WO2017104204A1 - Vehicle - Google Patents
Vehicle Download PDFInfo
- Publication number
- WO2017104204A1 WO2017104204A1 PCT/JP2016/077747 JP2016077747W WO2017104204A1 WO 2017104204 A1 WO2017104204 A1 WO 2017104204A1 JP 2016077747 W JP2016077747 W JP 2016077747W WO 2017104204 A1 WO2017104204 A1 WO 2017104204A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage battery
- power
- battery modules
- vehicle
- link
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/16—Electric propulsion with power supply external to the vehicle using ac induction motors
- B60L9/18—Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/16—Electric propulsion with power supply external to the vehicle using ac induction motors
- B60L9/24—Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- Embodiments of the present invention relate to a vehicle.
- a vehicle including a main circuit system including an inverter and a converter for driving a main motor and the like and a storage battery system on which a storage battery module is mounted is known.
- the main circuit system and the storage battery system are installed in a limited equipment space located on or under the floor of the vehicle.
- a limited equipment space located on or under the floor of the vehicle.
- the vehicle includes a converter, an inverter, a pair of DC links, a plurality of storage battery modules, a step-down chopper, and a switching circuit unit.
- the converter is configured to convert single-phase AC power into DC power.
- the inverter is configured to be able to convert DC power into three-phase AC power.
- the pair of DC links connect the DC input / output side of the converter and the DC input / output side of the inverter.
- the plurality of storage battery modules are electrically connected to a pair of DC links.
- the step-down chopper is provided between the positive DC link of the pair of DC links and the positive side of the plurality of storage battery modules, and generates DC power output from the positive DC link to the positive side of the plurality of storage battery modules.
- the switching circuit section includes a plurality of AC power supply sections that receive supply of single-phase AC power from the AC system, DC power supply sections that receive DC power supply from the DC system, and no power supply sections that do not receive power supply from the outside.
- the electrical connection relationship of the storage battery modules is switched in series or in parallel, and the electrical connection relationship between the pair of DC links, the plurality of storage battery modules, and the step-down chopper is switched.
- FIG. 1 is an exemplary diagram illustrating a schematic configuration of a vehicle according to an embodiment.
- FIG. 2 is an exemplary diagram illustrating an internal configuration of the storage battery box according to the embodiment.
- FIG. 3 is an exemplary diagram showing an electrical connection relationship of each part of the vehicle when the vehicle according to the embodiment travels in the AC power feeding section.
- FIG. 4 is an exemplary diagram illustrating an electrical connection relationship of each part of the vehicle when the vehicle according to the embodiment travels in the DC power feeding section.
- FIG. 5 is an exemplary diagram showing an electrical connection relationship of each part of the vehicle when the vehicle according to the embodiment travels in a non-powered section.
- Such a vehicle includes a storage battery system equipped with a storage battery module that is charged while traveling in an AC power feeding section and a DC power feeding section and discharged while traveling in a non-powered section, and single-phase AC power from the AC system, DC system And a main circuit system for driving a main motor or the like based on DC power from the battery or DC power generated by discharging the storage battery module.
- the main circuit system and the storage battery system are each installed as a box-shaped structure in a limited equipment space located on or under the floor of the vehicle.
- a voltage adjustment between the main circuit system and the storage battery system such as a step-up chopper and a step-down chopper, is performed. It was necessary to provide a circuit.
- a step-down chopper for stepping down relatively large DC power supplied from a DC system is required for charging the storage battery module.
- a DC voltage due to discharge of the storage battery module is mainly used.
- a step-up chopper for boosting the operation of the circuit system is required.
- step-up chopper and the step-down chopper are relatively large structures, if both the step-up chopper and the step-down chopper are installed in the outfitting space, it is difficult to increase the number of storage battery modules installed in the outfitting space.
- FIG. 1 is an exemplary diagram showing a schematic configuration of a vehicle 100 according to the embodiment.
- the vehicle 100 includes a main circuit system 10 and a storage battery system 20.
- the main circuit system 10 operates by receiving supply of AC power or DC power.
- the storage battery system 20 is electrically connected to the main circuit system 10.
- the main circuit system 10 and the storage battery system 20 are installed in an outfitting space located on or under the floor of the vehicle 100.
- the main circuit system 10 includes an AC power supply device 11, a circuit breaker 12, a main transformer 13, a converter 14, an inverter 15, a p-side link 16 a, an n-side link 16 b, and a DC power supply device 17. .
- the p-side link 16a and the n-side link 16b are examples of “DC link”.
- AC power supply device 11 is configured to be connectable to AC overhead line 200 as an example of an AC system.
- the circuit breaker 12 is provided between the AC power supply device 11 and the main transformer 13.
- the circuit breaker 12 connects the AC overhead line 200 and the main circuit system 10 in order to prevent the overcurrent from flowing into the main circuit system 10 when an abnormality such as an accident that causes the overcurrent occurs. Cut off.
- the main transformer 13 transforms (steps down) the AC power supplied from the AC overhead line 200 for the vehicle 100 and outputs the AC power after the transformation to the converter 14.
- the negative potential point of the main transformer 13 is grounded to the rail 400 via the wheel 30.
- the converter 14 converts the AC power into DC power, and outputs the converted DC power to the p-side link 16a and the n-side link 16b.
- the p-side link 16 a and the n-side link 16 b are provided so as to connect the output side of the converter 14 and the input side of the inverter 15.
- the inverter 15 converts the DC power into AC power (three-phase) and outputs the converted AC power to the main motor 18. To do.
- the DC power supply device 17 is configured to be connectable to a DC overhead line 300 as an example of a DC system.
- the DC power supply device 17 is connected to a contact P1 on the p-side link 16a and a contact p2 on the n-side link 16b.
- the DC power supply device 17 rectifies the DC power from the DC overhead line 300, and outputs the rectified DC power to the p-side link 16a and the n-side link 16b.
- the storage battery system 20 includes a plurality of storage battery boxes 21. Although FIG. 1 illustrates a configuration in which the number of storage battery boxes 21 is two, the number of storage battery boxes 21 may be three or more. Each of the plurality of storage battery boxes 21 includes a storage battery module 22 that can be charged and discharged.
- the SOC State Of Charge
- the potential difference between the p-side link 16a and the n-side link 16b it is necessary to adjust the potential difference between the p-side link 16a and the n-side link 16b according to the information indicating charging / discharging.
- the step-up chopper is omitted and only the step-down chopper 40 is provided in the vehicle 100 so that a large number of storage battery modules 22 can be installed in a limited equipment space.
- the embodiment by providing a plurality of relay switches 50a to 50f in the vehicle 100, any of the cases (1) to (3) described above using only the step-down chopper 40 without providing the step-up chopper.
- the voltage adjustment between the main circuit system 10 and the storage battery system 20 can be performed.
- the relay switches 50a to 50f are examples of the “switching circuit unit”.
- the step-down chopper 40 is provided between the p-side link 16 a and the storage battery module 22.
- the step-down chopper 40 steps down the DC voltage input via the input wiring 40a connected to the contact P1 on the p-side link 16a for the storage battery module 22, and supplies the stepped-down DC voltage through the output wiring 40b. It is comprised so that output to the storage battery module 22 is possible.
- the output wiring 40b is connected to the p-side wiring 21a of the storage battery module 22.
- the relay switch 50 a is provided on the p-side wiring 21 a of the storage battery module 22.
- the relay switch 50 b is provided on the n-side wiring 21 b of the storage battery module 22.
- the relay switch 50c is provided on the connection wiring 21c that connects the p-side wiring 21a and the n-side wiring 21b.
- These three relay switches 50 a to 50 c are configured to be able to switch the series-parallel of the two storage battery modules 22. Specifically, when the relay switches 50a and 50b are in the on state and the relay switch 50c is in the off state, the two storage battery modules 22 are connected in parallel. Conversely, when the relay switches 50a and 50b are in the off state and the relay switch 50c is in the on state, the two storage battery modules 22 are connected in series.
- the relay switch 50 d is provided on the input wiring 40 a of the step-down chopper 40.
- the relay switch 50e is provided on the connection wiring 40c that connects the input wiring 40a and the output wiring 40b of the step-down chopper 40.
- the two relay switches 50d and 50e are configured to be switchable between connecting the p-side link 16a and the storage battery module 22 via the step-down chopper 40 or not using the step-down chopper 40. .
- the relay switch 50 d is on and the relay switch 50 e is off, the p-side link 16 a and the storage battery module 22 are connected via the step-down chopper 40.
- the relay switch 50d is in the off state and the relay switch 50e is in the on state, the p-side link 16a and the storage battery module 22 are connected without the step-down chopper 40.
- the relay switch 50f is provided between the storage battery module 22 and the n-side link 16b. Specifically, the relay switch 50f is provided on the connection wiring 21d that connects the n-side wiring 21b of the storage battery module 22 and the contact P2 on the n-side link 16b. When the relay switch 50f is on, the storage battery module 22 and the n-side link 16b are electrically connected. When the relay switch 50f is off, the storage battery module 22 and the n-side link 16b are connected. The electrical connection is interrupted.
- FIG. 2 is an exemplary diagram showing an internal configuration of the storage battery box 21.
- the storage battery box 21 includes a storage battery module 22, a BMS (Battery Management System) 23, and a contactor 24.
- the BMS 23 is an example of a “monitoring unit”.
- the storage battery module 22 includes a plurality of storage batteries 22a and a plurality of CMUs (Cell Monitoring Units) 22b provided to correspond to the plurality of storage batteries 22a on a one-to-one basis.
- the plurality of storage batteries 22a are connected in series with each other.
- Each of the plurality of CMUs 22b is configured to be able to detect the voltage value, temperature, and the like of the storage battery 22a corresponding to itself.
- the BMS 23 acquires information detected by the plurality of CMUs 22b, monitors the voltage value of the storage battery module 22 based on the acquired information, and calculates the SOC and the like. Then, the BMS 23 notifies the calculated SOC and the like to the main circuit system 10 via the communication interface 23a.
- One contactor 24 is provided for each of the p-side wiring 21 a and the n-side wiring 21 b of the storage battery module 22.
- the two contactors 24 are opened when an abnormality such as a failure occurs in the storage battery module 22, thereby suppressing the influence of the abnormality from reaching the main circuit system 10 side.
- FIG. 2 illustrates the configuration in which one storage battery module 22 is provided in one storage battery box 21, but a plurality of storage battery modules 22 may be provided in one storage battery box 21.
- the relay switches 50a to 50f are configured so that (1) the vehicle 100 travels in the AC power feeding section, (2) the vehicle 100 travels in the DC power feeding section, and (3) the vehicle 100 does not feed power.
- the electrical connection relationship among the p-side link 16a and the n-side link 16b, the storage battery module 22, and the step-down chopper 40 is switched.
- FIG. 3 is an exemplary diagram showing an electrical connection relationship of each part of the vehicle 100 in the case of (1).
- the main circuit system 10 operates by receiving the supply of the AC voltage from the AC overhead line 200, and the storage battery module 22 of the storage battery system 20 is charged by receiving the voltage supply from the main circuit system 10. .
- the relay switches 50a to 50f connect two storage battery modules 22 in series, the two storage battery modules 22 connected in series, and p
- the side link 16a and the n-side link 16b are directly connected without using the step-down chopper 40.
- the two storage battery modules 22 are connected in series when the relay switches 50a and 50b are turned off and the relay switch 50c is turned on.
- the relay switch 50d is turned off and the relay switch 50e is turned on
- the two storage battery modules 22 connected in series and the p-side link 16a are stepped down. It is directly connected without going through the chopper 40.
- the two storage battery modules 22 and the n-side link 16b are connected by turning on the relay switch 50f.
- the converter 14 of the main circuit system 10 matches the voltage of the two storage battery modules 22 connected in series on the basis of the monitoring result of the BMS 23 (see FIG. 2).
- DC power is output to the side link 16a and the n-side link 16b.
- the DC power output from the converter 14 is adjusted to a magnitude corresponding to the voltage and current of the two storage battery modules 22 connected in series, so that the two storage battery modules 22 are normally charged. be able to.
- the relay switch 50f is turned off.
- FIG. 4 is an exemplary diagram showing an electrical connection relationship of each part of the vehicle 100 in the case of (2).
- the main circuit system 10 operates by receiving a DC voltage supplied from the DC overhead line 300, and the storage battery module 22 of the storage battery system 20 is charged by receiving a voltage supply from the main circuit system 10. .
- the relay switches 50a to 50f connect two storage battery modules 22 in parallel, the two storage battery modules 22 connected in parallel, and p
- the side link 16 a and the n side link 16 b are connected via the step-down chopper 40.
- the converter 14 of the main circuit system 10 outputs to the two storage battery modules 22 from the p-side link 16a and the n-side link 16b based on the monitoring result of the BMS 23 (see FIG. 2).
- the direct current voltage is stepped down.
- the large voltage supplied from the DC overhead line 300 to the p-side link 16a and the n-side link 16b is stepped down by the step-down chopper 40 and has a magnitude corresponding to the voltage and current of the two storage battery modules 22 connected in parallel. Therefore, the two storage battery modules 22 can be charged normally.
- the relay switch 50f is turned off.
- FIG. 5 is an exemplary diagram showing an electrical connection relationship of each part of the vehicle 100 in the case of (3).
- the storage battery module 22 of the storage battery system 20 is discharged toward the main circuit system 10, and the main circuit system 10 operates by receiving supply of a DC voltage from the storage battery module 22.
- the relay switches 50a to 50f connect two storage battery modules 22 in series, the two storage battery modules 22 connected in series, and p
- the side link 16a and the n-side link 16b are directly connected without using the step-down chopper 40.
- the two storage battery modules 22 are connected in series when the relay switches 50a and 50b are turned off and the relay switch 50c is turned on.
- the relay switch 50d is turned off and the relay switch 50e is turned on
- the two storage battery modules 22 connected in series and the p-side link 16a are stepped down. It is directly connected without going through the chopper 40.
- the two storage battery modules 22 and the n-side link 16b are connected by turning on the relay switch 50f.
- the voltage on the storage battery system 20 side can be set to the operation of the main circuit system 10 without providing a boost chopper.
- the size can be adjusted to correspond to the voltage.
- the vehicle 100 includes the case where the vehicle 100 travels in the AC power feeding section (in the case of FIG. 3), the case where the vehicle 100 travels in the DC power feeding section (see FIG. 4), and the vehicle 100.
- the series-parallel connection relationship of the storage battery modules 22 is switched, and the p-side link 16a and the n-side link 16b Relay switches 50a to 50f for switching various connection relationships.
- voltage adjustment between the main circuit system 10 and the storage battery system 20 can be performed according to the situation by the step-down chopper 40 and the relay switches 50a to 50f without providing the step-up chopper.
- many storage battery modules 22 can be installed in the surplus space generated by omitting the boost chopper. That is, according to the embodiment, a large number of storage battery modules 22 can be installed in a limited outfitting space.
- the technology of the above-described embodiment is applicable to various vehicles such as a railway vehicle, a trolley bus, and an LRV (Light Rail Vehicle) as long as the vehicle can travel in an AC feeding section, a DC feeding section, and a non-feeding section.
- LRV Light Rail Vehicle
- an overhead wire AC overhead wire and DC overhead wire
- AC system and DC system electric power system
- a power system other than the overhead line such as a power feeding rail (so-called third rail) provided separately from the traveling rail may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Direct Current Feeding And Distribution (AREA)
- Inverter Devices (AREA)
Abstract
A vehicle according to an embodiment is equipped with a converter, an inverter, a pair of DC links, multiple storage cell modules, a step-down chopper, and a switching circuit unit. The converter is configured so as to be capable of converting single-phase AC power to DC power. The inverter is configured so as to be capable of converting DC power to three-phase AC power. The pair of DC links connect the converter and the inverter. The multiple storage cell modules are electrically connected to the pair of DC links. The step-down chopper is configured so as to be capable of stepping down DC power output from the positive-side DC link to the positive side of the multiple storage cell modules. The switching circuit unit switches the electrical connection relationship of the multiple storage cell modules between a series connection and a parallel connection, and switches the electrical connection relationship of the pair of DC links, the multiple storage cell modules, and the step-down chopper, for an AC power supply section, a DC power supply section, and a non-power-supply section.
Description
本発明の実施形態は、車両に関する。
Embodiments of the present invention relate to a vehicle.
従来、主電動機などを駆動するためのインバータやコンバータなどを含む主回路システムと、蓄電池モジュールが搭載される蓄電池システムとを備えた車両が知られている。
Conventionally, a vehicle including a main circuit system including an inverter and a converter for driving a main motor and the like and a storage battery system on which a storage battery module is mounted is known.
一般に、主回路システムおよび蓄電池システムは、車両の床上または床下に位置する限られた艤装スペースに設置される。従来から、限られた艤装スペースに設置する蓄電池モジュールの個数を可能な限り増やし、大容量化を図ることが望まれている。
Generally, the main circuit system and the storage battery system are installed in a limited equipment space located on or under the floor of the vehicle. Conventionally, it has been desired to increase the number of storage battery modules installed in a limited outfitting space as much as possible to increase the capacity.
実施形態による車両は、コンバータと、インバータと、一対の直流リンクと、複数の蓄電池モジュールと、降圧チョッパと、切替回路部とを備える。コンバータは、単相交流電力を直流電力に変換可能に構成される。インバータは、直流電力を三相交流電力に変換可能に構成される。一対の直流リンクは、コンバータの直流入出力側とインバータの直流入出力側とを接続する。複数の蓄電池モジュールは、一対の直流リンクに電気的に接続される。降圧チョッパは、一対の直流リンクのうち正側の直流リンクと複数の蓄電池モジュールの正側との間に設けられ、正側の直流リンクから複数の蓄電池モジュールの正側に出力される直流電力を降圧可能に構成される。切替回路部は、交流系統から単相交流電力の供給を受ける交流給電区間と、直流系統から直流電力の供給を受ける直流給電区間と、外部から電力の供給を受けない無給電区間とで、複数の蓄電池モジュールの電気的な接続関係を直列または並列に切り替えるとともに、一対の直流リンクと複数の蓄電池モジュールと降圧チョッパとの電気的な接続関係を切り替える。
The vehicle according to the embodiment includes a converter, an inverter, a pair of DC links, a plurality of storage battery modules, a step-down chopper, and a switching circuit unit. The converter is configured to convert single-phase AC power into DC power. The inverter is configured to be able to convert DC power into three-phase AC power. The pair of DC links connect the DC input / output side of the converter and the DC input / output side of the inverter. The plurality of storage battery modules are electrically connected to a pair of DC links. The step-down chopper is provided between the positive DC link of the pair of DC links and the positive side of the plurality of storage battery modules, and generates DC power output from the positive DC link to the positive side of the plurality of storage battery modules. It is configured to be able to step down. The switching circuit section includes a plurality of AC power supply sections that receive supply of single-phase AC power from the AC system, DC power supply sections that receive DC power supply from the DC system, and no power supply sections that do not receive power supply from the outside. The electrical connection relationship of the storage battery modules is switched in series or in parallel, and the electrical connection relationship between the pair of DC links, the plurality of storage battery modules, and the step-down chopper is switched.
以下、実施形態を図面に基づいて説明する。実施形態の技術は、交流系統から単相交流電力の供給を受ける交流給電区間と、直流系統から直流電力の供給を受ける直流給電区間と、外部から電力の供給を受けない無給電区間とを走行可能な車両に適用される。このような車両は、交流給電区間および直流給電区間を走行中に充電され、無給電区間を走行中に放電される蓄電池モジュールを搭載した蓄電池システムと、交流系統からの単相交流電力、直流系統からの直流電力、または蓄電池モジュールの放電による直流電力に基づき主電動機などを駆動する主回路システムとを備える。主回路システムおよび蓄電池システムは、それぞれ、車両の床上または床下に位置する限られた艤装スペースに、箱状の構造物として設置される。
Hereinafter, embodiments will be described with reference to the drawings. The technology of the embodiment travels in an AC power supply section that receives supply of single-phase AC power from an AC system, a DC power supply section that receives supply of DC power from a DC system, and a non-powered section that does not receive power supply from the outside. Applies to possible vehicles. Such a vehicle includes a storage battery system equipped with a storage battery module that is charged while traveling in an AC power feeding section and a DC power feeding section and discharged while traveling in a non-powered section, and single-phase AC power from the AC system, DC system And a main circuit system for driving a main motor or the like based on DC power from the battery or DC power generated by discharging the storage battery module. The main circuit system and the storage battery system are each installed as a box-shaped structure in a limited equipment space located on or under the floor of the vehicle.
上記のような構成を備えた従来の車両においては、蓄電池モジュールの充放電を正常に行うために、昇圧チョッパや降圧チョッパなどといった、主回路システムと蓄電池システムとの間の電圧調整を行うための回路を設ける必要があった。たとえば、直流給電区間では、直流系統から供給される比較的大きい直流電力を蓄電池モジュールの充電用に降圧するための降圧チョッパが必要であり、無給電区間では、蓄電池モジュールの放電による直流電圧を主回路システムの動作用に昇圧するための昇圧チョッパが必要であった。しかしながら、昇圧チョッパおよび降圧チョッパは、比較的サイズの大きい構造物であるため、昇圧チョッパおよび降圧チョッパの両方を艤装スペースに設置すると、当該艤装スペースに設置する蓄電池モジュールの個数を増やしにくい。
In a conventional vehicle having the above-described configuration, in order to normally charge and discharge the storage battery module, a voltage adjustment between the main circuit system and the storage battery system, such as a step-up chopper and a step-down chopper, is performed. It was necessary to provide a circuit. For example, in a DC power supply section, a step-down chopper for stepping down relatively large DC power supplied from a DC system is required for charging the storage battery module. In a non-power supply section, a DC voltage due to discharge of the storage battery module is mainly used. A step-up chopper for boosting the operation of the circuit system is required. However, since the step-up chopper and the step-down chopper are relatively large structures, if both the step-up chopper and the step-down chopper are installed in the outfitting space, it is difficult to increase the number of storage battery modules installed in the outfitting space.
そこで、実施形態では、以下で説明するような構成により、昇圧チョッパを省略し、限られた艤装スペースにより多くの蓄電池モジュールを設置することを可能にする。
Therefore, in the embodiment, with the configuration described below, it is possible to omit the step-up chopper and install a large number of storage battery modules in a limited equipment space.
図1は、実施形態による車両100の概略的構成を示した例示図である。図1に示すように、車両100は、主回路システム10と、蓄電池システム20とを備える。主回路システム10は、交流電力または直流電力の供給を受けて動作する。また、蓄電池システム20は、主回路システム10に電気的に接続されている。これらの主回路システム10および蓄電池システム20は、車両100の床上または床下に位置する艤装スペースに設置される。
FIG. 1 is an exemplary diagram showing a schematic configuration of a vehicle 100 according to the embodiment. As shown in FIG. 1, the vehicle 100 includes a main circuit system 10 and a storage battery system 20. The main circuit system 10 operates by receiving supply of AC power or DC power. The storage battery system 20 is electrically connected to the main circuit system 10. The main circuit system 10 and the storage battery system 20 are installed in an outfitting space located on or under the floor of the vehicle 100.
主回路システム10は、交流給電装置11と、遮断器12と、主変圧器13と、コンバータ14と、インバータ15と、p側リンク16aと、n側リンク16bと、直流給電装置17とを備える。なお、p側リンク16aおよびn側リンク16bは、「直流リンク」の一例である。
The main circuit system 10 includes an AC power supply device 11, a circuit breaker 12, a main transformer 13, a converter 14, an inverter 15, a p-side link 16 a, an n-side link 16 b, and a DC power supply device 17. . The p-side link 16a and the n-side link 16b are examples of “DC link”.
交流給電装置11は、交流系統の一例としての交流架線200に接続可能に構成される。また、遮断器12は、交流給電装置11と主変圧器13との間に設けられる。遮断器12は、過電流の原因となるような事故などの異常が発生した場合に、過電流が主回路システム10に流れるのを防止するため、交流架線200と主回路システム10との接続を遮断する。
AC power supply device 11 is configured to be connectable to AC overhead line 200 as an example of an AC system. The circuit breaker 12 is provided between the AC power supply device 11 and the main transformer 13. The circuit breaker 12 connects the AC overhead line 200 and the main circuit system 10 in order to prevent the overcurrent from flowing into the main circuit system 10 when an abnormality such as an accident that causes the overcurrent occurs. Cut off.
主変圧器13は、交流架線200から供給される交流電力を車両100用に変圧(降圧)し、変圧後の交流電力をコンバータ14に出力する。なお、主変圧器13の負側の電位点は、車輪30を介してレール400に接地される。
The main transformer 13 transforms (steps down) the AC power supplied from the AC overhead line 200 for the vehicle 100 and outputs the AC power after the transformation to the converter 14. The negative potential point of the main transformer 13 is grounded to the rail 400 via the wheel 30.
コンバータ14は、主変圧器13から交流電力(単相)が入力された場合に、当該交流電力を直流電力に変換し、変換後の直流電力をp側リンク16aおよびn側リンク16bに出力する。p側リンク16aおよびn側リンク16bは、コンバータ14の出力側とインバータ15の入力側とを接続するように設けられる。インバータ15は、p側リンク16aおよびn側リンク16bを介して直流電力が入力された場合に、当該直流電力を交流電力(三相)に変換し、変換後の交流電力を主電動機18に出力する。
When the AC power (single phase) is input from the main transformer 13, the converter 14 converts the AC power into DC power, and outputs the converted DC power to the p-side link 16a and the n-side link 16b. . The p-side link 16 a and the n-side link 16 b are provided so as to connect the output side of the converter 14 and the input side of the inverter 15. When DC power is input via the p-side link 16a and the n-side link 16b, the inverter 15 converts the DC power into AC power (three-phase) and outputs the converted AC power to the main motor 18. To do.
直流給電装置17は、直流系統の一例としての直流架線300に接続可能に構成される。また、直流給電装置17は、p側リンク16a上の接点P1と、n側リンク16b上の接点p2とに接続されている。直流給電装置17は、直流架線300に接続された場合、当該直流架線300からの直流電力を整流し、整流後の直流電力をp側リンク16aおよびn側リンク16bに出力する。
The DC power supply device 17 is configured to be connectable to a DC overhead line 300 as an example of a DC system. The DC power supply device 17 is connected to a contact P1 on the p-side link 16a and a contact p2 on the n-side link 16b. When connected to the DC overhead line 300, the DC power supply device 17 rectifies the DC power from the DC overhead line 300, and outputs the rectified DC power to the p-side link 16a and the n-side link 16b.
蓄電池システム20は、複数の蓄電池箱21を備える。なお、図1には、蓄電池箱21の個数が2個である構成が例示されているが、蓄電池箱21の個数は3個以上であってもよい。複数の蓄電池箱21は、それぞれ、充放電可能な蓄電池モジュール22を備える。
The storage battery system 20 includes a plurality of storage battery boxes 21. Although FIG. 1 illustrates a configuration in which the number of storage battery boxes 21 is two, the number of storage battery boxes 21 may be three or more. Each of the plurality of storage battery boxes 21 includes a storage battery module 22 that can be charged and discharged.
ところで、上述したような構成では、車両100を正常に駆動するために、主回路システム10と蓄電池システム20との間の電圧調整を行う必要がある。より具体的に、蓄電池モジュール22の充放電を正常に行うためには、(1)主回路システム10が交流架線200からの交流電力に基づいて動作する場合(すなわち車両100が交流給電区間を走行する場合)と、(2)主回路システム10が直流架線300からの直流電力に基づいて動作する場合(すなわち車両100が直流給電区間を走行する場合)と、(3)主回路システム10が蓄電池モジュール22からの直流電力に基づいて動作する場合(すなわち車両100が無給電区間を走行する場合)とのいずれの場合においても、蓄電池モジュール22のSOC(State Of Charge)、もしくは電圧や電流などの充放電を示す情報に合わせて、p側リンク16aとn側リンク16bとの間の電位差を調整する必要がある。
Incidentally, in the configuration as described above, it is necessary to adjust the voltage between the main circuit system 10 and the storage battery system 20 in order to drive the vehicle 100 normally. More specifically, in order to normally charge and discharge the storage battery module 22, (1) when the main circuit system 10 operates based on AC power from the AC overhead line 200 (that is, the vehicle 100 travels in the AC power feeding section). (2) when the main circuit system 10 operates based on the DC power from the DC overhead line 300 (that is, when the vehicle 100 travels in the DC power feeding section), and (3) when the main circuit system 10 is a storage battery. In either case of operating based on DC power from the module 22 (that is, when the vehicle 100 travels in a non-powered section), the SOC (State Of Charge) of the storage battery module 22, or voltage, current, etc. It is necessary to adjust the potential difference between the p-side link 16a and the n-side link 16b according to the information indicating charging / discharging.
このような電圧調整を実現するため、従来では、上述したような昇圧チョッパおよび降圧チョッパといった比較的サイズの大きい構造物を、限られた艤装スペースに設置する必要があった。一方、従来では、艤装スペースに設置する蓄電池モジュール22の個数を可能な限り増やし、大容量化を図りたいという要望があった。
In order to realize such voltage adjustment, conventionally, it has been necessary to install relatively large structures such as the above-described step-up chopper and step-down chopper in a limited equipment space. On the other hand, conventionally, there has been a demand for increasing the number of storage battery modules 22 installed in the outfitting space as much as possible to increase the capacity.
そこで、実施形態では、図1に示すように、昇圧チョッパを省略して降圧チョッパ40のみを車両100に設けることで、限られた艤装スペースにより多くの蓄電池モジュール22を設置できるようにした。また、実施形態では、複数のリレースイッチ50a~50fを車両100にさらに設けることで、昇圧チョッパを設けることなく、降圧チョッパ40のみを用いて、前述した(1)~(3)のいずれの場合においても、主回路システム10と蓄電池システム20との間の電圧調整を行うことができるようにした。
Therefore, in the embodiment, as shown in FIG. 1, the step-up chopper is omitted and only the step-down chopper 40 is provided in the vehicle 100 so that a large number of storage battery modules 22 can be installed in a limited equipment space. Further, in the embodiment, by providing a plurality of relay switches 50a to 50f in the vehicle 100, any of the cases (1) to (3) described above using only the step-down chopper 40 without providing the step-up chopper. The voltage adjustment between the main circuit system 10 and the storage battery system 20 can be performed.
ここで、降圧チョッパ40およびリレースイッチ50a~50fの構成について説明する。なお、リレースイッチ50a~50fは、「切替回路部」の一例である。
Here, the configuration of the step-down chopper 40 and the relay switches 50a to 50f will be described. The relay switches 50a to 50f are examples of the “switching circuit unit”.
降圧チョッパ40は、p側リンク16aと蓄電池モジュール22との間に設けられている。降圧チョッパ40は、p側リンク16a上の接点P1に接続された入力配線40aを介して入力される直流電圧を蓄電池モジュール22用に降圧し、降圧後の直流電圧を、出力配線40bを介して蓄電池モジュール22に出力可能に構成されている。なお、出力配線40bは、蓄電池モジュール22のp側配線21aに接続されている。
The step-down chopper 40 is provided between the p-side link 16 a and the storage battery module 22. The step-down chopper 40 steps down the DC voltage input via the input wiring 40a connected to the contact P1 on the p-side link 16a for the storage battery module 22, and supplies the stepped-down DC voltage through the output wiring 40b. It is comprised so that output to the storage battery module 22 is possible. The output wiring 40b is connected to the p-side wiring 21a of the storage battery module 22.
リレースイッチ50aは、蓄電池モジュール22のp側配線21a上に設けられている。リレースイッチ50bは、蓄電池モジュール22のn側配線21b上に設けられている。リレースイッチ50cは、p側配線21aとn側配線21bとを接続する接続配線21c上に設けられている。これら3個のリレースイッチ50a~50cは、2個の蓄電池モジュール22の直並列を切り替え可能に構成されている。具体的に、リレースイッチ50aおよび50bがオン状態で、かつリレースイッチ50cがオフ状態となっている場合、2個の蓄電池モジュール22が並列に接続される。逆に、リレースイッチ50aおよび50bがオフ状態で、かつリレースイッチ50cがオン状態となっている場合、2個の蓄電池モジュール22が直列に接続される。
The relay switch 50 a is provided on the p-side wiring 21 a of the storage battery module 22. The relay switch 50 b is provided on the n-side wiring 21 b of the storage battery module 22. The relay switch 50c is provided on the connection wiring 21c that connects the p-side wiring 21a and the n-side wiring 21b. These three relay switches 50 a to 50 c are configured to be able to switch the series-parallel of the two storage battery modules 22. Specifically, when the relay switches 50a and 50b are in the on state and the relay switch 50c is in the off state, the two storage battery modules 22 are connected in parallel. Conversely, when the relay switches 50a and 50b are in the off state and the relay switch 50c is in the on state, the two storage battery modules 22 are connected in series.
また、リレースイッチ50dは、降圧チョッパ40の入力配線40a上に設けられている。リレースイッチ50eは、降圧チョッパ40の入力配線40aと出力配線40bとを接続する接続配線40c上に設けられている。これら2個のリレースイッチ50dおよび50eは、p側リンク16aと蓄電池モジュール22とを、降圧チョッパ40を介して接続するか、降圧チョッパ40を介さずに接続するかを切り替え可能に構成されている。具体的に、リレースイッチ50dがオン状態で、かつリレースイッチ50eがオフ状態となっている場合、p側リンク16aと蓄電池モジュール22とが降圧チョッパ40を介して接続される。逆に、リレースイッチ50dがオフ状態で、かつリレースイッチ50eがオン状態となっている場合、p側リンク16aと蓄電池モジュール22とが降圧チョッパ40を介さずに接続される。
Further, the relay switch 50 d is provided on the input wiring 40 a of the step-down chopper 40. The relay switch 50e is provided on the connection wiring 40c that connects the input wiring 40a and the output wiring 40b of the step-down chopper 40. The two relay switches 50d and 50e are configured to be switchable between connecting the p-side link 16a and the storage battery module 22 via the step-down chopper 40 or not using the step-down chopper 40. . Specifically, when the relay switch 50 d is on and the relay switch 50 e is off, the p-side link 16 a and the storage battery module 22 are connected via the step-down chopper 40. Conversely, when the relay switch 50d is in the off state and the relay switch 50e is in the on state, the p-side link 16a and the storage battery module 22 are connected without the step-down chopper 40.
なお、リレースイッチ50fは、蓄電池モジュール22とn側リンク16bとの間に設けられている。具体的に、リレースイッチ50fは、蓄電池モジュール22のn側配線21bとn側リンク16b上の接点P2とを接続する接続配線21d上に設けられている。リレースイッチ50fがオン状態となっている場合、蓄電池モジュール22とn側リンク16bとが電気的に接続され、リレースイッチ50fがオフ状態となっている場合、蓄電池モジュール22とn側リンク16bとの電気的な接続が遮断される。
The relay switch 50f is provided between the storage battery module 22 and the n-side link 16b. Specifically, the relay switch 50f is provided on the connection wiring 21d that connects the n-side wiring 21b of the storage battery module 22 and the contact P2 on the n-side link 16b. When the relay switch 50f is on, the storage battery module 22 and the n-side link 16b are electrically connected. When the relay switch 50f is off, the storage battery module 22 and the n-side link 16b are connected. The electrical connection is interrupted.
次に、図2を参照して、蓄電池箱21の内部構成について説明する。図2は、蓄電池箱21の内部構成を示した例示図である。図2に示すように、蓄電池箱21は、蓄電池モジュール22と、BMS(Battery Management System)23と、コンタクタ24とを備える。BMS23は、「監視部」の一例である。
Next, the internal configuration of the storage battery box 21 will be described with reference to FIG. FIG. 2 is an exemplary diagram showing an internal configuration of the storage battery box 21. As shown in FIG. 2, the storage battery box 21 includes a storage battery module 22, a BMS (Battery Management System) 23, and a contactor 24. The BMS 23 is an example of a “monitoring unit”.
蓄電池モジュール22は、複数の蓄電池22aと、これら複数の蓄電池22aに1対1で対応するように設けられた複数のCMU(Cell Monitoring Unit)22bとを備える。複数の蓄電池22aは、互いに直列に接続されている。また、複数のCMU22bは、それぞれ、自身に対応する蓄電池22aの電圧値や温度などを検出可能に構成されている。
The storage battery module 22 includes a plurality of storage batteries 22a and a plurality of CMUs (Cell Monitoring Units) 22b provided to correspond to the plurality of storage batteries 22a on a one-to-one basis. The plurality of storage batteries 22a are connected in series with each other. Each of the plurality of CMUs 22b is configured to be able to detect the voltage value, temperature, and the like of the storage battery 22a corresponding to itself.
BMS23は、複数のCMU22bが検出した情報を取得し、取得した情報に基づいて、蓄電池モジュール22の電圧値を監視し、SOCなどを算出する。そして、BMS23は、算出したSOCなどを、通信インターフェース23aを介して主回路システム10に通知する。
The BMS 23 acquires information detected by the plurality of CMUs 22b, monitors the voltage value of the storage battery module 22 based on the acquired information, and calculates the SOC and the like. Then, the BMS 23 notifies the calculated SOC and the like to the main circuit system 10 via the communication interface 23a.
コンタクタ24は、蓄電池モジュール22のp側配線21aとn側配線21bとに1個ずつ設けられている。これら2個のコンタクタ24は、蓄電池モジュール22に故障などの異常が発生した場合に開放状態となることで、当該異常による影響が主回路システム10側に及ぶのを抑制する。
One contactor 24 is provided for each of the p-side wiring 21 a and the n-side wiring 21 b of the storage battery module 22. The two contactors 24 are opened when an abnormality such as a failure occurs in the storage battery module 22, thereby suppressing the influence of the abnormality from reaching the main circuit system 10 side.
なお、図2には、1個の蓄電池箱21に1個の蓄電池モジュール22が設けられた構成を例示したが、1個の蓄電池箱21に複数の蓄電池モジュール22が設けられてもよい。
2 illustrates the configuration in which one storage battery module 22 is provided in one storage battery box 21, but a plurality of storage battery modules 22 may be provided in one storage battery box 21.
次に、図3~図5を参照して、実施形態によるリレースイッチ50a~50fの動作を説明する。前述したように、リレースイッチ50a~50fは、(1)車両100が交流給電区間を走行する場合と、(2)車両100が直流給電区間を走行する場合と、(3)車両100が無給電区間を走行する場合とのそれぞれの場合で、p側リンク16aおよびn側リンク16bと蓄電池モジュール22と降圧チョッパ40との電気的な接続関係の切り替えを行う。
Next, the operation of the relay switches 50a to 50f according to the embodiment will be described with reference to FIGS. As described above, the relay switches 50a to 50f are configured so that (1) the vehicle 100 travels in the AC power feeding section, (2) the vehicle 100 travels in the DC power feeding section, and (3) the vehicle 100 does not feed power. In each case of traveling in a section, the electrical connection relationship among the p-side link 16a and the n-side link 16b, the storage battery module 22, and the step-down chopper 40 is switched.
実施例(1)車両100が交流給電区間を走行する場合
まず、図3を参照して、(1)車両100が交流給電区間を走行する場合におけるリレースイッチ50a~50fの動作を説明する。図3は、(1)の場合における車両100の各部の電気的な接続関係を示した例示図である。(1)の場合、主回路システム10は、交流架線200からの交流電圧の供給を受けて動作し、蓄電池システム20の蓄電池モジュール22は、主回路システム10からの電圧供給を受けて充電される。 Embodiment (1) WhenVehicle 100 Travels in an AC Power Supply Section First, the operation of relay switches 50a to 50f when (1) the vehicle 100 travels in an AC power supply section will be described with reference to FIG. FIG. 3 is an exemplary diagram showing an electrical connection relationship of each part of the vehicle 100 in the case of (1). In the case of (1), the main circuit system 10 operates by receiving the supply of the AC voltage from the AC overhead line 200, and the storage battery module 22 of the storage battery system 20 is charged by receiving the voltage supply from the main circuit system 10. .
まず、図3を参照して、(1)車両100が交流給電区間を走行する場合におけるリレースイッチ50a~50fの動作を説明する。図3は、(1)の場合における車両100の各部の電気的な接続関係を示した例示図である。(1)の場合、主回路システム10は、交流架線200からの交流電圧の供給を受けて動作し、蓄電池システム20の蓄電池モジュール22は、主回路システム10からの電圧供給を受けて充電される。 Embodiment (1) When
図3に示すように、実施形態によるリレースイッチ50a~50fは、(1)の場合、2個の蓄電池モジュール22を直列に接続し、当該直列に接続された2個の蓄電池モジュール22と、p側リンク16aおよびn側リンク16bとを、降圧チョッパ40を介さずに直接接続する。
As shown in FIG. 3, in the case of (1), the relay switches 50a to 50f according to the embodiment connect two storage battery modules 22 in series, the two storage battery modules 22 connected in series, and p The side link 16a and the n-side link 16b are directly connected without using the step-down chopper 40.
より具体的に、(1)の場合では、リレースイッチ50aおよび50bがオフ状態で、かつリレースイッチ50cがオン状態となることで、2個の蓄電池モジュール22が直列に接続される。また、(1)の場合では、リレースイッチ50dがオフ状態となり、かつリレースイッチ50eがオン状態となることで、直列に接続された2個の蓄電池モジュール22と、p側リンク16aとが、降圧チョッパ40を介さずに直接接続される。さらに、(1)の場合では、リレースイッチ50fがオン状態となることで、2個の蓄電池モジュール22と、n側リンク16bとが接続される。
More specifically, in the case of (1), the two storage battery modules 22 are connected in series when the relay switches 50a and 50b are turned off and the relay switch 50c is turned on. In the case of (1), when the relay switch 50d is turned off and the relay switch 50e is turned on, the two storage battery modules 22 connected in series and the p-side link 16a are stepped down. It is directly connected without going through the chopper 40. Furthermore, in the case of (1), the two storage battery modules 22 and the n-side link 16b are connected by turning on the relay switch 50f.
ここで、(1)の場合では、主回路システム10のコンバータ14は、BMS23(図2参照)の監視結果に基づいて、直列に接続された2個の蓄電池モジュール22の電圧に合わせて、p側リンク16aおよびn側リンク16bに直流電力を出力する。これにより、コンバータ14から出力される直流電力が、直列に接続された2個の蓄電池モジュール22の電圧、電流に対応した大きさに調整されるので、2個の蓄電池モジュール22を正常に充電することができる。なお、(1)の場合においては、蓄電池モジュール22の充電が終了すると、リレースイッチ50fがオフ状態となる。
Here, in the case of (1), the converter 14 of the main circuit system 10 matches the voltage of the two storage battery modules 22 connected in series on the basis of the monitoring result of the BMS 23 (see FIG. 2). DC power is output to the side link 16a and the n-side link 16b. As a result, the DC power output from the converter 14 is adjusted to a magnitude corresponding to the voltage and current of the two storage battery modules 22 connected in series, so that the two storage battery modules 22 are normally charged. be able to. In the case of (1), when charging of the storage battery module 22 is completed, the relay switch 50f is turned off.
実施例(2)車両100が直流給電区間を走行する場合
次に、図4を参照して、(2)車両100が直流給電区間を走行する場合におけるリレースイッチ50a~50fの動作を説明する。図4は、(2)の場合における車両100の各部の電気的な接続関係を示した例示図である。(2)の場合、主回路システム10は、直流架線300からの直流電圧の供給を受けて動作し、蓄電池システム20の蓄電池モジュール22は、主回路システム10からの電圧供給を受けて充電される。 Example (2) WhenVehicle 100 Runs in DC Power Supply Section Next, the operation of relay switches 50a to 50f when (2) the vehicle 100 travels in a DC power supply section will be described with reference to FIG. FIG. 4 is an exemplary diagram showing an electrical connection relationship of each part of the vehicle 100 in the case of (2). In the case of (2), the main circuit system 10 operates by receiving a DC voltage supplied from the DC overhead line 300, and the storage battery module 22 of the storage battery system 20 is charged by receiving a voltage supply from the main circuit system 10. .
次に、図4を参照して、(2)車両100が直流給電区間を走行する場合におけるリレースイッチ50a~50fの動作を説明する。図4は、(2)の場合における車両100の各部の電気的な接続関係を示した例示図である。(2)の場合、主回路システム10は、直流架線300からの直流電圧の供給を受けて動作し、蓄電池システム20の蓄電池モジュール22は、主回路システム10からの電圧供給を受けて充電される。 Example (2) When
図4に示すように、実施形態によるリレースイッチ50a~50fは、(2)の場合、2個の蓄電池モジュール22を並列に接続し、当該並列に接続された2個の蓄電池モジュール22と、p側リンク16aおよびn側リンク16bとを、降圧チョッパ40を介して接続する。
As shown in FIG. 4, in the case of (2), the relay switches 50a to 50f according to the embodiment connect two storage battery modules 22 in parallel, the two storage battery modules 22 connected in parallel, and p The side link 16 a and the n side link 16 b are connected via the step-down chopper 40.
より具体的に、(2)の場合では、リレースイッチ50aおよび50bがオン状態で、かつリレースイッチ50cがオフ状態となることで、2個の蓄電池モジュール22が並列に接続される。さらに、(2)の場合では、リレースイッチ50dがオン状態となり、かつリレースイッチ50eがオフ状態となることで、並列に接続された2個の蓄電池モジュール22と、p側リンク16aとが、降圧チョッパ40を介して接続される。さらに、(2)の場合では、リレースイッチ50fがオン状態となることで、2個の蓄電池モジュール22と、n側リンク16bとが接続される。
More specifically, in the case of (2), when the relay switches 50a and 50b are turned on and the relay switch 50c is turned off, the two storage battery modules 22 are connected in parallel. Furthermore, in the case of (2), when the relay switch 50d is turned on and the relay switch 50e is turned off, the two storage battery modules 22 connected in parallel and the p-side link 16a are stepped down. It is connected via the chopper 40. Furthermore, in the case of (2), the two storage battery modules 22 and the n-side link 16b are connected by turning on the relay switch 50f.
ここで、(2)の場合では、主回路システム10のコンバータ14は、BMS23(図2参照)の監視結果に基づいて、p側リンク16aおよびn側リンク16bから2個の蓄電池モジュール22に出力される直流電圧を降圧する。これにより、直流架線300からp側リンク16aおよびn側リンク16bに供給される大電圧が、降圧チョッパ40によって降圧され、並列に接続された2個の蓄電池モジュール22の電圧、電流に対応した大きさに調整されるので、2個の蓄電池モジュール22を正常に充電することができる。なお、上述した(1)の場合と同様に、(2)の場合においても、蓄電池モジュール22の充電が終了すると、リレースイッチ50fがオフ状態となる。
Here, in the case of (2), the converter 14 of the main circuit system 10 outputs to the two storage battery modules 22 from the p-side link 16a and the n-side link 16b based on the monitoring result of the BMS 23 (see FIG. 2). The direct current voltage is stepped down. As a result, the large voltage supplied from the DC overhead line 300 to the p-side link 16a and the n-side link 16b is stepped down by the step-down chopper 40 and has a magnitude corresponding to the voltage and current of the two storage battery modules 22 connected in parallel. Therefore, the two storage battery modules 22 can be charged normally. As in the case of (1) described above, also in the case of (2), when charging of the storage battery module 22 is completed, the relay switch 50f is turned off.
実施例(3)車両100が無給電区間を走行する場合
次に、図5を参照して、(3)車両100が無給電区間を走行する場合におけるリレースイッチ50a~50fの動作を説明する。図5は、(3)の場合における車両100の各部の電気的な接続関係を示した例示図である。(3)の場合、蓄電池システム20の蓄電池モジュール22は、主回路システム10に向けて放電し、主回路システム10は、蓄電池モジュール22からの直流電圧の供給を受けて動作する。 Example (3) WhenVehicle 100 Travels in a Non-Powered Section Next, with reference to FIG. 5, the operation of relay switches 50a to 50f when (3) the vehicle 100 travels in a non-powered section will be described. FIG. 5 is an exemplary diagram showing an electrical connection relationship of each part of the vehicle 100 in the case of (3). In the case of (3), the storage battery module 22 of the storage battery system 20 is discharged toward the main circuit system 10, and the main circuit system 10 operates by receiving supply of a DC voltage from the storage battery module 22.
次に、図5を参照して、(3)車両100が無給電区間を走行する場合におけるリレースイッチ50a~50fの動作を説明する。図5は、(3)の場合における車両100の各部の電気的な接続関係を示した例示図である。(3)の場合、蓄電池システム20の蓄電池モジュール22は、主回路システム10に向けて放電し、主回路システム10は、蓄電池モジュール22からの直流電圧の供給を受けて動作する。 Example (3) When
図5に示すように、実施形態によるリレースイッチ50a~50fは、(3)の場合、2個の蓄電池モジュール22を直列に接続し、当該直列に接続された2個の蓄電池モジュール22と、p側リンク16aおよびn側リンク16bとを、降圧チョッパ40を介さずに直接接続する。
As shown in FIG. 5, in the case of (3), the relay switches 50a to 50f according to the embodiment connect two storage battery modules 22 in series, the two storage battery modules 22 connected in series, and p The side link 16a and the n-side link 16b are directly connected without using the step-down chopper 40.
より具体的に、(3)の場合では、リレースイッチ50aおよび50bがオフ状態で、かつリレースイッチ50cがオン状態となることで、2個の蓄電池モジュール22が直列に接続される。また、(3)の場合では、リレースイッチ50dがオフ状態となり、かつリレースイッチ50eがオン状態となることで、直列に接続された2個の蓄電池モジュール22と、p側リンク16aとが、降圧チョッパ40を介さずに直接接続される。さらに、(3)の場合では、リレースイッチ50fがオン状態となることで、2個の蓄電池モジュール22と、n側リンク16bとが接続される。これらの結果、2個の蓄電池モジュール22が直列に接続されることで、蓄電池システム20側の電圧が大きくなるので、昇圧チョッパを設けることなく、蓄電池システム20側の電圧を主回路システム10の動作電圧に対応した大きさに調整することができる。
More specifically, in the case of (3), the two storage battery modules 22 are connected in series when the relay switches 50a and 50b are turned off and the relay switch 50c is turned on. In the case of (3), when the relay switch 50d is turned off and the relay switch 50e is turned on, the two storage battery modules 22 connected in series and the p-side link 16a are stepped down. It is directly connected without going through the chopper 40. Furthermore, in the case of (3), the two storage battery modules 22 and the n-side link 16b are connected by turning on the relay switch 50f. As a result, since the two storage battery modules 22 are connected in series to increase the voltage on the storage battery system 20 side, the voltage on the storage battery system 20 side can be set to the operation of the main circuit system 10 without providing a boost chopper. The size can be adjusted to correspond to the voltage.
以上説明したように、実施形態による車両100は、車両100が交流給電区間を走行する場合(図3の場合)と、車両100が直流給電区間を走行する場合(図4参照)と、車両100が無給電区間を走行する場合(図5参照)とで、蓄電池モジュール22の直並列の接続関係を切り替えるとともに、p側リンク16aおよびn側リンク16bと蓄電池モジュール22と降圧チョッパ40との電気的な接続関係を切り替えるリレースイッチ50a~50fを備えている。これにより、昇圧チョッパを設けることなく、降圧チョッパ40とリレースイッチ50a~50fとによって、状況に応じて、主回路システム10と蓄電池システム20との間の電圧調整を行うことができる。この結果、昇圧チョッパの省略によって生じる余剰スペースにより多くの蓄電池モジュール22を設置することができる。すなわち、実施形態によれば、限られた艤装スペースにより多くの蓄電池モジュール22を設置することができる。
As described above, the vehicle 100 according to the embodiment includes the case where the vehicle 100 travels in the AC power feeding section (in the case of FIG. 3), the case where the vehicle 100 travels in the DC power feeding section (see FIG. 4), and the vehicle 100. When the vehicle travels in a non-powered section (see FIG. 5), the series-parallel connection relationship of the storage battery modules 22 is switched, and the p-side link 16a and the n-side link 16b Relay switches 50a to 50f for switching various connection relationships. Thereby, voltage adjustment between the main circuit system 10 and the storage battery system 20 can be performed according to the situation by the step-down chopper 40 and the relay switches 50a to 50f without providing the step-up chopper. As a result, many storage battery modules 22 can be installed in the surplus space generated by omitting the boost chopper. That is, according to the embodiment, a large number of storage battery modules 22 can be installed in a limited outfitting space.
上述した実施形態の技術は、交流給電区間、直流給電区間、および無給電区間を走行可能な車両であれば、鉄道車両やトロリーバスやLRV(Light Rail Vehicle)などといった各種車両に適用可能である。また、上述した実施形態では、電力系統(交流系統および直流系統)として架線(交流架線および直流架線)が用いられる例を示した。しかしながら、実施形態では、たとえば走行用のレールとは別個に設けられる給電用のレール(いわゆる第三軌条)などといった、架線以外の電力系統が用いられてもよい。
The technology of the above-described embodiment is applicable to various vehicles such as a railway vehicle, a trolley bus, and an LRV (Light Rail Vehicle) as long as the vehicle can travel in an AC feeding section, a DC feeding section, and a non-feeding section. . Moreover, in embodiment mentioned above, the example in which an overhead wire (AC overhead wire and DC overhead wire) was used as an electric power system (AC system and DC system) was shown. However, in the embodiment, for example, a power system other than the overhead line such as a power feeding rail (so-called third rail) provided separately from the traveling rail may be used.
以上、本発明の実施形態を説明したが、上記実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上記実施形態は、様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
As mentioned above, although embodiment of this invention was described, the said embodiment is an example to the last, Comprising: It is not intending limiting the range of invention. The above embodiment can be implemented in various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The above-described embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.
Claims (7)
- 単相交流電力を直流電力に変換可能なコンバータと、
直流電力を三相交流電力に変換可能なインバータと、
前記コンバータの直流入出力側と前記インバータの直流入出力側とを接続する一対の直流リンクと、
前記一対の直流リンクに電気的に接続される複数の蓄電池モジュールと、
前記一対の直流リンクのうち正側の直流リンクと前記複数の蓄電池モジュールの正側との間に設けられ、前記正側の直流リンクから前記複数の蓄電池モジュールの正側に出力される直流電力を降圧可能な降圧チョッパと、
交流系統から単相交流電力の供給を受ける交流給電区間と、直流系統から直流電力の供給を受ける直流給電区間と、外部から電力の供給を受けない無給電区間とで、前記複数の蓄電池モジュールの電気的な接続関係を直列または並列に切り替えるとともに、前記一対の直流リンクと前記複数の蓄電池モジュールと前記降圧チョッパとの電気的な接続関係を切り替える切替回路部とを備える、車両。 A converter capable of converting single-phase AC power into DC power;
An inverter capable of converting DC power into three-phase AC power;
A pair of DC links connecting the DC input / output side of the converter and the DC input / output side of the inverter;
A plurality of storage battery modules electrically connected to the pair of DC links;
DC power that is provided between the positive DC link of the pair of DC links and the positive side of the plurality of storage battery modules, and that outputs DC power from the positive DC link to the positive side of the storage battery modules. A step-down chopper capable of stepping down,
An AC power feeding section that receives single-phase AC power from the AC system, a DC power feeding section that receives DC power from the DC system, and a non-powered section that does not receive power from the outside, A vehicle comprising: a switching circuit unit that switches an electrical connection relationship between the pair of DC links, the plurality of storage battery modules, and the step-down chopper while switching an electrical connection relationship in series or in parallel. - 前記コンバータの交流入出力側に設けられ、前記車両が前記交流給電区間を走行する場合に前記交流系統に接続される交流給電装置をさらに備え、
前記切替回路部は、前記交流給電装置が前記交流系統に接続され、前記交流系統からの単相交流電力に基づき複数の蓄電池モジュールが充電される場合、前記複数の蓄電池モジュールを直列に接続し、直列に接続された前記複数の蓄電池モジュールの正側と前記正側の直流リンクとを前記降圧チョッパを介さずに直接接続し、直列に接続された前記複数の蓄電池モジュールの負側と前記一対の直流リンクのうち負側の直流リンクとを接続する、請求項1に記載の車両。 An AC power supply device provided on the AC input / output side of the converter, and connected to the AC system when the vehicle travels in the AC power supply section;
When the AC power supply device is connected to the AC system and a plurality of storage battery modules are charged based on single-phase AC power from the AC system, the switching circuit unit connects the plurality of storage battery modules in series, The positive side of the plurality of storage battery modules connected in series and the DC link on the positive side are directly connected without going through the step-down chopper, the negative side of the plurality of storage battery modules connected in series and the pair of The vehicle according to claim 1, wherein the vehicle is connected to a negative DC link among the DC links. - 前記蓄電池モジュールの電圧を監視する監視部をさらに備え、
前記コンバータは、前記監視部の監視結果に基づいて、直列に接続された前記複数の蓄電池モジュールの電圧に合わせて、前記交流系統からの単相交流電力を直流電力に変換する、請求項2に記載の車両。 A monitoring unit for monitoring the voltage of the storage battery module;
The converter converts single-phase AC power from the AC system into DC power in accordance with voltages of the plurality of storage battery modules connected in series based on a monitoring result of the monitoring unit. The vehicle described. - 前記一対の直流リンクに接続され、前記車両が直流給電区間を走行する場合に前記直流系統に接続される直流給電装置と、
前記切替回路部は、前記交流給電装置が前記直流系統に接続され、前記直流系統からの直流電力に基づき複数の蓄電池モジュールが充電される場合、前記複数の蓄電池モジュールを並列に接続し、並列に接続された前記複数の蓄電池モジュールの正側と前記正側の直流リンクとを前記降圧チョッパを介して接続し、並列に接続された前記複数の蓄電池モジュールの負側と前記一対の直流リンクのうち負側の直流リンクとを接続する、請求項1に記載の車両。 A DC power supply device connected to the pair of DC links and connected to the DC system when the vehicle travels in a DC power supply section;
When the AC power supply device is connected to the DC system and a plurality of storage battery modules are charged based on DC power from the DC system, the switching circuit unit connects the plurality of storage battery modules in parallel. The positive side of the plurality of storage battery modules connected and the DC link on the positive side are connected via the step-down chopper, and the negative side of the plurality of storage battery modules connected in parallel and the pair of DC links The vehicle according to claim 1, wherein the vehicle is connected to a negative side DC link. - 前記蓄電池モジュールの電圧を監視する監視部をさらに備え、
前記降圧チョッパは、前記監視部の監視結果に基づいて、並列に接続された前記複数の蓄電池モジュールの電圧に合わせて、前記正側の直流リンクから前記蓄電池モジュールの正側に出力される直流電力を降圧する、請求項4に記載の車両。 A monitoring unit for monitoring the voltage of the storage battery module;
The step-down chopper is a DC power output from the positive DC link to the positive side of the storage battery module according to the voltage of the plurality of storage battery modules connected in parallel based on the monitoring result of the monitoring unit. The vehicle according to claim 4, wherein the vehicle pressure is reduced. - 前記切替回路部は、前記複数の蓄電池モジュールの充電が終了した場合、前記複数の蓄電池モジュールの負側と前記負側の直流リンクとの電気的な接続を遮断する、請求項2に記載の車両。 The vehicle according to claim 2, wherein when the charging of the plurality of storage battery modules is completed, the switching circuit unit cuts off an electrical connection between the negative side of the plurality of storage battery modules and the DC link on the negative side. .
- 前記切替回路部は、前記車両が前記無給電区間を走行する場合、前記複数の蓄電池モジュールを直列に接続し、直列に接続された前記複数の蓄電池モジュールの正側と前記正側の直流リンクとを前記降圧チョッパを介さずに直接接続し、前記直列に接続された複数の蓄電池モジュールの負側と前記一対の直流リンクのうち負側の直流リンクとを接続する、請求項1に記載の車両。 When the vehicle travels in the non-powered section, the switching circuit unit connects the plurality of storage battery modules in series, and the positive side and the positive side DC link of the plurality of storage battery modules connected in series. The vehicle according to claim 1, wherein the vehicle is directly connected without going through the step-down chopper, and the negative side of the plurality of storage battery modules connected in series is connected to the negative DC link of the pair of DC links. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-247556 | 2015-12-18 | ||
JP2015247556A JP2017112795A (en) | 2015-12-18 | 2015-12-18 | vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017104204A1 true WO2017104204A1 (en) | 2017-06-22 |
Family
ID=59056043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077747 WO2017104204A1 (en) | 2015-12-18 | 2016-09-20 | Vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017112795A (en) |
WO (1) | WO2017104204A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190089023A1 (en) * | 2017-09-15 | 2019-03-21 | Dyson Technology Limited | Energy storage system |
DE102020203323A1 (en) * | 2020-03-16 | 2021-09-16 | Siemens Mobility GmbH | Vehicle, in particular rail vehicle |
WO2023286515A1 (en) * | 2021-07-14 | 2023-01-19 | 株式会社日立製作所 | Railway vehicle drive system and drive method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61147706A (en) * | 1984-12-21 | 1986-07-05 | Japanese National Railways<Jnr> | Power source of ac/dc electric railcar train |
JP2001069672A (en) * | 1999-08-25 | 2001-03-16 | Sumitomo Electric Ind Ltd | Charging and discharging controller |
WO2011121974A1 (en) * | 2010-03-29 | 2011-10-06 | パナソニック株式会社 | Power supply device for vehicle |
-
2015
- 2015-12-18 JP JP2015247556A patent/JP2017112795A/en active Pending
-
2016
- 2016-09-20 WO PCT/JP2016/077747 patent/WO2017104204A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61147706A (en) * | 1984-12-21 | 1986-07-05 | Japanese National Railways<Jnr> | Power source of ac/dc electric railcar train |
JP2001069672A (en) * | 1999-08-25 | 2001-03-16 | Sumitomo Electric Ind Ltd | Charging and discharging controller |
WO2011121974A1 (en) * | 2010-03-29 | 2011-10-06 | パナソニック株式会社 | Power supply device for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2017112795A (en) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11207993B2 (en) | Storage-battery charging device for a motor vehicle, method for operating an on-board storage-battery charging device, high-voltage vehicle electrical system and use of a storage-battery charging device | |
AU2013379082B9 (en) | Railroad vehicle propulsion control device | |
US10131239B2 (en) | Charging station and method for charging a plug-in motor vehicle at a charging post | |
KR101560995B1 (en) | Rail vehicle system | |
US9873335B2 (en) | Electric railcar power feeding system, power feeding device, and power storage device | |
JP2020036465A (en) | Vehicular power supply system | |
JP6493363B2 (en) | Electric car | |
WO2017104204A1 (en) | Vehicle | |
CN109982888B (en) | Circuit system for railway vehicle | |
CN110023132B (en) | Electrical network for a rail vehicle, rail vehicle and method for operating an electrical network | |
US20190105999A1 (en) | Use of two dc/dc controllers in the power electronics system of a charging station or electricity charging station | |
US20160211753A1 (en) | Energy storage arrangement, energy storage system and method for operating an energy storage arrangement | |
US11936289B2 (en) | Vehicle electrical system | |
JP2013150525A (en) | Electric vehicle | |
US20160347184A1 (en) | Wire harness | |
WO2019208383A1 (en) | Power supply system for electric motor car | |
KR101478086B1 (en) | Multiplexing circuit of railway vehicle battery charger | |
JP6815762B2 (en) | Power conversion system | |
JP2020072591A (en) | Vehicular power supply system | |
JP7301686B2 (en) | power conversion system | |
JP7301684B2 (en) | power conversion system | |
JP7408323B2 (en) | power conversion system | |
JP2024099375A (en) | Driving system and driving method for railroad vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16875190 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16875190 Country of ref document: EP Kind code of ref document: A1 |