WO2017111080A1 - Engine control device - Google Patents
Engine control device Download PDFInfo
- Publication number
- WO2017111080A1 WO2017111080A1 PCT/JP2016/088484 JP2016088484W WO2017111080A1 WO 2017111080 A1 WO2017111080 A1 WO 2017111080A1 JP 2016088484 W JP2016088484 W JP 2016088484W WO 2017111080 A1 WO2017111080 A1 WO 2017111080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust
- supercharger
- intake
- passage
- bypass valve
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/04—Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/14—Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/16—Control of the pumps by bypassing charging air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
- F02B39/16—Other safety measures for, or other control of, pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an engine control device including an electric supercharger that supercharges intake air with an electric motor and a mechanical supercharger that recovers exhaust gas energy by a turbine and supercharges intake air.
- Engines equipped with a mechanical supercharger that supercharges intake air introduced into the combustion chamber using the energy of exhaust gas are widely used.
- This type of mechanical supercharger also called a turbocharger, is configured by arranging a compressor in the middle of the intake passage of the engine, placing a turbine in the middle of the exhaust passage, and rotating the turbine with exhaust gas flowing through the exhaust passage.
- the compressor is operated to increase the amount of intake air into the combustion chamber to improve the engine torque.
- the mechanical supercharger that uses the energy of exhaust gas employs a waste gate valve that adjusts the amount of inflow into the turbine by diverting a part of the exhaust gas.
- the supercharging pressure of intake air can be controlled by adjusting the amount of exhaust gas passing through the turbine with a waste gate valve.
- waste gate valves have been controlled by pneumatic actuators that use supercharging pressure as a power source, but recently, electronically controlled waste gate valves that are controlled to open and close by an electric motor have also been adopted. By making the waste gate valve electrically controlled, it can be driven even when the supercharging pressure is low, and more precise control is possible.
- an object of the present invention is to ensure an appropriate intake supercharging pressure at an early stage and quickly increase torque when acceleration is requested from a low engine speed range.
- the present invention provides an exhaust turbine disposed in an exhaust passage and a supercharger that supercharges intake air to a combustion chamber disposed in an intake passage, and is driven by the exhaust turbine.
- a mechanical supercharger, a supercharger for supercharging intake air to a combustion chamber disposed in the intake passage, the electrically driven electric supercharger, and the exhaust passage in the exhaust passage A control device for controlling an engine comprising an exhaust bypass passage connecting an upstream side and a downstream side of an exhaust turbine and an exhaust bypass valve for opening and closing the exhaust bypass passage, wherein the exhaust bypass valve is in an open state
- an engine control device for operating the electric supercharger was adopted.
- the engine further includes an intake bypass passage that connects an upstream side and a downstream side of the electric supercharger in the intake passage, and an intake bypass valve that opens and closes the intake bypass passage. Further includes a determination unit that determines the operation of the electric supercharger, and the engine control device opens the exhaust bypass valve when the operation of the electric supercharger is determined.
- a configuration in which the electric supercharger is operated after the intake bypass valve is closed later can be employed.
- the engine control device stops the electric supercharger after closing the exhaust bypass valve when the operation of the electric supercharger is shifted to the operation of the mechanical supercharger.
- a configuration can be employed.
- the engine bypass device opens the intake bypass valve after closing the exhaust bypass valve. Therefore, it is possible to employ a configuration in which the electric supercharger is stopped.
- the determination unit determines whether the electric supercharger in the intake passage is equal to or higher than a predetermined pressure, or when the electric energy used by the electric supercharger is equal to or higher than a predetermined electric energy.
- the electric supercharger is not actuated when the usage time of the charger exceeds a predetermined time or when the calorific value of the electric supercharger exceeds a predetermined calorific value It is possible to adopt a configuration that determines that
- the opening degree of the exhaust bypass valve at the time of transition from the open state to the closed state may be determined based on the supercharging output from the electric supercharger.
- the electric supercharger since the electric supercharger is driven when the exhaust bypass valve is in the open state, an appropriate intake air supercharging pressure required for the acceleration request is ensured, and the torque is quickly applied. Can be increased.
- FIG. 1 is a schematic diagram conceptually showing an overall control system E composed of an engine and its control device according to this embodiment.
- the engine 1 of this embodiment is a four-cycle internal combustion engine, and is an automobile gasoline engine. As shown in FIG. 1, the configuration of the engine 1 includes an intake port 3 for sending intake air into a cylinder 2 having a combustion chamber therein, an intake passage 4 leading to the intake port 3, and an exhaust passage 14 drawn from the exhaust port 13. And a fuel injection device for injecting fuel into the intake port 3 or the combustion chamber.
- the intake port 3 and the exhaust port 13 are opened and closed by valves.
- a throttle valve 5 that adjusts a flow area to the intake port 3 toward the upstream side from the intake port 3 that is a connection portion to the combustion chamber, intake air flowing through the intake passage 4
- An air cleaner (not shown) or the like is provided.
- the turbine 12 of the mechanical supercharger 10 a catalyst for removing unburned hydrocarbons (HC) and the like in the exhaust, etc. from the exhaust port 13, which is a connection portion to the combustion chamber, toward the downstream side.
- the exhaust port 13 which is a connection portion to the combustion chamber, toward the downstream side.
- an exhaust purification unit 15 a silencer 16, and the like.
- the mechanical supercharger 10 includes a mechanical compressor 11 that is disposed in the intake passage 4 and supercharges intake air introduced into the combustion chamber.
- An exhaust turbine 12 for rotating the mechanical compressor 11 is disposed in the exhaust passage 14.
- the mechanical compressor 11 and the exhaust turbine 12 are connected coaxially. When the exhaust turbine 12 rotates by exhaust gas flowing through the exhaust passage 14, the rotation is transmitted to the mechanical compressor 11 in the intake passage 4.
- the intake air flowing through the intake passage 4 is supercharged by the rotation of the mechanical compressor 11. That is, the mechanical compressor 11 is driven by the exhaust turbine 12.
- an exhaust bypass device 40 including an exhaust bypass passage 41 that connects the upstream side and the downstream side of the exhaust turbine 12 in the exhaust passage 14, and an exhaust bypass valve 42 that opens and closes the exhaust bypass passage 41, a so-called waste gate valve.
- a device is provided. If the exhaust bypass valve 42 is opened, a part of the exhaust gas flowing to the exhaust turbine 12 side is diverted to the exhaust bypass passage 41 side, and the exhaust energy applied to the exhaust turbine 12 is reduced.
- the exhaust bypass valve 42 is an electrically controlled wastegate valve that is controlled to open and close by an electric motor.
- an electric supercharger 30 is arranged in the middle of the intake passage 4.
- the electric supercharger 30 includes an electric compressor 32 that is disposed in the intake passage 4 and supercharges intake air into the combustion chamber. When the electric compressor 32 is driven by supplying electric power, the intake air flowing in the intake passage 4 is supercharged.
- the intake passage 4 is provided with an intake bypass passage 33 that connects the upstream side and the downstream side of the electric compressor 32 and an intake bypass valve 34 that opens and closes the intake bypass passage 33.
- the intake bypass valve 34 needs to be closed.
- the driving power for the exhaust bypass valve 42, the electric compressor 32, and the intake bypass valve 34 is supplied from a battery 60.
- the battery 60 that supplies power to the exhaust bypass valve 42, the electric compressor 32, and the intake bypass valve 34 is used in common with the battery that supplies power to other parts of the engine 1 and the vehicle in which the engine 1 is mounted. Yes.
- the battery that supplies driving power to the exhaust bypass valve 42 and the electric compressor 32 can be provided separately from the battery that supplies power to the engine 1 and the entire vehicle.
- a downstream side of the exhaust turbine 12 in the exhaust passage 14 and a midway portion between the mechanical compressor 11 and the second throttle valve 7 in the intake passage 11 are communicated by an exhaust gas recirculation passage 21 constituting the exhaust gas recirculation device 20. .
- a part of the exhaust gas discharged from the combustion chamber returns to the upstream side of the mechanical compressor 11 and the electric compressor 32 in the intake passage 4 as the recirculation gas via the exhaust recirculation passage 21.
- An exhaust gas recirculation valve 22 is provided in the exhaust gas recirculation passage 21. The recirculated gas merges with the intake air in the intake passage 4 in accordance with the pressure state in the intake passage 4 that accompanies the opening and closing of the exhaust gas recirculation valve 22 and the opening and closing of the second throttle valve 7.
- the vehicle on which the engine 1 is mounted includes an electronic control unit ECU (ECU: Electronic Control Unit) 50 as a control device that controls the engine 1.
- ECU Electronic Control Unit
- the ECU 50 performs fuel injection by a fuel injection device (not shown) provided in the intake port 3 or the combustion chamber, control of supercharging pressure, control of the opening degree of the throttle valve 5 and the second throttle valve 7, exhaust gas recirculation. Commands necessary for control of the apparatus 20 and other control of the engine are performed.
- the ECU 50 also includes a mechanical supercharger control means 51 that controls the mechanical supercharger 10, an electric supercharger control means 52 that controls the electric supercharger 30, and an intake bypass that controls the intake bypass valve 34.
- the apparatus control means 53 and the exhaust bypass apparatus control means 54 which controls the exhaust bypass valve 42 of the exhaust bypass apparatus 40 are provided.
- the ECU 50 includes a determination unit 55 that determines the operation of the electric supercharger 30.
- the ECU 50 stores an operation region map of the electric supercharger 30 defined based on the amount of air introduced into the combustion chamber and the supercharging pressure of the intake air of the engine 1 (
- the determination unit 55 determines whether the electric supercharger 30 is operating or not by determining whether or not the target intake air amount and the target supercharging pressure belong to the operating region.
- the intake passage 4 is provided with a purge device a that temporarily stores the evaporated fuel generated in the fuel tank in a canister or the like and introduces it into the downstream side of the throttle valve 5. .
- a blow-by gas recirculation device b that recirculates the blow-by gas mainly containing unburned gas leaked into the engine 1 to the intake port 3, opens to the upstream side of the second throttle valve 7, and the pressure in the crankcase A breather device e and the like are provided. These devices are also controlled by the ECU 50.
- a pressure sensor c on the downstream side of the throttle valve 5 a pressure sensor d on the upstream side of the throttle valve 5, and the inside of the intake passage 4 are provided.
- An air flow sensor f for detecting the amount of flowing air is provided.
- the exhaust passage 14 is provided with an exhaust temperature sensor g for detecting the temperature of the exhaust gas as a sensor device that acquires information necessary for controlling the engine 1.
- the engine 1 is provided with a water temperature sensor i for detecting the temperature of the cooling water for cooling the cylinder block and the like, and a rotation speed sensor j for detecting the rotation speed of the crankshaft of the engine 1.
- a vehicle body (not shown) of the vehicle is provided with an accelerator opening sensor k that detects the amount of depression of the accelerator.
- Information on these various sensors can be acquired by the ECU 50 through a cable.
- step S1 it is assumed that there is an acceleration request in step S1. That is, it is assumed that the driver has depressed the accelerator pedal more than a predetermined depression amount by the accelerator operation.
- step S2 a target intake air amount required for the engine 1 is calculated from the torque to be output by the current engine 1 according to the acceleration request detected in S1.
- a target boost pressure is set from the target intake air amount based on a map or the like stored in the ECU 50.
- the accelerator opening detected by the accelerator opening sensor k the coolant temperature detected by the water temperature sensor i, the rotational speed of the engine 1, the torque of the engine 1, etc. are necessary for the control of the engine 1. Information is read into the ECU 50.
- step S3 the determination unit 55 of the ECU 50 determines whether or not the target intake air amount calculated in step S2 belongs to the operating region of the electric supercharger 30.
- the ECU 50 for example, as shown in FIG. 2 described later, respective operation regions determined according to the characteristics of the electric supercharger 30 and the mechanical supercharger 10 are stored as a map. That is, a map is set in which a region is set so that supercharging by the electric supercharger 30 is performed at a low intake amount and supercharging is performed by the mechanical supercharger 10 at a high intake amount.
- Whether or not the operating state of the engine 1 belongs to the operating region of the electric supercharger 30 is determined by comparing the target intake air amount and the target supercharging pressure obtained in step S2 with reference to this map. Further, whether or not it is the operating region of the electric supercharger 30 depends on the amount of charge of the battery 60 that supplies power to the electric supercharger 30 and the durability of the motor that drives the electric compressor 32. You may judge.
- step S3 If it is determined in step S3 that the electric turbocharger is operating, the intake bypass valve 34 is controlled to be closed in step S4 to close the intake bypass passage 33, and then the exhaust bypass valve is determined in step S5. (Wastegate valve) 42 is controlled to be in an open state. Thereafter, the supercharger is started by operating the electric supercharger 30 and driving the electric compressor 32 in step S6.
- the exhaust bypass valve 42 is controlled to be in an open state, so that a part of the exhaust gas flowing to the exhaust turbine 12 side is diverted to the exhaust bypass passage 41 side. Then, the exhaust energy applied to the exhaust turbine 12 is reduced, so that an increase in pressure in the exhaust port 13 is suppressed.
- the pressure on the intake side increases due to supercharging of the electric compressor 32.
- the exhaust can be prevented from flowing back into the cylinder. That is, the scavenging effect in the cylinder is enhanced and the in-cylinder residual combustion gas amount is reduced.
- the in-cylinder residual gas amount decreases, the in-cylinder gas temperature decreases and knocking is suppressed, so that the ignition timing can be advanced. If the ignition timing is advanced, the thermal efficiency increases and the engine output increases, so that the acceleration performance can be improved.
- the exhaust bypass valve 42 is controlled to be opened before the electric supercharger 30 operates (the electric compressor 32 is driven), so that the electric supercharger 30
- the scavenging effect can be easily obtained by lowering the exhaust pressure in advance before the supercharging due to is supplied to the air.
- the valve over in which both the intake valve that opens and closes the opening of the intake passage 4 to the combustion chamber and the exhaust valve that opens and closes the opening of the exhaust passage 14 to the combustion chamber are opened. Since the lap period is set, a scavenging effect can be expected.
- step S3 when it is determined that the intake air amount calculated in step S2 does not belong to the operating region of the electric supercharger 30, the exhaust bypass valve 42 is controlled to be closed in step S9. At this time, exhaust gas is supplied to the exhaust turbine 12 of the mechanical supercharger 10, and the mechanical compressor 11 arranged coaxially with the exhaust turbine 12 starts supercharging. Thereafter, the intake bypass valve 34 is controlled to be opened in step S10, and finally the operation of the electric supercharger 30 is stopped in step S11, and the supercharging by the electric compressor 32 is stopped. In this way, after the exhaust bypass valve 42 is controlled to be closed, the intake bypass valve 33 is controlled to be opened before the operation of the electric supercharger 30 is stopped, whereby the electric compressor 32 and the mechanical compressor 11 are controlled. By creating a state in which supercharging by both of these occurs, it is possible to prevent the intake air amount from becoming insufficient due to the supercharging response and the torque of the engine 1 from dropping.
- step S7 the intake air amount is detected in step S7, and it is determined in step S8 whether the intake air amount supercharged by the electric supercharger 30 or the mechanical supercharger 10 has reached the target intake air amount set in step S2. If the target intake air amount has not been reached, the process returns to step S2 and the same control is repeated up to the target intake air amount.
- step S12 the exhaust bypass valve 42 is opened in step S12 so that supercharging does not occur. If the electric compressor 32 of the electric supercharger 30 is driven, the intake bypass valve 42 is opened in step 13. In step S14, the electric supercharger 30 is stopped, and the control is terminated in step S15.
- the supercharging pressure in the intake passage 4 is set as the pressure required for the electric supercharger 30 in response to the acceleration request.
- the determination unit 55 determines that the operation state of the engine 1 is that of the electric supercharger 30. The electric supercharger 30 is determined not to be operated because it is determined that it is out of the operating range.
- a predetermined electric energy that is a use limit is set in consideration of the capacity of the battery 60.
- a predetermined time that is the upper limit may be set for the usage time of the electric compressor 32, or a predetermined heat generation amount that is the upper limit may be set for the heat generation amount of the electric compressor 32. That is, when these electric energy, usage time, and calorific value exceed the corresponding predetermined values, further operation of the electric compressor 32 is not preferable. In this embodiment, the electric supercharging is performed. The machine 30 is not operated.
- step S9 the opening degree of the exhaust bypass valve 42 when shifting from the open state to the closed state may be determined based on the supercharging output from the electric compressor 32. That is, in step S11, as the supercharging output by the electric compressor 32 gradually decreases, the exhaust bypass valve 42 is gradually closed and the opening thereof gradually decreases.
- the opening degree of the exhaust bypass valve 42 is determined each time using a map or the like.
- FIG. 2 shows the relationship between the amount of air introduced into the combustion chamber and the supercharging pressure of the intake air of the engine 1 when acceleration is requested from the low rotation range of the engine 1.
- a symbol A shown in the graph of FIG. 2 indicates an operation region in which the electric supercharger 30 can cope with supercharging
- a symbol B indicates an operation region in which the mechanical supercharger 10 can cope with supercharging. .
- the exhaust bypass valve 42 is closed, The driving of the compressor 32 is stopped.
- the timing of closing the exhaust bypass valve 42 and stopping the driving of the electric compressor 32 corresponds to the position of the symbol p2 in the graph of FIG. That is, when the reference sign p2, which is the end of the overlapping portion t1 between the operation region of the electric supercharger 30 and the operation region of the mechanical supercharger 10, starts closing the exhaust bypass valve 42, the electric compressor 32 It is time to start decreasing the drive output.
- the time from the start of closing the exhaust bypass valve 42 to the complete closure the time from the start of the decrease in the output of the drive of the electric compressor 32 to the complete stop of the drive, It is determined appropriately according to the driving situation such as the size.
- timing of starting closing of the exhaust bypass valve 42 and the timing of starting to decrease the output of the drive of the electric compressor 32 are the operating region of the electric supercharger 30 and the operating region of the mechanical supercharger 10. It is good also as the timing of the code
- FIG. 3 shows the relationship between the elapsed time from the start time of the acceleration request and the supercharging pressure in the intake passage 4 when the acceleration is requested from the low rotation range of the engine 1.
- a symbol A ′ shown in the graph of FIG. 3 indicates a change in the supercharging pressure by the electric supercharger 30, and a symbol B ′ indicates a change in the supercharging pressure by the mechanical supercharger 10.
- the exhaust bypass valve 42 starts to be closed at the timing indicated by the symbol q2.
- the output of the drive of the compressor 32 is decreasing.
- the timing of their start corresponds to the position of the symbol p2 in the graph of FIG.
- the exhaust bypass device 40 that is, the waste gate valve device is electrically controlled, so that it can be driven even when the supercharging pressure is low, and more precise control is possible. It may be controlled by a pneumatic actuator using a supercharging pressure as a power source. At this time, it is desirable to use a negative pressure type using a vacuum pump.
- the engine 1 of this embodiment is a four-cycle gasoline engine for automobiles, it is not limited to this embodiment, and the present invention can be applied to a diesel engine as well as other types of gasoline engines.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
An engine (1) is provided with an exhaust turbine (12) disposed in an exhaust passage (14), a mechanical supercharger (10) provided to an intake passage (4), an electrical supercharger (30) which is disposed in the intake passage (4) and supercharges air drawn into a combustion chamber, an exhaust bypass valve (42) for opening and closing an exhaust bypass passage (41) that connects the upstream and downstream sides of the exhaust turbine (12), and an intake bypass valve (34) for opening and closing an intake bypass passage (33) that connects the upstream and downstream sides of the electrical supercharger (30) in the intake passage (4). An ECU (50) is provided with a determination unit (55) for determining the operation of the electrical supercharger (30). When the operation of the electrical supercharger (30) has been determined, the electrical supercharger (30) is operated after the exhaust bypass valve (42) is opened and the intake bypass valve (34) is then closed.
Description
電動機で吸気を過給する電動式過給機と、排気ガスのエネルギをタービンで回収して吸気を過給する機械式過給機を備えるエンジンの制御装置に関する。
TECHNICAL FIELD The present invention relates to an engine control device including an electric supercharger that supercharges intake air with an electric motor and a mechanical supercharger that recovers exhaust gas energy by a turbine and supercharges intake air.
排気ガスのエネルギを利用して、燃焼室に導入される吸気を過給する機械式過給機を備えたエンジンが広く採用されている。
Engines equipped with a mechanical supercharger that supercharges intake air introduced into the combustion chamber using the energy of exhaust gas are widely used.
この種の機械式過給機はターボチャージャとも呼ばれ、エンジンの吸気通路の途中にコンプレッサを配置し、排気通路の途中にタービンを配置し、排気通路を流れる排気ガスでタービンを回転させることによりコンプレッサを作動させ、燃焼室への吸入空気量を増大させて、エンジンのトルクの向上を図っている。
This type of mechanical supercharger, also called a turbocharger, is configured by arranging a compressor in the middle of the intake passage of the engine, placing a turbine in the middle of the exhaust passage, and rotating the turbine with exhaust gas flowing through the exhaust passage. The compressor is operated to increase the amount of intake air into the combustion chamber to improve the engine torque.
また、近年は、排気ガスのエネルギを利用した過給機以外にも、コンプレッサを電動機で駆動するようにした電動式過給機が種々提案されている。電動式過給機は、エンジンの運転状態によらず、電力を供給することで任意に過給が出来るという利点がある(例えば、下記特許文献1参照)。
In recent years, various types of electric superchargers have been proposed in which the compressor is driven by an electric motor in addition to the supercharger using the energy of the exhaust gas. The electric supercharger has an advantage that it can be supercharged arbitrarily by supplying electric power regardless of the operating state of the engine (see, for example, Patent Document 1 below).
また、排気ガスのエネルギを利用する機械式過給機は、排気ガスの一部を分流させることにより、タービンへの流入量を調節するウェイストゲートバルブが採用される。タービンを通過する排気ガスの量をウェイストゲートバルブで調整することで、吸気の過給圧を制御することができる。
Also, the mechanical supercharger that uses the energy of exhaust gas employs a waste gate valve that adjusts the amount of inflow into the turbine by diverting a part of the exhaust gas. The supercharging pressure of intake air can be controlled by adjusting the amount of exhaust gas passing through the turbine with a waste gate valve.
従来のウェイストゲートバルブは、過給圧を動力源とした空圧式アクチュエータにより制御されていたが、近年は、電動機で開閉制御するようにした電制式ウェイストゲートバルブも採用されている。ウェイストゲートバルブを電制式とすることで、過給圧が低い場合でも駆動でき、より緻密な制御が可能となっている。
Conventional waste gate valves have been controlled by pneumatic actuators that use supercharging pressure as a power source, but recently, electronically controlled waste gate valves that are controlled to open and close by an electric motor have also been adopted. By making the waste gate valve electrically controlled, it can be driven even when the supercharging pressure is low, and more precise control is possible.
ところで、エンジンが低回転域にある状態では排気ガスの量が少ないので、機械式過給機を作動させるのに充分な排気ガスを確保できない場合が多い。このため、エンジンの低回転域からアクセルを踏み込んで加速するような運転状態では、加速に必要な吸気の過給圧を早期に確保することができない。
By the way, when the engine is in a low speed range, the amount of exhaust gas is small, so that there are many cases where sufficient exhaust gas cannot be secured to operate the mechanical supercharger. For this reason, in an operating state in which the accelerator is depressed and accelerated from a low engine speed range, it is not possible to secure the intake supercharging pressure necessary for acceleration at an early stage.
ここで、機械式過給機への排気ガスの供給量を増やすために、ウェイストゲートバルブを閉じる手法が考えられる。しかし、エンジンの低回転域では、燃焼室から排出される排気ガスの総量が少ないため、ウェイストゲートバルブを閉じても機械式過給機のタービン回転速度は上昇しない。このため、エンジンの低回転域からの加速要求時に、適切な吸気の過給圧を早期に確保したいという要請がある。
Here, in order to increase the amount of exhaust gas supplied to the mechanical supercharger, a method of closing the waste gate valve can be considered. However, since the total amount of exhaust gas discharged from the combustion chamber is small in the low engine speed range, the turbine rotational speed of the mechanical supercharger does not increase even if the waste gate valve is closed. For this reason, there is a demand for ensuring an appropriate intake supercharging pressure at an early stage when an acceleration request is made from a low engine speed range.
そこで、この発明の課題は、エンジンの低回転域からの加速要求時に、適切な吸気の過給圧を早期に確保すると共に、迅速にトルクを増大させることである。
Therefore, an object of the present invention is to ensure an appropriate intake supercharging pressure at an early stage and quickly increase torque when acceleration is requested from a low engine speed range.
上記の課題を解決するために、この発明は、排気通路に配置された排気タービンと、吸気通路に配置された燃焼室への吸気を過給する過給機であって、前記排気タービンによって駆動される機械式過給機と、前記吸気通路に配置された燃焼室への吸気を過給する過給機であって、電気的に駆動される電動式過給機と、前記排気通路における前記排気タービンの上流側と下流側とを接続する排気バイパス通路と、前記排気バイパス通路を開閉する排気バイパスバルブと、を備えるエンジンを制御する制御装置であって、前記排気バイパスバルブが開状態にあるときに前記電動式過給機を作動させるエンジンの制御装置を採用した。
In order to solve the above problems, the present invention provides an exhaust turbine disposed in an exhaust passage and a supercharger that supercharges intake air to a combustion chamber disposed in an intake passage, and is driven by the exhaust turbine. A mechanical supercharger, a supercharger for supercharging intake air to a combustion chamber disposed in the intake passage, the electrically driven electric supercharger, and the exhaust passage in the exhaust passage A control device for controlling an engine comprising an exhaust bypass passage connecting an upstream side and a downstream side of an exhaust turbine and an exhaust bypass valve for opening and closing the exhaust bypass passage, wherein the exhaust bypass valve is in an open state Sometimes an engine control device for operating the electric supercharger was adopted.
前記エンジンは、前記吸気通路における前記電動式過給機の上流側と下流側とを接続する吸気バイパス通路と、前記吸気バイパス通路を開閉する吸気バイパスバルブと、を更に備え、前記エンジンの制御装置は、前記電動式過給機の作動を判定する判定部を更に備え、前記エンジンの制御装置は、前記電動式過給機の作動が判定された場合に、前記排気バイパスバルブを開状態にした後に前記吸気バイパスバルブを閉状態にしてから前記電動式過給機を作動させる構成を採用することができる。
The engine further includes an intake bypass passage that connects an upstream side and a downstream side of the electric supercharger in the intake passage, and an intake bypass valve that opens and closes the intake bypass passage. Further includes a determination unit that determines the operation of the electric supercharger, and the engine control device opens the exhaust bypass valve when the operation of the electric supercharger is determined. A configuration in which the electric supercharger is operated after the intake bypass valve is closed later can be employed.
また、前記エンジンの制御装置は、前記電動式過給機の作動から前記機械式過給機の作動へ移る際は、前記排気バイパスバルブを閉状態にしてから前記電動式過給機を停止させる構成を採用することができる。
The engine control device stops the electric supercharger after closing the exhaust bypass valve when the operation of the electric supercharger is shifted to the operation of the mechanical supercharger. A configuration can be employed.
さらに、前記エンジンの制御装置は、前記電動式過給機の作動から前記機械式過給機の作動へ移る際は、前記排気バイパスバルブを閉状態にした後に前記吸気バイパスバルブを開状態にしてから前記電動式過給機を停止させる構成を採用することができる。
Furthermore, when the engine control device shifts from the operation of the electric supercharger to the operation of the mechanical supercharger, the engine bypass device opens the intake bypass valve after closing the exhaust bypass valve. Therefore, it is possible to employ a configuration in which the electric supercharger is stopped.
ここで、前記判定部は、前記吸気通路内の過給圧が所定圧以上となった場合、前記電動式過給機が使用した電力量が所定電力量以上となった場合、前記電動式過給機の使用時間が所定時間以上となった場合、および、前記電動式過給機の発熱量が所定発熱量以上となった場合の何れかの場合に、前記電動式過給機を作動させないと判定する構成を採用することができる。
Here, the determination unit determines whether the electric supercharger in the intake passage is equal to or higher than a predetermined pressure, or when the electric energy used by the electric supercharger is equal to or higher than a predetermined electric energy. The electric supercharger is not actuated when the usage time of the charger exceeds a predetermined time or when the calorific value of the electric supercharger exceeds a predetermined calorific value It is possible to adopt a configuration that determines that
開状態から閉状態へ移行する際の前記排気バイパスバルブの開度は、前記電動式過給機による過給の出力に基づいて決定される構成を採用することができる。
The opening degree of the exhaust bypass valve at the time of transition from the open state to the closed state may be determined based on the supercharging output from the electric supercharger.
この発明によれば、排気バイパスバルブが開状態にあるときに電動式過給機を駆動させるようにしたので、加速要求に必要な適切な吸気の過給圧を確保すると共に、迅速にトルクを増大させることができる。
According to the present invention, since the electric supercharger is driven when the exhaust bypass valve is in the open state, an appropriate intake air supercharging pressure required for the acceleration request is ensured, and the torque is quickly applied. Can be increased.
以下、この発明の一実施形態を図面に基づいて説明する。図1は、この実施形態にかかるエンジンとその制御装置からなる全体的な制御システムEを概念的に示す模式図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram conceptually showing an overall control system E composed of an engine and its control device according to this embodiment.
この実施形態のエンジン1は4サイクルの内燃機関であって、自動車用ガソリンエンジンである。エンジン1の構成は、図1に示すように、内部に燃焼室を有する気筒2内に吸気を送り込む吸気ポート3、その吸気ポート3に通じる吸気通路4、排気ポート13から引き出された排気通路14、吸気ポート3又は燃焼室内に燃料を噴射する燃料噴射装置等を備えている。吸気ポート3及び排気ポート13は、それぞれバルブによって開閉される。
The engine 1 of this embodiment is a four-cycle internal combustion engine, and is an automobile gasoline engine. As shown in FIG. 1, the configuration of the engine 1 includes an intake port 3 for sending intake air into a cylinder 2 having a combustion chamber therein, an intake passage 4 leading to the intake port 3, and an exhaust passage 14 drawn from the exhaust port 13. And a fuel injection device for injecting fuel into the intake port 3 or the combustion chamber. The intake port 3 and the exhaust port 13 are opened and closed by valves.
この実施形態では4つの気筒を備えた4気筒エンジンを想定しているが、気筒の数に関わらずこの発明を適用可能である。
In this embodiment, a four-cylinder engine having four cylinders is assumed, but the present invention can be applied regardless of the number of cylinders.
燃焼室へ通じる吸気通路4には、燃焼室への接続部である吸気ポート3から上流側に向かって、吸気ポート3への流路面積を調節するスロットルバルブ5、吸気通路4を流れる吸気を冷却する吸気冷却装置(インタークーラ)6、機械式過給機(ターボチャージャ)10の機械式コンプレッサ11が、さらに上流側の吸気通路4には、流路面積を調節する第二スロットルバルブ7、エアクリーナ(図示せず)等が設けられる。
In the intake passage 4 leading to the combustion chamber, a throttle valve 5 that adjusts a flow area to the intake port 3 toward the upstream side from the intake port 3 that is a connection portion to the combustion chamber, intake air flowing through the intake passage 4 An intake air cooling device (intercooler) 6 for cooling, a mechanical compressor 11 of a mechanical supercharger (turbocharger) 10, and a second throttle valve 7 for adjusting the flow area in the intake passage 4 on the upstream side, An air cleaner (not shown) or the like is provided.
排気通路14には、燃焼室への接続部である排気ポート13から下流側に向かって、機械式過給機10のタービン12、排気中の未燃炭化水素(HC)等を除去する触媒等を備えた排気浄化部15、消音器16等が設けられる。
In the exhaust passage 14, the turbine 12 of the mechanical supercharger 10, a catalyst for removing unburned hydrocarbons (HC) and the like in the exhaust, etc. from the exhaust port 13, which is a connection portion to the combustion chamber, toward the downstream side. Are provided with an exhaust purification unit 15, a silencer 16, and the like.
機械式過給機10は、図1に示すように、吸気通路4に配置され燃焼室へ導入される吸気を過給する機械式コンプレッサ11を備える。排気通路14には、機械式コンプレッサ11を回転させるための排気タービン12が配置される。機械式コンプレッサ11と排気タービン12とは同軸で連結されており、排気通路14を流れる排気ガスによって排気タービン12が回転すると、その回転が吸気通路4の機械式コンプレッサ11に伝達される。機械式コンプレッサ11の回転によって、吸気通路4内を流れる吸気に過給が行われる。つまり、排気タービン12によって機械式コンプレッサ11が駆動される。
As shown in FIG. 1, the mechanical supercharger 10 includes a mechanical compressor 11 that is disposed in the intake passage 4 and supercharges intake air introduced into the combustion chamber. An exhaust turbine 12 for rotating the mechanical compressor 11 is disposed in the exhaust passage 14. The mechanical compressor 11 and the exhaust turbine 12 are connected coaxially. When the exhaust turbine 12 rotates by exhaust gas flowing through the exhaust passage 14, the rotation is transmitted to the mechanical compressor 11 in the intake passage 4. The intake air flowing through the intake passage 4 is supercharged by the rotation of the mechanical compressor 11. That is, the mechanical compressor 11 is driven by the exhaust turbine 12.
また、排気通路14における排気タービン12の上流側と下流側とを接続する排気バイパス通路41と、その排気バイパス通路41を開閉する排気バイパスバルブ42とを備えた排気バイパス装置40、いわゆるウェイストゲートバルブ装置が設けられている。排気バイパスバルブ42を開放すれば、排気タービン12側に流れている排気ガスの一部が排気バイパス通路41側に分流され、排気タービン12に加わる排気エネルギが低減される。
Further, an exhaust bypass device 40 including an exhaust bypass passage 41 that connects the upstream side and the downstream side of the exhaust turbine 12 in the exhaust passage 14, and an exhaust bypass valve 42 that opens and closes the exhaust bypass passage 41, a so-called waste gate valve. A device is provided. If the exhaust bypass valve 42 is opened, a part of the exhaust gas flowing to the exhaust turbine 12 side is diverted to the exhaust bypass passage 41 side, and the exhaust energy applied to the exhaust turbine 12 is reduced.
この実施形態では、排気バイパスバルブ42は電動機で開閉制御される電制式ウェイストゲートバルブとなっている。
In this embodiment, the exhaust bypass valve 42 is an electrically controlled wastegate valve that is controlled to open and close by an electric motor.
さらに、吸気通路4の途中には、電動式過給機30が配置されている。電動式過給機30は、吸気通路4に配置され燃焼室への吸気を過給する電動式コンプレッサ32を備える。電力を供給することにより電動式コンプレッサ32を駆動すると、吸気通路4内を流れる吸気に過給が行われる。
Furthermore, an electric supercharger 30 is arranged in the middle of the intake passage 4. The electric supercharger 30 includes an electric compressor 32 that is disposed in the intake passage 4 and supercharges intake air into the combustion chamber. When the electric compressor 32 is driven by supplying electric power, the intake air flowing in the intake passage 4 is supercharged.
また、吸気通路4には、電動式コンプレッサ32の上流側と下流側とを接続する吸気バイパス通路33と、その吸気バイパス通路33を開閉する吸気バイパスバルブ34が設けられている。電動式コンプレッサ32を駆動する際には、吸気バイパスバルブ34は閉鎖しておくことが必要となる。
The intake passage 4 is provided with an intake bypass passage 33 that connects the upstream side and the downstream side of the electric compressor 32 and an intake bypass valve 34 that opens and closes the intake bypass passage 33. When driving the electric compressor 32, the intake bypass valve 34 needs to be closed.
排気バイパスバルブ42や電動式コンプレッサ32、吸気バイパスバルブ34の駆動電力は、バッテリ60から供給されるようになっている。ここでは、排気バイパスバルブ42や電動式コンプレッサ32、吸気バイパスバルブ34に電力を供給するバッテリ60を、エンジン1の他の部分やこのエンジン1を搭載する車両全般に電力を供給するバッテリと共通としている。ただし、排気バイパスバルブ42や電動式コンプレッサ32の駆動電力を供給するバッテリは、エンジン1や車両全体に電力を供給するバッテリとは別に設けることもできる。
The driving power for the exhaust bypass valve 42, the electric compressor 32, and the intake bypass valve 34 is supplied from a battery 60. Here, the battery 60 that supplies power to the exhaust bypass valve 42, the electric compressor 32, and the intake bypass valve 34 is used in common with the battery that supplies power to other parts of the engine 1 and the vehicle in which the engine 1 is mounted. Yes. However, the battery that supplies driving power to the exhaust bypass valve 42 and the electric compressor 32 can be provided separately from the battery that supplies power to the engine 1 and the entire vehicle.
排気通路14の排気タービン12の下流側と、吸気通路11の機械式コンプレッサ11と第二スロットルバルブ7との中途部分は、排気ガス再循環装置20を構成する排気還流通路21によって連通している。排気還流通路21を介して、燃焼室から排出される排気ガスの一部が、還流ガスとして吸気通路4の機械式コンプレッサ11及び電動式コンプレッサ32の上流側に還流する。この排気還流通路21には排気還流バルブ22が設けられている。排気還流バルブ22の開閉と第二スロットルバルブ7の開閉に伴う吸気通路4内の圧力状態に応じて、還流ガスが吸気通路4内の吸気に合流する。
A downstream side of the exhaust turbine 12 in the exhaust passage 14 and a midway portion between the mechanical compressor 11 and the second throttle valve 7 in the intake passage 11 are communicated by an exhaust gas recirculation passage 21 constituting the exhaust gas recirculation device 20. . A part of the exhaust gas discharged from the combustion chamber returns to the upstream side of the mechanical compressor 11 and the electric compressor 32 in the intake passage 4 as the recirculation gas via the exhaust recirculation passage 21. An exhaust gas recirculation valve 22 is provided in the exhaust gas recirculation passage 21. The recirculated gas merges with the intake air in the intake passage 4 in accordance with the pressure state in the intake passage 4 that accompanies the opening and closing of the exhaust gas recirculation valve 22 and the opening and closing of the second throttle valve 7.
このエンジン1を搭載する車両は、エンジン1を制御する制御装置としての電子制御ユニットECU(ECU:Electronic Control Unit)50を備える。
The vehicle on which the engine 1 is mounted includes an electronic control unit ECU (ECU: Electronic Control Unit) 50 as a control device that controls the engine 1.
ECU50は、吸気ポート3又は燃焼室内に設けた燃料噴射装置(図示せず)による燃料噴射や、過給圧の制御、スロットルバルブ5や第二スロットルバルブ7の開度の制御、排気ガス再循環装置20の制御、その他、エンジンの制御に必要な指令を行う。
The ECU 50 performs fuel injection by a fuel injection device (not shown) provided in the intake port 3 or the combustion chamber, control of supercharging pressure, control of the opening degree of the throttle valve 5 and the second throttle valve 7, exhaust gas recirculation. Commands necessary for control of the apparatus 20 and other control of the engine are performed.
また、ECU50は、機械式過給機10を制御する機械式過給機制御手段51、電動式過給機30を制御する電動式過給機制御手段52、吸気バイパスバルブ34を制御する吸気バイパス装置制御手段53、排気バイパス装置40の排気バイパスバルブ42を制御する排気バイパス装置制御手段54を備える。さらに、ECU50は、電動式過給機30の作動を判定する判定部55を備えている。具体的には、ECU50には、燃焼室内に導入される空気量と、エンジン1の吸気の過給圧とに基づいて規定された電動式過給機30の作動領域マップが記憶されており(図2参照)、判定部55は、目標吸気量と目標過給圧が作動領域内に属するか否かを判定することによって、電動式過給機30の作動/不作動を判定する。
The ECU 50 also includes a mechanical supercharger control means 51 that controls the mechanical supercharger 10, an electric supercharger control means 52 that controls the electric supercharger 30, and an intake bypass that controls the intake bypass valve 34. The apparatus control means 53 and the exhaust bypass apparatus control means 54 which controls the exhaust bypass valve 42 of the exhaust bypass apparatus 40 are provided. Further, the ECU 50 includes a determination unit 55 that determines the operation of the electric supercharger 30. Specifically, the ECU 50 stores an operation region map of the electric supercharger 30 defined based on the amount of air introduced into the combustion chamber and the supercharging pressure of the intake air of the engine 1 ( The determination unit 55 determines whether the electric supercharger 30 is operating or not by determining whether or not the target intake air amount and the target supercharging pressure belong to the operating region.
また、図1に示すように、吸気通路4には、燃料タンクで発生した蒸発燃料をキャニスタ等において一時的に蓄え、それをスロットルバルブ5の下流側に導入するパージ装置aが設けられている。また、エンジン1の内部に漏出した未燃焼ガスを主成分とするブローバイガスを、吸気ポート3に還流させるブローバイガス還流装置b、第二スロットルバルブ7の上流側に開口してクランクケース内の圧力を逃がすためのブリーザ装置e等が設けられている。これらの装置も、ECU50が制御する。
As shown in FIG. 1, the intake passage 4 is provided with a purge device a that temporarily stores the evaporated fuel generated in the fuel tank in a canister or the like and introduces it into the downstream side of the throttle valve 5. . Further, a blow-by gas recirculation device b that recirculates the blow-by gas mainly containing unburned gas leaked into the engine 1 to the intake port 3, opens to the upstream side of the second throttle valve 7, and the pressure in the crankcase A breather device e and the like are provided. These devices are also controlled by the ECU 50.
さらに、吸気通路4には、エンジン1の制御に必要な情報を取得するセンサ装置として、スロットルバルブ5の下流側の圧力センサc、スロットルバルブ5の上流側の圧力センサd、吸気通路4内を流れる空気の量を検出するエアーフローセンサf等が設けられている。
Further, in the intake passage 4, as a sensor device for acquiring information necessary for controlling the engine 1, a pressure sensor c on the downstream side of the throttle valve 5, a pressure sensor d on the upstream side of the throttle valve 5, and the inside of the intake passage 4 are provided. An air flow sensor f for detecting the amount of flowing air is provided.
排気通路14には、エンジン1の制御に必要な情報を取得するセンサ装置として、排気ガスの温度を検出する排気温度センサgが設けられている。
The exhaust passage 14 is provided with an exhaust temperature sensor g for detecting the temperature of the exhaust gas as a sensor device that acquires information necessary for controlling the engine 1.
また、エンジン1には、シリンダブロック等を冷却する冷却水の温度を検出する水温センサi、エンジン1のクランクシャフトの回転速度を検出する回転速度センサjが設けられ、また、エンジン1を搭載する車両の車体(図示せず)には、アクセルの踏み込み量を検出するアクセル開度センサk等が設けられている。
Further, the engine 1 is provided with a water temperature sensor i for detecting the temperature of the cooling water for cooling the cylinder block and the like, and a rotation speed sensor j for detecting the rotation speed of the crankshaft of the engine 1. A vehicle body (not shown) of the vehicle is provided with an accelerator opening sensor k that detects the amount of depression of the accelerator.
これらの各種センサ類の情報は、ケーブルを通じてECU50が取得できるようになっている。
Information on these various sensors can be acquired by the ECU 50 through a cable.
以下、このエンジン1の加速時における制御を、図4のフローチャートに基づいて説明する。このフローは、ECU50に設けられた記憶装置内に記憶されており、必要に応じて実行される。
Hereinafter, the control during acceleration of the engine 1 will be described based on the flowchart of FIG. This flow is stored in a storage device provided in the ECU 50, and is executed as necessary.
まず、ステップS1において、加速要求があったものとする。すなわち、運転者がアクセル操作により、アクセルペダルを所定踏み込み量以上深く踏み込んだ状態となったものとする。
First, it is assumed that there is an acceleration request in step S1. That is, it is assumed that the driver has depressed the accelerator pedal more than a predetermined depression amount by the accelerator operation.
ステップS2では、S1で検出した加速要求に応じた現在のエンジン1が出力すべきトルクから、エンジン1に必要とする目標吸気量を算出する。この目標吸気量からECU50に記憶されたマップ等に基づいて目標とする過給圧が設定される。
In step S2, a target intake air amount required for the engine 1 is calculated from the torque to be output by the current engine 1 according to the acceleration request detected in S1. A target boost pressure is set from the target intake air amount based on a map or the like stored in the ECU 50.
ここでは、アクセル開度センサkによって検出されるアクセル開度や、水温センサiによって検出される冷却水の水温等、エンジン1の回転数、エンジン1のトルク、その他、エンジン1の制御に必要な情報が、ECU50に読み込まれている。
Here, the accelerator opening detected by the accelerator opening sensor k, the coolant temperature detected by the water temperature sensor i, the rotational speed of the engine 1, the torque of the engine 1, etc. are necessary for the control of the engine 1. Information is read into the ECU 50.
つぎに、ステップS3では、ステップS2で算出した目標吸気量が、電動過給機30の作動領域内に属するか否かをECU50の判定部55が判断する。ここで、ECU50には、例えば、後述する図2のように、電動過給機30と機械式過給機10の特性に応じて定められたそれぞれの作動領域がマップとして記憶されている。つまり、低吸気量では電動過給機30による過給を行い、高吸気量では機械式過給機10で過給するように領域が設定されたマップが記録されている。エンジン1の運転状態が電動過給機30の作動領域に属するか否かの判断は、ステップS2で求めた目標吸気量と目標過給圧を、このマップに照らしあわせて判断する。また、さらに、電動過給機30の作動領域であるか否かは、電動過給機30に電力を供給するバッテリ60の充電量や、電動コンプレッサ32を駆動させるモータの耐久性によっても併せて判断してもよい。
Next, in step S3, the determination unit 55 of the ECU 50 determines whether or not the target intake air amount calculated in step S2 belongs to the operating region of the electric supercharger 30. Here, in the ECU 50, for example, as shown in FIG. 2 described later, respective operation regions determined according to the characteristics of the electric supercharger 30 and the mechanical supercharger 10 are stored as a map. That is, a map is set in which a region is set so that supercharging by the electric supercharger 30 is performed at a low intake amount and supercharging is performed by the mechanical supercharger 10 at a high intake amount. Whether or not the operating state of the engine 1 belongs to the operating region of the electric supercharger 30 is determined by comparing the target intake air amount and the target supercharging pressure obtained in step S2 with reference to this map. Further, whether or not it is the operating region of the electric supercharger 30 depends on the amount of charge of the battery 60 that supplies power to the electric supercharger 30 and the durability of the motor that drives the electric compressor 32. You may judge.
ステップS3で、電動過給機の作動領域であると判断された場合は、ステップS4で吸気バイパスバルブ34を閉状態に制御して吸気バイパス通路33を閉鎖したうえで、ステップS5で排気バイパスバルブ(ウェイストゲートバルブ)42を開状態に制御する。その後、ステップS6で電動過給機30を作動させ電動式コンプレッサ32を駆動することで過給を開始する。
If it is determined in step S3 that the electric turbocharger is operating, the intake bypass valve 34 is controlled to be closed in step S4 to close the intake bypass passage 33, and then the exhaust bypass valve is determined in step S5. (Wastegate valve) 42 is controlled to be in an open state. Thereafter, the supercharger is started by operating the electric supercharger 30 and driving the electric compressor 32 in step S6.
このように、電動過給機30が作動する際に、排気バイパスバルブ42が開状態に制御されることで、排気タービン12側に流れている排気ガスの一部が排気バイパス通路41側に分流され、排気タービン12に加わる排気エネルギが低減されることで、排気ポート13内の圧力の上昇が抑制される。
Thus, when the electric supercharger 30 is operated, the exhaust bypass valve 42 is controlled to be in an open state, so that a part of the exhaust gas flowing to the exhaust turbine 12 side is diverted to the exhaust bypass passage 41 side. Then, the exhaust energy applied to the exhaust turbine 12 is reduced, so that an increase in pressure in the exhaust port 13 is suppressed.
一方で、電動式過給機30が作動することで電動式コンプレッサ32の過給によって吸気側の圧力が上昇する。このように、吸気側の圧力が排気側の圧力より高くなると、排気が筒内に逆流することを防止することができる。すなわち、シリンダ内の掃気効果が強化されて、筒内残留燃焼ガス量が低下する。筒内残留ガス量が低下すると筒内ガス温度が低下し、ノッキングが抑制されるため、点火時期を進めることが可能となる。点火時期を進めると熱効率が増大し、エンジン出力が増加するので、加速性能を向上させることができる。
On the other hand, when the electric supercharger 30 is operated, the pressure on the intake side increases due to supercharging of the electric compressor 32. Thus, when the pressure on the intake side becomes higher than the pressure on the exhaust side, the exhaust can be prevented from flowing back into the cylinder. That is, the scavenging effect in the cylinder is enhanced and the in-cylinder residual combustion gas amount is reduced. When the in-cylinder residual gas amount decreases, the in-cylinder gas temperature decreases and knocking is suppressed, so that the ignition timing can be advanced. If the ignition timing is advanced, the thermal efficiency increases and the engine output increases, so that the acceleration performance can be improved.
さらに、吸気バイパスバルブ34を閉状態に制御した後、電動過給機30が作動(電動式コンプレッサ32が駆動)する前に排気バイパスバルブ42を開状態に制御することで、電動過給機30による過給が気内に供給される前に排気圧力を予め低下させておくことで、掃気効果を得やすい。なお、このエンジン1の制御では、吸気通路4の燃焼室への開口を開閉する吸気バルブと、排気通路14の燃焼室への開口を開閉する排気バルブの両方が開放された状態であるバルブオーバーラップ期間が設定されているので、掃気効果が期待できる。
Further, after the intake bypass valve 34 is controlled to be closed, the exhaust bypass valve 42 is controlled to be opened before the electric supercharger 30 operates (the electric compressor 32 is driven), so that the electric supercharger 30 The scavenging effect can be easily obtained by lowering the exhaust pressure in advance before the supercharging due to is supplied to the air. In the control of the engine 1, the valve over in which both the intake valve that opens and closes the opening of the intake passage 4 to the combustion chamber and the exhaust valve that opens and closes the opening of the exhaust passage 14 to the combustion chamber are opened. Since the lap period is set, a scavenging effect can be expected.
次に、ステップ2で算出した目標吸気量が、電動過給機30による作動領域に属さない場合について、説明する。
Next, the case where the target intake air amount calculated in step 2 does not belong to the operation region by the electric supercharger 30 will be described.
ステップS3では、ステップS2で算出した吸気量が電動過給機30の作動領域に属さないと判定した場合、ステップS9で排気バイパスバルブ42が開状態の場合は閉状態に制御する。このとき、機械式過給機10の排気タービン12に排気が供給され排気タービン12と同軸上に配置された機械式コンプレッサ11が過給を開始する。その後、ステップS10で吸気バイパスバルブ34を開状態に制御し、最後にステップS11で電動過給機30の作動を停止し、電動式コンプレッサ32による過給を停止する。このように、排気バイパスバルブ42を閉状態に制御したのち、電動過給機30の作動を停止する前に吸気バイパスバルブ33を開状態に制御することで、電動式コンプレッサ32と機械式コンプレッサ11の双方による過給が発生した状態をつくることで、過給応答おくれによって吸気量が不足し、エンジン1のトルクが落ちることを防止している。
In step S3, when it is determined that the intake air amount calculated in step S2 does not belong to the operating region of the electric supercharger 30, the exhaust bypass valve 42 is controlled to be closed in step S9. At this time, exhaust gas is supplied to the exhaust turbine 12 of the mechanical supercharger 10, and the mechanical compressor 11 arranged coaxially with the exhaust turbine 12 starts supercharging. Thereafter, the intake bypass valve 34 is controlled to be opened in step S10, and finally the operation of the electric supercharger 30 is stopped in step S11, and the supercharging by the electric compressor 32 is stopped. In this way, after the exhaust bypass valve 42 is controlled to be closed, the intake bypass valve 33 is controlled to be opened before the operation of the electric supercharger 30 is stopped, whereby the electric compressor 32 and the mechanical compressor 11 are controlled. By creating a state in which supercharging by both of these occurs, it is possible to prevent the intake air amount from becoming insufficient due to the supercharging response and the torque of the engine 1 from dropping.
その後、ステップS7で吸気量を検出し、ステップS8で電動過給機30又は機械式過給機10による過給した吸気量がステップS2で設定した目標とした吸気量に至ったか否かを判定し、目標とする吸気量に至っていない場合は、ステップS2に戻り目標とする吸気量まで同じ制御を繰り返す。
Thereafter, the intake air amount is detected in step S7, and it is determined in step S8 whether the intake air amount supercharged by the electric supercharger 30 or the mechanical supercharger 10 has reached the target intake air amount set in step S2. If the target intake air amount has not been reached, the process returns to step S2 and the same control is repeated up to the target intake air amount.
一方、目標とする吸気量に至った場合は、機械式過給機10又は電動過給機30の過給を停止させるために、機械式過給機10が作動し排気バイパスバルブ42が閉じている場合は、ステップS12で排気バイパスバルブ42を開いて過給が発生しないようにし、電動過給機30の電動式コンプレッサ32が駆動している場合は、ステップ13で吸気バイパスバルブ42を開いて、ステップS14で電動過給機30を停止させてステップS15で制御を終了する。
On the other hand, when the target intake air amount is reached, the mechanical supercharger 10 is activated and the exhaust bypass valve 42 is closed to stop the supercharging of the mechanical supercharger 10 or the electric supercharger 30. If so, the exhaust bypass valve 42 is opened in step S12 so that supercharging does not occur. If the electric compressor 32 of the electric supercharger 30 is driven, the intake bypass valve 42 is opened in step 13. In step S14, the electric supercharger 30 is stopped, and the control is terminated in step S15.
ここで、エンジン1の運転状態が、電動式過給機30の作動領域から外れたかどうかを判定する基準として、以下の判断基準を採用することができる。
Here, as a reference for determining whether or not the operating state of the engine 1 is out of the operating range of the electric supercharger 30, the following determination criteria can be adopted.
例えば、電動式コンプレッサ32を駆動するモータの耐久性や駆動力を考慮し、吸気通路4内の過給圧が、加速要求に対応して電動式過給機30に求められる圧力として設定された所定圧以上となった場合に加えて、電動式コンプレッサ32が使用した電力量が予め決められた所定電力量以上となった場合に、又は、電動式コンプレッサ32の使用時間が予め決められた所定時間以上となった場合に、あるいは、電動式コンプレッサ32の発熱量が予め決められた所定発熱量以上となった場合に、判定部55は、エンジン1の運転状態が電動式過給機30の作動領域から外れたと判断し、電動式過給機30を作動させないようにしている。
For example, considering the durability and driving force of the motor that drives the electric compressor 32, the supercharging pressure in the intake passage 4 is set as the pressure required for the electric supercharger 30 in response to the acceleration request. In addition to the case where the electric pressure used by the electric compressor 32 becomes equal to or higher than a predetermined electric energy, or when the electric compressor 32 has been used for a predetermined time. When it becomes more than the time or when the heat generation amount of the electric compressor 32 exceeds a predetermined heat generation amount determined in advance, the determination unit 55 determines that the operation state of the engine 1 is that of the electric supercharger 30. The electric supercharger 30 is determined not to be operated because it is determined that it is out of the operating range.
電動式コンプレッサ32は大きな電力を使用するので、バッテリ60の容量を勘案して使用限界となる所定電力量が設定される。又は、電動式コンプレッサ32の使用時間に、その上限となる所定時間を設定してもよいし、あるいは、電動式コンプレッサ32の発熱量に、その上限となる所定発熱量を設定してもよい。すなわち、これらの電力量や使用時間、発熱量が、対応する各所定値以上となった場合に、それ以上の電動式コンプレッサ32の作動は好ましくないので、本実施形態においては、電動式過給機30を作動させないようにしている。
Since the electric compressor 32 uses a large amount of electric power, a predetermined electric energy that is a use limit is set in consideration of the capacity of the battery 60. Alternatively, a predetermined time that is the upper limit may be set for the usage time of the electric compressor 32, or a predetermined heat generation amount that is the upper limit may be set for the heat generation amount of the electric compressor 32. That is, when these electric energy, usage time, and calorific value exceed the corresponding predetermined values, further operation of the electric compressor 32 is not preferable. In this embodiment, the electric supercharging is performed. The machine 30 is not operated.
なお、上記のステップS9において、開状態から閉状態へ移行する際の排気バイパスバルブ42の開度は、電動式コンプレッサ32による過給の出力に基づいて決定されるようにしてもよい。すなわち、ステップS11において、電動式コンプレッサ32による過給の出力が徐々に低下していくにつれて、排気バイパスバルブ42が徐々に閉鎖されてその開度が徐々に減少していく。ここで、電動式コンプレッサ32による過給の出力に対応して、その都度、マップ等を用いて排気バイパスバルブ42の開度が決定される。
In step S9, the opening degree of the exhaust bypass valve 42 when shifting from the open state to the closed state may be determined based on the supercharging output from the electric compressor 32. That is, in step S11, as the supercharging output by the electric compressor 32 gradually decreases, the exhaust bypass valve 42 is gradually closed and the opening thereof gradually decreases. Here, in correspondence with the supercharging output by the electric compressor 32, the opening degree of the exhaust bypass valve 42 is determined each time using a map or the like.
図2は、エンジン1の低回転域からの加速要求時における、燃焼室内に導入される空気量と、エンジン1の吸気の過給圧との関係を示している。図2のグラフ中に示す符号Aは、電動式過給機30が過給に対応できる作動領域を、符号Bは、機械式過給機10が過給に対応できる作動領域をそれぞれ示している。
FIG. 2 shows the relationship between the amount of air introduced into the combustion chamber and the supercharging pressure of the intake air of the engine 1 when acceleration is requested from the low rotation range of the engine 1. A symbol A shown in the graph of FIG. 2 indicates an operation region in which the electric supercharger 30 can cope with supercharging, and a symbol B indicates an operation region in which the mechanical supercharger 10 can cope with supercharging. .
上記の制御では、低回転域からの加速要求時に、電動式過給機30による過給を終えて、機械式過給機10による過給へ移行する際に、排気バイパスバルブ42の閉鎖、電動式コンプレッサ32の駆動の停止を行っている。この排気バイパスバルブ42の閉鎖、電動式コンプレッサ32の駆動の停止のタイミングは、図2のグラフ中の符号p2の位置に対応する。すなわち、電動式過給機30の作動領域と、機械式過給機10の作動領域との重複部分t1の終期である符号p2が、排気バイパスバルブ42の閉鎖を開始する時期、電動式コンプレッサ32の駆動の出力の減少を開始する時期となっている。排気バイパスバルブ42の閉鎖を開始してから完全に閉鎖するまでの時間、電動式コンプレッサ32の駆動の出力の減少を開始してから駆動を完全に停止するまでの時間は、目標過給圧の大小など運転状況に応じて適宜決定される。
In the above control, when the acceleration request from the low rotation range is requested, when the supercharging by the electric supercharger 30 is finished and the supercharging by the mechanical supercharger 10 is shifted, the exhaust bypass valve 42 is closed, The driving of the compressor 32 is stopped. The timing of closing the exhaust bypass valve 42 and stopping the driving of the electric compressor 32 corresponds to the position of the symbol p2 in the graph of FIG. That is, when the reference sign p2, which is the end of the overlapping portion t1 between the operation region of the electric supercharger 30 and the operation region of the mechanical supercharger 10, starts closing the exhaust bypass valve 42, the electric compressor 32 It is time to start decreasing the drive output. The time from the start of closing the exhaust bypass valve 42 to the complete closure, the time from the start of the decrease in the output of the drive of the electric compressor 32 to the complete stop of the drive, It is determined appropriately according to the driving situation such as the size.
なお、排気バイパスバルブ42の閉鎖を開始する時期、電動式コンプレッサ32の駆動の出力の減少を開始するタイミングは、電動式過給機30の作動領域と、機械式過給機10の作動領域との重複部分t1の始期である符号p1のタイミングとしてもよい。あるいは、その符号p1に示す位置と、符号p2に示す位置との間のいずれかのタイミングとしてもよい。
It should be noted that the timing of starting closing of the exhaust bypass valve 42 and the timing of starting to decrease the output of the drive of the electric compressor 32 are the operating region of the electric supercharger 30 and the operating region of the mechanical supercharger 10. It is good also as the timing of the code | symbol p1 which is the beginning of the overlapping part t1. Or it is good also as any timing between the position shown to the code | symbol p1, and the position shown to the code | symbol p2.
図3は、エンジン1の低回転域からの加速要求時における、加速要求の開始時点からの経過時間と、吸気通路4内の過給圧との関係を示している。図3のグラフ中に示す符号A’は、電動式過給機30による過給圧の変化を、符号B’は、機械式過給機10による過給圧の変化をそれぞれ示している。
FIG. 3 shows the relationship between the elapsed time from the start time of the acceleration request and the supercharging pressure in the intake passage 4 when the acceleration is requested from the low rotation range of the engine 1. A symbol A ′ shown in the graph of FIG. 3 indicates a change in the supercharging pressure by the electric supercharger 30, and a symbol B ′ indicates a change in the supercharging pressure by the mechanical supercharger 10.
電動式過給機30による過給を終えて、機械式過給機10による過給へ移行する際に、図3では、符号q2に示すタイミングで、排気バイパスバルブ42の閉鎖を開始し、電動式コンプレッサ32の駆動の出力の減少を開始している。この実施形態では、それらの開始のタイミングは、図2のグラフ中の符号p2の位置に対応する。排気バイパスバルブ42の閉鎖を開始してから完全に閉鎖するまでの時間、電動式コンプレッサ32の駆動の出力の減少を開始してから駆動を完全に停止するまでの時間は、目標過給圧の大小など運転状況に応じて適宜決定されるが、図3では、符号q3のタイミングで排気バイパスバルブ42が完全に閉鎖、電動式コンプレッサ32の駆動が完全に停止している。
When the supercharging by the electric supercharger 30 is finished and the process proceeds to supercharging by the mechanical supercharger 10, in FIG. 3, the exhaust bypass valve 42 starts to be closed at the timing indicated by the symbol q2. The output of the drive of the compressor 32 is decreasing. In this embodiment, the timing of their start corresponds to the position of the symbol p2 in the graph of FIG. The time from the start of closing the exhaust bypass valve 42 to the complete closure, the time from the start of the decrease in the output of the drive of the electric compressor 32 to the complete stop of the drive, In FIG. 3, the exhaust bypass valve 42 is completely closed and the driving of the electric compressor 32 is completely stopped at timing q3.
この実施形態では、排気バイパス装置40、すなわち、ウェイストゲートバルブ装置を電制式とすることで、過給圧が低い場合でも駆動でき、より緻密な制御を可能としているが、ウェイストゲートバルブ装置は、過給圧を動力源とした空圧式アクチュエータにより制御してもよい。このとき、バキュームポンプを用いた負圧式とすることが望ましい。
In this embodiment, the exhaust bypass device 40, that is, the waste gate valve device is electrically controlled, so that it can be driven even when the supercharging pressure is low, and more precise control is possible. It may be controlled by a pneumatic actuator using a supercharging pressure as a power source. At this time, it is desirable to use a negative pressure type using a vacuum pump.
この実施形態のエンジン1は自動車用4サイクルガソリンエンジンとしたが、この実施形態には限定されず、他の形式のガソリンエンジンの他、ディーゼルエンジンでもこの発明を適用できる。
Although the engine 1 of this embodiment is a four-cycle gasoline engine for automobiles, it is not limited to this embodiment, and the present invention can be applied to a diesel engine as well as other types of gasoline engines.
1 エンジン
2 気筒
3 吸気ポート
4 吸気通路
5 スロットルバルブ
6 吸気冷却装置(インタークーラ)
7 第二スロットルバルブ
10 機械式過給機
11 機械式コンプレッサ
12 排気タービン
13 排気ポート
14 排気通路
15 排気浄化部
16 消音器
20 排気還流装置
21 排気還流通路
22 排気還流バルブ
30 電動式過給機
32 電動式コンプレッサ
33 吸気バイパス通路
34 吸気バイパスバルブ
40 排気バイパス装置
41 排気バイパス通路
42 排気バイパスバルブ
50 ECU
51 機械式過給機制御手段
52 電動式過給機制御手段
53 吸気バイパス装置制御手段
54 排気バイパス装置制御手段
55 判定部 1Engine 2 Cylinder 3 Intake port 4 Intake passage 5 Throttle valve 6 Intake cooling device (intercooler)
7Second throttle valve 10 Mechanical supercharger 11 Mechanical compressor 12 Exhaust turbine 13 Exhaust port 14 Exhaust passage 15 Exhaust purifier 16 Silencer 20 Exhaust recirculation device 21 Exhaust recirculation passage 22 Exhaust recirculation valve 30 Electric supercharger 32 Electric compressor 33 Intake bypass passage 34 Intake bypass valve 40 Exhaust bypass device 41 Exhaust bypass passage 42 Exhaust bypass valve 50 ECU
51 MechanicalSupercharger Control Unit 52 Electric Supercharger Control Unit 53 Intake Bypass Device Control Unit 54 Exhaust Bypass Device Control Unit 55 Determination Unit
2 気筒
3 吸気ポート
4 吸気通路
5 スロットルバルブ
6 吸気冷却装置(インタークーラ)
7 第二スロットルバルブ
10 機械式過給機
11 機械式コンプレッサ
12 排気タービン
13 排気ポート
14 排気通路
15 排気浄化部
16 消音器
20 排気還流装置
21 排気還流通路
22 排気還流バルブ
30 電動式過給機
32 電動式コンプレッサ
33 吸気バイパス通路
34 吸気バイパスバルブ
40 排気バイパス装置
41 排気バイパス通路
42 排気バイパスバルブ
50 ECU
51 機械式過給機制御手段
52 電動式過給機制御手段
53 吸気バイパス装置制御手段
54 排気バイパス装置制御手段
55 判定部 1
7
51 Mechanical
Claims (6)
- 排気通路に配置された排気タービンと、吸気通路に配置された燃焼室への吸気を過給する過給機であって、前記排気タービンによって駆動される機械式過給機と、前記吸気通路に配置された燃焼室への吸気を過給する過給機であって、電気的に駆動される電動式過給機と、
前記排気通路における前記排気タービンの上流側と下流側とを接続する排気バイパス通路と、前記排気バイパス通路を開閉する排気バイパスバルブと、
を備えるエンジンを制御する制御装置であって、
前記排気バイパスバルブが開状態にあるときに前記電動式過給機を作動させる
エンジンの制御装置。 An exhaust turbine disposed in the exhaust passage, and a supercharger that supercharges intake air to the combustion chamber disposed in the intake passage, the mechanical supercharger driven by the exhaust turbine, and the intake passage A supercharger that supercharges intake air into the disposed combustion chamber, the electrically driven supercharger;
An exhaust bypass passage connecting the upstream side and the downstream side of the exhaust turbine in the exhaust passage, an exhaust bypass valve opening and closing the exhaust bypass passage,
A control device for controlling an engine comprising:
An engine control device for operating the electric supercharger when the exhaust bypass valve is in an open state. - 前記エンジンは、前記吸気通路における前記電動式過給機の上流側と下流側とを接続する吸気バイパス通路と、前記吸気バイパス通路を開閉する吸気バイパスバルブと、を更に備え、
前記エンジンの制御装置は、
前記電動式過給機の作動を判定する判定部を更に備え、
前記エンジンの制御装置は、
前記電動式過給機の作動が判定された場合に、
前記排気バイパスバルブを開状態にした後に前記吸気バイパスバルブを閉状態にしてから前記電動式過給機を作動させる
請求項1に記載のエンジンの制御装置。 The engine further includes an intake bypass passage that connects an upstream side and a downstream side of the electric supercharger in the intake passage, and an intake bypass valve that opens and closes the intake bypass passage,
The engine control device comprises:
A determination unit for determining the operation of the electric supercharger;
The engine control device comprises:
When the operation of the electric supercharger is determined,
The engine control device according to claim 1, wherein the electric supercharger is operated after the intake bypass valve is closed after the exhaust bypass valve is opened. - 前記エンジンの制御装置は、
前記電動式過給機の作動から前記機械式過給機の作動へ移る際は、前記排気バイパスバルブを閉状態にしてから前記電動式過給機を停止させる
請求項2に記載のエンジンの制御装置。 The engine control device comprises:
The engine control according to claim 2, wherein when the operation of the electric supercharger is shifted to the operation of the mechanical supercharger, the electric supercharger is stopped after the exhaust bypass valve is closed. apparatus. - 前記エンジンの制御装置は、
前記電動式過給機の作動から前記機械式過給機の作動へ移る際は、前記排気バイパスバルブを閉状態にした後に前記吸気バイパスバルブを開状態にしてから前記電動式過給機を停止させる
請求項2又は3に記載のエンジンの制御装置。 The engine control device comprises:
When moving from the operation of the electric supercharger to the operation of the mechanical supercharger, after closing the exhaust bypass valve, opening the intake bypass valve and then stopping the electric supercharger The engine control device according to claim 2 or 3 to be caused. - 前記判定部は、
前記吸気通路内の過給圧が所定圧以上となった場合、前記電動式過給機が使用した電力量が所定電力量以上となった場合、前記電動式過給機の使用時間が所定時間以上となった場合、および、前記電動式過給機の発熱量が所定発熱量以上となった場合の何れかの場合に、前記電動式過給機を作動させないと判定する
請求項2から4の何れか1項に記載のエンジンの制御装置。 The determination unit
When the supercharging pressure in the intake passage is equal to or higher than a predetermined pressure, when the electric energy used by the electric supercharger is equal to or higher than the predetermined electric energy, the usage time of the electric supercharger is a predetermined time It is determined that the electric supercharger is not operated when either of the above cases occurs or when the calorific value of the electric supercharger exceeds a predetermined calorific value. The engine control device according to any one of the above. - 開状態から閉状態へ移行する際の前記排気バイパスバルブの開度は、前記電動式過給機による過給の出力に基づいて決定される
請求項4に記載のエンジンの制御装置。 The engine control device according to claim 4, wherein an opening degree of the exhaust bypass valve at the time of transition from an open state to a closed state is determined based on a supercharge output by the electric supercharger.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253666A JP6672784B2 (en) | 2015-12-25 | 2015-12-25 | Engine control device |
JP2015-253666 | 2015-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017111080A1 true WO2017111080A1 (en) | 2017-06-29 |
Family
ID=59090458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/088484 WO2017111080A1 (en) | 2015-12-25 | 2016-12-22 | Engine control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6672784B2 (en) |
WO (1) | WO2017111080A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111465755A (en) * | 2017-12-07 | 2020-07-28 | 沃尔沃卡车集团 | Method for controlling a turbocharger system of a combustion engine in a vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005163674A (en) * | 2003-12-03 | 2005-06-23 | Nissan Motor Co Ltd | Supercharging device for internal combustion engine |
JP2009191686A (en) * | 2008-02-13 | 2009-08-27 | Mazda Motor Corp | Supercharger of engine |
JP2015025386A (en) * | 2013-07-25 | 2015-02-05 | 日産自動車株式会社 | Control device and control method for internal combustion engine |
JP2015108329A (en) * | 2013-12-04 | 2015-06-11 | 三菱重工業株式会社 | Supercharger system control device |
JP2016056800A (en) * | 2014-09-11 | 2016-04-21 | トヨタ自動車株式会社 | Internal combustion engine control unit |
-
2015
- 2015-12-25 JP JP2015253666A patent/JP6672784B2/en active Active
-
2016
- 2016-12-22 WO PCT/JP2016/088484 patent/WO2017111080A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005163674A (en) * | 2003-12-03 | 2005-06-23 | Nissan Motor Co Ltd | Supercharging device for internal combustion engine |
JP2009191686A (en) * | 2008-02-13 | 2009-08-27 | Mazda Motor Corp | Supercharger of engine |
JP2015025386A (en) * | 2013-07-25 | 2015-02-05 | 日産自動車株式会社 | Control device and control method for internal combustion engine |
JP2015108329A (en) * | 2013-12-04 | 2015-06-11 | 三菱重工業株式会社 | Supercharger system control device |
JP2016056800A (en) * | 2014-09-11 | 2016-04-21 | トヨタ自動車株式会社 | Internal combustion engine control unit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111465755A (en) * | 2017-12-07 | 2020-07-28 | 沃尔沃卡车集团 | Method for controlling a turbocharger system of a combustion engine in a vehicle |
CN111465755B (en) * | 2017-12-07 | 2021-12-14 | 沃尔沃卡车集团 | Method for controlling a turbocharger system of a combustion engine in a vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2017115766A (en) | 2017-06-29 |
JP6672784B2 (en) | 2020-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108431382B (en) | Engine control device | |
US20170016389A1 (en) | Methods and systems for boost control | |
CN102498272A (en) | Turbocharged reciprocating piston engine having a connected pressure tank for bridging turbo lag, and method for operating said engine | |
US8601810B2 (en) | Internal combustion engine | |
CN107461262B (en) | Apparatus and method for engine control | |
JP5579023B2 (en) | Internal combustion engine | |
JP2009174493A (en) | Supercharging device of diesel engine | |
JP2008075589A (en) | Egr gas scavenging device for internal combustion engine | |
JP5679185B2 (en) | Control device for internal combustion engine | |
JP2009191685A (en) | Supercharger of diesel engine | |
WO2017111080A1 (en) | Engine control device | |
CN111417772B (en) | Method and device for controlling internal combustion engine for vehicle | |
CN110637150B (en) | Air intake and exhaust structure of compressed natural gas engine | |
WO2017110189A1 (en) | Engine control device | |
JP6750221B2 (en) | Engine controller | |
JP6750220B2 (en) | Engine controller | |
JP2012225315A (en) | Controller of internal-combustion engine | |
KR102119653B1 (en) | Engine system having supercharger and method for contorlling hybrid vehicle including the same | |
JP2011241713A (en) | Control device of internal combustion engine | |
JP2005351184A (en) | Hybrid car equipped with inter cooler bypass control means | |
JP6613882B2 (en) | Engine control device | |
JP6561828B2 (en) | Engine control device | |
JP2018184873A (en) | Control device for engine | |
JP6835655B2 (en) | EGR device | |
CN111433445B (en) | Method and device for controlling internal combustion engine for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16878966 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16878966 Country of ref document: EP Kind code of ref document: A1 |