Nothing Special   »   [go: up one dir, main page]

WO2017195606A1 - Skid pipe and method for constructing heat-insulating protective member therefor - Google Patents

Skid pipe and method for constructing heat-insulating protective member therefor Download PDF

Info

Publication number
WO2017195606A1
WO2017195606A1 PCT/JP2017/016562 JP2017016562W WO2017195606A1 WO 2017195606 A1 WO2017195606 A1 WO 2017195606A1 JP 2017016562 W JP2017016562 W JP 2017016562W WO 2017195606 A1 WO2017195606 A1 WO 2017195606A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
blanket
skid pipe
shaped needle
protective member
Prior art date
Application number
PCT/JP2017/016562
Other languages
French (fr)
Japanese (ja)
Inventor
昌邦 田口
鈴木 光雄
小林 友幸
晃啓 矢野
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020187030768A priority Critical patent/KR102399369B1/en
Priority to CN201780025539.4A priority patent/CN109072321B/en
Priority to JP2017553043A priority patent/JP6274374B1/en
Publication of WO2017195606A1 publication Critical patent/WO2017195606A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/147Arrangements for the insulation of pipes or pipe systems the insulation being located inwardly of the outer surface of the pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/02Skids or tracks for heavy objects

Definitions

  • This invention relates to the construction method of the skid pipe in a heating furnace, and its heat insulation protection member.
  • Patent Documents 1 and 2 As a skid pipe protective member in a steel industry heating furnace, an inorganic fiber aggregate or an inorganic fiber molded body having high thermal shock properties is used (Patent Documents 1 and 2).
  • Patent Document 1 describes that a skid pipe is covered with a ring-shaped heat insulating material made of ceramic fiber.
  • a ring-shaped heat insulating material partly cut is attached to a skid pipe.
  • Patent Document 1 does not describe the construction after the insulating material is compressed.
  • Patent Document 2 a plurality of halved ceramic fiber refractory materials are stacked, then compressed, placed on the outer periphery of the heating furnace support pipe while maintaining the compressed state, and decompressed to restore the ceramic fiber refractory material A method for constructing a heat insulating material is described. According to this construction method, a phenomenon in which a gap is generated on the upper end side of the support pipe due to the refractory material contraction is suppressed.
  • the present invention relates to a skid pipe in which a heat insulating protective member made of an inorganic fiber molded body surrounds the skid pipe, a skid pipe with a heat insulating protective member that can prevent the occurrence of a gap at the upper end of the heat insulating protective member, and its heat insulating protection It aims at providing the construction method of a member, and makes the following a summary.
  • a plurality of inorganic fiber ring needle blankets are externally fitted to the skid pipe and stacked.
  • the process of forming the compression layer by pressing the stack from above with a press plate is repeated a plurality of times to form the first to nth (n is an integer of 2 or more) compression layers,
  • the ring-shaped needle blanket is externally fitted between the upper compressed layer and the lower end surface of the fireproof coating, and then the presser plate is removed to restore the stack, and the ring-shaped needle blanket is attached to the fireproof coating.
  • the bulk density in the upper part is Parts and construction process of the heat-insulating protection member of the skid pipe, characterized in that higher than the bulk density at the lower.
  • the bulk density of the upper compressed layer is 1.1 to 3.0 times the bulk density of the middle and lower compressed layers. Construction method.
  • the bulk density of the upper compressed layer is 0.10 g / cm 3 or more and 0.20 g / cm 3 or less. Construction method of members.
  • the inorganic fiber ring needle blanket has a heat shrinkage rate of 1% in the width direction, the longitudinal direction, and the thickness direction after firing at 1400 ° C. for 12 hours.
  • the construction method of the heat insulation protection member of a skid pipe characterized by the following.
  • the ring-shaped needle blanket is provided with a radial slit, and the ring-shaped needle blanket is fitted onto the skid pipe by opening the slit.
  • an anchor fitting insertion portion is provided in the skid pipe, and the anchor fitting for preventing the holding plate from moving upward is inserted into the anchor fitting insertion.
  • the construction method of the heat insulation protection member of a skid pipe characterized by locking to a part and preventing the upward movement of a presser plate.
  • the anchor metal fitting has a pin protruding vertically, and the pin is pierced through a ring-shaped needle blanket that overlaps the presser plate. Construction method of members.
  • a blanket having an oxide precursor-containing liquid attached in an undried state is wound around the outer periphery of the ring-shaped needle blanket, and the oxide precursor is wound.
  • the heat insulating protective member is in a compressed state externally fitted to the skid pipe
  • a ring-shaped needle blanket stack wherein the top ring-shaped needle blanket is pressed against the fireproof coating by the repulsive force of the stack.
  • the ring-shaped needle blanket disposed on the upper side of the uppermost nth compression layer has the first to nth compressions. It is pressed by the repulsive force of the ring needle blanket of the layer and pressed against the lower end surface of the fireproof coating.
  • the bulk density of the compressed layer is evaluated by dividing the bulk density into an upper part, a middle part, and a lower part in the height direction, the bulk density in the upper part is higher than the bulk density in the middle part and the lower part.
  • the ring-shaped needle blankets of the first to n-th compression layers are applied with the same ring-shaped needle blanket, the ring-shaped needle blanket of the upper compression layer is most strongly compressed. Shows a strong repulsive force on the coating. This repulsive force is maintained even during operation of the furnace, and prevents a gap between the fireproof coating and the uppermost ring-shaped needle blanket, which is generated by vibration generated during slab transportation, over a long period of time.
  • the repulsive force is increased and the gap can be effectively prevented from being formed.
  • the outer side of the laminated compressed layer is coated with a blanket to which the oxide precursor-containing liquid is attached in an undried state, and thus the coated blanket is converted into a scale through a separate baking step.
  • the blanket containing an alumina and calcia composition containing aluminum oxide and calcium oxide having high durability is obtained.
  • the blanket can be easily cut and recoated, so that the repairability is excellent and the cost is low.
  • an alumina fiber needle mat since it is lightweight, it is excellent in workability and excellent in wind erosion and thermal shock.
  • FIG. 4a is an enlarged view of a part of FIG. 3, and FIG. 4b is a longitudinal sectional view of the vicinity of the anchor fitting of FIG. 4a.
  • FIG. 4a is an enlarged view of a part of FIG. 3, and FIG. 4b is a longitudinal sectional view of the vicinity of the anchor fitting of FIG. 4a.
  • FIG. 4b is a longitudinal sectional view of the vicinity of the anchor fitting of FIG. 4a.
  • FIG. 4b is a longitudinal sectional view of the vicinity of the anchor fitting of FIG. 4a.
  • FIG. 4a is an enlarged view of a part of FIG. 3
  • FIG. 4b is a longitudinal sectional view of the vicinity of the anchor fitting of FIG. 4a.
  • FIG. 4b is a longitudinal sectional view of the vicinity of the anchor fitting of FIG. 4a.
  • FIG. 8A is a perspective view showing a construction method of the heat insulating protection member according to the embodiment
  • FIG. 8B is a sectional view taken along the line VIIIb-VIIIb of FIG. 8A. It is a top view which shows another shape of a holding plate. It is sectional drawing which shows the connection structure of a presser plate.
  • the skid pipe 1 on which the heat insulation protective member is constructed is a pipe shape made of heat-resistant steel, and is erected from the hearth G of the heat treatment furnace.
  • a skid beam 2 is installed so as to be supported by a plurality of skid pipes 1.
  • a fireproof coating 3 made of fireproof castable is applied to the upper part of the skid pipe 1.
  • a heat insulating protective member is applied to the underside of the fireproof coating 3 in the skid pipe 1.
  • the skid pipe 1 is provided with a plurality of anchor fitting insertion portions 4 at intervals in the height direction.
  • the anchor fitting insertion portion 4 has a U-shaped horizontal cross section, and as shown in FIG. 4b, a clearance C (FIG. 4b) into which the anchor fitting is inserted from above is formed between the outer peripheral surface of the skid pipe 1. Yes.
  • the outer periphery of the skid pipe 1 is covered with the base layer 5 (see FIG. 8b) prior to the construction of the heat insulating protective member.
  • the horizontal cross-sectional shape of the outer peripheral surface becomes a substantially circular shape, the adhesion between the outer peripheral surface and the laminated compressed layer is increased, and a higher heat insulating effect can be exhibited.
  • the underlayer 5 is made of inorganic fibers, castable refractories, or the like.
  • a plurality of annular materials (hereinafter referred to as ring-shaped needle blankets) 10 made of a needle blanket of inorganic fibers (in this embodiment, alumina fibers) are attached to the lower part of the skid pipe 1. It is preferable to use an inorganic fiber needle blanket having a high repulsive force as the annular material.
  • the ring-shaped needle blanket 10 is provided with a slit 11 (FIG. 2) in the radial direction, and the ring-shaped needle blanket 10 is fitted on the skid pipe 1 so as to open the slit 11.
  • the directions of the ring-shaped needle blankets 10 are different one by one so that the slits 11 do not overlap in order to prevent a gap from being formed in the outer fitting portion.
  • the presser plate 20 is disposed on the upper side of the uppermost ring-shaped needle blanket 10 as shown in FIG.
  • the presser plate 20 is configured by abutting two presser plate halves 21 and 22 together.
  • the presser plate halves 21 and 22 have substantially semicircular curved side portions 21a and 22a on opposite sides. Both sides of the curved side portions 21a and 22a are arm-like portions 21b and 22b. Each arm-like portion 21b, 22b is provided with a small hole 24 for inserting a bolt.
  • the presser plate 20 is configured by overlapping the distal ends of the arm portions 21b and 22b so that the curved sides 21a and 22a face each other and fastening them with bolts 23 (FIGS. 3 and 4a).
  • the presser plate 20 is formed with a circular opening 25 (FIGS. 3, 4a, 4b).
  • a U-shaped notch 26 is provided in each of the curved sides 21a and 22a. Each notch 26 is arranged to face the diameter direction of the opening 25. This notch 26 is for passing the pin 33 of the anchor fitting 30.
  • L-shaped notches 27 are provided on the rear sides of the holding plate halves 21 and 22 (sides opposite to the curved side portions 21a and 22a). A belt is hung on the notch 27 as described later. Further, in the vicinity of the rear sides of the presser plate halves 21 and 22, a small hole 28 is provided for passing the string-like member or hanging a hand or a tool when the presser plate halves 21 and 22 are pulled out.
  • the presser plate halves 21 and 22 are approached from both sides with the skid pipe 1 interposed therebetween, and are joined by bolts 23 to form the presser plate 20 that is externally fitted to the skid pipe 1.
  • the stacked body of the ring-shaped needle blanket 10 is pressed from above and compressed.
  • the compression method is not particularly limited, and examples thereof include a compression method using a belt. Among these, a compression method using a belt is preferable because it is the lowest in cost and easy.
  • the presser plate 20 has an L-shaped cutout 27 to easily apply the compression belt and to remove the belt after compression, particularly the presser plate 20 has a low position. Preferred in some cases.
  • the anchor fitting 30 is inserted into the anchor fitting insertion part 4 and fixed with the wedge 35.
  • the anchor fitting 30 is a heat-resistant steel member having a vertical piece 31 and a horizontal piece 32 and having an inverted L shape in side view.
  • the vertical piece 31 is inserted into the clearance C between the anchor fitting insertion part 4 and the outer peripheral surface of the skid pipe 1.
  • the horizontal piece 32 is provided with needle-like pins 33 protruding upward and downward.
  • the pin 33 is inserted into the ring-shaped needle blanket 10 pressed by the presser plate 20 through the notch portion 26. Then, a portion near the notch 26 of the presser plate 20 that presses the ring-shaped needle blanket 10 is pressed from above with the horizontal piece 32.
  • a wedge 35 is driven between the vertical piece 31 and the skid pipe 1 to fix the presser plate 20 to the skid pipe 1.
  • the first-stage presser plate 20 is fixed to the skid pipe 1, and a first compression layer L-1 in which a plurality of ring-shaped needle blankets 10 are compressed is formed on the lower side thereof.
  • a required number of ring-shaped needle blankets 10 are stacked on the upper side of the first-stage presser plate 20 so as to surround the skid pipe 1.
  • An upward pin 33 of the anchor fitting 30 is pierced through the ring-shaped needle blanket 10.
  • the second-stage presser plate 20 is fitted onto the skid pipe 1, the stack of the ring needle blanket 10 is pressed and contracted, and the second-stage presser plate 20 is attached to the skid pipe 1 by the anchor pipe 30 and the skid pipe 10. Fix against. Thereby, the second compressed layer L-2 is formed.
  • the required number of ring-shaped needle blankets 10 are stacked on the upper side of the second-stage presser plate 20 so as to surround the skid pipe 1.
  • An upward pin 33 of the anchor fitting 30 is pierced through the ring-shaped needle blanket 10.
  • the third-stage presser plate 20 is fitted onto the skid pipe 1, the stack of the ring needle blanket 10 is pressed and contracted, and the second-stage presser plate 20 is fixed to the skid pipe 1 by the anchor fitting 30. Thereby, the third compressed layer L-3 is formed.
  • the skid pipe 1 is surrounded by the three-stage compression layers L-1, L-2, and L-3.
  • the pressing force that presses the ring-shaped needle blanket stack with the third-stage presser plate 20 is used to form the first and second compression layers. Make it larger than the pressing force.
  • the uppermost third compression layer L-3 is more strongly compressed than the first and second compression L-1, L-2.
  • the ring-shaped needle blanket 10 disposed on the upper side of the uppermost third compression layer L-3 becomes the ring-shaped needles of the first to third compression layers L-1 to L-3. It is pressed by the repulsive force of the blanket 10 and pressed against the lower end surface of the fireproof coating 3.
  • the same ring-shaped needle blanket 10 is used in the first compression layer L-1 to the third compression layer L-3, and the ring-shaped needle blanket of the uppermost third compression layer L-3. 10 was compressed most strongly, that is, the bulk density of the uppermost third compression layer L-3 was higher than the bulk density of the first compression layer L-1 and the second compression layer L-2.
  • the ring-shaped needle blanket 10 immediately below the 3 is strongly pressed against the fireproof coating 3. This repulsive force is maintained even during operation of the furnace, and prevents a gap between the fireproof coating 3 and the uppermost ring-shaped needle blanket 10 generated by vibrations generated during slab transportation for a long period of time.
  • the presser plate 20 is composed of two presser plate halves 21 and 22, but the presser plate 20 is composed of three presser plate halves, four presser plate quadrants, or five. You may be set as the above small board.
  • the presser plate is composed of three or more small plates, the ring-shaped needle blanket 10 is more difficult to wrinkle when the small plate is extracted, and the resistance force when extracting the presser plate is smaller than in the case of two.
  • FIG. 9 is a plan view of a presser plate 20 ′ constituted by three presser plate halves 21 ′.
  • Each presser plate half body 21 ′ has a fan shape, and the cutout portion 26 is provided on the inner peripheral edge, and the L-shaped cutout portion 27 is provided on the outer peripheral edge.
  • the small hole 28 is provided in the vicinity of the outer peripheral edge.
  • An annular presser plate 20 ′ is formed by overlapping both sides (radial sides) of the presser plate half halves 21 ′ and connecting them with bolts 23. Using this presser plate 20 ', the ring-shaped needle blanket 10 can be constructed in the same manner as in the above embodiment.
  • stepped portions are formed on one upper surface and the other lower surface.
  • the protruding piece 210 is fixed to the upper surface of one holding plate half 21 by welding or the like, and the protruding piece 210 is extended to the upper surface of the other holding plate half 22, and the bolt 23
  • the presser plate halves 21 and 22 may be connected to each other by passing the screw through the projecting piece 210 and the presser plate half 22 and tightening the nuts.
  • the presser plate half halves 21 ' may be connected in the same manner.
  • the overhanging piece 210 is provided on the upper surface side of the presser plate halves 21 and 22, but may be provided on the lower surface side.
  • the blanket 40 in which the oxide precursor-containing liquid is attached After pulling out the presser plate 20 (or 20 ') as described above, the blanket 40 in which the oxide precursor-containing liquid is attached to the outer periphery of each ring-shaped needle blanket 10 in an undried state as shown in FIGS. 8a and 8b. To finish the construction.
  • the blanket 40 to which the oxide precursor-containing liquid is attached in an undried state becomes an alumina-calcia composition-containing blanket containing aluminum oxide and calcium oxide through a separate baking step.
  • the fired alumina-calcia-based composition-containing blanket can receive the wind that originally travels in parallel to the laminated compression layer, so that the skid pipe according to the present invention Hot air intrusion into the protective member can be efficiently prevented.
  • the blanket 40 needs to be fixed with an adhesive or a tape as required.
  • a heat-resistant curing agent is preferably used. Since the blanket 40 is made of a different material from the amorphous refractory, there is a difference in shrinkage due to the material. As a result, the blanket 40 cannot adhere well to the irregular refractory. There may be space between them. However, since the laminate 10 of the blanket 40 and the ring-shaped needle blanket is made of the same material, there is no difference in shrinkage due to the material, and the oxide precursor-containing liquid of the blanket 40 is laminated of the ring-shaped needle blanket.
  • the oxide precursor on the surface of the laminate 10 of the blanket 40 and the ring needle blanket becomes an oxide when the oxide precursor is easily soaked into the surface of the body 10 and converted into an oxide during firing. Since the oxide functions as an adhesive between the blanket 40 and the ring needle blanket laminate 10, the adhesion of the blanket 40 to the ring needle blanket laminate 10 is remarkably improved.
  • the blanket 40 may be wound only by one layer, or may be wound by two or more layers.
  • the blanket 40 wraps the joint between the fireproof coating and the ring-shaped needle blanket with the blanket 40 so that the calcined alumina / calcia composition-containing blanket suppresses heat from entering the gap. It is preferable in that it can be performed.
  • the inner side of the blanket containing the alumina / calcia composition Since the surface of the blanket containing the alumina and calcia composition not subjected to scale erosion appears, scale can be prevented for a long time. If the blanket surface containing alumina and calcia composition that has not undergone scale erosion disappears, the blanket containing alumina and calcia composition remaining on the surface can be easily removed using a cutter or a sliver. it can. Since it can withstand scale erosion for at least one year, maintenance frequency can be greatly reduced.
  • the laminated body 10 of the ring-shaped needle blanket inside the blanket 40 is not eroded by the scale, it can be used for a long period of time by periodically replacing the blanket 40.
  • the ring-shaped needle blanket 10 is laminated and compressed in three steps to form the first to third compression layers L-1 to L-3. Depending on, you may carry out 2 times or 4 times or more.
  • the bulk density of the compressed layer When the bulk density of the compressed layer is evaluated by dividing the bulk density into the upper part, the middle part, and the lower part into three equal parts, the bulk density in the upper part is higher than the bulk density in the middle part and the lower part.
  • the bulk density of the compressed layer is 1.1 to 3.0 times, preferably 1.2 to 2.0 times, more preferably 1.3 to 1.times the bulk density of the middle and lower compressed layers. 7 times.
  • the bulk density in the middle part is higher than the bulk density in the lower part, and the ring-shaped needle blanket constituting the compression layer is not crushed, and the fireproof coating generated by vibrations generated during slab transportation during operation of the furnace And the uppermost ring-shaped needle blanket are preferable in that generation of a gap is suppressed.
  • the bulk density of the upper compressed layer is usually 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, preferably 0.12 g / cm 3 or more and 0.18 g / cm 3 or less, more preferably 0. .14g / cm 3 or more 0.16g / cm 3 or less.
  • the bulk density of the middle compression layer is not particularly limited as long as it is lower than the bulk density of the upper compression layer, but is usually 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, preferably 0.13 g / cm 2. cm 3 or more and 0.16 g / cm 3 or less.
  • the bulk density of the lower compression layer is not particularly limited as long as it is lower than the bulk density of the upper compression layer, and it is preferable that the bulk density in the middle portion is higher than the bulk density in the lower portion. Usually less than 0.10 g / cm 3 or more 0.20 g / cm 3, preferably not more than 0.13 g / cm 3 or more 0.16 g / cm 3.
  • the compressibility of the ring-shaped needle blanket 10 of the upper compressed layer is not limited as long as the bulk density relationship is satisfied, but is usually 10% or more, particularly 12%. In particular, it is preferably 13% or more, usually 30% or less, particularly 25% or less, particularly 20% or less.
  • the compression ratio of the middle and lower compression layers (the first and second compression layers L-1 and L-2 in the above embodiment), which is a compression layer other than the upper portion, is 5% or more, particularly 7% or more, particularly 8% or more Therefore, it is preferably 20% or less, particularly 18% or less, particularly 15% or less.
  • the compression ratio of the upper part is preferably 1.1 times or more, particularly 1.5 times or more, and 4 times or less, particularly 3 times or less of the compression ratio of the middle and lower compression layers. Furthermore, it is more preferable that the compression ratio of the middle part is higher than the compression ratio of the lower part.
  • the bulk density before compression of one ring-shaped needle blanket 10 is not particular limitation, usually 0.05 g / cm 3 or higher, preferably 0.06 g / cm 3 or more, particularly preferably 0.08 g / cm 3 or more, usually 0.18 g / cm 3 or less, preferably 0.16 g / cm 3 or less, particularly preferably 0.14 g / cm 3 or less.
  • the thickness (thickness before compression) of one ring-shaped needle blanket 10 is not particularly limited, but is usually 10 mm or more, particularly 12 mm or more, and usually 26 mm or less, particularly 30 mm or less.
  • the number of the ring-shaped needle blankets 10 constituting one compressed layer is preferably 15 or more, particularly 20 or more, and preferably 80 or less, particularly 60 or less.
  • the height of the gap formed between the uppermost presser plate 20 and the coating 3 in the state of FIG. h / H is preferably 0.005 or more, particularly 0.01 or more, and 0.05 or less, particularly 0.035 or less.
  • the height of the upper compression layer (in the above embodiment, the third compression layer L-3 and the ring-shaped needle blanket 10 disposed on the upper side of the third compression layer L-3) before releasing the compression force (see FIG. 5 is preferably 25% or more, particularly 30% or more, and 50% or less, particularly 48% or less of the height H.
  • the radial dimension of the ring-shaped needle blanket 10 (that is, a value that is 1 ⁇ 2 of the difference between the outer diameter (diameter) and the inner diameter (diameter)) is 3% or more, particularly 5% or more of the diameter of the skid pipe 1, 85 % Or less, particularly preferably 80% or less.
  • the remaining surface pressure ratio after the cycle test under the conditions described below is 10% or more, preferably 12% or more, more preferably 15% or more.
  • GBD bulk density
  • the compression to 0.24 g / cm 3 was repeated 100 times.
  • the repulsive force of the ring-shaped needle blanket is maintained even during operation of the furnace, and the gap between the ring-shaped needle blankets can be prevented over a long period of time.
  • the heating line shrinkage in the width direction, the longitudinal direction and the thickness direction after firing (1400 ° C., 12 hours) is not particularly limited, but a method based on JIS R3311 (details below) In any case, it is preferably 1% or less, more preferably 0.5% or less. Since the heating line shrinkage ratio is in the above range in the width direction, the longitudinal direction, and the thickness direction, the ring-shaped needle blanket is preferable in that it has excellent high temperature dimensional stability and is difficult to reduce the thickness.
  • l 0 is the length (mm) before firing between the test piece marks
  • l 1 is the length (mm) after firing between the test piece marks.
  • the heating line shrinkage rate is the average of the three points measured for the length of three points on one test piece.
  • the ring-shaped needle blanket 10 is not particularly limited as long as it is an inorganic fiber blanket, but is preferably an inorganic fiber needle blanket described later.
  • the blanket 40 to which the oxide precursor-containing liquid is attached in an undried state is a component that generates an alumina calcia composition containing aluminum oxide and calcium oxide by firing the inorganic oxide blanket on an inorganic fiber blanket.
  • the needle blanket is composed of an inorganic fiber needle blanket, and at least a part of the needle blanket is provided with an impregnated portion to which an oxide precursor-containing liquid is attached in an undried state, and the water content of the impregnated portion is 50 to 400 parts by mass with respect to 100 parts by mass of the inorganic fiber, and the water content of the entire heat insulating protective member is 50 to 400 parts by mass with respect to 100 parts by mass of the inorganic fiber of the entire heat insulating protective member.
  • the product precursor-containing liquid is an alumina-calcia composition containing aluminum oxide (Al 2 O 3 ) and calcium oxide (CaO) by firing (Al 2 O 3 and CaO may be a simple substance or a double oxide.
  • the oxide precursor-containing liquid is contained in an oxide equivalent amount with respect to 100 parts by mass of the inorganic fibers in the impregnated part.
  • the molar ratio (Al / Ca) of Al to Ca in the whole impregnation part (the whole of the inorganic fiber and the deposit) is 10 or more and 330 or less.
  • the inorganic fiber blanket of the blanket 40 is of the same quality as the inorganic fiber blanket of the ring-shaped needle blanket 10.
  • the bulk density of the blanket 40 is usually 0.10 ⁇ 0.75g / cm 3, preferably 0.15 ⁇ 0.60g / cm 3, particularly preferably about 0.20 ⁇ 0.45g / cm 3 is there.
  • blade blanket An inorganic fiber needle blanket (hereinafter, simply referred to as “blanket” or “needle blanket” in some cases) used for the heat insulating protective member of the present invention will be described.
  • the needle blanket is preferably a fiber aggregate of inorganic fibers substantially free of fibers having a fiber diameter of 3 ⁇ m or less that has been subjected to a needling treatment.
  • the inorganic fiber constituting the needle blanket is not particularly limited, and examples thereof include silica, alumina / silica, zirconia containing these, spinel, titania and calcia alone, or a composite fiber. From the viewpoint of fiber strength (toughness) and safety, it is an alumina / silica fiber, particularly a polycrystalline alumina / silica fiber.
  • composition ratio (mass ratio) of alumina / silica fiber is preferably in the range of 65 to 98/35 to 2 called mullite composition or high alumina composition, more preferably 70 to 95/30 to 5, particularly preferably in the range of 70 to 74/30 to 26.
  • the inorganic fiber is 80% by mass or more, preferably 90% by mass or more, and particularly preferably the total amount thereof is a polycrystalline alumina / silica fiber having the above mullite composition.
  • the molar ratio of Ca to Al (Ca / Al) in the inorganic fiber is preferably 0.03 or less, and it is particularly preferable that the inorganic fiber does not contain Ca.
  • This inorganic fiber is preferably substantially free of fibers having a fiber diameter of 3 ⁇ m or less.
  • substantially free of fibers having a fiber diameter of 3 ⁇ m or less means that the fibers having a fiber diameter of 3 ⁇ m or less is 0.1 mass% or less of the total fiber weight.
  • the average fiber diameter of the inorganic fibers is preferably 5 to 7 ⁇ m. If the average fiber diameter of the inorganic fiber is too thick, the repulsive force and toughness of the fiber assembly will be lost, and if it is too thin, the amount of dust generation floating in the air will increase, and there is a high probability that fibers with a fiber diameter of 3 ⁇ m or less will be contained. Become.
  • the inorganic fiber aggregate having the above-mentioned preferred average fiber diameter and substantially free of fibers having a fiber diameter of 3 ⁇ m or less is used to control the spinning solution viscosity in the production of the inorganic fiber aggregate by the sol-gel method. It can be obtained by controlling the air flow used for the spinning nozzle, controlling the drying of the drawn yarn, and controlling the needling.
  • the needle blanket includes a step of obtaining an aggregate of inorganic fiber precursors by a sol-gel method as described in a conventionally known method, for example, JP-A-2014-5173, and an aggregate of the obtained inorganic fiber precursors. It is manufactured through a step of subjecting the body to a needling treatment and a firing step of firing the aggregate of the inorganic fiber precursor subjected to the needling treatment to form an inorganic fiber aggregate.
  • the needle mark density of the needle blanket is preferably 2 to 200 strokes / cm 2 , particularly 2 to 150 strokes / cm 2 , particularly 2 to 100 strokes / cm 2 , and particularly preferably 2 to 50 strokes / cm 2 . If the needle mark density is too low, the uniformity of the needle blanket thickness will be reduced and the thermal shock resistance will be reduced. .
  • the bulk density of the needle blanket is preferably 50 to 200 kg / m 3 (0.05 to 0.2 g / cm 3 ), and preferably 80 to 150 kg / m 3 (0.08 to 0.15 g / cm 3 ). More preferably. If the bulk density is too low, a fragile inorganic fiber molded body is obtained. If the bulk density is too high, the mass of the inorganic fiber molded body increases and the repulsive force is lost, resulting in a molded body having low toughness.
  • the areal density of the needle blanket 500 ⁇ 4000g / m 2, particularly 600 ⁇ 3800g / m 2, it is preferred especially is 1000 ⁇ 3500g / m 2. If the surface density of the needle blanket is too small, the amount of fibers is small and only a very thin molded body can be obtained, and the usefulness as an inorganic fiber molded body for heat insulation is reduced. If the surface density is too large, the amount of fibers is too large. This makes it difficult to control the thickness by the needling process.
  • the thickness of the needle blanket is preferably about 2 to 35 mm. As will be described later, from the viewpoint of ensuring the impregnation depth of the oxide precursor-containing liquid is 3 mm or more, preferably 10 mm or more, the thickness of the needle blanket is It is preferably 3 mm or more, particularly 10 mm or more.
  • the inorganic fiber needle blanket is formed into a plate shape.
  • the plate-shaped needle blanket may be formed into a roll shape at the time of handling.
  • the oxide precursor-containing liquid impregnated in the needle blanket is a component that produces an alumina-calcia composition containing aluminum oxide (Al 2 O 3 ) and calcium oxide (CaO) by firing as an oxide precursor. Including.
  • Al 2 O 3 and CaO may be a simple substance or a double oxide of Al 2 O 3 and CaO.
  • the mixed oxide of Al 2 O 3 and CaO although CaO ⁇ Al 2 O 3, CaO ⁇ 2Al 2 O 3, CaO ⁇ 6Al 2 O 3 and the like, but is not limited thereto.
  • the presence form of the oxide in the fired product when only the oxide precursor-containing liquid is dried and fired may be any of the following (i) to (v).
  • the oxide precursor-containing liquid includes at least a component containing Ca and a component containing Al.
  • the component containing Ca include calcium hydroxide, chloride, acetate, lactate, nitrate, carbonate, and the like. Only 1 type of these may be contained in the oxide precursor containing liquid, and 2 or more types may be contained.
  • calcium acetate, hydroxide, or carbonate is preferably water and carbon dioxide, and is preferable from the viewpoint of not deteriorating metal members in the furnace, steel plates, and the like.
  • the component containing Ca may be dissolved in the oxide precursor-containing liquid, sol form, or dispersed form.
  • the Ca-containing component is dissolved or uniformly dispersed in the oxide precursor-containing liquid, so that the oxide precursor is uniformly coated on the entire surface of each inorganic fiber constituting the needle blanket. In addition, it is preferable in that it can be easily impregnated into the inorganic fiber.
  • the Ca-containing component is precipitated in the oxide precursor-containing liquid, the surface of the inorganic fiber cannot be uniformly coated, and a portion that is not coated on the fiber surface is generated, and there is a possibility that erosion due to the scale may occur from there. Therefore, the effect of improving the scale resistance cannot be sufficiently exhibited.
  • the component containing Al include aluminum hydroxide, chloride, acetate, lactate, nitrate, carbonate and the like. Only 1 type of these may be contained in the oxide precursor containing liquid, and 2 or more types may be contained. Especially, it is preferable that it is an acetate, a hydroxide, or carbonate of aluminum that the components which generate
  • the component containing Al may be dissolved in the oxide precursor-containing liquid, sol form, or dispersed form. Since the component containing Al is dissolved or uniformly dispersed in the oxide precursor-containing liquid, the oxide precursor is uniformly coated on the entire surface of each inorganic fiber constituting the needle blanket. In addition, it is preferable in that it can be easily impregnated into the inorganic fiber.
  • the Al-containing component precipitates in the oxide precursor-containing liquid, the surface of the inorganic fiber cannot be uniformly coated, and a portion that cannot be coated on the fiber surface is generated, and there is a possibility that erosion due to scale may occur from there. Therefore, the effect of improving the scale resistance cannot be sufficiently exhibited.
  • the heat shrinkage rate of the heat insulating protective member for skid post is the heat insulating protective member for skid post using alumina sol using acetic acid as a dispersing agent. It tends to be higher than
  • the component that generates CaO by firing used when the above-mentioned alumina sol is used is preferably calcium acetate.
  • the acetate By mixing the acetate, it is possible to suppress a decrease in the dispersibility of the alumina sol and to suppress an increase in the viscosity of the oxide precursor-containing liquid.
  • the viscosity of the oxide precursor-containing liquid is within an appropriate range, it is easy to impregnate and control the amount of adhesion. If the viscosity of the oxide precursor-containing liquid is excessively high, impregnation with inorganic fibers becomes difficult, which is not preferable.
  • an aqueous calcium acetate solution in which alumina sol is dispersed is preferable.
  • the oxide precursor-containing liquid preferably contains the above-described component containing Al and the component containing Ca so that the molar ratio of Al to Ca (Al / Ca) is 4 or more and 100 or less, More preferably, it is 6 or more and 36 or less, and particularly preferably 9 or more and 13 or less.
  • Al / Ca ratio is within this range, when heated in the furnace, the calcium component can be appropriately diffused and the inorganic fibers and scale can be prevented from reacting. Further, since a calcium oxide-based oxide having high scale resistance is generated, the effect of improving the scale resistance is excellent.
  • the oxide precursor concentration of the oxide precursor-containing liquid (the total content of the component that produces Al 2 O 3 by firing and the component that produces CaO by firing) is 2 to 30% by mass, especially 5 to 10% by mass is preferred. If the oxide precursor concentration of the oxide precursor-containing liquid is too low, the amount of oxide precursor component attached to the needle blanket (attachment amount) may be low. Moreover, when the oxide precursor concentration of the oxide precursor-containing liquid is too high, the viscosity of the oxide precursor-containing liquid becomes high and it may be difficult to impregnate.
  • the oxide precursor-containing liquid is a sol or a solution because the surface of each inorganic fiber of the needle blanket can be uniformly coated with the oxide precursor.
  • the dispersion medium or solvent for the oxide precursor-containing liquid water, an organic solvent such as alcohol, or a mixture thereof, preferably water is used.
  • the oxide precursor-containing liquid may contain a polymer component such as polyvinyl alcohol.
  • a dispersion stabilizer may be added in order to increase the stability of the compound in the sol or solution. Examples of the dispersion stabilizer include acetic acid, lactic acid, hydrochloric acid, nitric acid, sulfuric acid and the like.
  • a coloring agent may be blended in the oxide precursor-containing liquid. Coloring the oxide precursor-containing liquid is preferable in that the areas of the needle blanket impregnated portion and non-impregnated portion can be visually confirmed.
  • the coloring color is preferably black or blue.
  • a water-soluble ink or the like can be used as the colorant.
  • the preferable amount of impregnation of the oxide precursor-containing liquid into the needle blanket is as described later.
  • the excess liquid is desorbed by suction or compression as necessary so that the desired water content and oxide precursor adhesion amount are obtained. May be.
  • the oxide precursor-containing liquid after impregnating the oxide precursor-containing liquid and removing the excess liquid as necessary, it may be further dried to a predetermined moisture content as necessary.
  • the water content can be reduced while maintaining a high oxide precursor adhesion amount (adhesion amount).
  • adheresion amount By reducing the amount of moisture, the adhesiveness with the adhesive during construction can be increased.
  • This drying condition is appropriately set in the range of 0.5 to 24 hours at 80 to 180 ° C. according to the amount of water to be desorbed.
  • the amount of the oxide precursor-containing liquid attached is preferably 2 to 50 parts by mass with respect to 100 parts by mass of the inorganic fiber as an oxide (CaO and Al 2 O 3 ) equivalent.
  • the heat insulating protective member for skid posts of the present invention is impregnated with an oxide precursor-containing liquid in at least a part of the needle blanket made of inorganic fibers and is in an undried state (hereinafter referred to as ⁇ drying ''). It may be simply referred to as “impregnated part”).
  • This impregnation part is preferably formed on the exposed surface (heated surface) of the heat insulating protective member for skid post when the heat insulating protective member for skid post is used in the heating furnace. This is because erosion due to the scale occurs in the non-impregnated portion, and the scale resistance can be improved because all the heated surfaces are impregnated portions.
  • the impregnation depth in the blanket thickness direction is preferably 3 mm or more and more preferably 10 mm or more from at least the blanket surface serving as the exposure surface in the furnace.
  • the impregnation depth is not less than the above lower limit, the scale resistance is improved.
  • An embodiment in which the needle blanket is impregnated over the entire thickness is preferable because scale resistance is most improved.
  • the impregnated part is continuously formed over at least half or more of the plate surface of the plate-shaped needle blanket, and the impregnated part is formed over the entire thickness of the needle blanket in the region where the impregnated part is formed. It is preferable that
  • the impregnation part is preferably formed on both the front and back surfaces of the plate-like needle blanket. More preferably, the impregnated portion on the inner surface of the furnace is formed in a region of 35 to 50% of the thickness in the thickness direction, and the impregnated portion on the surface on the ring-shaped needle blanket 10 side is thicker in the thickness direction. 20 to 50% of the region. Particularly preferably, the impregnated portion is formed over the entire thickness.
  • the moisture content of the impregnated part is 50 to 400 parts by mass with respect to 100 parts by mass of the inorganic fibers in the impregnated part.
  • the water content in the impregnated portion is excessively small, flexibility is lost due to the binder effect.
  • the generation of fiber dust increases.
  • the water content in the impregnated portion is excessively large, the liquid leaks from the inorganic fiber only by applying a little pressure to the inorganic fiber molded body.
  • the thermal shock resistance and the heat shrinkage rate are deteriorated. That is, in order to maintain the uniformity of the entire impregnated part, it is important that the water content of the impregnated part does not exceed 400 parts by mass.
  • the water content in the impregnation part is 80 to 350 parts by mass with respect to 100 parts by mass of the inorganic fibers in the impregnation part.
  • the amount of water contained in the entire heat insulating protective member for skid posts of the present invention is 50 to 400 parts by mass with respect to 100 parts by mass of inorganic fibers in the entire heat insulating protective member for skid posts. If the moisture content in the heat insulating protective member for skid posts is less than 50 parts by mass with respect to 100 parts by mass of the inorganic fibers, it is difficult to maintain the undried state of the heat insulating protective member for skid posts, and the flexibility becomes low during construction. The problem of peeling or cracking occurs.
  • the moisture content of the heat insulating protective member for skid post is more than 400 parts by mass with respect to 100 parts by mass of the inorganic fiber, the liquid leaks from the inorganic fiber only by applying a little pressure to the heat insulating protective member for skid post. Moreover, the heat insulating protective member for skid posts is crushed by its own weight, which causes a problem that end face peeling becomes large.
  • the water content of the heat insulating protective member for the skid post is preferably 150 to 300 parts by mass with respect to 100 parts by mass of the inorganic fibers of the entire heat insulating protective member for the skid post.
  • the oxide precursor-containing liquid has an amount of deposited oxide (CaO and Al 2 O 3 ) after firing (hereinafter, sometimes simply referred to as “amount of deposited oxide”) of the impregnated part.
  • the needle blanket is impregnated so as to be 2 to 50 parts by mass with respect to 100 parts by mass.
  • the oxide adhesion amount is preferably 5 to 30 parts by mass, and most preferably 10 to 25 parts by mass with respect to 100 parts by mass of the inorganic fibers in the impregnated part. When the oxide adhesion amount is small, the desired scale resistance may not be obtained.
  • the amount is too large, the density of the impregnated portion increases, and deterioration of the thermal shrinkage rate, thermal shock resistance and mechanical shock resistance are observed. Further, when the calcium component is present in a large amount on the fiber surface, the calcium component and the inorganic fiber produce a large amount of a low melting point component, so that the heat resistance of the impregnated portion is lowered.
  • the oxide adhesion amount of the entire heat insulating protection member for skid posts is 5 to 40 parts by mass with respect to 100 parts by mass of the inorganic fibers of the entire thermal protection member for skid posts, The amount is particularly preferably 8 to 30 parts by mass.
  • the molar ratio (Al / Ca) of Al to Ca in the entire impregnated portion of the heat insulating protective member for skid posts of the present invention is 10 to 330, preferably 30 to 100, particularly preferably 32 to 70.
  • the whole impregnation part represents the whole of inorganic fibers and deposits constituting the impregnation part.
  • the molar ratio of Al to Ca (Al / Ca) in the entire impregnated part is based on the molar amount of Al contained in the inorganic fibers constituting the needle blanket present in the impregnated part of the inorganic fiber molded body and the oxide precursor containing liquid. It is a ratio of the sum of the molar amount of Ca contained in the inorganic fiber to the sum of the molar amount of Al derived from the sum of the molar amount of Ca derived from the oxide precursor-containing liquid.
  • the molar ratio (Al / Ca) of Al and Ca is substantially equal between the heat insulating protective member for skid post before construction and the heat insulating protective member for skid post fired by heating after construction.
  • the Al: Si: Ca molar ratio of the entire impregnated portion of the heat insulating protective member for skid posts of the present invention is 77.2 to 79.5: 18.9 to 21.6: 0.9 to 2.2. From the viewpoint of scale resistance, heat resistance and thermal shock resistance, it is preferable.
  • the molar amount of Al and the molar amount of Ca in the entire impregnated portion are, as described above, each of the molar amounts of Al and Ca contained in the inorganic fibers constituting the needle blanket present in the impregnated portion and the oxide precursor content. It is the sum of the molar amounts of Al and Ca derived from the liquid.
  • the molar amount of Si is the molar amount of Si contained in the inorganic fibers constituting the needle blanket.
  • the amount of Al, the amount of Ca and the amount of Si in the impregnated part can be measured by fluorescent X-ray analysis.
  • the scale resistance of the heat insulating protective member for skid posts is improved.
  • the molar ratio of Al to Ca (Al / Ca) in the impregnated part is less than 10, since a large amount of low melting point compound with the inorganic fiber is generated by the inorganic fiber and CaO diffused therein, the heat resistance and heat resistance There is a possibility that the impact property is lowered.
  • the molar ratio (Al / Ca) of Al and Ca in an impregnation part is more than 330, there is a possibility that CaO is insufficiently diffused and scale resistance is not improved.
  • the oxide precursor-containing liquid is added to 100 parts by mass of the inorganic fiber with respect to the needle blanket of the inorganic fiber having a thickness of about 10 to 30 m. What is impregnated at a ratio of 2 to 50 parts by mass is preferable.
  • Example 1 A polycrystalline alumina / silica fiber containing 72% by mass of alumina and 28% by mass of silica, which has an average fiber diameter of 5.5 ⁇ m and does not substantially contain fibers having a fiber diameter of 3 ⁇ m or less, is accumulated and needsling.
  • Needle blanket (trade name MAFTEC TM MLS, manufactured by Mitsubishi Chemical Corporation, thickness 25 mm, needle mark density 5 strokes / cm 2 , bulk density 128 kg / m 3 (0.128 g / cm 3 ), surface density 3200 g / m 2 ) was punched into a donut shape having an outer diameter (diameter) of 390 mm and an inner diameter (diameter) of 270 mm to produce a ring-shaped needle blanket 10.
  • MAFTEC TM MLS manufactured by Mitsubishi Chemical Corporation
  • the heat shrinkage in the width direction, the longitudinal direction and the thickness direction after firing at 1400 ° C. for 12 hours was performed by a method based on JIS R3311 (details shown below). 0.4%, 0.4% in the longitudinal direction and 0.0% in the thickness direction.
  • a ring-shaped needle blanket 10 was cut to a length of about 150 mm and a length of about 100 mm to obtain a test piece. The test piece was marked by embedding a white silver wire in a rectangular shape of about 120 mm ⁇ about 60 mm. It was held for 12 hours in the air heated to a temperature of 1400 ° C. and baked.
  • the heating line shrinkage was calculated by the following formula.
  • l 0 is the length (mm) before firing between the test piece marks
  • l 1 is the length (mm) after firing between the test piece marks.
  • the heating linear shrinkage ratio is obtained by measuring the length of three points of one test piece and taking the average value of the three points.
  • the number of ring-shaped needle blankets of each compression layer L-1 to L-3, the height dimension after compression, and the compression rate are as follows.
  • the gap height h between the third-stage presser plate 20 and the fireproof coating 3 is 20 mm. After attaching one ring-shaped needle blanket 10 to this, all the presser plates 20 are pulled out, and the state shown in FIG. It was. The average bulk density of L-1, L-2 and L-3 (including the uppermost ring-shaped needle blanket 10) and the uppermost ring-shaped needle blanket 10 press the lower end of the fireproof coating 3. The pressure (pressure between faces) was measured. The results are shown in Table 1.
  • Example 2 (the third compression layer is further strongly compressed)
  • the same construction as in Example 1 was performed except that the number of ring-shaped needle blankets of the third compression layer L-3 was 28, the compression height was 560 mm, and the compression rate was 20%.
  • the average bulk density of L-1, L-2 and L-3 (including the uppermost ring-shaped needle blanket 10) and the inter-surface pressure were measured. The results are shown in Table 1.
  • the compression rate of the third compression layer L-3 was the same as that of the first and second compression layers L-1 and L-2. That is, the same construction as in Example 1 was performed except that the number of ring-shaped needle blankets of the third compression layer L-3 was 25, the compression height was 560 mm, and the compression rate was 10%.
  • the average bulk density of L-1, L-2 and L-3 (including the uppermost ring-shaped needle blanket 10) and the inter-surface pressure were measured. The results are shown in Table 1. It was a low value compared with Examples 1 and 2.
  • Example 3 A ring-shaped needle blanket 10 laminated compression body having the same compression ratio as in Example 1 was prepared, and mortar was applied to the surface to a thickness of about 3 mm, and an alumina sol solution containing acetic acid as a dispersant was mixed with calcium acetate monohydrate and Al. A blanket that is added so that the molar ratio of Ca (Al / Ca) is 12 and the oxide precursor-containing liquid in which the solid content concentration in terms of oxide is adjusted to 7.0% by mass is impregnated in the entire thickness direction.
  • Example 2 A mortar was applied on the surface of an irregular refractory having a diameter of 340 mm to a thickness of about 3 mm, and the blanket 40 described in Example 3 was wound. This was fired at a heating rate of 5 ° C./min, 1400 ° C. for 12 hours, the surface inorganic fiber molded body was opened with a cutter knife, the blanket 40 was peeled off, and the appearance of the surface of the irregular refractory was observed. However, the inorganic fiber derived from the blanket 40 was adhered to only a part of the surface of the ring-shaped needle blanket 10 laminated compressed body.
  • the ring-shaped needle blanket used in the examples has a residual surface pressure ratio of 10% or more after a cycle test after firing (1400 ° C., 12 hours), so that it can sustain long-term vibration in a harsh environment. It can be seen that the surface pressure is high. Moreover, the ring-shaped needle blanket used in the examples uses a ring-shaped needle blanket whose heating line shrinkage after firing (1400 ° C., 12 hours) is 1% or less in all of the width direction, the longitudinal direction, and the thickness direction. Thus, it can be seen that the high temperature dimensional stability is also excellent.
  • the ring-shaped needle blanket used in the examples when the ring-shaped needle blanket used in the examples is compressed and applied, when the bulk density of the compressed layer is evaluated by dividing it into three parts in the upper part, middle part and lower part, the bulk in the upper part is evaluated. It is inferred that by making the density higher than the bulk density in the middle part and the lower part, it is possible to maintain a continuous surface pressure that can withstand long-term vibration in a harsh environment and to suppress the influence of shrinkage due to firing. On the other hand, it is surmised that the comparative example 1 has a low compression rate and thus is low from the initial surface pressure, leaving a gap.
  • Example 3 and Comparative Example 2 are compared, the adhesiveness between the blanket 40 and the laminated body 10 of the ring-shaped needle blanket is higher when the inorganic fiber molded body is wound around the laminated compressed body of the ring-shaped needle blanket 10.
  • the blanket 40 and the ring needle blanket laminate 10 are made of the same material, so there is no difference in shrinkage due to the material, and the oxide precursor-containing liquid of the blanket 40 is a ring needle blanket laminate. 10 is easy to soak in the surface of the oxide, when the oxide precursor is converted to oxide during firing, the oxide precursor on the interface of the laminate 10 of the blanket 40 and the ring needle blanket becomes an oxide, This is considered because the oxide functions as an adhesive between the blanket 40 and the laminated needle blanket 10.
  • Comparative Example 2 a space is formed between the blanket 40 and the amorphous refractory due to the difference in shrinkage due to the material between the blanket 40 and the amorphous refractory. As a result, the adhesion is easily reduced.
  • the heat insulation protective member according to the present invention it is possible to suppress a reduction in adhesion to the blanket 40 impregnated with the oxide precursor-containing liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Thermal Insulation (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Provided are: a skid pipe with a heat-insulating protective member for which the occurrence of a gap at the upper end of the heat-insulating protective member is more adequately prevented; and a method for constructing the heat-insulating protective member therefor. Multiple ring-shaped needle blankets 10 are wrapped on a skid pipe 1 and pressed with a pressing plate 20 to form a first compressed layer L-1. Above same, a second compressed layer L-2 and a third compressed layer L-3 are formed and each is pressed with a pressing plate 20. After loading ring-shaped needle blankets 10 between the pressing plate and a fireproof covering 3, the pressing plates 20 are withdrawn. The compression ratio for the third compressed layer L-3 is made to be greater than for the first and second compressed layers L-1 and L-2.

Description

スキッドパイプ及びその断熱保護部材の施工方法Method for constructing skid pipe and its heat insulating protective member
 本発明は、加熱炉におけるスキッドパイプと、その断熱保護部材の施工方法に関する。 This invention relates to the construction method of the skid pipe in a heating furnace, and its heat insulation protection member.
 鉄鋼業の加熱炉内のスキッドパイプの保護部材として、熱衝撃性の高い無機繊維集合体や無機繊維成形体が用いられている(特許文献1,2)。 As a skid pipe protective member in a steel industry heating furnace, an inorganic fiber aggregate or an inorganic fiber molded body having high thermal shock properties is used (Patent Documents 1 and 2).
 特許文献1には、セラミックファイバーよりなるリング状断熱材でスキッドパイプを被覆することが記載されている。特許文献1の図8及び0002段落には、一部が切断されたリング状の断熱材をスキッドパイプに装着することが記載されている。特許文献1には、断熱材を圧縮してから施工することは記載されていない。 Patent Document 1 describes that a skid pipe is covered with a ring-shaped heat insulating material made of ceramic fiber. In FIG. 8 and paragraph 0002 of Patent Document 1, it is described that a ring-shaped heat insulating material partly cut is attached to a skid pipe. Patent Document 1 does not describe the construction after the insulating material is compressed.
 特許文献2には、半割形状セラミックファイバー製耐火材を複数枚重ねた後、圧縮し、圧縮状態を保ったまま加熱炉サポートパイプ外周に配置し、圧縮を解いてセラミックファイバー製耐火材を復元させる断熱材施工方法が記載されている。この施工方法によれば、耐火材収縮に起因してサポートパイプ上端側に隙間が生じる現象が抑制される。 In Patent Document 2, a plurality of halved ceramic fiber refractory materials are stacked, then compressed, placed on the outer periphery of the heating furnace support pipe while maintaining the compressed state, and decompressed to restore the ceramic fiber refractory material A method for constructing a heat insulating material is described. According to this construction method, a phenomenon in which a gap is generated on the upper end side of the support pipe due to the refractory material contraction is suppressed.
特開2004-43918号公報JP 2004-43918 A 特開2010-151284号公報JP 2010-151284 A
 本発明はスキッドパイプを無機繊維成形体よりなる断熱保護部材が取り巻いているスキッドパイプにおいて、該断熱保護部材上端部の隙間発生がより十分に防止される断熱保護部材付きスキッドパイプと、その断熱保護部材の施工方法を提供することを目的とし、次を要旨とする。 The present invention relates to a skid pipe in which a heat insulating protective member made of an inorganic fiber molded body surrounds the skid pipe, a skid pipe with a heat insulating protective member that can prevent the occurrence of a gap at the upper end of the heat insulating protective member, and its heat insulating protection It aims at providing the construction method of a member, and makes the following a summary.
[1] 上部に耐火被覆を有したスキッドパイプの該耐火被覆よりも下側に断熱保護部材を施工する方法において、複数枚の無機繊維製リング状ニードルブランケットを該スキッドパイプに外嵌させて積重体とし、次いで、この積重体を押え板で上方から押して、圧縮層を形成する工程を複数回繰り返し、第1]ないし[第n(nは2以上の整数)の圧縮層を形成し、最上段の該圧縮層と前記耐火被覆の下端面との間に前記リング状ニードルブランケットを外嵌させ、その後、前記押え板を撤去して積重体を復元させ、前記リング状ニードルブランケットを前記耐火被覆の下端面に押し付ける断熱保護部材の施工方法であって、前記圧縮層の嵩密度を高さ方向に上部、中部及び下部に3等分して評価した場合、前記上部における嵩密度が前記中部及び前記下部における嵩密度に比べて高いことを特徴とするスキッドパイプの断熱保護部材の施工方法。 [1] In a method of constructing a heat insulating protective member below the fireproof coating of a skid pipe having a fireproof coating on the top, a plurality of inorganic fiber ring needle blankets are externally fitted to the skid pipe and stacked. Next, the process of forming the compression layer by pressing the stack from above with a press plate is repeated a plurality of times to form the first to nth (n is an integer of 2 or more) compression layers, The ring-shaped needle blanket is externally fitted between the upper compressed layer and the lower end surface of the fireproof coating, and then the presser plate is removed to restore the stack, and the ring-shaped needle blanket is attached to the fireproof coating. It is a construction method of the heat insulation protective member pressed against the lower end surface of the above, and when the bulk density of the compressed layer is evaluated by dividing the bulk density into an upper part, a middle part and a lower part into three parts, the bulk density in the upper part is Parts and construction process of the heat-insulating protection member of the skid pipe, characterized in that higher than the bulk density at the lower.
[2] [1]において、前記上部の圧縮層の嵩密度が、中部及び下部の圧縮層の嵩密度の1.1~3.0倍であることを特徴とするスキッドパイプの断熱保護部材の施工方法。 [2] In the insulating protection member for a skid pipe according to [1], the bulk density of the upper compressed layer is 1.1 to 3.0 times the bulk density of the middle and lower compressed layers. Construction method.
[3] [1]又は[2]において、さらに前記中部における嵩密度が前記下部における嵩密度に比べて高いことを特徴とするスキッドパイプの断熱保護部材の施工方法。 [3] A construction method for a heat insulating protection member for a skid pipe, wherein the bulk density in the middle part is higher than the bulk density in the lower part in [1] or [2].
[4] [1]~[3]のいずれかにおいて、前記上部の圧縮層の嵩密度が0.10g/cm以上0.20g/cm以下であることを特徴とするスキッドパイプの断熱保護部材の施工方法。 [4] In any one of [1] to [3], the bulk density of the upper compressed layer is 0.10 g / cm 3 or more and 0.20 g / cm 3 or less. Construction method of members.
[5] [1]~[4]のいずれかにおいて、前記無機繊維製リング状ニードルブランケットは、以下に記載する条件におけるサイクル試験後の残存面圧比が10%以上であることを特徴とするスキッドパイプの断熱保護部材の施工方法。
 条件:1400℃、12時間焼成後のリング状ニードルブランケットを引張圧縮試験機によりGBD(嵩密度)=0.195まで圧縮した後、上下のプレートをGBD=0.20から0.24まで圧縮することを100回繰り返した。その際、第1回目のGBD=0.20での開放側面圧値と第100回目のGBD=0.24での開放側面圧値を測定し、以下の式より、焼成後面圧の劣化度合いの指標となる残存面圧比(%)を求める。
  残存面圧比=第100回開放側面圧/第1回開放側面圧×100
[5] In any one of [1] to [4], the ring shaped needle blanket made of inorganic fibers has a residual surface pressure ratio after a cycle test under the conditions described below of 10% or more. Construction method for heat insulation and protection members for pipes.
Conditions: After compressing the ring-shaped needle blanket after firing for 12 hours at 1400 ° C. to GBD (bulk density) = 0.195 using a tensile compression tester, the upper and lower plates are compressed from GBD = 0.20 to 0.24. This was repeated 100 times. At that time, the open side pressure value at the first GBD = 0.20 and the open side pressure value at the 100th GBD = 0.24 were measured. The remaining surface pressure ratio (%) as an index is obtained.
Residual surface pressure ratio = 100th opening side pressure / first opening side pressure × 100
[6] [1]~[5]のいずれかにおいて、前記無機繊維製リング状ニードルブランケットは、1400℃、12時間焼成後における幅方向、長手方向及び厚み方向の加熱収縮率がいずれも1%以下であることを特徴とするスキッドパイプの断熱保護部材の施工方法。 [6] In any one of [1] to [5], the inorganic fiber ring needle blanket has a heat shrinkage rate of 1% in the width direction, the longitudinal direction, and the thickness direction after firing at 1400 ° C. for 12 hours. The construction method of the heat insulation protection member of a skid pipe characterized by the following.
[7] [1]~[6]のいずれかにおいて、前記リング状ニードルブランケットに、径方向のスリットが設けられており、該スリットを開くことによりリング状ニードルブランケットをスキッドパイプに外嵌させることを特徴とするスキッドパイプの断熱保護部材の施工方法。 [7] In any one of [1] to [6], the ring-shaped needle blanket is provided with a radial slit, and the ring-shaped needle blanket is fitted onto the skid pipe by opening the slit. A method for constructing a heat insulating protection member for a skid pipe characterized by the above.
[8] [7]において、前記リング状ニードルブランケットのスリット同士は相互に重なり合わないように周方向にずらして配置されることを特徴とするスキッドパイプの断熱保護部材の施工方法。 [8] A construction method for a heat insulating and protecting member for a skid pipe according to [7], wherein the slits of the ring-shaped needle blanket are shifted in the circumferential direction so as not to overlap each other.
[9] [1]~[8]のいずれかにおいて、前記スキッドパイプにアンカー金具差込部を設けておき、前記押え板の上方への移動を阻止するためのアンカー金具を該アンカー金具差込部に係止させて押え板の上方への移動を阻止することを特徴とするスキッドパイプの断熱保護部材の施工方法。 [9] In any one of [1] to [8], an anchor fitting insertion portion is provided in the skid pipe, and the anchor fitting for preventing the holding plate from moving upward is inserted into the anchor fitting insertion. The construction method of the heat insulation protection member of a skid pipe characterized by locking to a part and preventing the upward movement of a presser plate.
[10] [9]において、前記アンカー金具は、上下に突出するピンを有しており、該押え板に重なるリング状ニードルブランケットに対し該ピンを刺し通すことを特徴とするスキッドパイプの断熱保護部材の施工方法。 [10] In [9], the anchor metal fitting has a pin protruding vertically, and the pin is pierced through a ring-shaped needle blanket that overlaps the presser plate. Construction method of members.
[11] [1]~[10]のいずれかにおいて、その後、リング状ニードルブランケットの外周に、未乾燥状態で酸化物前駆体含有液が付着されたブランケットを巻装し、該酸化物前駆体含有液は焼成により酸化アルミニウム及び酸化カルシウムを含むアルミナ・カルシア系組成物を生じさせる成分を含むことを特徴とするスキッドパイプの断熱保護部材の施工方法。 [11] In any one of [1] to [10], a blanket having an oxide precursor-containing liquid attached in an undried state is wound around the outer periphery of the ring-shaped needle blanket, and the oxide precursor is wound. The method for constructing a heat insulating protective member for a skid pipe, wherein the liquid contains a component that produces an alumina-calcia composition containing aluminum oxide and calcium oxide by firing.
[12] 上部に耐火被覆を有するスキッドパイプの該耐火被覆よりも下側に断熱保護部材が設けられた断熱保護部材付きスキッドパイプにおいて、該断熱保護部材は、スキッドパイプに外嵌された圧縮状態のリング状ニードルブランケットの積重体を有しており、該積重体の反発力により最上位のリング状ニードルブランケットが前記耐火被覆に押し付けられた断熱保護部材付きスキッドパイプであって、前記積重体を高さ方向に上部、中部及び下部に3等分して評価した場合、前記上部におけるリング状ニードルブランケットの嵩密度が前記中部及び前記下部におけるリング状ニードルブランケットの嵩密度に比べて高いことを特徴とする断熱保護部材付きスキッドパイプ。 [12] In a skid pipe with a heat insulating protective member provided with a heat insulating protective member on the lower side of the fire resistant coating of the skid pipe having a fire protective coating on the top, the heat insulating protective member is in a compressed state externally fitted to the skid pipe A ring-shaped needle blanket stack, wherein the top ring-shaped needle blanket is pressed against the fireproof coating by the repulsive force of the stack. When evaluated by dividing the upper part into the upper part, the middle part and the lower part in the height direction, the bulk density of the ring-shaped needle blanket in the upper part is higher than the bulk density of the ring-shaped needle blanket in the middle part and the lower part. A skid pipe with a thermal protection member.
 本発明の断熱保護部材の施工方法によって断熱保護部材が施工されたスキッドポストにあっては、最上段の第n圧縮層の上側に配設されたリング状ニードルブランケットは、第1~第n圧縮層のリング状ニードルブランケットの反発力により圧迫され、耐火被覆の下端面に押し付けられる。特に、本発明では、前記圧縮層の嵩密度を高さ方向に上部、中部及び下部に3等分して評価した場合、前記上部における嵩密度が前記中部及び前記下部における嵩密度に比べて高い、特に第1~第n圧縮層のリング状ニードルブランケットを同一のリング状ニードルブランケットで施工する場合には上部の圧縮層のリング状ニードルブランケットが最も強く圧縮するため、リング状ニードルブランケットが該耐火被覆に強い反発力を示す。この反発力は、炉の操業時にも維持され、スラブ運搬時に発生する振動によって発生する耐火被覆と最上位のリング状ニードルブランケットとの隙間を長期にわたって防止する。本発明は無機繊維製リング状ニードルブランケットを用いることで反発力が増し、隙間が空くことを効果的に防止することができる。 In the skid post in which the heat insulating protective member is applied by the method of applying the heat insulating protective member of the present invention, the ring-shaped needle blanket disposed on the upper side of the uppermost nth compression layer has the first to nth compressions. It is pressed by the repulsive force of the ring needle blanket of the layer and pressed against the lower end surface of the fireproof coating. In particular, in the present invention, when the bulk density of the compressed layer is evaluated by dividing the bulk density into an upper part, a middle part, and a lower part in the height direction, the bulk density in the upper part is higher than the bulk density in the middle part and the lower part. In particular, when the ring-shaped needle blankets of the first to n-th compression layers are applied with the same ring-shaped needle blanket, the ring-shaped needle blanket of the upper compression layer is most strongly compressed. Shows a strong repulsive force on the coating. This repulsive force is maintained even during operation of the furnace, and prevents a gap between the fireproof coating and the uppermost ring-shaped needle blanket, which is generated by vibration generated during slab transportation, over a long period of time. In the present invention, by using an inorganic fiber ring-shaped needle blanket, the repulsive force is increased and the gap can be effectively prevented from being formed.
 本発明の一態様では、積層圧縮層の外側を未乾燥状態で酸化物前駆体含有液が付着されたブランケットで被覆することで、別途の焼成工程を経ることにより、該被覆ブランケットが、スケールに対しても高い耐久性を有する酸化アルミニウム及び酸化カルシウムを含むアルミナ・カルシア系組成物含有ブランケットとなる。万が一、スケールによる浸食を受けた場合も積層圧縮層まで浸食を受けていなければ、容易にこのブランケットを切削し、再被覆することができるため、補修性にも優れ、低コストである。そして、アルミナ繊維ニードルマットを用いることにより、軽量であるため施工性に優れ、風食性や熱衝撃にも優れたものとなる。 In one embodiment of the present invention, the outer side of the laminated compressed layer is coated with a blanket to which the oxide precursor-containing liquid is attached in an undried state, and thus the coated blanket is converted into a scale through a separate baking step. In contrast, the blanket containing an alumina and calcia composition containing aluminum oxide and calcium oxide having high durability is obtained. In the unlikely event of erosion due to the scale, if the laminated compressed layer is not eroded, the blanket can be easily cut and recoated, so that the repairability is excellent and the cost is low. And by using an alumina fiber needle mat, since it is lightweight, it is excellent in workability and excellent in wind erosion and thermal shock.
実施の形態に係る断熱保護部材の施工方法を示す斜視図である。It is a perspective view which shows the construction method of the heat insulation protection member which concerns on embodiment. 実施の形態に係る断熱保護部材の施工方法を示す斜視図である。It is a perspective view which shows the construction method of the heat insulation protection member which concerns on embodiment. 実施の形態に係る断熱保護部材の施工方法を示す斜視図である。It is a perspective view which shows the construction method of the heat insulation protection member which concerns on embodiment. 図4aは図3の一部の拡大図、図4bは図4aのアンカー金具付近の縦断面図である。4a is an enlarged view of a part of FIG. 3, and FIG. 4b is a longitudinal sectional view of the vicinity of the anchor fitting of FIG. 4a. 実施の形態に係る断熱保護部材の施工方法を示す斜視図である。It is a perspective view which shows the construction method of the heat insulation protection member which concerns on embodiment. 実施の形態に係る断熱保護部材の施工方法を示す斜視図である。It is a perspective view which shows the construction method of the heat insulation protection member which concerns on embodiment. 実施の形態に係る断熱保護部材の施工方法を示す斜視図である。It is a perspective view which shows the construction method of the heat insulation protection member which concerns on embodiment. 図8aは実施の形態に係る断熱保護部材の施工方法を示す斜視図、図8bは図8aのVIIIb-VIIIb線断面図である。FIG. 8A is a perspective view showing a construction method of the heat insulating protection member according to the embodiment, and FIG. 8B is a sectional view taken along the line VIIIb-VIIIb of FIG. 8A. 押え板の別形状を示す平面図である。It is a top view which shows another shape of a holding plate. 押え板の連結構造を示す断面図である。It is sectional drawing which shows the connection structure of a presser plate.
 以下、図1~8を参照して実施の形態について説明する。 Hereinafter, embodiments will be described with reference to FIGS.
 断熱保護部材が施工されるスキッドパイプ1は、図1の通り、耐熱鋼製のパイプ状であり、熱処理炉の炉床Gから立設されている。複数本のスキッドパイプ1に支承されるようにしてスキッドビーム2が設置されている。スキッドパイプ1の上部には耐火キャスタブルよりなる耐火被覆3が施されている。本発明では、スキッドパイプ1のうち、この耐火被覆3の下側に断熱保護部材を施工する。 As shown in FIG. 1, the skid pipe 1 on which the heat insulation protective member is constructed is a pipe shape made of heat-resistant steel, and is erected from the hearth G of the heat treatment furnace. A skid beam 2 is installed so as to be supported by a plurality of skid pipes 1. A fireproof coating 3 made of fireproof castable is applied to the upper part of the skid pipe 1. In the present invention, a heat insulating protective member is applied to the underside of the fireproof coating 3 in the skid pipe 1.
 このスキッドパイプ1には、高さ方向に間隔をおいて複数個のアンカー金具差込部4が設けられている。このアンカー金具差込部4は、水平断面がコ字形であり、図4bの通り、スキッドパイプ1の外周面との間に、アンカー金具が上方から差し込まれるクリアランスC(図4b)が形成されている。 The skid pipe 1 is provided with a plurality of anchor fitting insertion portions 4 at intervals in the height direction. The anchor fitting insertion portion 4 has a U-shaped horizontal cross section, and as shown in FIG. 4b, a clearance C (FIG. 4b) into which the anchor fitting is inserted from above is formed between the outer peripheral surface of the skid pipe 1. Yes.
 スキッドパイプ1は、水平断面が非真円形でない場合があるので、断熱保護部材の施工に先立って、スキッドパイプ1の外周を下地層5(図8b参照)で被覆しておくのが好ましい。この下地層5を被覆することによって、外周面の水平断面形状がほぼ真円形となり、外周面と積層圧縮層との密着性が上がり、より高い断熱効果を発現することができる。下地層5は、無機繊維やキャスタブル耐火物などによって構成される。 Since the horizontal section of the skid pipe 1 may not be non-circular, it is preferable that the outer periphery of the skid pipe 1 is covered with the base layer 5 (see FIG. 8b) prior to the construction of the heat insulating protective member. By covering this base layer 5, the horizontal cross-sectional shape of the outer peripheral surface becomes a substantially circular shape, the adhesion between the outer peripheral surface and the laminated compressed layer is increased, and a higher heat insulating effect can be exhibited. The underlayer 5 is made of inorganic fibers, castable refractories, or the like.
 本発明では、無機繊維(この実施の形態ではアルミナ繊維)のニードルブランケットよりなる環状材料(以下、リング状ニードルブランケットという。)10を複数枚、スキッドパイプ1の下部に装着する。環状材料には反発力の高い無機繊維のニードルブランケットを使用することが好ましい。リング状ニードルブランケット10には径方向にスリット11(図2)が設けられており、このスリット11を開くようにしてリング状ニードルブランケット10をスキッドパイプ1に外嵌させる。上下に隣り合うリング状ニードルブランケット10において、外嵌部に隙間が空くのを防ぐためにスリット11が重ならないように、リング状ニードルブランケット10の向きを1段ずつ異ならせるのが好ましい。 In the present invention, a plurality of annular materials (hereinafter referred to as ring-shaped needle blankets) 10 made of a needle blanket of inorganic fibers (in this embodiment, alumina fibers) are attached to the lower part of the skid pipe 1. It is preferable to use an inorganic fiber needle blanket having a high repulsive force as the annular material. The ring-shaped needle blanket 10 is provided with a slit 11 (FIG. 2) in the radial direction, and the ring-shaped needle blanket 10 is fitted on the skid pipe 1 so as to open the slit 11. In the ring-shaped needle blankets 10 adjacent to each other in the vertical direction, it is preferable that the directions of the ring-shaped needle blankets 10 are different one by one so that the slits 11 do not overlap in order to prevent a gap from being formed in the outer fitting portion.
 所要枚数のリング状ニードルブランケット10を重ねた後、図2の通り、最上位のリング状ニードルブランケット10の上側に押え板20を配置する。 After the required number of ring-shaped needle blankets 10 are stacked, the presser plate 20 is disposed on the upper side of the uppermost ring-shaped needle blanket 10 as shown in FIG.
 この実施の形態では、押え板20は、2枚の押え板半体21,22を突き合わせて構成される。 In this embodiment, the presser plate 20 is configured by abutting two presser plate halves 21 and 22 together.
 押え板半体21,22は、各々の対向辺に略半円形の湾曲辺部21a,22aを有している。湾曲辺部21a,22aの両側は腕状部21b,22bとなっている。各腕状部21b,22bにはボルト挿通用の小孔24が設けられている。湾曲辺部21a,22a同士が対面するように腕状部21b,22bの先端側同士を重ね合わせ、ボルト23(図3,4a)によって締結されることにより、押え板20が構成される。この押え板20には、円形開口25(図3,4a,4b)が形成される。 The presser plate halves 21 and 22 have substantially semicircular curved side portions 21a and 22a on opposite sides. Both sides of the curved side portions 21a and 22a are arm- like portions 21b and 22b. Each arm- like portion 21b, 22b is provided with a small hole 24 for inserting a bolt. The presser plate 20 is configured by overlapping the distal ends of the arm portions 21b and 22b so that the curved sides 21a and 22a face each other and fastening them with bolts 23 (FIGS. 3 and 4a). The presser plate 20 is formed with a circular opening 25 (FIGS. 3, 4a, 4b).
 各湾曲辺部21a,22aにはコ字形の切欠部26が設けられている。各切欠部26は、開口25の直径方向に対峙して配置されている。この切欠部26は、アンカー金具30のピン33を通すためのものである。 A U-shaped notch 26 is provided in each of the curved sides 21a and 22a. Each notch 26 is arranged to face the diameter direction of the opening 25. This notch 26 is for passing the pin 33 of the anchor fitting 30.
 押え板半体21,22の後辺(湾曲辺部21a,22aと反対側の辺)には、L字形の切欠部27が設けられている。この切欠部27に後述の通りベルトを掛ける。また、押え板半体21,22の後辺近傍には、押え板半体21,22を引き抜く際に紐状体を通したり手又は工具等を掛けるための小穴28が設けられている。 L-shaped notches 27 are provided on the rear sides of the holding plate halves 21 and 22 (sides opposite to the curved side portions 21a and 22a). A belt is hung on the notch 27 as described later. Further, in the vicinity of the rear sides of the presser plate halves 21 and 22, a small hole 28 is provided for passing the string-like member or hanging a hand or a tool when the presser plate halves 21 and 22 are pulled out.
 押え板半体21,22を、スキッドパイプ1を挟んで両側から接近させ、ボルト23によって結合することにより、スキッドパイプ1に外嵌した状態の押え板20を形成した後、この押え板20でリング状ニードルブランケット10の積重体を上方から押えつけて圧縮する。 The presser plate halves 21 and 22 are approached from both sides with the skid pipe 1 interposed therebetween, and are joined by bolts 23 to form the presser plate 20 that is externally fitted to the skid pipe 1. The stacked body of the ring-shaped needle blanket 10 is pressed from above and compressed.
 圧縮方法は、特に限定はしないが、ベルトを用いた圧縮方法等が挙げられる。なかでも、ベルトを用いた圧縮方法が最もコストが低く、かつ容易であるため好ましい。ベルトを用いた圧縮を行う際には、押え板20にL字形の切欠部27を有することが、圧縮ベルトをかけやすくかつ圧縮後に該ベルトを外しやすい点、特に押え板20が低位置に有する場合に、好ましい。 The compression method is not particularly limited, and examples thereof include a compression method using a belt. Among these, a compression method using a belt is preferable because it is the lowest in cost and easy. When performing compression using a belt, the presser plate 20 has an L-shaped cutout 27 to easily apply the compression belt and to remove the belt after compression, particularly the presser plate 20 has a low position. Preferred in some cases.
 押え板20でリング状ニードルブランケット10の積重体を押さえつけた状態で、アンカー金具30をアンカー金具差込部4に差し込み、楔35で固定する。 In a state where the stack of the ring-shaped needle blanket 10 is pressed by the presser plate 20, the anchor fitting 30 is inserted into the anchor fitting insertion part 4 and fixed with the wedge 35.
 アンカー金具30は、図3,4a,4bの通り、縦片31と横片32とを有した側面視逆L字形状の耐熱鋼製部材である。縦片31は、アンカー金具差込部4とスキッドパイプ1の外周面との間のクリアランスCに差し込まれる。横片32には、上方及び下方に突出する針状のピン33が設けられている。ピン33を、切欠部26を通して、押え板20で押さえつけられているリング状ニードルブランケット10に刺し込む。そして、リング状ニードルブランケット10を押えつけている押え板20の切欠部26近傍部分を横片32で上方から押えつける。 As shown in FIGS. 3, 4 a and 4 b, the anchor fitting 30 is a heat-resistant steel member having a vertical piece 31 and a horizontal piece 32 and having an inverted L shape in side view. The vertical piece 31 is inserted into the clearance C between the anchor fitting insertion part 4 and the outer peripheral surface of the skid pipe 1. The horizontal piece 32 is provided with needle-like pins 33 protruding upward and downward. The pin 33 is inserted into the ring-shaped needle blanket 10 pressed by the presser plate 20 through the notch portion 26. Then, a portion near the notch 26 of the presser plate 20 that presses the ring-shaped needle blanket 10 is pressed from above with the horizontal piece 32.
 その後、縦片31とスキッドパイプ1との間に楔35を打ち込み、押え板20をスキッドパイプ1に固定する。これにより、1段目の押え板20がスキッドパイプ1に固定され、その下側に、複数枚のリング状ニードルブランケット10が圧縮された第1圧縮層L-1が形成される。 Thereafter, a wedge 35 is driven between the vertical piece 31 and the skid pipe 1 to fix the presser plate 20 to the skid pipe 1. As a result, the first-stage presser plate 20 is fixed to the skid pipe 1, and a first compression layer L-1 in which a plurality of ring-shaped needle blankets 10 are compressed is formed on the lower side thereof.
 その後、図5のように、この1段目の押え板20の上側に、所要枚数のリング状ニードルブランケット10を、スキッドパイプ1を取り巻くように重ねる。なお、リング状ニードルブランケット10に対し、アンカー金具30の上向きのピン33が刺し通される。次いで、2段目の押え板20をスキッドパイプ1に外嵌させ、リング状ニードルブランケット10の積重体を押し縮め、2段目の押え板20をアンカー金具30によってスキッドパイプ10によってスキッドパイプ1に対し固定する。これにより、第2圧縮層L-2が形成される。 Thereafter, as shown in FIG. 5, a required number of ring-shaped needle blankets 10 are stacked on the upper side of the first-stage presser plate 20 so as to surround the skid pipe 1. An upward pin 33 of the anchor fitting 30 is pierced through the ring-shaped needle blanket 10. Next, the second-stage presser plate 20 is fitted onto the skid pipe 1, the stack of the ring needle blanket 10 is pressed and contracted, and the second-stage presser plate 20 is attached to the skid pipe 1 by the anchor pipe 30 and the skid pipe 10. Fix against. Thereby, the second compressed layer L-2 is formed.
 この2段目の押え板20の上側に所要枚数のリング状ニードルブランケット10を、スキッドパイプ1を取り巻くように重ねる。なお、リング状ニードルブランケット10に対し、アンカー金具30の上向きのピン33が刺し通される。次いで、3段目の押え板20をスキッドパイプ1に外嵌させ、リング状ニードルブランケット10の積重体を押し縮め、2段目の押え板20をアンカー金具30によってスキッドパイプ1に対し固定する。これにより、第3圧縮層L-3が形成される。 The required number of ring-shaped needle blankets 10 are stacked on the upper side of the second-stage presser plate 20 so as to surround the skid pipe 1. An upward pin 33 of the anchor fitting 30 is pierced through the ring-shaped needle blanket 10. Next, the third-stage presser plate 20 is fitted onto the skid pipe 1, the stack of the ring needle blanket 10 is pressed and contracted, and the second-stage presser plate 20 is fixed to the skid pipe 1 by the anchor fitting 30. Thereby, the third compressed layer L-3 is formed.
 このようにして、図5に示すように、3段の圧縮層L-1,L-2,L-3によってスキッドパイプ1が包囲された状態となる。なお、最上段の第3圧縮層L-3を形成する際に、3段目の押え板20でリング状ニードルブランケット積重体を押す押圧力を、第1及び第2圧縮層を形成するときの押圧力よりも大きくする。これにより、最上段の第3圧縮層L-3は、第1及び第2圧縮L-1,L-2よりも強く圧縮されたものとなっている。 Thus, as shown in FIG. 5, the skid pipe 1 is surrounded by the three-stage compression layers L-1, L-2, and L-3. When the uppermost third compression layer L-3 is formed, the pressing force that presses the ring-shaped needle blanket stack with the third-stage presser plate 20 is used to form the first and second compression layers. Make it larger than the pressing force. As a result, the uppermost third compression layer L-3 is more strongly compressed than the first and second compression L-1, L-2.
 図5の通り、最上段の第3圧縮層L-3と耐火キャスタブルよりなる耐火被覆3との間には、間隔があくので、図6の通り、この間隔部分にリング状ニードルブランケット10を積み重ねて配置する。この場合も、最上段の押え板20の上側のリング状ニードルブランケット10に、ピン33が刺し通される。 As shown in FIG. 5, there is a space between the uppermost third compressed layer L-3 and the fireproof coating 3 made of fireproof castable, and as shown in FIG. Arrange. Also in this case, the pin 33 is pierced through the ring-shaped needle blanket 10 on the upper side of the uppermost presser plate 20.
 その後、図6の通り、各押え板20のボルト23を外し、押え板半体21,22を図6の矢印F方向に引っ張って抜き出す。押え板20に重なるリング状ニードルブランケット10は、ピン33が刺し通されて固定されているので、押え板20に引きずられて引っ張り出されることはない。なお、押え板半体21,22を引き抜き出す際に、押え板半体21,22の小穴28に紐状体、手指又は工具等を掛けることが好ましい。 Then, as shown in FIG. 6, the bolts 23 of each presser plate 20 are removed, and the presser plate halves 21 and 22 are pulled out in the direction of arrow F in FIG. The ring-shaped needle blanket 10 that overlaps the presser plate 20 is not pulled out by being dragged by the presser plate 20 because the pin 33 is pierced and fixed. When pulling out the holding plate halves 21 and 22, it is preferable to hang a string-like body, fingers or tools on the small holes 28 of the holding plate halves 21 and 22.
 各押え板20を引き抜くと、最上段の第3圧縮層L-3の上側に配設されたリング状ニードルブランケット10は、第1~第3圧縮層L-1~L-3のリング状ニードルブランケット10の反発力により圧迫され、耐火被覆3の下端面に押し付けられる。特に、この実施の形態では、第1圧縮層L-1~第3圧縮層L-3において同一のリング状ニードルブランケット10を使用し、最上段の第3圧縮層L-3のリング状ニードルブランケット10を最も強く圧縮していたので、即ち最上段の第3圧縮層L-3の嵩密度が第1圧縮層L-1及び第2圧縮層L-2の嵩密度より高かったので、耐火被覆3直下のリング状ニードルブランケット10が強く耐火被覆3に押し付けられる。なお、この反発力は、炉の操業時にも維持され、スラブ運搬時に発生する振動によって発生する耐火被覆3と最上位のリング状ニードルブランケット10との隙間を長期にわたって防止する。 When each presser plate 20 is pulled out, the ring-shaped needle blanket 10 disposed on the upper side of the uppermost third compression layer L-3 becomes the ring-shaped needles of the first to third compression layers L-1 to L-3. It is pressed by the repulsive force of the blanket 10 and pressed against the lower end surface of the fireproof coating 3. In particular, in this embodiment, the same ring-shaped needle blanket 10 is used in the first compression layer L-1 to the third compression layer L-3, and the ring-shaped needle blanket of the uppermost third compression layer L-3. 10 was compressed most strongly, that is, the bulk density of the uppermost third compression layer L-3 was higher than the bulk density of the first compression layer L-1 and the second compression layer L-2. The ring-shaped needle blanket 10 immediately below the 3 is strongly pressed against the fireproof coating 3. This repulsive force is maintained even during operation of the furnace, and prevents a gap between the fireproof coating 3 and the uppermost ring-shaped needle blanket 10 generated by vibrations generated during slab transportation for a long period of time.
 上記実施の形態では、押え板20は2枚の押え板半体21,22によって構成されているが、押え板20は3枚の押え板三半体や4枚の押え板四半体又は5枚以上の小板とされてもよい。押え板を3枚以上の小板で構成した場合、小板を抜き取るときに、リング状ニードルブランケット10にしわがよりにくく、また、抜き取る時の抵抗力が2枚の場合よりも小さくなる。 In the above embodiment, the presser plate 20 is composed of two presser plate halves 21 and 22, but the presser plate 20 is composed of three presser plate halves, four presser plate quadrants, or five. You may be set as the above small board. When the presser plate is composed of three or more small plates, the ring-shaped needle blanket 10 is more difficult to wrinkle when the small plate is extracted, and the resistance force when extracting the presser plate is smaller than in the case of two.
 図9は3枚の押え板三半体21’によって構成された押え板20’の平面図である。
 各押え板三半体21’は、扇状であり、内周縁に前記切欠部26が設けられ、外周縁に前記L字形の切欠部27が設けられている。また、外周縁近傍に前記小穴28が設けられている。
FIG. 9 is a plan view of a presser plate 20 ′ constituted by three presser plate halves 21 ′.
Each presser plate half body 21 ′ has a fan shape, and the cutout portion 26 is provided on the inner peripheral edge, and the L-shaped cutout portion 27 is provided on the outer peripheral edge. The small hole 28 is provided in the vicinity of the outer peripheral edge.
 各押え板三半体21’の両側辺(径方向辺)同士を重ね合わせ、ボルト23によって連結することにより、円環状の押え板20’が構成される。この押え板20’を用いてリング状ニードルブランケット10を上記実施の形態と同様に施工することができる。 An annular presser plate 20 ′ is formed by overlapping both sides (radial sides) of the presser plate half halves 21 ′ and connecting them with bolts 23. Using this presser plate 20 ', the ring-shaped needle blanket 10 can be constructed in the same manner as in the above embodiment.
 上記実施の形態では、押え板半体21,22同士、又は押え板三半体21’同士の重ね合わせ部にあっては、一方の上面と他方の下面とに段部を形成しているが、図10のように、一方の押え板半体21の上面に張出ピース210を溶着等により固着し、該張出ピース210を他方の押え板半体22の上面に張り出させ、ボルト23を該張出ピース210及び押え板半体22に通してナット締めすることによって、押え板半体21,22同士を連結してもよい。押え板三半体21’同士も同様にして連結してもよい。図10では、張出ピース210が押え板半体21,22の上面側に設けられているが、下面側に設けられてもよい。 In the embodiment described above, in the overlapping portion of the presser plate halves 21 and 22 or the presser plate half halves 21 ', stepped portions are formed on one upper surface and the other lower surface. As shown in FIG. 10, the protruding piece 210 is fixed to the upper surface of one holding plate half 21 by welding or the like, and the protruding piece 210 is extended to the upper surface of the other holding plate half 22, and the bolt 23 The presser plate halves 21 and 22 may be connected to each other by passing the screw through the projecting piece 210 and the presser plate half 22 and tightening the nuts. The presser plate half halves 21 'may be connected in the same manner. In FIG. 10, the overhanging piece 210 is provided on the upper surface side of the presser plate halves 21 and 22, but may be provided on the lower surface side.
 前述のようにして押え板20(又は20’)を引き抜いた後、図8a,8bのように各リング状ニードルブランケット10の外周に未乾燥状態で酸化物前駆体含有液が付着されたブランケット40を巻き付け、施工を終了する。未乾燥状態で酸化物前駆体含有液が付着されたブランケット40は、別途の焼成工程を経ることで、酸化アルミニウム及び酸化カルシウムを含むアルミナ・カルシア系組成物含有ブランケットとなる。 After pulling out the presser plate 20 (or 20 ') as described above, the blanket 40 in which the oxide precursor-containing liquid is attached to the outer periphery of each ring-shaped needle blanket 10 in an undried state as shown in FIGS. 8a and 8b. To finish the construction. The blanket 40 to which the oxide precursor-containing liquid is attached in an undried state becomes an alumina-calcia composition-containing blanket containing aluminum oxide and calcium oxide through a separate baking step.
 前記ブランケット40を巻くことで、焼成後のアルミナ・カルシア系組成物含有ブランケットが本来積層圧縮層に対して平行に進行してくる風を垂直に受けることができるので、本発明に係るスキッドパイプの保護部材への熱風侵入を効率的に防ぐことができる。 By winding the blanket 40, the fired alumina-calcia-based composition-containing blanket can receive the wind that originally travels in parallel to the laminated compression layer, so that the skid pipe according to the present invention Hot air intrusion into the protective member can be efficiently prevented.
 前記ブランケット40は、必要に応じて接着剤やテープ等で固定する必要がある。接着剤は好ましくは耐熱性硬化剤を用いる。前記ブランケット40は、不定形耐火物と材質が異なるため、材質起因による収縮差があり、結果として不定形耐火物への前記ブランケット40の付着が上手くできず、前記ブランケット40と不定形耐火物の間に空間ができてしまうことがある。しかし、前記ブランケット40とリング状ニードルブランケットの積層体10は同材質であることから、材質起因による収縮率の差がなく、かつ前記ブランケット40の酸化物前駆体含有液がリング状ニードルブランケットの積層体10の表面に浸みこみやすく、焼成時に酸化物前駆体が酸化物に変換される際に、前記ブランケット40とリング状ニードルブランケットの積層体10の界面上にある酸化物前駆体が酸化物となり、当該酸化物が前記ブランケット40とリング状ニードルブランケットの積層体10との接着剤として機能するため、リング状ニードルブランケットの積層体10への前記ブランケット40の密着性が格段によくなる。前記ブランケット40は1層だけ巻かれてもよく、2層以上巻かれてもよい。また、好ましくは耐火被覆とリング状ニードルブランケットの繋ぎ目部の上を前記ブランケット40で巻き付けることで、焼成後のアルミナ・カルシア系組成物含有ブランケットが隙間部への熱の侵入を抑制することができる点で好ましい。 The blanket 40 needs to be fixed with an adhesive or a tape as required. As the adhesive, a heat-resistant curing agent is preferably used. Since the blanket 40 is made of a different material from the amorphous refractory, there is a difference in shrinkage due to the material. As a result, the blanket 40 cannot adhere well to the irregular refractory. There may be space between them. However, since the laminate 10 of the blanket 40 and the ring-shaped needle blanket is made of the same material, there is no difference in shrinkage due to the material, and the oxide precursor-containing liquid of the blanket 40 is laminated of the ring-shaped needle blanket. The oxide precursor on the surface of the laminate 10 of the blanket 40 and the ring needle blanket becomes an oxide when the oxide precursor is easily soaked into the surface of the body 10 and converted into an oxide during firing. Since the oxide functions as an adhesive between the blanket 40 and the ring needle blanket laminate 10, the adhesion of the blanket 40 to the ring needle blanket laminate 10 is remarkably improved. The blanket 40 may be wound only by one layer, or may be wound by two or more layers. Preferably, the blanket 40 wraps the joint between the fireproof coating and the ring-shaped needle blanket with the blanket 40 so that the calcined alumina / calcia composition-containing blanket suppresses heat from entering the gap. It is preferable in that it can be performed.
 また、前記ブランケット40が2層以上巻かれていることで、焼成後のアルミナ・カルシア系組成物含有ブランケットの最表面がスケール浸食を受けたとしても、該アルミナ・カルシア系組成物含有ブランケットの内側には、スケール侵食を受けていないアルミナ・カルシア系組成物含有ブランケット表面が表れるため長期に渡りスケールを防ぐことができる。そして、内側にスケール侵食を受けていないアルミナ・カルシア系組成物含有ブランケット面が無くなった場合、表面に残っているアルミナ・カルシア系組成物含有ブランケットはカッターやスレイバーを用いて容易に除去することができる。少なくとも1年以上はスケール浸食に耐えられるので、メンテナンス頻度を大幅に低減することができる。そして、再度前記ブランケット40を巻くことで再び耐スケール性を持たせることができるため低コストかつ補修性に優れている。前記ブランケット40の内部にあるリング状ニードルブランケットの積層体10は、スケールによる浸食を受けないため、前記ブランケット40を定期的に交換することで、長期間使用することができる。 Moreover, even if the outermost surface of the calcined alumina / calcia composition-containing blanket is subjected to scale erosion due to the two or more layers of the blanket 40 being wound, the inner side of the blanket containing the alumina / calcia composition Since the surface of the blanket containing the alumina and calcia composition not subjected to scale erosion appears, scale can be prevented for a long time. If the blanket surface containing alumina and calcia composition that has not undergone scale erosion disappears, the blanket containing alumina and calcia composition remaining on the surface can be easily removed using a cutter or a sliver. it can. Since it can withstand scale erosion for at least one year, maintenance frequency can be greatly reduced. And since it can give scale resistance again by winding the blanket 40 again, it is excellent in low cost and repairability. Since the laminated body 10 of the ring-shaped needle blanket inside the blanket 40 is not eroded by the scale, it can be used for a long period of time by periodically replacing the blanket 40.
 上記実施の形態では、リング状ニードルブランケット10の積層及び圧縮を3回に分けて行い、第1~第3圧縮層L-1~L-3を形成しているが、スキッドパイプ1の高さに応じて、2回又は4回以上行ってもよい。 In the above-described embodiment, the ring-shaped needle blanket 10 is laminated and compressed in three steps to form the first to third compression layers L-1 to L-3. Depending on, you may carry out 2 times or 4 times or more.
 前記圧縮層の嵩密度を高さ方向に上部、中部及び下部に3等分して評価した場合、前記上部における嵩密度が前記中部及び前記下部における嵩密度に比べて高く、好ましくは前記上段の圧縮層の嵩密度が、中部及び下部の圧縮層の嵩密度の1.1~3.0倍であり、好ましくは1.2~2.0倍であり、より好ましくは1.3~1.7倍である。前記上部の圧縮層の嵩密度を中部及び下部の圧縮層の嵩密度に対して上記範囲とすることで、圧縮層を構成するリング状ニードルブランケットが圧壊することなく、炉の操業時におけるスラブ運搬時に発生する振動によって発生する耐火被覆と最上位のリング状ニードルブランケットとの隙間の発生が抑制される点で好ましい。 When the bulk density of the compressed layer is evaluated by dividing the bulk density into the upper part, the middle part, and the lower part into three equal parts, the bulk density in the upper part is higher than the bulk density in the middle part and the lower part. The bulk density of the compressed layer is 1.1 to 3.0 times, preferably 1.2 to 2.0 times, more preferably 1.3 to 1.times the bulk density of the middle and lower compressed layers. 7 times. By setting the bulk density of the upper compression layer within the above range with respect to the bulk density of the middle and lower compression layers, the slab can be transported during operation of the furnace without the ring-shaped needle blanket constituting the compression layer being crushed. This is preferable in that the generation of a gap between the fireproof coating and the uppermost ring-shaped needle blanket that is generated by vibrations that are sometimes generated is suppressed.
 さらに前記中部における嵩密度が前記下部における嵩密度に比べて高いことが、圧縮層を構成するリング状ニードルブランケットが圧壊することなく、炉の操業時におけるスラブ運搬時に発生する振動によって発生する耐火被覆と最上位のリング状ニードルブランケットとの隙間の発生が抑制される点で好ましい。 Furthermore, the bulk density in the middle part is higher than the bulk density in the lower part, and the ring-shaped needle blanket constituting the compression layer is not crushed, and the fireproof coating generated by vibrations generated during slab transportation during operation of the furnace And the uppermost ring-shaped needle blanket are preferable in that generation of a gap is suppressed.
 上部の圧縮層の嵩密度は、通常0.10g/cm以上0.20g/cm以下であり、好ましくは0.12g/cm以上0.18g/cm以下であり、より好ましくは0.14g/cm以上0.16g/cm以下である。 The bulk density of the upper compressed layer is usually 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, preferably 0.12 g / cm 3 or more and 0.18 g / cm 3 or less, more preferably 0. .14g / cm 3 or more 0.16g / cm 3 or less.
 中部の圧縮層の嵩密度は、上部の圧縮層の嵩密度より低ければ特段の制限はないが、通常0.10g/cm以上0.20g/cm以下であり、好ましくは0.13g/cm以上0.16g/cm以下である。 The bulk density of the middle compression layer is not particularly limited as long as it is lower than the bulk density of the upper compression layer, but is usually 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, preferably 0.13 g / cm 2. cm 3 or more and 0.16 g / cm 3 or less.
 下部の圧縮層の嵩密度は、上部の圧縮層の嵩密度より低ければ特段の制限はなく、前記中部における嵩密度が前記下部における嵩密度に比べて高いほうが好ましい。通常0.10g/cm以上0.20g/cm以下であり、好ましくは0.13g/cm以上0.16g/cm以下である。 The bulk density of the lower compression layer is not particularly limited as long as it is lower than the bulk density of the upper compression layer, and it is preferable that the bulk density in the middle portion is higher than the bulk density in the lower portion. Usually less than 0.10 g / cm 3 or more 0.20 g / cm 3, preferably not more than 0.13 g / cm 3 or more 0.16 g / cm 3.
 上部の圧縮層(上記実施の形態では第3圧縮層L-3及び該第3圧縮層L-3の上側に配設されたリング状ニードルブランケット10)のリング状ニードルブランケット10の圧縮率([(元の厚さ)-(圧縮後の厚さ)]×100/[元の厚さ])は、前記嵩密度の関係を満たす限り圧縮率に限定はないが、通常10%以上特に12%以上とりわけ13%以上で、通常30%以下特に25%以下とりわけ20%以下であることが好ましい。上部以外の圧縮層である中部及び下部の圧縮層(上記実施の形態では第1及び第2圧縮層L-1,L-2)の圧縮率は、5%以上特に7%以上とりわけ8%以上で、20%以下特に18%以下とりわけ15%以下であることが好ましい。上部の圧縮率は、中部及び下部の圧縮層の圧縮率の1.1倍以上特に1.5倍以上で、4倍以下特に3倍以下であることが好ましい。さらに、中部の圧縮率が下部の圧縮率よりも高いことがより好ましい。 The compressibility of the ring-shaped needle blanket 10 of the upper compressed layer (the third compressed layer L-3 and the ring-shaped needle blanket 10 disposed on the upper side of the third compressed layer L-3 in the above embodiment) [[ (Original thickness) − (Thickness after compression)] × 100 / [Original thickness]) is not limited as long as the bulk density relationship is satisfied, but is usually 10% or more, particularly 12%. In particular, it is preferably 13% or more, usually 30% or less, particularly 25% or less, particularly 20% or less. The compression ratio of the middle and lower compression layers (the first and second compression layers L-1 and L-2 in the above embodiment), which is a compression layer other than the upper portion, is 5% or more, particularly 7% or more, particularly 8% or more Therefore, it is preferably 20% or less, particularly 18% or less, particularly 15% or less. The compression ratio of the upper part is preferably 1.1 times or more, particularly 1.5 times or more, and 4 times or less, particularly 3 times or less of the compression ratio of the middle and lower compression layers. Furthermore, it is more preferable that the compression ratio of the middle part is higher than the compression ratio of the lower part.
1枚のリング状ニードルブランケット10の圧縮前の嵩密度は、特段の制限はないが、通常0.05g/cm以上、好ましくは0.06g/cm以上、特に好ましくは0.08g/cm以上であり、通常0.18g/cm以下、好ましくは0.16g/cm以下、特に好ましくは0.14g/cm以下である。 The bulk density before compression of one ring-shaped needle blanket 10 is not particular limitation, usually 0.05 g / cm 3 or higher, preferably 0.06 g / cm 3 or more, particularly preferably 0.08 g / cm 3 or more, usually 0.18 g / cm 3 or less, preferably 0.16 g / cm 3 or less, particularly preferably 0.14 g / cm 3 or less.
 1枚のリング状ニードルブランケット10の厚み(圧縮前の厚み)は、特段の制限はないが、通常10mm以上特に12mm以上で、通常26mm以下特に30mm以下であることが好ましい。 The thickness (thickness before compression) of one ring-shaped needle blanket 10 is not particularly limited, but is usually 10 mm or more, particularly 12 mm or more, and usually 26 mm or less, particularly 30 mm or less.
 1つの圧縮層を構成するリング状ニードルブランケット10の枚数は15枚以上特に20枚以上で、80枚以下特に60枚以下であることが好ましい。 The number of the ring-shaped needle blankets 10 constituting one compressed layer is preferably 15 or more, particularly 20 or more, and preferably 80 or less, particularly 60 or less.
 炉床Gから耐火被覆3の下端までの高さをHとし、図5の状態における最上段の押え板20と被覆3との間に形成される間隙の高さをhとした場合、
h/Hは0.005以上特に0.01以上で、0.05以下特に0.035以下であることが好ましい。
When the height from the hearth G to the lower end of the fireproof coating 3 is H, and the height of the gap formed between the uppermost presser plate 20 and the coating 3 in the state of FIG.
h / H is preferably 0.005 or more, particularly 0.01 or more, and 0.05 or less, particularly 0.035 or less.
 前記上部の圧縮層(上記実施の形態では第3圧縮層L-3及び該第3圧縮層L-3の上側に配設されたリング状ニードルブランケット10)の圧縮力解放前の高さ(図5における圧縮層L-3の高さT)は、上記高さHの25%以上特に30%以上で、50%以下特に48%以下であることが好ましい。 The height of the upper compression layer (in the above embodiment, the third compression layer L-3 and the ring-shaped needle blanket 10 disposed on the upper side of the third compression layer L-3) before releasing the compression force (see FIG. 5 is preferably 25% or more, particularly 30% or more, and 50% or less, particularly 48% or less of the height H.
 リング状ニードルブランケット10の径方向の寸法(すなわち外径(直径)と内径(直径)との差の1/2の値)は、スキッドパイプ1の直径の3%以上特に5%以上で、85%以下特に80%以下であることが好ましい。 The radial dimension of the ring-shaped needle blanket 10 (that is, a value that is ½ of the difference between the outer diameter (diameter) and the inner diameter (diameter)) is 3% or more, particularly 5% or more of the diameter of the skid pipe 1, 85 % Or less, particularly preferably 80% or less.
 リング状ニードルブランケット10において、特段の制限はないが、以下に記載する条件におけるサイクル試験後の残存面圧比は、10%以上であり、好ましくは12%以上、より好ましくは15%以上である。
 条件:1400℃、12時間焼成したリング状ニードルブランケット10を引張圧縮試験機によりGBD(嵩密度)=0.195g/cmまで圧縮した後、上下のプレートをGBD=0.20g/cmから0.24g/cmまで圧縮することを100回繰り返した。その際、第1回目のGBD=0.20g/cmでの開放側面圧値と第100回目のGBD=0.24g/cmでの開放側面圧値を測定し、以下の式より、焼成後面圧の劣化度合いの指標となる残存面圧比(%)を求めた。
  残存面圧比=第100回開放側面圧/第1回開放側面圧)
In the ring-shaped needle blanket 10, there is no particular limitation, but the remaining surface pressure ratio after the cycle test under the conditions described below is 10% or more, preferably 12% or more, more preferably 15% or more.
Conditions: After the ring-shaped needle blanket 10 fired at 1400 ° C. for 12 hours is compressed to GBD (bulk density) = 0.195 g / cm 3 using a tensile compression tester, the upper and lower plates are moved from GBD = 0.20 g / cm 3. The compression to 0.24 g / cm 3 was repeated 100 times. At that time, the open side pressure value at the first GBD = 0.20 g / cm 3 and the open side pressure value at the 100th GBD = 0.24 g / cm 3 were measured. The residual surface pressure ratio (%), which is an index of the degree of deterioration of the rear surface pressure, was obtained.
Residual surface pressure ratio = 100th opening side pressure / 1st opening side pressure)
 前記残存面圧比が上記範囲にあることで、炉の操業時にもリング状ニードルブランケットの反発力が維持され、リング状ニードルブランケット同士の隙間を長期にわたって防止できることともに、スラブ運搬時に発生する振動によって発生する耐火被覆と最上位のリング状ニードルブランケットとの隙間を長期にわたって防止できる点で好ましい。 When the residual surface pressure ratio is in the above range, the repulsive force of the ring-shaped needle blanket is maintained even during operation of the furnace, and the gap between the ring-shaped needle blankets can be prevented over a long period of time. This is preferable in that a gap between the fireproof coating and the uppermost ring-shaped needle blanket can be prevented over a long period of time.
 また、リング状ニードルブランケット10において、焼成(1400℃、12時間)後の幅方向、長手方向及び厚み方向の加熱線収縮率は、特段の制限はないが、JISR3311に準拠した方法(以下に詳細を記す)で測定した場合、いずれも1%以下であることが好ましく、より好ましくは0.5%以下である。前記加熱線収縮率が幅方向、長手方向及び厚み方向いずれも上記範囲にあることで、リング状ニードルブランケットが高温寸法安定性に優れ、減肉しづらい点で好ましい。
 条件:試料を長さ約150mm、約100mmに切断して試験片とする。試験片に約120mm×約60mmの長方形状に白銀線を埋め込んで印をつける。1400℃の温度に加熱された大気中で12時間保持する。加熱線収縮率は,次の式によって算出する。
Further, in the ring-shaped needle blanket 10, the heating line shrinkage in the width direction, the longitudinal direction and the thickness direction after firing (1400 ° C., 12 hours) is not particularly limited, but a method based on JIS R3311 (details below) In any case, it is preferably 1% or less, more preferably 0.5% or less. Since the heating line shrinkage ratio is in the above range in the width direction, the longitudinal direction, and the thickness direction, the ring-shaped needle blanket is preferable in that it has excellent high temperature dimensional stability and is difficult to reduce the thickness.
Conditions: A sample is cut into a length of about 150 mm and a length of about 100 mm to form a test piece. A test piece is marked by embedding a white silver wire in a rectangular shape of about 120 mm × about 60 mm. Hold in air heated to a temperature of 1400 ° C. for 12 hours. Heating shrinkage is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、l:試験片マーク間の焼成前の長さ(mm)、l:試験片マーク間の焼成後の長さ(mm)とする。加熱線収縮率は、1試験片の3点の長さを測定し,その3点の平均値とする。 Here, l 0 is the length (mm) before firing between the test piece marks, and l 1 is the length (mm) after firing between the test piece marks. The heating line shrinkage rate is the average of the three points measured for the length of three points on one test piece.
[リング状ニードルブランケット10等の材料]
 次に、上記リング状ニードルブランケット10及び酸化物前駆体含有液が付着されたブランケット40の好適な材料について説明する。
[Material for ring-shaped needle blanket 10 etc.]
Next, suitable materials for the blanket 40 to which the ring-shaped needle blanket 10 and the oxide precursor-containing liquid are attached will be described.
 リング状ニードルブランケット10は、無機繊維製ブランケットであれば特段の制限はないが、好ましくは後述する無機繊維のニードルブランケットである。 The ring-shaped needle blanket 10 is not particularly limited as long as it is an inorganic fiber blanket, but is preferably an inorganic fiber needle blanket described later.
 未乾燥状態で酸化物前駆体含有液が付着されたブランケット40は、無機繊維製ブランケットに該酸化物前駆体含有液は焼成により酸化アルミニウム及び酸化カルシウムを含むアルミナ・カルシア系組成物を生じさせる成分を含むものである。好ましくは、無機繊維のニードルブランケットよりなり、該ニードルブランケットの少なくとも一部に未乾燥状態で酸化物前駆体含有液が付着している含浸部が設けられ、該含浸部の水分量が、該含浸部の無機繊維100質量部に対して50~400質量部であり、該断熱保護部材全体の水分量が断熱保護部材全体の無機繊維100質量部に対して50~400質量部であり、前記酸化物前駆体含有液は、焼成により酸化アルミニウム(Al)及び酸化カルシウム(CaO)を含むアルミナ・カルシア系組成物(Al及びCaOは単体であってもよく複酸化物であってもよい。)を生じさせる成分を含有しており、前記含浸部においては、酸化物前駆体含有液が酸化物換算量として該含浸部の無機繊維100質量部に対して2~50質量部となるように付着しており、前記含浸部全体(無機繊維と付着物との全体)におけるAlとCaのモル比率(Al/Ca)が10以上330以下である。 The blanket 40 to which the oxide precursor-containing liquid is attached in an undried state is a component that generates an alumina calcia composition containing aluminum oxide and calcium oxide by firing the inorganic oxide blanket on an inorganic fiber blanket. Is included. Preferably, the needle blanket is composed of an inorganic fiber needle blanket, and at least a part of the needle blanket is provided with an impregnated portion to which an oxide precursor-containing liquid is attached in an undried state, and the water content of the impregnated portion is 50 to 400 parts by mass with respect to 100 parts by mass of the inorganic fiber, and the water content of the entire heat insulating protective member is 50 to 400 parts by mass with respect to 100 parts by mass of the inorganic fiber of the entire heat insulating protective member. The product precursor-containing liquid is an alumina-calcia composition containing aluminum oxide (Al 2 O 3 ) and calcium oxide (CaO) by firing (Al 2 O 3 and CaO may be a simple substance or a double oxide. In the impregnated part, the oxide precursor-containing liquid is contained in an oxide equivalent amount with respect to 100 parts by mass of the inorganic fibers in the impregnated part. The molar ratio (Al / Ca) of Al to Ca in the whole impregnation part (the whole of the inorganic fiber and the deposit) is 10 or more and 330 or less.
 なかでも、前記ブランケット40の無機繊維製ブランケットはリング状ニードルブランケット10の無機繊維製ブランケットと同質のものであることが好ましい。
 また、前記ブランケット40の嵩密度は、通常0.10~0.75g/cm、好ましくは0.15~0.60g/cm、特に好ましくは0.20~0.45g/cm程度である。
Especially, it is preferable that the inorganic fiber blanket of the blanket 40 is of the same quality as the inorganic fiber blanket of the ring-shaped needle blanket 10.
The bulk density of the blanket 40 is usually 0.10 ~ 0.75g / cm 3, preferably 0.15 ~ 0.60g / cm 3, particularly preferably about 0.20 ~ 0.45g / cm 3 is there.
[ニードルブランケット]
 本発明の断熱保護部材に用いられる無機繊維のニードルブランケット(以下、単に「ブランケット」又は「ニードルブランケット」と称す場合がある。)について説明する。
[Needle blanket]
An inorganic fiber needle blanket (hereinafter, simply referred to as “blanket” or “needle blanket” in some cases) used for the heat insulating protective member of the present invention will be described.
 このニードルブランケットは、実質的に繊維径3μm以下の繊維を含まない無機繊維の繊維集合体にニードリング処理が施されたものが好ましい。このようなニードルブランケットを用いることにより、本発明のスキッドポスト用断熱保護部材の耐風食性を高めることができる。 The needle blanket is preferably a fiber aggregate of inorganic fibers substantially free of fibers having a fiber diameter of 3 μm or less that has been subjected to a needling treatment. By using such a needle blanket, the wind erosion resistance of the heat insulating protective member for skid posts of the present invention can be enhanced.
<無機繊維>
 ニードルブランケットを構成する無機繊維としては、特に制限がなく、シリカ、アルミナ/シリカ、これらを含むジルコニア、スピネル、チタニア及びカルシア等の単独、又は複合繊維が挙げられるが、特に好ましいのは耐熱性、繊維強度(靭性)、安全性の点で、アルミナ/シリカ系繊維、特に多結晶質アルミナ/シリカ系繊維である。
<Inorganic fiber>
The inorganic fiber constituting the needle blanket is not particularly limited, and examples thereof include silica, alumina / silica, zirconia containing these, spinel, titania and calcia alone, or a composite fiber. From the viewpoint of fiber strength (toughness) and safety, it is an alumina / silica fiber, particularly a polycrystalline alumina / silica fiber.
 アルミナ/シリカ系繊維のアルミナ/シリカの組成比(質量比)は65~98/35~2のムライト組成、又はハイアルミナ組成と呼ばれる範囲にあることが好ましく、さらに好ましくは70~95/30~5、特に好ましくは70~74/30~26の範囲である。 The composition ratio (mass ratio) of alumina / silica fiber is preferably in the range of 65 to 98/35 to 2 called mullite composition or high alumina composition, more preferably 70 to 95/30 to 5, particularly preferably in the range of 70 to 74/30 to 26.
 本発明においては、無機繊維の80質量%以上、好ましくは90質量%以上、特に好ましくはその全量が上記ムライト組成の多結晶アルミナ/シリカ系繊維であることが好ましい。また、無機繊維中のAlに対するCaのモル比率(Ca/Al)は0.03以下であることが好ましく、特に無機繊維はCaを含まないことが好ましい。 In the present invention, it is preferable that the inorganic fiber is 80% by mass or more, preferably 90% by mass or more, and particularly preferably the total amount thereof is a polycrystalline alumina / silica fiber having the above mullite composition. In addition, the molar ratio of Ca to Al (Ca / Al) in the inorganic fiber is preferably 0.03 or less, and it is particularly preferable that the inorganic fiber does not contain Ca.
 この無機繊維は、好ましくは繊維径3μm以下の繊維を実質的に含まない。ここで繊維径3μm以下の繊維を実質的に含まないとは、繊維径3μm以下の繊維が全繊維重量の0.1質量%以下であることをさす。 This inorganic fiber is preferably substantially free of fibers having a fiber diameter of 3 μm or less. Here, “substantially free of fibers having a fiber diameter of 3 μm or less” means that the fibers having a fiber diameter of 3 μm or less is 0.1 mass% or less of the total fiber weight.
 無機繊維の平均繊維径は5~7μmであることが好ましい。無機繊維の平均繊維径が太すぎると繊維集合体の反発力、靭性が失われ、細すぎると空気中に浮遊する発塵量が多くなり、繊維径3μm以下の繊維が含有される確率が高くなる。 The average fiber diameter of the inorganic fibers is preferably 5 to 7 μm. If the average fiber diameter of the inorganic fiber is too thick, the repulsive force and toughness of the fiber assembly will be lost, and if it is too thin, the amount of dust generation floating in the air will increase, and there is a high probability that fibers with a fiber diameter of 3 μm or less will be contained. Become.
<ニードルブランケットの製造方法>
 上述の好適な平均繊維径を有し、かつ、繊維径3μm以下の繊維を実質的に含まない無機繊維集合体は、ゾル-ゲル法による無機繊維集合体の製造において、紡糸液粘度の制御、紡糸ノズルに用いる空気流の制御、延伸糸の乾燥の制御及びニードリングの制御等により得ることができる。
<Manufacturing method of needle blanket>
The inorganic fiber aggregate having the above-mentioned preferred average fiber diameter and substantially free of fibers having a fiber diameter of 3 μm or less is used to control the spinning solution viscosity in the production of the inorganic fiber aggregate by the sol-gel method. It can be obtained by controlling the air flow used for the spinning nozzle, controlling the drying of the drawn yarn, and controlling the needling.
 ニードルブランケットは、従来公知の方法、例えば特開2014-5173号公報に記載があるように、ゾル-ゲル法により無機繊維前駆体の集合体を得る工程と、得られた無機繊維前駆体の集合体に、ニードリング処理を施す工程と、ニードリング処理された無機繊維前駆体の集合体を焼成して無機繊維集合体とする焼成工程とを経て製造される。 The needle blanket includes a step of obtaining an aggregate of inorganic fiber precursors by a sol-gel method as described in a conventionally known method, for example, JP-A-2014-5173, and an aggregate of the obtained inorganic fiber precursors. It is manufactured through a step of subjecting the body to a needling treatment and a firing step of firing the aggregate of the inorganic fiber precursor subjected to the needling treatment to form an inorganic fiber aggregate.
<ニードルブランケットのニードル痕密度、嵩密度及び厚さ>
 ニードルブランケットのニードル痕密度については、2~200打/cm、特に2~150打/cm、とりわけ2~100打/cm、中でも2~50打/cmであることが好ましい。このニードル痕密度が低過ぎると、ニードルブランケットの厚みの均一性が低下し、かつ耐熱衝撃性が低下する等の問題があり、高過ぎると、繊維を傷め、焼成後に飛散し易くなる恐れがある。
<Needle mark density, bulk density and thickness of needle blanket>
The needle mark density of the needle blanket is preferably 2 to 200 strokes / cm 2 , particularly 2 to 150 strokes / cm 2 , particularly 2 to 100 strokes / cm 2 , and particularly preferably 2 to 50 strokes / cm 2 . If the needle mark density is too low, the uniformity of the needle blanket thickness will be reduced and the thermal shock resistance will be reduced. .
 ニードルブランケットの嵩密度は、50~200kg/m(0.05~0.2g/cm)であることが好ましく、80~150kg/m(0.08~0.15g/cm)であることがより好ましい。嵩密度が低すぎると脆弱な無機繊維成形体となり、また、嵩密度が高すぎると無機繊維成形体の質量が増大するとともに反発力が失われ、靭性の低い成形体となる。 The bulk density of the needle blanket is preferably 50 to 200 kg / m 3 (0.05 to 0.2 g / cm 3 ), and preferably 80 to 150 kg / m 3 (0.08 to 0.15 g / cm 3 ). More preferably. If the bulk density is too low, a fragile inorganic fiber molded body is obtained. If the bulk density is too high, the mass of the inorganic fiber molded body increases and the repulsive force is lost, resulting in a molded body having low toughness.
 ニードルブランケットの面密度は、500~4000g/m、特に600~3800g/m、とりわけ1000~3500g/mであることが好ましい。このニードルブランケットの面密度が小さ過ぎると、繊維量が少なく、極薄い成形体しか得られず、断熱用無機繊維成形体としての有用性が低くなり、面密度が大き過ぎると繊維量が多すぎることにより、ニードリング処理による厚み制御が困難となる。 The areal density of the needle blanket, 500 ~ 4000g / m 2, particularly 600 ~ 3800g / m 2, it is preferred especially is 1000 ~ 3500g / m 2. If the surface density of the needle blanket is too small, the amount of fibers is small and only a very thin molded body can be obtained, and the usefulness as an inorganic fiber molded body for heat insulation is reduced. If the surface density is too large, the amount of fibers is too large. This makes it difficult to control the thickness by the needling process.
 ニードルブランケットの厚さは、好ましくは2~35mm程度であるが、後述の通り、酸化物前駆体含有液の含浸深さを3mm以上、好ましくは10mm以上確保する観点から、ニードルブランケットの厚さは3mm以上、特に10mm以上であることが好ましい。 The thickness of the needle blanket is preferably about 2 to 35 mm. As will be described later, from the viewpoint of ensuring the impregnation depth of the oxide precursor-containing liquid is 3 mm or more, preferably 10 mm or more, the thickness of the needle blanket is It is preferably 3 mm or more, particularly 10 mm or more.
 なお、本発明において、無機繊維のニードルブランケットは、板状に成形される。ただし、板状のニードルブランケットは取り扱い時にロール状とされていてもよい。 In the present invention, the inorganic fiber needle blanket is formed into a plate shape. However, the plate-shaped needle blanket may be formed into a roll shape at the time of handling.
[酸化物前駆体含有液]
 上記のニードルブランケットに含浸させる酸化物前駆体含有液は、酸化物前駆体として、焼成により酸化アルミニウム(Al)及び酸化カルシウム(CaO)を含むアルミナ・カルシア系組成物を生じさせる成分を含む。このアルミナ・カルシア系組成物にあっては、Al及びCaOは、単体であってもよく、AlとCaOの複酸化物であってもよい。AlとCaOの複酸化物としては、CaO・Al、CaO・2Al、CaO・6Al等が例示されるが、これに限定されない。
[Oxide precursor-containing liquid]
The oxide precursor-containing liquid impregnated in the needle blanket is a component that produces an alumina-calcia composition containing aluminum oxide (Al 2 O 3 ) and calcium oxide (CaO) by firing as an oxide precursor. Including. In this alumina-calcia composition, Al 2 O 3 and CaO may be a simple substance or a double oxide of Al 2 O 3 and CaO. The mixed oxide of Al 2 O 3 and CaO, although CaO · Al 2 O 3, CaO · 2Al 2 O 3, CaO · 6Al 2 O 3 and the like, but is not limited thereto.
 酸化物前駆体含有液のみを乾燥及び焼成した場合の焼成物中の酸化物の存在形態としては、次の(i)~(v)のいずれであってもよい。 The presence form of the oxide in the fired product when only the oxide precursor-containing liquid is dried and fired may be any of the following (i) to (v).
 (i) Al単体とCaO単体
 (ii) Al単体とCaO単体と複酸化物
 (iii) Al単体と複酸化物
 (iv) CaO単体と複酸化物
 (v) 複酸化物のみ
(I) Al 2 O 3 simple substance and CaO simple substance (ii) Al 2 O 3 simple substance and CaO simple substance and double oxide (iii) Al 2 O 3 simple substance and double oxide (iv) CaO simple substance and double oxide (v) Double oxide only
 酸化物前駆体含有液は、少なくともCaを含有する成分とAlを含有する成分を含む。Caを含有する成分としては、具体的には、カルシウムの水酸化物、塩化物、酢酸塩、乳酸塩、硝酸塩、炭酸塩等が挙げられる。これらは1種のみが酸化物前駆体含有液中に含まれていてもよく、2種以上が含まれていてもよい。なかでも、カルシウムの酢酸塩、水酸化物又は炭酸塩であることが、焼成時に発生する成分は主に水と二酸化炭素であり、炉内の金属部材や、鋼板等を劣化させない点で好ましい。 The oxide precursor-containing liquid includes at least a component containing Ca and a component containing Al. Specific examples of the component containing Ca include calcium hydroxide, chloride, acetate, lactate, nitrate, carbonate, and the like. Only 1 type of these may be contained in the oxide precursor containing liquid, and 2 or more types may be contained. Among these, calcium acetate, hydroxide, or carbonate is preferably water and carbon dioxide, and is preferable from the viewpoint of not deteriorating metal members in the furnace, steel plates, and the like.
 Caを含有する成分は、酸化物前駆体含有液中で溶解していても、ゾル状でも、分散状でもよい。Caを含有する成分が酸化物前駆体含有液中で溶解していること又は均一に分散していることにより、酸化物前駆体をニードルブランケットを構成する各無機繊維それぞれの表面全体に均一にコーティングでき、加えて無機繊維内部まで容易に含浸できる点で好ましい。Caを含有する成分が酸化物前駆体含有液中で沈殿する場合は、無機繊維表面に均一にコーティングできず、繊維表面にコーティングできていない部分が生じ、そこからスケールによる浸食が発生する虞があるため、耐スケール性向上効果を十分に発揮することができなくなる。 The component containing Ca may be dissolved in the oxide precursor-containing liquid, sol form, or dispersed form. The Ca-containing component is dissolved or uniformly dispersed in the oxide precursor-containing liquid, so that the oxide precursor is uniformly coated on the entire surface of each inorganic fiber constituting the needle blanket. In addition, it is preferable in that it can be easily impregnated into the inorganic fiber. When the Ca-containing component is precipitated in the oxide precursor-containing liquid, the surface of the inorganic fiber cannot be uniformly coated, and a portion that is not coated on the fiber surface is generated, and there is a possibility that erosion due to the scale may occur from there. Therefore, the effect of improving the scale resistance cannot be sufficiently exhibited.
 Alを含有する成分としては、具体的には、アルミニウムの水酸化物、塩化物、酢酸塩、乳酸化塩、硝酸塩、炭酸塩等が挙げられる。これらは1種のみが酸化物前駆体含有液中に含まれていてもよく、2種以上が含まれていてもよい。なかでも、アルミニウムの酢酸塩、水酸化物又は炭酸塩であることが、焼成時に発生する成分は主に水と二酸化炭素であり、炉内の金属部材や、鋼板等を劣化させない点で好ましい。 Specific examples of the component containing Al include aluminum hydroxide, chloride, acetate, lactate, nitrate, carbonate and the like. Only 1 type of these may be contained in the oxide precursor containing liquid, and 2 or more types may be contained. Especially, it is preferable that it is an acetate, a hydroxide, or carbonate of aluminum that the components which generate | occur | produce at the time of baking are water and a carbon dioxide, and the point which does not deteriorate the metal member, a steel plate, etc. in a furnace.
 Alを含有する成分は、酸化物前駆体含有液中で溶解していても、ゾル状でも、分散状でもよい。Alを含有する成分が酸化物前駆体含有液中で溶解していること又は均一に分散していることにより、酸化物前駆体をニードルブランケットを構成する各無機繊維それぞれの表面全体に均一にコーティングでき、加えて無機繊維内部まで容易に含浸できる点で好ましい。Alを含有する成分が酸化物前駆体含有液中で沈殿する場合は、無機繊維表面に均一にコーティングできず、繊維表面にコーティングできていない部分が生じ、そこからスケールによる浸食が発生する虞があるため、耐スケール性向上効果を十分に発揮することができなくなる。 The component containing Al may be dissolved in the oxide precursor-containing liquid, sol form, or dispersed form. Since the component containing Al is dissolved or uniformly dispersed in the oxide precursor-containing liquid, the oxide precursor is uniformly coated on the entire surface of each inorganic fiber constituting the needle blanket. In addition, it is preferable in that it can be easily impregnated into the inorganic fiber. When the Al-containing component precipitates in the oxide precursor-containing liquid, the surface of the inorganic fiber cannot be uniformly coated, and a portion that cannot be coated on the fiber surface is generated, and there is a possibility that erosion due to scale may occur from there. Therefore, the effect of improving the scale resistance cannot be sufficiently exhibited.
 好ましくは、酢酸を分散剤としたアルミナゾルであり、このものは、焼成時に発生する成分が水と二酸化炭素である点で優れている。同様の理由で乳酸を分散剤としたアルミナゾルも用いることができるが、この場合にはスキッドポスト用断熱保護部材の熱収縮率が、酢酸を分散剤としたアルミナゾルを用いたスキッドポスト用断熱保護部材と比較して高くなる傾向にある。 Preferably, it is an alumina sol using acetic acid as a dispersant, and this is excellent in that the components generated during firing are water and carbon dioxide. For the same reason, an alumina sol using lactic acid as a dispersant can also be used. In this case, the heat shrinkage rate of the heat insulating protective member for skid post is the heat insulating protective member for skid post using alumina sol using acetic acid as a dispersing agent. It tends to be higher than
 上記のアルミナゾルを用いた場合に使用する焼成によりCaOを生成させる成分は、カルシウムの酢酸塩が好ましい。酢酸塩を混合することでアルミナゾルの分散性の低下を抑え、酸化物前駆体含有液の粘度の上昇を抑えることができる。酸化物前駆体含有液の粘度が適正な範囲にあることで、含浸しやすくまた、付着量を制御しやすくなる。酸化物前駆体含有液の粘度が過度に高いと、無機繊維に対して含浸が困難になるため好ましくない。 The component that generates CaO by firing used when the above-mentioned alumina sol is used is preferably calcium acetate. By mixing the acetate, it is possible to suppress a decrease in the dispersibility of the alumina sol and to suppress an increase in the viscosity of the oxide precursor-containing liquid. When the viscosity of the oxide precursor-containing liquid is within an appropriate range, it is easy to impregnate and control the amount of adhesion. If the viscosity of the oxide precursor-containing liquid is excessively high, impregnation with inorganic fibers becomes difficult, which is not preferable.
 酸化物前駆体含有液としては、アルミナゾルが分散した酢酸カルシウム水溶液が好ましい。 As the oxide precursor-containing liquid, an aqueous calcium acetate solution in which alumina sol is dispersed is preferable.
 酸化物前駆体含有液は、上記のAlを含有する成分と、Caを含有する成分とを、AlとCaのモル比率(Al/Ca)が4以上100以下となるように含むものが好ましく、より好ましくは6以上36以下であり、特に好ましくは9以上13以下である。Al/Ca比率がこの範囲であると、炉内で加熱されたときに、カルシウム成分が適度に拡散して無機繊維とスケールとが反応するのを抑制することができる。また、耐スケール性の高い酸化カルシウム系の酸化物を生成するため、耐スケール性の向上効果に優れたものとなる。 The oxide precursor-containing liquid preferably contains the above-described component containing Al and the component containing Ca so that the molar ratio of Al to Ca (Al / Ca) is 4 or more and 100 or less, More preferably, it is 6 or more and 36 or less, and particularly preferably 9 or more and 13 or less. When the Al / Ca ratio is within this range, when heated in the furnace, the calcium component can be appropriately diffused and the inorganic fibers and scale can be prevented from reacting. Further, since a calcium oxide-based oxide having high scale resistance is generated, the effect of improving the scale resistance is excellent.
 酸化物前駆体含有液の酸化物前駆体濃度(焼成によりAlを生じさせる成分と焼成によりCaOを生じさせる成分の合計の含有量)は、酸化物換算の固形物濃度として、2~30質量%、特に5~10質量%が好ましい。酸化物前駆体含有液の酸化物前駆体濃度が低すぎるとニードルブランケットに対する酸化物前駆体成分の付着量(付着量)が低くなる恐れがある。また、酸化物前駆体含有液の酸化物前駆体濃度が高すぎると、酸化物前駆体含有液の粘性が高くなり、含浸しにくくなる恐れがある。 The oxide precursor concentration of the oxide precursor-containing liquid (the total content of the component that produces Al 2 O 3 by firing and the component that produces CaO by firing) is 2 to 30% by mass, especially 5 to 10% by mass is preferred. If the oxide precursor concentration of the oxide precursor-containing liquid is too low, the amount of oxide precursor component attached to the needle blanket (attachment amount) may be low. Moreover, when the oxide precursor concentration of the oxide precursor-containing liquid is too high, the viscosity of the oxide precursor-containing liquid becomes high and it may be difficult to impregnate.
 前述の通り、酸化物前駆体含有液は、ゾル又は溶液であることが、ニードルブランケットの各無機繊維それぞれの表面に均一に酸化物前駆体をコーティングできる点で好ましい。 As described above, it is preferable that the oxide precursor-containing liquid is a sol or a solution because the surface of each inorganic fiber of the needle blanket can be uniformly coated with the oxide precursor.
 酸化物前駆体含有液の分散媒体ないしは溶媒としては、水、アルコール等の有機溶媒またはこれらの混合物、好ましくは水が使用される。また、酸化物前駆体含有液には、ポリビニルアルコール等のポリマー成分が含有されていてもよい。またゾル又は溶液中の化合物の安定性を高めるために、分散安定剤を加えてもよい。分散安定剤としては、例えば、酢酸、乳酸、塩酸、硝酸、硫酸等が挙げられる。 As the dispersion medium or solvent for the oxide precursor-containing liquid, water, an organic solvent such as alcohol, or a mixture thereof, preferably water is used. The oxide precursor-containing liquid may contain a polymer component such as polyvinyl alcohol. Further, a dispersion stabilizer may be added in order to increase the stability of the compound in the sol or solution. Examples of the dispersion stabilizer include acetic acid, lactic acid, hydrochloric acid, nitric acid, sulfuric acid and the like.
 酸化物前駆体含有液は着色剤が配合されてもよい。酸化物前駆体含有液を着色することにより、ニードルブランケットの含浸部と非含浸部の領域を目視にて確認することができる点で好ましい。着色の色は黒色や青色が好ましい。着色剤としては水溶性インクなどを用いることができる。 A coloring agent may be blended in the oxide precursor-containing liquid. Coloring the oxide precursor-containing liquid is preferable in that the areas of the needle blanket impregnated portion and non-impregnated portion can be visually confirmed. The coloring color is preferably black or blue. A water-soluble ink or the like can be used as the colorant.
 酸化物前駆体含有液のニードルブランケットへの好ましい含浸量は後述の通りである。 The preferable amount of impregnation of the oxide precursor-containing liquid into the needle blanket is as described later.
[酸化物前駆体含有液の含浸方法]
 上記のような酸化物前駆体含有液を無機繊維のニードルブランケットに含浸させるには、ニードルブランケットを酸化物前駆体含有液中に浸して、酸化物前駆体含有液をニードルブランケットの無機繊維間に浸透させればよい。
[Impregnation method of oxide precursor-containing liquid]
In order to impregnate the inorganic fiber needle blanket with the oxide precursor-containing liquid as described above, the needle blanket is immersed in the oxide precursor-containing liquid, and the oxide precursor-containing liquid is interposed between the inorganic fibers of the needle blanket. It only has to penetrate.
 このようにして酸化物前駆体含有液をニードルブランケットに含浸させた後、所望の含水量、酸化物前駆体付着量となるように、必要に応じ吸引又は圧縮などにより余剰な液を脱離させてもよい。吸引により余剰な液を脱離させるには、含浸部に被さるアタッチメントを装着し、該アタッチメントに設けた吸引口から吸引して脱液する方法が好ましい。 After impregnating the needle precursor with the oxide precursor-containing liquid in this way, the excess liquid is desorbed by suction or compression as necessary so that the desired water content and oxide precursor adhesion amount are obtained. May be. In order to remove excess liquid by suction, it is preferable to attach an attachment that covers the impregnation portion, and to drain the liquid by suction from a suction port provided in the attachment.
 このようにして酸化物前駆体含有液を含浸し、必要に応じて余分な液を脱離させた後、更に必要に応じて所定の水分量になるまで乾燥してもよい。こうすることで、高い酸化物前駆体付着量(付着量)を保ったまま、含水量を減らすことができる。水分量を減らすことで、施工時の接着剤との接着性を高めることができる。また、可撓性を保ったまま、無機繊維成形体の質量を軽くすることで、施工が容易になる利点がある。この乾燥条件は、脱離させる水分量に応じて80~180℃で0.5~24時間の範囲で適宜設定される。 In this way, after impregnating the oxide precursor-containing liquid and removing the excess liquid as necessary, it may be further dried to a predetermined moisture content as necessary. By doing so, the water content can be reduced while maintaining a high oxide precursor adhesion amount (adhesion amount). By reducing the amount of moisture, the adhesiveness with the adhesive during construction can be increased. Moreover, there exists an advantage by which construction becomes easy by reducing the mass of an inorganic fiber molded object, maintaining flexibility. This drying condition is appropriately set in the range of 0.5 to 24 hours at 80 to 180 ° C. according to the amount of water to be desorbed.
 酸化物前駆体含有液の付着量は、後述の通り、好ましくは、酸化物(CaO及びAl)換算量として、無機繊維100質量部に対して2~50質量部である。 As will be described later, the amount of the oxide precursor-containing liquid attached is preferably 2 to 50 parts by mass with respect to 100 parts by mass of the inorganic fiber as an oxide (CaO and Al 2 O 3 ) equivalent.
[ニードルブランケットにおける含浸部の位置]
 本発明のスキッドポスト用断熱保護部材は、上記のようにして、無機繊維のニードルブランケットの少なくとも一部に酸化物前駆体含有液が含浸され、かつ未乾燥状態となっている含浸部(以下、単に「含浸部」と称す場合がある。)が形成されているものが好ましい。
[Position of impregnation part in needle blanket]
As described above, the heat insulating protective member for skid posts of the present invention is impregnated with an oxide precursor-containing liquid in at least a part of the needle blanket made of inorganic fibers and is in an undried state (hereinafter referred to as `` drying ''). It may be simply referred to as “impregnated part”).
 この含浸部は、スキッドポスト用断熱保護部材が加熱炉内で使用される際に、スキッドポスト用断熱保護部材の炉内露呈面(被加熱面)に形成されることが好ましい。これは未含浸部においてスケールによる浸食が発生するためであり、被加熱面すべてが含浸部であることにより、耐スケール性を高めることができる。 This impregnation part is preferably formed on the exposed surface (heated surface) of the heat insulating protective member for skid post when the heat insulating protective member for skid post is used in the heating furnace. This is because erosion due to the scale occurs in the non-impregnated portion, and the scale resistance can be improved because all the heated surfaces are impregnated portions.
 ブランケット厚み方向の含浸深さは、少なくとも炉内露呈面となるブランケット表面から3mm以上であることが好ましく、10mm以上であることがより好ましい。含浸深さが上記下限以上であることで耐スケール性が向上する。ニードルブランケットの全厚みにわたって含浸されている態様は、耐スケール性が最も向上するので好ましい。 The impregnation depth in the blanket thickness direction is preferably 3 mm or more and more preferably 10 mm or more from at least the blanket surface serving as the exposure surface in the furnace. When the impregnation depth is not less than the above lower limit, the scale resistance is improved. An embodiment in which the needle blanket is impregnated over the entire thickness is preferable because scale resistance is most improved.
 含浸部は、板状のニードルブランケットの板面のうち少なくとも1/2以上の領域にわたって連続的に形成されており、含浸部が形成された領域において、含浸部は、ニードルブランケットの全厚みにわたって形成されていることが好ましい。 The impregnated part is continuously formed over at least half or more of the plate surface of the plate-shaped needle blanket, and the impregnated part is formed over the entire thickness of the needle blanket in the region where the impregnated part is formed. It is preferable that
 特に、含浸部は、板状のニードルブランケットの板面において、表裏両面において形成されていることが好ましい。より好ましくは、炉内側の面における含浸部が、厚み方向に対して厚みの35~50%の領域において形成され、かつリング状ニードルブランケット10側の面における含浸部が、厚み方向に対して厚みの20~50%の領域において形成されている。特に好ましくは、含浸部が全厚みにわたって形成されている。 In particular, the impregnation part is preferably formed on both the front and back surfaces of the plate-like needle blanket. More preferably, the impregnated portion on the inner surface of the furnace is formed in a region of 35 to 50% of the thickness in the thickness direction, and the impregnated portion on the surface on the ring-shaped needle blanket 10 side is thicker in the thickness direction. 20 to 50% of the region. Particularly preferably, the impregnated portion is formed over the entire thickness.
[含浸部及びスキッドポスト用断熱保護部材の水分量]
 本発明のスキッドポスト用断熱保護部材において、該含浸部の水分量は、当該含浸部の無機繊維100質量部に対して50~400質量部である。含浸部の水分量が過度に少ない場合は、バインダー効果により可撓性がなくなる。また、繊維の発塵も多くなる。逆に含浸部の水分量が過度多い場合は、無機繊維成形体に少しの圧をかけただけで、無機繊維から液が漏れ出る。また、自重によって無機繊維成形体が押し潰され、このために端面の剥離が大きくなるという課題がある。また、含浸部の水分量が多過ぎると、使用時の加熱でマイグレーションと呼ばれる、水の乾燥に伴うゾルの物質移動が激しくおき、乾燥表面近傍での付着量が著しく高くなり、内部の付着量が低下することとなるため、耐熱衝撃性、加熱収縮率が悪化する。つまり含浸部全体の均一性を保つには含浸部の水分量は、400質量部を超えないことが重要である。好ましくは、該含浸部の水分量は、含浸部の無機繊維100質量部に対して80~350質量部である。
[Moisture content of impregnated part and heat insulating protective member for skid post]
In the heat insulating protective member for skid posts of the present invention, the moisture content of the impregnated part is 50 to 400 parts by mass with respect to 100 parts by mass of the inorganic fibers in the impregnated part. When the water content in the impregnated portion is excessively small, flexibility is lost due to the binder effect. In addition, the generation of fiber dust increases. On the contrary, when the water content in the impregnated portion is excessively large, the liquid leaks from the inorganic fiber only by applying a little pressure to the inorganic fiber molded body. Moreover, there exists a subject that an inorganic fiber molded object is crushed by dead weight, and, for this reason, peeling of an end surface becomes large. Also, if the water content in the impregnated part is too large, the mass transfer of the sol accompanying the drying of water, which is called migration due to heating during use, becomes intense, the amount of adhesion in the vicinity of the dry surface becomes extremely high, and the amount of internal adhesion Therefore, the thermal shock resistance and the heat shrinkage rate are deteriorated. That is, in order to maintain the uniformity of the entire impregnated part, it is important that the water content of the impregnated part does not exceed 400 parts by mass. Preferably, the water content in the impregnation part is 80 to 350 parts by mass with respect to 100 parts by mass of the inorganic fibers in the impregnation part.
 本発明のスキッドポスト用断熱保護部材全体に含まれる水分量は、スキッドポスト用断熱保護部材全体の無機繊維100質量部に対して50~400質量部である。スキッドポスト用断熱保護部材中の水分量が無機繊維100質量部に対して50質量部より少ないと、スキッドポスト用断熱保護部材の未乾燥状態を維持しにくく、また可撓性が低くなり施工時に剥離や割れの問題が生じる。スキッドポスト用断熱保護部材の水分量が無機繊維100質量部に対して400質量部より多いと、スキッドポスト用断熱保護部材に少しの圧をかけただけで、無機繊維から液が漏れ出る。また、自重によってスキッドポスト用断熱保護部材が押し潰され、このために端面剥離が大きくなるという課題がある。スキッドポスト用断熱保護部材全体の水分量は、好ましくはスキッドポスト用断熱保護部材全体の無機繊維100質量部に対して150~300質量部である。 The amount of water contained in the entire heat insulating protective member for skid posts of the present invention is 50 to 400 parts by mass with respect to 100 parts by mass of inorganic fibers in the entire heat insulating protective member for skid posts. If the moisture content in the heat insulating protective member for skid posts is less than 50 parts by mass with respect to 100 parts by mass of the inorganic fibers, it is difficult to maintain the undried state of the heat insulating protective member for skid posts, and the flexibility becomes low during construction. The problem of peeling or cracking occurs. When the moisture content of the heat insulating protective member for skid post is more than 400 parts by mass with respect to 100 parts by mass of the inorganic fiber, the liquid leaks from the inorganic fiber only by applying a little pressure to the heat insulating protective member for skid post. Moreover, the heat insulating protective member for skid posts is crushed by its own weight, which causes a problem that end face peeling becomes large. The water content of the heat insulating protective member for the skid post is preferably 150 to 300 parts by mass with respect to 100 parts by mass of the inorganic fibers of the entire heat insulating protective member for the skid post.
[焼成後における酸化物の付着量]
 酸化物前駆体含有液は、含浸部において、焼成後の酸化物(CaO及びAl)付着量(以下、単に「酸化物付着量」と称す場合がある。)が含浸部の無機繊維100質量部に対して2~50質量部となるようにニードルブランケットに含浸される。この酸化物付着量は、含浸部の無機繊維100質量部に対して好ましくは5~30質量部、最も好ましくは10~25質量部である。酸化物付着量が少ない場合は、所望の耐スケール性が得られない場合がある。逆に多すぎると、含浸部の密度が高くなり、熱収縮率の悪化や耐熱衝撃性、耐機械衝撃性の低下が見られる。また、カルシウム成分が繊維表面に多量に存在する場合は、カルシウム成分と無機繊維で、低融点成分を多量に生成するため、含浸部の耐熱性が低下する。
[Amount of oxide deposited after firing]
In the impregnated part, the oxide precursor-containing liquid has an amount of deposited oxide (CaO and Al 2 O 3 ) after firing (hereinafter, sometimes simply referred to as “amount of deposited oxide”) of the impregnated part. The needle blanket is impregnated so as to be 2 to 50 parts by mass with respect to 100 parts by mass. The oxide adhesion amount is preferably 5 to 30 parts by mass, and most preferably 10 to 25 parts by mass with respect to 100 parts by mass of the inorganic fibers in the impregnated part. When the oxide adhesion amount is small, the desired scale resistance may not be obtained. On the other hand, when the amount is too large, the density of the impregnated portion increases, and deterioration of the thermal shrinkage rate, thermal shock resistance and mechanical shock resistance are observed. Further, when the calcium component is present in a large amount on the fiber surface, the calcium component and the inorganic fiber produce a large amount of a low melting point component, so that the heat resistance of the impregnated portion is lowered.
 スキッドポスト用断熱保護部材全体の酸化物付着量は、含浸部の酸化物付着量と同様な理由から、スキッドポスト用断熱保護部材全体の無機繊維100質量部に対して、5~40質量部、特に8~30質量部であることが好ましい。 For the same reason as the oxide adhesion amount of the impregnation part, the oxide adhesion amount of the entire heat insulating protection member for skid posts is 5 to 40 parts by mass with respect to 100 parts by mass of the inorganic fibers of the entire thermal protection member for skid posts, The amount is particularly preferably 8 to 30 parts by mass.
 本発明のスキッドポスト用断熱保護部材の含浸部全体におけるAlとCaのモル比率(Al/Ca)は、10~330であり、好ましくは30~100であり、特に好ましくは32~70である。 The molar ratio (Al / Ca) of Al to Ca in the entire impregnated portion of the heat insulating protective member for skid posts of the present invention is 10 to 330, preferably 30 to 100, particularly preferably 32 to 70.
 含浸部全体とは、含浸部を構成する無機繊維と付着物との全体を表わす。含浸部全体におけるAlとCaのモル比率(Al/Ca)とは、無機繊維成形体の含浸部に存在するニードルブランケットを構成する無機繊維に含まれるAlのモル量と酸化物前駆体含有液に由来するAlのモル量の和に対する無機繊維に含まれるCaのモル量と酸化物前駆体含有液に由来するCaのモル量の和の比である。施工前のスキッドポスト用断熱保護部材と、施工後、加熱により焼成されたスキッドポスト用断熱保護部材とにおいて、AlとCaのモル比率(Al/Ca)は実質的に等しい。 The whole impregnation part represents the whole of inorganic fibers and deposits constituting the impregnation part. The molar ratio of Al to Ca (Al / Ca) in the entire impregnated part is based on the molar amount of Al contained in the inorganic fibers constituting the needle blanket present in the impregnated part of the inorganic fiber molded body and the oxide precursor containing liquid. It is a ratio of the sum of the molar amount of Ca contained in the inorganic fiber to the sum of the molar amount of Al derived from the sum of the molar amount of Ca derived from the oxide precursor-containing liquid. The molar ratio (Al / Ca) of Al and Ca is substantially equal between the heat insulating protective member for skid post before construction and the heat insulating protective member for skid post fired by heating after construction.
 本発明のスキッドポスト用断熱保護部材の含浸部全体のAl:Si:Caモル比は、77.2~79.5:18.9~21.6:0.9~2.2であることが、耐スケール性、耐熱性及び耐熱衝撃性の観点から好ましい。ここで、含浸部全体のAlのモル量及びCaのモル量は、上記の通り、含浸部に存在するニードルブランケットを構成する無機繊維に含まれるAl及びCaの各モル量と酸化物前駆体含有液に由来するAl及びCaの各モル量との合計である。Siのモル量はニードルブランケットを構成する無機繊維に含まれるSiのモル量である。 The Al: Si: Ca molar ratio of the entire impregnated portion of the heat insulating protective member for skid posts of the present invention is 77.2 to 79.5: 18.9 to 21.6: 0.9 to 2.2. From the viewpoint of scale resistance, heat resistance and thermal shock resistance, it is preferable. Here, the molar amount of Al and the molar amount of Ca in the entire impregnated portion are, as described above, each of the molar amounts of Al and Ca contained in the inorganic fibers constituting the needle blanket present in the impregnated portion and the oxide precursor content. It is the sum of the molar amounts of Al and Ca derived from the liquid. The molar amount of Si is the molar amount of Si contained in the inorganic fibers constituting the needle blanket.
 含浸部におけるAl量、Ca量及びSi量は蛍光X線分析によって測定することができる。 The amount of Al, the amount of Ca and the amount of Si in the impregnated part can be measured by fluorescent X-ray analysis.
[CaOの作用]
 含浸部を有する本発明のスキッドポスト用断熱保護部材が炉内で加熱され、酸化物前駆体含有液が高温で焼成された場合、酸化物前駆体含有液から生成したCaO成分の一部が無機繊維内部に拡散する。含浸部全体におけるAlとCaのモル比率(Al/Ca)が上記範囲にあることで、高温まで焼成した時に、無機繊維内部に適量のCaOが拡散する。無機繊維内部に適量のCaOが存在することで、無機繊維中にFeOが拡散しにくくなる。つまり無機繊維とFeOとの反応が抑制される。このため、スキッドポスト用断熱保護部材の耐スケールが向上する。含浸部におけるAlとCaのモル比率(Al/Ca)が10より少ない場合は、無機繊維とその内部に拡散したCaOにより、無機繊維との低融点化合物を大量に生成するため、耐熱性、耐熱衝撃性が低下する虞がある。また、含浸部におけるAlとCaのモル比率(Al/Ca)が330より多い場合は、CaOの拡散が不十分で、耐スケールが向上しない虞がある。特にムライト(3Al・2SiO)組成の無機繊維を用いた場合は、高温で焼成されると、ムライトの結晶相と、ムライト成分にCaOが拡散した結晶相が生成する。この場合、耐熱衝撃性、耐熱性、耐機械衝撃性に優れるムライト結晶相を残したまま、CaOが繊維内部に拡散しているため、耐FeO性が向上すると考えられる。
[Action of CaO]
When the heat insulating protective member for skid posts of the present invention having an impregnation part is heated in a furnace and the oxide precursor-containing liquid is baked at a high temperature, a part of the CaO component generated from the oxide precursor-containing liquid is inorganic. It diffuses inside the fiber. When the molar ratio of Al to Ca (Al / Ca) in the entire impregnated portion is in the above range, an appropriate amount of CaO diffuses into the inorganic fiber when fired to a high temperature. The presence of an appropriate amount of CaO inside the inorganic fiber makes it difficult for FeO to diffuse into the inorganic fiber. That is, the reaction between inorganic fibers and FeO is suppressed. For this reason, the scale resistance of the heat insulating protective member for skid posts is improved. When the molar ratio of Al to Ca (Al / Ca) in the impregnated part is less than 10, since a large amount of low melting point compound with the inorganic fiber is generated by the inorganic fiber and CaO diffused therein, the heat resistance and heat resistance There is a possibility that the impact property is lowered. Moreover, when the molar ratio (Al / Ca) of Al and Ca in an impregnation part is more than 330, there is a possibility that CaO is insufficiently diffused and scale resistance is not improved. Particularly in the case of using mullite (3Al 2 O 3 · 2SiO 2 ) composition of the inorganic fibers, when fired at a high temperature, and the crystal phase of mullite, the crystal phase of CaO diffused into mullite component generates. In this case, it is considered that FeO resistance is improved because CaO diffuses inside the fiber while leaving a mullite crystal phase excellent in thermal shock resistance, heat resistance, and mechanical shock resistance.
 このことは、当該無機繊維成形体を1400℃、8時間で焼成した後に、X線回折法(XRD)にて検出されるピークとして、ムライト結晶相を示すピークとCaO-Al-SiO系結晶相を示すピークが存在することで確認することができる。 This is because, after firing the inorganic fiber molded body at 1400 ° C. for 8 hours, as a peak detected by X-ray diffraction (XRD), a peak showing a mullite crystal phase and a CaO—Al 2 O 3 —SiO 2 This can be confirmed by the presence of a peak indicating a two- system crystal phase.
 また、Ca成分が繊維内部まで拡散していることは、電子線マイクロアナライザー(EPMA)を用いた元素マッピングにより確認することができる。 Moreover, it can be confirmed by element mapping using an electron beam microanalyzer (EPMA) that the Ca component diffuses into the fiber.
[未乾燥状態で酸化物前駆体含有液が付着されたブランケット40の材料]
 未乾燥状態で酸化物前駆体含有液が付着されたブランケット40としては、厚さ10~30m程度の上記無機繊維のニードルブランケットに対し、上記の酸化物前駆体含有液を、無機繊維100質量部に対して2~50質量部の割合で含浸させたものが好ましい。
[Material of Blanket 40 with Oxide Precursor-Containing Liquid Adhered in Undried State]
As the blanket 40 to which the oxide precursor-containing liquid is attached in an undried state, the oxide precursor-containing liquid is added to 100 parts by mass of the inorganic fiber with respect to the needle blanket of the inorganic fiber having a thickness of about 10 to 30 m. What is impregnated at a ratio of 2 to 50 parts by mass is preferable.
 以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
[実施例1]
 平均繊維径が5.5μmであり、実質的に繊維径3μm以下の繊維を含まない、アルミナ72質量%とシリカ28質量%とを含む多結晶質アルミナ/シリカ系繊維を集積してニードリングしてなるニードルブランケット(三菱ケミカル株式会社製商品名MAFTECTM MLS、厚さ25mm、ニードル痕密度5打/cm、嵩密度128kg/m(0.128g/cm)、面密度3200g/m)を外径(直径)390mm、内径(直径)270mmのドーナツ状に打ち抜き加工してリング状ニードルブランケット10を製造した。
[Example 1]
A polycrystalline alumina / silica fiber containing 72% by mass of alumina and 28% by mass of silica, which has an average fiber diameter of 5.5 μm and does not substantially contain fibers having a fiber diameter of 3 μm or less, is accumulated and needsling. Needle blanket (trade name MAFTEC MLS, manufactured by Mitsubishi Chemical Corporation, thickness 25 mm, needle mark density 5 strokes / cm 2 , bulk density 128 kg / m 3 (0.128 g / cm 3 ), surface density 3200 g / m 2 ) Was punched into a donut shape having an outer diameter (diameter) of 390 mm and an inner diameter (diameter) of 270 mm to produce a ring-shaped needle blanket 10.
 リング状ニードルブランケット10において、以下に記載する条件におけるサイクル試験後の残存面圧比を測定したところ、残存面圧比は33%であった。
 条件:1400℃、12時間焼成後のリング状ニードルブランケット10を引張圧縮試験機(ミネベア株式会社製)によりGBD(嵩密度)=0.195(g/cm)まで圧縮した後、上下のプレートをGBD=0.20(g/cm)から0.24(g/cm)まで圧縮することを100回繰り返した。その際、第1回目のGBD=0.20(g/cm)での開放側面圧値と第100回目のGBD=0.24(g/cm)での開放側面圧値を測定し、以下の式より、焼成後面圧の劣化度合いの指標となる残存面圧比(%)を求めた。
  残存面圧比=第100回開放側面圧/第1回開放側面圧)
In the ring-shaped needle blanket 10, when the residual surface pressure ratio after the cycle test under the conditions described below was measured, the residual surface pressure ratio was 33%.
Conditions: After the ring-shaped needle blanket 10 after firing at 1400 ° C. for 12 hours is compressed to GBD (bulk density) = 0.195 (g / cm 3 ) using a tensile compression tester (Minebea Corp.), the upper and lower plates Was compressed 100 times from GBD = 0.20 (g / cm 3 ) to 0.24 (g / cm 3 ). At that time, the open side pressure value at the first GBD = 0.20 (g / cm 3 ) and the open side pressure value at the 100th GBD = 0.24 (g / cm 3 ) were measured, From the following formula, the residual surface pressure ratio (%), which is an index of the degree of deterioration of the surface pressure after firing, was obtained.
Residual surface pressure ratio = 100th opening side pressure / 1st opening side pressure)
 また、リング状ニードルブランケット10において、1400℃、12時間焼成後における幅方向、長手方向及び厚み方向の加熱収縮率をJISR3311に準拠した方法(以下の詳細を示す)で行なったところ、幅方向0.4%、長手方向0.4%、厚み方向0.0%であった。
 条件:リング状ニードルブランケット10を長さ約150mm、約100mmに切断して試験片とした。該試験片に約120mm×約60mmの長方形状に白銀線を埋め込んで印をつけた。1400℃の温度に加熱された大気中で12時間保持し焼成した。加熱線収縮率は,次の式によって算出した。
Further, in the ring-shaped needle blanket 10, the heat shrinkage in the width direction, the longitudinal direction and the thickness direction after firing at 1400 ° C. for 12 hours was performed by a method based on JIS R3311 (details shown below). 0.4%, 0.4% in the longitudinal direction and 0.0% in the thickness direction.
Conditions: A ring-shaped needle blanket 10 was cut to a length of about 150 mm and a length of about 100 mm to obtain a test piece. The test piece was marked by embedding a white silver wire in a rectangular shape of about 120 mm × about 60 mm. It was held for 12 hours in the air heated to a temperature of 1400 ° C. and baked. The heating line shrinkage was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、l:試験片マーク間の焼成前の長さ(mm)、l:試験片マーク間の焼成後の長さ(mm)とする。加熱線収縮率は、1試験片の3点の長さを測定し、その3点の平均値とする。 Here, l 0 is the length (mm) before firing between the test piece marks, and l 1 is the length (mm) after firing between the test piece marks. The heating linear shrinkage ratio is obtained by measuring the length of three points of one test piece and taking the average value of the three points.
 このリング状ニードルブランケット10を用いて、図1~7の手順によって直径270mmのスキッドパイプ1に施工した。炉床Gから耐火被覆3の下端までの高さHは1800mmである。 Using this ring-shaped needle blanket 10, it was applied to the skid pipe 1 having a diameter of 270 mm by the procedure shown in FIGS. The height H from the hearth G to the lower end of the fireproof coating 3 is 1800 mm.
 各圧縮層L-1~L-3のリング状ニードルブランケットの枚数、圧縮後の高さ寸法及び圧縮率は次の通りである。 The number of ring-shaped needle blankets of each compression layer L-1 to L-3, the height dimension after compression, and the compression rate are as follows.
  L-1:27枚、圧縮後高さ600mm、圧縮率10%
  L-2:28枚、圧縮後高さ600mm、圧縮率12%
  L-3:26枚、圧縮後高さ(T=560mm)、圧縮率15%
L-1: 27 sheets, height after compression 600 mm, compression rate 10%
L-2: 28 sheets, height after compression 600 mm, compression rate 12%
L-3: 26 sheets, height after compression (T = 560 mm), compression rate 15%
 3段目の押え板20と耐火被覆3との間の間隙高さhは20mmであり、ここにリング状ニードルブランケット10を1枚装着した後、すべての押え板20を引き抜き、図7の状態とした。そして、L-1、L-2及びL-3(ただし、最上位のリング状ニードルブランケット10を含む)の平均嵩密度、及び最上部のリング状ニードルブランケット10が耐火被覆3の下端を押圧する圧力(面間圧力)を測定した。結果を表1に示す。 The gap height h between the third-stage presser plate 20 and the fireproof coating 3 is 20 mm. After attaching one ring-shaped needle blanket 10 to this, all the presser plates 20 are pulled out, and the state shown in FIG. It was. The average bulk density of L-1, L-2 and L-3 (including the uppermost ring-shaped needle blanket 10) and the uppermost ring-shaped needle blanket 10 press the lower end of the fireproof coating 3. The pressure (pressure between faces) was measured. The results are shown in Table 1.
[実施例2(第3圧縮層をさらに強圧縮)]
 第3圧縮層L-3のリング状ニードルブランケット枚数を28枚とし、圧縮高さを560mm、圧縮率を20%としたこと以外は実施例1と同様の施工を行った。L-1、L-2及びL-3(ただし、最上位のリング状ニードルブランケット10を含む)の平均嵩密度、及び面間圧力を測定した。結果を表1に示す。
[Example 2 (the third compression layer is further strongly compressed)]
The same construction as in Example 1 was performed except that the number of ring-shaped needle blankets of the third compression layer L-3 was 28, the compression height was 560 mm, and the compression rate was 20%. The average bulk density of L-1, L-2 and L-3 (including the uppermost ring-shaped needle blanket 10) and the inter-surface pressure were measured. The results are shown in Table 1.
[比較例1]
 第3圧縮層L-3の圧縮率を第1、第2圧縮層L-1,L-2と同一とした。即ち、第3圧縮層L-3のリング状ニードルブランケット枚数を25枚とし、圧縮高さを560mm、圧縮率を10%としたこと以外は実施例1と同様の施工を行った。L-1、L-2及びL-3(最上位のリング状ニードルブランケット10を含む)の平均嵩密度、及び面間圧力を測定した。結果を表1に示す。実施例1,2に比べて低い値であった。
[Comparative Example 1]
The compression rate of the third compression layer L-3 was the same as that of the first and second compression layers L-1 and L-2. That is, the same construction as in Example 1 was performed except that the number of ring-shaped needle blankets of the third compression layer L-3 was 25, the compression height was 560 mm, and the compression rate was 10%. The average bulk density of L-1, L-2 and L-3 (including the uppermost ring-shaped needle blanket 10) and the inter-surface pressure were measured. The results are shown in Table 1. It was a low value compared with Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例3]
 実施例1と同様の圧縮率のリング状ニードルブランケット10積層圧縮体を作製し、表面にモルタルを3mm厚程度塗布し、酢酸を分散剤としたアルミナゾル溶液に、酢酸カルシウム一水和物をAlとCaのモル比率(Al/Ca)が12になるように添加し、酸化物換算の固形分濃度を7.0質量%に調整した酸化物前駆体含有液を厚さ方向全体に含浸させたブランケット(無機繊維100質量部に対する水分量200質量部、無機繊維100質量部に対する酸化物前駆体付着量18質量部(酸化物換算)、含浸部のAlとCaのモル比率(Al/Ca)64、及び嵩密度0.41g/cm)を巻き付けた。これを昇温速度5℃/分、1400℃、12時間保持で焼成し、表面にあるブランケット40をカッターナイフで開口し、前記ブランケット40を剥し、リング状ニードルブランケット10積層圧縮体の表面を外観観察をしたところ、リング状ニードルブランケット10積層圧縮体表面全体に前記ブランケット40由来の無機繊維が付着していた。
[Example 3]
A ring-shaped needle blanket 10 laminated compression body having the same compression ratio as in Example 1 was prepared, and mortar was applied to the surface to a thickness of about 3 mm, and an alumina sol solution containing acetic acid as a dispersant was mixed with calcium acetate monohydrate and Al. A blanket that is added so that the molar ratio of Ca (Al / Ca) is 12 and the oxide precursor-containing liquid in which the solid content concentration in terms of oxide is adjusted to 7.0% by mass is impregnated in the entire thickness direction. (Moisture amount 200 parts by weight with respect to 100 parts by weight of inorganic fibers, 18 parts by weight of oxide precursor with respect to 100 parts by weight of inorganic fibers (as oxide), Al / Ca molar ratio (Al / Ca) 64 in the impregnated part, And a bulk density of 0.41 g / cm 3 ). This was fired at a heating rate of 5 ° C./min, 1400 ° C. and held for 12 hours, the blanket 40 on the surface was opened with a cutter knife, the blanket 40 was peeled off, and the surface of the ring-shaped needle blanket 10 laminated compact was externally seen. When observed, the inorganic fiber derived from the blanket 40 was adhered to the entire surface of the ring-shaped needle blanket 10 laminated compressed body.
[比較例2]
 直径340mmの不定形耐火物の表面にモルタルを3mm厚程度塗布し、実施例3に記載のブランケット40を巻き付けた。これを昇温速度5℃/分、1400℃、12時間保持で焼成し、表面の無機繊維成形体をカッターナイフで開口し、前記ブランケット40を剥し、不定形耐火物の表面を外観観察をしたところ、リング状ニードルブランケット10積層圧縮体表面の一部だけに前記ブランケット40由来の無機繊維が付着していた。
[Comparative Example 2]
A mortar was applied on the surface of an irregular refractory having a diameter of 340 mm to a thickness of about 3 mm, and the blanket 40 described in Example 3 was wound. This was fired at a heating rate of 5 ° C./min, 1400 ° C. for 12 hours, the surface inorganic fiber molded body was opened with a cutter knife, the blanket 40 was peeled off, and the appearance of the surface of the irregular refractory was observed. However, the inorganic fiber derived from the blanket 40 was adhered to only a part of the surface of the ring-shaped needle blanket 10 laminated compressed body.
[考察]
 実施例で用いたリング状ニードルブランケットは、焼成(1400℃、12時間)後のサイクル試験後の残存面圧比が10%以上であることから、過酷な環境において長期的な振動に耐えうる持続的な面圧を有することが判る。また、実施例で用いたリング状ニードルブランケットは、焼成(1400℃、12時間)後の加熱線収縮率が幅方向、長手方向及び厚み方向のいずれも1%以下であるリング状ニードルブランケットを用いることにより、高温寸法安定性にも優れていることが判る。 ゆえに、実施例で用いたリング状ニードルブランケットを圧縮して施工する際に、該圧縮層の嵩密度を高さ方向に上部、中部及び下部に3等分して評価した場合、前記上部における嵩密度が前記中部及び前記下部における嵩密度に比べて高くすることで、過酷な環境において長期的な振動に耐えうる持続的な面圧保持し、焼成による収縮の影響を抑制できると推察される。一方、比較例1は圧縮率が低いため初期面圧から低く、隙間が空いてしまうと推察される。
[Discussion]
The ring-shaped needle blanket used in the examples has a residual surface pressure ratio of 10% or more after a cycle test after firing (1400 ° C., 12 hours), so that it can sustain long-term vibration in a harsh environment. It can be seen that the surface pressure is high. Moreover, the ring-shaped needle blanket used in the examples uses a ring-shaped needle blanket whose heating line shrinkage after firing (1400 ° C., 12 hours) is 1% or less in all of the width direction, the longitudinal direction, and the thickness direction. Thus, it can be seen that the high temperature dimensional stability is also excellent. Therefore, when the ring-shaped needle blanket used in the examples is compressed and applied, when the bulk density of the compressed layer is evaluated by dividing it into three parts in the upper part, middle part and lower part, the bulk in the upper part is evaluated. It is inferred that by making the density higher than the bulk density in the middle part and the lower part, it is possible to maintain a continuous surface pressure that can withstand long-term vibration in a harsh environment and to suppress the influence of shrinkage due to firing. On the other hand, it is surmised that the comparative example 1 has a low compression rate and thus is low from the initial surface pressure, leaving a gap.
 また、実施例3と比較例2を比較すると、リング状ニードルブランケット10積層圧縮体に無機繊維成形体を巻いた方が、前記ブランケット40とリング状ニードルブランケットの積層体10の密着性がより高いことがわかる。これは、ブランケット40とリング状ニードルブランケットの積層体10は同材質であるため、材質起因による収縮率の差がなく、かつ前記ブランケット40の酸化物前駆体含有液がリング状ニードルブランケットの積層体10の表面に浸みこみやすく、焼成時に酸化物前駆体が酸化物に変換される際に、前記ブランケット40とリング状ニードルブランケットの積層体10の界面上にある酸化物前駆体が酸化物となり、当該酸化物が前記ブランケット40とリング状ニードルブランケットの積層体10との接着剤として機能するためと考えられる。一方、比較例2では、ブランケット40と不定形耐火物との材質起因による収縮率の差により、ブランケット40と不定形耐火物の間に空間ができ、空間ができると該空間が徐々に広がり、結果として密着性が低減しやすくなる。本願発明に係る断熱保護部材では、酸化物前駆体含有液が含浸されたブランケット40との密着性低減を抑制することができる。 Moreover, when Example 3 and Comparative Example 2 are compared, the adhesiveness between the blanket 40 and the laminated body 10 of the ring-shaped needle blanket is higher when the inorganic fiber molded body is wound around the laminated compressed body of the ring-shaped needle blanket 10. I understand that. This is because the blanket 40 and the ring needle blanket laminate 10 are made of the same material, so there is no difference in shrinkage due to the material, and the oxide precursor-containing liquid of the blanket 40 is a ring needle blanket laminate. 10 is easy to soak in the surface of the oxide, when the oxide precursor is converted to oxide during firing, the oxide precursor on the interface of the laminate 10 of the blanket 40 and the ring needle blanket becomes an oxide, This is considered because the oxide functions as an adhesive between the blanket 40 and the laminated needle blanket 10. On the other hand, in Comparative Example 2, a space is formed between the blanket 40 and the amorphous refractory due to the difference in shrinkage due to the material between the blanket 40 and the amorphous refractory. As a result, the adhesion is easily reduced. In the heat insulation protective member according to the present invention, it is possible to suppress a reduction in adhesion to the blanket 40 impregnated with the oxide precursor-containing liquid.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2016年5月9日付で出願された日本特許出願2016-093973に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2016-093973 filed on May 9, 2016, which is incorporated by reference in its entirety.
 1 スキッドパイプ
 2 スキッドビーム
 3 耐火被覆
 4 アンカー金具差込部
 10 リング状ニードルブランケット
 20 押え板
 21,22 押え板半体
 30 アンカー金具
 33 ピン
DESCRIPTION OF SYMBOLS 1 Skid pipe 2 Skid beam 3 Fireproof coating 4 Anchor metal fitting insertion part 10 Ring-shaped needle blanket 20 Presser plate 21 and 22 Presser plate half 30 Anchor metal fitting 33 Pin

Claims (12)

  1.  上部に耐火被覆を有したスキッドパイプの該耐火被覆よりも下側に断熱保護部材を施工する方法において、
     複数枚の無機繊維製リング状ニードルブランケットを該スキッドパイプに外嵌させて積重体とし、
     次いで、この積重体を押え板で上方から押して、圧縮層を形成する工程を複数回繰り返し、第1ないし第n(nは2以上の整数)の圧縮層を形成し、
     最上段の該圧縮層と前記耐火被覆の下端面との間に前記リング状ニードルブランケットを外嵌させ、その後、前記押え板を撤去して積重体を復元させ、前記リング状ニードルブランケットを前記耐火被覆の下端面に押し付ける断熱保護部材の施工方法であって、
     前記圧縮層の嵩密度を高さ方向に上部、中部及び下部に3等分して評価した場合、前記上部における嵩密度が前記中部及び前記下部における嵩密度に比べて高いことを特徴とするスキッドパイプの断熱保護部材の施工方法。
    In the method of constructing a heat insulating protective member below the fireproof coating of the skid pipe having a fireproof coating on the upper part,
    A plurality of inorganic fiber ring-shaped needle blankets are externally fitted to the skid pipe to form a stack,
    Next, the stack is pushed from above with a presser plate, and the process of forming a compression layer is repeated a plurality of times to form first to nth (n is an integer of 2 or more) compression layers,
    The ring-shaped needle blanket is externally fitted between the uppermost compression layer and the lower end surface of the fireproof coating, and then the presser plate is removed to restore the stack, and the ring-shaped needle blanket is moved to the fireproof It is a construction method of a heat insulating protective member pressed against the lower end surface of the coating,
    A skid characterized in that when the bulk density of the compressed layer is evaluated by dividing the bulk density into three parts in the upper part, middle part and lower part, the bulk density in the upper part is higher than the bulk density in the middle part and the lower part. Construction method for heat insulation and protection members for pipes.
  2.  請求項1において、前記上部の圧縮層の嵩密度が、中部及び下部の圧縮層の嵩密度の1.1~3.0倍であることを特徴とするスキッドパイプの断熱保護部材の施工方法。 2. The method for constructing a heat insulating protective member for a skid pipe according to claim 1, wherein the bulk density of the upper compressed layer is 1.1 to 3.0 times the bulk density of the middle and lower compressed layers.
  3.  請求項1又は2において、さらに前記中部における嵩密度が前記下部における嵩密度に比べて高いことを特徴とするスキッドパイプの断熱保護部材の施工方法。 3. The method for constructing a heat insulating protective member for a skid pipe according to claim 1, wherein the bulk density in the middle part is higher than the bulk density in the lower part.
  4.  請求項1~3のいずれか1項において、前記上部の圧縮層の嵩密度が0.10g/cm以上0.20g/cm以下であることを特徴とするスキッドパイプの断熱保護部材の施工方法。 The construction of a heat insulating protective member for a skid pipe according to any one of claims 1 to 3, wherein a bulk density of the upper compressed layer is 0.10 g / cm 3 or more and 0.20 g / cm 3 or less. Method.
  5.  請求項1~4のいずれか1項において、前記無機繊維製リング状ニードルブランケットは、以下に記載する条件におけるサイクル試験後の残存面圧比が10%以上であることを特徴とするスキッドパイプの断熱保護部材の施工方法。
     条件:1400℃、12時間焼成後のリング状ニードルブランケットを引張圧縮試験機によりGBD(嵩密度)=0.195g/cmまで圧縮した後、上下のプレートをGBD=0.20g/cmから0.24g/cmまで圧縮することを100回繰り返した。その際、第1回目のGBD=0.20g/cmでの開放側面圧値と第100回目のGBD=0.24g/cmでの開放側面圧値を測定し、以下の式より、焼成後面圧の劣化度合いの指標となる残存面圧比(%)を求める。
      残存面圧比=第100回開放側面圧/第1回開放側面圧×100
    The heat insulation of a skid pipe according to any one of claims 1 to 4, wherein the ring-shaped needle blanket made of an inorganic fiber has a residual surface pressure ratio of 10% or more after a cycle test under the conditions described below. Construction method of protective members.
    Conditions: After the ring-shaped needle blanket fired for 12 hours at 1400 ° C. is compressed to GBD (bulk density) = 0.195 g / cm 3 using a tensile compression tester, the upper and lower plates are moved from GBD = 0.20 g / cm 3. The compression to 0.24 g / cm 3 was repeated 100 times. At that time, the open side pressure value at the first GBD = 0.20 g / cm 3 and the open side pressure value at the 100th GBD = 0.24 g / cm 3 were measured. A residual surface pressure ratio (%) is obtained as an index of the degree of deterioration of the rear surface pressure.
    Residual surface pressure ratio = 100th opening side pressure / first opening side pressure × 100
  6.  請求項1~5のいずれか1項において、前記無機繊維製リング状ニードルブランケットは、1400℃、12時間焼成後における幅方向、長手方向及び厚み方向の加熱収縮率がいずれも1%以下であることを特徴とするスキッドパイプの断熱保護部材の施工方法。 6. The inorganic fiber ring needle blanket according to claim 1, wherein the heat shrinkage in the width direction, the longitudinal direction, and the thickness direction after firing at 1400 ° C. for 12 hours is 1% or less. A method for constructing a heat insulating protection member for a skid pipe, characterized in that:
  7.  請求項1~6のいずれか1項において、前記リング状ニードルブランケットに、径方向のスリットが設けられており、
     該スリットを開くことによりリング状ニードルブランケットをスキッドパイプに外嵌させることを特徴とするスキッドパイプの断熱保護部材の施工方法。
    The ring-shaped needle blanket according to any one of claims 1 to 6, wherein a radial slit is provided.
    A method for constructing a heat insulating protection member for a skid pipe, wherein the ring-shaped needle blanket is fitted onto the skid pipe by opening the slit.
  8.  請求項7において、前記リング状ニードルブランケットのスリット同士は相互に重なり合わないように周方向にずらして配置されることを特徴とするスキッドパイプの断熱保護部材の施工方法。 8. The method for constructing a heat insulating and protecting member for a skid pipe according to claim 7, wherein the slits of the ring-shaped needle blanket are shifted in the circumferential direction so as not to overlap each other.
  9.  請求項1~8のいずれか1項において、前記スキッドパイプにアンカー金具差込部を設けておき、
     前記押え板の上方への移動を阻止するためのアンカー金具を該アンカー金具差込部に係止させて押え板の上方への移動を阻止することを特徴とするスキッドパイプの断熱保護部材の施工方法。
    In any one of claims 1 to 8, an anchor fitting insertion part is provided in the skid pipe,
    Construction of a heat insulating protective member for a skid pipe characterized in that an anchor metal for preventing upward movement of the presser plate is locked to the anchor metal fitting insertion part to prevent upward movement of the presser plate. Method.
  10.  請求項9において、前記アンカー金具は、上下に突出するピンを有しており、該押え板に重なるリング状ニードルブランケットに対し該ピンを刺し通すことを特徴とするスキッドパイプの断熱保護部材の施工方法。 The construction of the heat insulating protective member for a skid pipe according to claim 9, wherein the anchor metal fitting has a pin protruding vertically, and the pin is pierced through a ring-shaped needle blanket overlapping the presser plate. Method.
  11.  請求項1~10のいずれか1項において、その後、リング状ニードルブランケットの外周に、未乾燥状態で酸化物前駆体含有液が付着されたブランケットを巻装し、該酸化物前駆体含有液は焼成により酸化アルミニウム及び酸化カルシウムを含むアルミナ・カルシア系組成物を生じさせる成分を含むことを特徴とするスキッドパイプの断熱保護部材の施工方法。 The blanket in which the oxide precursor-containing liquid is attached in an undried state around the outer periphery of the ring-shaped needle blanket according to any one of claims 1 to 10, The construction method of the heat insulation protective member of a skid pipe characterized by including the component which produces the alumina calcia composition containing aluminum oxide and calcium oxide by baking.
  12.  上部に耐火被覆を有するスキッドパイプの該耐火被覆よりも下側に断熱保護部材が設けられた断熱保護部材付きスキッドパイプにおいて、
     該断熱保護部材は、スキッドパイプに外嵌された圧縮状態のリング状ニードルブランケットの積重体を有しており、該積重体の反発力により最上位のリング状ニードルブランケットが前記耐火被覆に押し付けられた断熱保護部材付きスキッドパイプであって、
     前記積重体を高さ方向に上部、中部及び下部に3等分して評価した場合、前記上部におけるリング状ニードルブランケットの嵩密度が前記中部及び前記下部におけるリング状ニードルブランケットの嵩密度に比べて高いことを特徴とする断熱保護部材付きスキッドパイプ。
    In the skid pipe with a heat insulating protective member in which a heat insulating protective member is provided below the fire protective coating of the skid pipe having a fire protective coating on the upper part,
    The heat insulation protective member has a stack of compressed ring needle blankets that are externally fitted to a skid pipe, and the uppermost ring needle blanket is pressed against the fireproof coating by the repulsive force of the stack. A skid pipe with a thermal insulation protection member,
    When the stack is evaluated by dividing it into three parts at the upper part, middle part and lower part in the height direction, the bulk density of the ring-shaped needle blanket in the upper part is larger than the bulk density of the ring-shaped needle blanket in the middle part and the lower part. A skid pipe with a heat-insulating protective member, characterized by being high.
PCT/JP2017/016562 2016-05-09 2017-04-26 Skid pipe and method for constructing heat-insulating protective member therefor WO2017195606A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187030768A KR102399369B1 (en) 2016-05-09 2017-04-26 Construction method of skid pipe and its thermal insulation protection member
CN201780025539.4A CN109072321B (en) 2016-05-09 2017-04-26 Chute pipe and construction method of heat insulation protection member thereof
JP2017553043A JP6274374B1 (en) 2016-05-09 2017-04-26 Method for constructing skid pipe and its heat insulating protective member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093973 2016-05-09
JP2016-093973 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017195606A1 true WO2017195606A1 (en) 2017-11-16

Family

ID=60267071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016562 WO2017195606A1 (en) 2016-05-09 2017-04-26 Skid pipe and method for constructing heat-insulating protective member therefor

Country Status (5)

Country Link
JP (2) JP6274374B1 (en)
KR (1) KR102399369B1 (en)
CN (1) CN109072321B (en)
TW (1) TWI702360B (en)
WO (1) WO2017195606A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173089A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Skid post
WO2021014989A1 (en) * 2019-07-19 2021-01-28 三菱ケミカル株式会社 Heat insulating protective member, method for manufacturing same, method for installing same, in-furnace member, and heating furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820566B2 (en) * 2019-02-22 2021-01-27 明星工業株式会社 Metal-coated heat insulating structure of small pipe branch and its construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123869U (en) * 1974-08-13 1976-02-21
WO2000020814A1 (en) * 1998-10-01 2000-04-13 M.H. Detrick Co. Pipe refractory insulation for furnaces
JP2013112832A (en) * 2011-11-25 2013-06-10 Nippon Steel & Sumitomo Metal Corp Skid post and split block for skid post
JP2014005173A (en) * 2012-06-25 2014-01-16 Mitsubishi Plastics Inc Inorganic fiber molded body and insulation member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769903B2 (en) * 1990-03-28 1998-06-25 芦森工業株式会社 Nonwoven fabric for pipe liner and method for producing the same
JP4041904B2 (en) 2002-07-15 2008-02-06 新日本製鐵株式会社 Pipe member for heating furnace
JP5239846B2 (en) 2008-12-26 2013-07-17 新日鐵住金株式会社 End-curing method of heat-insulating refractory material lined on the outer periphery of the pipe
JP5499644B2 (en) * 2009-11-06 2014-05-21 三菱樹脂株式会社 Inorganic fiber molded body and method for producing the same
WO2013030203A2 (en) * 2011-08-31 2013-03-07 Basf Se Method for producing insulated pipes having improved properties
WO2015122281A1 (en) * 2014-02-12 2015-08-20 三菱樹脂株式会社 Burner tile, burner, and furnace
WO2016076258A1 (en) * 2014-11-14 2016-05-19 三菱樹脂株式会社 Heat-insulating protective member for skid post, and method for applying heat-insulating protective member for skid post
CN105202316A (en) * 2015-10-14 2015-12-30 浙江振申绝热科技股份有限公司 Pipeline heat preservation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123869U (en) * 1974-08-13 1976-02-21
WO2000020814A1 (en) * 1998-10-01 2000-04-13 M.H. Detrick Co. Pipe refractory insulation for furnaces
JP2013112832A (en) * 2011-11-25 2013-06-10 Nippon Steel & Sumitomo Metal Corp Skid post and split block for skid post
JP2014005173A (en) * 2012-06-25 2014-01-16 Mitsubishi Plastics Inc Inorganic fiber molded body and insulation member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173089A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Skid post
JP7072420B2 (en) 2018-03-28 2022-05-20 日本製鉄株式会社 Skid post
WO2021014989A1 (en) * 2019-07-19 2021-01-28 三菱ケミカル株式会社 Heat insulating protective member, method for manufacturing same, method for installing same, in-furnace member, and heating furnace
CN113646602A (en) * 2019-07-19 2021-11-12 三菱化学株式会社 Heat insulation protection member, method for manufacturing same, method for constructing same, furnace member, and heating furnace
KR20220031989A (en) 2019-07-19 2022-03-15 미쯔비시 케미컬 주식회사 Thermal insulation protection member, its manufacturing method, construction method, furnace member and heating furnace
EP4001729A4 (en) * 2019-07-19 2022-07-20 MAFTEC Co., Ltd. Heat insulating protective member, method for manufacturing same, method for installing same, in-furnace member, and heating furnace
US20220341667A1 (en) * 2019-07-19 2022-10-27 Maftec Co., Ltd. Heat Insulating Protective Member, Method for Manufacturing Same, Method for Installing Same, In-Furnace Member, and Reheating Furnace

Also Published As

Publication number Publication date
CN109072321B (en) 2020-07-07
KR102399369B1 (en) 2022-05-18
JPWO2017195606A1 (en) 2018-05-24
TW201740046A (en) 2017-11-16
KR20190004268A (en) 2019-01-11
TWI702360B (en) 2020-08-21
JP6274374B1 (en) 2018-02-07
JP2018090948A (en) 2018-06-14
CN109072321A (en) 2018-12-21

Similar Documents

Publication Publication Date Title
US8951323B2 (en) Multiple layer mat and exhaust gas treatment device
JP6274374B1 (en) Method for constructing skid pipe and its heat insulating protective member
US20170198622A1 (en) Thermally Stable Inorganic Fibers For Exhaust Gas Treatment Device Insulating Mat
JP6426521B2 (en) Exhaust gas treatment system
US8734726B2 (en) Multilayer mounting mat for pollution control devices
EP2513443B1 (en) Mounting mat for exhaust gas treatment device
US8992846B2 (en) Exhaust gas treatment device
DK2603676T3 (en) Flexible mounting mat with edge protection and exhaust gas treatment device including the mat assembly
US20150052880A1 (en) Inorganic fiber paper
JP5983906B1 (en) Insulating protective member for skid post and method for constructing insulating member for skid post
JP6244813B2 (en) Inorganic fiber fireproof insulation lining construction method
JPWO2017195670A1 (en) Heat insulation protection member, method of manufacturing the same, method of construction, member inside furnace and heating furnace
WO2021014989A1 (en) Heat insulating protective member, method for manufacturing same, method for installing same, in-furnace member, and heating furnace
JP3827857B2 (en) Inorganic fiber molded products
JPH1123160A (en) Heat-resistant material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017553043

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187030768

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795967

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795967

Country of ref document: EP

Kind code of ref document: A1