electrode) is formed, moisture, oxygen, etc. Intrusion of components that cause deterioration of the constituent materials of the organic EL element can be suppressed.
 ガスバリアー層(2)は、無機材料被膜だけでなく、有機材料との複合材料からなる被膜又はこれらの被膜を積層したハイブリッド被膜であってもよい。ガスバリアー層(2)の性能としては、JIS(日本工業規格)-K7129(2008年)に準拠した水蒸気透過度(環境条件:25±0.5℃、相対湿度(90±2)%)が約0.01g/m・24h以下、JIS-K7126(2006年)に準拠した酸素透過度が約0.01ml/m・24h・atm]以下、電気抵抗率が1×1012Ω・cm以上、光線透過率は可視光領域で約80%以上であるような、ガスバリアー性と光透過性を有する絶縁膜であることが好ましい。 The gas barrier layer (2) may be not only an inorganic material film but also a film made of a composite material with an organic material or a hybrid film obtained by laminating these films. As the performance of the gas barrier layer (2), water vapor permeability (environmental conditions: 25 ± 0.5 ° C., relative humidity (90 ± 2)%) in accordance with JIS (Japanese Industrial Standard) -K7129 (2008) About 0.01 g / m 2 · 24 h or less, oxygen permeability according to JIS-K7126 (2006) is about 0.01 ml / m 2 · 24 h · atm] or less, and electrical resistivity is 1 × 10 12 Ω · cm As described above, an insulating film having gas barrier properties and light transmittance such that the light transmittance is about 80% or more in the visible light region is preferable.
 ガスバリアー層(2)の形成材料としては、有機EL素子の劣化を招く、例えば水や酸素等のガスの有機EL素子への浸入を抑制できる材料であれば、任意の材料を用いることができる。 As a material for forming the gas barrier layer (2), any material can be used as long as it can suppress the intrusion of a gas such as water or oxygen into the organic EL element, which causes deterioration of the organic EL element. .
 例えば、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化モリブデン等の無機材料からなる被膜で構成することができ、好ましくは、窒化ケイ素や酸化ケイ素等のケイ素化合物を主原料とする構成である。 For example, it can be composed of a coating made of an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, aluminum nitride, titanium oxide, zirconium oxide, niobium oxide, molybdenum oxide, Preferably, the main raw material is a silicon compound such as silicon nitride or silicon oxide.
 ガスバリアー層の形成方法としては、従来公知の成膜方法を適宜選択して用いることができ、例えば、真空蒸着法、スパッタ法、マグネトロンスパッタ法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法(特開2004-68143号公報参照)、プラズマCVD(Chemical Vapor Deposition)法、レーザーCVD法、熱CVD法、ALD(原子層堆積)法、また、ポリシラザン等を用いた湿式塗布法を適用することもできる。 As a method for forming the gas barrier layer, a conventionally known film forming method can be appropriately selected and used. For example, a vacuum deposition method, a sputtering method, a magnetron sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plate method can be used. Coating method, plasma polymerization method, atmospheric pressure plasma polymerization method (see JP 2004-68143 A), plasma CVD (Chemical Vapor Deposition) method, laser CVD method, thermal CVD method, ALD (atomic layer deposition) method, A wet coating method using polysilazane or the like can also be applied.
 〈封止材料〉
 図2に示す有機ELパネル(P)では、陰極(7)まで形成した有機EL素子(OLED)を具備した有機ELパネル(P)に対し、更にその上部に封止部材を形成している一例を示してある。
<Sealing material>
In the organic EL panel (P) shown in FIG. 2, an example in which a sealing member is further formed on the organic EL panel (P) including the organic EL element (OLED) formed up to the cathode (7). Is shown.
 図2で示すように、有機EL素子(OLED)の全面に、封止用接着剤(8)を付与した後、最表面にガスバリアー層(9)を具備している封止部材(10)で封止を行う。 As shown in FIG. 2, a sealing member (10) having a gas barrier layer (9) on the outermost surface after the sealing adhesive (8) is applied to the entire surface of the organic EL element (OLED). Seal with.
 封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また透明性及び電気絶縁性は特に限定されない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be concave or flat. Further, transparency and electrical insulation are not particularly limited.
 具体的には、フレキシブル性を備えたガラス基板、樹脂基板、樹脂フィルム、金属フィルム(金属箔)等が挙げられる。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、樹脂基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。 Specific examples include a flexible glass substrate, a resin substrate, a resin film, a metal film (metal foil), and the like. Examples of the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the resin substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
 封止用接着剤としては、ポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法および共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。 As the sealing adhesive, polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives can be used. You may use a hardening | curing agent together as needed. A hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
 本発明においては、封止部材としては、有機EL素子を薄膜化することできる観点から、樹脂基板及びカラス基板を好ましく使用することができる。さらに、樹脂基板は、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである)以下であって、温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。この条件を満たすため、前述の基材にて説明したのと同様のガスバリアー層を設けることが好ましい形態である。 In the present invention, as the sealing member, a resin substrate and a crow substrate can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Further, the resin substrate has a water vapor transmission rate of 1 × 10 −3 g / m 2 .multidot.m at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% RH measured by a method according to JIS K 7129-1992. The oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 × 10 −3 ml / m 2 · 24 h · atm (1 atm is 1.01325 × 10 5 a Pa) equal to or lower than a temperature of 25 ± 0.5 ° C., water vapor permeability at a relative humidity of 90 ± 2% RH is preferably not more than 1 × 10 -3 g / m 2 · 24h. In order to satisfy this condition, it is a preferable embodiment to provide a gas barrier layer similar to that described for the base material.
 封止部材と有機EL素子の表示領域(発光領域)との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することもできる。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area (light emitting area) of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase. You can also Further, the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
 また、有機EL素子における有機機能層ユニットを完全に覆い、かつ有機EL素子における第1電極である陽極(3)と、第2電極である陰極(7)の端子部分を露出させる状態で、光透過性を有する基板上に封止膜を設けることもできる。 In addition, the organic functional layer unit in the organic EL element is completely covered, and the anode (3) which is the first electrode and the cathode (7) which is the second electrode in the organic EL element are exposed, and the light is exposed. A sealing film can also be provided over a permeable substrate.
 《イメージセンサー》
 [イメージセンサーの構成]
 本発明に係るイメージセンサーは、少なくとも有機光電変換層を有する光電変換方式であり、更には、少なくとも対向電極、有機光電変換層、画素電極及び薄膜トランジスター(TFT)により構成されていることが好ましい。
<Image sensor>
[Image sensor configuration]
The image sensor according to the present invention is a photoelectric conversion system having at least an organic photoelectric conversion layer, and is preferably composed of at least a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film transistor (TFT).
 図3は、本発明に適用可能なイメージセンサーの構成の一例を示す概略断面図である。 FIG. 3 is a schematic sectional view showing an example of the configuration of an image sensor applicable to the present invention.
 図3では、上面側(指面側)より、指紋部からの拡散光(L2)が照射される方式で示してある。本発明に係るイメージセンサー(S)は、拡散光(L2)が到達する面側から、対向電極(52)、有機光電変換層(51)、画素電極(54)は配置され、光電変換素子(PED)を構成している。光電変換素子(PED)の下部には、画素電極(54)と対向する位置にTFT(56)が配置され、その間が接続部(55)で接続されている。この時、画素電極(54)、接続部(55)及びTFT(56)は、絶縁層(57)内に配置され、その下部に、基材(58)が設けられている構成である。本発明では、接続部(55)、TFT(56)及び絶縁層(57)よりなる構成を、TFTユニット(53)と称す。また、必要により、基材(58)をTFTユニット(53)の構成要素として説明する場合がある。 FIG. 3 shows a method in which diffused light (L2) from the fingerprint portion is irradiated from the upper surface side (finger surface side). In the image sensor (S) according to the present invention, the counter electrode (52), the organic photoelectric conversion layer (51), and the pixel electrode (54) are arranged from the surface side where the diffused light (L2) reaches, and the photoelectric conversion element ( PED). Below the photoelectric conversion element (PED), a TFT (56) is disposed at a position facing the pixel electrode (54), and a connection portion (55) is connected therebetween. At this time, the pixel electrode (54), the connecting portion (55), and the TFT (56) are arranged in the insulating layer (57), and a base material (58) is provided below the insulating layer (57). In the present invention, a configuration including the connection portion (55), the TFT (56), and the insulating layer (57) is referred to as a TFT unit (53). If necessary, the base material (58) may be described as a constituent element of the TFT unit (53).
 また、本発明に適用可能な有機光電変換層を含む光学方式のイメージセンサー(S)の具体的な構成としては、例えば、特開2008-067034号公報、特開2009-207062号公報、特開2011-142318号公報、特開2011-222949号公報、特開2012-099592号公報、特開2012-227364号公報、特開2013-026483号公報、特開2013-084789号公報、特開2013-093353号公報、特開2014-022525号公報、特開2014-060315号公報、特開2015-015415号公報等で開示されている有機光電変換素子、光センサー等の記載内容及び構成要件を参照することができる。 In addition, specific configurations of the optical image sensor (S) including the organic photoelectric conversion layer that can be applied to the present invention include, for example, Japanese Unexamined Patent Application Publication Nos. 2008-067034, 2009-207062, and Japanese Unexamined Patent Application Publication No. 2009-207062. JP 2011-142318 A, JP 2011-222949 A, JP 2012-095992 A, JP 2012-227364 A, JP 2013-026483 A, JP 2013-084789 A, JP 2013-2013 A. Reference is made to the description and constituent requirements of organic photoelectric conversion elements, optical sensors, etc. disclosed in JP093353, JP2014-022525A, JP2014-060315A, JP2015-015415A, etc. be able to.
 以下、イメージセンサーの主要構成要素の詳細について、更に説明する。 The details of the main components of the image sensor will be further described below.
 〔対向電極〕
 イメージセンサーを構成する対向電極(52)は、画素電極(54)と対向する電極であり、有機光電変換層(51)を覆うようにして設けられている。画素電極(54)と対向電極(52)との間に有機光電変換層(51)を含む光機能層が設けられている。
[Counter electrode]
The counter electrode (52) constituting the image sensor is an electrode facing the pixel electrode (54), and is provided so as to cover the organic photoelectric conversion layer (51). An optical functional layer including an organic photoelectric conversion layer (51) is provided between the pixel electrode (54) and the counter electrode (52).
 後述する図4~図8に示すような対向電極(52T)面から反射光(L2)が入射される構成では、対向電極(52T)は、有機光電変換層(51)に光を入射させるため、反射光(L2)に対して透明な導電性材料で構成されている。対向電極(52T)は、有機光電変換層(51)よりも外側に配置された接続部(不図示)を介して、対向電極(52T)に所定の電圧を印加する対向電極用電圧供給部に接続されている(不図示)。 In the configuration in which the reflected light (L2) is incident from the surface of the counter electrode (52T) as shown in FIGS. 4 to 8 described later, the counter electrode (52T) causes the light to enter the organic photoelectric conversion layer (51). The conductive material is transparent to the reflected light (L2). The counter electrode (52T) serves as a counter electrode voltage supply unit that applies a predetermined voltage to the counter electrode (52T) via a connection unit (not shown) disposed outside the organic photoelectric conversion layer (51). Connected (not shown).
 光透過性の対向電極(52T)は透明導電膜で構成されることが好ましく、例えば、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらの混合物等が挙げられる。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)、酸化チタン等の導電性金属酸化物、TiN等の金属窒化物、金(Au)、白金(Pt)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)等の金属、更にこれらの金属と導電性金属酸化物との混合物または積層物、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性化合物、これらとITOとの積層物、などが挙げられる。透明導電膜の材料として特に好ましいのは、ITO、IZO、酸化錫、アンチモンドープ酸化錫(ATO)、弗素ドープ酸化錫(FTO)、酸化亜鉛、アンチモンドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)のいずれかの材料を挙げることができる。 The light-transmissive counter electrode (52T) is preferably composed of a transparent conductive film, and examples thereof include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof. Specific examples include tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), conductive metal oxides such as titanium oxide, and metal nitrides such as TiN. Metal, gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), etc., and a mixture or laminate of these metals and conductive metal oxides Products, organic conductive compounds such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO. Particularly preferable materials for the transparent conductive film are ITO, IZO, tin oxide, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, antimony-doped zinc oxide (AZO), gallium-doped zinc oxide ( Any material of GZO) can be mentioned.
 なお、後述の図9~図13で示すような下面発光方式で、対向電極(52)が、反射光(L2)の入射面に対し、最下部に配置する構成では、対向電極(52)としては、光透過性であっても、非光透過性であってもよい。 In the configuration in which the counter electrode (52) is disposed at the lowest position with respect to the incident surface of the reflected light (L2) in the bottom emission method as shown in FIGS. 9 to 13 described later, the counter electrode (52) is used. May be light transmissive or non-light transmissive.
 対向電極(52、52T)の面抵抗は、信号読出し回路(不図示)がCMOS型の場合は10kΩ/sq.以下が好ましく、より好ましくは、1kΩ/sq.以下である。また、CCD型の場合には1kΩ/sq.以下が好ましく、より好ましくは、0.1kΩ/sq.以下である。 The surface resistance of the counter electrode (52, 52T) is 10 kΩ / sq. When the signal readout circuit (not shown) is a CMOS type. Or less, more preferably 1 kΩ / sq. It is as follows. In the case of a CCD type, 1 kΩ / sq. Or less, more preferably 0.1 kΩ / sq. It is as follows.
 対向電極(52T)が光透過性である場合、光透過率は、可視光波長において、60%以上が好ましく、より好ましくは80%以上で、より好ましくは90%以上、より好ましくは95%以上である。 When the counter electrode (52T) is light transmissive, the light transmittance is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, more preferably 95% or more, at the visible light wavelength. It is.
 有機光電変換層(51)で発生した信号電荷のうち、正孔を画素電極(54)に捕集し、電子を対向電極(52)に捕集するため、対向電極(52)には画素電極(54)よりも高い電圧が印加される。高い感度と低い暗電流を両立するために、対向電極(54)に印加される電圧は5~20V程度である。 Of the signal charges generated in the organic photoelectric conversion layer (51), holes are collected in the pixel electrode (54) and electrons are collected in the counter electrode (52). A voltage higher than (54) is applied. In order to achieve both high sensitivity and low dark current, the voltage applied to the counter electrode (54) is about 5 to 20V.
 また、本発明に係るイメージセンサー(S)における対向電極(52)は、後述の図5、図10で例示するように、前述の有機EL素子を構成する陽極(3)と同一の構成としてもよい。また、後述の図6~図8、図11~図13に例示するように、前述の有機EL素子を構成する陰極(7)と同一の構成としてもよい。 Further, the counter electrode (52) in the image sensor (S) according to the present invention may have the same configuration as the anode (3) that constitutes the above-described organic EL element, as illustrated in FIGS. Good. Further, as exemplified in FIGS. 6 to 8 and FIGS. 11 to 13 to be described later, the same structure as the cathode (7) constituting the organic EL element described above may be used.
 〔有機光電変換層〕
 有機光電変換層(51)は、有機光電有機材料を含み、受光した光量に応じた信号電荷に変換する機能を有する。有機光電変換層(51)が有機光電変換材料を含有することにより、所望の分光感度を容易に得ることができる点で好ましい。
[Organic photoelectric conversion layer]
The organic photoelectric conversion layer (51) includes an organic photoelectric organic material, and has a function of converting into signal charges corresponding to the amount of received light. It is preferable that the organic photoelectric conversion layer (51) contains an organic photoelectric conversion material in that a desired spectral sensitivity can be easily obtained.
 また、有機光電変換層(51)には、有機材料の中でも、特に、p型有機半導体とn型有機半導体とを含む構成であることが好ましい形態である。 In addition, the organic photoelectric conversion layer (51) preferably has a configuration including a p-type organic semiconductor and an n-type organic semiconductor among organic materials.
 p型有機半導体とn型有機半導体を接合させてドナー/アクセプター界面を形成することにより、励起子解離効率を増加させることができる点で好ましい。このために、p型有機半導体とn型有機半導体を接合させた構成の有機光電変換層(51)は、高い光電変換効率を発現させることができる。特に、p型有機半導体とn型有機半導体を混合した有機光電変換層(51)は、両者の接合界面が増大して光電変換効率が向上するので好ましい。 It is preferable in that the exciton dissociation efficiency can be increased by joining a p-type organic semiconductor and an n-type organic semiconductor to form a donor / acceptor interface. For this reason, the organic photoelectric conversion layer (51) of the structure which joined the p-type organic semiconductor and the n-type organic semiconductor can express high photoelectric conversion efficiency. In particular, an organic photoelectric conversion layer (51) in which a p-type organic semiconductor and an n-type organic semiconductor are mixed is preferable because the junction interface between the two increases and the photoelectric conversion efficiency is improved.
 p型有機半導体は、ドナー性有機半導体であり、具体的な化合物としては、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある化合物を挙げることができる。さらに詳しくは、2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機半導体としては、電子供与性のある有機化合物であれば、いずれの有機化合物でも使用が可能である。 The p-type organic semiconductor is a donor organic semiconductor. Specific examples of the compound include compounds that are mainly represented by a hole-transporting organic compound and easily donate electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic semiconductor as long as it is an electron-donating organic compound.
 p型有機半導体の具体例としては、例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体等)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を挙げることができる。なお、上記に記載した化合物に限らず、n型(アクセプター性)化合物として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であれば、ドナー性有機半導体として用いることができる。 Specific examples of the p-type organic semiconductor include, for example, triarylamine compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, triphenylmethane compounds, carbazole compounds, polysilane compounds, thiophene compounds, phthalocyanine compounds, cyanine compounds, Merocyanine compounds, oxonol compounds, polyamine compounds, indole compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, condensed aromatic carbocyclic compounds (eg, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene Derivatives), and metal complexes having nitrogen-containing heterocyclic compounds as ligands. In addition, it is not restricted to the compound described above, If it is an organic compound with an ionization potential smaller than the organic compound used as an n-type (acceptor property) compound, it can be used as a donor organic semiconductor.
 n型有機半導体(化合物)は、アクセプター性半導体であり、主に電子輸送性化合物に代表される電子を受容しやすい性質を備えた化合物をいう。さらに詳しくは、n型半導体とは、2つの化合物を接触させて用いたときに電子親和力の大きい方の化合物をいう。したがって、アクセプター性化合物は、電子受容性のある化合物であれば、いずれの化合物も使用可能である。 An n-type organic semiconductor (compound) is an acceptor semiconductor and refers to a compound having a property of easily accepting electrons, typified by an electron transport compound. More specifically, an n-type semiconductor refers to a compound having a higher electron affinity when two compounds are used in contact with each other. Therefore, any compound can be used as the acceptor compound as long as it is an electron-accepting compound.
 n型半導体としては、特に限定されないが、例えば、縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体等)、窒素原子、酸素原子、硫黄原子を含有する5~7員のヘテロ環化合物(例えば、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。なお、これに限らず、上記したように、p型(ドナー性)化合物として用いた化合物よりも電子親和力の大きな化合物であれば、アクセプター性半導体として用いることができる。 Although it does not specifically limit as an n-type semiconductor, For example, a condensed aromatic carbocyclic compound (For example, a naphthalene derivative, anthracene derivative, a phenanthrene derivative, a tetracene derivative, a pyrene derivative, a perylene derivative, a fluoranthene derivative etc.), a nitrogen atom, an oxygen atom , 5- to 7-membered heterocyclic compounds containing a sulfur atom (for example, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole Imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole, benzoxazole, benzothiazole, carbazole, purine, triazolopyri , Triazolopyrimidine, tetrazaindene, oxadiazole, imidazopyridine, pyralidine, pyrrolopyridine, thiadiazolopyridine, dibenzazepine, tribenzazepine, etc.), polyarylene compounds, fluorene compounds, cyclopentadiene compounds, silyl compounds, Examples thereof include a metal complex having a nitrogen heterocyclic compound as a ligand. However, the present invention is not limited thereto, and as described above, any compound having an electron affinity higher than that of the compound used as the p-type (donor property) compound can be used as the acceptor semiconductor.
 p型有機半導体又はn型有機半導体として、有機色素を用いることもできる。適用可能な有機色素としては、例えば、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、スピロ化合物、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、ペリノン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キナクリドン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジケトピロロピロール色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、金属錯体色素、縮合芳香族炭素環系色素(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体等)を挙げることができる。 Organic dyes can also be used as p-type organic semiconductors or n-type organic semiconductors. Examples of applicable organic dyes include cyanine dyes, styryl dyes, hemicyanine dyes, merocyanine dyes (including zero methine merocyanine (simple merocyanine)), trinuclear merocyanine dyes, tetranuclear merocyanine dyes, rhodacyanine dyes, complex cyanine dyes, Complex merocyanine dye, allopolar dye, oxonol dye, hemioxonol dye, squalium dye, croconium dye, azamethine dye, coumarin dye, arylidene dye, anthraquinone dye, triphenylmethane dye, azo dye, azomethine dye, spiro compound, metallocene dye, Fluorenone dye, fulgide dye, perylene dye, perinone dye, phenazine dye, phenothiazine dye, quinone dye, diphenylmethane dye, polyene dye, Lysine dye, acridinone dye, diphenylamine dye, quinacridone dye, quinophthalone dye, phenoxazine dye, phthaloperylene dye, diketopyrrolopyrrole dye, dioxane dye, porphyrin dye, chlorophyll dye, phthalocyanine dye, metal complex dye, condensed aromatic carbocyclic system Examples of the dye include naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, and fluoranthene derivatives.
 n型有機半導体として、電子輸送性に優れたフラーレン又はフラーレン誘導体を用いることが好ましい。フラーレンとは、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレン540、ミックスドフラーレン、フラーレンナノチューブを表し、フラーレン誘導体とはこれらに置換基が付加された化合物のことを表す。 As the n-type organic semiconductor, it is preferable to use fullerene or a fullerene derivative excellent in electron transportability. The fullerene, fullerene C 60, fullerene C 70, fullerene C 76, fullerene C 78, fullerene C 80, fullerene C 82, fullerene C 84, fullerene C 90, fullerene C 96, fullerene C 240, fullerene 540, mixed fullerene Represents a fullerene nanotube, and a fullerene derivative represents a compound having a substituent added thereto.
 有機光電変換層(51)がフラーレン又はフラーレン誘導体を含むことで、フラーレン分子またはフラーレン誘導体分子を経由して、光電変換により発生した電子を画素電極(54)又は対向電極(52)まで早く輸送できる。フラーレン分子またはフラーレン誘導体分子が連なった状態になって電子の経路が形成されていると、電子輸送性が向上して光電変換素子の高速の応答性を得ることができる。 When the organic photoelectric conversion layer (51) contains fullerene or a fullerene derivative, electrons generated by photoelectric conversion can be quickly transported to the pixel electrode (54) or the counter electrode (52) via the fullerene molecule or fullerene derivative molecule. . When fullerene molecules or fullerene derivative molecules are connected to form an electron path, the electron transport property is improved and high-speed response of the photoelectric conversion element can be obtained.
 有機光電変換層(51)において、フラーレン又はフラーレン誘導体と共に混合されるp型有機半導体として、例えば、特許第4213832号公報等に記載されたトリアリールアミン化合物を用いると、光電変換素子の高SN比が発現可能になり、特に好ましい。 In the organic photoelectric conversion layer (51), when a triarylamine compound described in, for example, Japanese Patent No. 4213832 is used as a p-type organic semiconductor mixed with fullerene or a fullerene derivative, a high SN ratio of the photoelectric conversion element Is particularly preferable.
 本発明に係る有機光電変換層(51)としては、後述の図7、図8、図12、図13に記載するように、有機EL素子を構成する有機機能層ユニット(U)と、その構成の一部を共通化することもでき、指紋情報読み取り部の製造コストを低減することができる観点から好ましい形態の一つである。 As the organic photoelectric conversion layer (51) according to the present invention, as described in FIGS. 7, 8, 12, and 13, which will be described later, an organic functional layer unit (U) constituting an organic EL element, and its configuration This is one of the preferable forms from the viewpoint that the manufacturing cost of the fingerprint information reading unit can be reduced.
 〔画素電極〕
 画素電極(54)は、指紋面からの反射光(L2)の照射により、画素電極(54)とそれに対向する対向電極(52)との間にある有機光電変換層(51)で発生した電荷を捕集するための電荷捕集用の電極である。画素電極(54)は、図3に示すように、接続部(55)を介してTFT部(56)に接続されている。この信号読出し回路であるTFT部(56)は、複数の画素電極(54)の各々に対応して基材(58)上に設けられており、対応する画素電極(54)で捕集された電荷に応じた信号を読出すものである。この各画素電極(54)で捕集された電荷が、対応する各画素のTFT部(56)で信号となり、複数の画素から取得した信号から画像が合成される。
[Pixel electrode]
The pixel electrode (54) generates charges generated in the organic photoelectric conversion layer (51) between the pixel electrode (54) and the counter electrode (52) facing the pixel electrode (54) by irradiation of reflected light (L2) from the fingerprint surface. It is an electrode for electric charge collection for collecting the. As shown in FIG. 3, the pixel electrode (54) is connected to the TFT portion (56) via the connection portion (55). The TFT portion (56), which is this signal readout circuit, is provided on the base material (58) corresponding to each of the plurality of pixel electrodes (54), and is collected by the corresponding pixel electrode (54). A signal corresponding to the electric charge is read out. The electric charge collected by each pixel electrode (54) becomes a signal in the TFT section (56) of each corresponding pixel, and an image is synthesized from signals acquired from a plurality of pixels.
 画素電極(54)は、絶縁層(57)上にスパッタリング法などによって成膜された後、マスクを介してエッチングされ、所定のパターンで形成されたものであり、有機光電変換層(51)の形成前においては、画素電極(54)の間に層間絶縁膜が露出している。 The pixel electrode (54) is formed on the insulating layer (57) by sputtering or the like and then etched through a mask to form a predetermined pattern. The pixel electrode (54) of the organic photoelectric conversion layer (51) is formed. Before the formation, the interlayer insulating film is exposed between the pixel electrodes (54).
 画素電極(54)を形成する材料としては、一般に電極として用いられている導電性材料であれば特に制限はなく、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらの混合物等が挙げられる。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)、酸化チタン等の導電性金属酸化物、酸化窒化チタン(TiNxOx)、窒化チタン(TiN)等の金属窒化物、金(Au)、白金(Pt)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)等の金属、更にこれらの金属と導電性金属酸化物との混合物または積層物、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性化合物、これらとITOとの積層物、などが挙げられる。画素電極(54)の材料として特に好ましいのは、酸化窒化チタン、窒化チタン、窒化モリブデン、窒化タンタル、窒化タングステンのいずれかの材料である。 The material for forming the pixel electrode (54) is not particularly limited as long as it is a conductive material generally used as an electrode. Metal, metal oxide, metal nitride, metal boride, organic conductive compound, these And the like. Specific examples include tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), conductive metal oxides such as titanium oxide, and titanium oxynitride (TiNxOx). ), Metal nitrides such as titanium nitride (TiN), metals such as gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), and these metals And conductive metal oxide mixtures or laminates, organic conductive compounds such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO. Particularly preferred as the material for the pixel electrode (54) is any one of titanium oxynitride, titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride.
 なお、画素電極(54)のサイズは3μm以下であることが好ましく、より好ましくは2μm以下である。更に好ましくは1.5μm以下である。画素電極(54)同士の間隙(画素電極間間隙)は0.3μm以下が好ましく、より好ましくは0.25μm以下であり、更に好ましくは0.2μm以下である。 Note that the size of the pixel electrode (54) is preferably 3 μm or less, more preferably 2 μm or less. More preferably, it is 1.5 μm or less. The gap between the pixel electrodes (54) (the gap between the pixel electrodes) is preferably 0.3 μm or less, more preferably 0.25 μm or less, and further preferably 0.2 μm or less.
 また、本発明に係るイメージセンサー(S)における画素電極(54)は、後述の図8、図13で例示するように、前述の有機EL素子を構成する陽極(3)と同一の構成としてもよい。また、後述の図4~図8に示すような上面発光方式である場合には、画素電極(54)は光透過性であっても、非光透過性のいずれであってもよい。また、後述の図9~図13に示すような下面発光方式では、画素電極(54)は光透過性である。 Further, the pixel electrode (54) in the image sensor (S) according to the present invention may have the same configuration as the anode (3) that constitutes the organic EL element described above, as illustrated in FIGS. Good. Further, in the case of a top emission method as shown in FIGS. 4 to 8 described later, the pixel electrode (54) may be either light transmissive or non-light transmissive. In the bottom emission method as shown in FIGS. 9 to 13 described later, the pixel electrode (54) is light transmissive.
 〔薄層トランジスター:TFT〕
 本発明に適用可能な薄層トランジスター(TFT)の詳細については、例えば、特開平6-085260号公報、特開2006-108622号公報、再表2011-039853号公報、特開2009-207062号公報等に記載されている内容を参照することができ、ここではTFTに関する詳細な説明は割愛する。
[Thin layer transistor: TFT]
Details of the thin layer transistor (TFT) applicable to the present invention are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 6-085260, 2006-108622, 2011-113983, and 2009-207062. The detailed description about TFT is omitted here.
 代表的なTFTとしては、例えば、絶縁基板上にアドレス配線と一体のゲート電極をスパッタ法等により成膜し、このゲート電極上に、酸化珪素膜からなるゲート絶縁膜、非晶質珪素(a-Si)からなる半導体層、窒化珪素膜からなるチャンネル保護膜を順次積層されている。続いて、チャンネル保護膜および半導体層上に、プラズマCVD法によりリンをドープしたn型アモルファスシリコン膜(n+a-Si膜)が形成されている。トランジスター能動部のパターン形成およびITOからなる画素電極形成後、データ配線およびソース・ドレイン電極として、モリブデン、アルミニウムを連続してn+a-Si膜上に形成されている。その後、チャンネル上部のn+a-Si膜を除去することによりTFTを形成することができる。 As a typical TFT, for example, a gate electrode integrated with an address wiring is formed on an insulating substrate by sputtering, and a gate insulating film made of a silicon oxide film, amorphous silicon (a A semiconductor layer made of -Si) and a channel protective film made of a silicon nitride film are sequentially laminated. Subsequently, an n-type amorphous silicon film (n + a-Si film) doped with phosphorus is formed on the channel protective film and the semiconductor layer by plasma CVD. After the pattern formation of the transistor active portion and the pixel electrode made of ITO, molybdenum and aluminum are successively formed on the n + a-Si film as the data wiring and the source / drain electrodes. Thereafter, the TFT can be formed by removing the n + a-Si film above the channel.
 〔基材〕
 本発明に適用可能な基材(58)としては、特に制限はないが、樹脂基材又は薄膜ガラス基材を用いることが好ましい。
〔Base material〕
Although there is no restriction | limiting in particular as a base material (58) applicable to this invention, It is preferable to use a resin base material or a thin film glass base material.
 樹脂基材を構成する樹脂材料としては、前述の有機EL素子に適用可能な樹脂基材と同様もものを挙げることができ、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名、JSR社製)及びアペル(商品名、三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the resin material constituting the resin base material include the same resin base materials that can be applied to the organic EL element described above. For example, polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN). Polyesters such as polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate and cellulose nitrate. And derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, polyester Methylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, Examples thereof include cycloolefin resins such as Arton (trade name, manufactured by JSR) and Apel (trade name, manufactured by Mitsui Chemicals).
 これら樹脂基材のうち、コストや入手の容易性の点では、ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)等を構成材料とするフィルムがフレキシブル性を有する樹脂基材として好ましく用いられる。 Among these resin base materials, in terms of cost and availability, polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), and the like are used as constituent materials. The film is preferably used as a resin base material having flexibility.
 樹脂基材の厚さは、用途によって適宜選択されるため特に制限はないが、典型的には1~800μmの範囲内であり、好ましくは10~200μmの範囲内である。 The thickness of the resin base material is not particularly limited because it is appropriately selected depending on the application, but is typically in the range of 1 to 800 μm, preferably in the range of 10 to 200 μm.
 また、イメージセンサーを構成する薄膜ガラスとしては、各種成形法によって成形されたものを使用することができる。例えばロールアウト法、リドロー法、ダウンドロー法、フロート法等によって成形された薄膜ガラスを使用できる。 Also, as the thin film glass constituting the image sensor, those formed by various molding methods can be used. For example, a thin film glass formed by a rollout method, a redraw method, a downdraw method, a float method, or the like can be used.
 薄膜ガラスの平均厚さは、5~200μmの範囲内であることが好ましく、5~100μmの範囲内であることがより好ましい。厚さが5μm未満では、搬送などの取り扱いが難しく、厚さが200μmを超えると、薄膜の価値が薄れてしまう。 The average thickness of the thin film glass is preferably in the range of 5 to 200 μm, more preferably in the range of 5 to 100 μm. When the thickness is less than 5 μm, handling such as conveyance is difficult, and when the thickness exceeds 200 μm, the value of the thin film is diminished.
 薄膜ガラスとしては、多成分系酸化物ガラスであれば特に限定はなく、例えば、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英、無アルカリガラス等を挙げることができる。 The thin film glass is not particularly limited as long as it is a multicomponent oxide glass. For example, soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz, An alkali glass etc. can be mentioned.
 また、有機ELパネルと共に指紋情報読み取り部を構成する場合には、図4~図13に示すように、イメージセンサーを構成する基材(58)としては、有機EL素子を構成するガスバリアー層(2)を有する透明基材(1)と兼用してもよい。 When the fingerprint information reading unit is configured together with the organic EL panel, as shown in FIGS. 4 to 13, the base material (58) that constitutes the image sensor is a gas barrier layer that constitutes the organic EL element (58). You may combine with the transparent base material (1) which has 2).
 樹脂基材の厚さとしては、3~200μmの範囲内にある薄膜の樹脂基材であることが好ましいが、より好ましくは10~150μmの範囲内であり、特に好ましくは、20~120μmの範囲内である。 The thickness of the resin substrate is preferably a thin resin substrate in the range of 3 to 200 μm, more preferably in the range of 10 to 150 μm, and particularly preferably in the range of 20 to 120 μm. Is within.
 〔その他の構成層〕
 (電子ブロッキング層)
 電子ブロッキング層は、画素電極(54)から有機光電変換層(51)に電子が注入されるのを抑制するための層であり、暗電流を抑制する機能を有する。
[Other component layers]
(Electronic blocking layer)
The electron blocking layer is a layer for suppressing injection of electrons from the pixel electrode (54) to the organic photoelectric conversion layer (51), and has a function of suppressing dark current.
 電子ブロッキング層は複数の層から構成されていてもよく、例えば、第1ブロッキング層と第2ブロッキング層とから構成されていてもよい。このように、電子ブロッキング層を複数層にすることにより、第1ブロッキング層と第2ブロッキング層との間に界面が形成され、各層に存在する中間準位に不連続性が生じることで、中間準位を介して電荷担体が移動しにくくなり、暗電流を抑制することができる。なお、電子ブロッキング層は単層としてもよい。 The electron blocking layer may be composed of a plurality of layers, for example, a first blocking layer and a second blocking layer. As described above, by forming the electron blocking layer into a plurality of layers, an interface is formed between the first blocking layer and the second blocking layer, and discontinuity occurs in the intermediate level existing in each layer. It becomes difficult for the charge carrier to move through the level, and dark current can be suppressed. The electron blocking layer may be a single layer.
 電子ブロッキング層には、電子供与性有機材料を用いることができる。具体的には、低分子材料では、N,N′-ビス(3-メチルフェニル)-(1,1′-ビフェニル)-4,4′-ジアミン(TPD)や4,4′-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4′,4"-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体を用いることができる。電子供与性化合物でなくとも、充分な正孔輸送性を有する化合物であれば用いることは可能である。 An electron donating organic material can be used for the electron blocking layer. Specifically, for low molecular weight materials, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) or 4,4′-bis [N Aromatic diamine compounds such as-(naphthyl) -N-phenyl-amino] biphenyl (α-NPD), oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene 4,4 ', 4 "-tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, etc. Porphyrin compounds, triazole derivatives, oxadi Use sol derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc. In the polymer material, a polymer such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, or a derivative thereof can be used. Any compound having sufficient hole transportability can be used.
 電子ブロッキング層としては無機材料を用いることもできる。一般的に、無機材料は有機材料よりも誘電率が大きいため、電子ブロッキング層51に用いた場合に、光電変換層に電圧が多くかかるようになり、光電変換効率を高くすることができる。電子ブロッキング層となりうる材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、酸化イリジウム等がある。 An inorganic material can also be used as the electron blocking layer. In general, since an inorganic material has a dielectric constant larger than that of an organic material, when it is used for the electron blocking layer 51, a large voltage is applied to the photoelectric conversion layer, and the photoelectric conversion efficiency can be increased. Materials that can be used as an electron blocking layer include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, and oxide. Examples include indium silver and iridium oxide.
 《指紋情報読み取り部の具体的な構成》
 次いで、本発明に係る指紋情報読み取り部の具体的な構成について説明する。
<Specific configuration of fingerprint information reading unit>
Next, a specific configuration of the fingerprint information reading unit according to the present invention will be described.
 本発明に係る指紋情報読み取り部は、有機EL素子により構成される発光部領域と、光透過性の非発光部領域と、イメージセンサー(S)により構成されていることを特徴とする。 The fingerprint information reading unit according to the present invention is characterized in that it is composed of a light emitting part region constituted by an organic EL element, a light transmissive non-light emitting part region, and an image sensor (S).
 以下、発光部領域(発光エリア)と、非発光部より構成される有機ELパネルと、イメージセンサーにより構成される指紋情報読み取り部の具体的な構成について説明する。 Hereinafter, a specific configuration of a fingerprint information reading unit configured by a light emitting unit region (light emitting area), an organic EL panel configured by a non-emission unit, and an image sensor will be described.
 [上面発光方式]
 はじめに、上面発光方式の実施形態1~5について、図を交えて説明する。なお、以下の各電極の表示の中で、各符号の後にTを付している電極は、光透過性電極であることを表示してある。
[Top emission method]
First, Embodiments 1 to 5 of the top emission method will be described with reference to the drawings. In addition, in the following display of each electrode, it has indicated that the electrode which attached | subjected T after each code | symbol is a light transmissive electrode.
 〔実施形態1:指紋情報読み取り部の構成例1〕
 図4は、本発明に適用可能な上面発光方式の有機ELパネルを具備した光学式指紋認証装置の指紋情報読み取り部の構成の一例を示す概略断面図(実施形態1)である。
Embodiment 1 Configuration Example 1 of Fingerprint Information Reading Unit
FIG. 4 is a schematic cross-sectional view (embodiment 1) showing an example of the configuration of a fingerprint information reading unit of an optical fingerprint authentication apparatus including an organic EL panel of a top emission type applicable to the present invention.
 図4に示す指紋情報読み取り部(100)は、上面が検体である指面側であり、指面(不図示)に対し、有機EL素子(OLED)より上面側に照射光(L1)を照射し、指面からの反射光(L2)を、イメージセンサー(S)により読みより、指紋認証する方法である。 The fingerprint information reading unit (100) shown in FIG. 4 has an upper surface on the finger surface side as a specimen, and irradiates the finger surface (not shown) with irradiation light (L1) on the upper surface side from the organic EL element (OLED). In this method, the reflected light (L2) from the finger surface is read by the image sensor (S) to perform fingerprint authentication.
 図4に記載の指紋情報読み取り部(100)は、本発明に係るイメージセンサー(S)が、有機ELパネル(P)の発光面とは反対の面側に、独立して設置されている構成例を示してある。 The fingerprint information reading unit (100) shown in FIG. 4 is configured such that the image sensor (S) according to the present invention is independently installed on the surface opposite to the light emitting surface of the organic EL panel (P). An example is shown.
 図4において、上面側に配置している有機ELパネル(P)は、上記図2で説明した有機EL素子(OLED)の構成を有し、基材(58)で担持されているイメージセンサー(S)上に有機EL素子(OLED)をそれぞれ離間した状態で配置して、独立した発光エリア(13)を形成している。詳しくは、基材(58)上にイメージセンサー(S)のユニットを形成し、その上に、例えば、陽極(3)、有機機能層ユニット(U)及び陰極(7T)等により構成されている有機EL素子(OLED)を複数個配置する。有機EL素子(OLED)は、封止用接着層(8)により封止され、最表面に、例えば、ガスバリアー層(9)を有する封止基板(10)により封止されている。 In FIG. 4, an organic EL panel (P) disposed on the upper surface side has the configuration of the organic EL element (OLED) described in FIG. 2 and is an image sensor (58) carried by a base material (58). S) Organic EL elements (OLEDs) are arranged in a separated state to form independent light emitting areas (13). Specifically, a unit of the image sensor (S) is formed on the base material (58), and the anode (3), the organic functional layer unit (U), the cathode (7T), and the like are formed thereon, for example. A plurality of organic EL elements (OLED) are arranged. The organic EL element (OLED) is sealed with a sealing adhesive layer (8), and is sealed with a sealing substrate (10) having, for example, a gas barrier layer (9) on the outermost surface.
 図4に示す構成においては、陽極(3)、有機機能層ユニット(U)及び陰極(7)の全てが存在する領域が発光エリア(13)であり、その間の領域が、光透過性の非発光部(12)である。 In the configuration shown in FIG. 4, the area where all of the anode (3), the organic functional layer unit (U) and the cathode (7) are present is the light emitting area (13), and the area between them is a light-transmitting non-transmitting area. It is a light emission part (12).
 有機ELパネル(P)の下部には、反射光を受光するためのイメージセンサー(S)が配置されており、図4で示すように、受光面側より、対向電極(52T)、有機光電変換層(51)、画素電極(54)により、光電変換素子(PED)を構成している。その下部には、絶縁層(57、不図示)中に、TFT(56、不図示)を配置したTFTユニット(53)が設けられている。図4に示す上面側に発光する方式では、少なくとも、有機EL素子(OLED)を構成する陰極(7T)と、イメージセンサー(S)を構成する対向電極(52T)が透明電極となり、有機EL素子(OLED)の陽極(3)及びイメージセンサー(S)の画素電極(54)は、光透過性であっても、非光透過性であってもよい。 An image sensor (S) for receiving reflected light is disposed below the organic EL panel (P). As shown in FIG. 4, the counter electrode (52T), organic photoelectric conversion is performed from the light receiving surface side. The layer (51) and the pixel electrode (54) constitute a photoelectric conversion element (PED). Below that, a TFT unit (53) in which TFTs (56, not shown) are arranged in an insulating layer (57, not shown) is provided. In the method of emitting light on the upper surface side shown in FIG. 4, at least the cathode (7T) constituting the organic EL element (OLED) and the counter electrode (52T) constituting the image sensor (S) are transparent electrodes, and the organic EL element The anode (3) of (OLED) and the pixel electrode (54) of the image sensor (S) may be light transmissive or non-light transmissive.
 〔実施形態2:指紋情報読み取り部の構成例2〕
 図5は、本発明に適用可能な上面(陰極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態2)である。
[Embodiment 2: Configuration example 2 of fingerprint information reading unit]
FIG. 5 is a schematic cross-sectional view (embodiment 2) showing another example of the configuration of the fingerprint information reading unit provided with the top (cathode side) light emitting type organic EL panel applicable to the present invention.
 図5に示す構成の指紋情報読み取り部(100)は、上面発光タイプの一例で、図4で説明した実施形態1の構成に対し、イメージセンサー(S)を構成する対向電極(52T)が、有機ELパネルの非発光部(12)内に形成されている一例である。 The fingerprint information reading unit (100) having the configuration shown in FIG. 5 is an example of a top emission type, and the counter electrode (52T) constituting the image sensor (S) is different from the configuration of the first embodiment described in FIG. It is an example formed in the non-light-emitting part (12) of the organic EL panel.
 すなわち、本発明に係るイメージセンサー(S)を構成する対向電極(52T)、有機光電変換層(51)及び画素電極(54)のうち、対向電極(52T)が、有機ELパネル(P)の非発光部(12)で、有機EL素子(OLED)と同一平面上に形成されている一例を示すものである。 That is, among the counter electrode (52T), the organic photoelectric conversion layer (51), and the pixel electrode (54) constituting the image sensor (S) according to the present invention, the counter electrode (52T) is the organic EL panel (P). The non-light-emitting part (12) shows an example formed on the same plane as the organic EL element (OLED).
 実施形態2においては、実施形態1と同様に、発光側に位置する陰極(7T)及び対向電極(52T)をいずれも光透過性の電極で構成するが、実施形態2では、対向電極(52T)と、有機EL素子(OLED)を構成する陽極(3)と同一構成の電極とする例を示してあり、このような構成とする場合には、陽極(3T)及び対向電極(52T)の双方を同一構成の光透過性電極とすることで、形成工程の共通化等により、製造コストの低減は図ることができる。このような陽極(3T)及び陰極(7T)がいずれも光透過性電極である場合には、有機EL素子としては両面発光方式となる。 In the second embodiment, as in the first embodiment, the cathode (7T) and the counter electrode (52T) located on the light emission side are both configured as light transmissive electrodes. In the second embodiment, the counter electrode (52T) ) And an electrode having the same configuration as the anode (3) constituting the organic EL element (OLED), and in such a configuration, the anode (3T) and the counter electrode (52T) By making both the light transmissive electrodes of the same configuration, the manufacturing cost can be reduced by sharing the formation process. When both the anode (3T) and the cathode (7T) are light transmissive electrodes, the organic EL element is a double-sided light emission method.
 〔実施形態3:指紋情報読み取り部の構成例3〕
 図6は、本発明に適用可能な上面(陰極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態3)である。
[Embodiment 3: Configuration example 3 of fingerprint information reading unit]
FIG. 6 is a schematic sectional view (embodiment 3) showing another example of the configuration of the fingerprint information reading unit provided with the top (cathode side) light emitting type organic EL panel applicable to the present invention.
 図6に示す構成の指紋情報読み取り部(100)は、上面発光タイプの一例で、図4で説明した実施形態1の構成に対し、イメージセンサー(S)を構成する対向電極(52T)が、有機ELパネルの非発光部(12)内に形成されている一例である。 The fingerprint information reading unit (100) having the configuration shown in FIG. 6 is an example of a top emission type, and the counter electrode (52T) forming the image sensor (S) is different from the configuration of the first embodiment described in FIG. It is an example formed in the non-light-emitting part (12) of the organic EL panel.
 すなわち、本発明に係るイメージセンサーを構成する対向電極、有機光電変換層及び画素電極のうち、対向電極が、有機ELパネルの非発光部で、有機EL素子と同一平面上に形成されている他の一例を示すものである。 That is, among the counter electrode, the organic photoelectric conversion layer, and the pixel electrode constituting the image sensor according to the present invention, the counter electrode is a non-light emitting portion of the organic EL panel and is formed on the same plane as the organic EL element. An example is shown.
 実施形態3においては、実施形態1と同様に、発光側に位置する陰極(7T)及び対向電極(52T)をいずれも光透過性の電極で構成するが、実施形態3では、対向電極(52T)と、有機EL素子(OLED)を構成する陰極(7T)とを同一構成の電極とする例を示してあり、陰極(7T)及び対向電極(52T)の双方を同一構成の光透過性電極として形成することにより、形成工程の共通化等により、製造コストの低減は図ることができる。 In the third embodiment, as in the first embodiment, the cathode (7T) and the counter electrode (52T) positioned on the light emitting side are both configured as light transmissive electrodes. In the third embodiment, the counter electrode (52T ) And the cathode (7T) constituting the organic EL element (OLED) are shown as an electrode having the same configuration, and both the cathode (7T) and the counter electrode (52T) are the light-transmitting electrodes having the same configuration. Thus, the manufacturing cost can be reduced by sharing the formation process.
 〔実施形態4:指紋情報読み取り部の構成例4〕
 図7は、本発明に適用可能な上面(陰極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態4)である。
[Embodiment 4: Configuration example 4 of fingerprint information reading unit]
FIG. 7 is a schematic cross-sectional view (Embodiment 4) showing another example of the configuration of the fingerprint information reading unit provided with the top (cathode side) light emitting organic EL panel applicable to the present invention.
 図7に示す構成の指紋情報読み取り部(100)は、上面発光タイプの一例で、図6で説明した実施形態3の構成に対し、更に、イメージセンサー(S)を構成する有機光電変換層(51)を、有機ELパネルの非発光部(12)内に形成している一例である。 The fingerprint information reading unit (100) having the configuration shown in FIG. 7 is an example of a top emission type, and in addition to the configuration of the third embodiment described in FIG. 6, an organic photoelectric conversion layer ( 51) is formed in the non-light emitting part (12) of the organic EL panel.
 すなわち、本発明に係るイメージセンサーを構成する対向電極、有機光電変換層及び画素電極のうち、対向電極及び有機光電変換層の2つの構成要素を、有機ELパネルの非発光部で、有機EL素子と同一平面上に形成されている一例を示すものである。 That is, of the counter electrode, the organic photoelectric conversion layer, and the pixel electrode that constitute the image sensor according to the present invention, two components of the counter electrode and the organic photoelectric conversion layer are the non-light emitting portion of the organic EL panel, and the organic EL element. Is an example formed on the same plane.
 実施形態4においては、実施形態3と同様に、対向電極(52T)を発光側に位置する陰極(7T)と同様の光透過性の電極で構成し、更に、有機光電変換層(51)を、有機EL素子(OLED)を構成している有機機能層ユニット(U)と同一構成で形成することが、形成工程の共通化等により、製造コストの低減は図ることができる点で好ましい態様である。 In the fourth embodiment, as in the third embodiment, the counter electrode (52T) is composed of a light transmissive electrode similar to the cathode (7T) located on the light emitting side, and the organic photoelectric conversion layer (51) is further formed. In a preferred mode, the organic functional layer unit (U) that constitutes the organic EL element (OLED) is formed in the same configuration as the organic EL element (OLED) in that the manufacturing cost can be reduced due to the common formation process. is there.
 〔実施形態5:指紋情報読み取り部の構成例5〕
 図8は、本発明に適用可能な上面(陰極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態5)である。
[Embodiment 5: Configuration example 5 of fingerprint information reading unit]
FIG. 8 is a schematic cross-sectional view (Embodiment 5) showing another example of the configuration of the fingerprint information reading unit provided with the top (cathode side) light emitting organic EL panel applicable to the present invention.
 図8に示す構成の指紋情報読み取り部(100)は、上面発光タイプの一例で、図5~図7で説明した各実施形態の構成に対し、イメージセンサー(S)を構成する有機光電変換層(51)の全ての構成要素が、有機ELパネルの非発光部(12)内に形成している一例である。 The fingerprint information reading unit (100) having the configuration shown in FIG. 8 is an example of a top emission type, and the organic photoelectric conversion layer constituting the image sensor (S) is different from the configurations of the embodiments described with reference to FIGS. This is an example in which all the constituent elements of (51) are formed in the non-light emitting portion (12) of the organic EL panel.
 すなわち、本発明に係るイメージセンサー(S)を構成する対向電極(52T)、有機光電変換層(51)及び画素電極(54)の全てが、有機ELパネル(P)の非発光部(12)で、有機EL素子(OLED)と同一平面上に形成されている構成例を示してある。 That is, the counter electrode (52T), the organic photoelectric conversion layer (51), and the pixel electrode (54) constituting the image sensor (S) according to the present invention are all non-light emitting portions (12) of the organic EL panel (P). Thus, a configuration example formed on the same plane as the organic EL element (OLED) is shown.
 本発明においては、特に、図8で示すように、イメージセンサー(S)の構成として、対向電極(52T)を有機EL素子(OLED)の陰極(7T)と同一構成とし、有機光電変換層(51)を有機EL素子(OLED)の有機機能層ユニット(U)と同一構成とし、かつ画素電極(54)を有機EL素子(OLED)の陽極(3)と同一とした構成を示してあり、このような形成材料を共通化して形成することが、製造が容易で、かつ形成工程の共通化等により、製造コストの低減は図ることができる点で好ましい態様である。 Especially in this invention, as shown in FIG. 8, as a structure of an image sensor (S), a counter electrode (52T) is made into the same structure as the cathode (7T) of an organic EL element (OLED), and an organic photoelectric converting layer ( 51) is the same configuration as the organic functional layer unit (U) of the organic EL element (OLED), and the pixel electrode (54) is the same as the anode (3) of the organic EL element (OLED). Forming such forming materials in common is a preferable aspect in that the manufacturing is easy and the manufacturing cost can be reduced by the common formation process.
 [下面発光方式]
 次いで、下面発光方式の実施形態6~10について、図を交えて説明する。
[Bottom emission method]
Next, Embodiments 6 to 10 of the bottom emission method will be described with reference to the drawings.
 〔実施形態6:指紋情報読み取り部の構成例6〕
 図9は、本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の一例を示す概略断面図(実施形態6)である。
[Embodiment 6: Configuration example 6 of fingerprint information reading unit]
FIG. 9 is a schematic cross-sectional view (embodiment 6) showing an example of a fingerprint information reading unit provided with a bottom surface (anode side) light emitting type organic EL panel applicable to the present invention.
 図9で示す構成の有機ELパネル(P)は、下面が検体である指面側であり、指面(不図示)に対し、有機EL素子(OLED)より下面側に照射光(L1)を照射し、指面からの反射光(L2)を、イメージセンサー(S)により読み取り、指紋認証する方法である。 The organic EL panel (P) having the configuration shown in FIG. 9 has a lower surface on the finger surface side that is a specimen, and irradiates light (L1) to the lower surface side of the organic EL element (OLED) with respect to the finger surface (not shown). This is a method for performing fingerprint authentication by irradiating and reading reflected light (L2) from the finger surface with an image sensor (S).
 指紋情報読み取り部(100)の基本的な構成は、先に図4で説明した実施形態1と同様であるが、下面発光タイプであるため、有機EL素子(OLED)を構成する陽極(3T)及びイメージセンサー(S)を構成する画素電極(54T)が光透過性電極で構成されている。この時、有機EL素子(OLED)を構成する陰極(7)及びイメージセンサー(S)を構成する対応電極(52)は光透過性であっても、非光透過性であってもよい。 The basic configuration of the fingerprint information reading unit (100) is the same as that of the first embodiment described above with reference to FIG. 4, but since it is a bottom emission type, the anode (3T) constituting the organic EL element (OLED) The pixel electrode (54T) constituting the image sensor (S) is formed of a light transmissive electrode. At this time, the cathode (7) constituting the organic EL element (OLED) and the corresponding electrode (52) constituting the image sensor (S) may be light transmissive or non-light transmissive.
 〔実施形態7:指紋情報読み取り部の構成例7〕
 図10は、本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態7)である。
[Embodiment 7: Configuration example 7 of fingerprint information reading unit]
FIG. 10 is a schematic cross-sectional view (Embodiment 7) showing another example of the configuration of the fingerprint information reading unit including the lower surface (anode side) light emitting type organic EL panel applicable to the present invention.
 図10で示す構成の指紋情報読み取り部(100)の基本的な構成は、先に図5で説明した実施形態2と同様であるが、下面発光タイプであるため、有機EL素子(OLED)を構成する陽極(3T)及びイメージセンサー(S)を構成する画素電極(54T)が光透過性電極で構成されている。 The basic configuration of the fingerprint information reading unit (100) having the configuration shown in FIG. 10 is the same as that of the second embodiment described above with reference to FIG. 5. However, since it is a bottom emission type, an organic EL element (OLED) is used. The anode (3T) that constitutes the pixel electrode (54T) that constitutes the image sensor (S) is composed of a light transmissive electrode.
 図10に示す構成では、図5と同様に、対向電極(52T)と、有機EL素子(OLED)を構成する陽極(3T)を同一構成の光透過性電極とする例を示してあり、このような構成とすることにより、陽極(3T)及び対向電極(52T)の双方を同一構成の光透過性電極とすることで、形成工程の共通化等により、製造コストの低減は図ることができる。この時、有機EL素子(OLED)を構成する陰極(7)は光透過性であっても、非光透過性であってもよい。 In the configuration shown in FIG. 10, as in FIG. 5, an example in which the counter electrode (52T) and the anode (3T) constituting the organic EL element (OLED) are the same configuration as the light transmissive electrode is shown. By adopting such a configuration, both the anode (3T) and the counter electrode (52T) are made of light-transmitting electrodes having the same configuration, so that the manufacturing cost can be reduced by sharing the formation process. . At this time, the cathode (7) constituting the organic EL element (OLED) may be light transmissive or non-light transmissive.
 〔実施形態8:指紋情報読み取り部の構成例8〕
 図11は、本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態8)である。
[Eighth embodiment: configuration example 8 of fingerprint information reading unit]
FIG. 11 is a schematic cross-sectional view (Embodiment 8) showing another example of the configuration of the fingerprint information reading unit including the lower surface (anode side) light emitting type organic EL panel applicable to the present invention.
 図11で示す構成の指紋情報読み取り部(100)の基本的な構成は、先に図7で説明した実施形態4と同様であるが、下面発光タイプであるため、有機EL素子(OLED)を構成する陽極(3T)及びイメージセンサー(S)を構成する画素電極(54T)が光透過性電極で構成されている。 The basic configuration of the fingerprint information reading unit (100) having the configuration shown in FIG. 11 is the same as that of the fourth embodiment described above with reference to FIG. 7, but since it is a bottom emission type, an organic EL element (OLED) is used. The anode (3T) that constitutes the pixel electrode (54T) that constitutes the image sensor (S) is composed of a light transmissive electrode.
 図11に示す構成では、図6と同様に、対向電極(52)と、有機EL素子(OLED)を構成する陰極(7)を同一構成の電極とする例を示してあり、このような構成とすることにより陰極(7)及び対向電極(52)の双方を同一構成の非光透過性の電極とすることで、形成工程の共通化等により、製造コストの低減は図ることができる。 In the configuration shown in FIG. 11, as in FIG. 6, an example in which the counter electrode (52) and the cathode (7) constituting the organic EL element (OLED) are the same configuration electrode is shown. Thus, by making both the cathode (7) and the counter electrode (52) non-light-transmitting electrodes having the same configuration, it is possible to reduce the manufacturing cost by sharing the formation process and the like.
 〔実施形態9:指紋情報読み取り部の構成例9〕
 図12は、本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態9)である。
[Embodiment 9: Configuration example 9 of fingerprint information reading unit]
FIG. 12 is a schematic cross-sectional view (Embodiment 9) showing another example of the configuration of the fingerprint information reading unit including the lower surface (anode side) light emitting type organic EL panel applicable to the present invention.
 図12で示す構成の指紋情報読み取り部(100)の基本的な構成は、先に図7で説明した実施形態4と同様であるが、下面発光タイプであるため、有機EL素子(OLED)を構成する陽極(3T)及びイメージセンサー(S)を構成する画素電極(54T)が光透過性電極で構成されている。 The basic configuration of the fingerprint information reading unit (100) having the configuration shown in FIG. 12 is the same as that of the fourth embodiment described above with reference to FIG. 7, but since it is a bottom emission type, an organic EL element (OLED) is used. The anode (3T) that constitutes the pixel electrode (54T) that constitutes the image sensor (S) is composed of a light transmissive electrode.
 図12に示す構成では、図7と同様に、対向電極(52)と有機EL素子(OLED)を構成する陰極(7)と、有機光電変換層(51)と有機EL素子(OLED)を構成している有機機能層ユニット(U)とを同一構成で形成することが、形成工程の共通化等により、製造コストの低減は図ることができる点で好ましい態様である。 In the configuration shown in FIG. 12, as in FIG. 7, the counter electrode (52) and the cathode (7) constituting the organic EL element (OLED), the organic photoelectric conversion layer (51), and the organic EL element (OLED) are configured. Forming the organic functional layer unit (U) having the same structure is a preferable aspect in that the manufacturing cost can be reduced by sharing the formation process.
 〔実施形態10:指紋情報読み取り部の構成例10〕
 図13は、本発明に適用可能な下面(陽極側)発光方式の有機ELパネルを具備した指紋情報読み取り部の構成の他の一例を示す概略断面図(実施形態10)である。
[Embodiment 10: Configuration example 10 of fingerprint information reading unit]
FIG. 13 is a schematic cross-sectional view (Embodiment 10) showing another example of the configuration of the fingerprint information reading unit provided with the lower surface (anode side) light emitting organic EL panel applicable to the present invention.
 図13で示す構成の指紋情報読み取り部(100)の基本的な構成は、先に図8で説明した実施形態5と同様であるが、下面発光タイプであるため、有機EL素子(OLED)を構成する陽極(3T)及びイメージセンサー(S)を構成する画素電極(54T)が光透過性電極で構成されている。 The basic configuration of the fingerprint information reading unit (100) having the configuration shown in FIG. 13 is the same as that of the fifth embodiment described above with reference to FIG. 8, but since it is a bottom emission type, an organic EL element (OLED) is used. The anode (3T) that constitutes the pixel electrode (54T) that constitutes the image sensor (S) is composed of a light transmissive electrode.
 図13に示す構成では、図8と同様に、イメージセンサー(S)の対向電極(52)と有機EL素子(OLED)の陰極(7)、有機光電変換層(51U)と有機EL素子(OLED)の有機機能層ユニット(U)、及び画素電極(54T)を有機EL素子(OLED)の陽極(3T)とを同一とした構成を示してあり、このような形成材料を共通化して形成することが、製造が容易で、かつ形成工程の共通化等により、製造コストの低減は図ることができる点で好ましい態様である。 In the configuration shown in FIG. 13, as in FIG. 8, the counter electrode (52) of the image sensor (S), the cathode (7) of the organic EL element (OLED), the organic photoelectric conversion layer (51U), and the organic EL element (OLED) ) Of the organic functional layer unit (U) and the pixel electrode (54T) are the same as the anode (3T) of the organic EL element (OLED), and such a forming material is formed in common. However, this is a preferable aspect in that the manufacturing is easy and the manufacturing cost can be reduced by the common formation process.
 《指紋情報読み取り部を具備した光学式指紋認証装置の実施形態》
 次いで、本発明の光学式指紋認証装置を構成する有機ELパネル及びイメージセンサーを具備した指紋情報読み取り部の具体的な構成について、図を交えて説明する。
<< Embodiment of Optical Fingerprint Authentication Apparatus Comprising Fingerprint Information Reading Unit >>
Next, a specific configuration of the fingerprint information reading unit including the organic EL panel and the image sensor constituting the optical fingerprint authentication device of the present invention will be described with reference to the drawings.
 〔実施形態11:指紋情報読み取り部の構成例11〕
 図14は、ドーナツ状の有機EL素子を具備した有機ELパネルを有する指紋情報読み取り部を具備した光学式指紋認証装置の構成の一例を示す概略構成図(実施形態11)である。
[Embodiment 11: Configuration example 11 of fingerprint information reading unit]
FIG. 14 is a schematic configuration diagram (Embodiment 11) showing an example of the configuration of an optical fingerprint authentication apparatus including a fingerprint information reading unit having an organic EL panel including a donut-shaped organic EL element.
 図14のAに記載の指紋情報読み取り部(100)の概略断面図は、先に、図1Aで説明した光学式指紋認証装置を構成する指紋情報読み取り部(100)と同様の構成であり、有機EL素子(OLED)と光透過性の非発光部(12)より構成される有機ELパネル(P)と、例えば、図8あるいは図13で例示したような構成の光電変換素子(PED)を、光透過性の非発光部(12)内に形成した構成である。更に、有機ELパネル(P)の下部に、樹脂基材とTFTにより構成されているTFTユニット(53)が配置され、検体である指(F)の指紋情報を光学方式で読み取るためのイメージセンサーを構成している。11は、指を保持するためのガラス基板である。 The schematic cross-sectional view of the fingerprint information reading unit (100) described in A of FIG. 14 has the same configuration as the fingerprint information reading unit (100) constituting the optical fingerprint authentication device described above with reference to FIG. An organic EL panel (P) composed of an organic EL element (OLED) and a light-transmitting non-light emitting portion (12), and a photoelectric conversion element (PED) configured as exemplified in FIG. 8 or FIG. The structure is formed in the light-transmitting non-light emitting portion (12). Further, a TFT unit (53) composed of a resin base material and TFT is disposed below the organic EL panel (P), and an image sensor for reading fingerprint information of a finger (F) as a specimen by an optical method. Is configured. 11 is a glass substrate for holding a finger.
 有機EL素子(OLED)より照射光(L1)を指(F)の指紋面に照射し、光信号である反射光(L2)を、光電変換素子(PED)とTFTユニット(53)により構成されるイメージセンサーで受光して、指紋パターン情報を得る方法である。 Irradiated light (L1) is emitted from the organic EL element (OLED) to the fingerprint surface of the finger (F), and reflected light (L2), which is an optical signal, is composed of a photoelectric conversion element (PED) and a TFT unit (53). This is a method of obtaining fingerprint pattern information by receiving light with an image sensor.
 このような構成の指紋情報読み取り部(100)における有機EL素子(OLED)を含む有機ELパネル(P)の形状としては、図14のBで示すように、楕円形の有機ELパネル(P)の外周部に、連続したドーナツ状の有機EL素子(OLED)を配置し、その中心の空隙部に、非発光部(12)を形成する方法であり、このような有機EL素子(OLED)の形態とすることにより、指紋パターンを広い開口部により測定することができる。 As the shape of the organic EL panel (P) including the organic EL element (OLED) in the fingerprint information reading unit (100) having such a configuration, as shown in FIG. 14B, an elliptical organic EL panel (P) Is a method in which a continuous donut-shaped organic EL element (OLED) is disposed on the outer peripheral portion of the substrate, and a non-light-emitting portion (12) is formed in the central gap portion of the organic EL element (OLED). By adopting the form, the fingerprint pattern can be measured by a wide opening.
 図14のCは、図14のAで示した構成の指紋情報読み取り部(100)の下面図であり、検体である指(F)に対し、ドーナツ状の有機EL素子(OLED)とその非発光領域に光電変換素子(PED)が配置され、その下部全面にTFTユニット(53)が配置されている構成である。ただし、図14のCでは、最表面に位置するTFTユニット(53)及び最下面に位置するガラス基板(11)の記載は省略してある。 FIG. 14C is a bottom view of the fingerprint information reading unit (100) having the configuration shown in FIG. 14A. The doughnut-shaped organic EL element (OLED) and its non-existence are shown for the finger (F) as the specimen. The photoelectric conversion element (PED) is disposed in the light emitting region, and the TFT unit (53) is disposed on the entire lower surface thereof. However, in FIG. 14C, the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
 〔実施形態12:指紋情報読み取り部の構成例12〕
 図15は、ドーナツ状の有機EL素子を具備した有機ELパネルを有する指紋情報読み取り部を具備した光学式指紋認証装置の構成の一例を示す概略構成図(実施形態12)である。
[Embodiment 12: Configuration example 12 of fingerprint information reading unit]
FIG. 15 is a schematic configuration diagram (Embodiment 12) showing an example of a configuration of an optical fingerprint authentication apparatus including a fingerprint information reading unit having an organic EL panel including a donut-shaped organic EL element.
 図15のAに記載の指紋情報読み取り部(100)の概略断面図は、先に、図1Bで説明した光学式指紋認証装置を構成する指紋情報読み取り部(100)と同様の構成であり、例えば、図4~図6で例示したような有機EL素子(OLED)と光透過性の非発光部(12)より構成される有機ELパネル(P)と、その下部に光電変換素子(PED)と、樹脂基材とTFTにより構成されているTFTユニット(53)が配置され、検体である指(F)の指紋情報を光学方式で読み取るためのイメージセンサーを構成している。11は、指を保持するためのガラス基板である。 The schematic cross-sectional view of the fingerprint information reading unit (100) described in A of FIG. 15 has the same configuration as the fingerprint information reading unit (100) that constitutes the optical fingerprint authentication device described above with reference to FIG. For example, an organic EL panel (P) composed of an organic EL element (OLED) as illustrated in FIGS. 4 to 6 and a light-transmitting non-light emitting part (12), and a photoelectric conversion element (PED) below the organic EL panel (PED) In addition, a TFT unit (53) composed of a resin base material and a TFT is arranged to constitute an image sensor for reading fingerprint information of a finger (F) as a specimen by an optical method. 11 is a glass substrate for holding a finger.
 有機EL素子(OLED)より照射光(L1)を指(F)の指紋面に照射し、光信号である反射光(L2)を、光電変換素子(PED)とTFTユニット(53)により構成されるイメージセンサーで受光して、指紋パターン情報を得る方法である。 Irradiated light (L1) is emitted from the organic EL element (OLED) to the fingerprint surface of the finger (F), and reflected light (L2), which is an optical signal, is composed of a photoelectric conversion element (PED) and a TFT unit (53). This is a method of obtaining fingerprint pattern information by receiving light with an image sensor.
 このような構成の指紋情報読み取り部(100)における有機EL素子(OLED)を含む有機ELパネル(P1)の形状としては、先に説明した図14のBで示す形状と同様である。 The shape of the organic EL panel (P1) including the organic EL element (OLED) in the fingerprint information reading unit (100) having such a configuration is the same as the shape shown in FIG. 14B described above.
 図15のCは、図15のAで示した指紋情報読み取り部(100)の下面図であり、検体である指(F)に対し、ドーナツ状の有機EL素子(OLED)と、その全面に光電変換素子(PED)が配置され、その下部全面にTFTユニット(53)が配置されている構成である。ただし、図15のCでは、最表面に位置するTFTユニット(53)及び最下面に位置するガラス基板(11)の記載は省略してある。 C in FIG. 15 is a bottom view of the fingerprint information reading unit (100) shown in A of FIG. 15, with a donut-shaped organic EL element (OLED) and a whole surface of the finger (F) as a specimen. A photoelectric conversion element (PED) is arranged, and a TFT unit (53) is arranged on the entire lower surface. However, in FIG. 15C, the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
 〔実施形態13:指紋情報読み取り部の構成例13〕
 図16は、長方形型の有機EL素子を具備した有機ELパネルと、イメージセンサーを有する指紋情報読み取り部(100)の一例を示す概略構成図(実施形態13)である。
[Embodiment 13: Configuration example 13 of fingerprint information reading unit]
FIG. 16 is a schematic configuration diagram (embodiment 13) showing an example of a fingerprint information reading unit (100) having an organic EL panel having a rectangular organic EL element and an image sensor.
 図16のAで示す概略断面図は、上記図14のAに記載の構成と同様であるが、図16のB及び図16のCで示すように、有機ELパネル(P)を構成する有機EL素子(OLED)及び光電変換素子(PED)の形状が、長方形になっているのが特徴である。このような構成の光学式指紋認証装置では、円形状の指紋全体をカバーすることはし難いが、重要な指紋中心部のパターン検出を行うには有効な方法の一つである。 The schematic cross-sectional view shown by A in FIG. 16 is the same as the configuration shown in A in FIG. 14, but as shown by B in FIG. 16 and C in FIG. The EL element (OLED) and the photoelectric conversion element (PED) are characterized by a rectangular shape. The optical fingerprint authentication apparatus having such a configuration is difficult to cover the entire circular fingerprint, but is an effective method for detecting an important fingerprint center pattern.
 図16のBに示すように、有機ELパネル(P)は長方形を有し、その端部に連続した長方形の有機EL素子(OLED)を配置している構成で、その内側に、同じく長方形のエリアを有する非発光部(12)が形成され、図16のCで示すように、その非発光部(12)の形態に合わせ、その内部に長方形の光電変換素子(PED)が配置され、その下部全面に長方形のTFTユニット(53)が配置されている。ただし、図16のCでは、最表面に位置するTFTユニット(53)及び最下面に位置するガラス基板(11)の記載は省略してある。 As shown in FIG. 16B, the organic EL panel (P) has a rectangular shape, and a rectangular organic EL element (OLED) that is continuous at the end thereof is arranged. A non-light-emitting portion (12) having an area is formed, and a rectangular photoelectric conversion element (PED) is arranged inside the non-light-emitting portion (12) according to the form of the non-light-emitting portion (12), as shown in FIG. A rectangular TFT unit (53) is disposed on the entire lower surface. However, in FIG. 16C, the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
 図14~図16で示すように、有機ELパネル(P)に特定の形状、例えば、ドーナツ状や長方形の有機EL素子(OLED)を形成する方法としては、陽極(3)、有機機能層ユニット(U)及び陰極(7)を、例えば、真空蒸着法(例えば、抵抗加熱蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等)、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法や、スクリーン印刷法等の湿式塗布方法等により、所望の形状を有するマスク部材を用いて形成することができる。又、紫外線照射により有機機能層ユニット(U)の機能を失活させ、所望の形状を有する有機EL素子を形成することもできる。 As shown in FIGS. 14 to 16, as a method of forming an organic EL element (OLED) having a specific shape, for example, a donut shape or a rectangular shape, on the organic EL panel (P), an anode (3), an organic functional layer unit (U) and the cathode (7) are, for example, vacuum deposition methods (for example, resistance heating vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method), sputtering method, reactive sputtering method, molecular beam It is formed using a mask member having a desired shape by a wet coating method such as an epitaxy method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, or a screen printing method. Can do. Moreover, the function of the organic functional layer unit (U) can be deactivated by ultraviolet irradiation, and an organic EL element having a desired shape can be formed.
 〔実施形態14:指紋情報読み取り部の構成例14〕
 図17は、短冊状の有機EL素子を4辺に離間して配置した有機ELパネルと、イメージセンサーを有する指紋情報読み取り部(100)の一例を示す概略構成図(実施形態14)である。
[Embodiment 14: Configuration example 14 of fingerprint information reading unit]
FIG. 17 is a schematic configuration diagram (embodiment 14) showing an example of a fingerprint information reading unit (100) having an organic EL panel in which strip-shaped organic EL elements are spaced apart on four sides and an image sensor.
 実施形態14における有機ELパネル(P)は、図17のBに示すように、長方形の有機ELパネル(P)のそれぞれの4辺に、独立した短冊状の有機EL素子(OLED)を配置した構成であり、非発光部(12)と光電変換素子(PED)の形状も、長方形になっているのが特徴である。 In the organic EL panel (P) according to the fourteenth embodiment, as shown in FIG. 17B, independent strip-shaped organic EL elements (OLEDs) are arranged on each of the four sides of the rectangular organic EL panel (P). It is a structure, and the shape of the non-light-emitting part (12) and the photoelectric conversion element (PED) is also a rectangle.
 図17のCは、図17のAで示した指紋情報読み取り部(100)の下面図であり、検体である指(F)に対し、を4辺に離間して配置した有機EL素子(OLED)と、非発光部に光電変換素子(PED)が配置され、その下部全面に長方形のTFTユニット(53)が配置されている構成である。ただし、図17のCでは、最表面に位置するTFTユニット(53)及び最下面に位置するガラス基板(11)の記載は省略してある。 FIG. 17C is a bottom view of the fingerprint information reading unit (100) shown in FIG. 17A, and is an organic EL element (OLED) in which the finger (F) as a specimen is arranged on four sides apart from each other. ), A photoelectric conversion element (PED) is disposed in the non-light emitting portion, and a rectangular TFT unit (53) is disposed on the entire lower surface thereof. However, in FIG. 17C, the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
 〔実施形態15:指紋情報読み取り部の構成例15〕
 図18は、中心に長方形の非発光部を設けた円形の有機ELパネルと、長方形のイメージセンサーを有する指紋情報読み取り部(100)の一例を示す概略構成図(実施形態15)である。
[Embodiment 15: Configuration example 15 of fingerprint information reading unit]
FIG. 18 is a schematic configuration diagram (Embodiment 15) showing an example of a fingerprint information reading unit (100) having a circular organic EL panel having a rectangular non-light emitting portion at the center and a rectangular image sensor.
 図18のBで示すように、実施形態15の有機ELパネル(P)は、外周は図14と同様に楕円形であるが、中央部に配置している非発光部(12)と、光電変換素子(PED)が、図16と同様の長方形である例を示してある。 As shown by B in FIG. 18, the outer periphery of the organic EL panel (P) of the fifteenth embodiment is elliptical as in FIG. 14, but the non-light emitting portion (12) disposed in the center and the photoelectric An example in which the conversion element (PED) is a rectangle similar to FIG. 16 is shown.
 図18のCは、図18のAで示した指紋情報読み取り部(100)の下面図であり、検体である指(F)に対し、ドーナツ状の有機EL素子(OLED)と、その非発光部(12)に長方形の光電変換素子(PED)が配置されて、その下部全面にTFTユニット(53)が配置されている構成である。ただし、図18のCでは、最表面に位置するTFTユニット(53)及び最下面に位置するガラス基板(11)の記載は省略してある。 C in FIG. 18 is a bottom view of the fingerprint information reading unit (100) shown in A of FIG. 18, and a donut-shaped organic EL element (OLED) and its non-light emission with respect to the finger (F) as a specimen. A rectangular photoelectric conversion element (PED) is arranged in the part (12), and a TFT unit (53) is arranged on the entire lower surface. However, in FIG. 18C, the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
 〔実施形態16:指紋情報読み取り部の構成例16〕
 図19は、複数の有機EL素子をストライプ状に並列配置した有機ELパネルと、イメージセンサーを有する指紋情報読み取り部(100)の一例を示す概略構成図(実施形態16)である。
[Embodiment 16: Configuration example 16 of fingerprint information reading unit]
FIG. 19 is a schematic configuration diagram (embodiment 16) showing an example of a fingerprint information reading unit (100) having an organic EL panel in which a plurality of organic EL elements are arranged in parallel in a stripe shape and an image sensor.
 図19のBで示す構成では、楕円形の有機ELパネル(P)に対し複数のサイズの異なる矩形の有機EL素子(OLED)をストライプ状に並列配置した構成である。 19B is a configuration in which a plurality of rectangular organic EL elements (OLEDs) having different sizes are arranged in parallel in a stripe shape on an elliptical organic EL panel (P).
 図19のCは、図19のAで示した指紋情報読み取り部(100)の下面図であり、検体である指(F)に対し、複数のサイズの異なる矩形の有機EL素子(OLED)と、その非発光部(12)に光電変換素子(PED)が配置されて、その下部全面にTFTユニット(53)が配置されている構成である。ただし、図19のCでは、最表面に位置するTFTユニット(53)及び最下面に位置するガラス基板(11)の記載は省略してある。 19C is a bottom view of the fingerprint information reading unit (100) shown in FIG. 19A, and a plurality of rectangular organic EL elements (OLEDs) having different sizes with respect to the finger (F) as a specimen. The photoelectric conversion element (PED) is disposed on the non-light emitting portion (12), and the TFT unit (53) is disposed on the entire lower surface thereof. However, in FIG. 19C, the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
 図19に示す構成においては、複数の有機EL素子(OLED)の占める総面積が広すぎると、検知可能面積が狭くなるため、有機ELパネル(P)の全面積に対する非発光部(12)の占める比率、言い換えれば、有機ELパネル(P)の全面積に対するイメージセンサー(S)の占める比率である開口率(%)としては、50%以上であることが好ましく、さらに好ましくは60%以上であり、特に好ましくは70%以上である。開口率を高めるに従い、有機EL素子(OLED)による総発光量が低下するため、高い発光強度を備えた有機EL素子(OLED)を適用することが好ましい。高い発光強度を有する有機EL素子(OLED)としては、例えば、発光層を含む有機機能層ユニットを中間層や中間電極を介して2ユニット以上積層したタンデム構成の有機EL素子を挙げることができる。 In the configuration shown in FIG. 19, if the total area occupied by the plurality of organic EL elements (OLEDs) is too large, the detectable area is narrowed. Therefore, the non-light emitting portion (12) of the entire area of the organic EL panel (P) is reduced. The opening ratio (%), which is the ratio occupied by the image sensor (S) with respect to the total area of the organic EL panel (P), is preferably 50% or more, and more preferably 60% or more. Yes, particularly preferably 70% or more. As the aperture ratio increases, the total amount of light emitted by the organic EL element (OLED) decreases, and therefore it is preferable to apply an organic EL element (OLED) having a high light emission intensity. As an organic EL element (OLED) having high light emission intensity, for example, an organic EL element having a tandem structure in which two or more organic functional layer units including a light emitting layer are stacked via an intermediate layer or an intermediate electrode can be exemplified.
 〔実施形態17:指紋情報読み取り部の構成例17〕
 図20は、外周部に複数の有機EL素子を離間して配置した有機ELパネルと、イメージセンサーを有する指紋情報読み取り部(100)の一例を示す概略構成図(実施形態17)である。
[Embodiment 17: Configuration example 17 of fingerprint information reading unit]
FIG. 20 is a schematic configuration diagram (Embodiment 17) showing an example of a fingerprint information reading unit (100) having an organic EL panel in which a plurality of organic EL elements are arranged apart from each other on the outer periphery and an image sensor.
 図20のBに示すように、楕円形の有機ELパネル(P)の外周部に、複数の長方形の有機EL素子(OLED)を独立して配置した構成で、その有機EL素子(OLED)の間及び中心部に非発光部(12)が形成されている。 As shown in FIG. 20B, a plurality of rectangular organic EL elements (OLED) are independently arranged on the outer periphery of an elliptical organic EL panel (P), and the organic EL element (OLED) A non-light emitting portion (12) is formed between and in the center.
 図20のCは、図20のAで示した指紋情報読み取り部(100)の下面図であり、検体である指(F)に対し、円周状に複数の長方形の有機EL素子(OLED)を離間した状態で配置し、その非発光部(12)に光電変換素子(PED)が配置されて、その下部全面にTFTユニット(53)が配置されている構成である。ただし、図20のCでは、最表面に位置するTFTユニット(53)及び最下面に位置するガラス基板(11)の記載は省略してある。 FIG. 20C is a bottom view of the fingerprint information reading unit (100) shown in FIG. 20A, and a plurality of rectangular organic EL elements (OLEDs) are arranged circumferentially with respect to the finger (F) as the specimen. Are arranged in a separated state, a photoelectric conversion element (PED) is arranged in the non-light emitting portion (12), and a TFT unit (53) is arranged on the entire lower surface thereof. However, in FIG. 20C, the description of the TFT unit (53) located on the outermost surface and the glass substrate (11) located on the lowermost surface is omitted.
 このような構成では、図19で例示したストライプ状の構成に対し、高い開口率を得ることができる点で好ましい。 Such a configuration is preferable in that a high aperture ratio can be obtained as compared with the striped configuration illustrated in FIG.
 〔光電変換素子(PED)における画素電極の配列例〕
 図21は、イメージセンサーを構成する光電変換素子(PED)における画素電極(54)の配列パターンの一例を示す模式図であり、光電変換素子(PED)では独立している複数の画素電極(54)が、規則正しい2次元配列をとる方法が好ましい。
[Example of arrangement of pixel electrodes in photoelectric conversion element (PED)]
FIG. 21 is a schematic diagram illustrating an example of an array pattern of the pixel electrodes (54) in the photoelectric conversion element (PED) constituting the image sensor, and a plurality of pixel electrodes (54) independent in the photoelectric conversion element (PED). However, a method of taking a regular two-dimensional array is preferable.
 《指紋認証方法》
 本発明の光学式指紋認証装置を用いた指紋認証の具体的な方法としては、例えば、特開2003-256377号公報、特開2004-005619号公報、特開2004-246586号公報、特開2005-063246号公報、特開2005-118289号公報、特開2006-244224号公報、特開2007-289457号公報、特開2007-328511号公報、特開2008-009821号公報、特開2008-171238号公報、特開2009-271825号公報、特開2011-141880号公報等に記載の方法を適宜選択して適用することができる。
《Fingerprint authentication method》
Specific methods of fingerprint authentication using the optical fingerprint authentication device of the present invention include, for example, Japanese Patent Application Laid-Open Nos. 2003-256377, 2004-005619, 2004-246586, and 2005. -063246, JP-A-2005-118289, JP-A-2006-244224, JP-A-2007-289457, JP-A-2007-328511, JP-A-2008-009821, and JP-A-2008-171238. The methods described in Japanese Patent Laid-Open No. 2009-271825, Japanese Patent Laid-Open No. 2011-141880, and the like can be appropriately selected and applied.
 本発明の光学式指紋認証装置は、照明光源として有機ELパネルと、イメージセンサーとして有機光電変換層を有する光電変換方式のイメージセンサーを具備し、薄型で簡易な構成で、目的に応じて様々な形状の有機エレクトロルミネッセンス素子を照明光源として有し、低コストで作製が可能な光学式指紋認証装置であり、銀行のATM、携帯電話機、携帯情報端末、パーソナルコンピュータ等において、指紋パターンによる個人認証に好適に利用できる。 The optical fingerprint authentication device of the present invention comprises an organic EL panel as an illumination light source and a photoelectric conversion type image sensor having an organic photoelectric conversion layer as an image sensor, and has a thin and simple configuration, and various types can be used depending on the purpose. This is an optical fingerprint authentication device that has a shaped organic electroluminescence element as an illumination light source and can be manufactured at low cost. It can be used for personal authentication using fingerprint patterns in bank ATMs, mobile phones, personal digital assistants, personal computers, etc. It can be suitably used.
 1 透明基材
 2、9 ガスバリアー層
 3 陽極
 3T 陽極(光透過性)
 4 キャリア輸送機能層群1
 5 発光層
 6 キャリア輸送機能層群2
 7 陰極
 7T 陰極(光透過性)
 8 封止用接着層
 10 封止基板
 11 ガラス基板
 12 光透過領域、非発光部
 13 発光エリア
 51 有機光電変換層
 52 対向電極
 52T 対向電極(光透過性)
 53 TFTユニット
 54 画素電極
 54T 画素電極(光透過性)
 55 接続部
 56 TFT
 57 絶縁層
 58 基材
 100 指紋情報読み取り部
 F 指
 L1 光、照射光
 L2 反射光、光信号
 OLED 有機EL素子
 P 有機ELパネル
 PED 光電変換素子
 S イメージセンサー
 U 有機機能層ユニット
DESCRIPTION OF SYMBOLS 1 Transparent base material 2, 9 Gas barrier layer 3 Anode 3T Anode (light transmittance)
4 Carrier transport functional layer group 1
5 Light emitting layer 6 Carrier transport functional layer group 2
7 Cathode 7T Cathode (light transmissive)
8 Sealing Adhesive Layer 10 Sealing Substrate 11 Glass Substrate 12 Light Transmission Area, Non-Light-Emitting Part 13 Light-Emitting Area 51 Organic Photoelectric Conversion Layer 52 Counter Electrode 52T Counter Electrode (Light Transmissivity)
53 TFT unit 54 Pixel electrode 54T Pixel electrode (light transmissive)
55 Connection 56 TFT
57 Insulating layer 58 Base material 100 Fingerprint information reading part F Finger L1 Light, irradiation light L2 Reflected light, Optical signal OLED Organic EL element P Organic EL panel PED Photoelectric conversion element S Image sensor U Organic functional layer unit

Claims (13)

  1.  少なくとも光源とイメージセンサーを有し、拡散光を当該イメージセンサーにより検出する光学式指紋認証装置であって、
     前記光源として、有機エレクトロルミネッセンスパネルを有し、
     当該有機エレクトロルミネッセンスパネルは、有機エレクトロルミネッセンス素子により構成される発光部領域と、光透過性の非発光部より構成され、
     前記イメージセンサーが、少なくとも有機光電変換層を有し、かつ
     前記イメージセンサーが、前記有機エレクトロルミネッセンスパネルの非発光部又は前記非発光部に隣接して配置されている指紋情報読み取り部を具備している
     ことを特徴とする光学式指紋認証装置。
    An optical fingerprint authentication device having at least a light source and an image sensor and detecting diffused light by the image sensor,
    As the light source, it has an organic electroluminescence panel,
    The organic electroluminescence panel is composed of a light emitting part region constituted by an organic electroluminescence element and a light transmissive non-light emitting part.
    The image sensor includes at least an organic photoelectric conversion layer, and the image sensor includes a non-light-emitting portion of the organic electroluminescence panel or a fingerprint information reading unit disposed adjacent to the non-light-emitting portion. An optical fingerprint authentication device characterized by that.
  2.  前記イメージセンサーは、少なくとも対向電極、有機光電変換層、画素電極及び薄膜トランジスターにより構成されていることを特徴とする請求項1に記載の光学式指紋認証装置。 2. The optical fingerprint authentication apparatus according to claim 1, wherein the image sensor includes at least a counter electrode, an organic photoelectric conversion layer, a pixel electrode, and a thin film transistor.
  3.  前記イメージセンサーが、前記有機エレクトロルミネッセンスパネルの発光面とは反対の面側に、独立して設置されていることを特徴とする請求項1又は請求項2に記載の光学式指紋認証装置。 3. The optical fingerprint authentication device according to claim 1, wherein the image sensor is independently installed on a surface opposite to a light emitting surface of the organic electroluminescence panel.
  4.  前記イメージセンサーが、前記有機エレクトロルミネッセンスパネルの発光面側に、独立して設置されていることを特徴とする請求項1又は請求項2に記載の光学式指紋認証装置。 3. The optical fingerprint authentication device according to claim 1, wherein the image sensor is independently installed on a light emitting surface side of the organic electroluminescence panel.
  5.  前記イメージセンサーを構成する対向電極、有機光電変換層及び画素電極の少なくとも一つが、前記有機エレクトロルミネッセンスパネルの非発光部に形成されていることを特徴とする請求項2から請求項4までのいずれか一項に記載の光学式指紋認証装置。 5. The device according to claim 2, wherein at least one of a counter electrode, an organic photoelectric conversion layer, and a pixel electrode constituting the image sensor is formed in a non-light emitting portion of the organic electroluminescence panel. An optical fingerprint authentication device according to claim 1.
  6.  前記イメージセンサーを構成する対向電極、有機光電変換層及び画素電極の全てが、前記有機エレクトロルミネッセンスパネルの非発光部で、有機エレクトロルミネッセンス素子と同一平面上に形成されていることを特徴とする請求項2から請求項4までのいずれか一項に記載の光学式指紋認証装置。 The counter electrode, the organic photoelectric conversion layer, and the pixel electrode constituting the image sensor are all non-light emitting portions of the organic electroluminescence panel and are formed on the same plane as the organic electroluminescence element. Item 5. The optical fingerprint authentication device according to any one of items 2 to 4.
  7.  前記有機エレクトロルミネッセンス素子が、一対の対向する電極間に有機機能層ユニットを有し、前記電極の一方が光透過性の電極であり、他方が非光透過性の電極であることを特徴とする請求項1から請求項6までのいずれか一項に記載の光学式指紋認証装置。 The organic electroluminescence element has an organic functional layer unit between a pair of opposing electrodes, wherein one of the electrodes is a light transmissive electrode and the other is a non-light transmissive electrode. The optical fingerprint authentication device according to any one of claims 1 to 6.
  8.  前記光透過性の電極が、酸化物半導体又は薄膜の金属若しくは合金で構成されていることを特徴とする請求項7に記載の光学式指紋認証装置。 The optical fingerprint authentication device according to claim 7, wherein the light transmissive electrode is made of an oxide semiconductor or a thin metal or alloy.
  9.  前記有機エレクトロルミネッセンスパネルが、外周部領域に、連続した構成の有機エレクトロルミネッセンス素子が配置され、中央部が前記光透過性の非発光部であることを特徴とする請求項1から請求項8までのいずれか一項に記載の光学式指紋認証装置。 9. The organic electroluminescence panel according to claim 1, wherein an organic electroluminescence element having a continuous configuration is arranged in an outer peripheral region, and a central portion is the light-transmitting non-light emitting portion. The optical fingerprint authentication device according to any one of the above.
  10.  前記有機エレクトロルミネッセンスパネルが、ストライプ状に並列配置された複数の有機エレクトロルミネッセンス素子を有し、かつ前記ストライプ状の有機エレクトロルミネッセンス素子の間に、前記光透過性の非発光部を有していることを特徴とする請求項1から請求項8までのいずれか一項に記載の光学式指紋認証装置。 The organic electroluminescence panel has a plurality of organic electroluminescence elements arranged in parallel in a stripe shape, and has the light-transmissive non-light emitting portion between the stripe-shaped organic electroluminescence elements. The optical fingerprint authentication device according to any one of claims 1 to 8, wherein the optical fingerprint authentication device is any one of the above.
  11.  前記有機エレクトロルミネッセンスパネルが、外周部領域に、独立した複数の有機エレクトロルミネッセンス素子を有し、中央部に前記光透過性の非発光部を有することを特徴とする請求項1から請求項8までのいずれか一項に記載の光学式指紋認証装置。 The organic electroluminescence panel has a plurality of independent organic electroluminescence elements in an outer peripheral region, and has the light-transmissive non-light-emitting portion in a central portion. The optical fingerprint authentication device according to any one of the above.
  12.  前記有機エレクトロルミネッセンスパネルが、可視光領域の波長の光を発光することを特徴とする請求項1から請求項11までのいずれか一項に記載の光学式指紋認証装置。 The optical fingerprint authentication apparatus according to any one of claims 1 to 11, wherein the organic electroluminescence panel emits light having a wavelength in a visible light region.
  13.  前記有機エレクトロルミネッセンスパネルが、赤外領域の波長の光を発光することを特徴とする請求項1から請求項11までのいずれか一項に記載の光学式指紋認証装置。 The optical fingerprint authentication apparatus according to any one of claims 1 to 11, wherein the organic electroluminescence panel emits light having a wavelength in an infrared region.
PCT/JP2016/075653 2016-01-22 2016-09-01 Optical fingerprint authentication device WO2017126153A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017562426A JPWO2017126153A1 (en) 2016-01-22 2016-09-01 Optical fingerprint authentication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-010354 2016-01-22
JP2016010354 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017126153A1 true WO2017126153A1 (en) 2017-07-27

Family

ID=59362511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075653 WO2017126153A1 (en) 2016-01-22 2016-09-01 Optical fingerprint authentication device

Country Status (2)

Country Link
JP (1) JPWO2017126153A1 (en)
WO (1) WO2017126153A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133976A1 (en) * 2018-12-28 2020-07-02 昆山国显光电有限公司 Display device and display panel thereof, and oled array substrate
EP3742428A1 (en) * 2019-05-24 2020-11-25 Beijing Xiaomi Mobile Software Co., Ltd. Pixel display component, screen display component, display screen, and terminal
CN113168788A (en) * 2018-11-22 2021-07-23 株式会社日本显示器 Detection device and display device
KR20210143754A (en) 2019-03-28 2021-11-29 도레이 카부시키가이샤 Authentication device and film
WO2023176829A1 (en) * 2022-03-16 2023-09-21 東レ株式会社 Photovoltaic element, optical sensor, imaging element, and fingerprint authentication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110896A (en) * 2003-10-07 2005-04-28 Canon Inc Finger sensor
JP2009003821A (en) * 2007-06-25 2009-01-08 Hitachi Ltd Imaging apparatus and apparatus mounted with the same
WO2015115229A1 (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Photoelectric conversion element, imaging element and photosensor
WO2015141397A1 (en) * 2014-03-17 2015-09-24 コニカミノルタ株式会社 Organic electroluminescent element and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110896A (en) * 2003-10-07 2005-04-28 Canon Inc Finger sensor
JP2009003821A (en) * 2007-06-25 2009-01-08 Hitachi Ltd Imaging apparatus and apparatus mounted with the same
WO2015115229A1 (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Photoelectric conversion element, imaging element and photosensor
WO2015141397A1 (en) * 2014-03-17 2015-09-24 コニカミノルタ株式会社 Organic electroluminescent element and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113168788A (en) * 2018-11-22 2021-07-23 株式会社日本显示器 Detection device and display device
CN113168788B (en) * 2018-11-22 2023-03-10 株式会社日本显示器 Detection device and display device
WO2020133976A1 (en) * 2018-12-28 2020-07-02 昆山国显光电有限公司 Display device and display panel thereof, and oled array substrate
US11282448B2 (en) 2018-12-28 2022-03-22 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Display device and display panel thereof, OLED array substrate
KR20210143754A (en) 2019-03-28 2021-11-29 도레이 카부시키가이샤 Authentication device and film
EP3742428A1 (en) * 2019-05-24 2020-11-25 Beijing Xiaomi Mobile Software Co., Ltd. Pixel display component, screen display component, display screen, and terminal
US11094910B2 (en) 2019-05-24 2021-08-17 Beijing Xiaomi Mobile Software Co., Ltd. Pixel display component, screen display component, display screen, and terminal
KR20220044861A (en) * 2019-05-24 2022-04-11 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 Pixel display component, screen display component, display screen, and terminal
KR102519319B1 (en) 2019-05-24 2023-04-10 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 Pixel display component, screen display component, display screen, and terminal
WO2023176829A1 (en) * 2022-03-16 2023-09-21 東レ株式会社 Photovoltaic element, optical sensor, imaging element, and fingerprint authentication device

Also Published As

Publication number Publication date
JPWO2017126153A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US11507649B2 (en) Optical fingerprint authentication device
WO2017126153A1 (en) Optical fingerprint authentication device
JP6477683B2 (en) Organic electroluminescence module and smart device
JP6365665B2 (en) Organic electroluminescence module, smart device and lighting device
JP6319434B2 (en) Organic electroluminescence module, smart device and lighting device
US9425439B2 (en) Organic electroluminescent module and method of manufacturing the same
WO2017047134A1 (en) Organic electroluminescence module, smart device, and lighting device
JP4941297B2 (en) Method for manufacturing organic electroluminescence device
JPWO2018168225A1 (en) Composition for producing electronic device, method for producing composition for producing electronic device, organic thin film, and method for producing organic thin film
JP6741062B2 (en) Organic electroluminescence module, smart device and lighting device
WO2017056682A1 (en) Organic electroluminescence panel
WO2017056684A1 (en) Organic electroluminescence panel and production method therefor
JP2016099921A (en) Organic electroluminescence module, and smart device and illuminating device including the same
CN105144845B (en) The pattern formation method of organic electroluminescent device
WO2020012685A1 (en) Thin film, electronic device, organic electroluminescent element, material for organic electroluminescence, display device, and lighting equipment
US10186559B2 (en) Organic electroluminescence module and information device
JP6665856B2 (en) Method for manufacturing organic electroluminescence device
JPWO2018198529A1 (en) Organic electroluminescence element, optical sensor and biological sensor
JPWO2018168617A1 (en) Surface emitting device
JP2012084534A (en) Organic electroluminescent element and method for manufacturing the same
JP6252590B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
WO2016098397A1 (en) Electrical connection member, organic electroluminescence module, and method for producing organic electroluminescence module
WO2012105333A1 (en) Production method for organic electroluminescence element and organic electroluminescence element
JP2004288441A (en) Manufacturing method of organic electroluminescent element, and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886393

Country of ref document: EP

Kind code of ref document: A1