Nothing Special   »   [go: up one dir, main page]

WO2017104920A1 - Non-heat treated wire rod excellent in strength and cold workability and method for manufacturing same - Google Patents

Non-heat treated wire rod excellent in strength and cold workability and method for manufacturing same Download PDF

Info

Publication number
WO2017104920A1
WO2017104920A1 PCT/KR2016/006498 KR2016006498W WO2017104920A1 WO 2017104920 A1 WO2017104920 A1 WO 2017104920A1 KR 2016006498 W KR2016006498 W KR 2016006498W WO 2017104920 A1 WO2017104920 A1 WO 2017104920A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rod
less
pearlite
wire
diameter
Prior art date
Application number
PCT/KR2016/006498
Other languages
French (fr)
Korean (ko)
Inventor
문동준
이상윤
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US15/779,339 priority Critical patent/US20180305787A1/en
Priority to JP2018524489A priority patent/JP6600412B2/en
Priority to CN201680073661.4A priority patent/CN108368586B/en
Priority to MX2018006715A priority patent/MX2018006715A/en
Priority to DE112016005827.6T priority patent/DE112016005827T5/en
Publication of WO2017104920A1 publication Critical patent/WO2017104920A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a non-coarse wire rod having excellent strength and cold workability and a method for manufacturing the same, and more particularly, to a non-coarse wire rod having excellent strength and cold workability suitable for use as a material for mechanical parts, and a manufacturing method thereof. .
  • the cold working method is widely used in the manufacture of machine parts such as bolts and nuts because not only the productivity is excellent but also the effect of reducing the heat treatment cost is large compared with the hot working method and the mechanical cutting method.
  • the cold workability of steel is essentially required to be excellent, and more specifically, the cold deformation is required to have low deformation resistance and excellent ductility. . This is because, if the deformation resistance of the steel is high, the life of the tool used in cold work is reduced, and if the ductility of the steel is low, breakage is likely to occur during cold work, which causes defects.
  • the conventional cold working steel is subjected to spheroidizing annealing heat treatment before cold working.
  • the steel material is softened during the spheroidizing annealing heat treatment, so that the deformation resistance is reduced, the ductility is improved, and the cold workability is improved.
  • additional costs are incurred and manufacturing efficiency is lowered, development of an unstructured wire rod that can secure excellent cold workability without additional heat treatment is required.
  • the cold workability is inferior due to the matrix strengthening by the pearlite structure when the pearlite fraction exceeds 50%.
  • segregation promoting elements such as Mn and Cr are used together to secure the strength
  • the variation of the structure between the center segregation area and the non-segregation area is increased, and in the case of non-tough steel which secures the strength by drawing, this deviation is greater after the drawing process. It is difficult to secure cold forging.
  • high-strength non-steel more than medium carbon steel, the influence of the center oxide-based nonmetallic inclusions is greatly increased along with the structure imbalance due to the segregation of the center.
  • One of the various objects of the present invention is to provide an unstructured wire rod and a method of manufacturing the same that can secure excellent strength and cold forging without additional heat treatment.
  • one aspect of the present invention in weight%, C: 0.3 ⁇ 0.4%, Si: 0.05 ⁇ 0.3%, Mn: 0.8 ⁇ 1.8%, Cr: 0.5% or less, P: 0.02 % Or less, S: 0.02% or less, sol.Al: 0.01 to 0.05%, N: 0.01% or less and O: 0.0001 to 0.003%, Nb: 0.005 to 0.03% and V: 0.05 to 0.3% Including the above, the balance Fe and inevitable impurities, and contains a ferrite (pearlite) and perlite (pearlite) as a microstructure, the phase fraction of the pearlite satisfies the following relations 1 and 2, the average lamellar of the pearlite The spacing provides an uncoated wire rod that satisfies relations 3 and 4 below.
  • Equation 2 50 ⁇ (15VP 1 + VP 2 ) / 16 ⁇ 70
  • VP 1 and VP 2 are each a pearlite fraction (area%) in the area from the surface of the wire rod to a position 3 / 8D in the diameter (D) direction of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod and the diameter of the wire rod (D )
  • C 0.3 ⁇ 0.4%
  • Si 0.05 ⁇ 0.3%
  • Mn 0.8 ⁇ 1.8%
  • Cr 0.5% or less
  • P 0.02% or less
  • S 0.02 % Or less
  • sol.Al 0.01 to 0.05%
  • O 0.0001 to 0.003% or less
  • N 0.01% or less
  • Nb 0.005 to 0.03%
  • V 0.05 to 0.3%
  • Bloom containing a balance Fe and unavoidable impurities and having a carbon equivalent (Ceq) of 0.6 or more and 0.7 or less is heated to a heating temperature of 1200 to 1300 ° C., maintained at the heating temperature for 240 minutes or more, and then rolled into steel sheets to be billet.
  • the present inventors examined from various angles to provide a wire rod that can secure excellent cold workability while having a predetermined strength and hardness after drawing, and as a result, optimized the alloy composition and manufacturing method in the medium-carbon steel wire rod.
  • the present invention finds that it is possible to provide a high-strength wire which does not deteriorate cold workability even after drawing, by securing a ferrite and pearlite composite structure with a microstructure of the wire rod, by appropriately controlling the pearlite phase fraction and the perlite lamellar spacing for each part of the wire rod. Came to complete.
  • Carbon serves to improve the strength of the wire rod. In order to exhibit such an effect in the present invention, it is preferable that 0.3% or more be included. However, when the content is excessive, the deformation resistance of the steel is rapidly increased, which causes a problem that the cold workability is deteriorated. Therefore, the upper limit of the carbon content is preferably 0.4%.
  • Silicone is a useful element as a deoxidizer. In order to exhibit such an effect in the present invention, it is preferably included 0.05% or more. However, when the content is excessive, the deformation resistance of the steel is rapidly increased by the solid solution strengthening, which causes a problem that the cold workability is deteriorated. Therefore, the upper limit of the silicon content is preferably 0.3%, more preferably 0.25%.
  • Manganese is an element useful as a deoxidizer and a desulfurizer. In order to exhibit such an effect in the present invention, it is preferable to include 0.8% or more, and more preferably 1.0% or more. However, when the content thereof is excessive, the strength of the steel itself is excessively high, so that deformation resistance of the steel is rapidly increased, thereby deteriorating cold workability. Therefore, the upper limit of the manganese content is preferably 1.8%, more preferably 1.6%.
  • Chromium plays a role in promoting ferrite and pearlite transformation during hot rolling.
  • carbides in the steel can be precipitated to reduce the amount of solid solution carbon, thereby contributing to the reduction of the dynamic strain aging due to the solid solution carbon.
  • the content is excessive, the strength of the steel itself is excessively high, the deformation resistance of the steel is rapidly increased, thereby causing a problem that the cold workability is deteriorated. It is preferable that it is 0.5% or less, and, as for the said chromium content, it is more preferable that it is 0.4% or less.
  • Phosphorus is an unavoidable impurity, and is an element which is segregated at grain boundaries to lower the toughness of steel and decreases delayed fracture resistance. Therefore, it is preferable to control the content as low as possible.
  • the phosphorus content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the phosphorus content is controlled to 0.02%.
  • Sulfur is an inevitable impurity, which is segregated at grain boundaries and greatly reduces the ductility of steel and forms an emulsion in the steel, which is a major cause of deterioration in delayed fracture resistance and stress relaxation characteristics. It is preferable.
  • the sulfur content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the sulfur content is controlled to 0.02%.
  • Soluble aluminum is an element that functions as a deoxidizer and is added in an amount of 0.01% or more, preferably 0.015% or more, and more preferably 0.02% or more.
  • the upper limit of the soluble aluminum content is controlled to 0.05%.
  • Nitrogen is inevitably an impurity to be contained. If the content is excessive, the amount of solid solution nitrogen increases, so that deformation resistance of the steel rapidly increases, which causes a problem that the cold workability is deteriorated.
  • the nitrogen content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, it is preferable to manage the upper limit of the nitrogen content at 0.01%, more preferably at 0.008%, and even more preferably at 0.007%.
  • Oxygen is present in the wire rods in the form of nonmetallic inclusions, and typically contains at least 0.0001%.
  • these non-metallic inclusions are the starting point of the failure to reduce the fatigue strength and cold forging of the steel, in particular, when the strength is secured by fresh processing, such as non-steel, fracture occurs based on the non-metallic inclusions in the center of the wire rod easy.
  • the amount of non-metallic inclusions increases in wire rods having an oxygen content of more than 0.003% in steel, and it is not sufficient to avoid disconnection in the workpiece used for strict applications. Therefore, in the present invention, the upper limit is controlled to 0.003%, more preferably 0.001%, even more preferably 0.0008%.
  • Niobium forms carbonitrides and adds 0.005% or more as an element that serves to limit grain boundary migration of austenite and ferrite.
  • the carbonitride acts as a starting point of destruction and can lower impact toughness, in particular, low temperature impact toughness, it is preferable to add the carbonitride in keeping with the solubility limit.
  • the content is preferably limited to 0.03% or less.
  • vanadium like niobium, forms carbonitrides and adds 0.05% or more as an element that serves to limit grain boundary movement of austenite and ferrite.
  • the carbonitride acts as a starting point of destruction and may lower impact toughness, in particular, low temperature impact toughness, it is preferable to keep the solubility limit. Therefore, the content is preferably limited to 0.3% or less.
  • the remainder of the alloy composition is iron (Fe).
  • the crude wire rod of the present invention may contain other impurities that may be included in the industrial production of steels in general. These impurities are known to those of ordinary skill in the art to which the present invention belongs, so the present invention does not particularly limit the type and content thereof.
  • Ti corresponds to a representative impurity that should be suppressed as much as possible in order to obtain the effect of the present invention.
  • Titanium is a carbonitride forming element and forms carbonitrides at temperatures higher than Nb and V. Therefore, although titanium may be included in steel, it may be advantageous to fix C and N. However, Nb and / or V may be precipitated using Ti carbon nitride as a nucleus to deteriorate cold workability by forming a large amount of coarse carbonitride in the matrix. have. Therefore, it is important to manage the upper limit, and in the present invention, it is preferable to manage the upper limit of the content of titanium to 0.005%, more preferably to 0.004%.
  • the carbon equivalent (Ceq) of the crude wire of the present invention may be 0.6 or more and 0.7 or less.
  • the carbon equivalent (Ceq) may be defined by the following formula (1). If the carbon equivalent (Ceq) is less than 0.6 or more than 0.7, it may be difficult to secure the target strength.
  • the crude wire rod of the present invention includes ferrite and pearlite as its microstructure.
  • the phase fraction (vol%) of pearlite satisfies the following relations (1) and (2).
  • Equation 2 50 ⁇ (15VP 1 + VP 2 ) / 16 ⁇ 70
  • VP 1 and VP 2 are each a pearlite fraction (area%) in the area from the surface of the wire rod to a position 3 / 8D in the diameter (D) direction of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod and the diameter of the wire rod (D Means the pearlite fraction (area%) in the area from the 3 / 8D position to the center of the wire rod)
  • the relational equation 1 is a control formula related to the pearlite phase fractions of the wire rods.
  • the segregation promoting elements such as Mn and Cr
  • the variation of the pearlite structure in the central segregation portion and the non-segregation portion is very large.
  • this deviation becomes larger after drawing, resulting in deterioration of cold workability.
  • excellent cold workability is secured by controlling VP 2 / VP 1 to 1.4 or less.
  • VP 2 / VP 1 there may be various ways to control the VP 2 / VP 1 to 1.4 or less, so the independent claims of the present invention do not particularly limit it.
  • VP 2 / VP 1 can be controlled to 1.4 or less as described above by appropriately controlling the bloom heating temperature and the holding time as described below.
  • the relational equation 2 is a control formula related to the average pearlite phase percentage of the wire rod, and if the (15VP 1 + VP 2 ) / 16 value is less than 50 or more than 70, it may be difficult to simultaneously secure the desired cold workability and strength.
  • the average lamellar spacing ( ⁇ m) of pearlite satisfies the following relations 3 and 4.
  • DL 1 and DL 2 are each the average lamellar spacing ( ⁇ m) of pearlite in the region from the surface of the wire rod to the 3 / 8D position in the diameter (D) direction of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod and the diameter of the wire rod.
  • the relational equation 3 is a control formula related to the spacing of pearlite lamellae for each part of the wire rod.
  • the pearlite lamella spacing also has a great influence on physical properties. That is, the finer the lamellar spacing, the higher the strength of the wire rod, and the greater the difference between the lamellar spacing between the central segregation portion and the non-segregation portion, the worse the variation in physical properties.
  • excellent cold workability is secured by controlling DL 1 / DL 2 to 1.4 or less.
  • DL 1 / DL 2 there can be a number of ways to control the DL 1 / DL 2 1.4 or less in the independent claim of the present invention is not particularly limited.
  • DL 1 / DL 2 can be controlled to 1.4 or less as described above by appropriately controlling the wire rolling temperature and the cooling rate as described below.
  • Equation 4 is a control equation relating to the average lamellar spacing of the wire rod, if the (15DL 1 + DL 2 ) / 16 value is less than 0.1 or more than 0.3, it may be difficult to simultaneously secure the desired cold workability and strength.
  • the intensity deviation of the pearlite may satisfy the following relation 5.
  • Equation 5 is a control equation related to the intensity deviation of the pearlite for each part of the wire rod, the present inventors through a number of experiments when the (VP 2 / VP 1 ) ⁇ ( ⁇ (DL 1 / DL 2 )) value is 1.5 or less large fresh processing amount Nevertheless, it was confirmed that molding through cold forging was possible without the occurrence of internal cracking.
  • the average composition of the oxide-based inclusions in the region from the position 3 / 8D in the diameter (D) direction of the wire rod to the center of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod may satisfy the following relations 6 to 8. .
  • Equation 6 30 ⁇ [Al 2 O 3 ] ⁇ 70
  • Equation 8 10 ⁇ CaO + MgO ⁇ 20
  • the reason for controlling the composition of the non-metallic inclusion is to provide a wire having further improved drawing and cold workability when drawing the wire continuously by reducing the hard inclusion (non-viscous inclusion) in the wire to a minimum.
  • the present inventors confirmed that when the content of a specific oxide in the oxide inclusions inevitably mixed among steel materials increases, the inclusions become hard to deteriorate cold workability.
  • Al 2 O 3 is a useful component for making oxide inclusions lower melting point and softer.
  • Al 2 O 3 inevitably exists in steel or slag, but if the Al 2 O 3 amount in the slag is properly managed, the melting point of the inclusions is lowered, which results in elongation and thus becomes fine during the rolling process. It is said to be advantageous for the soundness of the material.
  • the Al 2 O 3 content is set to 30% or more. Preferably it is 35% or more, More preferably, it is 40% or more.
  • the upper limit of 70% is 65%, More preferably, it is 60%.
  • SiO 2 is inevitably present in steel or slag together with Al 2 O 3 described above, and is an important oxide that forms the basis of a polycyclic oxide. If the content is less than 20%, a good combination with other oxides as an inclusion of the poly-based oxide cannot be obtained, and if it exceeds 40%, there is a high possibility that hard inclusions are formed. Therefore, it is preferable to make the lower limit into 20% and an upper limit into 40%.
  • MgO and CaO are components necessary for making the inclusions an optimal composite composition and lowering the melting point. Although both MgO and CaO alone have high melting points, there is an effect of lowering the melting point of the polycyclic oxide. In order to express the effect, it is necessary to contain 10% or more in total. However, if the sum of these contents is excessive, the melting point of inclusions increases, or MgO and CaO crystals are formed, which makes it difficult to refine the hot rolling process, which may be a starting point of breakage or damage. It should be less than%.
  • the average diameter of the oxide-based inclusions may be 8 ⁇ m or less (excluding 0 ⁇ m), and the maximum diameter of the oxide-based inclusions may be 15 ⁇ m or less (excluding 0 ⁇ m).
  • the average diameter and the maximum diameter of the nonmetallic inclusions mean the average or maximum circular diameter of the particles detected by observing the longitudinal cross section of the wire rod, and the maximum diameter of the nonmetallic inclusions is determined as follows. It was. An optical microscope was used to observe 800 fields of view at 400 times, and the maximum diameter of the nonmetallic inclusions in each field of view was arranged on a Gumble probability sheet, and an extreme value equivalent to 50000 mm 2 was calculated to obtain the maximum diameter. It was.
  • the method of controlling the average composition and the diameter of the oxide inclusions as described above may be various, so the present invention is not particularly limited thereto.
  • the average composition and diameter of the oxide-based inclusions formed can be controlled.
  • the crude wire rod of the present invention described above can be produced by various methods, the manufacturing method is not particularly limited. However, it may be prepared by the following method as an embodiment.
  • a bloom satisfying the above component system is heated and then rolled into steel sheets to obtain a billet.
  • the heating temperature of a bloom it is more preferable that it is 1200-1250 degreeC. If the heating temperature of the bloom is less than 1200 ° C, there is a possibility that the hot rolling property may be lowered. Furthermore, since the segregation of the central segregation elements such as C, Mn, and Cr is not sufficiently achieved, the variation of the structure of the segregation and non-segregation parts increases, resulting in cold workability. May cause deterioration. On the other hand, when it exceeds 1300 °C there is a fear that ductility deterioration due to coarsening of austenite.
  • the holding time at the heating temperature may be at least 240 minutes. If the holding time is less than 240 minutes, the homogenization treatment may not be sufficient. On the other hand, the longer the holding time at the heating temperature, the more favorable for homogenization and the lower the segregation.
  • the upper limit of the holding time is not particularly limited.
  • the wire rod is rolled to obtain a crude wire rod.
  • the reheating temperature of a billet it is more preferable that it is 1100-1200 degreeC. If the reheating temperature of the billet is less than 1050 ° C., there is a concern that the heat deformation resistance may increase, leading to a decrease in productivity. On the other hand, if the heating temperature exceeds 1250 ° C., the ferrite grains may be excessively coarse to reduce ductility. There is concern.
  • the holding time at the reheating temperature may be 60 to 240 minutes or more. If the holding time is less than 60 minutes, the homogenization treatment may not be sufficient. On the other hand, the longer the holding time at the reheating temperature is advantageous for the homogenization of segregation promoting elements, but the austenite structure may grow excessively and the ductility may be reduced, so the upper limit of the holding time may be limited to 240 minutes.
  • the finish rolling temperature may be 750 ⁇ 900 °C, preferably 800 ⁇ 880 °C. If the finish rolling temperature is less than 750 °C, there is a fear that the deformation resistance increases due to the increase in strength due to the refinement of ferrite grains, on the other hand, if it exceeds 900 °C ferrite grains are too coarse to deteriorate the ductility, the lamellar spacing of pearlite There is a fear that the fineness is reduced and the cold workability is deteriorated.
  • the uncoated wire rod is wound up and then cooled.
  • the winding temperature of the non-coarse wire may be 750 ⁇ 900, more preferably 800 ⁇ 850. If the coiling temperature is less than 750, the martensite generated during the cooling may not be recovered by reheating, and some martensite is formed to form a hard and soft steel, which may reduce cold workability. On the other hand, when the coiling temperature exceeds 900, a thick scale is formed on the surface thereof, and troubles are easily generated during descaling, and cooling time is prolonged, which may lower productivity.
  • the cooling rate of the non-coated wire rod may be 0.3 ⁇ 1 / sec, preferably 0.3 ⁇ 0.8 / sec or less. This is to stably form a ferrite and pearlite composite structure. If the cooling rate is less than 0.3 / sec, the lamellar spacing of the pearlite tissue may be widened, leading to a lack of ductility, and if it exceeds 1 / sec, the ferrite fraction is reduced. In addition, there is a fear that the pearlite lamellar spacing becomes fine and the cold forging property deteriorates.
  • a bloom having an alloy composition as shown in Table 1 was heated at 1250 ° C. for 5 hours, and then rolled into steel sheets under a finish rolling temperature condition of 1150 ° C. to obtain a billet. Thereafter, the billet was heated at 1200 ° C. for 3 hours, and then hot-rolled to ⁇ 25 mm to prepare a wire. At this time, the finish rolling temperature was set at 850 ° C., and the rolling ratio was constant at 80%. Then, after winding up at a temperature of 800 °C, it was cooled at a rate of 0.5 °C / sec.
  • steel wires were prepared by applying the amount of wire drawing of 10%, 15%, and 20% to each wire, respectively, and the cold workability of the manufactured steel wire was evaluated and shown in Table 4 below.
  • the specific evaluation method is as above-mentioned.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

Disclosed is a non-heat treated wire rod, comprising, as percentage by weight: C: 0.3-0.4%; Si: 0.05-0.3%; Mn: 0.8-1.8%; Cr: 0.5% or less; P: 0.02% or less; S: 0.02% or less; sol.Al: 0.01-0.05%; N: 0.01% or less; O: 0.0001-0.003%; at least one of Nb: 0.005-0.03% and V: 0.05-0.3%; and the balance being Fe and unavoidable impurities, wherein the non-heat treated wire rod includes ferrite and pearlite microstructures, and wherein the phase fraction of the pearlite satisfies the following relational expressions 1 and 2, and the average lamellar spacing of the pearlite satisfies the following relational expressions 3 and 4. [Relational expression 1] VP2/VP1 ≤ 1.4 [Relational expression 2] 50 ≤ (15VP1+VP2)/16 ≤ 70 [Relational expression 3] DL1/DL2 ≤ 1.4 [Relational expression 4] 0.1 ≤ (15DL1+DL2)/16 ≤ 0.3 (Wherein VP1 and VP2, respectively, mean, in the cross-section perpendicular to the longitudinal direction of the wire rod, a pearlite fraction (area%) in the region from the surface of the wire rod to the 3/8D position in the diameter (D) direction of the wire rod, and a pearlite fraction (area%) in the region from the 3/8D position in the direction of the diameter (D) of the wire rod to the center of the wire rod, and DL1 and DL2, respectively, mean, in the cross-section perpendicular to the longitudinal direction of the wire rod, the average lamellar spacing (μm) of pearlite in the region from the surface of the wire rod to the 3/8D position in the diameter (D) direction of the wire rod, and the average lamellar spacing (μm) of pearlite in the region from the 3/8D position in the direction of the diameter (D) of the wire rod to the center of the wire rod.)

Description

강도 및 냉간가공성이 우수한 비조질 선재 및 그 제조방법Unstructured wire rod with excellent strength and cold workability and its manufacturing method
본 발명은 강도 및 냉간가공성이 우수한 비조질 선재 및 그 제조방법에 관한 것으로, 보다 상세하게는, 기계 부품용 소재로서 사용하기에 적합한 강도 및 냉간가공성이 우수한 비조질 선재 및 그 제조방법에 관한 것이다.The present invention relates to a non-coarse wire rod having excellent strength and cold workability and a method for manufacturing the same, and more particularly, to a non-coarse wire rod having excellent strength and cold workability suitable for use as a material for mechanical parts, and a manufacturing method thereof. .
냉간 가공 방법은 열간 가공 방법이나 기계 절삭 가공 방법과 비교할 때, 생산성이 우수할 뿐만 아니라, 열처리 비용 절감의 효과가 크기 때문에, 볼트, 너트 등의 기계 부품 제조에 널리 사용되고 있다.The cold working method is widely used in the manufacture of machine parts such as bolts and nuts because not only the productivity is excellent but also the effect of reducing the heat treatment cost is large compared with the hot working method and the mechanical cutting method.
다만, 상기와 같이 냉간 가공 방법을 이용하여 기계 부품을 제조하기 위해서는 본질적으로 강재의 냉간 가공성이 우수할 것이 요구되며, 보다 구체적으로는 냉간 가공시 변형 저항이 낮으며, 연성이 우수할 것이 요구된다. 왜냐하면 강의 변형 저항이 높을 경우 냉간 가공시 사용하는 공구의 수명이 저하되며, 강의 연성이 낮을 경우 냉간 가공시 분열이 발생하기 쉬워 불량품 발생의 원인이 되기 때문이다.However, in order to manufacture mechanical parts using the cold working method as described above, the cold workability of steel is essentially required to be excellent, and more specifically, the cold deformation is required to have low deformation resistance and excellent ductility. . This is because, if the deformation resistance of the steel is high, the life of the tool used in cold work is reduced, and if the ductility of the steel is low, breakage is likely to occur during cold work, which causes defects.
이에 따라, 통상적인 냉간 가공용 강재는 냉간 가공 전 구상화 소둔 열처리를 거치게 된다. 구상화 소둔 열처리시 강재가 연화되어 변형 저항이 감소하고, 연성이 향상되어 냉간 가공성이 향상되기 때문이다. 그런데, 이 경우 추가 비용이 발생하고, 제조 효율이 저하되기 때문에, 추가 열처리 없이도 우수한 냉간 가공성을 확보할 수 있는 비조질 선재의 개발이 요구되고 있다.Accordingly, the conventional cold working steel is subjected to spheroidizing annealing heat treatment before cold working. This is because the steel material is softened during the spheroidizing annealing heat treatment, so that the deformation resistance is reduced, the ductility is improved, and the cold workability is improved. However, in this case, since additional costs are incurred and manufacturing efficiency is lowered, development of an unstructured wire rod that can secure excellent cold workability without additional heat treatment is required.
하지만, 통상적으로 0.3중량% 이상의 탄소를 함유하는 중탄소강에서는 펄라이트 분율이 50%를 초과하는 경우에 펄라이트 조직에 의한 매트릭스(Matrix) 강화에 의해 냉간가공성이 열위해지는 것으로 알려져 있다. 특히, 강도 확보를 위하여 Mn, Cr 등 편석 조장 원소를 함께 사용할 경우 중심부 편석 부위와 비편석 부위의 조직 편차가 커지고, 신선가공으로 강도를 확보하는 비조질강의 경우에는 신선 가공 후 이러한 편차는 더욱 커지게 되어 냉간단조성 확보가 어렵다. 중탄소강 이상의 고강도 비조질강에서는 중심부 편석에 의한 조직 불균형과 더불어 중심부 산화물계 비금속 개재물의 영향도 매우 커지게 된다.However, in the medium carbon steel containing 0.3 wt% or more of carbon, it is known that the cold workability is inferior due to the matrix strengthening by the pearlite structure when the pearlite fraction exceeds 50%. In particular, when segregation promoting elements such as Mn and Cr are used together to secure the strength, the variation of the structure between the center segregation area and the non-segregation area is increased, and in the case of non-tough steel which secures the strength by drawing, this deviation is greater after the drawing process. It is difficult to secure cold forging. In high-strength non-steel, more than medium carbon steel, the influence of the center oxide-based nonmetallic inclusions is greatly increased along with the structure imbalance due to the segregation of the center.
더욱이, 중심 편석에 의해 매트릭스(Matrix) 강화가 될 경우에 이러한 비금속 개재물의 민감도는 더욱 커지게 되어 냉간가공성에 악영향을 미칠 수가 있다. 따라서, 중탄소강 이상의 고강도 비조질강 개발에 있어서는 이러한 중심부 편석에 의한 조직편차와 중심부 개재물의 영향에 대한 검토가 이루어져야만 한다.Moreover, when the matrix is strengthened by central segregation, the sensitivity of these nonmetallic inclusions becomes greater, which may adversely affect cold workability. Therefore, in the development of high strength non-coated steel of medium carbon steel or higher, it is necessary to examine the influence of the structure deviation and the center inclusions caused by such segregation.
본 발명의 여러 목적 중 하나는, 추가 열처리 없이도 우수한 강도 및 냉간단조성을 확보할 수 있는 비조질 선재와 이를 제조하는 방법을 제공하는 것이다.One of the various objects of the present invention is to provide an unstructured wire rod and a method of manufacturing the same that can secure excellent strength and cold forging without additional heat treatment.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, 중량%로, C: 0.3~0.4%, Si: 0.05~0.3%, Mn: 0.8~1.8%, Cr: 0.5% 이하, P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, N: 0.01% 이하 및 O: 0.0001~0.003%를 포함하고, Nb: 0.005~0.03% 및 V: 0.05~0.3% 중 1종 이상을 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하며, 미세조직으로 페라이트(ferrite) 및 펄라이트(pearlite)를 포함하고, 상기 펄라이트의 상분율은 하기 관계식 1 및 2를 만족하고, 상기 펄라이트의 평균 라멜라 간격은 하기 관계식 3 및 4를 만족하는 비조질 선재를 제공한다.In order to achieve the above object, one aspect of the present invention, in weight%, C: 0.3 ~ 0.4%, Si: 0.05 ~ 0.3%, Mn: 0.8 ~ 1.8%, Cr: 0.5% or less, P: 0.02 % Or less, S: 0.02% or less, sol.Al: 0.01 to 0.05%, N: 0.01% or less and O: 0.0001 to 0.003%, Nb: 0.005 to 0.03% and V: 0.05 to 0.3% Including the above, the balance Fe and inevitable impurities, and contains a ferrite (pearlite) and perlite (pearlite) as a microstructure, the phase fraction of the pearlite satisfies the following relations 1 and 2, the average lamellar of the pearlite The spacing provides an uncoated wire rod that satisfies relations 3 and 4 below.
[관계식 1] VP2/VP1≤1.4Relation 1 VP 2 / VP 1 ≤ 1.4
[관계식 2] 50≤(15VP1+VP2)/16≤70Equation 2 50≤ (15VP 1 + VP 2 ) / 16≤70
[관계식 3] DL1/DL2≤1.4[Relationship 3] DL 1 / DL 2 ≤1.4
[관계식 4] 0.1≤(15DL1+DL2)/16≤0.3Relational Expression 4 0.1 ≦ (15DL 1 + DL 2 ) /16≦0.3
(여기서, VP1 및 VP2 각각은 선재의 길이 방향에 수직한 단면에서 선재의 표면으로부터 선재의 직경(D) 방향 3/8D 위치까지 영역에서의 펄라이트 분율(면적%) 및 선재의 직경(D) 방향 3/8D 위치로부터 선재의 중심까지의 영역에서의 펄라이트 분율(면적%)을 의미하며, DL1 및 DL2 각각은 선재의 길이 방향에 수직한 단면에서 선재의 표면으로부터 선재의 직경(D) 방향 3/8D 위치까지 영역에서의 펄라이트의 평균 라멜라 간격(μm) 및 선재의 직경(D) 방향 3/8D 위치로부터 선재의 중심까지의 영역에서의 펄라이트의 평균 라멜라 간격(μm)을 의미함)(Where VP 1 and VP 2 are each a pearlite fraction (area%) in the area from the surface of the wire rod to a position 3 / 8D in the diameter (D) direction of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod and the diameter of the wire rod (D ) Means the pearlite fraction (area%) in the area from the 3 / 8D position to the center of the wire rod, and each of DL 1 and DL 2 is the diameter of the wire rod (D) in the cross section perpendicular to the longitudinal direction of the wire rod. Mean lamellar spacing (μm) of pearlite in the area up to 3 / 8D) direction, and the average lamellar spacing (μm) of pearlite in the area from the 3 / 8D position in the direction of diameter (D) to the center of the wire. )
또한, 본 발명의 다른 일 측면은, 중량%로, C: 0.3~0.4%, Si: 0.05~0.3%, Mn: 0.8~1.8%, Cr: 0.5% 이하, P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, O: 0.0001~0.003% 이하 및 N: 0.01% 이하를 포함하고, Nb: 0.005~0.03% 및 V: 0.05~0.3% 중 1종 이상을 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하며, 탄소당량(Ceq)이 0.6 이상 0.7 이하인 블룸(bloom)을 1200~1300℃의 가열 온도로 가열하고, 상기 가열 온도에서 240분 이상 유지한 후, 강편 압연하여 빌렛(billet)을 얻는 단계, 상기 빌렛을 재가열 후, 마무리 압연온도 750~900℃의 조건 하 선재 압연하여 선재를 얻는 단계, 및 상기 선재를 권취 후, 0.3~1℃/sec 의 속도로 냉각하는 단계를 포함하는 비조질 선재의 제조방법을 제공한다.In addition, another aspect of the present invention, in weight%, C: 0.3 ~ 0.4%, Si: 0.05 ~ 0.3%, Mn: 0.8 ~ 1.8%, Cr: 0.5% or less, P: 0.02% or less, S: 0.02 % Or less, sol.Al: 0.01 to 0.05%, O: 0.0001 to 0.003% or less and N: 0.01% or less, and Nb: 0.005 to 0.03% and V: 0.05 to 0.3% Bloom containing a balance Fe and unavoidable impurities and having a carbon equivalent (Ceq) of 0.6 or more and 0.7 or less is heated to a heating temperature of 1200 to 1300 ° C., maintained at the heating temperature for 240 minutes or more, and then rolled into steel sheets to be billet. Obtaining a billet, After reheating the billet, Rolling the wire rod under the condition of the finish rolling temperature 750 ~ 900 ℃ to obtain a wire rod, and Winding the wire rod, and cooling at a rate of 0.3 ~ 1 ℃ / sec It provides a method of manufacturing non-structured wire comprising a.
본 발명에 따르면, 구상화 소둔 열처리를 생략하더라도 냉간 가공시 변형 저항을 충분히 억제할 수 있는 고강도 비조질 선재를 제공할 수 있다.According to the present invention, even if the spheroidized annealing heat treatment is omitted, it is possible to provide a high strength non-coarse wire rod which can sufficiently suppress the deformation resistance during cold working.
본 발명자들은 신선가공 후 소정의 강도 및 경도를 가지면서도 우수한 냉간가공성을 확보할 수 있는 선재를 제공하기 위하여 다양한 각도에서 검토하였으며, 그 결과, 중탄소강 선재에 있어 합금조성과 제조방법을 최적화하여 선재의 미세조직으로 페라이트 및 펄라이트 복합 조직을 확보하되, 선재의 부위별 펄라이트 상분율 및 펄라이트 라멜라 간격 등을 적절히 제어함으로써 신선가공 후에도 냉간가공성이 열화되지 않는 고강도 선재를 제공할 수 있음을 알아내고 본 발명을 완성하기에 이르렀다.The present inventors examined from various angles to provide a wire rod that can secure excellent cold workability while having a predetermined strength and hardness after drawing, and as a result, optimized the alloy composition and manufacturing method in the medium-carbon steel wire rod The present invention finds that it is possible to provide a high-strength wire which does not deteriorate cold workability even after drawing, by securing a ferrite and pearlite composite structure with a microstructure of the wire rod, by appropriately controlling the pearlite phase fraction and the perlite lamellar spacing for each part of the wire rod. Came to complete.
이하, 본 발명의 일 측면인 강도 및 냉간가공성이 우수한 비조질 선재에 대하여 상세히 설명한다. Hereinafter, a non-coarse wire rod having excellent strength and cold workability, which is an aspect of the present invention, will be described in detail.
먼저, 비조질 선재의 합금 성분 및 조성 범위에 대하여 상세히 설명한다. 후술하는 각 성분의 함량은 특별히 언급하지 않는 한 모두 중량 기준임을 미리 밝혀둔다.First, the alloy component and the composition range of the non-coarse wire rod will be described in detail. It is noted that the content of each component described below is based on weight unless otherwise specified.
C: 0.3~0.4%C: 0.3 ~ 0.4%
탄소는 선재의 강도를 향상시키는 역할을 한다. 본 발명에서 이러한 효과를 나타내기 위해서는 0.3% 이상 포함되는 것이 바람직하다. 다만, 그 함량이 과다할 경우, 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 따라서, 상기 탄소 함량의 상한은 0.4%인 것이 바람직하다.Carbon serves to improve the strength of the wire rod. In order to exhibit such an effect in the present invention, it is preferable that 0.3% or more be included. However, when the content is excessive, the deformation resistance of the steel is rapidly increased, which causes a problem that the cold workability is deteriorated. Therefore, the upper limit of the carbon content is preferably 0.4%.
Si: 0.05~0.3%Si: 0.05-0.3%
실리콘은 탈산제로서 유용한 원소이다. 본 발명에서 이러한 효과를 나타내기 위해서는 0.05% 이상 포함되는 것이 바람직하다. 다만, 그 함량이 과다할 경우, 고용강화에 의해 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 따라서, 상기 실리콘 함량의 상한은 0.3%인 것이 바람직하고, 0.25%인 것이 보다 더 바람직하다.Silicone is a useful element as a deoxidizer. In order to exhibit such an effect in the present invention, it is preferably included 0.05% or more. However, when the content is excessive, the deformation resistance of the steel is rapidly increased by the solid solution strengthening, which causes a problem that the cold workability is deteriorated. Therefore, the upper limit of the silicon content is preferably 0.3%, more preferably 0.25%.
Mn: 0.8~1.8%Mn: 0.8-1.8%
망간은 탈산제 및 탈황제로서 유용한 원소이다. 본 발명에서 이러한 효과를 나타내기 위해서는 0.8% 이상 포함되는 것이 바람직하고, 1.0% 이상 포함되는 것이 보다 바람직하다. 다만, 그 함량이 과다할 경우, 강 자체의 강도가 지나치게 높아져 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 따라서, 상기 망간 함량의 상한은 1.8%인 것이 바람직하고, 1.6%인 것이 보다 바람직하다.Manganese is an element useful as a deoxidizer and a desulfurizer. In order to exhibit such an effect in the present invention, it is preferable to include 0.8% or more, and more preferably 1.0% or more. However, when the content thereof is excessive, the strength of the steel itself is excessively high, so that deformation resistance of the steel is rapidly increased, thereby deteriorating cold workability. Therefore, the upper limit of the manganese content is preferably 1.8%, more preferably 1.6%.
Cr: 0.5% 이하(0% 포함)Cr: 0.5% or less (including 0%)
크롬은 열간압연시 페라이트 및 펄라이트 변태를 촉진시키는 역할을 한다. 또한, 강 자체의 강도를 필요 이상으로 높이지 않으면서도, 강 중 탄화물을 석출시켜 고용 탄소량을 저감시켜, 고용 탄소에 의한 동적 변형 시효의 감소에 기여하나, 크롬을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, 그 함량이 과다할 경우, 강 자체의 강도가 지나치게 높아져 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 상기 크롬 함량은 0.5% 이하인 것이 바람직하고, 0.4% 이하인 것이 보다 바람직하다.Chromium plays a role in promoting ferrite and pearlite transformation during hot rolling. In addition, while increasing the strength of the steel itself more than necessary, carbides in the steel can be precipitated to reduce the amount of solid solution carbon, thereby contributing to the reduction of the dynamic strain aging due to the solid solution carbon. There is no big obstacle. On the other hand, if the content is excessive, the strength of the steel itself is excessively high, the deformation resistance of the steel is rapidly increased, thereby causing a problem that the cold workability is deteriorated. It is preferable that it is 0.5% or less, and, as for the said chromium content, it is more preferable that it is 0.4% or less.
P: 0.02% 이하P: 0.02% or less
인은 불가피하게 함유되는 불순물로써, 결정립계에 편석되어 강의 인성을 저하시키고, 지연 파괴 저항성을 감소시키는데 주요 원인이 되는 원소이므로, 그 함량을 가능한 한 낮게 제어하는 것이 바람직하다. 이론상 인의 함량은 0%로 제어하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 인의 함량의 상한을 0.02%로 관리한다.Phosphorus is an unavoidable impurity, and is an element which is segregated at grain boundaries to lower the toughness of steel and decreases delayed fracture resistance. Therefore, it is preferable to control the content as low as possible. In theory, the phosphorus content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the phosphorus content is controlled to 0.02%.
S: 0.02% 이하S: 0.02% or less
황은 불가피하게 함유되는 불순물로써, 결정립계에 편석되어 강의 연성을 크게 저하시키고, 강 중 유화물을 형성하여 지연 파괴 저항성 및 응력 이완 특성을 열화시키는데 주요 원인이 되는 원소이므로, 그 함량을 가능한 한 낮게 제어하는 것이 바람직하다. 이론상 황의 함량은 0%로 제어하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 황의 함량의 상한을 0.02%로 관리한다.Sulfur is an inevitable impurity, which is segregated at grain boundaries and greatly reduces the ductility of steel and forms an emulsion in the steel, which is a major cause of deterioration in delayed fracture resistance and stress relaxation characteristics. It is preferable. In theory, the sulfur content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the sulfur content is controlled to 0.02%.
sol.Al: 0.01~0.05%sol.Al: 0.01 ~ 0.05%
가용 알루미늄은 탈산제로서 유용하게 작용하는 원소로써, 0.01% 이상 첨가하고, 바람직하게는 0.015% 이상 첨가하며, 보다 바람직하게는 0.02% 이상 첨가한다. 다만, 그 함량이 0.05%를 초과할 경우 AlN형성에 의한 오스테나이트 입도 미세화 효과가 커지게 되어 냉간가공성이 저하된다. 따라서 본 발명에서는 상기 가용 알루미늄 함량의 상한을 0.05%로 관리한다.Soluble aluminum is an element that functions as a deoxidizer and is added in an amount of 0.01% or more, preferably 0.015% or more, and more preferably 0.02% or more. However, when the content is more than 0.05%, the austenite grain size miniaturization effect due to AlN formation becomes large and the cold workability is lowered. Therefore, in the present invention, the upper limit of the soluble aluminum content is controlled to 0.05%.
N: 0.01% 이하N: 0.01% or less
질소는 불가피하게 함유되는 불순물로써, 그 함량이 과다할 경우, 고용 질소량이 증가하여 강의 변형 저항이 급증하며, 이로 인해 냉간가공성이 열화되는 문제가 있다. 이론상 질소의 함량은 0%로 제어하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 질소의 함량의 상한을 0.01%로 관리하는 것이 바람직하고, 0.008%로 관리하는 것이 보다 바람직하며, 0.007%로 관리하는 것이 보다 더 바람직하다.Nitrogen is inevitably an impurity to be contained. If the content is excessive, the amount of solid solution nitrogen increases, so that deformation resistance of the steel rapidly increases, which causes a problem that the cold workability is deteriorated. In theory, the nitrogen content is advantageously controlled to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, it is preferable to manage the upper limit of the nitrogen content at 0.01%, more preferably at 0.008%, and even more preferably at 0.007%.
O: 0.0001~0.003%O: 0.0001 to 0.003%
산소는 비금속 개재물의 형태로 선재 내 존재하며, 통상 0.0001% 이상 함유된다. 그런데, 이러한 비금속 개재물은 파괴의 기점이 되어 강의 피로강도 및 냉간단조성을 저하시키며, 특히, 비조질강과 같이 신선가공에 의해 강도를 확보하는 경우, 선재의 중심부에서 비금속 개재물을 기점으로 한 파괴가 일어나기 쉽다. 특히, 본 발명자들의 연구 결과에 따르면, 강 중 산소 함량이 0.003%를 초과하는 선재에서는 비금속 개재물의 양이 많아져 엄격한 용도에 사용되는 가공재에서는 단선 회피가 충분치 않다. 따라서, 본 발명에서는 그 상한을 0.003%로, 보다 바람직하게는 0.001%로, 보다 더 바람직하게는 0.0008%로 관리한다.Oxygen is present in the wire rods in the form of nonmetallic inclusions, and typically contains at least 0.0001%. However, these non-metallic inclusions are the starting point of the failure to reduce the fatigue strength and cold forging of the steel, in particular, when the strength is secured by fresh processing, such as non-steel, fracture occurs based on the non-metallic inclusions in the center of the wire rod easy. In particular, according to the results of the inventors of the present invention, the amount of non-metallic inclusions increases in wire rods having an oxygen content of more than 0.003% in steel, and it is not sufficient to avoid disconnection in the workpiece used for strict applications. Therefore, in the present invention, the upper limit is controlled to 0.003%, more preferably 0.001%, even more preferably 0.0008%.
Nb: 0.005~0.03% 및 V: 0.05~0.3% 중 1종 이상At least one of Nb: 0.005 to 0.03% and V: 0.05 to 0.3%
니오븀은 탄질화물을 형성하여 오스테나이트 및 페라이트의 입계 이동을 제한하는 역할을 하는 원소로서 0.005% 이상 첨가한다. 하지만, 상기 탄질화물은 파괴 기점으로 작용하여 충격인성 특히, 저온 충격인성을 저하시킬 수 있으므로 역시 용해도 한계를 지켜 첨가하는 것이 바람직하다. 더욱이, 그 함량이 과다할 경우, 고용한계를 넘게 되어 조대한 석출물을 형성하는 문제가 있다. 따라서, 그 함량은 0.03% 이하로 제한하는 것이 바람직하다.Niobium forms carbonitrides and adds 0.005% or more as an element that serves to limit grain boundary migration of austenite and ferrite. However, since the carbonitride acts as a starting point of destruction and can lower impact toughness, in particular, low temperature impact toughness, it is preferable to add the carbonitride in keeping with the solubility limit. Moreover, when the content is excessive, there is a problem of exceeding the solid solution limit to form coarse precipitates. Therefore, the content is preferably limited to 0.03% or less.
한편, 바나듐은 니오븀과 마찬가지로 탄질화물을 형성하여 오스테나이트 및 페라이트의 입계 이동을 제한하는 역할을 하는 원소로서 0.05% 이상 첨가한다. 다만, 상기 탄질화물은 파괴 기점으로 작용하여 충격인성 특히, 저온 충격인성을 저하시킬 수 있으므로, 용해도 한계(solubility limit)를 지켜 첨가하는 것이 바람직하다. 따라서, 그 함량은 0.3% 이하로 제한하는 것이 바람직하다.On the other hand, vanadium, like niobium, forms carbonitrides and adds 0.05% or more as an element that serves to limit grain boundary movement of austenite and ferrite. However, since the carbonitride acts as a starting point of destruction and may lower impact toughness, in particular, low temperature impact toughness, it is preferable to keep the solubility limit. Therefore, the content is preferably limited to 0.3% or less.
상기 합금조성 외 잔부는 철(Fe)이다. 뿐만 아니라, 본 발명의 비조질 선재는 통상 강의 공업적 생산 과정에서 포함될 수 있는 기타의 불순물을 포함할 수 있다. 이러한 불순물들은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 알 수 있는 내용이므로 본 발명에서 특별히 그 종류와 함량을 제한하지는 않는다.The remainder of the alloy composition is iron (Fe). In addition, the crude wire rod of the present invention may contain other impurities that may be included in the industrial production of steels in general. These impurities are known to those of ordinary skill in the art to which the present invention belongs, so the present invention does not particularly limit the type and content thereof.
다만, Ti는 본 발명의 효과를 얻기위해 그 함량을 최대한 억제하여야 하는 대표적인 불순물에 해당하기 때문에, 이에 대하여 간략히 설명하면 다음과 같다.However, Ti corresponds to a representative impurity that should be suppressed as much as possible in order to obtain the effect of the present invention.
Ti: 0.005% 이하Ti: 0.005% or less
타이타늄은 탄질화물 형성원소로써, Nb 및 V보다 높은 온도에서 탄질화물을 형성한다. 따라서, 강 중 타이타늄이 포함될 경우 비록 C 및 N의 고정에는 유리할 수 있으나, Ti 탄질화물을 핵으로 하여 Nb 및/또는 V가 석출되어 기지 내에 조대한 탄질화물이 다량 형성됨으로써 냉간 가공성이 열화될 수 있다. 따라서, 그 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 타이타늄의 함량의 상한을 0.005%로 관리하는 것이 바람직하고, 0.004%로 관리하는 것이 보다 바람직하다.Titanium is a carbonitride forming element and forms carbonitrides at temperatures higher than Nb and V. Therefore, although titanium may be included in steel, it may be advantageous to fix C and N. However, Nb and / or V may be precipitated using Ti carbon nitride as a nucleus to deteriorate cold workability by forming a large amount of coarse carbonitride in the matrix. have. Therefore, it is important to manage the upper limit, and in the present invention, it is preferable to manage the upper limit of the content of titanium to 0.005%, more preferably to 0.004%.
일 예에 따르면, 본 발명의 비조질 선재의 탄소당량(Ceq)는 0.6 이상 0.7 이하일 수 있다. 여기서, 탄소당량(Ceq)은 하기 식 1에 의해 정의될 수 있다. 만약, 탄소당량(Ceq)이 0.6 미만이거나 0.7을 초과하는 경우 목표 강도 확보가 어려울 수 있다.According to one embodiment, the carbon equivalent (Ceq) of the crude wire of the present invention may be 0.6 or more and 0.7 or less. Here, the carbon equivalent (Ceq) may be defined by the following formula (1). If the carbon equivalent (Ceq) is less than 0.6 or more than 0.7, it may be difficult to secure the target strength.
[식 1][Equation 1]
Ceq = [C] + [Si]/9 + [Mn]/5 + [Cr]/12Ceq = [C] + [Si] / 9 + [Mn] / 5 + [Cr] / 12
(여기서, [C], [Si], [Mn] 및 [Cr] 각각은 해당 원소의 함량(%)을 의미함)(Where [C], [Si], [Mn] and [Cr] each represent the content of the element in%)
본 발명의 비조질 선재는 그 미세조직으로 페라이트(ferrite) 및 펄라이트(pearlite)를 포함한다.The crude wire rod of the present invention includes ferrite and pearlite as its microstructure.
본 발명의 비조질 선재는 펄라이트의 상분율(부피%)이 하기 관계식 1 및 2를 만족한다.In the crude wire of the present invention, the phase fraction (vol%) of pearlite satisfies the following relations (1) and (2).
[관계식 1] VP2/VP1≤1.4Relation 1 VP 2 / VP 1 ≤ 1.4
[관계식 2] 50≤(15VP1+VP2)/16≤70Equation 2 50≤ (15VP 1 + VP 2 ) / 16≤70
(여기서, VP1 및 VP2 각각은 선재의 길이 방향에 수직한 단면에서 선재의 표면으로부터 선재의 직경(D) 방향 3/8D 위치까지 영역에서의 펄라이트 분율(면적%) 및 선재의 직경(D) 방향 3/8D 위치로부터 선재의 중심까지의 영역에서의 펄라이트 분율(면적%)을 의미함)(Where VP 1 and VP 2 are each a pearlite fraction (area%) in the area from the surface of the wire rod to a position 3 / 8D in the diameter (D) direction of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod and the diameter of the wire rod (D Means the pearlite fraction (area%) in the area from the 3 / 8D position to the center of the wire rod)
상기 관계식 1은 선재의 부위별 펄라이트 상분율 관련 제어식으로써, 일반적으로 본 발명과 같은 중탄소강에서 Mn 및 Cr 등 편석 조장 원소를 적극적으로 활용할 경우 중심 편석부와 비편석부의 펄라이트 조직의 편차가 매우 커지게 되며, 신선가공으로 강도를 확보하는 비조질강의 경우 신선 가공 후 이러한 편차가 더욱 커져, 결과적으로 냉간가공성이 열화되는 결과를 가져오게 된다. 본 발명에서는 VP2/VP1을 1.4 이하로 제어함으로써 우수한 냉간가공성을 확보한다. The relational equation 1 is a control formula related to the pearlite phase fractions of the wire rods. In general, when the segregation promoting elements such as Mn and Cr are actively used in the medium carbon steel of the present invention, the variation of the pearlite structure in the central segregation portion and the non-segregation portion is very large. In the case of non-coated steel which secures strength by drawing, this deviation becomes larger after drawing, resulting in deterioration of cold workability. In the present invention, excellent cold workability is secured by controlling VP 2 / VP 1 to 1.4 or less.
한편, 상기와 같이 VP2/VP1을 1.4 이하로 제어하는 방법은 여러가지가 있을 수 있으므로 본 발명의 독립 청구항에서는 이를 특별히 제한하지 않는다. 다만, 한가지 예를 든다면, 후술하는 바와 같이 블룸 가열온도 및 유지 시간을 적절히 제어함으로써 상기와 같이 VP2/VP1를 1.4 이하로 제어할 수 있다.On the other hand, as described above, there may be various ways to control the VP 2 / VP 1 to 1.4 or less, so the independent claims of the present invention do not particularly limit it. However, as an example, VP 2 / VP 1 can be controlled to 1.4 or less as described above by appropriately controlling the bloom heating temperature and the holding time as described below.
상기 관계식 2는 선재의 평균 펄라이트 상분율 관련 제어식으로써, 만약, (15VP1+VP2)/16 값이 50 미만이거나 70을 초과하는 경우, 목적하는 냉간가공성 및 강도의 동시 확보가 어려울 수 있다.The relational equation 2 is a control formula related to the average pearlite phase percentage of the wire rod, and if the (15VP 1 + VP 2 ) / 16 value is less than 50 or more than 70, it may be difficult to simultaneously secure the desired cold workability and strength.
또한, 본 발명의 비조질 선재는 펄라이트의 평균 라멜라 간격(μm)이 하기 관계식 3 및 4를 만족한다.In addition, in the non-coarse wire rod of the present invention, the average lamellar spacing (μm) of pearlite satisfies the following relations 3 and 4.
[관계식 3] DL1/DL2≤1.4[Relationship 3] DL 1 / DL 2 ≤1.4
[관계식 4] 0.1≤(15DL1+DL2)/16≤0.3Relational Expression 4 0.1 ≦ (15DL 1 + DL 2 ) /16≦0.3
(여기서, DL1 및 DL2 각각은 선재의 길이 방향에 수직한 단면에서 선재의 표면으로부터 선재의 직경(D) 방향 3/8D 위치까지 영역에서의 펄라이트의 평균 라멜라 간격(μm) 및 선재의 직경(D) 방향 3/8D 위치로부터 선재의 중심까지의 영역에서의 펄라이트의 평균 라멜라 간격(μm)을 의미함)(Wherein DL 1 and DL 2 are each the average lamellar spacing (μm) of pearlite in the region from the surface of the wire rod to the 3 / 8D position in the diameter (D) direction of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod and the diameter of the wire rod. Mean average lamellar spacing (μm) of pearlite in the area from the 3 / 8D position in the direction (D) to the center of the wire rod)
상기 관계식 3은 선재의 부위별 펄라이트 라멜라 간격 관련 제어식으로써, 펄라이트 조직을 적극적으로 활용하는 중탄소강에서는 펄라이트 분율과 더불어 펄라이트 라멜라 간격 또한 물성에 큰 영향을 미치게 된다. 즉, 라멜라 간격이 미세할수록 선재의 강도가 증가하게 되며, 중심 편석부와 비편석부의 라멜라 간격의 차이가 커질수록 물성의 편차가 심해지게 된다. 본 발명에서는 DL1/DL2를 1.4 이하로 제어함으로써 우수한 냉간가공성을 확보한다.The relational equation 3 is a control formula related to the spacing of pearlite lamellae for each part of the wire rod. In the medium carbon steel which actively utilizes the pearlite structure, the pearlite lamella spacing also has a great influence on physical properties. That is, the finer the lamellar spacing, the higher the strength of the wire rod, and the greater the difference between the lamellar spacing between the central segregation portion and the non-segregation portion, the worse the variation in physical properties. In the present invention, excellent cold workability is secured by controlling DL 1 / DL 2 to 1.4 or less.
한편, 상기와 같이 DL1/DL2을 1.4 이하로 제어하는 방법은 여러가지가 있을 수 있으므로 본 발명의 독립 청구항에서는 이를 특별히 제한하지 않는다. 다만, 한가지 예를 든다면, 후술하는 바와 같이 선재 압연 온도 및 냉각 속도를 적절히 제어함으로써 상기와 같이 DL1/DL2을 1.4 이하로 제어할 수 있다. On the other hand, as described above there can be a number of ways to control the DL 1 / DL 2 1.4 or less in the independent claim of the present invention is not particularly limited. However, as an example, DL 1 / DL 2 can be controlled to 1.4 or less as described above by appropriately controlling the wire rolling temperature and the cooling rate as described below.
상기 관계식 4는 선재의 평균 라멜라 간격 관련 제어식으로써, 만약, (15DL1+DL2)/16 값이 0.1 미만이거나 0.3을 초과하는 경우, 목적하는 냉간가공성 및 강도의 동시 확보가 어려울 수 있다.Equation 4 is a control equation relating to the average lamellar spacing of the wire rod, if the (15DL 1 + DL 2 ) / 16 value is less than 0.1 or more than 0.3, it may be difficult to simultaneously secure the desired cold workability and strength.
일 예에 따르면, 상기 펄라이트의 강도 편차는 하기 관계식 5를 만족할 수 있다. According to one example, the intensity deviation of the pearlite may satisfy the following relation 5.
[관계식 5][Relationship 5]
(VP2/VP1)×(√(DL1/DL2))≤1.5(VP 2 / VP 1 ) × (√ (DL 1 / DL 2 )) ≤1.5
전술한 바와 같이, 일반적으로 중탄소 비조질강에 있어서 강도 및 냉간가공성을 확보하기 위해 Mn 및 Cr을 적극적으로 활용할 경우, Mn 및 Cr의 중심부 편석에 의해 선재 C 단면에 걸쳐 물성의 편차가 야기되며, 이는 신선 가공 후에 더욱 커져, 최종 제품 제조를 위한 단조 가공시 내부 크랙 발생 가능성을 현저히 높이게 된다. 상기 관계식 5는 선재의 부위별 펄라이트의 강도 편차 관련 제어식으로써, 본 발명자들은 수많은 실험을 통해 (VP2/VP1)×(√(DL1/DL2)) 값이 1.5 이하일 경우 큰 신선 가공량에도 불구하고, 내부 균열 발생 없이 냉간 단조를 통한 성형이 가능함을 확인하였다.As described above, in general, when Mn and Cr are actively used to secure strength and cold workability in a medium-carbon non-coated steel, variations in physical properties are caused over the wire C cross section due to segregation of the center of Mn and Cr. This is even greater after the draw process, which significantly increases the likelihood of internal cracking during forging for final product manufacture. Equation 5 is a control equation related to the intensity deviation of the pearlite for each part of the wire rod, the present inventors through a number of experiments when the (VP 2 / VP 1 ) × (√ (DL 1 / DL 2 )) value is 1.5 or less large fresh processing amount Nevertheless, it was confirmed that molding through cold forging was possible without the occurrence of internal cracking.
일 예에 따르면, 선재의 길이 방향에 수직한 단면에서 선재의 직경(D) 방향 3/8D 위치로부터 선재의 중심까지의 영역에서의 산화물계 개재물의 평균 조성은 하기 관계식 6 내지 8을 만족할 수 있다.According to one example, the average composition of the oxide-based inclusions in the region from the position 3 / 8D in the diameter (D) direction of the wire rod to the center of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod may satisfy the following relations 6 to 8. .
[관계식 6] 30≤[Al2O3]≤70Equation 6 30≤ [Al 2 O 3 ] ≤70
[관계식 7] 20≤[SiO2]≤40[Expression 7] 20≤ [SiO 2] ≤40
[관계식 8] 10≤[CaO]+[MgO]≤20Equation 8 10≤CaO + MgO≤20
(여기서, [Al2O3], [SiO2], [CaO] 및 [MgO] 각각은 해당 개재물의 함량(중량%)을 의미함)(Wherein [Al 2 O 3 ], [SiO 2 ], [CaO] and [MgO] each represent the content (% by weight) of the inclusions)
여기서, 비금속 개재물의 조성을 제어하는 이유는 선재 내 경질의 개재물(비점성 개재물)을 최소한으로 감소시킴으로써 선재를 연속적으로 강선 인발할 때 한층 향상된 드로잉성과 냉간가공성을 가지는 선재를 제공함에 있다. 특히, 본 발명자들은 강재 중 불가피하게 혼입해 오는 산화물계 개재물 중 특정 산화물의 함유량이 많아지면 개재물이 경질화해 냉간 가공성이 열화됨을 확인하였다. Here, the reason for controlling the composition of the non-metallic inclusion is to provide a wire having further improved drawing and cold workability when drawing the wire continuously by reducing the hard inclusion (non-viscous inclusion) in the wire to a minimum. In particular, the present inventors confirmed that when the content of a specific oxide in the oxide inclusions inevitably mixed among steel materials increases, the inclusions become hard to deteriorate cold workability.
이하에서는 산화물계 개재물을 구성하는 각 산화물의 함유량을 정한 이유 등에 대해 상세히 설명한다. 본 발명에서 목적으로 하는 비점성 개재물 개수의 저감과 연질화를 위해서는 다원계 산화물 조성의 조합이 필요하다. 우선 Al2O3 및 SiO2를 반드시 포함하면서, CaO 또는 MgO 중 하나 이상을 포함하는 3원계 이상의 산화물의 조합이 최적인 것으로 나타났다.Hereinafter, the reason etc. which determined content of each oxide which comprises an oxide type interference | inclusion are explained in full detail. In order to reduce and soften the number of non-viscosity inclusions aimed at by the present invention, a combination of plural oxide compositions is required. First, combinations of ternary or higher oxides comprising at least one of CaO or MgO, including necessarily Al 2 O 3 and SiO 2 , have been found to be optimal.
Al2O3: 30~70%Al 2 O 3 : 30 ~ 70%
Al2O3는 산화물계 개재물을 보다 저융점이고 또한 연질인 것으로 하는 데 유용한 성분이다. 강이나 슬래그 중 Al2O3는 필연적으로 존재하게 되나, 슬래그 중의 Al2O3량을 적정하게 관리할 경우 개재물의 융점이 낮아지고, 이로 인해 연신성이 확보되어 압연과정 중 미세하게 되고, 최종 소재의 건전성에 유리한 것으로 알려지고 있다. 상기 작용을 유효하게 발휘시키기 위해 Al2O3 함량을 30% 이상으로 한다. 바람직하게는 35% 이상, 보다 바람직하게는 40% 이상이다. 그러나 Al2O3 함량이 지나치게 많아지면, 경질이어서 미세화하기 어려운 알루미나계 개재물이 되고, 역시 열연 공정에서 미세화하기 어려운 것이 되어 파괴나 파손의 기점이 되므로, 그 상한을 70%로 한다. 바람직하게는 65%, 보다 바람직하게는 60%이다.Al 2 O 3 is a useful component for making oxide inclusions lower melting point and softer. Al 2 O 3 inevitably exists in steel or slag, but if the Al 2 O 3 amount in the slag is properly managed, the melting point of the inclusions is lowered, which results in elongation and thus becomes fine during the rolling process. It is said to be advantageous for the soundness of the material. In order to effectively exert the above action, the Al 2 O 3 content is set to 30% or more. Preferably it is 35% or more, More preferably, it is 40% or more. However, when the Al 2 O 3 content is too large, then the hard and difficult to alumina-based inclusions fine, too, because the starting point of fracture or breakage is difficult to be finely divided in the hot rolling step, the upper limit of 70%. Preferably it is 65%, More preferably, it is 60%.
SiO2: 20~40%SiO 2 : 20 ~ 40%
SiO2는 전술한 Al2O3와 함께, 강이나 슬래그 중 필연적으로 존재하게 되며, 다원계 산화물의 근간을 이루는 중요한 산화물이다. 그 함량이 20% 미만일 경우, 다원계 산화물의 개재물로서 기타 산화물과의 우수한 조합은 얻어질 수 없으며 40%를 초과할 경우 경질의 개재물이 형성될 가능성이 높아진다. 따라서, 그 하한을 20%로, 상한을 40%로 하는 것이 바람직하다.SiO 2 is inevitably present in steel or slag together with Al 2 O 3 described above, and is an important oxide that forms the basis of a polycyclic oxide. If the content is less than 20%, a good combination with other oxides as an inclusion of the poly-based oxide cannot be obtained, and if it exceeds 40%, there is a high possibility that hard inclusions are formed. Therefore, it is preferable to make the lower limit into 20% and an upper limit into 40%.
CaO+MgO: 10~20%CaO + MgO: 10-20%
MgO 및 CaO는 개재물을 최적인 복합 조성으로 해, 저융점화하기 위해 필요한 성분이다. MgO 및 CaO 모두 단독으로는 고융점이지만, 다원계 산화물의 융점을 저하시키는 효과가 있다. 그 효과를 발현시키기 위해서는 합계로 10% 이상 함유시킬 필요가 있다. 다만, 이들 함량의 합이 과다할 경우, 개재물의 융점이 높아지거나 MgO, CaO의 결정이 생성되어, 열연 공정에서 미세화하기 어려운 것이 되어 파괴나 파손의 기점이 될 수 있으므로, 그 상한을 합계로 20% 이하로 한다.MgO and CaO are components necessary for making the inclusions an optimal composite composition and lowering the melting point. Although both MgO and CaO alone have high melting points, there is an effect of lowering the melting point of the polycyclic oxide. In order to express the effect, it is necessary to contain 10% or more in total. However, if the sum of these contents is excessive, the melting point of inclusions increases, or MgO and CaO crystals are formed, which makes it difficult to refine the hot rolling process, which may be a starting point of breakage or damage. It should be less than%.
일 예에 따르면, 산화물계 개재물의 평균 직경은 8μm 이하(0μm 제외)일 수 있으며, 산화물계 개재물의 최대 직경은 15μm 이하(0μm 제외)일 수 있다.According to an example, the average diameter of the oxide-based inclusions may be 8 μm or less (excluding 0 μm), and the maximum diameter of the oxide-based inclusions may be 15 μm or less (excluding 0 μm).
이와 같이 산화물로 이루어지는 비금속 개재물을 미세화함으로써, 파괴의 기점을 감소시킬 수 있다. 여기에서, 비금속 개재물의 평균 직경 및 최대 직경은 선재의 길이 방향 일 단면을 관찰하여 검출한 입자들의 평균 또는 최대 원 상당 직경(equivalent circular diameter)을 의미하며, 비금속 개재물의 최대 직경은 아래와 같이 하여 구하였다. 광학현미경에 의해, 400배로 800시야의 관찰을 행하고, 각 시야에서의 비금속 개재물의 최대 직경을 검블(Gumble) 확률지 상에 정리하고, 50000㎟ 상당의 극치(極値)를 산출하여 최대 직경으로 하였다.In this way, by miniaturizing the non-metallic inclusion made of the oxide, the origin of destruction can be reduced. Here, the average diameter and the maximum diameter of the nonmetallic inclusions mean the average or maximum circular diameter of the particles detected by observing the longitudinal cross section of the wire rod, and the maximum diameter of the nonmetallic inclusions is determined as follows. It was. An optical microscope was used to observe 800 fields of view at 400 times, and the maximum diameter of the nonmetallic inclusions in each field of view was arranged on a Gumble probability sheet, and an extreme value equivalent to 50000 mm 2 was calculated to obtain the maximum diameter. It was.
한편, 상기와 같이 산화물계 개재물의 평균 조성 및 직경을 제어하는 방법은 여러가지가 있을 수 있으므로 본 발명에서는 이를 특별히 제한하지 않는다. 다만, 한가지 예를 든다면, 용강 중 용존 Al, Si 농도 및 용존 Mg, Ca 농도를 조정함으로써, 형성되는 산화물계 개재물의 평균 조성 및 직경을 제어할 수 있다.On the other hand, the method of controlling the average composition and the diameter of the oxide inclusions as described above may be various, so the present invention is not particularly limited thereto. However, for example, by adjusting dissolved Al, Si, dissolved Mg, and Ca concentration in molten steel, the average composition and diameter of the oxide-based inclusions formed can be controlled.
이상에서 설명한 본 발명의 비조질 선재는 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 일 구현예로써 다음과 같은 방법에 의해 제조될 수 있다.The crude wire rod of the present invention described above can be produced by various methods, the manufacturing method is not particularly limited. However, it may be prepared by the following method as an embodiment.
이하, 본 발명의 다른 일 측면인 강도 및 충격인성이 우수한 비조질 선재의 제조방법에 대하여 상세히 설명한다.Hereinafter, another aspect of the present invention will be described in detail with respect to the production method of non-coated wire having excellent strength and impact toughness.
먼저, 상기 성분계를 만족하는 블룸(bloom)을 가열 후, 강편 압연하여 빌렛(billet)을 얻는다.First, a bloom satisfying the above component system is heated and then rolled into steel sheets to obtain a billet.
블룸(bloom)의 가열 온도는 1200~1300℃인 것이 바람직하고, 1200~1250℃인 것이 보다 바람직하다. 블룸의 가열 온도가 1200℃ 미만일 경우 열간압연성이 저하될 우려가 있으며, 더욱이 C, Mn, Cr 등의 중심부 편석 조장 원소의 확산이 충분히 이뤄지지 않아 편석부와 비편석부의 조직 편차가 커져 냉간 가공성의 열화를 가져올 수 있다. 반면, 1300℃를 초과할 경우 오스테나이트의 조대화로 인해 연성이 열화할 우려가 있다.It is preferable that it is 1200-1300 degreeC, and, as for the heating temperature of a bloom, it is more preferable that it is 1200-1250 degreeC. If the heating temperature of the bloom is less than 1200 ° C, there is a possibility that the hot rolling property may be lowered. Furthermore, since the segregation of the central segregation elements such as C, Mn, and Cr is not sufficiently achieved, the variation of the structure of the segregation and non-segregation parts increases, resulting in cold workability. May cause deterioration. On the other hand, when it exceeds 1300 ℃ there is a fear that ductility deterioration due to coarsening of austenite.
일 예에 따르면, 블룸의 가열시, 가열 온도에서의 유지 시간은 240분 이상일 수 있다. 만약, 그 유지 시간이 240분 미만일 경우 균질화 처리가 충분치 못할 우려가 있다. 한편, 가열 온도에서의 유지 시간이 길수록 균질화에 유리하여 편석의 저감에 유리한 바, 본 발명에서는 그 유지 시간의 상한에 대해서는 특별히 한정하지 않는다.According to one example, upon heating of the bloom, the holding time at the heating temperature may be at least 240 minutes. If the holding time is less than 240 minutes, the homogenization treatment may not be sufficient. On the other hand, the longer the holding time at the heating temperature, the more favorable for homogenization and the lower the segregation. In the present invention, the upper limit of the holding time is not particularly limited.
다음으로, 상기 빌렛(billet)을 재가열 후, 선재 압연하여 비조질 선재를 얻는다.Next, after reheating the billet, the wire rod is rolled to obtain a crude wire rod.
빌렛의 재가열 온도는 1050~1250℃인 것이 바람직하고, 1100~1200℃인 것이 보다 바람직하다. 만약, 빌렛의 재가열 온도가 1050℃ 미만일 경우, 열간 변형 저항이 증가하여 생산성의 저하를 가져 올 우려가 있으며, 반면, 가열 온도가 1250℃를 초과할 경우, 페라이트 결정립이 지나치게 조대해져 연성이 저하될 우려가 있다. It is preferable that it is 1050-1250 degreeC, and, as for the reheating temperature of a billet, it is more preferable that it is 1100-1200 degreeC. If the reheating temperature of the billet is less than 1050 ° C., there is a concern that the heat deformation resistance may increase, leading to a decrease in productivity. On the other hand, if the heating temperature exceeds 1250 ° C., the ferrite grains may be excessively coarse to reduce ductility. There is concern.
일 예에 따르면, 빌렛의 재가열시, 재가열 온도에서의 유지 시간은 60~240분 이상일 수 있다. 만약, 그 유지 시간이 60분 미만일 경우 균질화 처리가 충분치 못할 우려가 있다. 한편, 재가열 온도에서의 유지 시간이 길수록 편석 조장 원소들의 균질화에는 유리하나, 오스테나이트 조직이 과도하게 성장하여 연성이 저하될 우려가 있는 바, 그 유지 시간의 상한은 240분으로 한정할 수 있다.According to one example, when reheating the billet, the holding time at the reheating temperature may be 60 to 240 minutes or more. If the holding time is less than 60 minutes, the homogenization treatment may not be sufficient. On the other hand, the longer the holding time at the reheating temperature is advantageous for the homogenization of segregation promoting elements, but the austenite structure may grow excessively and the ductility may be reduced, so the upper limit of the holding time may be limited to 240 minutes.
선재 압연시, 마무리 압연온도는 750~900℃일 수 있고, 바람직하게는 800~880℃일 수 있다. 만약, 마무리 압연온도가 750℃ 미만인 경우 페라이트 결정립 미세화에 의한 강도 상승으로 변형 저항이 증가할 우려가 있으며, 반면, 900℃를 초과하는 경우 페라이트 결정립이 지나치게 조대해져 연성이 열화되고, 펄라이트의 라멜라 간격이 미세화되어 냉간가공성이 열화될 우려가 있다.When the wire is rolled, the finish rolling temperature may be 750 ~ 900 ℃, preferably 800 ~ 880 ℃. If the finish rolling temperature is less than 750 ℃, there is a fear that the deformation resistance increases due to the increase in strength due to the refinement of ferrite grains, on the other hand, if it exceeds 900 ℃ ferrite grains are too coarse to deteriorate the ductility, the lamellar spacing of pearlite There is a fear that the fineness is reduced and the cold workability is deteriorated.
이후, 상기 비조질 선재를 권취한 후, 냉각한다. Thereafter, the uncoated wire rod is wound up and then cooled.
일 예에 따르면, 비조질 선재의 권취온도는 750~900일 수 있고, 보다 바람직하게는 800~850일 수 있다. 만약, 권취온도가 750 미만인 경우에는 냉각시 발생한 표층부의 마르텐사이트가 복열에 의해 회복되지 않고, 소려 마르텐사이트가 생성되어 딱딱하고 무른 강이 되기 때문에 냉간가공성이 저하될 우려가 있다. 반면, 권취온도가 900를 초과하는 경우 그 표면에 두꺼운 스케일이 형성되어 탈스케일시 트러블이 발생하기 쉬울 뿐만 아니라, 냉각시간이 길어져 생산성이 저하될 우려가 있다.According to one example, the winding temperature of the non-coarse wire may be 750 ~ 900, more preferably 800 ~ 850. If the coiling temperature is less than 750, the martensite generated during the cooling may not be recovered by reheating, and some martensite is formed to form a hard and soft steel, which may reduce cold workability. On the other hand, when the coiling temperature exceeds 900, a thick scale is formed on the surface thereof, and troubles are easily generated during descaling, and cooling time is prolonged, which may lower productivity.
비조질 선재의 냉각시 냉각속도는 0.3~1/sec일 수 있고, 바람직하게는 0.3~0.8/sec 이하일 수 있다. 이는 안정적으로 페라이트 및 펄라이트 복합조직을 형성하기 위함으로, 만약, 냉각속도가 0.3/sec 미만일 경우 펄라이트 조직의 라멜라 간격이 넓어져 연성이 부족할 우려가 있으며, 1/sec를 초과할 경우 페라이트 분율이 감소하고, 펄라이트 라멜라 간격이 미세해져 냉간단조성이 열화될 우려가 있다.The cooling rate of the non-coated wire rod may be 0.3 ~ 1 / sec, preferably 0.3 ~ 0.8 / sec or less. This is to stably form a ferrite and pearlite composite structure. If the cooling rate is less than 0.3 / sec, the lamellar spacing of the pearlite tissue may be widened, leading to a lack of ductility, and if it exceeds 1 / sec, the ferrite fraction is reduced. In addition, there is a fear that the pearlite lamellar spacing becomes fine and the cold forging property deteriorates.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the description of these examples is only for illustrating the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(( 실시예Example ))
하기 표 1과 같은 합금조성을 갖는 블룸(bloom)을 1250℃에서 5시간 가열한 후, 1150℃의 마무리 압연 온도 조건으로 강편 압연하여 빌렛(billet)을 얻었다. 이후, 상기 빌렛(billet)을 1200℃에서 3시간 가열한 후, Φ 25mm로 열간압연 하여 선재를 제조하였다. 이때, 마무리 압연온도는 850℃로, 압연비는 80%로 일정하게 하였다. 이후, 800℃의 온도에서 권취한 후, 0.5℃/sec의 속도로 냉각하였다.A bloom having an alloy composition as shown in Table 1 was heated at 1250 ° C. for 5 hours, and then rolled into steel sheets under a finish rolling temperature condition of 1150 ° C. to obtain a billet. Thereafter, the billet was heated at 1200 ° C. for 3 hours, and then hot-rolled to Φ 25 mm to prepare a wire. At this time, the finish rolling temperature was set at 850 ° C., and the rolling ratio was constant at 80%. Then, after winding up at a temperature of 800 ℃, it was cooled at a rate of 0.5 ℃ / sec.
이후, 냉각된 선재의 펄라이트 분율 및 라멜라 간격, 개재물의 조성 및 크기를 측정하여 하기 표 2 및 표 3에 나타내었다.Then, the pearlite fraction and lamellar spacing of the cooled wire, the composition and size of the inclusions were measured and shown in Tables 2 and 3.
또한, 냉각된 선재의 냉간가공성을 평가하여 하기 표 4에 함께 나타내었다. 냉간가공성 평가는 노치압축시편을 진변형 0.7의 압축 시험을 실시하여 균열 발생 유무로 평가하였으며, 균열이 발생하지 않을 경우 "GO", 균열이 발생한 경우, "NG"로 평가하였다. In addition, the cold workability of the cooled wire rod was evaluated and shown in Table 4 together. For cold workability evaluation, the notched compression specimens were evaluated for the presence of cracks by the compression test of true strain 0.7, and if the cracks did not occur, "GO" and if the cracks occurred, "NG".
한편, 각각의 선재에 각각 10%, 15%, 20%의 신선 가공량을 인가하여 강선을 제조하였으며, 제조된 강선의 냉간가공성을 평가하여 하기 표 4에 함께 나타내었다. 구체적인 평가 방법은 전술한 바와 같다.Meanwhile, steel wires were prepared by applying the amount of wire drawing of 10%, 15%, and 20% to each wire, respectively, and the cold workability of the manufactured steel wire was evaluated and shown in Table 4 below. The specific evaluation method is as above-mentioned.
강종Steel grade 합금 조성(중량%)Alloy composition (% by weight) CeqCeq
CC SiSi MnMn PP SS CrCr AlAl NbNb VV TiTi NN OO
발명강1Inventive Steel 1 0.30 0.30 0.23 0.23 1.52 1.52 0.011 0.011 0.0042 0.0042 0.00 0.00 0.030.03 0.025 0.025     0.0042 0.0042 0.0007 0.0007 0.630 0.630
발명강2Inventive Steel 2 0.33 0.33 0.21 0.21 1.48 1.48 0.011 0.011 0.0044 0.0044 0.25 0.25 0.030.03   0.11 0.11   0.0045 0.0045 0.0008 0.0008 0.670 0.670
발명강3Invention Steel 3 0.35 0.35 0.17 0.17 1.33 1.33 0.010 0.010 0.0055 0.0055 0.13 0.13 0.020.02 0.010 0.010 0.12 0.12   0.0044 0.0044 0.0010 0.0010 0.646 0.646
발명강4Inventive Steel 4 0.37 0.37 0.16 0.16 1.26 1.26 0.012 0.012 0.0043 0.0043 0.11 0.11 0.040.04   0.09 0.09 0.003 0.003 0.0052 0.0052 0.0005 0.0005 0.649 0.649
발명강5Inventive Steel 5 0.39 0.39 0.15 0.15 1.02 1.02 0.010 0.010 0.0052 0.0052 0.00 0.00 0.020.02 0.008 0.008 0.11 0.11 0.002 0.002 0.0044 0.0044 0.0011 0.0011 0.611 0.611
비교강1Comparative Steel 1 0.32 0.32 0.26 0.26 1.69 1.69 0.010 0.010 0.0058 0.0058 0.00 0.00 0.030.03 0.023 0.023     0.0058 0.0058 0.0027 0.0027 0.687 0.687
비교강2Comparative Steel 2 0.34 0.34 0.24 0.24 1.51 1.51 0.010 0.010 0.0055 0.0055 0.34 0.34 0.030.03   0.17 0.17   0.0055 0.0055 0.0025 0.0025 0.697 0.697
비교강3Comparative Steel 3 0.38 0.38 0.18 0.18 1.48 1.48 0.012 0.012 0.0062 0.0062 0.22 0.22 0.020.02 0.018 0.018 0.14 0.14   0.0053 0.0053 0.0019 0.0019 0.714 0.714
비교강4Comparative Steel 4 0.42 0.42 0.16 0.16 1.45 1.45 0.010 0.010 0.0047 0.0047 0.16 0.16 0.030.03   0.08 0.08 0.018 0.018 0.0045 0.0045 0.0011 0.0011 0.741 0.741
비교강5Comparative Steel 5 0.45 0.45 0.17 0.17 1.37 1.37 0.012 0.012 0.0053 0.0053 0.00 0.00 0.020.02 0.013 0.013 0.11 0.11 0.015 0.015 0.0050 0.0050 0.0020 0.0020 0.743 0.743
여기서, Ceq=[C]+[Si]/9+[Mn]/5+[Cr]/12이고, 상기 [C], [Si], [Mn] 및 [Cr] 각각은 해당 원소의 함량(중량%)을 의미함Here, Ceq = [C] + [Si] / 9 + [Mn] / 5 + [Cr] / 12, wherein [C], [Si], [Mn] and [Cr] are each the content of the element ( Weight percent)
강종Steel grade 미세조직종류Microstructure 비고Remarks
발명강1Inventive Steel 1 F+PF + P 1.061.06 58.358.3 1.331.33 0.22 0.22 1.221.22 발명예1Inventive Example 1
발명강2Inventive Steel 2 F+PF + P 1.141.14 60.660.6 1.281.28 0.17 0.17 1.281.28 발명예2Inventive Example 2
발명강3Invention Steel 3 F+PF + P 1.201.20 62.762.7 1.221.22 0.19 0.19 1.321.32 발명예3Inventive Example 3
발명강4Inventive Steel 4 F+PF + P 1.271.27 64.164.1 1.161.16 0.15 0.15 1.361.36 발명예4Inventive Example 4
발명강5Inventive Steel 5 F+PF + P 1.351.35 66.966.9 1.051.05 0.12 0.12 1.381.38 발명예5Inventive Example 5
비교강1Comparative Steel 1 F+PF + P 1.171.17 59.859.8 1.451.45 0.23 0.23 1.401.40 비교예1Comparative Example 1
비교강2Comparative Steel 2 F+PF + P 1.251.25 61.661.6 1.411.41 0.18 0.18 1.481.48 비교예2Comparative Example 2
비교강3Comparative Steel 3 F+PF + P 1.341.34 65.365.3 1.331.33 0.14 0.14 1.541.54 비교예3Comparative Example 3
비교강4Comparative Steel 4 F+PF + P 1.461.46 70.270.2 1.271.27 0.12 0.12 1.641.64 비교예4Comparative Example 4
비교강5Comparative Steel 5 F+PF + P 1.551.55 72.572.5 1.191.19 0.09 0.09 1.691.69 비교예5Comparative Example 5
여기서, 미세조직 종류 중 F는 페라이트(ferrite)를 의미하고, P는 펄라이트(pearlite)를 의미함.또한, ①=VP2/VP1를 의미하고, ②=(15VP1+VP2)/16를 의미하며, ③=DL1/DL2을 의미하고, ④= (15DL1+DL2)/16를 의미하며, ⑤=(VP2/VP1)×(√(DL1/DL2))를 의미함.Herein, F means ferrite and P means pearlite. ① = VP 2 / VP 1 and ② = (15VP 1 + VP 2 ) / 16 ③ = DL 1 / DL 2 , ④ = (15DL 1 + DL 2 ) / 16, and ⑤ = (VP 2 / VP 1 ) × (√ (DL 1 / DL 2 )) Means.
강종Steel grade 개재물 조성(중량%)Inclusion composition (% by weight) 개재물 평균직경(μm)Inclusion average diameter (μm) 개재물 최대직경(μm)Inclusion diameter (μm) 비고Remarks
Al2O3 Al 2 O 3 SiO2 SiO 2 CaOCaO MgOMgO 합계Sum
발명강1Inventive Steel 1 6464 2222 77 66 9999 7.17.1 9.19.1 발명예1Inventive Example 1
발명강2Inventive Steel 2 5555 2525 88 55 9393 7.57.5 7.37.3 발명예2Inventive Example 2
발명강3Invention Steel 3 4040 2828 55 77 8080 5.85.8 10.510.5 발명예3Inventive Example 3
발명강4Inventive Steel 4 3636 2121 88 88 7373 6.56.5 11.311.3 발명예4Inventive Example 4
발명강5Inventive Steel 5 3232 2626 1010 44 7272 4.64.6 9.89.8 발명예5Inventive Example 5
비교강1Comparative Steel 1 8282 1111 22 33 9898 6.26.2 16.716.7 비교예1Comparative Example 1
비교강2Comparative Steel 2 6363 1717 1One 55 8686 7.67.6 15.615.6 비교예2Comparative Example 2
비교강3Comparative Steel 3 5252 2323 55 22 8282 8.88.8 11.511.5 비교예3Comparative Example 3
비교강4Comparative Steel 4 3737 3030 77 33 7777 9.49.4 10.410.4 비교예4Comparative Example 4
비교강5Comparative Steel 5 2222 3535 1010 55 7272 11.311.3 12.212.2 비교예5Comparative Example 5
강종Steel grade 냉간가공성Cold workability 비고Remarks
선재Wire rod 강선(10%)Steel wire (10%) 강선(15%)Steel wire (15%) 강선(20%)Steel wire (20%)
발명강1Inventive Steel 1 GOGO GOGO GOGO GOGO 발명예1Inventive Example 1
발명강2Inventive Steel 2 GOGO GOGO GOGO GOGO 발명예2Inventive Example 2
발명강3Invention Steel 3 GOGO GOGO GOGO GOGO 발명예3Inventive Example 3
발명강4Inventive Steel 4 GOGO GOGO GOGO GOGO 발명예4Inventive Example 4
발명강5Inventive Steel 5 GOGO GOGO GOGO GOGO 발명예5Inventive Example 5
비교강1Comparative Steel 1 GOGO GOGO NGNG NGNG 비교예1Comparative Example 1
비교강2Comparative Steel 2 GOGO GOGO NGNG NGNG 비교예2Comparative Example 2
비교강3Comparative Steel 3 GOGO GOGO GOGO NGNG 비교예3Comparative Example 3
비교강4Comparative Steel 4 GOGO GOGO GOGO NGNG 비교예4Comparative Example 4
비교강5Comparative Steel 5 GOGO GOGO GOGO NGNG 비교예5Comparative Example 5
표 4에서 알 수 있듯이, 본 발명에서 제안하는 합금조성 및 제조조건을 만족하는 발명예 1 내지 8의 경우, 관계식 1 내지 5의 조건을 모두 만족할 뿐만 아니라, 비금속 개재물의 조성, 평균직경 및 최대직경이 본 발명에서 제안하는 조건으로 제어되어 신선가공 후 내부에 크랙이 발생되지 않아 강도 및 우수한 냉간가공성을 확보 할 수 있었다. 반면, 비교예 1 내지 5의 경우, 본 발명에서 제안하는 조건을 적어도 하나 이상 만족하지 않는 경우로 신선가공 후 내부에 크랙이 발생되었으며 발명예 대비 냉간가공성이 열위하게 나타남을 알 수 있다.As can be seen from Table 4, in the case of Inventive Examples 1 to 8 satisfying the alloy composition and manufacturing conditions proposed in the present invention, not only satisfy the conditions of the relational formula 1 to 5, but also the composition, average diameter and maximum diameter of the non-metallic inclusions This was controlled under the conditions proposed in the present invention, so that no cracks were generated inside the wire after drawing, thereby securing strength and excellent cold workability. On the other hand, in the case of Comparative Examples 1 to 5, cracks were generated after the fresh processing as not satisfying at least one or more of the conditions proposed by the present invention, and the cold workability was inferior to the invention examples.

Claims (11)

  1. 중량%로, C: 0.3~0.4%, Si: 0.05~0.3%, Mn: 0.8~1.8%, Cr: 0.5% 이하, P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, N: 0.01% 이하 및 O: 0.0001~0.003%를 포함하고, Nb: 0.005~0.03% 및 V: 0.05~0.3% 중 1종 이상을 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하며,By weight%, C: 0.3-0.4%, Si: 0.05-0.3%, Mn: 0.8-1.8%, Cr: 0.5% or less, P: 0.02% or less, S: 0.02% or less, sol.Al: 0.01-0.05 %, N: 0.01% or less and O: 0.0001% to 0.003%, Nb: 0.005% to 0.03%, and V: 0.05% to 0.3%, and include residual Fe and unavoidable impurities,
    미세조직으로 페라이트(ferrite) 및 펄라이트(pearlite)를 포함하고,Microstructures include ferrite and pearlite,
    상기 펄라이트의 상분율은 하기 관계식 1 및 2를 만족하고, 상기 펄라이트의 평균 라멜라 간격은 하기 관계식 3 및 4를 만족하는 비조질 선재.The phase fraction of the pearlite satisfies the following relations 1 and 2, the average lamellar spacing of the pearlite satisfies the following relations 3 and 4.
    [관계식 1] VP2/VP1≤1.4Relation 1 VP 2 / VP 1 ≤ 1.4
    [관계식 2] 50≤(15VP1+VP2)/16≤70Equation 2 50≤ (15VP 1 + VP 2 ) / 16≤70
    [관계식 3] DL1/DL2≤1.4[Relationship 3] DL 1 / DL 2 ≤1.4
    [관계식 4] 0.1≤(15DL1+DL2)/16≤0.3Relational Expression 4 0.1 ≦ (15DL 1 + DL 2 ) /16≦0.3
    (여기서, VP1 및 VP2 각각은 선재의 길이 방향에 수직한 단면에서 선재의 표면으로부터 선재의 직경(D) 방향 3/8D 위치까지 영역에서의 펄라이트 분율(면적%) 및 선재의 직경(D) 방향 3/8D 위치로부터 선재의 중심까지의 영역에서의 펄라이트 분율(면적%)을 의미하며, DL1 및 DL2 각각은 선재의 길이 방향에 수직한 단면에서 선재의 표면으로부터 선재의 직경(D) 방향 3/8D 위치까지 영역에서의 펄라이트의 평균 라멜라 간격(μm) 및 선재의 직경(D) 방향 3/8D 위치로부터 선재의 중심까지의 영역에서의 펄라이트의 평균 라멜라 간격(μm)을 의미함)(Where VP 1 and VP 2 are each a pearlite fraction (area%) in the area from the surface of the wire rod to a position 3 / 8D in the diameter (D) direction of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod and the diameter of the wire rod (D ) Means the pearlite fraction (area%) in the area from the 3 / 8D position to the center of the wire rod, and each of DL 1 and DL 2 is the diameter of the wire rod (D) in the cross section perpendicular to the longitudinal direction of the wire rod. Mean lamellar spacing (μm) of pearlite in the area up to 3 / 8D) direction, and the average lamellar spacing (μm) of pearlite in the area from the 3 / 8D position in the direction of diameter (D) to the center of the wire. )
  2. 제1항에 있어서,The method of claim 1,
    상기 펄라이트의 강도 편차는 하기 관계식 5를 만족하는 비조질 선재.The strength variation of the pearlite is an unstructured wire rod that satisfies the following relational formula 5.
    [관계식 5][Relationship 5]
    (VP2/VP1)×(√(DL1/DL2))≤1.5(VP 2 / VP 1 ) × (√ (DL 1 / DL 2 )) ≤1.5
  3. 제1항에 있어서,The method of claim 1,
    상기 불가피한 불순물은 Ti를 포함하고, 중량%로, Ti: 0.005% 이하로 억제된 비조질 선재.The unavoidable impurity includes Ti, and by weight%, Ti: 0.005% or less of the crude wire rod.
  4. 제1항에 있어서,The method of claim 1,
    탄소당량(Ceq)이 0.6 이상 0.7 이하인 비조질 선재.A crude wire having a carbon equivalent (Ceq) of 0.6 or more and 0.7 or less.
  5. 제1항에 있어서,The method of claim 1,
    선재의 길이 방향에 수직한 단면에서 선재의 직경(D) 방향 3/8D 위치로부터 선재의 중심까지의 영역에서의 산화물계 개재물의 평균 조성은 하기 관계식 6 내지 8을 만족하는 비조질 선재.An unstructured wire rod in which the average composition of the oxide-based inclusions in the region from the position 3 / 8D in the diameter (D) direction of the wire rod to the center of the wire rod in a cross section perpendicular to the longitudinal direction of the wire rod satisfies the following relations 6 to 8.
    [관계식 6][Relationship 6]
    30≤[Al2O3]≤7030≤ [Al 2 O 3 ] ≤70
    [관계식 7][Relationship 7]
    20≤[SiO2]≤4020≤ [SiO 2 ] ≤40
    [관계식 8][Relationship 8]
    10≤[CaO]+[MgO]≤2010≤ [CaO] + [MgO] ≤20
    (여기서, [Al2O3], [SiO2], [CaO] 및 [MgO] 각각은 해당 개재물의 함량(중량%)을 의미함)(Wherein [Al 2 O 3 ], [SiO 2 ], [CaO] and [MgO] each represent the content (% by weight) of the inclusions)
  6. 제5항에 있어서,The method of claim 5,
    상기 산화물계 개재물의 평균 직경은 8μm 이하인 비조질 선재.The crude wire rod having an average diameter of the oxide-based inclusions is 8 μm or less.
  7. 제5항에 있어서,The method of claim 5,
    상기 산화물계 개재물의 최대 직경은 15μm 이하인 비조질 선재.The non-coarse wire rod having a maximum diameter of the oxide-based inclusions is 15 μm or less.
  8. 중량%로, C: 0.3~0.4%, Si: 0.05~0.3%, Mn: 0.8~1.8%, Cr: 0.5% 이하, P: 0.02% 이하, S: 0.02% 이하, sol.Al: 0.01~0.05%, O: 0.0001~0.003% 이하 및 N: 0.01% 이하를 포함하고, Nb: 0.005~0.03% 및 V: 0.05~0.3% 중 1종 이상을 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하며, 탄소당량(Ceq)이 0.6 이상 0.7 이하인 블룸(bloom)을 1200~1300℃의 가열 온도로 가열하고, 상기 가열 온도에서 240분 이상 유지한 후, 강편 압연하여 빌렛(billet)을 얻는 단계;By weight%, C: 0.3-0.4%, Si: 0.05-0.3%, Mn: 0.8-1.8%, Cr: 0.5% or less, P: 0.02% or less, S: 0.02% or less, sol.Al: 0.01-0.05 %, O: 0.0001 to 0.003% or less, and N: 0.01% or less, Nb: 0.005 to 0.03%, and V: 0.05 to 0.3% of one or more, including the balance Fe and unavoidable impurities, carbon Heating a bloom having an equivalent weight (Ceq) of 0.6 or more and 0.7 or less to a heating temperature of 1200 to 1300 ° C., maintaining the heating temperature for 240 minutes or more, and then rolling the steel sheet to obtain a billet;
    상기 빌렛을 재가열 후, 마무리 압연온도 750~900℃의 조건 하 선재 압연하여 선재를 얻는 단계; 및After reheating the billet, rolling the wire under conditions of a finish rolling temperature of 750 to 900 ° C. to obtain a wire; And
    상기 선재를 권취 후, 0.3~1℃/sec 의 속도로 냉각하는 단계;After winding the wire, cooling at a rate of 0.3 ~ 1 ℃ / sec;
    를 포함하는 비조질 선재의 제조방법.Method for producing a non-coarse wire rod comprising a.
  9. 제8항에 있어서,The method of claim 8,
    상기 불가피한 불순물은 Ti를 포함하고, 중량%로, Ti: 0.005% 이하로 억제된 비조질 선재.The unavoidable impurity includes Ti, and by weight%, Ti: 0.005% or less of the crude wire rod.
  10. 제8항에 있어서,The method of claim 8,
    상기 빌렛의 재가열 온도는 1050~1200℃인 비조질 선재.The reheating temperature of the billet is 1050 ~ 1200 ℃ uncoated wire.
  11. 제8항에 있어서,The method of claim 8,
    상기 선재의 권취 온도는 750~900℃인 비조질 선재.The winding temperature of the wire rod is 750 ~ 900 ℃ non-coarse wire rod.
PCT/KR2016/006498 2015-12-17 2016-06-20 Non-heat treated wire rod excellent in strength and cold workability and method for manufacturing same WO2017104920A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/779,339 US20180305787A1 (en) 2015-12-17 2016-06-20 Non-heat treated wire rod excellent in strength and cold workability and method for manufacturing same
JP2018524489A JP6600412B2 (en) 2015-12-17 2016-06-20 Non-heat treated wire excellent in strength and cold workability and method for producing the same
CN201680073661.4A CN108368586B (en) 2015-12-17 2016-06-20 Non-heat-treated wire rod having excellent strength and cold workability, and method for producing same
MX2018006715A MX2018006715A (en) 2015-12-17 2016-06-20 Non-heat treated wire rod excellent in strength and cold workability and method for manufacturing same.
DE112016005827.6T DE112016005827T5 (en) 2015-12-17 2016-06-20 NON-HEATED ROLLED WIRE WITH EXCELLENT THICKNESS AND COLD FORMABILITY AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0181027 2015-12-17
KR1020150181027A KR101758491B1 (en) 2015-12-17 2015-12-17 Non-quenched and tempered wire rod having excellent strength and cold workability and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017104920A1 true WO2017104920A1 (en) 2017-06-22

Family

ID=59056832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006498 WO2017104920A1 (en) 2015-12-17 2016-06-20 Non-heat treated wire rod excellent in strength and cold workability and method for manufacturing same

Country Status (7)

Country Link
US (1) US20180305787A1 (en)
JP (1) JP6600412B2 (en)
KR (1) KR101758491B1 (en)
CN (1) CN108368586B (en)
DE (1) DE112016005827T5 (en)
MX (1) MX2018006715A (en)
WO (1) WO2017104920A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110457729A (en) * 2019-05-17 2019-11-15 陕西飞机工业(集团)有限公司 Optimization method, device and the axial workpiece of semi-closed structure steel heat treatment part

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318035B1 (en) * 2019-12-17 2021-10-27 주식회사 포스코 Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing thereof
WO2021172604A1 (en) * 2020-02-24 2021-09-02 주식회사 포스코 Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240940A (en) * 1999-12-24 2001-09-04 Nippon Steel Corp Bar wire rod for cold forging and its production method
KR20130034045A (en) * 2010-08-17 2013-04-04 신닛테츠스미킨 카부시키카이샤 Special steel steel-wire and special steel wire material
JP2013151719A (en) * 2012-01-25 2013-08-08 Nippon Steel & Sumitomo Metal Corp Rolled steel bar or wire rod for hot forging
KR20140034005A (en) * 2012-09-11 2014-03-19 주식회사 포스코 Ultra high strength wire rod with excellent drawability and manufacturing method of the same
KR20140044925A (en) * 2011-09-09 2014-04-15 신닛테츠스미킨 카부시키카이샤 Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713257B2 (en) * 1990-05-30 1995-02-15 新日本製鐵株式会社 Method for manufacturing soft wire without as-rolled surface abnormal phase
KR0157252B1 (en) * 1993-06-30 1998-11-16 김무 High toughness and high strength untempered steel and processing method thereof
JP3499341B2 (en) * 1995-05-29 2004-02-23 株式会社神戸製鋼所 Manufacturing method of steel wire for rubber reinforcement
JP2001192771A (en) * 2000-01-13 2001-07-17 Nippon Steel Corp Hot rolled wire rod with fine diameter
JP2002003998A (en) * 2000-06-20 2002-01-09 Daido Steel Co Ltd Wire rod and its manufacturing method
JP4699342B2 (en) * 2006-11-17 2011-06-08 株式会社神戸製鋼所 High strength non-tempered steel for cold forging with excellent fatigue limit ratio
JP5231101B2 (en) * 2008-06-27 2013-07-10 株式会社神戸製鋼所 Machine structural steel with excellent fatigue limit ratio and machinability
KR101143170B1 (en) * 2009-04-23 2012-05-08 주식회사 포스코 Steel wire rod having high strength and excellent toughness
CN102597290A (en) * 2009-11-05 2012-07-18 住友金属工业株式会社 Hot-rolled steel bar or wire rod
CN105492644B (en) * 2013-08-26 2017-04-12 新日铁住金株式会社 Rolled round steel material for steering rack bar, and steering rack bar
KR101860246B1 (en) * 2014-02-06 2018-05-21 신닛테츠스미킨 카부시키카이샤 Steel wire
JP7013257B2 (en) * 2018-01-26 2022-01-31 タキロンシーアイ株式会社 Installation structure of support pillars for waterstop and its installation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240940A (en) * 1999-12-24 2001-09-04 Nippon Steel Corp Bar wire rod for cold forging and its production method
KR20130034045A (en) * 2010-08-17 2013-04-04 신닛테츠스미킨 카부시키카이샤 Special steel steel-wire and special steel wire material
KR20140044925A (en) * 2011-09-09 2014-04-15 신닛테츠스미킨 카부시키카이샤 Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
JP2013151719A (en) * 2012-01-25 2013-08-08 Nippon Steel & Sumitomo Metal Corp Rolled steel bar or wire rod for hot forging
KR20140034005A (en) * 2012-09-11 2014-03-19 주식회사 포스코 Ultra high strength wire rod with excellent drawability and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110457729A (en) * 2019-05-17 2019-11-15 陕西飞机工业(集团)有限公司 Optimization method, device and the axial workpiece of semi-closed structure steel heat treatment part
CN110457729B (en) * 2019-05-17 2023-04-14 陕西飞机工业(集团)有限公司 Optimization method and device for semi-closed structural steel heat treatment part and shaft part

Also Published As

Publication number Publication date
US20180305787A1 (en) 2018-10-25
CN108368586A (en) 2018-08-03
KR20170072996A (en) 2017-06-28
JP2019502815A (en) 2019-01-31
KR101758491B1 (en) 2017-07-17
CN108368586B (en) 2020-05-26
DE112016005827T5 (en) 2018-08-23
JP6600412B2 (en) 2019-10-30
MX2018006715A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2017111510A1 (en) Non-magnetic steel material having excellent hot workability and manufacturing method therefor
WO2015099373A1 (en) Ultrahigh-strength welded structural steel having excellent toughness in welding heat-affected zones thereof, and production method therefor
WO2017105026A1 (en) Ultra-high strength steel sheet having excellent chemical conversion treatability and hole expansibility and method for manufacturing same
WO2017082687A1 (en) Microalloyed wire having excellent cold workability and manufacturing method therefor
WO2017105025A1 (en) Ultra-high strength steel sheet having excellent chemical conversion treatability and bending processability and method for manufacturing same
WO2018117676A1 (en) Austenite steel material having superb abrasion resistance and toughness, and method for producing same
WO2017082684A1 (en) Wire having excellent cold forgeability and manufacturing method therefor
WO2015099222A1 (en) Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2018030737A1 (en) Ultra-thick steel material having excellent resistance to brittle crack propagation and preparing method therefor
WO2017104920A1 (en) Non-heat treated wire rod excellent in strength and cold workability and method for manufacturing same
WO2017111398A1 (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance, and method for manufacturing same
WO2022065797A1 (en) High-strength thick hot-rolled steel sheet and method for manufacturing same
WO2019132262A1 (en) High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
WO2020111891A1 (en) High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
WO2020226301A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
WO2020130436A2 (en) High-strength structural steel having excellent cold bendability, and manufacturing method therefor
WO2018117539A1 (en) High-strength hot-rolled steel plate having excellent weldability and ductility and method for manufacturing same
WO2022086049A1 (en) High-strength steel sheet having excellent thermal stability, and method for manufacturing same
WO2017086745A1 (en) High-strength cold rolled steel sheet having excellent shear processability, and manufacturing method therefor
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor
WO2021091140A1 (en) High-strength steel having high yield ratio and excellent durability, and method for producing same
WO2020130329A1 (en) High strength hot-rolled steel sheet having excellent workability, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524489

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15779339

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/006715

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112016005827

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875862

Country of ref document: EP

Kind code of ref document: A1