이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention;
본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위 내에서 본 발명의 다양한 변경 및 변형이 가능하다는 점은 당업자에게 자명할 것이다. 따라서, 본 발명은 특허청구범위에 기재된 발명 및 그 균등물의 범위 내에 드는 변경 및 변형을 모두 포함한다.It will be apparent to those skilled in the art that various changes and modifications of the present invention are possible without departing from the spirit and scope of the present invention. Accordingly, the invention includes all modifications and variations that fall within the scope of the invention as set forth in the claims and their equivalents.
도 1은 본 발명의 일 실시예에 따른 이차전지용 동박의 단면도이다.1 is a cross-sectional view of a secondary battery copper foil according to an embodiment of the present invention.
도 1에 예시된 바와 같이, 제1 면(100a) 및 그 반대 편의 제2 면(100b)을 갖는 본 발명의 동박(100)은, 상기 제1 면(100a)을 향하는 매트면(Matte surface)(110a) 및 상기 제2 면(100b)을 향하는 샤이니면(Shiny surface)(110b)을 갖는 구리막(copper film: 110), 상기 구리막(110)의 상기 매트면(110a) 상의 제1 구리 돌기층(121), 상기 제1 구리 돌기층(121) 상의 제1 보호층(131), 상기 구리막(110)의 상기 샤이니면(110b) 상의 제2 구리 돌기층(122), 및 상기 제2 구리 돌기층(122) 상의 제2 보호층(132)을 포함한다.As illustrated in FIG. 1, the copper foil 100 of the present invention having the first surface 100a and the second surface 100b opposite thereto has a mat surface facing the first surface 100a. Copper film 110 having a shiny surface 110b facing 110a and the second surface 100b, and first copper on the mat surface 110a of the copper film 110. The protrusion layer 121, the first protective layer 131 on the first copper protrusion layer 121, the second copper protrusion layer 122 on the shiny surface 110b of the copper film 110, and the first agent. The second protective layer 132 on the two copper protrusion layer 122 is included.
본 발명의 동박(100)은 상기 구리막(110)을 기준으로 대칭 구조를 갖기 때문에, 동박(100)이 어느 한 쪽으로 휘는 현상을 방지하거나 최소화할 수 있다.Since the copper foil 100 of the present invention has a symmetrical structure with respect to the copper film 110, the copper foil 100 may be prevented or minimized in one direction.
상기 구리막(110)은 전기도금을 통해 회전음극드럼 상에 형성될 수 있으며, 상기 구리막(110)의 샤이니면(110b)은 상기 회전음극드럼과 접촉하였던 면이고 상기 매트면(110a)은 그 반대 편의 면이다. 본 발명의 구리막(110)은 99중량% 이상의 구리를 포함할 수 있다.The copper film 110 may be formed on the rotating cathode drum through electroplating. The shiny surface 110b of the copper film 110 may be a surface in contact with the rotating cathode drum, and the mat surface 110a may be formed on the rotating cathode drum. The opposite side is the opposite. The copper film 110 of the present invention may include 99 wt% or more copper.
대안적으로, 상기 구리막(110)은 압연을 통해서도 제조될 수 있다. 설명의 편의상, 압연을 통해 제조된 구리막(110)도 그 일면을 매트면(110a)으로 타면을 샤이니면(110b)으로 각각 지칭한다.Alternatively, the copper film 110 may be manufactured through rolling. For convenience of description, the copper film 110 manufactured by rolling also refers to one surface as the mat surface 110a and the other surface as the shiny surface 110b.
본 발명의 동박(100) 상에 활물질층을 형성함으로써 이차전지용 음극이 제조될 수 있다.By forming an active material layer on the copper foil 100 of the present invention, a negative electrode for a secondary battery may be manufactured.
이차전지의 충방전이 반복됨에 따라 상기 활물질층의 수축 및 팽창이 번갈아 발생하고, 이것은 상기 활물질층과 상기 동박(100)의 분리를 유발하여 이차전지의 충방전 효율을 저하시킨다. 따라서, 이차전극이 일정 수준 이상의 용량 유지율 및 수명을 확보하기 위해서는(즉, 이차전지의 충방전 효율 저하를 억제하기 위해서는), 상기 동박(100)이 상기 활물질에 대하여 우수한 코팅성을 가짐으로써 상기 동박(100)과 활물질층의 접착 강도가 높아야 한다.As charging and discharging of the secondary battery is repeated, contraction and expansion of the active material layer alternately occur, which causes separation of the active material layer and the copper foil 100, thereby lowering the charge and discharge efficiency of the secondary battery. Therefore, in order for the secondary electrode to secure a capacity retention rate and a lifespan of a predetermined level or more (that is, to suppress a decrease in charge / discharge efficiency of the secondary battery), the copper foil 100 has excellent coating property with respect to the active material. The adhesive strength of the (100) and the active material layer should be high.
동박(100)의 제1 및 제2 면들(100a, 100b)에 활물질을 코팅하기 위해서는 이들의 표면적이 동일하게 유지되는 것이 이차전지의 안정성을 위해 가장 이상적이다. 따라서, 동박(100)의 제1 및 제2 면들(100a, 100b)은 동일 또는 유사한 10점 평균조도(RzJIS)를 갖는 것이 바람직하다.In order to coat the active materials on the first and second surfaces 100a and 100b of the copper foil 100, it is most ideal for the stability of the secondary battery that their surface areas remain the same. Therefore, it is preferable that the first and second surfaces 100a and 100b of the copper foil 100 have the same or similar 10-point average roughness R zJIS .
거시적 관점에서 볼 때, 상기 동박(100)의 제1 및 제2 면들(100a, 100b)의 10점 평균조도(RzJIS)가 작을수록, 상기 동박(100)을 포함하는 이차전지의 충방전 효율이 대체로 덜 저하되는 경향이 있다. From a macro perspective, the smaller the 10-point average roughness R zJIS of the first and second surfaces 100a and 100b of the copper foil 100 is, the better the charge and discharge efficiency of the secondary battery including the copper foil 100 is. This tends to be less degraded in general.
따라서, 본 발명의 일 실시예에 따른 동박(100)의 제1 및 제2 면들(100a, 100b) 각각은 0.2 내지 0.8 ㎛의 10점 평균조도(RzJIS)를 갖는다. Therefore, each of the first and second surfaces 100a and 100b of the copper foil 100 according to the exemplary embodiment of the present invention has a ten point average roughness R zJIS of 0.2 to 0.8 μm.
상기 동박(100)의 제1 및 제2 면들(100a, 100b)이 0.2㎛ 미만의 10점 평균조도(RzJIS)를 갖는다면, 동박(100)의 표면적이 상대적으로 작아 활물질이 동박(100)으로부터 쉽게 탈리되고, 그 결과, 충방전의 반복에 따른 이차전지의 급격한 수명 저하가 야기된다. If the first and second surfaces 100a and 100b of the copper foil 100 have a ten-point average roughness R zJIS of less than 0.2 μm, the surface area of the copper foil 100 is relatively small, and thus the active material is copper foil 100. Easily detached from, resulting in a sudden decrease in the life of the secondary battery due to repeated charging and discharging.
반면, 상기 동박(100)의 제1 및 제2 면들(100a, 100b)이 0.8㎛를 초과하는 10점 평균조도(RzJIS)를 갖는다면, 상기 동박(100)과 활물질층 사이의 접촉 균일성이 일정 수준에 미치지 못해 상기 동박(100)과 활물질층 사이에 다수의 공간들이 존재하게 되고(즉, 코팅 자체가 부분적으로 이루어지지 않고), 그 결과, 충방전의 반복에 따른 이차전지의 급격한 수명 저하가 야기된다.On the other hand, if the first and second surfaces 100a and 100b of the copper foil 100 have a ten-point average roughness R zJIS exceeding 0.8 μm, the contact uniformity between the copper foil 100 and the active material layer is It does not reach this certain level, and a plurality of spaces exist between the copper foil 100 and the active material layer (that is, the coating itself is not partially formed), and as a result, the rapid life of the secondary battery due to repeated charge and discharge Deterioration is caused.
그러나, 상기 동박(100)의 제1 및 제2 면들(100a, 100b)이 0.2 내지 0.8 ㎛의 10점 평균조도(RzJIS)를 갖는다고 하더라도, 그러한 동박(100)이 반드시 90% 이상의 이차전지 용량 유지율을 담보할 수 있는 것은 아니다. 즉, 동박(100)의 제1 및 제2 면들(100a, 100b)의 0.2 내지 0.8 ㎛의 10점 평균조도(RzJIS)가 90% 이상의 이차전지 용량 유지율에 대한 충분 조건이 될 수 없다. However, even if the first and second surfaces (100a, 100b) of the copper foil 100 to have a ten-point average roughness (R zJIS) of 0.2 to 0.8 ㎛, such a copper foil 100 is necessarily 90% or more secondary batteries Capacity retention cannot be guaranteed. That is, the 10-point average roughness R zJIS of 0.2 to 0.8 μm of the first and second surfaces 100a and 100b of the copper foil 100 may not be sufficient conditions for the secondary battery capacity retention rate of 90% or more.
본 출원인은, 연구를 거듭한 결과, 90% 이상의 용량 유지율을 안정적으로 확보함에 있어서 동박(100)의 제1 및 제2 면들(100a, 100b)에 존재하는 거대 돌기(giant protuberance)(GP) 개수가 중요한 인자임을 밝혀내었다.As a result of repeated studies, the Applicant has found that the number of giant protuberances (GP) present on the first and second surfaces 100a and 100b of the copper foil 100 in securing a capacity retention rate of 90% or more. Is an important factor.
이하에서는, 도 2를 참조하여 본 발명의 동박(100)의 제1 및 제2 면들(100a, 100b)에 존재하는 거대 돌기(GP)를 구체적으로 설명한다. 도 2는 본 발명의 일 실시예에 따른 이차전지용 동박(100)의 단면, 더욱 구체적으로는 제1 면(100a) 부근의 단면을 보여주는 EBSD 사진이다.Hereinafter, referring to FIG. 2, the giant protrusion GP present in the first and second surfaces 100a and 100b of the copper foil 100 of the present invention will be described in detail. 2 is an EBSD photograph showing a cross section of a secondary battery copper foil 100 according to an embodiment of the present invention, more specifically, a cross section near the first surface 100a.
본 발명에 의하면, 상기 구리막(110)의 매트면(110a) 및 샤이니면(110b) 상에 제1 및 제2 구리 돌기층들(121, 122)이 각각 형성됨으로써, 동박(100)의 제1 및 제2 면들(100a, 100b)에 거대 돌기(GP)가 존재하게 된다. 상기 제1 및 제2 구리 돌기층들(121, 122)은 98중량% 이상의 구리를 포함할 수 있다.According to the present invention, the first and second copper protrusion layers 121 and 122 are formed on the mat surface 110a and the shiny surface 110b of the copper film 110, respectively. Large protrusions GP are present on the first and second surfaces 100a and 100b. The first and second copper protrusion layers 121 and 122 may include 98 wt% or more copper.
본 명세서에서 상기 거대 돌기(GP)는 상기 구리막(110)의 제1 또는 제2 면(100a, 100b)에 또는 그 부근에 형성된 골(valleys) 및 공극(pores) 상의 지점들 중 상기 제1 또는 제2 면(100a, 100b)으로부터 가장 이격된 지점을 지나며 상기 제1 또는 제2 면(100a, 100b)과 수평한 기준선(BL)으로부터 0.7㎛ 이상 돌출된 돌기로 정의된다.In the present specification, the giant protrusion GP may include the first of the points on the valleys and pores formed at or near the first or second surfaces 100a and 100b of the copper film 110. Or a protrusion protruding from the second surface (100a, 100b) the most spaced apart from the reference line (BL) horizontal to the first or second surface (100a, 100b) or more than 0.7㎛.
본 발명에 의하면, 이차전지용 동박(100)의 단면을 EBSD 사진으로 관찰하였을 때, 상기 동박(100)의 제1 및 제2 면들(100a, 100b) 각각은 5㎛ 당 1 내지 8 개의 거대 돌기(GP)를 갖는다. According to the present invention, when the cross section of the secondary battery copper foil 100 is observed with an EBSD photograph, each of the first and second surfaces 100a and 100b of the copper foil 100 may have 1 to 8 large protrusions per 5 μm ( GP).
상기 5㎛ 당 거대 돌기(GP) 개수가 0개인 경우에는, 이것은 동박(100)과 활물질층의 접촉 면적 부족으로 인해 동박(100)과 활물질의 접착력이 낮아지고, 그 결과, 충방전의 반복에 따른 이차전지의 급격한 수명 저하가 야기된다.When the number of macroscopic projections (GP) per 5 μm is zero, this decreases the adhesion between the copper foil 100 and the active material due to the lack of contact area between the copper foil 100 and the active material layer, and as a result, the charge and discharge may be repeated. A sudden decrease in life of the secondary battery is caused.
반면, 상기 5㎛ 당 거대 돌기(GP) 개수가 9개 이상인 경우에도 충방전의 반복에 따른 이차전지의 용량 유지율 열화가 발생하는데, 이것은 너무 많은 거대 돌기들(GP)로 인해 활물질이 동박(100)의 제1 및 제2 표면들(100a, 100b)에 완전히 밀착되지 못해 빈 공간이 발생하기 때문인 것으로 판단된다. 이 때문에, 충방전 회수가 증가함에 따라 상기 동박(100)으로부터 탈리되는 활물질의 양이 많아지게 되고 이차전지 수명이 급격히 감소하게 된다.On the other hand, even when the number of giant projections (GP) per 5 μm is 9 or more, capacity retention of the secondary battery may be deteriorated due to repetition of charging and discharging. The first and second surfaces 100a and 100b may not be in close contact with each other, and thus an empty space may be generated. For this reason, as the number of charge and discharge increases, the amount of the active material detached from the copper foil 100 increases, and the life of the secondary battery is drastically reduced.
본 발명의 일 실시예에 의하면, 상기 동박(100)의 제1 및 제2 면들(100a, 100b) 모두에 활물질이 코팅되기 때문에, 상기 동박(100)의 제1 및 제2 면들(100a, 100b)에 각각 존재하는 거대돌기(GP)의 개수 차이는 6개 이하인 것이 바람직하다. 상기 개수 차이가 6개를 초과하면 제1 및 제2 면들(100a, 100b)의 표면 형상 차이로 인해 이차전지의 용량 유지율 열화가 발생한다.According to an embodiment of the present invention, since the active material is coated on both the first and second surfaces 100a and 100b of the copper foil 100, the first and second surfaces 100a and 100b of the copper foil 100 are coated. It is preferable that the difference in the number of the giant protrusions GP present in each) is 6 or less. If the number difference exceeds six, the capacity retention ratio of the secondary battery may be deteriorated due to the difference in the surface shape of the first and second surfaces 100a and 100b.
전술한 바와 같이, 본 발명의 동박(100)은 상기 제1 및 제2 구리 돌기층들(121, 1222) 상에 각각 형성된 제1 및 제2 보호층들(131, 132)을 더 포함한다. As described above, the copper foil 100 of the present invention further includes first and second protective layers 131 and 132 formed on the first and second copper protrusion layers 121 and 1222, respectively.
상기 제1 및 제2 보호층들(131, 132)은 방청물질(anticorrosion material)이 제1 및 제2 구리 돌기층들(121, 1222) 상에 코팅 또는 전착됨으로써 각각 형성될 수 있다. 상기 방청물질은 크롬산염(chromate), 벤조트리아졸(benzotriazole: BTA) 및 실란 화합물(silane compound) 중 적어도 하나를 포함할 수 있다. 상기 제1 및 제2 보호층들(131, 132)은 상기 구리막(110), 제1 구리 돌기층(121) 및 제2 구리 돌기층(122)의 의 산화 및 부식을 방지하고 내열성을 향상시킴으로써 상기 동박(100) 자체의 수명은 물론이고 이것을 포함하는 이차전지의 수명을 연장시킨다.The first and second protective layers 131 and 132 may be formed by coating or electrodepositing anticorrosion material on the first and second copper protrusion layers 121 and 1222, respectively. The rust preventive material may include at least one of chromate, benzotriazole (BTA), and a silane compound. The first and second protective layers 131 and 132 may prevent oxidation and corrosion of the copper film 110, the first copper protrusion layer 121, and the second copper protrusion layer 122, and may improve heat resistance. By doing so, the life of the secondary battery including the same, as well as the life of the copper foil 100 itself.
본 발명의 일 실시예에 따르면, 상기 구리막(110)은 2 내지 34 ㎛의 두께를 갖고, 상기 이차전지용 동박(100)은 4 내지 35 ㎛의 두께를 갖는다. 4㎛ 미만의 두께를 갖는 동박(100)은 이차전지 제조시 쉽게 찢겨짐으로써 작업성 저하를 야기한다. 반면, 35㎛를 초과하는 동박(100)으로 이차전지를 제조할 경우 두꺼운 동박(100)으로 인해 고용량 구현이 어려워진다.According to one embodiment of the invention, the copper film 110 has a thickness of 2 to 34 ㎛, the secondary battery copper foil 100 has a thickness of 4 to 35 ㎛. The copper foil 100 having a thickness of less than 4 μm is easily torn at the time of manufacturing a secondary battery, causing workability deterioration. On the other hand, when the secondary battery is manufactured with the copper foil 100 exceeding 35 μm, high capacity becomes difficult due to the thick copper foil 100.
본 발명의 일 실시예에 따른 동박(100)은 28 내지 65 kgf/mm2의 상온인장강도, 25 kgf/mm2 이상의 고온인장강도, 및 3 내지 13 %의 연신율을 갖는다. 본 명세서에서 사용되는 용어 “상온인장강도”는 상온(room temperature)에서 측정되는 인장강도를 의미하고, 용어 “고온인장강도”는 135℃에서 10분 동안 열처리 후 측정되는 인장강도를 의미한다. Copper foil 100 according to an embodiment of the present invention has a room temperature tensile strength of 28 to 65 kgf / mm 2 , high temperature tensile strength of 25 kgf / mm 2 or more, and an elongation of 3 to 13%. As used herein, the term "normal tensile strength" refers to tensile strength measured at room temperature, and the term "high-temperature tensile strength" refers to tensile strength measured after heat treatment at 135 ° C for 10 minutes.
상기 동박(100)의 상온인장강도가 28 kgf/mm2 미만이면, 이차전지 제조를 위한 롤투롤(roll-to-roll) 공정에서 동박(100)에 주름이 야기될 수 있다. 반면, 상기 동박(100)의 상온인장강도가 65 kgf/mm2를 초과하면, 동박(100)의 연신율이 낮아져서 이차전지 제조시 동박(100)의 파단이 야기된다. 주름을 갖거나 파단된 동박(100)으로 제조된 이차전지는 50회 충방전시 용량 유지율이 80% 미만으로 저하되는 문제가 있다.If the room temperature tensile strength of the copper foil 100 is less than 28 kgf / mm 2 , wrinkles may be caused to the copper foil 100 in a roll-to-roll process for manufacturing a secondary battery. On the other hand, when the room temperature tensile strength of the copper foil 100 exceeds 65 kgf / mm 2 , the elongation of the copper foil 100 is lowered, causing breakage of the copper foil 100 during the manufacture of a secondary battery. A secondary battery made of a copper foil 100 having wrinkles or breaks has a problem in that the capacity retention rate is lowered to less than 80% during 50 charge / discharge cycles.
한편, 동박(100)의 고온인장강도가 25 kgf/mm2 이상이 되어야 롤프레스 공정 및/또는 건조 공정 중에 연화가 발생하지 않고 주름 발생으로 인한 핸들링성 저하가 방지될 수 있다.Meanwhile, the high temperature tensile strength of the copper foil 100 should be 25 kgf / mm 2 or more, so that softening does not occur during the roll press process and / or the drying process, and the handling property degradation due to wrinkles may be prevented.
이와 같이 높은 상온인장강도 및 고온인장강도를 갖는 본 발명의 동박(100)은, 이차전지 용량을 증가시킬 수 있는 활물질(예를 들어, 탄소 활물질에 Si 또는 Sn이 첨가된 복합 활물질)이 이차전지의 충전 및/또는 방전시 심하게 팽창한다고 하더라도 상기 활물질의 열팽창을 충분히 견딜 수 있어 이차전지의 수명 및 신뢰성을 향상시킬 수 있을 뿐만 아니라, 이차전지용 전극을 제조하기 위하여 본 발명의 동박(100) 상에 활물질을 코팅할 때 동박(100)의 휨으로 인한 작업성 저하가 방지될 수 있다.As described above, the copper foil 100 of the present invention having high room temperature tensile strength and high temperature tensile strength includes an active material (eg, a composite active material in which Si or Sn is added to a carbon active material) capable of increasing secondary battery capacity. Even if it expands severely during charging and / or discharging, it can withstand the thermal expansion of the active material sufficiently to improve the life and reliability of the secondary battery, as well as on the copper foil 100 of the present invention to manufacture the secondary battery electrode When coating the active material, workability deterioration due to warpage of the copper foil 100 may be prevented.
한편, 본 발명의 일 실시예에 따른 동박(100)은 3 내지 13 %의 연신율을 갖는다. 상기 연신율이 3% 미만이면, 활물질의 팽창 및 수축시 상기 동박(110)의 파단이 야기될 위험이 있다. 반면, 상기 연신율이 13%를 초과하면, 이차전지 제조 공정 중에 상기 동박(100)이 쉽게 늘어나서 전극의 변형을 유발한다. 파단되거나 변형된 동박(100)으로 제조된 이차전지는 50회 충방전시 용량 유지율이 80% 미만으로 저하되는 문제가 있다.On the other hand, the copper foil 100 according to an embodiment of the present invention has an elongation of 3 to 13%. If the elongation is less than 3%, there is a risk of breaking the copper foil 110 during expansion and contraction of the active material. On the other hand, when the elongation exceeds 13%, the copper foil 100 easily stretches during the secondary battery manufacturing process, causing deformation of the electrode. The secondary battery manufactured from the broken or deformed copper foil 100 has a problem that the capacity retention rate is lowered to less than 80% during 50 charge / discharge cycles.
이하에서는, 도 3을 참조하여 본 발명의 일 실시예에 따른 이차전지용 동박(100)의 제조방법을 구체적으로 설명한다.Hereinafter, a manufacturing method of the secondary battery copper foil 100 according to an embodiment of the present invention will be described in detail with reference to FIG. 3.
본 발명의 방법은 매트면(110a) 및 샤이니면(110b)을 갖는 구리막(110)을 제조하는 단계, 상기 구리막(110)의 매트면(110a) 및 샤이니면(110b) 상에 제1 구리 돌기층(121) 및 제2 구리 돌기층(122)을 각각 형성하는 단계, 및 상기 제1 구리 돌기층(121) 및 상기 제2 구리 돌기층(122) 상에 제1 보호층(131) 및 제2 보호층(132)을 각각 형성하는 단계를 포함한다.The method of the present invention comprises the steps of manufacturing a copper film 110 having a mat surface (110a) and a shiny surface (110b), a first surface on the mat surface (110a) and the shiny surface (110b) of the copper film (110) Forming a copper protrusion layer 121 and a second copper protrusion layer 122, and a first protective layer 131 on the first copper protrusion layer 121 and the second copper protrusion layer 122. And forming second protective layers 132, respectively.
본 발명의 일 실시예에 따르면, 전해조(10)의 전해액(11) 내에서 서로 이격되게 배치된 양극판(13) 및 회전음극드럼(12)을 40 내지 80 A/dm2의 전류밀도로 통전시킴으로써 상기 회전음극드럼(12) 상에 구리막(110)이 전착된다.According to one embodiment of the present invention, the anode plate 13 and the rotating cathode drum 12 which are spaced apart from each other in the electrolyte solution 11 of the electrolytic cell 10 are energized at a current density of 40 to 80 A / dm 2 . The copper film 110 is electrodeposited on the rotary cathode drum 12.
상기 전해액(11)은 50 내지 100 g/L의 구리 이온, 50 내지 150 g/L의 황산, 50 ppm 이하의 염소 이온, 및 유기 첨가제를 포함할 수 있다. 상기 유기 첨가제는 하이드로에틸 셀룰로오스(HEC), 유기 황화물, 유기 질화물, 또는 이들 중 2 이상의 혼합물일 수 있다. 상기 전해액(11)은 전기도금이 수행되는 중에 40 내지 60 ℃로 유지될 수 있다.The electrolyte solution 11 may include 50 to 100 g / L of copper ions, 50 to 150 g / L of sulfuric acid, 50 ppm or less of chlorine ions, and an organic additive. The organic additive may be hydroethyl cellulose (HEC), organic sulfide, organic nitride, or a mixture of two or more thereof. The electrolyte solution 11 may be maintained at 40 to 60 ℃ during the electroplating.
전술한 바와 같이, 상기 구리막(110)의 샤이니면(110b)의 조도는 상기 회전음극드럼(12)의 표면(즉, 전기도금에 의해 구리가 석출되는 면)의 연마 정도에 영향을 받는다. 본 발명의 일 실시예에 의하면, 상기 회전음극드럼(12)의 표면은 #800 내지 #1500의 입도(Grit)를 갖는 연마 브러시로 연마될 수 있다.As described above, the roughness of the shiny surface 110b of the copper film 110 is affected by the degree of polishing of the surface of the rotary cathode drum 12 (that is, the surface where copper is deposited by electroplating). According to one embodiment of the present invention, the surface of the rotary cathode drum 12 may be polished with a polishing brush having a particle size (Grit) of # 800 to # 1500.
본 발명에 의하면, 상기 전기도금 중에 상기 전해액(11) 내의 유기 불순물 및 금속 불순물의 농도를 각각 1 g/L 이하 및 3 g/L 이하로 유지시키기 위하여, 고순도 구리 와이어를 상기 전해액(11)에 투입하기 전에, 600 내지 800℃(예를 들어, 약 700℃)의 고온에서 열처리하여 유기물을 태운 후 황산 등의 산으로 산세(acid cleaning)한다. According to the present invention, in order to maintain the concentrations of organic impurities and metal impurities in the electrolyte solution 11 or less and 3 g / L or less, respectively, in the electroplating, a high purity copper wire is applied to the electrolyte solution 11. Before the addition, the organic material is burned by heat treatment at a high temperature of 600 to 800 ° C. (for example, about 700 ° C.), followed by acid cleaning with an acid such as sulfuric acid.
또한, 상기 산세된 구리 와이어가 상기 전해액(11) 내에 투입된 상태에서 상기 양극판(13)과 상기 회전음극드럼(12)을 통전시킴으로써 전기도금을 수행하는 동안에, 상기 전해액(11)으로부터 유기 불순물 및 금속 불순물을 포함하는 고형 불순물을 제거하기 위한 연속 여과를 수행함으로써 상기 전해액(11) 내의 유기 불순물 및 금속 불순물의 농도를 각각 1 g/L 이하 및 3 g/L 이하로 유지시킨다. 이때, 상기 전해조(10)로 공급되는 상기 전해액(11)의 유량은 30 내지 50 m3/hour일 수 있다.In addition, while conducting electroplating by energizing the positive electrode plate 13 and the rotary cathode drum 12 while the pickled copper wire is introduced into the electrolyte solution 11, organic impurities and metals from the electrolyte solution 11 are performed. By performing continuous filtration to remove solid impurities including impurities, the concentrations of organic impurities and metal impurities in the electrolyte solution 11 are maintained at 1 g / L or less and 3 g / L or less, respectively. In this case, the flow rate of the electrolyte solution 11 supplied to the electrolytic cell 10 may be 30 to 50 m 3 / hour.
이어서, 상기 구리막(110)을 2 개 이상의 핵 생성 도금조들(20, 30) 및 2개 이상의 핵 성장 도금조들(40, 50)을 순차적으로 통과시킴으로써, 상기 구리막(110)의 매트면(110a) 및 샤이니면(110b) 상에 제1 및 제2 구리 돌기층들(121, 122)을 각각 형성시킨다.Subsequently, the copper film 110 is sequentially passed through two or more nucleation plating baths 20 and 30 and two or more nucleation growth plating baths 40 and 50, thereby providing a mat of the copper film 110. First and second copper protrusion layers 121 and 122 are formed on the surface 110a and the shiny surface 110b, respectively.
상기 핵 생성 도금조들(20, 30)의 전해액(21, 31)은 8 내지 25 g/L의 구리 이온, 50 내지 160 g/L의 황산, 및 0.05 내지 1 g/L의 제1 첨가제를 포함하고, 상기 핵 성장 도금조들(40, 50)의 전해액(41, 51)은 30 내지 70 g/L의 구리 이온, 50 내지 160 g/L의 황산, 및 0.03 내지 1.2 g/L의 제2 첨가제를 포함하며, 상기 제1 및 제2 첨가제 각각은 Fe, Mo, W, V, Co, Cr, Mn, Zn, 또는 이들 중 2 이상의 혼합물일 수 있다.The electrolytes 21 and 31 of the nucleation plating baths 20 and 30 may contain 8 to 25 g / L of copper ions, 50 to 160 g / L of sulfuric acid, and 0.05 to 1 g / L of the first additive. Wherein the electrolytic solutions 41 and 51 of the nuclear growth plating baths 40 and 50 comprise 30 to 70 g / L copper ions, 50 to 160 g / L sulfuric acid, and 0.03 to 1.2 g / L Two additives, each of the first and second additives may be Fe, Mo, W, V, Co, Cr, Mn, Zn, or a mixture of two or more thereof.
본 발명에 의하면, 상기 핵 생성 도금조들(20, 30)을 통해 인가되는 총 전류(ic_total)는 3000 내지 7000 A이고, 상기 핵 생성 도금조들(20, 30)을 통해 인가되는 총 전류(ic_total)에 대한 상기 핵 성장 도금조들(40, 50)을 통해 인가되는 총 전류(ig_total)의 비는 0.2 내지 2이다.According to the present invention, the total current i c_total applied through the nucleation plating baths 20 and 30 is 3000 to 7000 A, and the total current applied through the nucleation plating baths 20 and 30. the ratio of the total current (i g_total) is applied over the nuclei grow in the plating bath (40, 50) for (i c_total) from 0.2 to 2.
상기 총 전류의 비가 0.2 미만이면, 최종 동박(100)의 단면을 EBSD 사진으로 관찰할 때 제1 및 제2 면들(100a, 100b)에 거대 돌기(GP)가 존재하지 않게 된다. 반면, 상기 총 전류의 비가 2를 초과하면 동박(100)의 제1 및 제2 면들(100a, 100b) 각각은 5㎛ 당 9 개 이상의 거대 돌기(GP)를 갖게 된다. When the ratio of the total current is less than 0.2, when the cross section of the final copper foil 100 is observed in the EBSD photograph, the giant protrusion GP does not exist on the first and second surfaces 100a and 100b. On the other hand, when the ratio of the total current exceeds 2, each of the first and second surfaces 100a and 100b of the copper foil 100 has nine or more giant protrusions GP per 5 μm.
전술한 바와 같이, 5㎛ 당 거대 돌기(GP) 개수가 0개인 경우에는 동박(100)과 활물질층의 접촉 면적 부족으로 인해 동박(100)과 활물질의 접착력이 낮아지고, 그 결과, 충방전의 반복에 따른 이차전지의 급격한 수명 저하가 야기된다. As described above, when the number of macroscopic projections (GP) per 5 μm is zero, the adhesion between the copper foil 100 and the active material is lowered due to the lack of contact area between the copper foil 100 and the active material layer. Repeated lifespan of the secondary battery is reduced due to repetition.
반면, 상기 5㎛ 당 거대 돌기(GP) 개수가 9개 이상인 경우에도 충방전의 반복에 따른 이차전지의 용량 유지율 열화가 발생하는데, 이것은 너무 많은 거대 돌기들(GP)로 인해 활물질이 동박(100)의 제1 및 제2 표면들(100a, 100b)에 완전히 밀착되지 못해 빈 공간이 발생하기 때문이다. 이 때문에, 충방전 회수가 증가함에 따라 상기 동박(100)으로부터 탈리되는 활물질의 양이 많아지게 되고 이차전지 수명이 급격히 감소하게 된다.On the other hand, even when the number of giant projections (GP) per 5 μm is 9 or more, capacity retention of the secondary battery may be deteriorated due to repetition of charging and discharging. This is because the first and second surfaces 100a and 100b may not be completely adhered to each other, resulting in an empty space. For this reason, as the number of charge and discharge increases, the amount of the active material detached from the copper foil 100 increases, and the life of the secondary battery is drastically reduced.
이어서, 상기 제1 및 제2 구리 도금층들(121, 122)이 매트면(110a) 및 샤이니면(110b) 상에 각각 형성된 구리막(110)을 방청처리함으로써 상기 제1 및 제2 보호층들(131, 132)을 형성한다.Subsequently, the first and second copper plating layers 121 and 122 are rust-treated by the copper film 110 formed on the mat surface 110a and the shiny surface 110b, respectively. 131 and 132 are formed.
도 3에 예시된 바와 같이, 본 발명의 일 실시예에 의하면, 상기 제1 및 제2 보호층들(131, 132) 형성 단계는, 상기 제1 및 제2 구리 도금층들(121, 122)이 매트면(110a) 및 샤이니면(110b) 상에 각각 형성된 구리막(110)을 방청 처리조(60)의 방청액(anticorrosion solution)(61) 내에 2 내지 10초 동안 침지시킴으로써 수행될 수 있다. As illustrated in FIG. 3, in the forming of the first and second protective layers 131 and 132, the first and second copper plating layers 121 and 122 may be formed. The copper film 110 formed on the mat surface 110a and the shiny surface 110b may be immersed for 2 to 10 seconds in the anticorrosion solution 61 of the antirust treatment tank 60.
위와 같은 방법을 통해 제조된 본 발명의 이차전지용 동박(100)의 일면 또는 양면 상에 음극 활물질을 통상의 방법을 통해 코팅함으로써 본 발명의 이차전지용 전극(즉, 음극)이 제조될 수 있으며, 상기 이차전지용 전극(음극)과 함께 통상의 양극, 전해질, 및 분리막을 이용하여 리튬 이차전지를 제조할 수 있다.The secondary battery electrode (ie, the negative electrode) of the present invention may be manufactured by coating a negative electrode active material on one surface or both surfaces of the secondary battery copper foil 100 manufactured by the above method through a conventional method. A lithium secondary battery can be manufactured using a normal positive electrode, an electrolyte, and a separator together with a secondary battery electrode (cathode).
리튬 이차전지는, 충전 시 리튬 이온을 음극으로 제공하는 양극(cathode), 방전 시 리튬 이온을 양극으로 제공하는 음극(anode), 상기 양극과 음극 사이에서 리튬 이온이 이동할 수 있는 환경을 제공하는 전해질(electrolyte), 및 하나의 전극에서 발생된 전자가 이차전지 내부를 통해 다른 전극으로 이동함으로써 무익하게 소모되는 것을 방지하기 위하여 상기 양극과 음극을 전기적으로 절연시켜 주는 분리막(separator)을 포함한다.The lithium secondary battery includes a cathode for providing lithium ions as a cathode during charging, an anode for providing lithium ions as a cathode during discharge, and an electrolyte for providing an environment in which lithium ions can move between the cathode and the cathode. (electrolyte), and a separator that electrically insulates the positive electrode and the negative electrode in order to prevent electrons generated from one electrode from being undesirably consumed by moving to another electrode through the inside of the secondary battery.
리튬 이차전지에 있어서, 양극 활물질과 결합되는 양극 집전체로서는 알루미늄 호일(foil)이 사용되고 음극 활물질과 결합되는 음극 집전체로서는 동박(100)이 사용되는 것이 일반적이다.In lithium secondary batteries, aluminum foil is used as the positive electrode current collector to be bonded to the positive electrode active material, and copper foil 100 is generally used as the negative electrode current collector to be bonded to the negative electrode active material.
도 4는 본 발명의 일 실시예에 따른 이차전지용 전극의 단면도이다. 4 is a cross-sectional view of an electrode for a secondary battery according to an embodiment of the present invention.
도 4에 예시된 바와 같이, 본 발명의 일 실시예에 따른 이차전지용 전극(200)은 이차전지의 음극이고, 상술한 본 발명의 실시예들 중 어느 하나의 동박(100) 및 상기 동박(100)의 제1 및 제2 면들(100a, 110b) 중 적어도 하나 상에 형성된 활물질층(210, 220)을 포함한다.As illustrated in FIG. 4, the secondary battery electrode 200 according to the exemplary embodiment of the present invention is a negative electrode of the secondary battery, and the copper foil 100 and the copper foil 100 of any one of the embodiments of the present invention described above. Active material layers 210 and 220 formed on at least one of the first and second surfaces 100a and 110b.
상기 활물질층(210, 220)은 탄소; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe의 금속(Me); 상기 금속(Me)을 포함하는 합금; 상기 금속(Me)의 산화물(MeOx); 및 상기 금속(Me)과 탄소의 복합체로 이루어진 군으로부터 선택되는 하나 이상의 음극 활물질로 형성될 수 있다.The active material layers 210 and 220 are carbon; Metals of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe (Me); An alloy comprising the metal (Me); An oxide of the metal (MeO x ); And at least one negative electrode active material selected from the group consisting of the metal (Me) and a composite of carbon.
이하에서는, 실시예들 및 비교예들을 통해 본 발명을 구체적으로 설명한다. 다만, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐으로, 본 발명의 권리범위가 이들 실시예들로 제한되지 않는다.Hereinafter, the present invention will be described in detail through examples and comparative examples. However, the following examples are merely to aid the understanding of the present invention, and the scope of the present invention is not limited to these embodiments.
* 동박의 제조* Manufacture of Copper Foil
실시예 1Example 1
전해조에 담겨진 전해액 내에 10mm의 간격을 두고 이격되게 배치된 양극판 및 회전음극드럼을 50 A/dm2의 전류밀도로 통전시킴으로써 상기 회전음극드럼 상에 구리막을 전착(electrodeposit)시켰다. 이와 같은 전기도금을 위하여, 700℃에서 열처리된 구리 와이어가 황산으로 산세된 후 상기 전해액에 투입되었고, 상기 회전음극드럼의 표면은 #1000의 입도(Grit)를 갖는 연마 브러시로 연마되었다.A copper film was electrodeposited on the rotary cathode drum by energizing the positive electrode plates and the rotary cathode drum spaced apart from each other by 10 mm in the electrolyte contained in the electrolytic cell at a current density of 50 A / dm 2 . For such electroplating, copper wire heat-treated at 700 ° C. was pickled with sulfuric acid and then charged into the electrolyte, and the surface of the rotary cathode drum was polished with a polishing brush having a grain size (Grit) of # 1000.
상기 구리막 형성 단계 중에, 상기 전해액은 50℃로 유지되었고, 전해액의 연속 여과가 수행되었고, 상기 전해조로 공급되는 상기 전해액의 유량은 40 m3/hour이었으며, 유량 편차는 1% 이내로 조절되었다. 상기 전해액 내에서, 구리 농도는 70±10 g/L로 유지되었고, 황산 농도는 80±10 g/L로 유지되었고, 유기 황화물계 첨가제인 티오요소의 농도는 2 ppm으로 유지되었으며, 염소 농도는 10 ppm으로 유지되었다. During the formation of the copper film, the electrolyte was maintained at 50 ° C., continuous filtration of the electrolyte was performed, the flow rate of the electrolyte supplied to the electrolytic cell was 40 m 3 / hour, and the flow rate variation was adjusted to within 1%. In the electrolyte solution, the copper concentration was maintained at 70 ± 10 g / L, the sulfuric acid concentration was maintained at 80 ± 10 g / L, the concentration of thiourea, an organic sulfide-based additive, was maintained at 2 ppm, and the chlorine concentration was It was kept at 10 ppm.
이어서, 상기 구리막을, 2개의 핵 생성 도금조들, 2개의 핵 성장 도금조들, 및 방청 처리조를 순차적으로 통과시킴으로써 24㎛ 두께의 동박을 완성하였다.Subsequently, the copper film was passed through two nucleation plating baths, two nuclear growth plating baths, and an antirust treatment tank sequentially to complete a copper foil having a thickness of 24 μm.
이때, 상기 핵 생성 도금조들을 통해 인가된 총 전류((ic_total)는 2500 A이었고, 상기 핵 생성 도금조들을 통해 인가된 총 전류(ic_total)에 대한 상기 핵 성장 도금조들을 통해 인가되는 총 전류(it_total)의 비는 0.23이었다.In this case, the total current (i c_total ) applied through the nucleation plating baths was 2500 A, and the total current applied through the nuclear growth plating baths for the total current (i c_total ) applied through the nucleation plating baths. The ratio of current i t_total was 0.23.
실시예 2Example 2
상기 핵 생성 도금조들을 통해 인가된 총 전류(ic_total)에 대한 상기 핵 성장 도금조들을 통해 인가되는 총 전류(it_total)의 비가 0.31이었다는 것을 제외하고는, 실시예 1과 동일한 방법으로 동박을 완성하였다.The copper foil with and has the same procedures as in Example 1, except that it was a ratio of 0.31 of the total current (i t_total) is applied through the nuclear growth plating bath for the nucleation bath of a total current (i c_total) applied through Completed.
실시예 3Example 3
상기 핵 생성 도금조들을 통해 인가된 총 전류(ic_total)에 대한 상기 핵 성장 도금조들을 통해 인가되는 총 전류(it_total)의 비가 1.97이었다는 것을 제외하고는, 실시예 1과 동일한 방법으로 동박을 완성하였다.The copper foil with and has the same procedures as in Example 1, except that it was a ratio of 1.97 of the total current (i t_total) is applied through the nuclear growth plating bath for the nucleation bath of a total current (i c_total) applied through Completed.
비교예 1Comparative Example 1
상기 구리막이 핵 생성 도금조들 및 핵 성장 도금조들을 거치지 않고 바로 방청 처리조에서 방청처리되었다는 것을 제외하고는, 실시예 1과 동일한 방법으로 동박을 완성하였다.Copper foil was completed in the same manner as in Example 1, except that the copper film was rust-treated in the rust-preventing bath immediately without passing through the nucleation plating baths and the nuclear growth plating baths.
비교예 2Comparative Example 2
상기 핵 생성 도금조들을 통해 인가된 총 전류(ic_total)에 대한 상기 핵 성장 도금조들을 통해 인가되는 총 전류(it_total)의 비가 0.17이었다는 것을 제외하고는, 실시예 1과 동일한 방법으로 동박을 완성하였다.The copper foil with and has the same procedures as in Example 1, except that it was a ratio of 0.17 of the total current (i t_total) is applied through the nuclear growth plating bath for the nucleation bath of a total current (i c_total) applied through Completed.
비교예 3Comparative Example 3
상기 핵 생성 도금조들을 통해 인가된 총 전류(ic_total)에 대한 상기 핵 성장 도금조들을 통해 인가되는 총 전류(it_total)의 비가 2.15이었다는 것을 제외하고는, 실시예 1과 동일한 방법으로 동박을 완성하였다.The copper foil with and has the same procedures as in Example 1, except that it was a ratio of 2.15 of the total current (i t_total) is applied through the nuclear growth plating bath for the nucleation bath of a total current (i c_total) applied through Completed.
위와 같이 제조된 실시예들 및 비교예들의 동박들의 제1 및 제2 면들 각각의 거대 돌기 개수, 10점 평균조도(RzJIS), 상온인장강도, 고온인장강도, 및 연신율을 아래의 방법으로 각각 측정하였고, 그 결과를 표 1에 나타내었다.The number of large protrusions, ten-point average roughness (R zJIS ), room temperature tensile strength, high temperature tensile strength, and elongation of each of the first and second surfaces of the copper foils of the examples and the comparative examples manufactured as described above were obtained by the following methods, respectively. It measured and the result is shown in Table 1.
* 10점 평균조도(RzJIS)* 10-point average roughness (R zJIS )
JIS B 0601-1994 「표면조도의 정의와 표시」 규정에 따라 접촉식 표면조도 측정기를 이용하여 동박의 제1 면(구리막의 매트면에 인접한 면) 및 그 반대 측의 제2면(구리막의 샤이니면에 인접한 면)의 10점 평균조도(RzJIS)를 각각 측정하였다.According to JIS B 0601-1994 "Definition and Display of Surface Roughness", the first surface of copper foil (surface adjacent to the mat surface of copper film) and the second surface on the other side (shiny of copper film) using a contact surface roughness measuring instrument. Ten point average roughness (R zJIS ) of the plane adjacent to the plane was measured, respectively.
* 거대 돌기 개수* Giant protrusion count
샘플의 단면에 대한 EBSD 사진을 관찰함으로써 동박의 제1 및 제2 면들 각각의 5㎛ 당 거대 돌기(구리막의 제1 또는 제2 면에 또는 그 부근에 형성된 골(valleys) 및 공극(pores) 상의 지점들 중 상기 제1 또는 제2 면으로부터 가장 이격된 지점을 지나며 상기 제1 또는 제2 면과 수평한 기준선으로부터 0.7㎛ 이상 돌출된 돌기)의 개수를 얻었다.Observation of an EBSD photograph of the cross section of the sample revealed a large projection per 5 μm of each of the first and second faces of the copper foil (valleys and pores formed on or near the first or second face of the copper film). The number of points passing through the most spaced from the first or second surface and protruding more than 0.7㎛ from the reference line horizontal to the first or second surface).
* 상온인장강도 및 고온인장강도* Room temperature tensile strength and high temperature tensile strength
상온에서 IPC-TM-650 Test Method Manual에 규정된 방법을 통해 만능재료시험기(Universal Testing Machine: UTM)를 이용하여 동박의 상온인장강도를 각각 측정하였다. 이어서, 상기 동박을 135℃에서 10분 동안 열처리한 후 동일한 방법을 통해 상기 열처리된 동박의 인장강도를 측정하였다.At room temperature, the tensile strength of the copper foil was measured using a universal testing machine (UTM) by the method specified in the IPC-TM-650 Test Method Manual. Subsequently, the copper foil was heat-treated at 135 ° C. for 10 minutes, and the tensile strength of the heat-treated copper foil was measured by the same method.
|
실시예1Example 1
|
실시예2Example 2
|
실시예3Example 3
|
비교예1Comparative Example 1
|
비교예2Comparative Example 2
|
비교예3Comparative Example 3
|
구리 돌기층 형성 여부Copper Protrusion Layer Formation
|
○○
|
○○
|
○○
|
××
|
○○
|
○○
|
ic_total
i c_total
|
25002500
|
25002500
|
25002500
|
25002500
|
25002500
|
25002500
|
ic_total/ig_total
i c_total / i g_total
|
0.230.23
|
0.310.31
|
1.971.97
|
--
|
0.170.17
|
2.152.15
|
RzJIS (㎛)R zJIS (μm)
|
제1면Front page
|
0.220.22
|
0.290.29
|
0.780.78
|
0.180.18
|
0.220.22
|
0.770.77
|
제2면The second page
|
0.230.23
|
0.230.23
|
0.750.75
|
0.220.22
|
0.230.23
|
0.780.78
|
거대 돌기 개수Giant protrusion count
|
제1면Front page
|
1One
|
88
|
88
|
00
|
00
|
99
|
제2면The second page
|
55
|
33
|
77
|
00
|
00
|
33
|
상온인장강도 (kgf/mm2)Tensile Tensile Strength (kgf / mm 2 )
|
45.245.2
|
64.364.3
|
28.828.8
|
45.345.3
|
27.527.5
|
29.529.5
|
고온인장강도 (kgf/mm2)High temperature tensile strength (kgf / mm 2 )
|
39.339.3
|
43.243.2
|
25.725.7
|
39.339.3
|
24.324.3
|
24.224.2
|
위 표 1로부터, 구리 돌기층이 형성되지 않거나(비교예 1), 핵 생성 도금조들을 통해 인가된 총 전류(ic_total)에 대한 상기 핵 성장 도금조들을 통해 인가되는 총 전류(it_total)의 비가 0.2 미만인 경우(비교예 2)에는 동박의 표면에 거대 돌기가 형성되지 않음을 알 수 있고, 핵 생성 도금조들을 통해 인가된 총 전류(ic_total)에 대한 상기 핵 성장 도금조들을 통해 인가되는 총 전류(it_total)의 비가 2를 초과하면(비교예 3) 동박의 표면에 8개를 초과하는 개수의 거대 돌기가 형성됨을 알 수 있다.From Table 1 above, a copper protrusion layer is not formed (Comparative Example 1), or the total current i t_total applied through the nuclear growth plating baths relative to the total current i c_total applied through the nucleation plating baths. When the ratio is less than 0.2 (Comparative Example 2), it can be seen that no large projections are formed on the surface of the copper foil, and are applied through the nuclear growth plating baths for the total current i c_total applied through the nucleation plating baths. When the ratio of the total current i t_total exceeds 2 (Comparative Example 3), it can be seen that more than eight large projections are formed on the surface of the copper foil.
* 이차전지의 제조* Manufacture of secondary battery
실시예 4 내지 6 및 비교예 4 내지 6Examples 4-6 and Comparative Examples 4-6
음극 활물질용으로 시판되는 탄소 100 중량부에 스티렌부타디엔고무(SBR) 2 중량부 및 카르복시메틸 셀룰로오스(CMC) 2 중량부를 혼합한 후 증류수를 용제로 이용하여 슬러리를 제조하였다. 10cm의 폭을 갖는 상기 실시예 1 내지 3 및 비교예 1 내지 3의 동박들 상에 상기 슬러리를 닥터 블레이드를 이용하여 50㎛의 두께로 각각 도포하고 120℃에서 건조시킨 후 1 ton/cm2의 압력으로 프레스함으로써 총6개의 이차전지용 음극들을 제조하였다.2 parts by weight of styrene butadiene rubber (SBR) and 2 parts by weight of carboxymethyl cellulose (CMC) were mixed with 100 parts by weight of carbon commercially available for the negative electrode active material, and a slurry was prepared using distilled water as a solvent. On the copper foils of Examples 1 to 3 and Comparative Examples 1 to 3 having a width of 10 cm, the slurry was applied to a thickness of 50 μm using a doctor blade, respectively, and dried at 120 ° C., followed by 1 ton / cm 2 of A total of six secondary batteries were prepared by pressing with pressure.
이와 같이 제조된 이차전지용 음극들 각각과 함께 전해액, 이차전지용 양극, 및 분리막(다공성 폴리에틸렌 필름)을 이용하여 총6개의 이차전지들을 제조하였다. 상기 전해액과 양극은 아래와 같이 준비되었다.A total of six secondary batteries were manufactured by using an electrolyte, a secondary battery positive electrode, and a separator (porous polyethylene film) together with the anodes for secondary batteries prepared as described above. The electrolyte solution and the positive electrode were prepared as follows.
에틸렌카보네이트(EC) 및 에틸렌메틸카보네이트(EMC)를 1:2의 비율로 혼합한 비수성 유기용매에 용질로서 LiPF6를 1M 용해시킨 것을 기본 전해액으로 하고, 이 기본 전해액 99.5 중량%와 숙신산 무수물(succinic anhydride) 0.5 중량%를 혼합하여 전해액을 제조하였다.1 M of LiPF 6 was dissolved as a solute in a non-aqueous organic solvent in which ethylene carbonate (EC) and ethylene methyl carbonate (EMC) were mixed at a ratio of 1: 2. The basic electrolyte was 99.5% by weight of the basic electrolyte and succinic anhydride ( 0.5 wt% of succinic anhydride) was mixed to prepare an electrolyte solution.
또한, 리튬망간산화물(Li1
.
1Mn1
.
85Al0
.
05O4)과 orthorhombic 결정구조의 리튬망간산화물(o-LiMnO2)을 90:10(중량비)로 혼합하여 양극 활물질을 제조하였다. 상기 양극 활물질과 카본블랙을 결착제인 폴리비닐리덴플루오라이드(PVDF)와 85:10:5(중량비)로 유기용매인 NMP와 혼합하여 슬러리를 제조하였다. 상기 슬러리를 두께 20㎛의 알라미늄 호일의 양면에 도포한 후 건조시킴으로써 양극을 제조하였다.In addition, the lithium manganese oxide (Li 1. 1 Mn 1. 85 Al 0. 05 O 4) and lithium manganese oxide (LiMnO 2-o) in the orthorhombic crystal structure was prepared the positive electrode active material were mixed at a 90: 10 (weight ratio) . A slurry was prepared by mixing the positive electrode active material and carbon black with polyvinylidene fluoride (PVDF) as a binder and NMP as an organic solvent at 85: 10: 5 (weight ratio). The slurry was applied to both sides of an aluminum foil having a thickness of 20 μm and then dried to prepare a positive electrode.
위와 같이 제조된 실시예 4 내지 6 및 비교예 4 내지 6의 이차전지들의 방전용량 유지율을 아래의 방법으로 측정하였고, 그 결과를 표 2에 나타내었다.Discharge capacity retention rates of the secondary batteries of Examples 4 to 6 and Comparative Examples 4 to 6 prepared as described above were measured by the following method, and the results are shown in Table 2 below.
* 이차전지의 방전용량 유지율* Discharge capacity retention rate of secondary battery
4.3V의 충전작동전압 및 3.4V의 방전작동전압으로 양극의 g당 용량을 측정하였고, 고온 수명을 평가하기 위하여 50 ℃의 고온에서 0.2 C의 전류밀도로 50 회의 충/방전 실험을 수행하였으며, 방전용량 유지율을 아래의 식 1에 따라 산출하였다.The capacity per gram of the positive electrode was measured at 4.3 V charging and 3.4 V discharging operating voltage, and 50 charge / discharge experiments were performed at a current density of 0.2 C at a high temperature of 50 ° C. to evaluate the high temperature life. The discharge capacity retention rate was calculated according to Equation 1 below.
식 1: 방전용량 유지율(%) = (50회차의 방전용량/1회차의 방전용량)×100Equation 1: Discharge Capacity Retention Rate (%) = (50th Discharge Capacity / 1st Discharge Capacity) × 100
참고로, 업계에서 요구되는 이차전지의 방전용량 유지율은 90% 이상이다.For reference, the discharge capacity retention rate of the secondary battery required in the industry is 90% or more.
|
실시예4Example 4
|
실시예5Example 5
|
실시예6Example 6
|
비교예4Comparative Example 4
|
비교예5Comparative Example 5
|
비교예6Comparative Example 6
|
RzJIS (㎛)R zJIS (μm)
|
제1면Front page
|
0.220.22
|
0.290.29
|
0.780.78
|
0.180.18
|
0.220.22
|
0.770.77
|
제2면The second page
|
0.230.23
|
0.230.23
|
0.750.75
|
0.220.22
|
0.230.23
|
0.780.78
|
거대 돌기 개수Giant protrusion count
|
제1면Front page
|
1One
|
88
|
88
|
00
|
00
|
99
|
제2면The second page
|
55
|
33
|
77
|
00
|
00
|
33
|
방전용량 유지율 (%)Discharge Capacity Retention Rate (%)
|
92.592.5
|
96.296.2
|
93.593.5
|
88.588.5
|
85.285.2
|
88.788.7
|
위 표 2로부터, 동박의 제1 및 제2 면들 중 어느 하나라도 1 내지 8개의 거대 돌기를 갖지 않을 경우(비교예 4 내지 6), 그러한 동박으로 제조된 이차전지의 방전용량 유지율은 업계에서 요구되는 90% 이상을 만족시키지 못함을 알 수 있다.From Table 2 above, when any one of the first and second faces of the copper foil does not have 1 to 8 huge protrusions (Comparative Examples 4 to 6), the discharge capacity retention rate of the secondary battery made of such copper foil is required by the industry. It can be seen that it does not satisfy the above 90%.