Nothing Special   »   [go: up one dir, main page]

WO2017199481A1 - 情報処理装置、情報処理方法およびプログラム - Google Patents

情報処理装置、情報処理方法およびプログラム Download PDF

Info

Publication number
WO2017199481A1
WO2017199481A1 PCT/JP2017/004331 JP2017004331W WO2017199481A1 WO 2017199481 A1 WO2017199481 A1 WO 2017199481A1 JP 2017004331 W JP2017004331 W JP 2017004331W WO 2017199481 A1 WO2017199481 A1 WO 2017199481A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information processing
processing apparatus
distance
relative position
Prior art date
Application number
PCT/JP2017/004331
Other languages
English (en)
French (fr)
Inventor
荘太 松澤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP17798919.1A priority Critical patent/EP3460504B1/en
Priority to JP2018518078A priority patent/JPWO2017199481A1/ja
Priority to US16/099,470 priority patent/US11181376B2/en
Publication of WO2017199481A1 publication Critical patent/WO2017199481A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1652Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with ranging devices, e.g. LIDAR or RADAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1656Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with passive imaging devices, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/0202Child monitoring systems using a transmitter-receiver system carried by the parent and the child
    • G08B21/0277Communication between units on a local network, e.g. Bluetooth, piconet, zigbee, Wireless Personal Area Networks [WPAN]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/005Traffic control systems for road vehicles including pedestrian guidance indicator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6033Substation equipment, e.g. for use by subscribers including speech amplifiers for providing handsfree use or a loudspeaker mode in telephone sets
    • H04M1/6041Portable telephones adapted for handsfree use
    • H04M1/6058Portable telephones adapted for handsfree use involving the use of a headset accessory device connected to the portable telephone
    • H04M1/6066Portable telephones adapted for handsfree use involving the use of a headset accessory device connected to the portable telephone including a wireless connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This disclosure relates to an information processing apparatus, an information processing method, and a program.
  • an information processing apparatus including a first distance sensor and a second distance sensor is disclosed as a technique for estimating the position of an object (see, for example, Patent Document 1).
  • Such an information processing apparatus estimates the position of an object existing around the information processing apparatus based on detection results of the first distance sensor and the second distance sensor.
  • a technique for estimating the position of an object in a wider area is also known.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • UWB Ultra Wideband
  • an information processing apparatus including a data processing unit that estimates a relative position.
  • the inertial sensor data detected by the inertial sensor and the distance measurement sensor data detected by the distance measurement sensor are acquired, and based on the inertial sensor data and the distance measurement sensor data by a processor.
  • An information processing method comprising: estimating a relative position.
  • a computer controls a sensor control unit that acquires inertial sensor data detected by the inertial sensor and distance measurement sensor data detected by the distance measurement sensor, the inertial sensor data, and the distance measurement sensor data, And a data processing unit that estimates a relative position based on the information processing apparatus.
  • FIG. 6 is a flowchart illustrating an example of the overall operation of the own terminal 10-1 according to the first embodiment of the present disclosure. 6 is a flowchart illustrating an example of the overall operation of the own terminal 10-1 according to the first embodiment of the present disclosure. It is a figure which shows the example of data measurement instruction
  • trajectory is a polygon.
  • trajectory is a polygon.
  • acceleration of the X-axis direction of a terminal and the acceleration of a Y-axis direction in case a user moves a terminal twice along the rectangle of a horizontal direction.
  • the example of several measurement points in case the moving direction of a terminal is a horizontal front-back direction.
  • the example of the acceleration of the X-axis direction of a terminal and the acceleration of a Y-axis direction when a user moves a terminal twice in the horizontal front-back direction.
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different numerals after the same reference numerals. However, when it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same functional configuration, only the same reference numerals are given. Further, similar constituent elements of different embodiments are distinguished by attaching different alphabets after the same reference numerals. However, if it is not necessary to distinguish each similar component, only the same reference numerals are given.
  • GNSS such as GPS
  • a satellite positioning system position estimation using a satellite positioning system does not improve the accuracy of indoor position estimation.
  • a user terminal receives radio waves from a satellite, performs positioning based on the received radio waves, and performs positioning to estimate the relative position of the user with respect to other users. Upload the results to the server. The uploaded positioning result is processed on the server side and shared with other users as position information. At this time, privacy management becomes difficult regarding sharing of location information to other users (or a complicated mechanism is required for privacy management).
  • the present specification mainly proposes a technique that can improve the accuracy of position estimation while reducing the time and effort required to install equipment in the environment.
  • it is possible to eliminate the necessity of uploading the user's position information to the server, and to know the user's position to other users who exist in completely different places (outside the measurement range of the distance measuring sensor).
  • the technology that can manage the privacy by reducing the characteristics will be mainly described.
  • FIG. 1 is a diagram for describing an image according to the first embodiment of the present disclosure.
  • the user U1 and the user U2 are lovers, and the user U1 and the user U2 respectively have a terminal 10-1 and a terminal 10-2 that are paired in advance.
  • the terminal 10-1 and the terminal 10-2 constitute the information processing system 1. It is assumed that the user U1 promises to meet at the station on the date when the user U2 is dated, but cannot understand where the user U2 is.
  • the user U1 takes out the terminal 10-1 and causes the terminal 10-1 to display a search start button.
  • a circular trajectory is displayed on the terminal 10-1.
  • an indicator indicating the direction of the user U2 with respect to the user U1 and the distance from the user U1 to the user U2 on the display surface of the terminal 10-1 Is displayed.
  • the user U1 can easily find the user U2 by referring to the displayed indicator.
  • FIG. 2 is a diagram for explaining a general positioning technique using a fixed station.
  • three fixed stations 90 (fixed station 90-1, fixed station 90-2, and fixed station 90-3) are installed in the environment.
  • the moving body 80-1 exists at a distance r1 from the fixed station 90-1, a distance r2 from the fixed station 90-2, and a distance r3 from the fixed station 90-3.
  • the position of the moving body 80-1 is a circle with a radius r1 centered on the position of the fixed station 90-1, a circle with a radius r2 centered on the position of the fixed station 90-2, and a fixed station 90-. 3 at the intersection with the circle of radius r3 centered on the position of 3.
  • the fixed station 90 is required.
  • a technique for estimating a position using a received signal in an antenna array is also assumed, but if it is necessary to store the antenna array in a device, the design of the device is impaired.
  • FIG. 3 is a diagram for explaining a case where only the own terminal and the other terminal can be used for positioning.
  • the terminal 80-1 and the partner terminal 80-2 are separated by a distance r0, somewhere on the circle having the radius r0 with the terminal 80-1 as the center.
  • the presence of the partner terminal 80-2 is specified.
  • it is not known in which direction the counterpart terminal 80-2 exists with reference to the own terminal 80-1 for example, it is not known where the counterpart terminals 80-2a to 80-2d are in the correct position).
  • the active movement of the own terminal is captured by the inertial sensor, and the time change of the position of the own terminal is calculated based on the movement of the own terminal captured by the inertial sensor. Then, based on the time change of the own terminal position, the same situation as that in which distance measurement from a plurality of points to the partner terminal is performed simultaneously is created. Thus, the relative position of the partner terminal with respect to the own terminal is estimated based on the distance from the plurality of points to the partner terminal.
  • FIG. 4 is a diagram illustrating a functional configuration example of the terminal 10. As illustrated in FIG. 4, the terminal 10 includes a detection unit 110, an operation unit 120, a control unit 130, a storage unit 140, and an output unit 150.
  • each block (the operation unit 120, the control unit 130, the storage unit 140, and the output unit 150) other than the detection unit 110 exists in the same device (for example, a smartphone) as the detection unit 110.
  • the position where each block other than the detection unit 110 exists is not particularly limited.
  • some or all of the blocks other than the detection unit 110 may exist in a server or the like.
  • the detection unit 110 has various sensors, and can acquire sensor data by sensing with various sensors.
  • the detection unit 110 includes an inertial sensor 111 and a distance measuring sensor 112.
  • the inertial sensor 111 has a plurality of sensors such as an acceleration sensor and a gyro sensor.
  • the ranging sensor 112 includes a transmitter and a receiver.
  • the transmitter transmits a signal
  • the receiver receives a signal from the ranging sensor 112 of another terminal.
  • the distance measuring sensor 112 can measure the distance to the other terminal based on the received signal from the distance measuring sensor 112 of the other terminal.
  • the signal transmitted from the transmitter to the receiver is UWB (Ultra Wideband), but the type of signal is not particularly limited.
  • the type of signal transmitted from the transmitter to the receiver may be light, sound waves, or radio waves.
  • the method for measuring the distance is not particularly limited.
  • the distance measuring sensor 112 may measure the distance from the distance measuring sensor 112 of another terminal based on the propagation time of the signal, or the distance measuring sensor of the other terminal based on the strength of the received signal. You may measure the distance with 112.
  • the distance may be measured even between distance measurement sensors that do not require distance measurement. . Therefore, pairing is preferably performed for distance measuring sensors that require distance measurement. Then, the distance can be measured only between the paired distance measuring sensors.
  • the pairing may be completed when the distance measuring sensor is shipped, but it is preferable that the pairing operation is performed by a predetermined pairing operation by the user in consideration of a case where the distance measuring sensor needs to be replaced. For example, the user performs another distance measurement on the distance measurement sensor by performing a pairing operation on each distance measurement sensor (for example, an operation of pressing the pairing start button of the distance measurement sensor to bring the distance measurement sensors closer to each other). Pairing may be performed by registering sensor identification information as a pairing partner.
  • the user can perform short-range wireless communication or the like by a predetermined pairing operation (for example, an operation of pressing a pairing start button to bring the distance measuring sensor closer to the mobile terminal) on a mobile terminal (for example, a smartphone).
  • the pairing may be performed by registering the identification information of the distance measuring sensor of another terminal as a pairing partner with the distance measuring sensor. Then, it is not necessary to attach a pairing start button to the distance measuring sensor, and the durability of the distance measuring sensor does not need to be lowered.
  • the user may be able to specify a plurality of distance measuring sensors that perform pairing on the Web.
  • pairing is performed by registering the identification information of the distance measurement sensor of another terminal as a pairing partner with the distance measurement sensor via short-range wireless communication of a mobile terminal (for example, a smartphone). You may go.
  • the distance measuring sensor attached to the user is registered in the mobile terminal (for example, a smartphone), and when the predetermined code attached to the object is read by the mobile terminal, the distance measuring sensor attached to the object is attached. Pairing between the distance measuring sensor and the distance measuring sensor attached to the user may be started.
  • the operation unit 120 detects an operation by the user and outputs the detected operation to the control unit 130.
  • an operation by the user can correspond to an operation on the touch panel (for example, a tap operation, a drag operation, etc.).
  • the operation unit 120 may be configured by hardware (for example, a button) other than the touch panel.
  • the operation unit 120 may be configured by a microphone, and sound may be detected as an operation by the microphone.
  • the control unit 130 executes control of each unit of the terminal 10. As shown in FIG. 4, the control unit 130 includes a sensor control unit 131, a data processing unit 132, and an output control unit 133. Details of these functional blocks will be described later.
  • the control part 130 may be comprised by CPU (Central Processing Unit; Central processing unit) etc., for example.
  • CPU Central Processing Unit
  • the control unit 130 is configured by a processing device such as a CPU, the processing device may be configured by an electronic circuit.
  • the storage unit 140 is a recording medium that stores a program executed by the control unit 130 and stores data necessary for executing the program.
  • the storage unit 140 temporarily stores data for calculation by the control unit 130.
  • the storage unit 140 may be a magnetic storage unit device, a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the output unit 150 outputs various types of information.
  • the output unit 150 includes a display unit that can display information.
  • the display unit may be a display capable of performing a display visible to the user, and may be a projector, a liquid crystal display, or an organic EL (Electro-Luminescence) display. Also good.
  • the output unit 150 may include a vibrator that vibrates the terminal 10-1.
  • the output unit 150 may include a sound output unit capable of outputting sound.
  • the sound output unit includes a speaker and outputs sound through the speaker.
  • the number of speakers included in the sound output unit is not particularly limited as long as it is 1 or more.
  • the position where each of the one or more speakers included in the sound output unit is provided is not particularly limited.
  • the sound output unit may include a sound output device in a form other than a speaker (for example, an earphone, a headset, or the like) as long as it has a function of outputting sound.
  • voice voice or speech
  • sound are used separately. That is, the voice (voice or speech) includes the utterance by the user among the sounds collected by the microphone.
  • the voice includes an utterance by the terminal 10 among sounds output from the terminal 10.
  • the sound includes not only the user's utterance and the terminal 10's utterance, but also sound.
  • the sensor control unit 131 acquires the inertial sensor data detected by the inertial sensor 111 and the distance measurement sensor data detected by the distance measurement sensor 112.
  • the data processing unit 132 estimates the relative position based on the inertial sensor data and the distance measurement sensor data. According to such a configuration, it is possible to improve the accuracy of position estimation while reducing the time and effort required to install equipment in the environment.
  • 5A and 5B are flowcharts illustrating an example of the overall operation of the own terminal 10-1 according to the first embodiment of the present disclosure.
  • the output control unit 133 controls display of a UI (User Interface) for selecting a search partner.
  • UI User Interface
  • FIG. 5A when a search partner is selected from the screen by the user U1 (S101) and a search start is instructed (S102), the output control unit 133 controls the display of the data measurement instruction UI. (S103).
  • the data measurement instruction UI will be described later in detail.
  • the data processing unit 132 starts recording the inertial sensor data acquired by the sensor control unit 131 (S104), and when the inertial sensor data satisfies the measurement point condition (“Yes” in S105), the sensor The control unit 131 acquires distance measurement sensor data, and the data processing unit 132 records the distance measurement sensor data acquired by the sensor control unit 131 and shifts the operation to S107 (S106). On the other hand, when the inertial sensor data does not satisfy the measurement point condition (“No” in S105), the data processing unit 132 shifts the operation to S107.
  • the data processing unit 132 shifts the operation to S104.
  • the data processing unit 132 terminates the recording of the inertial sensor data (S108) and shifts the operation to S121 (see FIG. 5B). .
  • the data processing unit 132 calculates the own position (position of the own terminal 10-1) at each time from the inertial sensor data (S121).
  • the self-position may be calculated based on the inertial sensor data.
  • the data processing unit 132 may calculate the self position using a technique in inertial navigation. More specifically, the data processing unit 132 calculates a movement amount based on the initial position of the self position by integration of acceleration (more specifically, second-order integration of acceleration), and also calculates its own terminal by integrating angular velocity. A direction based on the initial direction of 10-1 may be calculated. Note that a technique for improving the self-position calculation accuracy may be further used.
  • the data processing unit 132 calculates a partner position (relative position of the partner terminal 10-2 with reference to the position of the terminal 10-1) based on the self-position and distance measurement sensor data at each time ( S122). The calculation of the opponent position will be described later in detail.
  • the data processing unit 132 calculates the reliability of the calculated partner position (S123). The calculation of the reliability will be described later in detail. When the reliability does not exceed the threshold (“No” in S124), the data processing unit 132 shifts the operation to S102.
  • the data processing unit 132 determines the calculated partner position as an output target (S125), and the output control unit 133 determines the determined partner position.
  • the display is controlled (S126), and the operation is terminated.
  • the determination of the partner position will be described later in detail.
  • the display control of the opponent position will be described later in detail.
  • FIGS. 5A and 5B merely show an example of the operation of the terminal 10-1. Therefore, the operation of own terminal 10-1 is not limited to this example.
  • the timing for starting the recording of inertial sensor data and the timing for starting the recording of distance measuring sensor data are different, but the inertial sensor data and the distance measuring sensor data are different. Recording may be started at the same time and used for calculation of the opponent position.
  • the inertial sensor data is continuously recorded when the search start is instructed, and the inertial sensor data continuously recorded when the inertial sensor data satisfies the end condition.
  • the output control unit 133 controls the display by the display unit 151 of the tilt adjustment instruction UI (G1-1) that prompts the terminal 10-1 to be leveled.
  • the output control unit 133 prompts the terminal 10-1 to be horizontal by displaying a point at a position corresponding to the inclination.
  • the method for prompting the terminal 10-1 to be horizontal is not limited to such an example.
  • the output control unit 133 controls the display of the UI (G1-2) before the measurement start.
  • the display before the measurement start UI (G1-2) prompting the output control unit 133 to make a large gesture is displayed.
  • An example of control is shown.
  • the fact that a large gesture is encouraged may be displayed by an icon or text.
  • the output control unit 133 controls the display of the measurement start acceptance UI (G2-1).
  • the output control unit 133 controls an output for prompting a gesture for moving the terminal 10-1.
  • the output control unit 133 controls display of a trajectory having a predetermined shape and display prompting a gesture for moving the terminal 10-1 along the trajectory.
  • the shape of the track is not particularly limited.
  • the output control unit 133 may control display of a circular trajectory and display prompting a gesture for moving the terminal 10-1 along the trajectory. Good.
  • the output control unit 133 may control display of the progress status of the gesture (the ratio of the gesture completed with respect to the entire trajectory). Then, the user U1 can check the remaining gesture according to the displayed progress status.
  • the progress status to be displayed may be an indicator or a numerical value as shown in the gesture instruction UI (G2-2).
  • the output control unit 133 As a result of the gesture made by the user U1, when a plurality of measurement points are obtained and the partner position is determined based on the plurality of measurement points, the output control unit 133, as shown in the gesture completion UI (G2-3) You may control the output to the effect that the other party position was determined. At this time, the output control unit 133 may control display of the gesture completion as the gesture progress status. Then, the user U1 can confirm that the gesture has been normally performed.
  • the output control unit 133 controls the display of the data measurement instruction UI.
  • 8 and 9 are diagrams illustrating another example of the data measurement instruction UI.
  • the output control unit 133 may control the display by the display unit 151 of the tilt adjustment instruction UI (G1-1) that prompts the terminal 10-1 to be leveled.
  • the output control unit 133 controls the display of the UI (G1-2) before measurement start.
  • the output control unit 133 controls the display of the measurement start acceptance UI (G3-1).
  • the output control unit 133 controls an output for prompting a gesture for moving the terminal 10-1.
  • the output control unit 133 controls display of a trajectory having a predetermined shape and display prompting a gesture for temporarily stopping the terminal 10-1 at a predetermined position while moving the terminal 10-1 along the trajectory.
  • the shape of the track is not particularly limited.
  • the output control unit 133 displays a trajectory having a polygon (for example, a rectangle) and moves each of the polygons while moving the terminal 10-1 along the trajectory.
  • the display for prompting the gesture of temporarily stopping the terminal 10-1 at the apex may be controlled.
  • the output control unit 133 may control display of the progress status of the gesture (the ratio of the gesture completed with respect to the entire trajectory). Then, the user U1 can check the remaining gesture according to the displayed progress status.
  • the displayed progress status may be an indicator or a numerical value as shown in the gesture instruction UI (G3-2).
  • the output control unit 133 may update the progress when a gesture for temporarily stopping the terminal 10-1 is normally performed. At this time, when the gesture is normally performed, the output control unit 133 may control a predetermined output in order to notify the user U1 to that effect.
  • the predetermined output may be a predetermined sound output or a predetermined vibration.
  • the output control unit 133 may control the display of the progress status, and also control the display of the direction in which the terminal 10-1 should be moved next, as indicated by the gesture instruction UI (G3-2).
  • the output control unit 133 displays the gesture completion UI (G3-3). You may control the output to the effect that the other party position was determined. At this time, the output control unit 133 may control display of the gesture completion as the gesture progress status. Then, the user U1 can confirm that the gesture has been normally performed.
  • the shape of the trajectory may be determined by a designer or the like in consideration of the sampling rate of various sensors and the calculation amount of the counterpart position.
  • the shape of the trajectory may be selected by the user U1. Further, as will be described later, it is assumed that a counterpart position with higher accuracy can be obtained when the shape of the track is a polygon than when the shape of the track is a circle. Therefore, when the opponent position is not determined for some reason when the shape of the track is a circle (for example, when the reliability of the calculated opponent position is lower than the threshold value), the output control unit 133 changes the shape of the track to a polygon. You may change to
  • the output control unit 133 has been described as an example of controlling the display of the entire circle or the entire polygon as a trajectory having a predetermined shape.
  • the output control unit 133 may control display of a part of a circle or a part of a polygon so as to protrude from the display area.
  • FIG. 9 is a diagram illustrating another example of the gesture instruction UI. As shown in the gesture instruction UI (G4-1), the output control unit 133 controls the display of a part of the circle so as to protrude from the display area and the display for prompting the gesture of moving the terminal 10-1 along the circle. May be.
  • FIG. 10 is a diagram illustrating another example of the gesture instruction UI.
  • the output control unit 133 instructs the direction in which the terminal 10-1 should be moved by force feedback, and performs the gesture for moving the terminal 10-1 in the direction in which the force is felt.
  • the prompting display may be controlled.
  • the data measurement instruction UI has been described above.
  • FIG. 11A is a diagram illustrating an example of four measurement points when the locus is circular. If four measurement points are provided at equal intervals when the locus is circular, the position of the terminal 10-1 at each of the times t0 to t3 (in order of time) is obtained as shown in FIG. 11A. Note that the number of measurement points is not limited to four, but may be any number. Further, the measurement points need not be equally spaced.
  • the data processing unit 132 may determine four times at which four speeds calculated according to the inertial sensor data satisfy a predetermined speed condition as four measurement times.
  • FIG. 11B is a diagram illustrating an example of the velocity in the X-axis direction and the velocity in the Y-axis direction at the four measurement points when the locus is circular.
  • the speed (Vx, Vy) of the terminal 10-1 at each of the times t0 to t3 is assumed to be as shown in FIG. 11B. . Therefore, the data processing unit 132 may determine times t0 to t3 that satisfy the speeds (Vx, Vy) shown in FIG. 11B as four measurement times.
  • FIG. 11C is a diagram illustrating an example of acceleration in the X-axis direction and acceleration in the Y-axis direction of the terminal 10-1 when the user U1 moves the terminal 10-1 twice along a horizontal circle.
  • the velocity Vx in the X axis direction may be obtained by integrating the acceleration in the X axis direction detected by the acceleration sensor
  • the velocity Vy in the Y axis direction may be obtained by integrating the acceleration in the Y axis direction detected by the acceleration sensor. May be obtained by:
  • the velocity Vx in the X-axis direction and the velocity Vy in the Y-axis direction may be obtained in any way.
  • FIG. 12A is a diagram illustrating an example of a plurality of measurement points when the trajectory is a polygon. If the measurement point is provided at each vertex when the locus is a polygon, the position of the terminal 10-1 at each of the times t0 to t3 (in order of time) is obtained as shown in FIG. 12A. Each measurement point may not be equally spaced. That is, the length of each side of the polygon may not be equal.
  • the data processing unit 132 may determine a plurality of times when the acceleration indicated by the inertial sensor data satisfies a predetermined acceleration condition as a plurality of measurement times. For example, at each vertex, if the terminal 10-1 is temporarily stopped, the acceleration should be zero. Therefore, the acceleration condition may be a condition that the horizontal acceleration becomes zero. At each vertex, if the terminal 10-1 is temporarily stopped, the horizontal speed should be zero. Therefore, a condition that the horizontal velocity becomes zero may be used instead of or in addition to the acceleration condition.
  • FIG. 12B is a diagram illustrating an example of the acceleration in the X-axis direction and the acceleration in the Y-axis direction of the terminal 10-1 when the user U1 moves the terminal 10-1 twice along the horizontal rectangle.
  • the speed in the X-axis direction may be obtained by integrating the acceleration in the X-axis direction detected by the acceleration sensor
  • the speed in the Y-axis direction may be obtained by integrating the acceleration in the Y-axis direction detected by the acceleration sensor. May be.
  • the speed in the X-axis direction and the speed in the Y-axis direction may be obtained in any way.
  • FIG. 13A is a diagram illustrating an example of a plurality of measurement points when the moving direction of the terminal 10-1 is the horizontal front-rear direction. If the moving direction of the terminal 10-1 is the horizontal front-rear direction and a plurality of measurement points are taken at predetermined time intervals, as shown in FIG. 13A, the terminal 10- at each of the times t0 to t5 (in order of time) A position of 1 is obtained.
  • the moving direction of the terminal 10-1 is the horizontal front-rear direction, the movement of the terminal 10-1 is small and the accuracy is not improved so much, but the load for the user U1 to move the terminal 10-1 is reduced.
  • FIG. 13B is a diagram illustrating an example of acceleration in the X-axis direction and acceleration in the Y-axis direction of the terminal 10-1 when the user U1 moves the terminal 10-1 twice in the horizontal front-rear direction.
  • a change is observed in the acceleration in the X-axis direction (horizontal front-rear direction), but no change is observed in the acceleration in the Y-axis direction (horizontal left-right direction).
  • the moving direction of the terminal 10-1 is not limited to the horizontal front-rear direction.
  • the moving direction of the terminal 10-1 may be a horizontal left-right direction.
  • the kind of gesture is not limited to these.
  • the moving direction of the terminal 10-1 may not be determined in particular, but this will be described in detail later.
  • the type of acceleration sensor is not limited to the biaxial acceleration sensor as described above.
  • the type of the acceleration sensor may be a uniaxial acceleration sensor or a triaxial acceleration sensor.
  • the relative coordinates of the measurement point can be obtained more accurately by using a combination of an acceleration sensor and another sensor (for example, a gyro sensor).
  • the data processing unit 132 calculates the position of the terminal 10-1 at each of a plurality of measurement times based on the inertial sensor data. At this time, the position of the terminal 10-1 may be calculated using a technique in inertial navigation. On the other hand, the data processing unit 132 calculates the distance between the own terminal 10-1 and the partner terminal 10-2 at each of a plurality of measurement times based on the distance measurement sensor data.
  • the data processing unit 132 estimates the relative position of the counterpart terminal 10-2 based on the position of the own terminal 10-1 based on the position of the own terminal 10-1 and the distance.
  • the number of measurement points may be three or more.
  • the relative position of the counterpart terminal 10-2 is estimated three-dimensionally in consideration of the vertical direction. In such a case, the number of measurement points may be four or more.
  • FIG. 14A is a diagram for explaining the calculation of the opponent position when it is assumed that there is no error. As shown in FIG. 14A, it is assumed that the position of terminal 10-1 at each of measurement times t0 to t2 (in order of time) is obtained. Then, it is assumed that distances r t0 to r t2 between own terminal 10-1 and counterpart terminal 10-2 at each of measurement times t0 to t2 are obtained.
  • the relative position of the counterpart terminal 10-2 is a circle with a radius r t0 centered on the measurement point (time t0), a circle with a radius r t1 centered on the measurement point (time t1), and a measurement point ( This is an intersection C with a circle having a radius r t2 centered at time t2).
  • the method for obtaining the intersection C (relative coordinates of the counterpart terminal 10-2) will be described in more detail.
  • the relative coordinates of the counterpart terminal 10-2 are (x, y), the coordinates of the measurement point (time ti) are (x i , y i ), and the own terminal 10-1 and the counterpart terminal 10-2 at the measurement time ti If the distance is r ti , a circle with a radius r ti centered on the measurement point (time ti) is expressed as in (Formula 1) below.
  • is an angle with respect to the x-axis in the direction from the initial position (time t0) toward the intersection C (the relative coordinates of the counterpart terminal 10-2), and the intersection C (of the counterpart terminal 10-2 from the initial position (time t0)).
  • the angle ⁇ is expressed by the inverse trigonometric function by x and y as in the following (Formula 2).
  • FIG. 14B is a diagram illustrating an example of specific values of the coordinates (X, Y) and the distance R at each measurement point (time ti).
  • the relative position of the partner terminal 10-2 with respect to the position of the own terminal 10-1 may be an intersection C (relative coordinates of the partner terminal 10-2). That is, the relative position of the counterpart terminal 10-2 based on the position of the own terminal 10-1 may include both the distance D and the angle ⁇ . Alternatively, only the angle ⁇ may be provided as the relative position of the counterpart terminal 10-2 with respect to the position of the own terminal 10-1.
  • FIG. 15 is a diagram for explaining the calculation of the opponent position when it is assumed that there is an error.
  • the position of terminal 10-1 at each of measurement times t0 to t2 (in order of time) is obtained.
  • the distance between the own terminal 10-1 and the partner terminal 10-2 at each of the measurement times t0 to t2 is obtained.
  • the corresponding distance around each of the measurement points (times t0 to t2) is set as the radius.
  • the circle to be drawn is drawn.
  • the data processing unit 132 has an intersection of trajectories having a radius corresponding to the position of the terminal 10-1 as a center in each set of two measurement times selected from the measurement times t0 to t2. Determine whether or not.
  • (t0, t1), (t1, t2), and (t2, t0) are listed as each set of two measurement times selected from the measurement times t0 to t2.
  • FIG. 15 there are two points of C 01-1 and C 01-2 as intersections of a circle centered on the measurement point (time t0) and a circle centered on the measurement point (time t1). .
  • the data processing unit 132 estimates the relative position of the counterpart terminal 10-2 based on the intersection determined to exist. For example, when there are a plurality of pairs in which intersections exist, the data processing unit 132 determines the midpoint or the center of gravity of the intersection group that minimizes the total distance between the intersections selected one by one from each pair as the counterpart terminal 10-2. Estimated as relative position.
  • the data processing unit 132 calculates the distance between C 01-1 selected from the first set of intersections and C 12-1 selected from the second set of intersections, and calculates the first set.
  • the distance between C 01-1 selected from the intersection and C 12-2 selected from the second set of intersections is calculated, and C 01-2 selected from the first set of intersections and C selected from the second set of intersections
  • the distance to 12-1 is calculated, and the distance between C 01-2 selected from the first set of intersections and C 12-2 selected from the second set of intersections is calculated.
  • the data processing unit 132 determines that C 01-1 and C 01-1
  • the midpoint C with respect to 12-1 may be estimated as the relative position of the counterpart terminal 10-2.
  • the relative position of the counterpart terminal 10-2 does not have to be the midpoint or the center of gravity of the intersection group where the total distance between the intersections is the minimum.
  • the data processing unit 132 estimates, as a relative position, one of the intersection points in the intersection group that minimizes the total distance between the intersections selected one by one from each pair. May be.
  • the data processing unit 132 performs C 01 -1 and C 12-1 may be estimated as the relative position of the counterpart terminal 10-2.
  • intersection position of the intersection group having the minimum total distance is estimated as the relative position of the counterpart terminal 10-2.
  • the data processing unit 132 selects the intersection position with the old measurement time from the intersection group having the minimum total distance. It is better to estimate as
  • C 01-1 selected from the first set of intersections and C 12-1 selected from the second set of intersections is minimized, but the data processing unit 132 performs more measurement.
  • C 01-1 with the old time may be estimated as the relative position of the partner terminal 10-2.
  • the data processing unit 132 may estimate any position of the intersection of the set as the relative position of the counterpart terminal 10-2. It is not limited which intersection position of a set of intersections where the intersection exists is estimated as a relative position. However, as in the case where there are a plurality of pairs in which the intersection exists, the data processing unit 132 may estimate the intersection position with the old measurement time among the intersections of the pair as the relative position of the counterpart terminal 10-2.
  • the data processing unit 132 may treat a case where the distance between the terminal 10-1 and the partner terminal 10-2 exceeds a threshold value as an error. Further, the data processing unit 132 may use the distance between the own terminal 10-1 and the partner terminal 10-2 for the reliability weight described later. Further, the data processing unit 132 may reduce reliability described later as the number of intersections is smaller.
  • the above partner position calculation method is merely an example, the above partner position calculation may be interpolated by a statistical method.
  • a partner position may be estimated three-dimensionally.
  • the three-dimensional counterpart position can also be estimated by the same method as the two-dimensional counterpart position.
  • the data processing unit 132 calculates the reliability of the relative position of the counterpart terminal 10-2, and when the reliability exceeds the threshold, The relative position of the terminal 10-2 may be determined.
  • the data processing unit 132 calculates the relative position of the counterpart terminal 10-2 for each set of two or more measurement times selected from a plurality of measurement points, and calculates the calculated counterpart terminal 10-2.
  • the degree of variation in the relative position may be calculated as the reliability. If the estimation of the position of the own terminal 10-1 based on the inertial sensor 111 and the distance measurement by the distance measuring sensor 112 are performed with high accuracy, the counterpart terminal 10- calculated for each set of two or more measurement times is used. This is because the degree of variation in the relative position of 2 is considered to be small (that is, the accuracy is high).
  • the degree of variation is not particularly limited.
  • the variation degree may be a standard deviation or a variance.
  • each set of two or more measurement times selected from a plurality of measurement points is not particularly limited. For example, a set of all two or more measurement times among a plurality of measurement points may be used for calculating the reliability, or a set of all two or more measurement times among a plurality of measurement points may be used. You may utilize for calculation of reliability.
  • FIG. 16 is a diagram for explaining an example of reliability calculation. As shown in FIG. 16, when five measurement points (times t0 to t4) are obtained, an example in which a set of two or more measurement times is used for calculation of reliability will be described.
  • the data processing unit 132 estimates the relative coordinate C 012 of the counterpart terminal 10-2 from the set of the measurement times t0, t1, and t2 among the five measurement points (time t0 to t4) by the method described above. Similarly, the data processing unit 132 estimates the relative coordinate C 123 of the counterpart terminal 10-2 from the set of measurement times t1, t2, and t3 among the five measurement points (time t0 to t4).
  • the data processing unit 132 estimates the relative coordinate C 034 of the counterpart terminal 10-2 from the set of the measurement times t0, t3, and t4 among the five measurement points (time t0 to t4). Further, the data processing unit 132 estimates the relative coordinate C 014 of the counterpart terminal 10-2 from the set of the measurement times t0, t1, and t4 among the five measurement points (time t0 to t4). Descriptions of other combinations are omitted for reasons of space. The data processing unit 132 calculates the degree of variation of the relative coordinates C 012 , C 123 , C 034 , C 014 ,.
  • the calculation method of the reliability is not limited to these.
  • the data processing unit 132 may weight the degree of influence on the reliability so that the reliability decreases according to the elapsed time.
  • the data processing unit 132 excludes a result having a tendency different from other results among the relative coordinates of the counterpart terminal 10-2 calculated from each set of two or more measurement times selected from a plurality of measurement points. Then, the reliability may be calculated.
  • the data processing unit 132 may reduce the reliability of the calculated relative position of the counterpart terminal 10-2.
  • the relative position of the counterpart terminal 10-2 may not be calculated itself.
  • the data processing unit 132 calculates the relative position of the counterpart terminal 10-2 for each set of two or more measurement times selected from a plurality of measurement times, the calculated data of the counterpart terminal 10-2 is calculated.
  • the midpoint or center of gravity of the relative position may be determined as the relative position of the counterpart terminal 10-2. That is, the data processing unit 132 may determine the midpoint or the center of gravity of the counterpart terminal 10-2 calculated from each set used for the reliability calculation as the relative position of the counterpart terminal 10-2.
  • the data processing unit 132 has the earliest measurement time among each set of two or more measurement times selected from a plurality of measurement times.
  • the relative position of the counterpart terminal 10-2 may be determined based on the set.
  • the output control unit 133 controls the output unit 150 so that the relative position of the counterpart terminal 10-2 is output by the output unit 150.
  • the output destination of the relative position of the counterpart terminal 10-2 is not particularly limited.
  • the output control unit 133 may control the display unit included in the output unit 150 to display the relative position of the counterpart terminal 10-2, or may be controlled by the sound output unit included in the output unit 150. Control may be performed so that the relative position of 10-2 is output. Alternatively, the output control unit 133 may perform control so that the relative position of the counterpart terminal 10-2 is output by a vibrator included in the output unit 150. Alternatively, the output control unit 133 may perform control so that it is transmitted to another device different from the own terminal 10-1.
  • FIGS. 17 to 22 are diagrams showing output examples of the relative position of the counterpart terminal 10-2.
  • the output control unit 133 sets the terminal 10-2 of the partner terminal 10-2 with respect to the direction detected by the geomagnetic sensor.
  • the direction may be displayed in a superimposed manner, or the direction of the partner terminal 10-2 based on the position of the terminal 10-1 may be displayed as text (for example, a character string “220 °”).
  • the output control unit 133 may display the position of the counterpart terminal 10-2 by latitude and longitude.
  • the output control unit 133 may display and control the distance from the own terminal 10-1 to the partner terminal 10-2 using an indicator. Further, as shown in the feedback UI (G3-3) in FIG. 19, the output control unit 133 uses the radar display method (for example, PPI scope: Plan Position Indicator scope) as a reference based on the position of the terminal 10-1. The direction and distance of the partner terminal 10-2 may be displayed.
  • the radar display method for example, PPI scope: Plan Position Indicator scope
  • the output control unit 133 may display the position of the terminal 10-1 according to the position of an object (for example, a pin) represented on the map. Good. Further, as shown in the feedback UI (G3-4) in FIG. 20, the output control unit 133 determines the counterpart terminal 10- based on the position of the own terminal 10-1 according to the position and direction of the object (eg, arrow). Two distances and directions may be displayed.
  • an object for example, a pin
  • the output control unit 133 determines the counterpart terminal 10- based on the position of the own terminal 10-1 according to the position and direction of the object (eg, arrow). Two distances and directions may be displayed.
  • the output control unit 133 may display the position of the terminal 10-1 according to the position of an object (for example, an arrow) represented on the map. Good. Further, as shown in the feedback UI (G3-5) in FIG. 21, the output control unit 133 displays a captured image of the real space in the direction of the counterpart terminal 10-2 with respect to the position of the own terminal 10-1. In addition, the distance of the partner terminal 10-2 may be displayed based on the position of the own terminal 10-1.
  • the output control unit 133 may perform control so that the relative position of the counterpart terminal 10-2 is output by the sound output unit included in the output unit 150. At this time, the output control unit 133 may control the output of the voice so that the direction and the distance of the counterpart terminal 10-2 are guided by the voice based on the position of the own terminal 10-1.
  • the output control unit 133 determines whether the direction of the own terminal 10-1 is correct (that is, based on the direction of the own terminal 10-1 and the position of the own terminal 10-1 based on the frequency of the beep sound and the length of the interval). The proximity of the terminal 10-2 in the direction) and the position of the terminal 10-1 and the position of the partner terminal 10-2 may be output. For example, the output control unit 133 may increase the beep sound as the direction of the own terminal 10-1 is correct, or as the position of the own terminal 10-1 and the position of the counterpart terminal 10-2 are closer. Sound intervals may be shortened.
  • the output control unit 133 may perform control so that the relative position of the counterpart terminal 10-2 is output by the vibrator included in the output unit 150. At this time, the output control unit 133 determines the correctness of the direction of the own terminal 10-1 based on the vibration intensity and the length of the vibration interval (ie, the direction of the own terminal 10-1 and the position of the own terminal 10-1 as a reference). And the proximity of the position of the terminal 10-1 and the position of the partner terminal 10-2 may be presented.
  • the output control unit 133 may increase the vibration intensity as the direction of the own terminal 10-1 is correct, or may increase the vibration as the position of the own terminal 10-1 is closer to the position of the counterpart terminal 10-2.
  • the interval may be shortened.
  • the output control unit 133 controls the plurality of vibrators 152 provided in the own terminal 10-1, and the counterpart terminal 10-2 based on the position of the own terminal 10-1. You may make it give the user U1 perception that the position according to the direction is vibrating.
  • the terminal 10-1 and the partner terminal 10-2 are smartphones.
  • the forms of the own terminal 10-1 and the counterpart terminal 10-2 are not limited to smartphones.
  • FIG. 23 is a diagram showing an example of the forms of the own terminal 10-1 and the counterpart terminal 10-2.
  • own terminal 10-1 and counterpart terminal 10-2 may be necklace-type terminals.
  • the own terminal 10-1 displays the distance between the position of the own terminal 10-1 and the position of the other party terminal 10-2, and the other terminal 10-2 uses the position of the own terminal 10-1 as a reference.
  • the direction may be indicated by an arrow.
  • the partner terminal 10-2 displays the distance between the position of its own terminal 10-1 and the position of the partner terminal 10-2, and also displays the distance of its own terminal 10-1 based on the position of the partner terminal 10-2.
  • the direction may be indicated by an arrow.
  • FIG. 24 is a diagram showing an example of the form of the own terminal 10-1.
  • the own terminal 10-1 has the correct direction of the own terminal 10-1 (that is, the opposite terminal 10-1 based on the direction of the own terminal 10-1 and the position of the own terminal 10-1). 2), the user U1 may be informed that the direction of the terminal 10-1 is correct by emitting light (or by vibration).
  • FIG. 25 is a diagram showing an example of the form of the own terminal 10-1.
  • own terminal 10-1 may be a glass-type terminal.
  • the own terminal 10-1 moves to the scenery G4 that can be seen through the glass (or the scenery displayed on the glass) G4 of the counterpart terminal 10-2 based on the position of the own terminal 10-1.
  • the direction may be superimposed, or the distance between the terminal 10-1 and the partner terminal may be superimposed.
  • FIG. 26 is a diagram showing an example of the form of the own terminal 10-1.
  • own terminal 10-1 may be a wristband type terminal.
  • the own terminal 10-1 may control the display by the display unit 151 of the arrow in the direction of the counterpart terminal 10-2 based on the position of the own terminal 10-1.
  • the own terminal 10-1 may display an animation of the arrow so that the user U1 can easily notice the arrow.
  • the counterpart terminal 10-2 based on the position of the own terminal 10-1 is in front of the user U1
  • the own terminal 10-1 displays an arrow in front of the user U1. May be controlled.
  • FIG. 27 is a diagram showing an example of the form of the own terminal 10-1.
  • the own terminal 10-1 is correct when the direction of the own terminal 10-1 (for example, the direction in which the arm on which the own terminal 10-1 is worn is extended) is correct (ie, the own terminal 10-1).
  • the direction of the partner terminal 10-2 based on the position of the own terminal 10-1
  • the direction of the own terminal 10-1 is correct for the user U1 by emitting light (or by vibration) You may let me know.
  • FIG. 28 is a diagram showing an example of the form of the own terminal 10-1.
  • own terminal 10-1 may be a ring-type terminal.
  • the own terminal 10-1 controls the display unit 151 so that the light emission position moves in the direction of the counterpart terminal 10-2 with respect to the position of the own terminal 10-1. Also good.
  • the partner terminal 10-2 based on the position of the own terminal 10-1 is in front of the user U1, the own terminal 10-1 moves the light emission position in front of the user U1.
  • the display unit 151 may be controlled to do so.
  • FIG. 29 is a diagram showing an example of the form of the own terminal 10-1.
  • the own terminal 10-1 may control the display unit 151 so that a position corresponding to the direction of the partner terminal 10-2 with respect to the position of the own terminal 10-1 emits light.
  • the display unit 151 may be controlled to do so.
  • the own terminal 10-1 may control the display unit 151 to emit light with intensity according to the direction of the counterpart terminal 10-2 with respect to the position of the own terminal 10-1.
  • the self-terminal 10-1 is more correct in the direction of the self-terminal 10-1 (for example, the direction in which the finger wearing the self-terminal 10-1 extends) (ie, the direction of the self-terminal 10-1 and the self-terminal 10-1).
  • the display unit 151 may be controlled to emit light more strongly as the direction of the counterpart terminal 10-2 with respect to the position 10-1 becomes closer.
  • own terminal 10-1 may control display unit 151 to emit light in a color corresponding to the distance between own terminal 10-1 and counterpart terminal 10-2. Good. For example, when the distance between the own terminal 10-1 and the partner terminal 10-2 is smaller than the first threshold, the own terminal 10-1 emits the display unit 151 in the first color (for example, red). If the distance between the terminal 10-1 and the partner terminal 10-2 is larger than the second threshold value, the display unit 151 may emit light in the second color (for example, green). .
  • FIG. 31 is a diagram illustrating an example of information in which an error type, an error reason, and an error priority are associated with each other.
  • the error types include “out of distance measurement range”, “target moving”, “insufficient distance measurement point”, “insufficient reliability”, “timeout”, and the like. Further, an error reason as shown in FIG. 31 is assumed.
  • the output control unit 133 controls error output when an error occurs.
  • the error type “out of range” has the highest priority, and the error type “timeout” has the lowest priority. Since the display area of the own terminal 10-1 is limited, it may be difficult to present all of the generated errors when a plurality of errors occur. Therefore, when a plurality of errors occur, the output control unit 133 may present an error with the highest priority among the plurality of errors.
  • 32A to 32E are diagrams showing examples of error notification UIs.
  • the output control unit 133 displays a message indicating that the other party may be out of the measurable range. 151 may be displayed.
  • the output control unit 133 may display a selection button as to whether to request the GPS information of the counterpart terminal 10-2.
  • the counterpart terminal 10-2 is received.
  • GPS information may be displayed on the map. Then, even if the user U1 fails to estimate the relative position of the partner terminal 10-2, the user U1 can grasp the position of the partner terminal 10-2 based on the GPS information of the partner terminal 10-2.
  • the output control unit 133 displays that the other party may be moving. May be displayed. At this time, as shown in the error notification UI (G5-2) in FIG. 32B, the output control unit 133 may display a proposal to try again after a while.
  • the output control unit 133 informs the display unit 151 that the distance measurement points are insufficient. You may display. At this time, as shown in the error notification UI (G5-3) in FIG. 32C, the output control unit 133 may display a proposal to try measurement again with a slightly larger gesture. In addition, the output control unit 133 may display a retry button. Then, the data processing unit 132 may perform measurement again when the retry button is pressed.
  • the output control unit 133 when an error “insufficient reliability” occurs, the output control unit 133 causes the display unit 151 to display that the reliability is insufficient. It's okay. At this time, as shown in the error notification UI (G5-4) in FIG. 32D, the output control unit 133 may display a proposal to try the measurement again with a slightly larger gesture. In addition, the output control unit 133 may display a retry button. Then, the data processing unit 132 may perform measurement again when the retry button is pressed.
  • the output control unit 133 may display on the display unit 151 that the gesture has not been executed. At this time, as shown in the error notification UI (G5-5) in FIG. 32E, the output control unit 133 may display that the measurement is temporarily stopped, and the data processing unit 132 may temporarily stop the measurement.
  • FIG. 33 is a diagram for explaining a case where the present embodiment is used for preventing children from getting lost. As shown in FIG. 33, it is assumed that the user U3 who is a child wears the distance measuring sensor 112 and the parent of the child carries the terminal 10-1. At this time, the output control unit 133 of the own terminal 10-1 may control the output of the notification to the parent when the distance between the own terminal 10-1 and the child distance measuring sensor 112 exceeds a predetermined distance.
  • the parent who has received this notification may perform an operation of starting an application for estimating the relative position of the child distance measuring sensor 112 with reference to the own terminal 10-1 when there are no more children in the surrounding area. Then, the parent can know the relative position of the child distance measuring sensor 112 based on the plurality of measurement points with reference to the own terminal 10-1 by giving the plurality of measurement points by the gesture.
  • FIG. 34 is a diagram for explaining a case where the present embodiment is used for searching for lost items.
  • the distance measuring sensor 112 is attached to the bag B1, and the owner of the bag B1 has the own terminal 10-1.
  • the owner can know the relative position of the distance measuring sensor 112 of the bag B1 with reference to the own terminal 10-1 based on the plurality of measurement points by giving a plurality of measurement points by the gesture. .
  • the distance measuring sensor 112 can be attached to any object other than the bag B1.
  • the distance measuring sensor 112 may be attached to an object that is easily lost (for example, a key, a wallet, a remote controller, etc.).
  • FIG. 35 is a diagram for explaining a case where the present embodiment is used in an item search game.
  • the item search game is a game in which the user can increase his / her points when he / she finds a hidden item.
  • the game providing company attaches the distance measuring sensor 112 to the hidden place of the item and the user has the own terminal 10-1.
  • the user can know the relative position of the hidden place of the item based on the self-terminal 10-1 based on the plurality of measurement points by giving the plurality of measurement points by the gesture.
  • the output control unit 133 of the own terminal 10-1 may instruct the user U1 to appropriately move the own terminal 10-1.
  • there is no predetermined gesture and there is no gesture end point. Therefore, the relative position of the counterpart terminal 10-2 with respect to the position of the own terminal 10-1 is sequentially estimated. Just do it.
  • the data processing unit 132 may determine a plurality of measurement times at regular time intervals.
  • FIG. 36A and FIG. 36B are flowcharts showing an example of the overall operation of the terminal 10-1 when sequential processing is performed.
  • the output control unit 133 controls display of a UI for selecting a search partner.
  • the output control unit 133 controls the display of the data measurement instruction UI. (S103).
  • the data measurement instruction UI will be described later in detail.
  • the data processing unit 132 starts recording the inertial sensor data acquired by the sensor control unit 131 (S104), determines whether the inertial sensor data satisfies the measurement point condition at regular time intervals, When the sensor data satisfies the measurement point condition (“Yes” in S105), the sensor control unit 131 acquires distance measurement sensor data (FIG. 36B), and the data processing unit 132 acquires the sensor control unit 131. The recorded distance measuring sensor data is recorded, and the operation proceeds to S121 (S106). On the other hand, when the inertial sensor data does not satisfy the measurement point condition (“No” in S105), the data processing unit 132 shifts the operation to S131.
  • the data processing unit 132 shifts the operation to S104.
  • the data processing unit 132 ends the operation.
  • the data processing unit 132 calculates the own position (position of the own terminal 10-1) at each time from the inertial sensor data (S121).
  • the self-position may be calculated based on the inertial sensor data.
  • the data processing unit 132 may calculate the self position using a technique in inertial navigation. More specifically, the data processing unit 132 calculates a movement amount based on the initial position of the self position by integrating the acceleration, and determines a direction based on the initial direction of the terminal 10-1 by integrating the angular velocity. It may be calculated. Note that a technique for improving the self-position calculation accuracy may be further used.
  • the data processing unit 132 calculates a partner position (relative position of the partner terminal 10-2 based on the position of the terminal 10-1) based on the latest X self-positions and the distance measurement sensor data. (S132). Since distance measurement is performed at regular time intervals, old measurement point data is not used (may be deleted from the buffer). In addition, the data processing unit 132 calculates the reliability of the calculated partner position (S123). If the reliability does not exceed the threshold (“No” in S124), the data processing unit 132 shifts the operation to S131.
  • the data processing unit 132 determines the calculated partner position as an output target (S125), and the output control unit 133 determines the determined partner position.
  • the display is controlled (S126), and the operation is terminated.
  • FIG. 37A is a diagram illustrating an example of a measurement start reception UI when sequential processing is executed.
  • FIG. 37B is a diagram illustrating an example of a gesture instruction UI when sequential processing is executed.
  • the output control unit 133 controls display of a measurement start acceptance UI (G6-1) in sequential processing.
  • the output control unit 133 outputs an output prompting a gesture to appropriately move the terminal 10-1 as shown in the gesture instruction UI (G6-2). Control.
  • FIG. 38A is a diagram illustrating an example of a plurality of measurement points when sequential processing is executed.
  • the position of the terminal 10-1 at each of the times t0 to t4 (in order of time) is obtained as a result of the measurement times being determined at fixed time intervals.
  • the number of measurement points is not limited to five, and may be any number.
  • FIG. 38B is a diagram illustrating an example of acceleration in the X-axis direction and acceleration in the Y-axis direction of the terminal 10-1 when the user U1 moves the terminal 10-1 as illustrated in FIG. 38A.
  • FIG. 39 is a diagram for describing calculation of a counterpart position according to the second embodiment of the present disclosure.
  • the data processing unit 132 calculates the position of the own terminal 10-1 at each of a plurality of measurement times by pedestrian autonomous navigation, and the own terminal 10- at each of the plurality of measurement times. 1 and the distance between the partner terminal 10-2 are calculated.
  • the data processing unit 132 performs an initial position (measurement time t0) of the own terminal 10-1 and subsequent positions (measurement times t1 to t4) of the own terminal 10-1 by pedestrian autonomous navigation. ) Is calculated. Further, the data processing unit 132 calculates the distance between the own terminal 10-1 and the counterpart terminal 10-2 at each measurement time (measurement times t0 to t4). The data processing unit 132 may estimate the intersection C of a circle having a radius corresponding to the position of the terminal 10-1 at each measurement time (measurement times t0 to t4) as the relative position of the counterpart terminal 10-2. Is possible.
  • the relative position of the counterpart terminal 10-2 it is possible to estimate the relative position of the counterpart terminal 10-2 by a method similar to that of the first embodiment of the present disclosure.
  • the relative position of the partner terminal 10-2 may be estimated in consideration of the movement of the partner terminal 10-2. Is possible. However, in this case, communication for sharing the movement information of the counterpart terminal 10-2 is separately required.
  • FIG. 40 is a diagram for explaining a case where this embodiment is used for a drone that illuminates a night road.
  • the user has the distance measuring sensor 112, and the own terminal 10-1 is attached to the drone.
  • the own terminal 10-1 attached to the drone estimates the relative position of the user's distance measuring sensor 112 based on the position of the own terminal 10-1 in real time, and turns on the light so as to illuminate the front of the user. Control.
  • FIG. 41 is a diagram for explaining a case where the present embodiment is used for position tracking in futsal.
  • a distance measuring sensor 112 is attached to a fixed station installed at one point of the court.
  • the position of the fixed station is arbitrary, but the relative position of the fixed station with respect to the court needs to be known.
  • an inertial sensor 111 and a distance measuring sensor 112 are attached to each player (hereinafter, a tag including the inertial sensor 111 and the distance measuring sensor 112 is attached to the player).
  • the fixed station may be installed for each player of each team, or one fixed station may be installed for each team.
  • data may be transmitted to the server via a tag or a smartphone paired with the fixed station.
  • the tag or the fixed station itself is connected to Wi-Fi (registered trademark), and data may be transmitted to the server via Wi-Fi (registered trademark), or communication of 3G or LTE (registered trademark)
  • a module may be mounted, and data may be transmitted to the server by this communication module. Transmission from the smartphone to the server may be performed when the smartphone is charged.
  • sensor data is transmitted to the fixed station paired with each player's tag, and the sensor data of each player is sent to the server via the smartphone of any player. May be sent to.
  • the position tracking of each player based on the sensor data of each player may be executed in the server.
  • each screen shown below may be displayed on a smart phone.
  • the movement trajectory (time t0 to t2) of the player is calculated by the PDR based on the inertial sensor data detected by the inertial sensor 111.
  • the relative position of the player with respect to the fixed station is estimated based on the movement trajectory of the player and the distance measurement sensor data measured during the movement of the player.
  • the relative positions of the players calculated in this manner are sequentially updated, so that the relative positions of the players on the court are tracked and drawn in real time. If the relative position of the player on the court is recorded as a history, it is possible to look back on the relative position of the player by referring to the history later.
  • FIG. 42 to 47 are diagrams showing display examples of player position tracking results.
  • the play area of the selected player in the example shown in FIG. 42, “player1”
  • the play time for each area of the selected player can be displayed as a bar graph and a radar chart based on the relative position of the player on the court.
  • the top speed, total running distance, and number of sprints of each player can be displayed (visualized so that they can be compared between players).
  • Sprint can mean running at a speed of 24 kilometers per hour (15 miles) or more.
  • the position and direction at the timing of stopping or switching (direction change) of the selected player (in the example shown in FIG. 45, “player 1”) can be displayed.
  • the position and direction of player1 at time t0 (0 minute 40 seconds after the game start), time t1, and time t2 (1 minute 5 seconds after the game start) are displayed.
  • a line connecting the positions of the players at a plurality of times may be displayed so that the movement trajectory of the players can be seen.
  • the positions and directions of the players Pa to Pe may be displayed.
  • the distance between the players is displayed, so that the positional relationship of each player and the balance of the positioning can be easily confirmed. Further, the distance may be displayed by a line color instead of a numerical value. Further, the positions and directions of the players Pa to Pe may be displayed in real time, or may be displayed in a log later.
  • the detected pattern may be displayed on the timeline (screen G6). Then, it is possible to confirm the position where the pattern is detected together with the reproduction of the video. Further, by selecting a pattern detection position (for example, position G7) in the timeline, the video may be sought to that position.
  • a pattern detection position for example, position G7
  • FIG. 48 is a block diagram illustrating a hardware configuration example of the information processing apparatus 10 according to the embodiment of the present disclosure.
  • the information processing apparatus 10 includes a CPU (Central Processing unit) 901, a ROM (Read Only Memory) 903, and a RAM (Random Access Memory) 905.
  • the information processing apparatus 10 may include a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925.
  • the information processing apparatus 10 may include an imaging device 933 and a sensor 935 as necessary.
  • the information processing apparatus 10 may include a processing circuit called a DSP (Digital Signal Processor) or ASIC (Application Specific Integrated Circuit) instead of or in addition to the CPU 901.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • the CPU 901 functions as an arithmetic processing device and a control device, and controls all or a part of the operation in the information processing device 10 according to various programs recorded in the ROM 903, the RAM 905, the storage device 919, or the removable recording medium 927.
  • the ROM 903 stores programs and calculation parameters used by the CPU 901.
  • the RAM 905 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like.
  • the CPU 901, the ROM 903, and the RAM 905 are connected to each other by a host bus 907 configured by an internal bus such as a CPU bus. Further, the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
  • PCI Peripheral Component Interconnect / Interface
  • the input device 915 is a device operated by the user, such as a mouse, a keyboard, a touch panel, a button, a switch, and a lever.
  • the input device 915 may include a microphone that detects the user's voice.
  • the input device 915 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device 929 such as a mobile phone that supports the operation of the information processing device 10.
  • the input device 915 includes an input control circuit that generates an input signal based on information input by the user and outputs the input signal to the CPU 901. The user operates the input device 915 to input various data to the information processing device 10 or instruct a processing operation.
  • An imaging device 933 which will be described later, can also function as an input device by imaging a user's hand movement, a user's finger, and the like. At this time, the pointing position may be determined according to the movement of the hand or the direction of the finger.
  • the output device 917 is a device that can notify the user of the acquired information visually or audibly.
  • the output device 917 is, for example, an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an organic EL (Electro-Luminescence) display, a display device such as a projector, a hologram display device, a sound output device such as a speaker and headphones, As well as a printer device.
  • the output device 917 outputs the result obtained by the processing of the information processing device 10 as a video such as text or an image, or as a sound such as voice or sound.
  • the output device 917 may include a light or the like to brighten the surroundings.
  • the storage device 919 is a data storage device configured as an example of a storage unit of the information processing device 10.
  • the storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the storage device 919 stores programs executed by the CPU 901, various data, various data acquired from the outside, and the like.
  • the drive 921 is a reader / writer for a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and is built in or externally attached to the information processing apparatus 10.
  • the drive 921 reads information recorded on the attached removable recording medium 927 and outputs the information to the RAM 905.
  • the drive 921 writes a record in the attached removable recording medium 927.
  • the connection port 923 is a port for directly connecting a device to the information processing apparatus 10.
  • the connection port 923 can be, for example, a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, or the like.
  • the connection port 923 may be an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, or the like.
  • Various data can be exchanged between the information processing apparatus 10 and the external connection device 929 by connecting the external connection device 929 to the connection port 923.
  • the communication device 925 is a communication interface configured with, for example, a communication device for connecting to the communication network 931.
  • the communication device 925 can be, for example, a communication card for wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various communication.
  • the communication device 925 transmits and receives signals and the like using a predetermined protocol such as TCP / IP with the Internet and other communication devices, for example.
  • the communication network 931 connected to the communication device 925 is a wired or wireless network, such as the Internet, a home LAN, infrared communication, radio wave communication, or satellite communication.
  • the imaging device 933 uses various members such as an imaging element such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor), and a lens for controlling the imaging of a subject image on the imaging element. It is an apparatus that images a real space and generates a captured image.
  • the imaging device 933 may capture a still image or may capture a moving image.
  • the sensor 935 is various sensors such as a distance measuring sensor, an acceleration sensor, a gyro sensor, a geomagnetic sensor, a vibration sensor, an optical sensor, and a sound sensor.
  • the sensor 935 acquires information about the state of the information processing apparatus 10 itself, such as the attitude of the housing of the information processing apparatus 10, and information about the surrounding environment of the information processing apparatus 10, such as brightness and noise around the information processing apparatus 10.
  • the sensor 935 may include a GPS sensor that receives a GPS (Global Positioning System) signal and measures the latitude, longitude, and altitude of the apparatus.
  • GPS Global Positioning System
  • the sensor control unit that acquires the inertial sensor data detected by the inertial sensor and the distance measurement sensor data detected by the distance measurement sensor, and the inertial sensor data, And a data processing unit that estimates a relative position based on the distance measurement sensor data. According to such a configuration, it is possible to improve the accuracy of position estimation while reducing the time and effort required to install equipment in the environment.
  • the position of each component is not particularly limited.
  • some or all of the blocks other than the detection unit 110 may exist outside the information processing apparatus 10. That is, some or all of the blocks other than the detection unit 110 may exist in a mobile terminal (for example, a smartphone) or the like, or may exist in a server or the like.
  • the information processing apparatus 10 can be achieved by so-called cloud computing.
  • a sensor control unit for acquiring inertial sensor data detected by the inertial sensor and distance measurement sensor data detected by the distance measurement sensor;
  • a data processing unit that estimates a relative position based on the inertial sensor data and the ranging sensor data;
  • An information processing apparatus comprising: (2) The inertial sensor and the distance measuring sensor are provided in a terminal, The data processing unit calculates a terminal position at each of a plurality of measurement times based on the inertial sensor data, and calculates a distance between the terminal and the search target at each of the plurality of measurement times based on the distance measurement sensor data.
  • the information processing apparatus calculates and estimating a relative position of the search target based on the terminal position based on the terminal position and the distance;
  • (3) The relative position includes a distance between the terminal and the search target and a direction of the search target with reference to the terminal position.
  • (4) The information processing apparatus includes: An output control unit for controlling an output for prompting a gesture for moving the terminal;
  • the output control unit controls display of a trajectory having a predetermined shape and display for prompting a gesture for moving the terminal along the trajectory.
  • the data processing unit determines, as the plurality of measurement times, a plurality of times at which a speed calculated according to the inertial sensor data satisfies a predetermined speed condition;
  • the information processing apparatus according to (5).
  • the output control unit controls display of a trajectory having a predetermined shape and display for prompting a gesture to temporarily stop the terminal at a predetermined position while moving the terminal along the trajectory.
  • the information processing apparatus according to (4).
  • the data processing unit determines, as the plurality of measurement times, a plurality of times at which an acceleration indicated by the inertial sensor data satisfies a predetermined acceleration condition;
  • the information processing apparatus according to (7).
  • the data processing unit determines the plurality of measurement times at a predetermined time interval.
  • the information processing apparatus calculates the terminal position at each of the plurality of measurement times by pedestrian autonomous navigation, and calculates the distance between the terminal and the search target at each of the plurality of measurement times.
  • the information processing apparatus according to (2) or (3).
  • the information processing apparatus includes: When the estimation of the relative position fails, an output control unit that controls an error output is provided.
  • the information processing apparatus according to any one of (1) to (3).
  • the information processing apparatus includes: An output control unit that controls output of a predetermined notification when the distance between the terminal and the search target exceeds a predetermined distance; The information processing apparatus according to (2) or (3).
  • the information processing apparatus includes: An output control unit for controlling the output of the relative position; The information processing apparatus according to any one of (1) to (3).
  • the data processing unit determines whether or not there is an intersection of trajectories having a radius of the distance around the terminal position in each set of two measurement times selected from the plurality of measurement times, Estimating the relative position based on the intersection determined to exist; The information processing apparatus according to (2) or (3).
  • the data processing unit when there are a plurality of pairs in which the intersection exists, the center point or the center of gravity of the intersection group that minimizes the total distance between the intersections selected one by one from each pair is estimated as the relative position, The information processing apparatus according to (14).
  • the data processing unit calculates the relative position for each set of two or more measurement times selected from a plurality of measurement times, and estimates the calculated midpoint or centroid of the relative position as the relative position.
  • the information processing apparatus calculates the reliability of the relative position, and determines the relative position when the reliability exceeds a threshold.
  • the data processing unit calculates the relative position for each set of two or more measurement times selected from the plurality of measurement times, and calculates the calculated degree of variation of the relative position as the reliability.
  • the information processing apparatus according to (17).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Child & Adolescent Psychology (AREA)
  • Health & Medical Sciences (AREA)
  • User Interface Of Digital Computer (AREA)
  • Navigation (AREA)
  • Telephone Function (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】環境に設備を設置する手間を低減しつつ、位置推定の精度を向上させることが可能な技術が提供されることが望まれる。 【解決手段】慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得するセンサ制御部と、前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定するデータ処理部と、を備える、情報処理装置が提供される。

Description

情報処理装置、情報処理方法およびプログラム
 本開示は、情報処理装置、情報処理方法およびプログラムに関する。
 近年、位置を推定する技術として様々な技術が知られている。例えば、対象物の位置を推定するための技術として、第1の距離センサおよび第2の距離センサを備える情報処理装置が開示されている(例えば、特許文献1参照)。かかる情報処理装置は、第1の距離センサおよび第2の距離センサによる検知結果に基づいて、情報処理装置の周辺に存在する対象物の位置を推定する。しかし、さらに広いエリア内の対象物の位置を推定する技術も知られている。
 例えば、衛星測位システムとして、GPS(Global Positioning System)などのGNSS(Global Navigation Satellite System)が知られている。また、無線LAN(Local Area Network)のアクセスポイントを利用して位置を推定する手法も挙げられる。その他、UWB(Ultra Wideband)の受信機を室内の複数箇所に設置し、これらの受信機を利用して屋内位置推定をする手法が挙げられる。
特開2012-38164号公報
 しかし、環境に設備を設置する手間を低減しつつ、位置推定の精度を向上させることが可能な技術が提供されることが望まれる。
 本開示によれば、慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得するセンサ制御部と、前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定するデータ処理部と、を備える、情報処理装置が提供される。
 本開示によれば、慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得することと、プロセッサにより、前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定することと、を備える、情報処理方法が提供される。
 本開示によれば、コンピュータを、慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得するセンサ制御部と、前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定するデータ処理部と、を備える情報処理装置として機能させるためのプログラムが提供される。
 以上説明したように本開示によれば、環境に設備を設置する手間を低減しつつ、位置推定の精度を向上させることが可能な技術が提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の第1の実施形態のイメージについて説明するための図である。 固定局を利用した一般的な測位技術について説明するための図である。 自端末と相手端末だけしか測位に利用できない場合について説明するための図である。 端末の機能構成例を示す図である。 本開示の第1の実施形態に係る自端末10-1の全体動作の例を示すフローチャートである。 本開示の第1の実施形態に係る自端末10-1の全体動作の例を示すフローチャートである。 データ計測指示UIの例を示す図である。 データ計測指示UIの例を示す図である。 データ計測指示UIの他の例を示す図である。 データ計測指示UIの他の例を示す図である。 ジェスチャ指示UIの他の例を示す図である。 軌跡が円形状である場合における4つの測定点の例を示す図である。 軌跡が円形状である場合における4つの測定点のX軸方向の速度およびY軸方向の速度の例を示す図である。 ユーザが水平方向の円に沿って端末を2回移動させた場合における端末のX軸方向の加速度およびY軸方向の加速度の例を示す図である。 軌跡が多角形である場合における複数の測定点の例を示す図である。 ユーザが水平方向の矩形に沿って端末を2回移動させた場合における端末のX軸方向の加速度およびY軸方向の加速度の例を示す図である。 端末の移動方向が水平前後方向である場合における複数の測定点の例を示す図である。 ユーザが水平前後方向に端末を2回移動させた場合における端末のX軸方向の加速度およびY軸方向の加速度の例を示す図である。 誤差がないと仮定した場合の相手位置の算出について説明するための図である。 各測定点における座標と距離の具体的な値の例を示す図である。 誤差があることを想定した場合の相手位置の算出について説明するための図である。 信頼度算出の例を説明するための図である。 相手端末の相対位置の出力例を示す図である。 相手端末の相対位置の出力例を示す図である。 相手端末の相対位置の出力例を示す図である。 相手端末の相対位置の出力例を示す図である。 相手端末の相対位置の出力例を示す図である。 相手端末の相対位置の出力例を示す図である。 自端末および相手端末の形態の例を示す図である。 自端末の形態の例を示す図である。 自端末の形態の例を示す図である。 自端末の形態の例を示す図である。 自端末の形態の例を示す図である。 自端末の形態の例を示す図である。 自端末の形態の例を示す図である。 自端末の形態の例を示す図である。 自端末の形態の例を示す図である。 エラー種類とエラー理由とエラーの優先度とが対応付けられた情報の例を示す図である。 エラー通知UIの例を示す図である。 エラー通知UIの例を示す図である。 エラー通知UIの例を示す図である。 エラー通知UIの例を示す図である。 エラー通知UIの例を示す図である。 本実施形態が子供の迷子防止に利用される場合を説明するための図である。 本実施形態が紛失物の探索に利用される場合を説明するための図である。 本実施形態がアイテム探しゲームに利用される場合を説明するための図である。 逐次処理が行われる場合における自端末の全体動作の例を示すフローチャートである。 逐次処理が行われる場合における自端末の全体動作の例を示すフローチャートである。 逐次処理が実行される場合における測定開始受け付けUIの例を示す図である。 逐次処理が実行される場合におけるジェスチャ指示UIの例を示す図である。 逐次処理が実行される場合における複数の測定点の例を示す図である。 ユーザが図38Aに示したように端末を移動させた場合における端末のX軸方向の加速度およびY軸方向の加速度の例を示す図である。 本開示の第2の実施形態に係る相手位置の算出について説明するための図である。 本実施形態が夜道を照らすドローンに利用される場合を説明するための図である。 本実施形態がフットサルにおける位置トラッキングに利用される場合を説明するための図である。 選手の位置トラッキング結果の表示例を示す図である。 選手の位置トラッキング結果の表示例を示す図である。 選手の位置トラッキング結果の表示例を示す図である。 選手の位置トラッキング結果の表示例を示す図である。 選手の位置トラッキング結果の表示例を示す図である。 選手の位置トラッキング結果の表示例を示す図である。 情報処理装置のハードウェア構成例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書および図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。また、異なる実施形態の類似する構成要素については、同一の符号の後に異なるアルファベットを付して区別する。ただし、類似する構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
 なお、説明は以下の順序で行うものとする。
 0.背景
 1.第1の実施形態(ジェスチャ)
  1.1.概要
  1.2.機能構成例
  1.3.全体動作
  1.4.データ計測指示UI
  1.5.ジェスチャ例
  1.6.相手位置の算出
  1.7.信頼度の算出
  1.8.相手位置の決定
  1.9.相手位置のフィードバック
  1.10.エラーの種類とUI
  1.11.ユースケース
  1.12.逐次処理
 2.第2の実施形態(PDR)
  2.1.相手位置の算出
  2.2.ユースケース
 3.ハードウェア構成例
 4.むすび
 <0.背景>
 まず、本開示の一実施形態の背景について説明する。近年、位置を推定する技術として様々な技術が知られている。例えば、対象物の位置を推定するための技術として、第1の距離センサおよび第2の距離センサを備える情報処理装置が開示されている(例えば、特開2012-38164号公報参照)。かかる情報処理装置は、第1の距離センサおよび第2の距離センサによる検知結果に基づいて、情報処理装置の周辺に存在する対象物の位置を推定する。しかし、さらに広いエリア内の対象物の位置を推定する技術が望まれる。
 例えば、衛星測位システムとして、GPSなどのGNSSなどが知られている。しかし、衛星測位システムを用いた位置推定では、屋内での位置推定の精度が向上しない。さらに、衛星測位システムを用いた位置推定では、ユーザの端末は、衛星からの電波を受信し、受信した電波に基づいて測位を行い、当該ユーザの他のユーザに対する相対位置の推定のために測位結果をサーバにアップロードする。アップロードされた測位結果はサーバ側で処理され、位置情報として他のユーザに共有される。このとき、他のユーザへの位置情報の共有に関してプライバシー管理が困難となってしまう(もしくはプライバシー管理のために煩雑な仕組みが必要になってしまう)。
 また、無線LANのアクセスポイントを利用して位置を推定する手法も挙げられる。しかし、かかる手法では、あらかじめ環境に設備を設置するための手間が掛かり、位置推定の精度もさほど高くない。その他、UWBの受信機を室内の複数箇所に設置し、これらの受信機を利用して屋内位置推定をする手法が挙げられる。しかし、かかる手法では、あらかじめ環境に設備を設置するための手間が掛かってしまう。
 そこで、本明細書においては、環境に設備を設置する手間を低減しつつ、位置推定の精度を向上させることが可能な技術について主に提案する。また、本明細書においては、サーバへのユーザの位置情報のアップロードの必要性をなくすとともに、全く異なる場所(測距センサの計測範囲外)に存在する他のユーザに自分の位置が知られる可能性を低減することによって、プライバシーの管理を行うことが可能な技術について主に説明する。
 以上、本開示の一実施形態の背景について説明した。
 <1.第1の実施形態(ジェスチャ)>
 続いて、本開示の第1の実施形態について説明する。本開示の第1の実施形態においては、ユーザが自分の位置を基準とした相手の位置を端末に推定させるために、端末を動かすジェスチャを行う場合を説明する。
 [1.1.概要]
 まず、本開示の第1の実施形態の概要について説明する。図1は、本開示の第1の実施形態のイメージについて説明するための図である。具体的な例として、ユーザU1とユーザU2とが恋人同士であり、ユーザU1およびユーザU2は、あらかじめペアリングされた端末10-1および端末10-2をそれぞれ所持している場合を想定する。端末10-1および端末10-2は情報処理システム1を構成している。ユーザU1は、ユーザU2とデートをする日に、駅で待ち合わせをする約束をしたが、ユーザU2がどこにいるのか把握できていない状況を想定する。
 このとき、ユーザU1は、端末10-1を取り出して端末10-1に探索開始ボタンを表示させる。ユーザU1が探索開始ボタンを押下すると、端末10-1には円形状をした軌道が表示される。ユーザU1が円形状の軌道に従って端末10-1を動かすジェスチャを行うと、端末10-1の表示面にユーザU1を基準としたユーザU2の方向とユーザU1からユーザU2までの距離とを示すインジケータが表示される。ユーザU1は、表示されたインジケータを参照することによって、ユーザU2を容易に見つけることができる。
 図2は、固定局を利用した一般的な測位技術について説明するための図である。図2に示すように、環境には3台の固定局90(固定局90-1、固定局90-2および固定局90-3)が設置されている。ここで、固定局90-1から距離r1だけ離れ、固定局90-2から距離r2だけ離れ、固定局90-3から距離r3だけ離れたところに移動体80-1が存在することが検出された場合を想定する。
 かかる場合、移動体80-1の位置は、固定局90-1の位置を中心とした半径r1の円と、固定局90-2の位置を中心とした半径r2の円と、固定局90-3の位置を中心とした半径r3の円との交点に存在することとなる。しかし、この例からも把握されるように、固定局90が必要になってしまう。一方、アンテナアレイにおける受信信号を用いて位置推定を行う技術も想定されるが、アンテナアレイをデバイスに収める必要が生じると、デバイスのデザイン性が損なわれる。
 図3は、自端末と相手端末だけしか測位に利用できない場合について説明するための図である。図3に示すように、自端末80-1と相手端末80-2とが距離r0だけ離れていることが分かっている場合、自端末80-1を中心として半径r0の円上のどこかに相手端末80-2が存在することは特定される。しかし、自端末80-1を基準として相手端末80-2がどちらの方向に存在するのかは分からない(例えば、相手端末80-2a~80-2dのどこが正しい位置であるのか分からない)。
 本開示の実施形態においては、自端末の能動的な動きが慣性センサで捉えられ、慣性センサで捉えられた自端末の動きに基づいて、自端末位置の時間変化が算出される。そして、自端末位置の時間変化に基づいて、擬似的に複数点からの相手端末までの測距を同時にしているのと同じ状況が作り出される。これによって、複数点からの相手端末までの距離に基づいて自端末を基準とした相手端末の相対位置が推定される。
 以上、本開示の第1の実施形態の概要について説明した。
 [1.2.機能構成例]
 続いて、本開示の第1の実施形態に係る端末(以下、「情報処理装置」とも言う。)10の機能構成例について説明する。なお、端末10には、ユーザU1が利用する自端末10-1およびユーザU2が利用する相手端末10-2(探索対象)が含まれ得る。図4は、端末10の機能構成例を示す図である。図4に示したように、端末10は、検出部110、操作部120、制御部130、記憶部140および出力部150を有している。
 なお、本明細書においては、検出部110以外の各ブロック(操作部120、制御部130、記憶部140および出力部150)が、検出部110と同一のデバイス(例えば、スマートフォンなど)内に存在する例を主に説明する。しかし、検出部110以外の各ブロックが存在する位置は特に限定されない。例えば、検出部110以外のブロックの一部または全部は、サーバなどに存在していてもよい。
 検出部110は、各種のセンサを有しており、各種のセンサによるセンシングによりセンサデータを取得することが可能である。本開示の第1の実施形態においては、検出部110が慣性センサ111および測距センサ112を有している。なお、図4に示した例では、1つの慣性センサ111が示されているが、実際には、慣性センサ111は、加速度センサおよびジャイロセンサといった複数のセンサを有している。
 測距センサ112は、送信機と受信機とを備えており、送信機は信号を発信し、受信機は他の端末の測距センサ112から信号を受信する。このとき、測距センサ112は、他の端末の測距センサ112からの受信信号に基づいて、他の端末との距離を計測することが可能である。
 また、本明細書においては、送信機から受信機に送信される信号がUWB(Ultra Wideband)である場合を主に想定するが、信号の種類は特に限定されない。例えば、送信機から受信機に送信される信号の種類は、光であってもよいし、音波であってもよいし、電波であってもよい。距離の計測の手法も特に限定されない。例えば、測距センサ112は、信号の伝搬時間に基づいて、他の端末の測距センサ112との距離を計測してもよいし、受信信号の強度に基づいて、他の端末の測距センサ112との距離を計測してもよい。
 なお、距離の測定が不要な測距センサ同士がユーザの意図しないところで近づいてしまったような場合には、距離の測定が不要な測距センサの間でも距離が測定されてしまう可能性がある。そこで、距離の測定が必要な測距センサ同士に対しては、ペアリングがなされるとよい。そうすれば、ペアリングがなされた測距センサ同士においてのみ、距離の測定がなされ得る。
 ペアリングは、測距センサの出荷時に完了していてもよいが、測距センサの交換が必要になった場合などを考慮すると、ユーザによる所定のペアリング操作によって行われるのがよい。例えば、ユーザは、測距センサそれぞれに対するペアリング操作(例えば、測距センサのペアリング開始ボタンを押下して、測距センサ同士を近づける操作など)によって、測距センサに対して他の測距センサの識別情報をペアリング相手として登録することによってペアリングを行ってもよい。
 あるいは、ユーザは、モバイル端末(例えば、スマートフォンなど)に対する所定のペアリング操作(例えば、ペアリング開始ボタンを押下して、測距センサをモバイル端末に近づける操作など)によって、近距離無線通信などを介して測距センサに対して他の端末の測距センサの識別情報をペアリング相手として登録することによってペアリングを行ってもよい。そうすれば、測距センサにペアリング開始ボタンを取り付ける必要がなくなり、測距センサの耐久性を低下させずに済む。
 あるいは、ユーザは、Web上でペアリングを行う複数の測距センサを指定することが可能であってもよい。例えば、かかる場合、モバイル端末(例えば、スマートフォンなど)の近距離無線通信などを介して測距センサに対して他の端末の測距センサの識別情報をペアリング相手として登録することによってペアリングを行ってもよい。
 また、複数の測距センサがユーザとユーザの行動に関わる物体とに分散して取り付けられる場合も想定される。かかる場合には、ユーザに取り付けられた測距センサをモバイル端末(例えば、スマートフォンなど)に登録し、モバイル端末によって、物体に付されている所定のコードが読み取られると、その物体に取り付けられた測距センサとユーザに取り付けられた測距センサとの間のペアリングが開始されてもよい。
 操作部120は、ユーザによる操作を検出して、検出した操作を制御部130に出力する。例えば、操作部120がタッチパネルにより構成される場合には、ユーザによる操作はタッチパネルに対する操作(例えば、タップ操作、ドラッグ操作など)に相当し得る。しかし、操作部120はタッチパネル以外のハードウェア(例えば、ボタンなど)により構成されていてもよい。あるいは、操作部120はマイクロフォンにより構成され、マイクロフォンによって音声が操作として検出されてもよい。
 制御部130は、端末10の各部の制御を実行する。図4に示したように、制御部130は、センサ制御部131、データ処理部132および出力制御部133を備える。これらの各機能ブロックについての詳細は、後に説明する。なお、制御部130は、例えば、CPU(Central Processing Unit;中央演算処理装置)などで構成されていてよい。制御部130がCPUなどといった処理装置によって構成される場合、かかる処理装置は、電子回路によって構成されてよい。
 記憶部140は、制御部130によって実行されるプログラムを記憶したり、プログラムの実行に必要なデータを記憶したりする記録媒体である。また、記憶部140は、制御部130による演算のためにデータを一時的に記憶する。記憶部140は、磁気記憶部デバイスであってもよいし、半導体記憶デバイスであってもよいし、光記憶デバイスであってもよいし、光磁気記憶デバイスであってもよい。
 出力部150は、各種の情報を出力する。例えば、出力部150は、情報を表示することが可能な表示部を有する。表示部は、ユーザに視認可能な表示を行うことが可能なディスプレイであればよく、プロジェクタであってもよいし、液晶ディスプレイであってもよいし、有機EL(Electro-Luminescence)ディスプレイであってもよい。あるいは、出力部150は、端末10-1を振動させる振動子を有していてもよい。
 また、出力部150は、音出力が可能な音出力部を有してもよい。例えば、音出力部は、スピーカを含んでおり、スピーカによって音を出力する。音出力部に含まれるスピーカの数は1以上であれば特に限定されない。そして、音出力部に含まれる1以上のスピーカそれぞれが設けられる位置も特に限定されない。なお、音出力部は、音を出力する機能を有すれば、スピーカ以外の形態(例えば、イヤホン、ヘッドセットなど)の音出力装置を含んでもよい。
 なお、本明細書において、音声(voiceまたはspeech)と音(sound)とは区別して用いられる。すなわち、音声(voiceまたはspeech)は、マイクロフォンによって集音された音のうち、ユーザによる発話を含む。また、音声(voiceまたはspeech)は、端末10から出力される音のうち、端末10による発話を含む。音(sound)は、ユーザによる発話および端末10による発話の他、物音などを含む。
 本実施形態において、センサ制御部131は、慣性センサ111によって検出された慣性センサデータと測距センサ112によって検出された測距センサデータとを取得する。データ処理部132は、慣性センサデータと測距センサデータとに基づいて相対位置を推定する。かかる構成によれば、環境に設備を設置する手間を低減しつつ、位置推定の精度を向上させることが可能となる。
 以上、本開示の第1の実施形態に係る端末10の機能構成例について説明した。
 [1.3.全体動作]
 続いて、本開示の第1の実施形態に係る自端末10-1の全体動作の例について説明する。図5Aおよび図5Bは、本開示の第1の実施形態に係る自端末10-1の全体動作の例を示すフローチャートである。まず、出力制御部133は、探索相手を選択するためのUI(User Interface)の表示を制御する。そして、図5Aに示すように、ユーザU1によって当該画面から探索相手が選択され(S101)、探索開始が指示されると(S102)、出力制御部133は、データ計測指示UIの表示を制御する(S103)。データ計測指示UIについては、後に詳細に説明する。
 そして、データ処理部132は、センサ制御部131によって取得された慣性センサデータの記録を開始し(S104)、慣性センサデータが測定点の条件を満たす場合には(S105において「Yes」)、センサ制御部131は、測距センサデータを取得し、データ処理部132は、センサ制御部131によって取得された測距センサデータの記録を行って、S107に動作を移行させる(S106)。一方、データ処理部132は、慣性センサデータが測定点の条件を満たさない場合には(S105において「No」)、S107に動作を移行させる。
 続いて、データ処理部132は、慣性センサデータが終了条件を満たさない場合には(S107において「No」)、S104に動作を移行させる。一方、データ処理部132は、慣性センサデータが終了条件を満たす場合には(S107において「Yes」)、慣性センサデータの記録を終了し(S108)、S121に動作を移行させる(図5B参照)。
 続いて、データ処理部132は、慣性センサデータから各時刻における自己位置(自端末10-1の位置)を算出する(S121)。慣性センサデータに基づく自己位置の算出はどのようになされてもよい。一例として、データ処理部132は、慣性航法における手法を利用して自己位置を算出してよい。より具体的には、データ処理部132は、加速度の積分(より具体的には、加速度の二階積分)によって自己位置の初期位置を基準とした移動量を算出するとともに、角速度の積分によって自端末10-1の初期方向を基準とした方向を算出してよい。なお、自己位置の算出精度を向上させるための手法がさらに利用されてもよい。
 続いて、データ処理部132は、各時刻における自己位置と測距センサデータとに基づいて相手位置(自端末10-1の位置を基準とした相手端末10-2の相対位置)を算出する(S122)。なお、相手位置の算出についても後に詳細に説明する。また、データ処理部132は、算出した相手位置の信頼度を算出する(S123)。信頼度の算出についても後に詳細に説明する。データ処理部132は、信頼度が閾値を超えない場合には(S124において「No」)、S102に動作を移行させる。
 一方、データ処理部132は、信頼度が閾値を超える場合には(S124において「Yes」)、算出した相手位置を出力対象として決定し(S125)、出力制御部133は、決定した相手位置の表示を制御し(S126)、動作を終了する。なお、相手位置の決定についても後に詳細に説明する。また、相手位置の表示制御についても後に詳細に説明する。
 なお、図5Aおよび図5Bに示したフローチャートは、自端末10-1の動作の例を示したに過ぎない。したがって、自端末10-1の動作はかかる例に限定されない。例えば、図5Aおよび図5Bに示した例では、慣性センサデータの記録を開始するタイミングと測距センサデータの記録を開始するタイミングとは異なっているが、慣性センサデータと測距センサデータとは同時に記録開始され、相手位置の算出に利用されてもよい。
 また、例えば、図5Aおよび図5Bには、探索開始が指示された場合に慣性センサデータを記録し続け、慣性センサデータが終了条件を満たされた場合に、記録し続けられた慣性センサデータに基づいて自端末10-1の位置を算出する例を示した。しかし、自端末10-1の位置は、慣性センサデータに基づいてリアルタイムに算出されてもよい。そうすれば、慣性データ記録用のメモリ領域(バッファ)が低減され得る。
 以上、本開示の第1の実施形態に係る自端末10-1の全体動作の例について説明した。
 [1.4.データ計測指示UI]
 続いて、上記したデータ計測指示UIの例について説明する。上記したように、ユーザU1によって探索相手が選択され、探索開始が指示されると、出力制御部133は、データ計測指示UIの表示を制御する。図6および図7は、データ計測指示UIの例を示す図である。なお、以下では、データ計測指示UIが表示部151によって表示される例を説明するが、音声または振動などといった他の出力によってデータ計測指示UIが出力されてもよい。
 まず、相手位置が二次元的に推定される場合には、水平方向に複数の測定点を確保する必要があるため、端末10-1が水平方向に移動される必要がある。そこで、図6に示すように、出力制御部133は、端末10-1を水平にすることを促す傾き調整指示UI(G1-1)の表示部151による表示を制御する。ここでは、端末10-1が水平方向に対して傾いている場合に、出力制御部133がその傾きに応じた位置に点を表示させることによって端末10-1を水平にすることを促す例を示すが、端末10-1を水平にすることを促す手法は、かかる例に限定されない
 なお、本明細書においては、相手位置が二次元的に推定される場合を主に想定するが、鉛直方向も考慮して相手位置を三次元的に推定する場合も想定される。かかる場合には、水平方向に複数の測定点を確保する必要はないため、傾き調整指示UI(G1-1)の表示制御はなされなくてもよい。
 続いて、図6に示すように、出力制御部133は、測定開始前UI(G1-2)の表示を制御する。ここでは、複数の測定点同士の距離を大きくすることによって相手位置の推定精度を向上させるために、出力制御部133が大きくジェスチャをすることを促す測定開始前UI(G1-2)の表示を制御する例を示している。測定開始前UI(G1-2)に示すように、大きくジェスチャをすることを促す旨は、アイコンによって表示されてもよいし、テキストによって表示されてもよい。
 続いて、図7に示すように、出力制御部133は、測定開始受け付けUI(G2-1)の表示を制御する。操作部120によってユーザU1がSTARTボタンを押下する操作が受け付けられると、出力制御部133は、端末10-1を動かすジェスチャを促す出力を制御する。例えば、出力制御部133は、所定の形状を有する軌道の表示とその軌道に沿って端末10-1を動かすジェスチャを促す表示とを制御する。ここで、軌道の形状は特に限定されない。
 例えば、出力制御部133は、ジェスチャ指示UI(G2-2)に示すように、円形状を有する軌道の表示とその軌道に沿って端末10-1を動かすジェスチャを促す表示とを制御してもよい。ユーザU1によるジェスチャが開始された場合、出力制御部133は、ジェスチャの進捗状況(軌道全体に対して完了したジェスチャの割合)の表示を制御するのがよい。そうすれば、ユーザU1は、表示された進捗状況によってジェスチャの残りを確認することが可能となる。なお、表示される進捗状況は、ジェスチャ指示UI(G2-2)に示すようにインジケータであってもよいし、数値であってもよい。
 ユーザU1によるジェスチャがなされた結果、複数の測定点が得られ、複数の測定点に基づいて相手位置が決定された場合、出力制御部133は、ジェスチャ完了UI(G2-3)に示すように相手位置が決定された旨の出力を制御してもよい。このとき、出力制御部133は、ジェスチャの進捗状況としてジェスチャが完了した旨の表示を制御するのがよい。そうすれば、ユーザU1は、ジェスチャが正常になされたことを確認することが可能となる。
 続いて、上記したデータ計測指示UIの他の例について説明する。上記したように、ユーザU1によって探索相手が選択され、探索開始が指示されると、出力制御部133は、データ計測指示UIの表示を制御する。図8および図9は、データ計測指示UIの他の例を示す図である。まず、図6に示した場合と同様に、出力制御部133は、端末10-1を水平にすることを促す傾き調整指示UI(G1-1)の表示部151による表示を制御するとよい。続いて、図6に示した場合と同様に、出力制御部133は、測定開始前UI(G1-2)の表示を制御する。
 続いて、図8に示すように、出力制御部133は、測定開始受け付けUI(G3-1)の表示を制御する。操作部120によってユーザU1がSTARTボタンを押下する操作が受け付けられると、出力制御部133は、端末10-1を動かすジェスチャを促す出力を制御する。例えば、出力制御部133は、所定の形状を有する軌道の表示とその軌道に沿って端末10-1を動かしながら所定の位置で端末10-1を一時的に静止させるジェスチャを促す表示とを制御する。ここで、上記したように軌道の形状は特に限定されない。
 例えば、出力制御部133は、ジェスチャ指示UI(G3-2)に示すように、多角形(例えば、矩形)を有する軌道の表示とその軌道に沿って端末10-1を動かしながら多角形の各頂点で端末10-1を一時的に静止させるジェスチャを促す表示とを制御してもよい。ユーザU1によるジェスチャが開始された場合、出力制御部133は、ジェスチャの進捗状況(軌道全体に対して完了したジェスチャの割合)の表示を制御するのがよい。そうすれば、ユーザU1は、表示された進捗状況によってジェスチャの残りを確認することが可能となる。なお、表示される進捗状況は、ジェスチャ指示UI(G3-2)に示すようにインジケータであってもよいし、数値であってもよい。
 例えば、出力制御部133は、端末10-1を一時的に静止させるジェスチャが正常になされた場合に進捗状況を更新するようにすればよい。このとき、出力制御部133は、当該ジェスチャが正常になされた場合、ユーザU1にその旨を知らせるため、所定の出力を制御してもよい。所定の出力は、所定の音の出力であってもよいし、所定の振動であってもよい。また、出力制御部133は、進捗状況の表示を制御するとともに、ジェスチャ指示UI(G3-2)に示すように次に端末10-1を動かすべき方向の表示も制御するとよい。
 ユーザU1によるジェスチャがなされた結果、複数の測定点が得られ、複数の測定点に基づいて相手位置が決定された場合、出力制御部133は、ジェスチャ完了UI(G3-3)に示すように相手位置が決定された旨の出力を制御してもよい。このとき、出力制御部133は、ジェスチャの進捗状況としてジェスチャが完了した旨の表示を制御するのがよい。そうすれば、ユーザU1は、ジェスチャが正常になされたことを確認することが可能となる。
 なお、軌道の形状は各種センサのサンプリングレートおよび相手位置の計算量などを考慮して、設計者などによって決定されてよい。あるいは、軌道の形状はユーザU1によって選択されてもよい。また、後にも説明するように、軌道の形状が円の場合よりも軌道の形状が多角形の場合のほうが高い精度の相手位置が得られることが想定される。そこで、出力制御部133は、軌道の形状が円の場合に何らかの理由によって相手位置が決定されない場合(例えば、算出された相手位置の信頼度が閾値よりも低い場合)、軌道の形状を多角形に変更してもよい。
 上記においては、出力制御部133は、所定の形状を有する軌道として、円全体または多角形全体の表示を制御する例を説明した。しかし、表示領域が小さい場合などには、出力制御部133は、表示領域をはみ出すように円の一部または多角形の一部の表示を制御してもよい。これによって表示領域が小さくても、ユーザU1が大きなジェスチャをする可能性が高まる。図9は、ジェスチャ指示UIの他の例を示す図である。ジェスチャ指示UI(G4-1)に示すように、出力制御部133は、表示領域をはみ出すように円の一部の表示と円に沿って端末10-1を動かすジェスチャを促す表示とを制御してもよい。
 また、表示領域が小さい場合などには、出力制御部133は、軌道の表示を制御する代わりに、振動子を用いた力覚フィードバックによって端末10-1を動かすべき方向を指示してもよい。これによって表示領域が小さくても、ユーザU1が大きなジェスチャをする可能性が高まる。図10は、ジェスチャ指示UIの他の例を示す図である。ジェスチャ指示UI(G5-2)に示すように、出力制御部133は、力覚フィードバックによって端末10-1を動かすべき方向を指示するとともに、力を感じた方向に端末10-1を動かすジェスチャを促す表示とを制御してもよい。
 以上、データ計測指示UIについて説明した。
 [1.5.ジェスチャ例]
 続いて、上記したジェスチャの例について説明する。まず、出力制御部133によって表示制御される軌跡が円形状である場合を想定する。図11Aは、軌跡が円形状である場合における4つの測定点の例を示す図である。軌跡が円形状である場合に測定点を等間隔で4箇所設けるようにすると、図11Aに示すように、時刻t0~t3(時刻の早い順)それぞれにおける端末10-1の位置が得られる。なお、測定点の数は4箇所に限定されず、複数箇所であればよい。また、各測定点は等間隔でなくてもよい。
 このとき、データ処理部132は、慣性センサデータに応じて算出される速度が所定の速度条件を満たす4つの時刻を4つの測定時刻として決定すればよい。図11Bは、軌跡が円形状である場合における4つの測定点のX軸方向の速度およびY軸方向の速度の例を示す図である。ユーザU1が水平方向の円に沿って端末10-1を動かした場合、時刻t0~t3それぞれにおける端末10-1の速度(Vx,Vy)は、図11Bに示す通りになることが想定される。そこで、データ処理部132は、図11Bに示す速度(Vx,Vy)を満たす時刻t0~t3を4つの測定時刻として決定すればよい。
 図11Cは、ユーザU1が水平方向の円に沿って端末10-1を2回移動させた場合における端末10-1のX軸方向の加速度およびY軸方向の加速度の例を示す図である。例えば、X軸方向の速度Vxは、加速度センサによって検出されたX軸方向の加速度の積分によって得られてよく、Y軸方向の速度Vyは、加速度センサによって検出されたY軸方向の加速度の積分によって得られてよい。しかし、X軸方向の速度VxおよびY軸方向の速度Vyはどのようにして得られてもよい。
 続いて、出力制御部133によって表示制御される軌跡が多角形(例えば、矩形)である場合を想定する。図12Aは、軌跡が多角形である場合における複数の測定点の例を示す図である。軌跡が多角形である場合に測定点を各頂点に設けるようにすると、図12Aに示すように、時刻t0~t3(時刻の早い順)それぞれにおける端末10-1の位置が得られる。なお、各測定点は等間隔でなくてもよい。すなわち、多角形の各辺の長さは等しくなくてもよい。
 このとき、データ処理部132は、慣性センサデータによって示される加速度が所定の加速度条件を満たす複数の時刻を複数の測定時刻として決定すればよい。例えば、各頂点において、端末10-1が一時的に静止されば加速度はゼロになるはずである。したがって、加速度条件は、水平方向の加速度がゼロになるという条件であってよい。なお、各頂点において、端末10-1が一時的に静止されば水平方向の速度もゼロになるはずである。したがって、加速度条件の代わりに、または、加速度条件に追加して、水平方向の速度がゼロになるという条件が用いられてもよい。
 図12Bは、ユーザU1が水平方向の矩形に沿って端末10-1を2回移動させた場合における端末10-1のX軸方向の加速度およびY軸方向の加速度の例を示す図である。例えば、X軸方向の速度は、加速度センサによって検出されたX軸方向の加速度の積分によって得られてよく、Y軸方向の速度は、加速度センサによって検出されたY軸方向の加速度の積分によって得られてよい。しかし、X軸方向の速度およびY軸方向の速度はどのようにして得られてもよい。
 続いて、端末10-1の移動方向が水平前後方向である場合を想定する。図13Aは、端末10-1の移動方向が水平前後方向である場合における複数の測定点の例を示す図である。端末10-1の移動方向が水平前後方向とし、所定の時間間隔で複数の測定点をとるようにすると、図13Aに示すように、時刻t0~t5(時刻の早い順)それぞれにおける端末10-1の位置が得られる。端末10-1の移動方向が水平前後方向である場合、端末10-1の動きが小さいために精度はさほど向上しないものの、ユーザU1が端末10-1を移動させる負荷は低減される。
 図13Bは、ユーザU1が水平前後方向に端末10-1を2回移動させた場合における端末10-1のX軸方向の加速度およびY軸方向の加速度の例を示す図である。図13Bを参照すると、X軸方向(水平前後方向)の加速度に変化が見られるが、Y軸方向の加速度(水平左右方向)に変化は見られない。なお、端末10-1の移動方向は水平前後方向に限定されない。例えば、端末10-1の移動方向は水平左右方向であってもよい。
 以上、ジェスチャ例について説明したが、ジェスチャの種類はこれらに限定されない。例えば、端末10-1の移動方向は特に決められていなくてもよいが、これについては後に詳細に説明する。また、加速度センサの種類は、上記したような2軸の加速度センサに限定されない。例えば、加速度センサの種類は、1軸の加速度センサであってもよいし、3軸の加速度センサであってもよい。また、加速度センサと他のセンサ(例えば、ジャイロセンサなど)を組み合わせて用いることによって、測定点の相対座標をより正確に得ることも可能である。
 [1.6.相手位置の算出]
 続いて、上記した相手位置の算出について説明する。上記のようにして、複数の測定点が得られると、データ処理部132は、慣性センサデータに基づいて複数の測定時刻それぞれにおける自端末10-1の位置を算出する。このとき、自端末10-1の位置は、慣性航法における手法を利用して算出されてよい。一方、データ処理部132は、測距センサデータに基づいて複数の測定時刻それぞれにおける自端末10-1と相手端末10-2との距離を算出する。
 そして、データ処理部132は、自端末10-1の位置と当該距離とに基づいて自端末10-1の位置を基準とした相手端末10-2の相対位置を推定する。本明細書においては、相手位置が二次元的に推定される場合を主に想定するため、測定点は3箇所以上であればよい。しかし、上記したように鉛直方向も考慮して相手端末10-2の相対位置を三次元的に推定する場合も想定される。かかる場合には、測定点は4箇所以上であればよい。
 図14Aは、誤差がないと仮定した場合の相手位置の算出について説明するための図である。図14Aに示すように、測定時刻t0~t2(時刻の早い順)それぞれにおける端末10-1の位置が得られたと仮定する。そして、測定時刻t0~t2それぞれにおける自端末10-1と相手端末10-2との距離rt0~rt2が得られたと仮定する。このとき、相手端末10-2の相対位置は、測定点(時刻t0)を中心とした半径rt0の円と、測定点(時刻t1)を中心とした半径rt1の円と、測定点(時刻t2)を中心とした半径rt2の円との交点Cとなる。
 交点C(相手端末10-2の相対座標)の求め方についてさらに詳細に説明する。相手端末10-2の相対座標を(x,y)とし、測定点(時刻ti)の座標を(x,y)とし、測定時刻tiにおける自端末10-1と相手端末10-2との距離をrtiとすると、測定点(時刻ti)を中心とした半径rtiの円は、以下の(数式1)のように表現される。
 (x-x+(y-y=r (i=0~N) ・・・(数式1)
 ここで、初期位置(時刻t0)から交点C(相手端末10-2の相対座標)に向かう方向のx軸に対する角度をθとし、初期位置(時刻t0)から交点C(相手端末10-2の相対座標)までの距離をDとすると、角度θは、逆三角関数によってxおよびyによって以下の(数式2)のように表現される。
 θ=arctan(y/x),D=rt0 ・・・(数式2)
 図14Bは、各測定点(時刻ti)における座標(X,Y)と距離Rの具体的な値の例を示す図である。図14Bに示した具体的な値を(数式1)に代入して整理すると、相手端末10-2の相対座標(x,y)≒(1.5,3.0)が算出される。また、相手端末10-2の相対座標(x,y)を(1.5,3.0)として、これを(数式2)に代入して整理すると、角度θ=63.4[deg]と算出される。また、図14Bに示すように、距離D=測定点(時刻ti)における距離R=3.35である。
 なお、自端末10-1の位置を基準とした相手端末10-2の相対位置は、交点C(相手端末10-2の相対座標)であってよい。すなわち、自端末10-1の位置を基準とした相手端末10-2の相対位置は、距離Dおよび角度θの双方を含んでよい。あるいは、自端末10-1の位置を基準とした相手端末10-2の相対位置として、角度θのみが提供されてもよい。
 以上のように、誤差がないと仮定した場合には、測定点(時刻t0)を中心とした半径rt0の円と、測定点(時刻t1)を中心とした半径rt1の円と、測定点(時刻t2)を中心とした半径rt2の円との交点Cが1つに定まる。しかし、実際にはセンサの誤差などによって交点Cは1つに定まらない。したがって、以下に説明するような手法によって最終的な相手端末10-2の相対位置を決定すればよい。
 図15は、誤差があることを想定した場合の相手位置の算出について説明するための図である。図15に示すように、測定時刻t0~t2(時刻の早い順)それぞれにおける端末10-1の位置が得られたと仮定する。そして、測定時刻t0~t2それぞれにおける自端末10-1と相手端末10-2との距離が得られ、図15には、測定点(時刻t0~t2)それぞれを中心として対応する距離を半径とする円が描かれている。
 ここで、データ処理部132は、測定時刻t0~t2から選択される二つの測定時刻の各組において自端末10-1の位置を中心として対応する距離を半径とする軌跡同士の交点が存在するか否かを判断する。図15に示した例では、測定時刻t0~t2から選択される二つの測定時刻の各組として、(t0,t1)と(t1,t2)と(t2,t0)とが挙げられる。
 図15を参照すると、測定点(時刻t0)を中心とした円と測定点(時刻t1)を中心とした円との交点としては、C01-1とC01-2の2点が存在する。測定点(時刻t1)を中心とした円と測定点(時刻t2)を中心とした円との交点としては、C12-1とC12-2の2点が存在する。一方、測定点(時刻t0)を中心とした円と測定点(時刻t1)を中心とした円との交点は存在していない。すなわち、1組目の交点として、C01-1とC01-2の2点が存在し、2組目の交点として、C12-1とC12-2の2点が存在する。
 そして、データ処理部132は、存在すると判断した交点に基づいて、相手端末10-2の相対位置を推定する。例えば、データ処理部132は、交点が存在する組が複数である場合、各組から一つずつ選択した交点間の総距離が最小となる交点群の中点または重心を相手端末10-2の相対位置として推定する。
 図15に示した例では、データ処理部132は、1組目の交点から選択したC01-1と2組目の交点から選択したC12-1との距離を算出し、1組目の交点から選択したC01-1と2組目の交点から選択したC12-2との距離を算出し、1組目の交点から選択したC01-2と2組目の交点から選択したC12-1との距離を算出し、1組目の交点から選択したC01-2と2組目の交点から選択したC12-2との距離を算出する。これらのうち、1組目の交点から選択したC01-1と2組目の交点から選択したC12-1との距離が最小となるため、データ処理部132は、C01-1とC12-1との中点Cを相手端末10-2の相対位置として推定すればよい。
 あるいは、相手端末10-2の相対位置は、交点間の総距離が最小となる交点群の中点または重心でなくてもよい。例えば、データ処理部132は、交点が存在する組が複数である場合、各組から一つずつ選択した交点間の総距離が最小となる交点群のいずれかの交点位置を相対位置として推定してもよい。図15に示した例では、1組目の交点から選択したC01-1と2組目の交点から選択したC12-1との距離が最小となるため、データ処理部132は、C01-1とC12-1とのいずれかの交点位置を相手端末10-2の相対位置として推定してもよい。
 総距離が最小となる交点群のいずれの交点位置を相手端末10-2の相対位置として推定するかは限定されない。しかし、慣性センサ111による自端末10-1の位置の算出精度は、時間が経過するほど累積誤差によって低下することが想定される。そこで、より高精度に相手端末10-2の相対位置を推定するために、データ処理部132は、総距離が最小となる交点群のうち測定時刻が古い交点位置を相手端末10-2相対位置として推定するのがよい。
 図15に示した例では、1組目の交点から選択したC01-1と2組目の交点から選択したC12-1との距離が最小となるが、データ処理部132は、より測定時刻が古いC01-1を相手端末10-2の相対位置として推定するとよい。
 一方、交点が存在する組が単数である場合も想定される。かかる場合には、データ処理部132は、当該組の交点のいずれかの位置を相手端末10-2の相対位置として推定すればよい。交点が存在する組の交点のいずれの交点位置を相対位置として推定するかは限定されない。しかし、交点が存在する組が複数である場合と同様に、データ処理部132は、当該組の交点のうち測定時刻が古い交点位置を相手端末10-2の相対位置として推定するのがよい。
 以上、相手位置の算出について説明したが、相手位置の算出手法はこれらに限定されない。例えば、データ処理部132は、自端末10-1と相手端末10-2との距離が閾値を超えた場合をエラーとして扱ってもよい。また、データ処理部132は、自端末10-1と相手端末10-2との距離を後に説明する信頼度の重みに利用してもよい。また、データ処理部132は、交点の数が少ないほど、後に説明する信頼度を低下させるようにしてもよい。
 また、上記した相手位置の算出手法は一例に過ぎないため、上記のような相手位置の算出を統計的な手法によって補間してもよい。また、ここでは相手位置を二次元的に推定する例を説明したが、相手位置は三次元的に推定されてもよい。このとき、三次元的な相手位置も、二次元的な相手位置と同様な手法によって推定され得る。
 [1.7.信頼度の算出]
 続いて、上記した信頼度の算出について説明する。上記のようにして、データ処理部132は、相手端末10-2の相対位置を推定すると、相手端末10-2の相対位置の信頼度を算出し、信頼度が閾値を超えた場合に、相手端末10-2の相対位置を決定するようにしてもよい。
 より具体的には、データ処理部132は、複数の測定点から選択される二つ以上の測定時刻の各組について相手端末10-2の相対位置を算出し、算出した相手端末10-2の相対位置のばらつき度合いを信頼度として算出すればよい。慣性センサ111に基づく自端末10-1の位置の推定と測距センサ112による測距とが高精度に行われていれば、二つ以上の測定時刻の各組について算出された相手端末10-2の相対位置のばらつき度合いが小さい(すなわち、精度が高い)と考えられるからである。
 ばらつき度合いとしてどのような指標を利用するかは特に限定されない。例として、ばらつき度合いは、標準偏差であってもよいし、分散であってもよい。また、複数の測定点から選択される二つ以上の測定時刻の各組も特に限定されない。例えば、複数の測定点のうち二つ以上の測定時刻すべての組が信頼度の算出に利用されてもよいし、複数の測定点のうちすべての二つ以上の測定時刻の一部の組が信頼度の算出に利用されてもよい。
 図16は、信頼度算出の例を説明するための図である。図16に示すように、5つの測定点(時刻t0~t4)が得られた場合に、二つ以上の測定時刻すべての組を信頼度の算出に利用する例を説明する。データ処理部132は、5つの測定点(時刻t0~t4)のうち、測定時刻t0,t1,t2の組から上記した手法によって相手端末10-2の相対座標C012を推定する。同様に、データ処理部132は、5つの測定点(時刻t0~t4)のうち、測定時刻t1,t2,t3の組から相手端末10-2の相対座標C123を推定する。
 また、データ処理部132は、5つの測定点(時刻t0~t4)のうち、測定時刻t0,t3,t4の組から相手端末10-2の相対座標C034を推定する。また、データ処理部132は、5つの測定点(時刻t0~t4)のうち、測定時刻t0,t1,t4の組から相手端末10-2の相対座標C014を推定する。紙面の都合上、他の組み合わせについての記載は省略する。データ処理部132は、このようにして推定された相手端末10-2の相対座標C012,C123,C034,C014,・・・のばらつき度合いを信頼度として算出する。
 以上、信頼度の算出について説明したが、信頼度の算出手法はこれらに限定されない。例えば、慣性センサ111による自端末10-1の位置の算出精度は、時間が経過するほど累積誤差によって低下することが想定される。そこで、データ処理部132は、経過時間に応じて信頼度が低くなるように信頼度への影響度の重み付けをしてもよい。
 また、データ処理部132は、複数の測定点から選択される二つ以上の測定時刻の各組から算出された相手端末10-2の相対座標のうち、他の結果と傾向の違う結果を除外した上で信頼度を算出するようにしてもよい。
 また、相手端末10-2も移動している場合には、相手端末10-2の相対位置を高精度に算出することができなくなることが想定される。そこで、データ処理部132は、行動認識技術によって相手端末10-2が移動していることを検出した場合には、算出した相手端末10-2の相対位置の信頼度を下げてもよいし、相手端末10-2の相対位置の算出自体を行わないようにしてもよい。
 [1.8.相手位置の決定]
 続いて、上記した相手位置の決定について説明する。上記のようにして、データ処理部132は、複数の測定時刻から選択される二つ以上の測定時刻の各組について相手端末10-2の相対位置を算出すると、算出した相手端末10-2の相対位置の中点または重心を相手端末10-2の相対位置として決定してよい。すなわち、データ処理部132は、信頼度算出に利用された各組から算出された相手端末10-2の相対位置の中点または重心を相手端末10-2の相対位置として決定してよい。
 あるいは、上記したように、慣性センサ111による自端末10-1の位置の算出精度は、時間が経過するほど累積誤差によって低下することが想定される。そこで、より高精度に相手端末10-2の相対位置を決定するために、データ処理部132は、複数の測定時刻から選択される二つ以上の測定時刻の各組のうち測定時刻が最も早い組に基づいて相手端末10-2の相対位置を決定してもよい。
 以上、相手位置の決定について説明した。
 [1.9.相手位置のフィードバック]
 続いて、上記した相手端末10-2の相対位置のユーザU1へのフィードバックについて説明する。出力制御部133は、相手端末10-2の相対位置が出力部150によって出力されるように出力部150を制御する。ここで、相手端末10-2の相対位置の出力先は特に限定されない。
 例えば、出力制御部133は、出力部150に含まれる表示部によって相手端末10-2の相対位置が表示されるように制御してもよいし、出力部150に含まれる音出力部によって相手端末10-2の相対位置が出力されるように制御してもよい。あるいは、出力制御部133は、出力部150に含まれる振動子によって相手端末10-2の相対位置が出力されるように制御してもよい。あるいは、出力制御部133は、自端末10-1とは異なる他の装置に送信されるように制御してもよい。
 図17~図22は、相手端末10-2の相対位置の出力例を示す図である。例えば、出力制御部133は、図17のフィードバックUI(G3-1)に示すように、地磁気センサによって検出された方位に対して自端末10-1の位置を基準とした相手端末10-2の方向を重畳表示させてもよいし、自端末10-1の位置を基準とした相手端末10-2の方向をテキスト(例えば、「220°」という文字列)によって表示させてもよい。また、出力制御部133は、フィードバックUI(G3-1)に示すように、相手端末10-2の位置を緯度経度によって表示させてもよい。
 また、出力制御部133は、図18のフィードバックUI(G3-2)に示すように、自端末10-1から相手端末10-2までの距離をインジケータによって表示制御してもよい。また、出力制御部133は、図19のフィードバックUI(G3-3)に示すように、レーダ表示方式(例えば、PPIスコープ:Plan Position Indicator scope)によって、自端末10-1の位置を基準とした相手端末10-2の方向と距離とを表示させてもよい。
 また、出力制御部133は、図20のフィードバックUI(G3-4)に示すように、地図上に表されるオブジェクト(例えば、ピン)の位置によって自端末10-1の位置を表示させてもよい。また、出力制御部133は、図20のフィードバックUI(G3-4)に示すように、オブジェクト(例えば、矢印)の位置および方向によって、自端末10-1の位置を基準とした相手端末10-2の距離および方向を表示させてもよい。
 また、出力制御部133は、図21のフィードバックUI(G3-5)に示すように、地図上に表されるオブジェクト(例えば、矢印)の位置によって自端末10-1の位置を表示させてもよい。また、出力制御部133は、図21のフィードバックUI(G3-5)に示すように、自端末10-1の位置を基準とした相手端末10-2の方向への実空間の撮像画像を表示させるとともに、自端末10-1の位置を基準とした相手端末10-2の距離を表示させてもよい。
 また、上記したように、出力制御部133は、出力部150に含まれる音出力部によって相手端末10-2の相対位置が出力されるように制御してもよい。このとき、出力制御部133は、音声によって自端末10-1の位置を基準とした相手端末10-2の方向および距離がガイダンスされるように音声の出力を制御してもよい。
 あるいは、出力制御部133は、ビープ音の周波数と間隔の長さとによって、自端末10-1の方向の正しさ(すなわち、自端末10-1の方向と自端末10-1の位置を基準とした相手端末10-2の方向との近さ)と自端末10-1の位置と相手端末10-2の位置との近さとを音出力させてもよい。例えば、出力制御部133は、自端末10-1の方向が正しいほど、ビープ音を高くしてもよいし、自端末10-1の位置と相手端末10-2の位置とが近いほど、ビープ音の間隔を短くしてもよい。
 また、上記したように、出力制御部133は、出力部150に含まれる振動子によって相手端末10-2の相対位置が出力されるように制御してもよい。このとき、出力制御部133は、振動強度と振動間隔の長さとによって、自端末10-1の方向の正しさ(すなわち、自端末10-1の方向と自端末10-1の位置を基準とした相手端末10-2の方向との近さ)と自端末10-1の位置と相手端末10-2の位置との近さとを提示してもよい。
 例えば、出力制御部133は、自端末10-1の方向が正しいほど、振動強度を大きくしてもよいし、自端末10-1の位置と相手端末10-2の位置とが近いほど、振動間隔を短くしてもよい。例えば、図22に示すように、出力制御部133は、自端末10-1に設けられた複数の振動子152を制御して、自端末10-1の位置を基準とした相手端末10-2の方向に応じた位置が振動しているような知覚をユーザU1に与えるようにしてもよい。
 また、上記では、自端末10-1および相手端末10-2の形態がスマートフォンである場合を主に想定した。しかし、自端末10-1および相手端末10-2の形態はスマートフォンに限定されない。
 図23は、自端末10-1および相手端末10-2の形態の例を示す図である。図23に示すように、自端末10-1および相手端末10-2は、ネックレス型の端末であってもよい。このとき、自端末10-1は、自端末10-1の位置と相手端末10-2の位置との距離を表示するとともに、自端末10-1の位置を基準とした相手端末10-2の方向を矢印によって表示してもよい。同様に、相手端末10-2は、自端末10-1の位置と相手端末10-2の位置との距離を表示するとともに、相手端末10-2の位置を基準とした自端末10-1の方向を矢印によって表示してもよい。
 図24は、自端末10-1の形態の例を示す図である。図24に示すように、自端末10-1は、自端末10-1の方向が正しい場合(すなわち、自端末10-1の方向と自端末10-1の位置を基準とした相手端末10-2の方向とが一致する場合)、発光することによって(または振動により)ユーザU1に自端末10-1の方向が正しいことを知らせてもよい。
 図25は、自端末10-1の形態の例を示す図である。図25に示すように、自端末10-1は、グラス型の端末であってもよい。このとき、図25に示すように、自端末10-1は、グラスを通して見える風景(またはグラスに表示される風景)G4に、自端末10-1の位置を基準とした相手端末10-2の方向を重畳させてもよく、自端末10-1と相手端末との距離を重畳させてもよい。
 図26は、自端末10-1の形態の例を示す図である。図26に示すように、自端末10-1は、リストバンド型の端末であってもよい。このとき、図26に示すように、自端末10-1は、自端末10-1の位置を基準とした相手端末10-2の方向への矢印の表示部151による表示を制御してもよい。また、自端末10-1は、ユーザU1が容易に矢印に気づくことができるように、矢印をアニメーション表示させてもよい。例えば、図26に示すように、自端末10-1の位置を基準とした相手端末10-2がユーザU1の前方である場合、自端末10-1は、ユーザU1の前方への矢印の表示を制御してもよい。
 図27は、自端末10-1の形態の例を示す図である。図27に示すように、自端末10-1は、自端末10-1の方向(例えば、自端末10-1が装着されている腕の伸びる方向)が正しい場合(すなわち、自端末10-1の方向と自端末10-1の位置を基準とした相手端末10-2の方向とが一致する場合)、発光することによって(または振動により)ユーザU1に自端末10-1の方向が正しいことを知らせてもよい。
 図28は、自端末10-1の形態の例を示す図である。図28に示すように、自端末10-1は、指輪型の端末であってもよい。このとき、図28に示すように、自端末10-1は、自端末10-1の位置を基準とした相手端末10-2の方向に発光位置が移動するように表示部151を制御してもよい。例えば、図28に示すように、自端末10-1の位置を基準とした相手端末10-2がユーザU1の前方である場合、自端末10-1は、ユーザU1の前方に発光位置が移動するように表示部151を制御してもよい。
 図29は、自端末10-1の形態の例を示す図である。図29に示すように、自端末10-1は、自端末10-1の位置を基準とした相手端末10-2の方向に応じた位置が発光するように表示部151を制御してもよい。例えば、図29に示すように、自端末10-1の位置を基準とした相手端末10-2がユーザU1の前方である場合、自端末10-1は、ユーザU1の前方に端部が発光するように表示部151を制御してもよい。
 図30Aおよび図30Bは、自端末10-1の形態の例を示す図である。自端末10-1は、自端末10-1の位置を基準とした相手端末10-2の方向に応じた強さで発光するように表示部151を制御してもよい。例えば、自端末10-1は、自端末10-1の方向(例えば、自端末10-1が装着されている指の伸びる方向)が正しいほど(すなわち、自端末10-1の方向と自端末10-1の位置を基準とした相手端末10-2の方向とが近いほど)、強く発光するように表示部151を制御してもよい。
 また、図30Aおよび図30Bに示すように、自端末10-1は、自端末10-1と相手端末10-2との距離に応じた色で発光するように表示部151を制御してもよい。例えば、自端末10-1は、自端末10-1と相手端末10-2との距離が第1の閾値よりも小さい場合には、表示部151を第1の色(例えば、赤色)に発光させてもよく、自端末10-1と相手端末10-2との距離が第2の閾値よりも大きい場合には、表示部151を第2の色(例えば、緑色)に発光させてもよい。
 以上、相手位置のフィードバックについて説明した。
 [1.10.エラーの種類とUI]
 続いて、自端末10-1において生じるエラー(相手端末10-2の相対位置の推定失敗)の種類とエラー通知UI例について説明する。図31は、エラー種類とエラー理由とエラーの優先度とが対応付けられた情報の例を示す図である。図31に示すように、エラー種類としては、「測距範囲外」「対象移動中」「測距点不足」「信頼度不足」「タイムアウト」などが挙げられる。また、図31に示すようなエラー理由が想定される。出力制御部133は、エラーが発生した場合、エラー出力を制御する。
 図31に示すように、エラー種類「測距範囲外」の優先度が最も高く、エラー種類「タイムアウト」の優先度が最も低く設定されている。自端末10-1の表示領域には限りがあるため、複数のエラーが発生した場合、発生したエラーのすべてを提示することが困難な場合も想定される。そこで、出力制御部133は、複数のエラーが発生した場合、複数のエラーの中から最も優先度の高いエラーを提示するようにしてもよい。
 図32A~図32Eは、エラー通知UIの例を示す図である。図32Aのエラー通知UI(G5-1)に示すように、エラー「測距範囲外」が生じた場合、出力制御部133は、相手が計測可能範囲外にいる可能性がある旨を表示部151に表示させてよい。このとき、図32Aのエラー通知UI(G5-1)に示すように、出力制御部133は、相手端末10-2のGPS情報をリクエストするか否かの選択ボタンを表示させてもよい。
 そして、ユーザU1によって相手端末10-2のGPS情報をリクエストする旨が選択され(図32Aの「YES」ボタンが押下され)、相手端末10-2のGPS情報が受信されると、相手端末10-2のGPS情報を地図上に表示させてもよい。そうすれば、ユーザU1は、相手端末10-2の相対位置の推定に失敗しても、相手端末10-2のGPS情報によって相手端末10-2の位置を把握することが可能となる。
 また、図32Bのエラー通知UI(G5-2)に示すように、エラー「対象移動中」が生じた場合、出力制御部133は、相手が移動中である可能性がある旨を表示部151に表示させてよい。このとき、図32Bのエラー通知UI(G5-2)に示すように、出力制御部133は、しばらく時間が経ってから再度計測を試す提案を表示させてもよい。
 また、図32Cのエラー通知UI(G5-3)に示すように、エラー「測距点不足」が生じた場合、出力制御部133は、測距点が不足している旨を表示部151に表示させてよい。このとき、図32Cのエラー通知UI(G5-3)に示すように、出力制御部133は、もう少し大きなジェスチャによって再度計測を試す提案を表示させてもよい。また、出力制御部133は、リトライボタンを表示させてもよい。そして、データ処理部132は、リトライボタンが押下された場合、再度の計測を実行してもよい。
 また、図32Dのエラー通知UI(G5-4)に示すように、エラー「信頼度不足」が生じた場合、出力制御部133は、信頼度が不足している旨を表示部151に表示させてよい。このとき、図32Dのエラー通知UI(G5-4)に示すように、出力制御部133は、もう少し大きなジェスチャによって再度計測を試す提案を表示させてもよい。また、出力制御部133は、リトライボタンを表示させてもよい。そして、データ処理部132は、リトライボタンが押下された場合、再度の計測を実行してもよい。
 また、図32Eのエラー通知UI(G5-5)に示すように、エラー「タイムアウト」が生じた場合、出力制御部133は、ジェスチャが実行されなかった旨を表示部151に表示させてよい。このとき、図32Eのエラー通知UI(G5-5)に示すように、出力制御部133は、一旦計測を中止する旨を表示させ、データ処理部132は、一旦計測を中止してもよい。
 以上、エラーの種類とUIについて説明した。
 [1.11.ユースケース]
 続いて、本実施形態の具体的なユースケースについて説明する。上記した例では、本実施形態がユーザU1とユーザU2とが待ち合わせをする場合に適用される例を説明した。しかし、本実施形態が適用される場面としては、他にも様々な場面が想定される。例えば、本実施形態は子供の迷子防止に利用されてもよい。
 図33は、本実施形態が子供の迷子防止に利用される場合を説明するための図である。図33に示したように、子供であるユーザU3が測距センサ112を装着し、その子供の親が自端末10-1を所持している場合を想定する。このとき、自端末10-1の出力制御部133は、自端末10-1と子供の測距センサ112との距離が所定の距離を超えた場合、親に対する通知の出力を制御するとよい。
 また、この通知を受けた親は、周囲に子供が見当たらなくなった場合、自端末10-1を基準とした子供の測距センサ112の相対位置を推定するアプリケーションを起動する操作を行えばよい。そうすれば、親は、ジェスチャによって複数の測定点を与えることによって、複数の測定点に基づく自端末10-1を基準とした子供の測距センサ112の相対位置を知ることが可能となる。
 例えば、本実施形態は紛失物の探索に利用されてもよい。図34は、本実施形態が紛失物の探索に利用される場合を説明するための図である。図34に示したように、カバンB1に測距センサ112を取り付け、カバンB1の所有者が自端末10-1を所持している場合を想定する。このとき、所有者は、ジェスチャによって複数の測定点を与えることによって、複数の測定点に基づく自端末10-1を基準としたカバンB1の測距センサ112の相対位置を知ることが可能となる。
 なお、ここでは、測距センサ112がカバンB1に取り付ける例を説明したが、測距センサ112は、カバンB1以外のあらゆる物に取り付けられ得る。例えば、測距センサ112は、紛失しやすい物(例えば、鍵、財布およびリモートコントローラなど)に取り付けられてもよい。
 また、本実施形態はアイテム探しゲームに利用されてもよい。図35は、本実施形態がアイテム探しゲームに利用される場合を説明するための図である。ここで、アイテム探しゲームは、ユーザが隠されたアイテムを発見すると自身のポイントを増やすことができるゲームである。図35に示したように、ゲーム提供企業がアイテムの隠し場所に測距センサ112を取り付け、ユーザが自端末10-1を所持している場合を想定する。このとき、ユーザは、ジェスチャによって複数の測定点を与えることによって、複数の測定点に基づく自端末10-1を基準としたアイテムの隠し場所の相対位置を知ることが可能となる。
 以上、本実施形態のユースケースについて説明した。
 [1.12.逐次処理]
 上記においては、あらかじめ決められたジェスチャによって複数の測定点を得る例について説明した。しかし、あらかじめ決められたジェスチャが行われなくても複数の測定点が得られるため、この複数の測定点に基づいて慣性航法によって自端末10-1の位置を算出することは可能である。そこで、以下では、あらかじめ決められたジェスチャをユーザが行わなくてもよい例について説明する。
 具体的には、自端末10-1の出力制御部133は、自端末10-1を適当に動かすことをユーザU1に指示すればよい。また、この例では、あらかじめ決められたジェスチャが存在せず、ジェスチャの終了点も存在しないため、自端末10-1の位置を基準とした相手端末10-2の相対位置が逐次的に推定されればよい。また、データ処理部132は、複数の測定時刻を一定の時間間隔に決めればよい。
 図36Aおよび図36Bは、逐次処理が行われる場合における自端末10-1の全体動作の例を示すフローチャートである。まず、出力制御部133は、探索相手を選択するためのUIの表示を制御する。そして、図36Aに示すように、ユーザU1によって当該画面から探索相手が選択され(S101)、探索開始が指示されると(S102)、出力制御部133は、データ計測指示UIの表示を制御する(S103)。データ計測指示UIについては、後に詳細に説明する。
 そして、データ処理部132は、センサ制御部131によって取得された慣性センサデータの記録を開始し(S104)、慣性センサデータが測定点の条件を満たすか否かを一定時間間隔で判定し、慣性センサデータが測定点の条件を満たす場合には(S105において「Yes」)、センサ制御部131は、測距センサデータを取得し(図36B)、データ処理部132は、センサ制御部131によって取得された測距センサデータの記録を行って、S121に動作を移行させる(S106)。一方、データ処理部132は、慣性センサデータが測定点の条件を満たさない場合には(S105において「No」)、S131に動作を移行させる。
 続いて、データ処理部132は、ユーザによって探索終了が指示されない場合には(S131において「No」)、S104に動作を移行させる。一方、データ処理部132は、ユーザによって探索終了が指示された場合には(S131において「Yes」)、動作を終了させる。
 続いて、データ処理部132は、慣性センサデータから各時刻における自己位置(自端末10-1の位置)を算出する(S121)。慣性センサデータに基づく自己位置の算出はどのようになされてもよい。一例として、データ処理部132は、慣性航法における手法を利用して自己位置を算出してよい。より具体的には、データ処理部132は、加速度の積分によって自己位置の初期位置を基準とした移動量を算出するとともに、角速度の積分によって自端末10-1の初期方向を基準とした方向を算出してよい。なお、自己位置の算出精度を向上させるための手法がさらに利用されてもよい。
 続いて、データ処理部132は、直近X個の自己位置と測距センサデータとに基づいて相手位置(自端末10-1の位置を基準とした相手端末10-2の相対位置)を算出する(S132)。なお、一定時間間隔で測距が行われるため、古い測定点のデータは使われない(バッファから消されてよい)。また、データ処理部132は、算出した相手位置の信頼度を算出する(S123)。データ処理部132は、信頼度が閾値を超えない場合には(S124において「No」)、S131に動作を移行させる。
 一方、データ処理部132は、信頼度が閾値を超える場合には(S124において「Yes」)、算出した相手位置を出力対象として決定し(S125)、出力制御部133は、決定した相手位置の表示を制御し(S126)、動作を終了する。
 図37Aは、逐次処理が実行される場合における測定開始受け付けUIの例を示す図である。また、図37Bは、逐次処理が実行される場合におけるジェスチャ指示UIの例を示す図である。出力制御部133は、逐次処理における測定開始受け付けUI(G6-1)の表示を制御する。操作部120によってユーザU1がSTARTボタンを押下する操作が受け付けられると、出力制御部133は、ジェスチャ指示UI(G6-2)に示すように、端末10-1を適当に動かすジェスチャを促す出力を制御する。
 図38Aは、逐次処理が実行される場合における複数の測定点の例を示す図である。図38Aに示す例では、一定の時間間隔に測定時刻が決められた結果として、時刻t0~t4(時刻の早い順)それぞれにおける端末10-1の位置が得られている。なお、測定点の数は5箇所に限定されず、複数箇所であればよい。図38Bは、ユーザU1が図38Aに示したように端末10-1を移動させた場合における端末10-1のX軸方向の加速度およびY軸方向の加速度の例を示す図である。
 以上、逐次処理が実行される場合について説明した。また、本開示の第1の実施形態について説明した。
 <2.第2の実施形態(PDR)>
 続いて、本開示の第2の実施形態について説明する。本開示の第1の実施形態においては、複数の測定点を得るために、端末10-1を移動させるジェスチャをユーザに行わせる場合を説明した。本開示の第2の実施形態においては、初期位置に対して歩幅とステップ数とを乗じた長さを加算していくことによって歩行者の位置を特定する歩行者自律航法(PDR:Pedestrian Dead Reckoning)によって複数の測定点を得る場合を説明する。
 [2.1.相手位置の算出]
 本開示の第2の実施形態に係る相手位置の算出について説明する。図39は、本開示の第2の実施形態に係る相手位置の算出について説明するための図である。本開示の第2の実施形態においては、データ処理部132が、歩行者自律航法によって複数の測定時刻それぞれにおける自端末10-1の位置を算出するとともに、複数の測定時刻それぞれにおける自端末10-1と相手端末10-2との距離を算出する。
 図39に示した例では、データ処理部132が、歩行者自律航法によって自端末10-1の初期位置(測定時刻t0)と、それに続く自端末10-1の各位置(測定時刻t1~t4)を算出する。また、データ処理部132は、各測定時刻(測定時刻t0~t4)における自端末10-1と相手端末10-2との距離を算出する。データ処理部132は、各測定時刻(測定時刻t0~t4)における自端末10-1の位置から対応する距離を半径とする円の交点Cを相手端末10-2の相対位置として推定することが可能である。
 本開示の第2の実施形態においても、本開示の第1の実施形態と同様な手法によって、相手端末10-2の相対位置を推定することが可能である。なお、自端末10-1の移動に基づく相手端末10-2の相対位置の推定だけではなく、相手端末10-2の移動も加味した上で相手端末10-2の相対位置を推定することも可能である。ただし、この場合には、相手端末10-2の移動情報を共有するための通信が別途必要になる。
 以上、本開示の第2の実施形態に係る相手位置の算出について説明した。
 [2.2.ユースケース]
 続いて、本実施形態の具体的なユースケースについて説明する。本実施形態が適用される場面としては、様々な場面が想定される。例えば、本実施形態は夜道を照らすドローンに利用されてもよい。
 図40は、本実施形態が夜道を照らすドローンに利用される場合を説明するための図である。図40に示したように、ユーザが測距センサ112を所持しており、ドローンには自端末10-1が取り付けられている。このとき、ドローンに取り付けられた自端末10-1は、リアルタイムに自端末10-1の位置を基準としたユーザの測距センサ112の相対位置を推定し、ユーザの前方を照らすようにライトを制御する。
 また、本実施形態は、スポーツにおける位置トラッキングにも利用され得る。ここでは、スポーツの例としてフットサルを主に想定するが、スポーツはバスケットボールであってもよいし、バレーボールであってもよいし、他のスポーツであってもよい。図41は、本実施形態がフットサルにおける位置トラッキングに利用される場合を説明するための図である。図41に示したように、コートの一点に設置された固定局に測距センサ112を取り付ける。ここで、固定局の位置は任意であるが、コートに対する固定局の相対的な位置は分かっている必要がある。
 また、各選手には、慣性センサ111および測距センサ112が取り付けられている(以下、慣性センサ111および測距センサ112を含むタグが選手に取り付けられているとする)。固定局は各チームの選手ごとに設置されてもよいし、1チームにまとめて1つ設置されてもよい。固定局が各チームの選手ごとに設置される場合、タグまたは固定局にペアリングされたスマートフォン経由でサーバにデータ送信されてよい。あるいは、タグまたは固定局自体がWi-Fi(登録商標)と接続されており、Wi-Fi(登録商標)を介してサーバにデータ送信されてもよいし、3GやLTE(登録商標)の通信モジュールを搭載しており、この通信モジュールによってサーバにデータ送信されてもよい。スマートフォンからサーバへの送信は、スマートフォンの充電時に行われてもよい。
 一方、固定局が1チームにまとめて1つ設置される場合、各選手のタグとペアリングされた固定局にセンサデータが送信され、いずれかの選手のスマートフォン経由で各選手のセンサデータがサーバに送信されてよい。各選手のセンサデータに基づく各選手の位置トラッキングは、サーバにおいて実行されてよい。また、以下に示す各画面は、スマートフォンにおいて表示されてよい。図41に示した例では、慣性センサ111によって検出された慣性センサデータに基づいてPDRによって選手の移動軌跡(時刻t0~t2)が算出される。
 また、選手の移動軌跡と選手の移動中に測定された測距センサデータとに基づいて固定局に対する選手の相対位置が推定される。このようにして算出された選手の相対位置は、逐次更新されることによって、コートにおける選手の相対位置がリアルタイムにトラッキングされて描画される。また、コートにおける選手の相対位置が履歴として記録されれば、後から履歴を参照することによって選手の相対位置を振り返ることも可能である。
 図42~図47は、選手の位置トラッキング結果の表示例を示す図である。図42に示すように、コートにおける選手の相対位置に基づいて、選択された選手(図42に示した例では、「player1」)のプレイエリアがヒートマップで表示され得る。また、図43に示すように、コートにおける選手の相対位置に基づいて、選択された選手のエリアごとのプレイ時間が棒グラフとレーダチャートで表示され得る。
 また、図44に示すように、コートにおける各選手の相対位置に基づいて、各選手のトップスピード、総走行距離およびスプリント回数が(選手間で比較できるように可視化して)表示され得る。なお、スプリントは、時速24キロメートル(15マイル)以上の速度で走ることを意味し得る。
 また、図45に示すように、選択された選手(図45に示した例では、「player1」)の停止もしくは切り替え(方向転換)のタイミングにおける位置と方向とが表示され得る。図45に示した例では、時刻t0(試合開始後0分40秒)と時刻t1と時刻t2(試合開始後1分5秒)それぞれにおけるplayer1の位置と方向とが表示されている。また、図45に示すように、選手の移動軌跡が見えるように、複数時刻における選手の位置を結んだ線が表示されてよい。
 また、図46に示すように、各選手Pa~Peの位置と方向とが表示されてもよい。また、図46に示すように、選手間の距離が表示されることによって各選手の位置関係やポジショニングのバランスを容易に確認可能となる。また、距離は数値ではなく線の色によって表示されてもよい。また、各選手Pa~Peの位置と方向とは、リアルタイムで表示されてもよいし、後からログ表示されてもよい。
 また、図47に示すように、選手同士の位置関係の変化からフットサルにおける特定のパターン(戦術)が検出された場合、検出されたパターンはタイムラインに表示されてもよい(画面G6)。そうすれば、映像の再生と合わせてパターンが検出された位置を確認することが可能である。また、タイムラインにおけるパターン検出位置(例えば、位置G7)が選択されることによって、映像がその位置までシークされてよい。
 以上、本実施形態のユースケースについて説明した。また、本開示の第2の実施形態について説明した。
 <3.ハードウェア構成例>
 次に、図48を参照して、本開示の実施形態に係る情報処理装置10のハードウェア構成について説明する。図48は、本開示の実施形態に係る情報処理装置10のハードウェア構成例を示すブロック図である。
 図48に示すように、情報処理装置10は、CPU(Central Processing unit)901、ROM(Read Only Memory)903、およびRAM(Random Access Memory)905を含む。また、情報処理装置10は、ホストバス907、ブリッジ909、外部バス911、インターフェース913、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923、通信装置925を含んでもよい。さらに、情報処理装置10は、必要に応じて、撮像装置933、およびセンサ935を含んでもよい。情報処理装置10は、CPU901に代えて、またはこれとともに、DSP(Digital Signal Processor)またはASIC(Application Specific Integrated Circuit)と呼ばれるような処理回路を有してもよい。
 CPU901は、演算処理装置および制御装置として機能し、ROM903、RAM905、ストレージ装置919、またはリムーバブル記録媒体927に記録された各種プログラムに従って、情報処理装置10内の動作全般またはその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータなどを記憶する。RAM905は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータなどを一時的に記憶する。CPU901、ROM903、およびRAM905は、CPUバスなどの内部バスにより構成されるホストバス907により相互に接続されている。さらに、ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。
 入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチおよびレバーなど、ユーザによって操作される装置である。入力装置915は、ユーザの音声を検出するマイクロフォンを含んでもよい。入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール装置であってもよいし、情報処理装置10の操作に対応した携帯電話などの外部接続機器929であってもよい。入力装置915は、ユーザが入力した情報に基づいて入力信号を生成してCPU901に出力する入力制御回路を含む。ユーザは、この入力装置915を操作することによって、情報処理装置10に対して各種のデータを入力したり処理動作を指示したりする。また、後述する撮像装置933も、ユーザの手の動き、ユーザの指などを撮像することによって、入力装置として機能し得る。このとき、手の動きや指の向きに応じてポインティング位置が決定されてよい。
 出力装置917は、取得した情報をユーザに対して視覚的または聴覚的に通知することが可能な装置で構成される。出力装置917は、例えば、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、有機EL(Electro-Luminescence)ディスプレイ、プロジェクタなどの表示装置、ホログラムの表示装置、スピーカおよびヘッドホンなどの音出力装置、ならびにプリンタ装置などであり得る。出力装置917は、情報処理装置10の処理により得られた結果を、テキストまたは画像などの映像として出力したり、音声または音響などの音として出力したりする。また、出力装置917は、周囲を明るくするためライトなどを含んでもよい。
 ストレージ装置919は、情報処理装置10の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)などの磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイスなどにより構成される。このストレージ装置919は、CPU901が実行するプログラムや各種データ、および外部から取得した各種のデータなどを格納する。
 ドライブ921は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブル記録媒体927のためのリーダライタであり、情報処理装置10に内蔵、あるいは外付けされる。ドライブ921は、装着されているリムーバブル記録媒体927に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されているリムーバブル記録媒体927に記録を書き込む。
 接続ポート923は、機器を情報処理装置10に直接接続するためのポートである。接続ポート923は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポートなどであり得る。また、接続ポート923は、RS-232Cポート、光オーディオ端子、HDMI(登録商標)(High-Definition Multimedia Interface)ポートなどであってもよい。接続ポート923に外部接続機器929を接続することで、情報処理装置10と外部接続機器929との間で各種のデータが交換され得る。
 通信装置925は、例えば、通信ネットワーク931に接続するための通信デバイスなどで構成された通信インターフェースである。通信装置925は、例えば、有線または無線LAN(Local Area Network)、Bluetooth(登録商標)、またはWUSB(Wireless USB)用の通信カードなどであり得る。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、または、各種通信用のモデムなどであってもよい。通信装置925は、例えば、インターネットや他の通信機器との間で、TCP/IPなどの所定のプロトコルを用いて信号などを送受信する。また、通信装置925に接続される通信ネットワーク931は、有線または無線によって接続されたネットワークであり、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信または衛星通信などである。
 撮像装置933は、例えば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子、および撮像素子への被写体像の結像を制御するためのレンズなどの各種の部材を用いて実空間を撮像し、撮像画像を生成する装置である。撮像装置933は、静止画を撮像するものであってもよいし、また動画を撮像するものであってもよい。
 センサ935は、例えば、測距センサ、加速度センサ、ジャイロセンサ、地磁気センサ、振動センサ、光センサ、音センサなどの各種のセンサである。センサ935は、例えば情報処理装置10の筐体の姿勢など、情報処理装置10自体の状態に関する情報や、情報処理装置10の周辺の明るさや騒音など、情報処理装置10の周辺環境に関する情報を取得する。また、センサ935は、GPS(Global Positioning System)信号を受信して装置の緯度、経度および高度を測定するGPSセンサを含んでもよい。
 <4.むすび>
 以上説明したように、本開示の実施形態によれば、慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得するセンサ制御部と、前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定するデータ処理部と、を備える、情報処理装置が提供される。かかる構成によれば、環境に設備を設置する手間を低減しつつ、位置推定の精度を向上させることが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記した情報処理装置10の動作が実現されれば、各構成の位置は特に限定されない。具体的な一例として、上記したように、検出部110以外のブロックの一部または全部は、情報処理装置10の外部に存在していてもよい。すなわち、検出部110以外のブロックの一部または全部は、モバイル端末(例えば、スマートフォンなど)などに存在していてもよいし、サーバなどに存在していてもよい。情報処理装置10はいわゆるクラウドコンピューティングによって達成されうる。
 また、コンピュータに内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上記した制御部130が有する機能と同等の機能を発揮させるためのプログラムも作成可能である。また、該プログラムを記録した、コンピュータに読み取り可能な記録媒体も提供され得る。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏し得る。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得するセンサ制御部と、
 前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定するデータ処理部と、
 を備える、情報処理装置。
(2)
 前記慣性センサおよび前記測距センサは、端末に備えられ、
 前記データ処理部は、前記慣性センサデータに基づいて複数の測定時刻それぞれにおける端末位置を算出するとともに、前記測距センサデータに基づいて前記複数の測定時刻それぞれにおける前記端末と探索対象との距離を算出し、前記端末位置と前記距離とに基づいて前記端末位置を基準とした前記探索対象の相対位置を推定する、
 前記(1)に記載の情報処理装置。
(3)
 前記相対位置は、前記端末と前記探索対象との距離および前記端末位置を基準とした前記探索対象の方向を含む、
 前記(2)に記載の情報処理装置。
(4)
 前記情報処理装置は、
 前記端末を動かすジェスチャを促す出力を制御する出力制御部を備える、
 前記(2)または(3)に記載の情報処理装置。
(5)
 前記出力制御部は、所定の形状を有する軌道の表示と前記軌道に沿って前記端末を動かすジェスチャを促す表示とを制御する、
 前記(4)に記載の情報処理装置。
(6)
 前記データ処理部は、前記慣性センサデータに応じて算出される速度が所定の速度条件を満たす複数の時刻を前記複数の測定時刻として決定する、
 前記(5)に記載の情報処理装置。
(7)
 前記出力制御部は、所定の形状を有する軌道の表示と前記軌道に沿って前記端末を動かしながら所定の位置で前記端末を一時的に静止させるジェスチャを促す表示とを制御する、
 前記(4)に記載の情報処理装置。
(8)
 前記データ処理部は、前記慣性センサデータによって示される加速度が所定の加速度条件を満たす複数の時刻を前記複数の測定時刻として決定する、
 前記(7)に記載の情報処理装置。
(9)
 前記データ処理部は、所定の時間間隔の前記複数の測定時刻を決定する、
 前記(4)に記載の情報処理装置。
(10)
 前記データ処理部は、歩行者自律航法によって前記複数の測定時刻それぞれにおける前記端末位置を算出するとともに、前記複数の測定時刻それぞれにおける前記端末と前記探索対象との距離を算出する、
 前記(2)または(3)に記載の情報処理装置。
(11)
 前記情報処理装置は、
 前記相対位置の推定に失敗した場合、エラー出力を制御する出力制御部を備える、
 前記(1)~(3)のいずれか一項に記載の情報処理装置。
(12)
 前記情報処理装置は、
 前記端末と前記探索対象との距離が所定の距離を超えた場合、所定の通知の出力を制御する出力制御部を備える、
 前記(2)または(3)に記載の情報処理装置。
(13)
 前記情報処理装置は、
 前記相対位置の出力を制御する出力制御部を備える、
 前記(1)~(3)のいずれか一項に記載の情報処理装置。
(14)
 前記データ処理部は、前記複数の測定時刻から選択される二つの測定時刻の各組において前記端末位置を中心とした前記距離を半径とする軌跡同士の交点が存在するか否かを判断し、存在すると判断した交点に基づいて、前記相対位置を推定する、
 前記(2)または(3)に記載の情報処理装置。
(15)
 前記データ処理部は、交点が存在する組が複数である場合、各組から一つずつ選択した交点間の総距離が最小となる交点群の中点または重心を前記相対位置として推定する、
 前記(14)に記載の情報処理装置。
(16)
 前記データ処理部は、複数の測定時刻から選択される二つ以上の測定時刻の各組について前記相対位置を算出し、算出した前記相対位置の中点または重心を前記相対位置として推定する、
 前記(2)または(3)に記載の情報処理装置。
(17)
 前記データ処理部は、前記相対位置の信頼度を算出し、前記信頼度が閾値を超えた場合に、前記相対位置を決定する、
 前記(2)または(3)に記載の情報処理装置。
(18)
 前記データ処理部は、前記複数の測定時刻から選択される二つ以上の測定時刻の各組について前記相対位置を算出し、算出した前記相対位置のばらつき度合いを前記信頼度として算出する、
 前記(17)に記載の情報処理装置。
(19)
 慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得することと、
 プロセッサにより、前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定することと、
 を備える、情報処理方法。
(20)
 コンピュータを、
 慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得するセンサ制御部と、
 前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定するデータ処理部と、
 を備える情報処理装置として機能させるためのプログラム。
 1   情報処理システム
 10-1 自端末(情報処理装置)
 10-2 相手端末
 110 検出部
 111 慣性センサ
 112 測距センサ
 120 操作部
 130 制御部
 131 センサ制御部
 132 データ処理部
 133 出力制御部
 140 記憶部
 150 出力部
 151 表示部
 152 振動子

Claims (20)

  1.  慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得するセンサ制御部と、
     前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定するデータ処理部と、
     を備える、情報処理装置。
  2.  前記慣性センサおよび前記測距センサは、端末に備えられ、
     前記データ処理部は、前記慣性センサデータに基づいて複数の測定時刻それぞれにおける端末位置を算出するとともに、前記測距センサデータに基づいて前記複数の測定時刻それぞれにおける前記端末と探索対象との距離を算出し、前記端末位置と前記距離とに基づいて前記端末位置を基準とした前記探索対象の相対位置を推定する、
     請求項1に記載の情報処理装置。
  3.  前記相対位置は、前記端末と前記探索対象との距離および前記端末位置を基準とした前記探索対象の方向を含む、
     請求項2に記載の情報処理装置。
  4.  前記情報処理装置は、
     前記端末を動かすジェスチャを促す出力を制御する出力制御部を備える、
     請求項2に記載の情報処理装置。
  5.  前記出力制御部は、所定の形状を有する軌道の表示と前記軌道に沿って前記端末を動かすジェスチャを促す表示とを制御する、
     請求項4に記載の情報処理装置。
  6.  前記データ処理部は、前記慣性センサデータに応じて算出される速度が所定の速度条件を満たす複数の時刻を前記複数の測定時刻として決定する、
     請求項5に記載の情報処理装置。
  7.  前記出力制御部は、所定の形状を有する軌道の表示と前記軌道に沿って前記端末を動かしながら所定の位置で前記端末を一時的に静止させるジェスチャを促す表示とを制御する、
     請求項4に記載の情報処理装置。
  8.  前記データ処理部は、前記慣性センサデータによって示される加速度が所定の加速度条件を満たす複数の時刻を前記複数の測定時刻として決定する、
     請求項7に記載の情報処理装置。
  9.  前記データ処理部は、所定の時間間隔の前記複数の測定時刻を決定する、
     請求項4に記載の情報処理装置。
  10.  前記データ処理部は、歩行者自律航法によって前記複数の測定時刻それぞれにおける前記端末位置を算出するとともに、前記複数の測定時刻それぞれにおける前記端末と前記探索対象との距離を算出する、
     請求項2に記載の情報処理装置。
  11.  前記情報処理装置は、
     前記相対位置の推定に失敗した場合、エラー出力を制御する出力制御部を備える、
     請求項1に記載の情報処理装置。
  12.  前記情報処理装置は、
     前記端末と前記探索対象との距離が所定の距離を超えた場合、所定の通知の出力を制御する出力制御部を備える、
     請求項2に記載の情報処理装置。
  13.  前記情報処理装置は、
     前記相対位置の出力を制御する出力制御部を備える、
     請求項1に記載の情報処理装置。
  14.  前記データ処理部は、前記複数の測定時刻から選択される二つの測定時刻の各組において前記端末位置を中心とした前記距離を半径とする軌跡同士の交点が存在するか否かを判断し、存在すると判断した交点に基づいて、前記相対位置を推定する、
     請求項2に記載の情報処理装置。
  15.  前記データ処理部は、交点が存在する組が複数である場合、各組から一つずつ選択した交点間の総距離が最小となる交点群の中点または重心を前記相対位置として推定する、
     請求項14に記載の情報処理装置。
  16.  前記データ処理部は、複数の測定時刻から選択される二つ以上の測定時刻の各組について前記相対位置を算出し、算出した前記相対位置の中点または重心を前記相対位置として推定する、
     請求項2に記載の情報処理装置。
  17.  前記データ処理部は、前記相対位置の信頼度を算出し、前記信頼度が閾値を超えた場合に、前記相対位置を決定する、
     請求項2に記載の情報処理装置。
  18.  前記データ処理部は、前記複数の測定時刻から選択される二つ以上の測定時刻の各組について前記相対位置を算出し、算出した前記相対位置のばらつき度合いを前記信頼度として算出する、
     請求項17に記載の情報処理装置。
  19.  慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得することと、
     プロセッサにより、前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定することと、
     を備える、情報処理方法。
  20.  コンピュータを、
     慣性センサによって検出された慣性センサデータと測距センサによって検出された測距センサデータとを取得するセンサ制御部と、
     前記慣性センサデータと前記測距センサデータとに基づいて相対位置を推定するデータ処理部と、
     を備える情報処理装置として機能させるためのプログラム。
PCT/JP2017/004331 2016-05-17 2017-02-07 情報処理装置、情報処理方法およびプログラム WO2017199481A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17798919.1A EP3460504B1 (en) 2016-05-17 2017-02-07 Information processing device, information processing method and program
JP2018518078A JPWO2017199481A1 (ja) 2016-05-17 2017-02-07 情報処理装置、情報処理方法およびプログラム
US16/099,470 US11181376B2 (en) 2016-05-17 2017-02-07 Information processing device and information processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098874 2016-05-17
JP2016098874 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199481A1 true WO2017199481A1 (ja) 2017-11-23

Family

ID=60324971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004331 WO2017199481A1 (ja) 2016-05-17 2017-02-07 情報処理装置、情報処理方法およびプログラム

Country Status (4)

Country Link
US (1) US11181376B2 (ja)
EP (1) EP3460504B1 (ja)
JP (1) JPWO2017199481A1 (ja)
WO (1) WO2017199481A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174164A (ja) * 2018-03-27 2019-10-10 Kddi株式会社 物体認識情報及び受信電磁波情報に係るモデルを用いて端末位置を推定する装置、プログラム及び方法
KR20200000882A (ko) * 2018-06-26 2020-01-06 위탐주식회사 상대위치측정장치 및 상대위치측정시스템
JP2020046288A (ja) * 2018-09-19 2020-03-26 富士ゼロックス株式会社 位置測定システムおよびプログラム
JP2021508894A (ja) * 2018-01-29 2021-03-11 イスラエル エアロスペース インダストリーズ リミテッド 無人車両の近接ナビゲーション
CN114521014A (zh) * 2021-12-22 2022-05-20 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种在uwb定位过程中提高定位精度的方法
CN115066012A (zh) * 2022-02-25 2022-09-16 西安电子科技大学 一种基于uwb的多用户无锚点定位方法
JP7381149B1 (ja) 2022-09-12 2023-11-15 競 許 情報処理装置、情報処理方法、及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816579A4 (en) * 2018-06-27 2021-09-29 Sony Group Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, INFORMATION PROCESSING PROGRAM AND TERMINAL DEVICE

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138269A (ja) * 1995-11-14 1997-05-27 Mitsubishi Electric Corp 位置確認システム
JP2004061178A (ja) * 2002-07-25 2004-02-26 Japan Marine Sci & Technol Center 位置計測システムおよび位置計測方法
JP2004215258A (ja) * 2002-12-27 2004-07-29 Docomo Communications Laboratories Usa Inc 選択的合成法による無線通信装置の位置決定方法
JP2004354351A (ja) * 2003-05-30 2004-12-16 Sharp Corp 電波発信器探索装置、携帯電話通信端末装置、及び電波発信器探索装置による電波発信器探索方法
JP2005156259A (ja) * 2003-11-21 2005-06-16 Victor Co Of Japan Ltd 電波発生源探査装置
JP2007114003A (ja) * 2005-10-19 2007-05-10 Omron Corp 非接触icタグ位置検出システム
JP2008089315A (ja) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp 測位システム、探知装置、測位装置、測位システムの測位方法、探知装置の探知方法、測位装置の測位方法、探知装置の探知プログラムおよび測位装置の測位プログラム
US20120088452A1 (en) * 2010-10-11 2012-04-12 Gn Netcom A/S Method For Locating A Wirelessly Connected Device
JP2013117493A (ja) * 2011-12-05 2013-06-13 Hitachi Ltd 移動経路推定システム、移動経路推定装置及び移動経路推定方法
JP2013172420A (ja) * 2012-02-22 2013-09-02 Ntt Docomo Inc 無線通信装置、無線通信システム、及び位置推定方法
EP2779020A2 (en) * 2013-03-14 2014-09-17 Intermec IP Corp. Synthetic aperture RFID handheld with tag location capability

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8423042B2 (en) * 2004-02-24 2013-04-16 Invisitrack, Inc. Method and system for positional finding using RF, continuous and/or combined movement
US8289159B2 (en) * 2006-04-26 2012-10-16 Qualcomm Incorporated Wireless localization apparatus and method
JP2012038164A (ja) 2010-08-09 2012-02-23 Sony Corp 情報処理装置
DE102010037195A1 (de) * 2010-08-27 2012-03-01 Benedikt Hieronimi System zur Erfassung von Hochfrequenz-Transceivern und dessen Verwendungen
WO2012044524A1 (en) * 2010-09-28 2012-04-05 Symbol Technologies, Inc. Method and reader device for identifying a location of a radio frequency identification (rfid) tag
KR101822183B1 (ko) * 2011-02-09 2018-01-26 삼성전자주식회사 통합 측위 장치 및 방법
JP2013110606A (ja) * 2011-11-21 2013-06-06 Fujitsu Ltd 端末装置、位置特定方法、及びプログラム
US9176215B2 (en) 2012-03-22 2015-11-03 Intermec Ip Corp. Synthetic aperture RFID handheld with tag location capability
US20140145831A1 (en) * 2012-11-25 2014-05-29 Amir Bassan-Eskenazi Hybrid wirless tag based communication, system and applicaitons
US9212916B2 (en) * 2012-11-26 2015-12-15 Blackberry Limited Systems and methods for indoor navigation
US20140323162A1 (en) * 2013-04-25 2014-10-30 Shai SAUL System and method for generating a positioning map of two or more mobile devices according to relative locations
WO2015079683A1 (ja) * 2013-11-27 2015-06-04 哲也 芦塚 探索装置および通信システム
CN106575347B (zh) * 2014-06-10 2020-09-25 标记与寻找无线解决方案有限公司 使用行动装置来定位物品的射频识别读取器及天线系统
KR102349713B1 (ko) * 2014-10-20 2022-01-12 삼성전자주식회사 장치 검색 방법 및 이를 지원하는 전자 장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138269A (ja) * 1995-11-14 1997-05-27 Mitsubishi Electric Corp 位置確認システム
JP2004061178A (ja) * 2002-07-25 2004-02-26 Japan Marine Sci & Technol Center 位置計測システムおよび位置計測方法
JP2004215258A (ja) * 2002-12-27 2004-07-29 Docomo Communications Laboratories Usa Inc 選択的合成法による無線通信装置の位置決定方法
JP2004354351A (ja) * 2003-05-30 2004-12-16 Sharp Corp 電波発信器探索装置、携帯電話通信端末装置、及び電波発信器探索装置による電波発信器探索方法
JP2005156259A (ja) * 2003-11-21 2005-06-16 Victor Co Of Japan Ltd 電波発生源探査装置
JP2007114003A (ja) * 2005-10-19 2007-05-10 Omron Corp 非接触icタグ位置検出システム
JP2008089315A (ja) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp 測位システム、探知装置、測位装置、測位システムの測位方法、探知装置の探知方法、測位装置の測位方法、探知装置の探知プログラムおよび測位装置の測位プログラム
US20120088452A1 (en) * 2010-10-11 2012-04-12 Gn Netcom A/S Method For Locating A Wirelessly Connected Device
JP2013117493A (ja) * 2011-12-05 2013-06-13 Hitachi Ltd 移動経路推定システム、移動経路推定装置及び移動経路推定方法
JP2013172420A (ja) * 2012-02-22 2013-09-02 Ntt Docomo Inc 無線通信装置、無線通信システム、及び位置推定方法
EP2779020A2 (en) * 2013-03-14 2014-09-17 Intermec IP Corp. Synthetic aperture RFID handheld with tag location capability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460504A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11373542B2 (en) 2018-01-29 2022-06-28 Israel Aerospace Industries Ltd. Proximity navigation of unmanned vehicles
JP2021508894A (ja) * 2018-01-29 2021-03-11 イスラエル エアロスペース インダストリーズ リミテッド 無人車両の近接ナビゲーション
JP2019174164A (ja) * 2018-03-27 2019-10-10 Kddi株式会社 物体認識情報及び受信電磁波情報に係るモデルを用いて端末位置を推定する装置、プログラム及び方法
KR102217556B1 (ko) * 2018-06-26 2021-02-19 위탐주식회사 상대위치측정장치 및 상대위치측정시스템
KR20200000882A (ko) * 2018-06-26 2020-01-06 위탐주식회사 상대위치측정장치 및 상대위치측정시스템
JP2020046288A (ja) * 2018-09-19 2020-03-26 富士ゼロックス株式会社 位置測定システムおよびプログラム
JP7147406B2 (ja) 2018-09-19 2022-10-05 富士フイルムビジネスイノベーション株式会社 位置測定システムおよびプログラム
CN114521014A (zh) * 2021-12-22 2022-05-20 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种在uwb定位过程中提高定位精度的方法
CN114521014B (zh) * 2021-12-22 2023-04-25 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种在uwb定位过程中提高定位精度的方法
CN115066012A (zh) * 2022-02-25 2022-09-16 西安电子科技大学 一种基于uwb的多用户无锚点定位方法
CN115066012B (zh) * 2022-02-25 2024-03-19 西安电子科技大学 一种基于uwb的多用户无锚点定位方法
JP7381149B1 (ja) 2022-09-12 2023-11-15 競 許 情報処理装置、情報処理方法、及びプログラム
JP2024040106A (ja) * 2022-09-12 2024-03-25 競 許 情報処理装置、情報処理方法、及びプログラム
WO2024180814A1 (ja) * 2022-09-12 2024-09-06 競 許 情報処理装置、情報処理方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2017199481A1 (ja) 2019-03-22
EP3460504A4 (en) 2019-05-22
EP3460504A1 (en) 2019-03-27
US20190195632A1 (en) 2019-06-27
US11181376B2 (en) 2021-11-23
EP3460504B1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2017199481A1 (ja) 情報処理装置、情報処理方法およびプログラム
US10826631B2 (en) System and method for 3D tracking for ad-hoc cross-device interaction
US10082584B2 (en) Hybrid device location determination system
JP5697282B2 (ja) 触覚ベースのパーソナルナビゲーション
US20180014102A1 (en) Variable Positioning of Distributed Body Sensors with Single or Dual Wireless Earpiece System and Method
US11340072B2 (en) Information processing apparatus, information processing method, and recording medium
US9807725B1 (en) Determining a spatial relationship between different user contexts
US11113515B2 (en) Information processing device and information processing method
CN106461786B (zh) 室内全球定位系统
CN102622850A (zh) 信息处理装置、报警方法和程序
WO2016098457A1 (ja) 情報処理装置、情報処理方法およびプログラム
KR20210136043A (ko) 포인팅 제어기를 사용하는 스마트 디바이스와의 상호작용
US20190049250A1 (en) Information processing apparatus, information processing method, and computer program
CN113784767B (zh) 热电堆阵列融合跟踪
JP2024515995A (ja) 注目点の再現性予測
KR102578119B1 (ko) 모바일 디바이스와 연동하는 스마트 안경 작동 방법
US11614461B2 (en) Information processing device and information processing method
JP2008110241A (ja) ゲーム装置、ゲーム装置の制御方法及びプログラム
JP6463529B1 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
US11240482B2 (en) Information processing device, information processing method, and computer program
US20150358782A1 (en) Catch the screen
JP2008023367A (ja) ゲーム装置、ゲーム装置の制御方法及びプログラム
US20220146662A1 (en) Information processing apparatus and information processing method
JP6888436B2 (ja) 位置判定装置、位置判定システム、位置判定方法及びプログラム
Russell HearThere: infrastructure for ubiquitous augmented-reality audio

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518078

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798919

Country of ref document: EP

Effective date: 20181217