Nothing Special   »   [go: up one dir, main page]

WO2017186024A1 - Led显示模组、显示装置及显示模组的制作方法 - Google Patents

Led显示模组、显示装置及显示模组的制作方法 Download PDF

Info

Publication number
WO2017186024A1
WO2017186024A1 PCT/CN2017/080890 CN2017080890W WO2017186024A1 WO 2017186024 A1 WO2017186024 A1 WO 2017186024A1 CN 2017080890 W CN2017080890 W CN 2017080890W WO 2017186024 A1 WO2017186024 A1 WO 2017186024A1
Authority
WO
WIPO (PCT)
Prior art keywords
display module
inorganic led
inorganic
substrate
led chip
Prior art date
Application number
PCT/CN2017/080890
Other languages
English (en)
French (fr)
Inventor
张宇
刘雨实
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/576,278 priority Critical patent/US20180158808A1/en
Publication of WO2017186024A1 publication Critical patent/WO2017186024A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to the field of display devices, and in particular, to a LED (light emitting diode) display module, a display device, and a display module.
  • a LED light emitting diode
  • the common display devices include a passive light-emitting display device (such as a liquid crystal display device) and an active light-emitting display device (such as an OLED (Organic Light Emitting Diode) display device).
  • a passive light-emitting display device such as a liquid crystal display device
  • an active light-emitting display device such as an OLED (Organic Light Emitting Diode) display device.
  • the utility model has the advantages of small thickness, low power consumption and fast response speed, and therefore the active light-emitting display device has greater market competitiveness.
  • the OLED display device mainly uses an AMOLED (Active Matrix/Organic Light Emitting Diode) display module.
  • the AMOLED display module mainly comprises a transparent substrate, a control circuit disposed on the transparent substrate, an OLED connected to the control circuit, and a control chip.
  • the illumination principle of the AMOLED display module is to illuminate different organic semiconductor materials in the OLED chip by current excitation, thereby obtaining color lights of different colors.
  • the current AMOLED display module is limited by the service life of organic materials and the service life. The shorter, greatly limiting the life of the display device.
  • the AMOLED emits blue light with low light efficiency, in order to increase the brightness of the blue light, a method of increasing current and increasing power is generally adopted, which increases the power consumption of the AMOLED.
  • the embodiment of the invention provides an LED display module, a display device and a display module manufacturing method, which can prolong the service life of the display module and reduce the power consumption of the display module.
  • the technical solution is as follows:
  • an embodiment of the present invention provides an LED display module, the LED display module including: a substrate, a plurality of inorganic LED chips, a control circuit, a photoluminescent layer, and a transparent cover, the transparent cover and The substrate is oppositely disposed, the control circuit, the photoluminescent layer and the plurality of inorganic LED chips are located between the transparent cover and the substrate, and the plurality of inorganic LED chips are arranged in an array One side of the substrate; the plurality of inorganic LED chips are respectively connected to the control circuit, the control circuit is configured to drive the plurality of inorganic LED chips to emit light, and the photoluminescent layer is disposed on the transparent Between the cover plate and the plurality of inorganic LED chips, the photoluminescent layer is used to excite excellent light under the illumination of light emitted by the inorganic LED chip.
  • the photoluminescent layer and the control circuit are formed on the same side of the transparent cover.
  • control circuit includes a gate line and a data line disposed in an insulated manner from the gate line, and the plurality of the gate lines and the plurality of the data lines intersect to form a plurality of grids, each of the grids A pixel driving circuit is disposed, the pixel driving circuit is respectively connected to the gate line and the data line, and the pixel driving circuit is connected in one-to-one correspondence with the inorganic LED chip.
  • the photoluminescent layer comprises a plurality of photoluminescent units, each of the photoluminescent units corresponding to three of the inorganic LED chips arranged side by side along the gate line.
  • the photoluminescence unit comprises a first sub-photoluminescence unit and a second sub-photoluminescence unit arranged at intervals, and the illumination of the light emitted by the first sub-photoluminescence unit on the inorganic LED chip Red light is excited under, and the second sub-photoluminescence unit excites green light under the illumination of the light emitted by the inorganic LED chip, and the light emitted by the inorganic LED chip is blue light.
  • the photoluminescence unit further includes a third sub-photoluminescence unit that excites blue light under illumination of light emitted by the inorganic LED chip.
  • the wavelength of the blue light excited by the third sub-photoluminescence unit under the illumination of the light emitted by the inorganic LED chip is 450 nm to 460 nm.
  • the photoluminescent layer is a quantum dot color film.
  • the LED display module further includes a passivation layer, the passivation layer is located between the control circuit and the inorganic LED chip, and the passivation layer is provided with a through hole, the inorganic LED The anode of the chip is connected to the control circuit through an electrical conductor disposed in the through hole.
  • the electrical conductor is formed of indium tin oxide.
  • the electrode material of the cathode of the inorganic LED chip is a copper platinum ternary alloy.
  • the inorganic LED chip includes an N-type gallium nitride layer formed on one side of the substrate, and a heavily doped gallium nitride layer formed on a portion of the N-type gallium nitride layer is formed on a P-type gallium nitride layer on the heavily doped gallium nitride layer, a cathode on the N-type gallium nitride layer, and an anode on the P-type gallium nitride layer.
  • the substrate is a sapphire substrate.
  • the LED display module further includes a light reflecting layer disposed on a side of the substrate facing away from the inorganic LED chip.
  • an embodiment of the present invention further provides an LED display device having any of the foregoing LED display modules.
  • an embodiment of the present invention further provides a method for manufacturing an LED display module, where the manufacturing method includes:
  • an inorganic LED chip, a photoluminescent layer and a control circuit on one side of the substrate, the plurality of inorganic LED chips being arranged in an array on one side of the substrate, the plurality of inorganic LED chips respectively
  • the control circuit is connected, the control circuit is configured to drive the plurality of inorganic LED chips to emit light, and the photoluminescent layer is located above the inorganic LED chip in a direction perpendicular to the substrate, the photoinduced a light emitting layer for exciting excellent light under illumination of light emitted by the inorganic LED chip;
  • the transparent cover and the substrate are paired with the case.
  • an embodiment of the present invention further provides a method for fabricating another LED display module, where the manufacturing method includes:
  • an inorganic LED chip on one side of the substrate, the plurality of inorganic LED chips being arranged in an array on one side of the substrate;
  • the control circuit is configured to drive the plurality of inorganic LED chips to emit light, and the photoluminescent layer is used for light emitted by the inorganic LED chip Exciting excellent light under illumination;
  • the transparent cover and the substrate are paired such that the plurality of inorganic LED chips are respectively connected to the control circuit.
  • FIG. 1 is a schematic structural diagram of an LED display module according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a substrate of an LED display module according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a transparent cover of an LED display module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another LED display module according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for fabricating an LED display module according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for fabricating another LED display module according to an embodiment of the present invention.
  • the LED display module includes: a substrate 1, a plurality of inorganic LED chips 2, a control circuit 4, and a photoluminescence layer. 5 and a transparent cover 3, the transparent cover 3 is disposed opposite to the substrate 1, and the control circuit 4, the photoluminescent layer 5 and the plurality of inorganic LED chips 2 are located between the transparent cover 3 and the substrate 1.
  • the plurality of inorganic LED chips 2 are respectively connected to the control circuit 4 for driving the plurality of inorganic LED chips 2 to emit light, and the photoluminescent layer 5 is disposed between the transparent cover plate 3 and the plurality of inorganic LED chips 2, and the light is The light-emitting layer 5 serves to excite excellent light under the irradiation of light emitted from the inorganic LED chip 2.
  • 2 is a schematic structural view of a substrate of an LED display module according to an embodiment of the present invention. Referring to FIG. 2, a plurality of inorganic LED chips 2 are arranged in an array on one side of the substrate 1.
  • the photoluminescent layer is disposed on the inorganic LED chip, and the photoluminescent layer excites the excellent light under the illumination of the light emitted by the inorganic LED chip, thereby avoiding the short life of the organic material when the color light is excited by using the organic material.
  • the problem of short module life is extended, thereby prolonging the life of the display module.
  • the inorganic LED chip is used for illumination, there is no need to increase the current to increase the brightness of the blue light, thereby reducing the power consumption of the display module.
  • each inorganic LED chip 2 includes an N-type gallium nitride layer 21 formed on one side of the substrate 1 and heavily doped on a portion of the N-type gallium nitride layer 21 Nitriding a gallium layer 23, a P-type gallium nitride layer 22 formed on the heavily doped gallium nitride layer 23, a cathode 25 disposed on the N-type gallium nitride layer 21, and an anode disposed on the P-type gallium nitride layer 22 due to
  • the inorganic LED chip 2 of the gallium nitride material has a mature preparation process.
  • the inorganic LED chip 2 made of a gallium nitride material is used to illuminate the photoluminescent layer 5, thereby reducing the process difficulty and reducing the manufacturing cost, and at the same time, the gallium nitride material.
  • the blue light effect of the prepared inorganic LED chip is five times that of the OLED, and the inorganic LED chip made of the gallium nitride material can further reduce the power consumption.
  • the substrate 1 is preferably a sapphire substrate, and the sapphire has good mechanical properties and optical properties, and at the same time, since the manufacturing process of the inorganic LED chip 2 using the sapphire as the substrate 1 is mature, the fabrication cost is low.
  • inorganic LED chips 2 are shown in FIG. 2 . In practical applications, the number of inorganic LED chips 2 can be set according to actual needs, and the present invention is not limited thereto.
  • the electrode material of the cathode 25 of the inorganic LED chip 2 may be a copper platinum platinum ternary alloy, and the copper platinum alloy has good ductility, and is suitable for forming a minute electrode, and also has good electrical and thermal conductivity, and can reduce the LED chip. 2 heat, and enhance heat dissipation.
  • the inorganic LED chip 2 can be connected by a common cathode. Specifically, a plurality of cathodes 25 of the inorganic LED chip 2 arranged along the same gate line 42 are connected, and the common cathode can be connected to reduce the inorganic LED chip 2 and The setting of the wires between the power supplies.
  • the photoluminescent layer 5 and the control circuit 4 are formed on the same side of the transparent cover 3, and the photoluminescent layer 5 and the control circuit 4 are formed on the transparent cover 3, and are not subjected to inorganic in the production process.
  • the interference of the LED chip 2 is simple.
  • the photoluminescent layer 5 and the control circuit 4 may also be formed on one side of the substrate 1 or one of them on the side of the substrate 1 and the other on one side of the transparent cover 3. on.
  • the transparent cover 3 includes, but is not limited to, a glass cover, a plastic cover, a sapphire cover, and the like.
  • the control circuit 4 includes a gate line 42 and a data line 43 disposed in an insulated manner from the gate line 42.
  • the gate line 42 and the plurality of data lines 43 intersect to form a plurality of grids, and each of the grids is provided with a pixel driving circuit 41.
  • the pixel driving circuit 41 is respectively connected to the gate lines 42 and the data lines 43, and the pixel driving circuit 41 and the inorganic
  • the LED chips 2 are connected one by one, and the gate lines 42 and the data lines 43 pass through the pixel driving circuit 41.
  • the inorganic LED chip 2 is controlled to emit light.
  • Each pixel driving circuit 41 includes at least one thin film transistor.
  • the gate of the thin film transistor is connected to the gate line 42.
  • the source of the thin film transistor is connected to the data line 43, the drain of the thin film transistor and the anode of the inorganic LED chip 2. connection.
  • the pixel driving circuit 41 can also directly select various existing pixel driving circuits of the AMOLED, and the pixel driving circuit 41 can include a plurality of thin film transistors and a plurality of capacitors, and pass through a plurality of thin film transistors and a plurality of capacitors. Together, the inorganic LED chip 2 is driven to emit light, and at the same time, it can also have a circuit compensation function such as voltage compensation.
  • the photoluminescent layer 5 comprises a plurality of photoluminescent units, each photoluminescent unit corresponding to three inorganic LED chips 2 arranged side by side along the gate line 42, three inorganic LED chips arranged side by side along the gate line 42 2 is arranged correspondingly to a photoluminescent unit, so that one photoluminescent unit can be excited by three inorganic LED chips 2, and one photoluminescent unit can be controlled to emit light by adjusting the brightness of the three inorganic LED chips 2.
  • the photoluminescent unit comprises a first sub-photoluminescent unit 51, a second sub-photoluminescent unit 52 and a third sub-photoluminescent unit 53 arranged at intervals, the first sub-photovoltaic
  • the light-emitting unit 51 excites red light under the illumination of the light emitted by the inorganic LED chip 2
  • the second sub-photoluminescence unit 52 excites green light under the illumination of the light emitted by the inorganic LED chip 2
  • the third sub-photoluminescence unit 53 The blue light is excited by the light emitted by the inorganic LED chip 2, so that red, green and blue light can be obtained.
  • one pixel unit of the LED display module includes a photoluminescent unit and the photoluminescent unit.
  • the three inorganic LED chips 2 correspondingly disposed and the pixel driving circuit 41 for controlling the light emission of the three inorganic LED chips 2 are controlled to emit light by controlling three inorganic LED chips in the same pixel unit, thereby enabling the pixel unit to emit different The color of the light allows the LED display module to display different colors.
  • first sub-photoluminescence unit 51 the order of arrangement between the first sub-photoluminescence unit 51, the second sub-photoluminescence unit 52, and the third sub-photoluminescence unit 53 is not limited to the order shown in FIG.
  • the wavelength of the blue light excited by the third sub-photoluminescence unit 53 under the illumination of the light emitted by the inorganic LED chip 2 is 450 nm (nanometer) to 460 nm, because the wavelength of the blue light emitted by the inorganic LED chip 2 is The vicinity of 435 nm is harmful to the human eye. Therefore, the blue light having a wavelength of around 435 nm is converted into blue light having a wavelength of 450 nm to 460 nm by the third sub-photoluminescence unit 53 to reduce the harm of the blue light emitted by the inorganic LED chip 2 to the human eye. .
  • the photoluminescence unit may also include only the foregoing first sub-photoluminescence unit 51 and second sub-photoluminescence unit 52, and does not include the third sub-photoluminescence unit. 53.
  • the blue light emitted from the inorganic LED chip 2 is directly used, the first sub-photoluminescence unit 51 that excites red light under the illumination of the inorganic LED chip 2, and the second sub-photon that excites the green light under the illumination of the inorganic LED chip 2.
  • the photoluminescent unit 52 can respectively obtain red light and green light, and at the same time, the inorganic LED chip 2 emits blue light, thereby obtaining red, green and blue three-color light.
  • the coverage area of the photoluminescent layer 5 can be reduced, saving cost.
  • the photoluminescent layer 5 may be a quantum dot color film, and the quantum dot color film is a film material having quantum dots distributed on the surface thereof, and the quantum dots are generally spherical or spheroidal, and are made of a semiconductor material.
  • the specific preparation process of the nanoparticles having a diameter of 2 nm to 20 nm is known in the prior art and will not be described in detail herein.
  • the LED display module further includes a passivation layer 6 , and the passivation layer 6 is located in the control circuit 4 and the inorganic LED chip. Between the two, the passivation layer 6 is provided with a through hole, and the anode of the inorganic LED chip 2 is connected to the control circuit 4 through the electric conductor 24 provided in the through hole. It is advantageous to provide a passivation layer.
  • the passivation layer not only has the function of isolation, for example, the short circuit of the inorganic LED chip 2 can be avoided; further, contrary to the starting point of reducing the thickness of the whole device by those skilled in the art,
  • the passivation layer 6 can increase the critical angle of total reflection between the light emitted from the inorganic LED chip 2 and the air, and reduce the light reflected back to the inorganic LED chip 2, thereby improving the brightness.
  • the passivation layer 6 may be made of silicon dioxide or silicon nitride.
  • the electric conductor 24 may be formed of ITO (Indium tin oxide), and the use of ITO as an electrode can reduce absorption of light emitted from the inorganic LED chip 2 by the electrode material, thereby improving brightness.
  • ITO Indium tin oxide
  • the LED display module may further include a reflective layer (not shown), and the reflective layer is disposed on a side of the substrate 1 facing away from the inorganic LED chip 2, and the part of the light emitted by the inorganic LED chip 2 is emitted by the reflective layer.
  • the side side reflection increases the brightness of the inorganic LED chip 2.
  • the reflective layer can be formed of metallic silver, and the metallic silver has good reflective performance, and can reflect most of the light irradiated on the metallic silver to the light emitting side, thereby improving the brightness of the inorganic LED chip 2.
  • FIG. 5 is a flowchart of a method for fabricating an LED display module according to an embodiment of the present invention.
  • the manufacturing method is used to fabricate any of the LED display modules. As shown in FIG. 5, the manufacturing method includes:
  • S12 An inorganic LED chip, a photoluminescent layer, and a control circuit are formed on one side of the substrate.
  • a plurality of inorganic LED chips are arranged in an array on one side of the substrate, and a plurality of inorganic LED chips are respectively connected to the control circuit, and the control circuit is configured to drive the plurality of inorganic LED chips to emit light, in a direction perpendicular to the substrate, the light
  • the luminescent layer is positioned above the inorganic LED chip, and the photoluminescent layer is used to excite excellent light upon illumination of the light emitted by the inorganic LED chip.
  • the photoluminescent layer is disposed on the inorganic LED chip, and the photoluminescent layer excites the excellent light under the illumination of the light emitted by the inorganic LED chip, thereby avoiding the short life of the organic material when the color light is excited by using the organic material.
  • the problem of short module life is extended, thereby prolonging the life of the display module.
  • the inorganic LED chip is used for illumination, there is no need to increase the current to increase the brightness of the blue light, thereby reducing the power consumption of the display module.
  • S12 may include first making an inorganic LED chip on one side of the substrate, then forming a passivation layer on the inorganic LED chip, then making a control circuit on the passivation layer, and finally making photoluminescence on the control circuit.
  • Floor may include first making an inorganic LED chip on one side of the substrate, then forming a passivation layer on the inorganic LED chip, then making a control circuit on the passivation layer, and finally making photoluminescence on the control circuit.
  • the passivation layer is provided with a through hole, and the anode of the inorganic LED chip and the control circuit are connected by an electrical conductor disposed in the through hole.
  • the passivation layer may be formed of silicon dioxide or silicon nitride, and the electrical conductor may be formed of ITO.
  • a light reflecting layer may be formed on a side of the substrate facing away from the inorganic LED chip.
  • the light reflecting layer may be formed of metallic silver.
  • FIG. 6 is a flowchart of a method for fabricating another LED display module according to an embodiment of the present invention.
  • the manufacturing method is used to fabricate any of the foregoing LED display modules. As shown in FIG. 6 , the manufacturing method includes:
  • the substrate may be a sapphire substrate.
  • S22 An inorganic LED chip is formed on one side of the substrate.
  • a plurality of inorganic LED chips are arranged in an array on one side of the substrate.
  • S23 A photoluminescent layer and a control circuit are formed on one side of the transparent cover.
  • control circuit is configured to drive a plurality of inorganic LED chips to emit light, and the photoluminescent layer is used to excite excellent light under the illumination of the light emitted by the inorganic LED chip.
  • the photoluminescent layer is disposed on the inorganic LED chip, and the photoluminescent layer excites the excellent light under the illumination of the light emitted by the inorganic LED chip, thereby avoiding the short life of the organic material when the color light is excited by using the organic material.
  • the problem of short module life is extended, thereby prolonging the life of the display module.
  • the inorganic LED chip is used for illumination, there is no need to increase the current to increase the brightness of the blue light, thereby reducing the power consumption of the display module.
  • S22 may include first forming an inorganic LED chip on one side of the substrate, and then forming a passivation layer on the inorganic LED chip.
  • the passivation layer is provided with a through hole, and the anode of the inorganic LED chip and the control circuit are connected by an electrical conductor disposed in the through hole.
  • the passivation layer may be formed of silicon dioxide or silicon nitride, and the electrical conductor may be formed of ITO.
  • S23 may include first fabricating a control circuit on the transparent cover and then fabricating a photoluminescent layer.
  • a light reflecting layer may be formed on a side of the substrate facing away from the inorganic LED chip.
  • the light reflecting layer may be formed of metallic silver.
  • the embodiment of the invention further provides an LED display device, which comprises any of the foregoing LED display modules.
  • the photoluminescent layer is disposed on the inorganic LED chip, and the photoluminescent layer excites the excellent light under the illumination of the light emitted by the inorganic LED chip, thereby avoiding the short life of the organic material when the color light is excited by using the organic material.
  • the problem of short module life is extended, thereby prolonging the life of the display module.
  • the inorganic LED chip is used for illumination, there is no need to increase the current to increase the brightness of the blue light, thereby reducing the power consumption of the display module.
  • the LED display device can be any product or component having a display function such as a liquid crystal panel, an electronic paper, an LED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a liquid crystal panel, an electronic paper, an LED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED显示模组、显示装置及显示模组的制作方法,属于显示装置领域。该发光二极管显示模组包括:基板(1)、多个无机LED芯片(2)、控制电路(4)、光致发光层(5)和透明盖板(3),多个无机LED芯片(2)呈阵列排布在基板的一侧面上,多个无机LED芯片分别与控制电路连接,控制电路用于驱动多个无机LED芯片发光,光致发光层设置在透明盖板和多个无机LED芯片之间,光致发光层用于在无机LED芯片发出的光的照射下激发出色光,通过在无机LED芯片上设置光致发光层,光致发光层在无机LED芯片发出的光的照射下激发出色光。

Description

LED显示模组、显示装置及显示模组的制作方法
交叉引用
本申请要求于2016年4月25日提交的、名称为“LED显示模组、显示装置及显示模组的制作方法”的中国专利申请NO.201610262716.8的优先权,该专利申请的公开内容通过引用方式整体并入本文。
技术领域
本发明涉及显示装置领域,特别涉及一种LED(light emitting diode,发光二极管)显示模组、显示装置及显示模组的制作方法。
背景技术
目前常见的显示装置有被动发光显示装置(如液晶显示装置)和主动发光显示装置(如OLED(Organic Light Emitting Diode,有机发光二极管)显示装置),由于主动发光显示装置不需要设置背光板,相比被动发光显示装置具有厚度小,功耗低,响应速度快等优势,因此主动发光显示装置具有更大的市场竞争力。
其中,OLED显示装置主要是采用AMOLED(Active Matrix/Organic Light Emitting Diode,有源矩阵有机发光二极管)显示模组。AMOLED显示模组主要包括透明基板、设置在透明基板上的控制电路、与控制电路连接的OLED以及控制芯片。AMOLED显示模组的发光原理是通过电流激发OLED芯片中不同的有机半导体材料发光,从而可以得到不同颜色的色光。
但是,由于有机材料的使用寿命不长,尤其是产生蓝光的有机材料的使用寿命非常短(仅有约1000小时),因此,目前的AMOLED显示模组受限于有机材料的使用寿命,使用寿命较短,大大限制了显示装置的寿命,此外,由于AMOLED发出蓝光时光效低,为了提高蓝光的亮度,通常采用增大电流、提高功率的方法,这就增大了AMOLED的功耗。
发明内容
本发明实施例提供了一种发光二极管显示模组、显示装置及显示模组的制作方法,可以延长显示模组的使用寿命,降低显示模组的功耗。所述技术方案如下:
一方面,本发明实施例提供了一种LED显示模组,所述LED显示模组包括:基板、多个无机LED芯片、控制电路、光致发光层和透明盖板,所述透明盖板与所述基板相对设置,所述控制电路、所述光致发光层和所述多个无机LED芯片位于所述透明盖板和所述基板之间,所述多个无机LED芯片呈阵列排布在所述基板的一侧面上;所述多个无机LED芯片分别与所述控制电路连接,所述控制电路用于驱动所述多个无机LED芯片发光,所述光致发光层设置在所述透明盖板和所述多个无机LED芯片之间,所述光致发光层用于在所述无机LED芯片发出的光的照射下激发出色光。
可选地,所述光致发光层和所述控制电路形成在所述透明盖板的同一侧面上。
可选地,所述控制电路包括栅线和与所述栅线绝缘交叉设置的数据线,多条所述栅线和多条所述数据线交叉形成多个网格,每一所述网格中设置有一像素驱动电路,所述像素驱动电路分别与所述栅线和所述数据线连接,且所述像素驱动电路与所述无机LED芯片一一对应连接。
可选地,所述光致发光层包括多个光致发光单元,每个所述光致发光单元对应沿所述栅线并排设置的三个所述无机LED芯片。
可选地,所述光致发光单元包括间隔设置的第一子光致发光单元和第二子光致发光单元,所述第一子光致发光单元在所述无机LED芯片发出的光的照射下激发出红光,所述第二子光致发光单元在所述无机LED芯片发出的光的照射下激发出绿光,所述无机LED芯片发出的光为蓝光。
进一步地,所述光致发光单元还包括第三子光致发光单元,所述第三子光致发光单元在所述无机LED芯片发出的光的照射下激发出蓝光。
可选地,所述第三子光致发光单元在所述无机LED芯片发出的光的照射下激发出的蓝光的波长为450nm~460nm。
可选地,所述光致发光层为量子点彩膜。
可选地,所述LED显示模组还包括钝化层,所述钝化层位于所述控制电路和所述无机LED芯片之间,所述钝化层上设有通孔,所述无机LED芯片的阳极与所述控制电路通过设置在所述通孔中的导电体连接。
进一步地,所述导电体由氧化铟锡形成。
进一步地,所述无机LED芯片的阴极的电极材料为铜铂金三元合金。
可选地,所述无机LED芯片包括形成在所述基板的一侧面的N型氮化镓层,形成在所述N型氮化镓层部分区域上的重掺杂氮化镓层,形成在所述重掺杂氮化镓层上的P型氮化镓层,所述N型氮化镓层上设置有阴极,所述P型氮化镓层上设置有阳极。
可选地,所述基板为蓝宝石基板。
可选地,所述LED显示模组还包括反光层,所述反光层设置在所述基板背向所述无机LED芯片的一侧面上。
另一方面,本发明实施例还提供了一种LED显示装置,所述LED显示装置具有前述任一种LED显示模组。
另一方面,本发明实施例还提供了一种LED显示模组的制作方法,所述制作方法包括:
提供基板;
在所述基板的一侧面上制作无机LED芯片、光致发光层和控制电路,所述多个无机LED芯片呈阵列排布在所述基板的一侧面上,所述多个无机LED芯片分别与所述控制电路连接,所述控制电路用于驱动所述多个无机LED芯片发光,在垂直于所述基板的方向上,所述光致发光层位于所述无机LED芯片上方,所述光致发光层用于在所述无机LED芯片发出的光的照射下激发出色光;
将透明盖板和所述基板对盒。
另一方面,本发明实施例还提供了另一种LED显示模组的制作方法,所述制作方法包括:
提供基板;
在所述基板的一侧面上制作无机LED芯片,所述多个无机LED芯片呈阵列排布在所述基板的一侧面上;
在透明盖板的一侧面上制作光致发光层和控制电路,所述控制电路用于驱动所述多个无机LED芯片发光,所述光致发光层用于在所述无机LED芯片发出的光的照射下激发出色光;
将所述透明盖板和所述基板对盒,使得所述多个无机LED芯片分别与所述控制电路连接。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种LED显示模组的结构示意图;
图2是本发明实施例提供的一种LED显示模组的基板的结构示意图;
图3是本发明实施例提供的一种LED显示模组的透明盖板的示意图;
图4是本发明实施例提供的另一种LED显示模组的结构示意图;
图5是本发明实施例提供的一种LED显示模组的制作方法的流程图;
图6是本发明实施例提供的另一种LED显示模组的制作方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明实施例提供的一种LED显示模组的结构示意图,如图1所示,该LED显示模组包括:基板1、多个无机LED芯片2、控制电路4、光致发光层5和透明盖板3,透明盖板3与基板1相对设置,控制电路4、光致发光层5和多个无机LED芯片2位于透明盖板3和基板1之间。多个无机LED芯片2分别与控制电路4连接,控制电路4用于驱动多个无机LED芯片2发光,光致发光层5设置在透明盖板3和多个无机LED芯片2之间,光致发光层5用于在无机LED芯片2发出的光的照射下激发出色光。图2是本发明实施例提供的一种LED显示模组的基板的结构示意图,结合图2,多个无机LED芯片2呈阵列排布在基板1的一侧面上。
本发明实施例通过在无机LED芯片上设置光致发光层,光致发光层在无机LED芯片发出的光的照射下激发出色光,避免了使用有机材料激发色光时,由于有机材料寿命短导致的显示模组寿命短的问题,从而延长了显示模组的寿命,同时由于采用无机LED芯片发光,无需增大电流以提高蓝光的亮度,从而降低了显示模组的功耗。
在本实施例的一种实现方式中,每个无机LED芯片2包括形成在基板1的一侧面的N型氮化镓层21,形成在N型氮化镓层21部分区域上的重掺杂氮化 镓层23,形成在重掺杂氮化镓层23上的P型氮化镓层22,N型氮化镓层21上设置有阴极25,P型氮化镓层22上设置有阳极,由于氮化镓材料的无机LED芯片2制备工艺成熟,因此选用氮化镓材料制成的无机LED芯片2发光激发光致发光层5,降低了工艺难度,降低了制作成本,同时由于氮化镓材料制成的无机LED芯片的蓝光光效是OLED的蓝光光效的五倍,采用氮化镓材料制作无机LED芯片可以进一步降低功耗。
其中,基板1优选为蓝宝石基板,蓝宝石具有良好的机械性能和光学性能,同时由于使用蓝宝石为基板1的无机LED芯片2制作工艺成熟,因此制作成本低廉。
需要说明的是,为了便于说明,图2中仅示出了6个无机LED芯片2,在实际应用中,无机LED芯片2的数量可以根据实际需要进行设置,本发明并不以此为限。
进一步地,无机LED芯片2的阴极25的电极材料可以为铜铂金三元合金,铜铂金合金具有良好的延展性,适宜制作成微小的电极,同时还具有良好的导电导热性,能减少LED芯片2的发热,并增强散热能力。
其中,无机LED芯片2可以采用共阴极的方式连接,具体地,多个沿同一条栅线42排列的无机LED芯片2的阴极25相连接,采用共阴极的方式连接可以减少无机LED芯片2与电源之间的导线的设置。
可选地,光致发光层5和控制电路4形成在透明盖板3的同一侧面上,将光致发光层5和控制电路4形成在透明盖板3上,在生产过程中不会受到无机LED芯片2的干涉,工艺简单。
在本发明的另一实施例中,光致发光层5和控制电路4也可以都形成在基板1一侧或是其中一个设置在基板1一侧,另一个设置在透明盖板3的一侧上。
根据本发明的实施例,透明盖板3包括但不限于玻璃盖板、塑料盖板、蓝宝石盖板等。
图3是本发明实施例提供的一种LED显示模组的透明盖板的示意图,如图3所示,控制电路4包括栅线42和与栅线42绝缘交叉设置的数据线43,多条栅线42和多条数据线43交叉形成多个网格,每一网格中设置有一像素驱动电路41,像素驱动电路41分别与栅线42和数据线43连接,且像素驱动电路41与无机LED芯片2一一对应连接,栅线42和数据线43通过像素驱动电路41 控制无机LED芯片2发光。
其中,每一像素驱动电路41至少包括一薄膜晶体管,薄膜晶体管的栅极连接在栅线42上,薄膜晶体管的源极连接在数据线43上,薄膜晶体管的漏极与无机LED芯片2的阳极连接。
需要说明的是,该像素驱动电路41还可以直接选用目前已有的各种AMOLED的像素驱动电路,像素驱动电路41可以包括多个薄膜晶体管和多个电容,通过多个薄膜晶体管和多个电容共同作用,驱动无机LED芯片2发光,同时还可以具有电路补偿功能,例如电压补偿。
进一步地,光致发光层5包括多个光致发光单元,每个光致发光单元对应沿栅线42并排设置的三个无机LED芯片2,将沿栅线42并排设置的三个无机LED芯片2与一个光致发光单元对应设置,从而可以通过三个无机LED芯片2共同激发一个光致发光单元发光,并且可以通过调节三个无机LED芯片2的亮度来控制一个光致发光单元发光。
在图3所示的实施方式中,光致发光单元包括间隔设置的第一子光致发光单元51、第二子光致发光单元52和第三子光致发光单元53,第一子光致发光单元51在无机LED芯片2发出的光的照射下激发出红光,第二子光致发光单元52在无机LED芯片2发出的光的照射下激发出绿光,第三子光致发光单元53在无机LED芯片2发出的光的照射下激发出蓝光,从而可以得到红绿蓝三色光,本实施例中LED显示模组的一个像素单元包括一个光致发光单元和与该光致发光单元相对应设置的三个无机LED芯片2以及用于控制该三个无机LED芯片2发光的像素驱动电路41,通过控制同一像素单元中的三个无机LED芯片发光,进而使该像素单元可以发出不同颜色的光,使得LED显示模组可以显示出不同的色彩。
需要说明的是,第一子光致发光单元51、第二子光致发光单元52和第三子光致发光单元53之间的排列顺序并不限于图3中所示的顺序。
在该实施例方式中,第三子光致发光单元53在无机LED芯片2发出的光的照射下激发出的蓝光的波长为450nm(纳米)~460nm,由于无机LED芯片2发出的蓝光波长在435nm附近,对人眼有危害,因此通过第三子光致发光单元53将波长在435nm附近的蓝光转换为波长在450nm~460nm的蓝光,可以降低无机LED芯片2发出的蓝光对人眼的危害。
在本发明实施例的另一种实施方式中,光致发光单元也可以只包括前述第一子光致发光单元51和第二子光致发光单元52,而不包括第三子光致发光单元53,直接采用无机LED芯片2发出的蓝光,通过设置在无机LED芯片2的照射下激发红光的第一子光致发光单元51和在无机LED芯片2的照射下激发绿光的第二子光致发光单元52,可以分别得到红光和绿光,同时无机LED芯片2发蓝光,即可得到红绿蓝三色光,这种实施方式中,可以减少光致发光层5的覆盖区域,节省成本。
需要说明的是,光致发光层5可以为量子点彩膜,量子点彩膜为一种表面分布有量子点的薄膜材料,量子点一般为球形或类球形,是由半导体材料制成的、直径在2nm~20nm的纳米粒子,其具体制备工艺为现有技术,此处不再详述。
图4是本发明实施例提供的另一种LED显示模组的结构示意图,如图4所示,该LED显示模组还包括钝化层6,钝化层6位于控制电路4和无机LED芯片2之间,钝化层6上设有通孔,无机LED芯片2的阳极与控制电路4通过设置在通孔中的导电体24连接。设置钝化层是有利的,在本实施例中,钝化层不但具有隔离的作用,例如可以避免无机LED芯片2出现短路;进一步,与本领域技术人员减小整个装置厚度的出发点相反,通过钝化层6可以增大无机LED芯片2发出的光与空气之间发生全反射的临界角,减少反射回无机LED芯片2的光,从而提高亮度。
可选地,钝化层6可以由二氧化硅或氮化硅制成。
其中,导电体24可以由ITO(Indium tin oxide,氧化铟锡)形成,使用ITO做电极能减少电极材料对无机LED芯片2发出的光的吸收,从而提高亮度。
可选地,LED显示模组还可以包括反光层(未示出),反光层设置在基板1背向无机LED芯片2的一侧面上,通过反光层将无机LED芯片2发出的部分光向出光侧一侧反射,提高了无机LED芯片2的亮度。
其中,反光层可以由金属银形成,金属银具有良好的反光性能,能够将大部分照射在金属银上的光反射到出光侧,提高了无机LED芯片2的亮度。
图5是本发明实施例提供的一种LED显示模组的制作方法的流程图,该制作方法用于制作前述任一种LED显示模组,如图5所示,该制作方法包括:
S11:提供基板。
S12:在基板的一侧面上制作无机LED芯片、光致发光层和控制电路。
其中,多个无机LED芯片呈阵列排布在基板的一侧面上,多个无机LED芯片分别与控制电路连接,控制电路用于驱动多个无机LED芯片发光,在垂直于基板的方向上,光致发光层位于无机LED芯片上方,光致发光层用于在无机LED芯片发出的光的照射下激发出色光。
S13:将透明盖板和基板对盒。
本发明实施例通过在无机LED芯片上设置光致发光层,光致发光层在无机LED芯片发出的光的照射下激发出色光,避免了使用有机材料激发色光时,由于有机材料寿命短导致的显示模组寿命短的问题,从而延长了显示模组的寿命,同时由于采用无机LED芯片发光,无需增大电流以提高蓝光的亮度,从而降低了显示模组的功耗。
在实际生产中,S12可以包括先在基板的一侧面上制作无机LED芯片,再在无机LED芯片上制作钝化层,之后在钝化层上制作控制电路,最后在控制电路上制作光致发光层。
需要说明的是,钝化层上设有通孔,无机LED芯片的阳极与控制电路通过设置在通孔中的导电体连接。
其中,钝化层可以由二氧化硅或氮化硅形成,导电体可以由ITO形成。
此外,还可以在基板背向无机LED芯片的一侧面上制作反光层。
其中,反光层可以由金属银形成。
图6是本发明实施例提供的另一种LED显示模组的制作方法的流程图,该制作方法用于制作前述任一种LED显示模组,如图6所示,该制作方法包括:
S21:提供基板。
其中,该基板可以是蓝宝石基板。
S22:在基板的一侧面上制作无机LED芯片。
其中,多个无机LED芯片呈阵列排布在基板的一侧面上。
S23:在透明盖板的一侧面上制作光致发光层和控制电路。
其中,控制电路用于驱动多个无机LED芯片发光,光致发光层用于在无机LED芯片发出的光的照射下激发出色光。
S24:将透明盖板和基板对盒,使得多个无机LED芯片分别与控制电路连接。
本发明实施例通过在无机LED芯片上设置光致发光层,光致发光层在无机LED芯片发出的光的照射下激发出色光,避免了使用有机材料激发色光时,由于有机材料寿命短导致的显示模组寿命短的问题,从而延长了显示模组的寿命,同时由于采用无机LED芯片发光,无需增大电流以提高蓝光的亮度,从而降低了显示模组的功耗。
在实际生产中,S22可以包括先在基板的一侧面上制作无机LED芯片,再在无机LED芯片上制作钝化层。
需要说明的是,钝化层上设有通孔,无机LED芯片的阳极与控制电路通过设置在通孔中的导电体连接。
其中,钝化层可以由二氧化硅或氮化硅形成,导电体可以由ITO形成。
实现时,S23可以包括先在透明盖板上制作控制电路,再制作光致发光层。
此外,还可以在基板背向无机LED芯片的一侧面上制作反光层。
其中,反光层可以由金属银形成。
本发明实施例还提供了一种LED显示装置,该LED显示装置包括前述的任一种LED显示模组。
本发明实施例通过在无机LED芯片上设置光致发光层,光致发光层在无机LED芯片发出的光的照射下激发出色光,避免了使用有机材料激发色光时,由于有机材料寿命短导致的显示模组寿命短的问题,从而延长了显示模组的寿命,同时由于采用无机LED芯片发光,无需增大电流以提高蓝光的亮度,从而降低了显示模组的功耗。
该LED显示装置可以为:液晶面板、电子纸、LED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种LED显示模组,包括:基板、多个无机LED芯片、控制电路、光致发光层和透明盖板;
    所述透明盖板与所述基板相对设置,所述控制电路、所述光致发光层和所述多个无机LED芯片位于所述透明盖板和所述基板之间,所述多个无机LED芯片呈阵列排布在所述基板的一侧面上且所述多个无机LED芯片分别与所述控制电路连接使得所述控制电路驱动所述多个无机LED芯片发光;所述光致发光层设置在所述透明盖板和所述多个无机LED芯片之间使得所述光致发光层在所述无机LED芯片发出的光的照射下激发出色光。
  2. 根据权利要求1所述的LED显示模组,其中,所述光致发光层和所述控制电路形成在所述透明盖板的同一侧面上。
  3. 根据权利要求1所述的LED显示模组,其中,所述控制电路包括栅线和与所述栅线绝缘交叉设置的数据线,多条所述栅线和多条所述数据线交叉形成多个网格,每一所述网格中设置有一像素驱动电路,所述像素驱动电路分别与所述栅线和所述数据线连接,且所述像素驱动电路与所述无机LED芯片一一对应连接。
  4. 根据权利要求3所述的LED显示模组,其中,所述光致发光层包括多个光致发光单元,每个所述光致发光单元对应沿所述栅线并排设置的三个所述无机LED芯片。
  5. 根据权利要求4所述的LED显示模组,其中,所述光致发光单元包括间隔设置的第一子光致发光单元和第二子光致发光单元,所述第一子光致发光单元在所述无机LED芯片发出的光的照射下激发出红光,所述第二子光致发光单元在所述无机LED芯片发出的光的照射下激发出绿光,所述无机LED芯片发出的光为蓝光。
  6. 根据权利要求5所述的LED显示模组,其中,所述光致发光单元还包括第三子光致发光单元,所述第三子光致发光单元在所述无机LED芯片发出的光的照射下激发出蓝光。
  7. 根据权利要求6所述的LED显示模组,其中,所述第三子光致发光单元在所述无机LED芯片发出的光的照射下激发出的蓝光的波长为450nm~460nm。
  8. 根据权利要求1~7任一项所述的LED显示模组,其中,所述光致发光 层为量子点彩膜。
  9. 根据权利要求1~7任一项所述的LED显示模组,其中,所述LED显示模组还包括钝化层,所述钝化层位于所述控制电路和所述无机LED芯片之间,所述钝化层上设有通孔,所述无机LED芯片的阳极与所述控制电路通过设置在所述通孔中的导电体连接。
  10. 根据权利要求8所述的LED显示模组,其中,所述导电体由氧化铟锡形成。
  11. 根据权利要求1~7任一项所述的LED显示模组,其中,所述无机LED芯片的阴极的电极材料为铜铂金三元合金。
  12. 根据权利要求1~7任一项所述的LED显示模组,其中,所述无机LED芯片包括形成在所述基板的一侧面的N型氮化镓层,形成在所述N型氮化镓层部分区域上的重掺杂氮化镓层,形成在所述重掺杂氮化镓层上的P型氮化镓层,所述N型氮化镓层上设置有阴极,所述P型氮化镓层上设置有阳极。
  13. 根据权利要求1~7任一项所述的LED显示模组,其中,所述基板为蓝宝石基板。
  14. 根据权利要求1~7任一项所述的LED显示模组,其中,所述LED显示模组还包括反光层,所述反光层设置在所述基板背向所述无机LED芯片的一侧面上。
  15. 一种LED显示装置,其中,所述LED显示装置包括权利要求1~14任一项所述的LED显示模组。
  16. 一种LED显示模组的制作方法,其中,所述制作方法包括:
    提供基板;
    在所述基板的一侧面上制作无机LED芯片、光致发光层和控制电路,所述多个无机LED芯片呈阵列排布在所述基板的一侧面上,所述多个无机LED芯片分别与所述控制电路连接,所述控制电路用于驱动所述多个无机LED芯片发光,在垂直于所述基板的方向上,所述光致发光层位于所述无机LED芯片上方,所述光致发光层用于在所述无机LED芯片发出的光的照射下激发出色光;
    将透明盖板和所述基板对盒。
  17. 一种LED显示模组的制作方法,其中,所述制作方法包括:
    提供基板;
    在所述基板的一侧面上制作无机LED芯片,所述多个无机LED芯片呈阵列排布在所述基板的一侧面上;
    在透明盖板的一侧面上制作光致发光层和控制电路,所述控制电路用于驱动所述多个无机LED芯片发光,所述光致发光层用于在所述无机LED芯片发出的光的照射下激发出色光;
    将所述透明盖板和所述基板对盒,使得所述多个无机LED芯片分别与所述控制电路连接。
PCT/CN2017/080890 2016-04-25 2017-04-18 Led显示模组、显示装置及显示模组的制作方法 WO2017186024A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/576,278 US20180158808A1 (en) 2016-04-25 2017-04-18 Led display module, display device and method of manufacturing led display module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610262716.8 2016-04-25
CN201610262716.8A CN105789237A (zh) 2016-04-25 2016-04-25 Led显示模组、显示装置及显示模组的制作方法

Publications (1)

Publication Number Publication Date
WO2017186024A1 true WO2017186024A1 (zh) 2017-11-02

Family

ID=56399443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080890 WO2017186024A1 (zh) 2016-04-25 2017-04-18 Led显示模组、显示装置及显示模组的制作方法

Country Status (3)

Country Link
US (1) US20180158808A1 (zh)
CN (1) CN105789237A (zh)
WO (1) WO2017186024A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789237A (zh) * 2016-04-25 2016-07-20 京东方科技集团股份有限公司 Led显示模组、显示装置及显示模组的制作方法
CN106711255B (zh) * 2016-12-30 2018-03-30 武汉华星光电技术有限公司 光致发光显示面板
CN108962914B (zh) * 2017-05-19 2021-07-30 启耀光电股份有限公司 电子装置与其制造方法
CN108987423B (zh) 2017-06-05 2023-09-12 三星电子株式会社 显示装置
KR102455483B1 (ko) * 2017-06-30 2022-10-19 삼성전자주식회사 Led 장치 및 그 제조 방법
US10892297B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting diode (LED) stack for a display
US10892296B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting device having commonly connected LED sub-units
US12100696B2 (en) 2017-11-27 2024-09-24 Seoul Viosys Co., Ltd. Light emitting diode for display and display apparatus having the same
US11527519B2 (en) 2017-11-27 2022-12-13 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US10748881B2 (en) 2017-12-05 2020-08-18 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US10886327B2 (en) 2017-12-14 2021-01-05 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11552057B2 (en) 2017-12-20 2023-01-10 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US11522006B2 (en) 2017-12-21 2022-12-06 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11552061B2 (en) 2017-12-22 2023-01-10 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US11114499B2 (en) 2018-01-02 2021-09-07 Seoul Viosys Co., Ltd. Display device having light emitting stacked structure
US10784240B2 (en) 2018-01-03 2020-09-22 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
CN108873454A (zh) * 2018-07-02 2018-11-23 厦门乾照光电股份有限公司 主动发光集成式彩色显示面板及其制作方法、显示装置
KR102533666B1 (ko) * 2018-09-14 2023-05-17 삼성전자주식회사 디스플레이 패널 및 이를 포함하는 디스플레이 장치
CN109410775A (zh) * 2018-10-24 2019-03-01 京东方科技集团股份有限公司 一种微led显示面板、其制作方法及显示装置
US20210183833A1 (en) * 2019-12-17 2021-06-17 Innolux Corporation Electronic device
CN113675315B (zh) * 2020-05-14 2023-05-09 成都辰显光电有限公司 显示面板及其制备方法
KR20220068446A (ko) * 2020-11-19 2022-05-26 삼성전자주식회사 디스플레이 모듈, 디스플레이 장치 및 그 제조방법
CN112968020B (zh) * 2020-12-25 2023-05-19 重庆康佳光电技术研究院有限公司 基板组件、显示单元、显示模组及其制作方法及显示屏
TWI832395B (zh) * 2022-08-25 2024-02-11 聚積科技股份有限公司 組裝型發光二極體顯示裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208504A (zh) * 2012-12-25 2013-07-17 友达光电股份有限公司 显示装置
CN105789237A (zh) * 2016-04-25 2016-07-20 京东方科技集团股份有限公司 Led显示模组、显示装置及显示模组的制作方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366732B2 (ja) * 1998-09-30 2009-11-18 ソニー株式会社 電気光学装置の製造方法及び電気光学装置用の駆動基板の製造方法
US7888700B2 (en) * 2007-03-08 2011-02-15 Eastman Kodak Company Quantum dot light emitting device
JP2008276212A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
KR101154596B1 (ko) * 2009-05-21 2012-06-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
WO2010138697A1 (en) * 2009-05-27 2010-12-02 Gary Wayne Jones High efficiency and long life optical spectrum conversion device and process
US8642363B2 (en) * 2009-12-09 2014-02-04 Nano And Advanced Materials Institute Limited Monolithic full-color LED micro-display on an active matrix panel manufactured using flip-chip technology
KR20120028567A (ko) * 2010-09-15 2012-03-23 삼성엘이디 주식회사 멀티셀 어레이를 갖는 반도체 발광장치
US8585268B2 (en) * 2011-10-21 2013-11-19 Ergophos, Llc Light-guide panel for display with laser backlight
US8912020B2 (en) * 2011-11-23 2014-12-16 International Business Machines Corporation Integrating active matrix inorganic light emitting diodes for display devices
TWI535077B (zh) * 2012-05-24 2016-05-21 台達電子工業股份有限公司 發光單元及其發光模組
CN103855179A (zh) * 2012-12-03 2014-06-11 孙润光 一种无机发光二极管显示器件结构
TWI523267B (zh) * 2013-03-08 2016-02-21 友達光電股份有限公司 發光二極體陣列的製作方法以及發光二極體顯示裝置的製作方法
US20160284811A1 (en) * 2013-11-04 2016-09-29 Massachusetts Institute Of Technology Electronics including graphene-based hybrid structures
JP6357349B2 (ja) * 2014-05-16 2018-07-11 株式会社ジャパンディスプレイ 表示装置
TWI749726B (zh) * 2015-03-09 2021-12-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設備
CN105140352B (zh) * 2015-07-29 2018-04-20 中山大学 GaN基LED阵列微显示器件及其制作方法
US10079264B2 (en) * 2015-12-21 2018-09-18 Hong Kong Beida Jade Bird Display Limited Semiconductor devices with integrated thin-film transistor circuitry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208504A (zh) * 2012-12-25 2013-07-17 友达光电股份有限公司 显示装置
CN105789237A (zh) * 2016-04-25 2016-07-20 京东方科技集团股份有限公司 Led显示模组、显示装置及显示模组的制作方法

Also Published As

Publication number Publication date
US20180158808A1 (en) 2018-06-07
CN105789237A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2017186024A1 (zh) Led显示模组、显示装置及显示模组的制作方法
US11985856B2 (en) Display apparatus
US9825106B2 (en) OLED display substrate and method for manufacturing the same, and display apparatus
WO2019223567A1 (zh) 显示基板、显示装置以及显示基板的制作方法
JP3105430U (ja) 垂直電極構造の窒化ガリウム系発光ダイオード
US20220209072A1 (en) Light-emitting device and display device using the same
TWI689092B (zh) 具有透光基材之微發光二極體顯示模組及其製造方法
WO2020001040A1 (zh) 发光器件及其制作方法、电子装置
US20110284883A1 (en) Semiconductor light-emitting element, light-emitting device, luminaire, display unit, traffic signal lamp unit, and traffic information display unit
TW201826516A (zh) 微型發光二極體晶片
TW202011629A (zh) 微發光二極體顯示面板
WO2023207692A1 (zh) 显示基板、封装基板和显示装置
TW201904048A (zh) 微發光二極體顯示模組及其製造方法
CN109859644A (zh) 显示面板及显示模组
US20070246726A1 (en) Package structure of light emitting device
TWI523267B (zh) 發光二極體陣列的製作方法以及發光二極體顯示裝置的製作方法
WO2022205515A1 (zh) Oled 显示面板与显示装置
CN113782561B (zh) 一种高亮度高可靠性的Micro-LED显示装置
TW201904049A (zh) 微發光二極體顯示模組的製造方法
US10276756B2 (en) LED display panel
KR20220043742A (ko) 마이크로 led 및 이를 구비한 디스플레이 모듈
TWI766900B (zh) 發光裝置
WO2016145711A1 (zh) 发光装置及背光模组
CN215987950U (zh) 一种Micro LED单色显示屏
TWI245582B (en) Picture element for electro-luminescent display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15576278

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788676

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17788676

Country of ref document: EP

Kind code of ref document: A1