Nothing Special   »   [go: up one dir, main page]

WO2017157128A1 - 一种配置和确定半持续调度的方法及设备 - Google Patents

一种配置和确定半持续调度的方法及设备 Download PDF

Info

Publication number
WO2017157128A1
WO2017157128A1 PCT/CN2017/073799 CN2017073799W WO2017157128A1 WO 2017157128 A1 WO2017157128 A1 WO 2017157128A1 CN 2017073799 W CN2017073799 W CN 2017073799W WO 2017157128 A1 WO2017157128 A1 WO 2017157128A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
rnti
configuration
terminal
frequency domain
Prior art date
Application number
PCT/CN2017/073799
Other languages
English (en)
French (fr)
Inventor
赵亚利
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2017157128A1 publication Critical patent/WO2017157128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a method and apparatus for configuring and determining semi-persistent scheduling.
  • LTE Long Term Evolution
  • SPS Semi-Persistent Scheduling
  • the LTE system supports two scheduling modes: dynamic scheduling and SPS.
  • Dynamic scheduling is applicable to services where the arrival time of service data is relatively random or the packet size is irregular.
  • the SPS is mainly applicable to services with a service data SPS period and a fixed packet size.
  • the SPS is mainly designed for the voice service.
  • the typical characteristics of the voice service are that the data packet arrival interval is fixed and the data packet size is basically fixed. Therefore, only one SPS configuration with repeated SPS configuration needs to be configured when configuring the SPS configuration. can.
  • V2X communication mainly includes three aspects:
  • V2V Communication between the On Broad Unit (OBU) on the car.
  • OBU On Broad Unit
  • V2I Vechile-to-Infrastructure
  • RSU Road Side Unit
  • V2P Vechile-to-Pedestrian
  • the V2V service is characterized in that the SPS period of the service data packet arrives (the SPS period is 100 ms), but the data packet size is not basically fixed, and the service data packet carrying the complete certificate is large, and other data packets are relatively small. Therefore, from the perspective of the business model, the V2V business model is a large package followed by several small packets, and then a large package, followed by several small packets, which are repeated in a loop.
  • the current LTE SPS mode is applied to the V2X communication mode, which causes waste of resources or increases overhead.
  • the embodiment of the present invention provides a method and a device for configuring and determining a semi-persistent scheduling, which are used to solve the problem that the LTE SPS mode existing in the prior art is applied to the V2X communication mode, which may cause waste of resources or increase overhead.
  • a method for configuring semi-persistent scheduling is provided by the embodiment of the present application, and the method includes:
  • the network side device notifies the terminal of the semi-persistent scheduling SPS cell radio network temporary identifier C-RNTI and the SPS period of the SPS configuration corresponding to each SPS C-RNTI;
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled physical downlink control channel PDCCH signaling, for any one of the multiple SPS C-RNTIs.
  • SPS frequency domain resource configuration information of the corresponding SPS configuration
  • the network side device notifies the SPS C-RNTI of the terminal and the SPS period of the SPS configuration corresponding to each SPS C-RNTI, where the network side device includes the multiple SPS C-RNTIs and each The SPS period of the SPS configuration corresponding to the SPS C-RNTI is sent to the terminal in a radio resource control RRC signaling; or, for any one of the multiple SPS C-RNTIs, the SPS C-RNTI The network side device sends the SPS C-RNTI and the SPS period of the SPS configuration corresponding to the SPS C-RNTI to the terminal in the RRC signaling, where different SPS C-RNTIs are located in different RRC signaling.
  • the network side device places an SPS period of the SPS C-RNTI and an SPS configuration corresponding to the SPS C-RNTI Before being sent to the terminal in the RRC signaling, the network side device further carries the same identification information in all RRC signalings including any one of the multiple SPS C-RNTIs.
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • the network side device further determines, according to the service feature of the service corresponding to the SPS configuration, the sending time of each PDCCH signaling; for the multiple SPS C- Any one of the SPS C-RNTIs in the RNTI, where the network side device uses the PDCCH signaling that is scrambled by the SPS C-RNTI, and sends the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal,
  • the method includes: for any one of the multiple SPS C-RNTIs, the network side device sends and uses the SPS after the corresponding sending moment arrives C-RNTI scrambled PDCCH signaling including SPS frequency domain resource configuration information.
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • the network side device further or not simultaneously uses the PDCCH signaling scrambled by each SPS C-RNTI to notify the terminal to release the SPS corresponding to the SPS C-RNTI.
  • the network side device notifies the terminal to release the multiple SPS configurations by using PDCCH signaling scrambled by any one of the multiple SPS C-RNTIs.
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • the method further includes: the SPS is configured as an uplink SPS configuration, and for each set of SPS, the network side device receives consecutive N by using resources corresponding to the SPS configuration. After the BSR is filled in the padding buffer state without the data portion, the SPS configuration is released.
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • the method further includes: if the SPS configuration corresponding to each SPS C-RNTI does not overlap in the time domain, the network side device uses the SPS corresponding to each SPS C-RNTI. If the SPS configuration corresponding to each SPS C-RNTI overlaps in the time domain, the network side device selects the SPS corresponding to each SPS C-RNTI according to the set selection condition. The configuration determines the SPS configuration to be used.
  • the selection condition is one of the following conditions:
  • a method for determining semi-persistent scheduling includes: determining, by the network side device, a plurality of SPS C-RNTIs and SPS periods of SPS configurations of each SPS C-RNTI, where each terminal The SPS C-RNTIs correspond to different SPS configurations; the terminal determines, according to the PDCCH signaling scrambled by each SPS C-RNTI in the multiple SPS C-RNTIs, each SPS configured by the network side device for the terminal.
  • the configured SPS frequency domain resource configuration information the terminal determines, according to the SPS frequency domain resource configuration information and the SPS period configured by each set of SPS, the multiple sets of SPS configurations configured by the network side device for the terminal.
  • the terminal determines, according to the notification of the network side device, a plurality of SPS C-RNTIs and an SPS period of the SPS configuration corresponding to each SPS C-RNTI, where the terminal determines that the received RRC signaling is received by the terminal. All SPS C-RNTIs in the UE, and determine the SPS period of the SPS configuration corresponding to each SPS C-RNTI in the RRC signaling; or, The terminal determines the received multiple RRC signaling including the same identification information, and determines each SPS C-RNTI in the multiple RRC signaling including the same identification information, and takes the SPS cycle in each RRC signaling as The SPS period of the SPS configuration corresponding to the SPS C-RNTI in the RRC signaling.
  • the terminal determines, after the network side device configures multiple sets of SPSs for the terminal, the method further includes: if each SPS C- If the SPS configuration corresponding to the RNTI does not overlap in the time domain, the terminal configures the SPS corresponding to each SPS C-RNTI as the SPS configuration that the terminal needs to use; if the SPS corresponding to each SPS C-RNTI is configured at the time If there is an overlap on the domain, the terminal determines the SPS configuration that the terminal needs to use from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the selection condition is one of the following conditions:
  • the terminal further includes:
  • the SPS is configured as an uplink SPS configuration.
  • the terminal For each set of SPS, the terminal sends a continuous N padding BSRs with no data part to the network side device by using the resources of the SPS to notify the network side.
  • the device releases the SPS configuration.
  • a network side device configured with a semi-persistent scheduling, where the network side device includes:
  • a processing module configured to notify a plurality of SPS C-RNTIs of the terminal and an SPS period of the SPS configuration corresponding to each SPS C-RNTI;
  • a configuration module configured to send the SPS configuration corresponding to the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling for any one of the multiple SPS C-RNTIs SPS frequency domain resource configuration information.
  • the processing module is specifically configured to: send the SPS period of the SPS C-RNTI and the SPS configuration corresponding to each SPS C-RNTI to an RRC signaling to be sent to the terminal; or And the SPS period of the SPS configuration of the SPS C-RNTI and the SPS C-RNTI corresponding to the SPS C-RNTI is sent to the terminal in RRC signaling, for any one of the multiple SPS C-RNTIs. Where different SPS C-RNTIs are located in different RRC signaling.
  • the processing module is further configured to: configure the SPS of the SPS C-RNTI and the SPS configured by the SPS C-RNTI for any one of the multiple SPS C-RNTIs All RRC signaling including any one of a plurality of SPS C-RNTIs before being sent to the terminal in RRC signaling Carry the same identification information.
  • the processing module is specifically configured to: use, by using the PDCCH signaling that is scrambled by the SPS C-RNTI, in the SPS C-RNTI, where the configuration module is used for any one of the multiple SPS C-RNTIs
  • the processing module is specifically configured to: use, by using the PDCCH signaling that is scrambled by the SPS C-RNTI, in the SPS C-RNTI, where the configuration module is used for any one of the multiple SPS C-RNTIs
  • the terminal sends the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI, determining, according to the service feature of the service corresponding to the SPS configuration, the sending time of each PDCCH signaling; for the multiple SPS C- Any SPS C-RNTI in the RNTI, after arriving at the corresponding transmission time, transmits PDCCH signaling including SPS frequency domain resource configuration information scrambled by the SPS C-RNTI.
  • the processing module is specifically configured to: in the configuration module, use any one of the multiple SPS C-RNTIs, and the network side device uses the SPS C-RNTI to scramble After the PDCCH signaling, the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI is sent to the terminal, and then:
  • the SPS is configured as an uplink SPS
  • the processing module is specifically configured to: use, by the configuration module, the SPS C-RNTI for any one of the multiple SPS C-RNTIs
  • the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI is sent to the terminal, and for each set of SPS configurations, the resources corresponding to the SPS configuration are received, and consecutive N are received.
  • the SPS configuration is released.
  • the configuration module is further configured to: use, by the configuration module, the PDCCH signaling that is scrambled by the SPS C-RNTI for any one of the multiple SPS C-RNTIs After the terminal sends the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI, the terminal performs:
  • the SPS configuration corresponding to each SPS C-RNTI does not overlap in the time domain, the SPS configuration corresponding to each SPS C-RNTI is configured as the SPS configuration to be used;
  • the SPS configuration to be used is determined from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the selection condition is one of the following conditions:
  • a terminal for determining semi-persistent scheduling is provided in the embodiment of the present application, where the terminal includes:
  • a period determining module configured to determine, according to the notification of the network side device, multiple SPS C-RNTIs and each SPS The SPS period of the SPS configuration of the C-RNTI, where each SPS C-RNTI corresponds to a different SPS configuration;
  • An information determining module configured to determine SPS frequency domain resource configuration information configured by each network SPS for each SPS configured by the network side device according to PDCCH signaling that is scrambled by each SPS C-RNTI in the multiple SPS C-RNTIs ;
  • the configuration determining module is configured to determine, according to the SPS frequency domain resource configuration information and the SPS period configured by each set of SPS, the multiple sets of SPS configurations configured by the network side device for the terminal.
  • the period determining module is specifically configured to: determine all SPS C-RNTIs in the received RRC signaling, and determine an SPS period of the SPS configuration corresponding to each SPS C-RNTI in the RRC signaling; or Determining a plurality of RRC signalings including the same identification information, and determining each SPS C-RNTI of the plurality of RRC signalings including the same identification information, and using the SPS period in each RRC signaling as The SPS period of the SPS configuration corresponding to the SPS C-RNTI in the RRC signaling.
  • the configuration determining module is further configured to: after determining the SPS configuration configured by the network side device for the terminal according to the SPS frequency domain resource configuration information and the SPS period of each SPS configuration, execute: The SPS configuration corresponding to each SPS C-RNTI does not overlap in the time domain, and the SPS configuration corresponding to each SPS C-RNTI is used as the SPS configuration that the terminal needs to use; if the SPS configuration corresponding to each SPS C-RNTI If there is overlap in the time domain, the SPS configuration that the terminal needs to use is determined from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the selection condition is one of the following conditions:
  • the SPS is configured as an uplink SPS
  • the configuration determining module is further configured to: after determining, by the network side device, multiple sets of SPS configurations configured by the terminal, by using the SPS for each set of SPS configurations
  • the configured resource sends a continuous N padding BSRs with no data part to the network side device, to notify the network side device to release the SPS configuration.
  • the embodiment of the present application further provides a network side device, including: a processor, a transceiver, and a memory;
  • the processor is configured to read a program in the memory and execute:
  • the transceiver Notifying, by the transceiver, a plurality of semi-persistent scheduling SPS cell radio network temporary identifiers C-RNTI and an SPS period of an SPS configuration corresponding to each SPS C-RNTI;
  • the transceiver is configured to receive and transmit data under the control of the processor.
  • the processor is specifically configured to: send the SPS period of the SPS C-RNTI and the SPS configuration corresponding to each SPS C-RNTI to an RRC signaling to be sent to the terminal; or And the SPS period of the SPS configuration of the SPS C-RNTI and the SPS C-RNTI corresponding to the SPS C-RNTI is sent to the terminal in RRC signaling, for any one of the multiple SPS C-RNTIs. Where different SPS C-RNTIs are located in different RRC signaling.
  • the processor is further configured to: configure the SPS of the SPS C-RNTI and the SPS configured by the SPS C-RNTI for any one of the multiple SPS C-RNTIs Before the period is placed in the RRC signaling and sent to the terminal, the same identification information is carried in all RRC signaling including any one of the multiple SPS C-RNTIs.
  • the processor is specifically configured to: send, by using the SPS C-RNTI scrambled PDCCH signaling, the SPS to the terminal for any one of the multiple SPS C-RNTIs Before the SPS frequency domain resource configuration information of the SPS configuration corresponding to the C-RNTI, determining, according to the service feature of the service corresponding to the SPS configuration, determining a transmission time of each PDCCH signaling; for any one of the multiple SPS C-RNTIs The SPS C-RNTI transmits PDCCH signaling including SPS frequency domain resource configuration information scrambled by the SPS C-RNTI after the corresponding transmission time arrives.
  • the processor is specifically configured to: send, by using the SPS C-RNTI scrambled PDCCH signaling, the SPS to the terminal for any one of the multiple SPS C-RNTIs After the SPS frequency domain resource configuration information of the SPS configuration corresponding to the C-RNTI, execute:
  • the SPS is configured as an uplink SPS
  • the processor is specifically configured to: use the SPS C-RNTI scrambled PDCCH for any one of the multiple SPS C-RNTIs
  • the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI is sent to the terminal, for each SPS configuration, the resources of the SPS configuration are received, and the filling of the N consecutive data portions is received.
  • the BSR is reported to the BSR, the SPS configuration is released.
  • N is an integer greater than or equal to 1.
  • the processor is further configured to: send the SPS to the terminal by using the SPS C-RNTI scrambled PDCCH signaling for any one of the multiple SPS C-RNTIs After the SPS frequency domain resource configuration information of the SPS configuration corresponding to the C-RNTI, execute:
  • each SPS C-RNTI is mapped.
  • the SPS configuration is used as the SPS configuration to be used; if the SPS configuration corresponding to each SPS C-RNTI overlaps in the time domain, it is determined from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition. SPS configuration.
  • the selection condition is one of the following conditions:
  • the embodiment of the present application further provides a terminal, including: a processor, a transceiver, and a memory; the processor is configured to read a program in the memory, and execute:
  • each SPS C-RNTI corresponds to a different SPS Configuration
  • the transceiver is configured to receive and transmit data under the control of the processor.
  • the processor is specifically configured to: determine all SPS C-RNTIs in the received RRC signaling, and determine an SPS period of the SPS configuration corresponding to each SPS C-RNTI in the RRC signaling; or Determining a plurality of RRC signalings that include the same identification information, and determining each SPS C-RNTI of the plurality of RRC signalings that include the same identification information, and using the SPS period in each RRC signaling as a The SPS period of the SPS configuration corresponding to the SPS C-RNTI in the RRC signaling.
  • the processor is further configured to: after determining, according to the SPS frequency domain resource configuration information and the SPS period of each SPS configuration, the network side device configured for the multiple SPS configurations of the terminal, perform:
  • the SPS configuration corresponding to each SPS C-RNTI is used as the SPS configuration that the terminal needs to use; if each SPS C-RNTI corresponds to the SPS If the configuration has overlap in the time domain, the SPS configuration that the terminal needs to use is determined from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the selection condition is one of the following conditions:
  • the SPS is configured as an uplink SPS
  • the processor is further configured to: after determining, by the network side device, multiple sets of SPS configurations configured by the terminal, configured by the SPS for each set of SPS configurations And a padding BSR that is sent to the network side device, and is used to notify the network side device to release the SPS configuration.
  • the network side device notifies the SPS C-RNTI of the terminal and the SPS period of the SPS configuration corresponding to each SPS C-RNTI, and sends the PDCCH signaling scrambled by the SPS C-RNTI to the terminal.
  • the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI Since one SPS C-RNTI corresponds to one SPS configuration, compared with the background technology, only one SPS configuration can be configured, and the number of SPS configurations is increased, thereby reducing resource waste and overhead, and further improving system performance.
  • FIG. 1 is a schematic structural diagram of a system for configuring semi-persistent scheduling according to an embodiment of the present application
  • 2A is a schematic diagram of a time domain relationship between different SPS frequency domain resources according to an embodiment of the present application
  • 2B is a schematic diagram of overlapping SPS frequency domain resources according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first network device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first terminal according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a second network device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for configuring semi-persistent scheduling according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for determining semi-persistent scheduling according to an embodiment of the present application.
  • the network device notifies the terminal of the SPS cell radio network temporary identifier (C-RNTI) and the SPS period of the SPS configuration corresponding to each SPS C-RNTI, and uses the SPS.
  • C-RNTI scrambled physical downlink control channel (Physical Downlink Control Channel, The PDCCH) signaling sends the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal. Since one SPS C-RNTI corresponds to one SPS configuration, compared with the background technology, only one SPS configuration can be configured, and the number of SPS configurations is increased, thereby reducing resource waste and overhead, and further improving system performance.
  • the network device sends multiple sets of SPS configurations to the terminal, and the terminal determines multiple sets of SPS configurations configured by the network device.
  • the terminal selects an SPS configuration to be used by the terminal from multiple SPS configurations, and sends data to the network device through the SPS configuration that the terminal needs to use; correspondingly, if the network device can determine the SPS used by the terminal The SPS can be detected by the terminal. If the SPS used by the terminal cannot be determined, the corresponding resource detection needs to be configured for multiple sets of SPS.
  • the network side device selects an SPS configuration to be used by the terminal from multiple SPS configurations, and sends data to the terminal through the SPS configuration that the terminal needs to use; correspondingly, if the terminal can determine the network side device usage
  • the SPS can detect the SPS used by the network side device. If the SPS used by the network side device cannot be determined, the corresponding resource detection needs to be configured for multiple sets of SPS.
  • the system for configuring semi-persistent scheduling in the embodiment of the present application includes: a network side device 10, configured to notify a plurality of SPS C-RNTIs of a terminal and an SPS period of an SPS configuration corresponding to each SPS C-RNTI,
  • the SPS C-RNTI of the SPS C-RNTI is used to transmit the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal by using the PDCCH signaling that is scrambled by the SPS C-RNTI.
  • the terminal 20 is configured to determine, according to the notification of the network side device, a plurality of SPS C-RNTIs and SPS configurations of SPS configurations of each SPS C-RNTI, where each SPS C-RNTI corresponds to a different SPS configuration; according to multiple SPSs PDCCH signaling scrambled by each SPS C-RNTI in the C-RNTI, determining SPS frequency domain resource configuration information configured by the network side device for each SPS configured by the terminal; SPS frequency domain configured according to each SPS The resource configuration information and the SPS period determine a plurality of sets of SPS configurations configured by the network side device for the terminal.
  • the network side device in the embodiment of the present application may be a base station (such as a macro base station (including an evolved base station, etc.), a home base station, etc.), or an RN (relay) device, or other network side devices.
  • a base station such as a macro base station (including an evolved base station, etc.), a home base station, etc.), or an RN (relay) device, or other network side devices.
  • the SPS frequency domain resource configuration information and the SPS period corresponding to the multiple SPS configurations configured for the terminal are configured.
  • the present application when configuring the SPS cycle for the terminal, the present application has two modes, which are respectively introduced below.
  • Manner 1 The SPS cycle is configured for the terminal through a Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the network side device sends the SPS period of the SPS C-RNTI and the SPS configuration corresponding to each SPS C-RNTI in an RRC signaling to the terminal; correspondingly, the terminal will receive All SPS C-RNTIs in the RRC signaling serve as the SPS C-RNTI of the same service, and determine the SPS period of the SPS configuration corresponding to each SPS C-RNTI in the RRC signaling.
  • SPS C-RNTI corresponding to one service has A, B, and C
  • A corresponds to SPS cycle 1 of SPS configuration
  • B corresponds to SPS cycle 2 of SPS configuration
  • C corresponds to SPS cycle 3 of SPS configuration.
  • the network side device puts the A and SPS cycle 1 binding relationship, the B and SPS cycle 2 binding relationship, and the C and SPS cycle 3 binding relationships in one RRC signaling.
  • the terminal after receiving an RRC signaling, the terminal includes A, B, and C in the RRC signaling, so the terminal determines that A, B, and C belong to the same service, and according to the binding relationship in the RRC signaling. It is determined that A corresponds to the SPS cycle 1 of the SPS configuration, B corresponds to the SPS cycle 2 of the SPS configuration, and C corresponds to the SPS cycle 3 of the SPS configuration.
  • Manner 2 The SPS period is configured for the terminal by using multiple RRC signaling.
  • the network side device places the SPS period of the SPS C-RNTI and the SPS configuration corresponding to the SPS C-RNTI in the RRC.
  • the signaling is sent to the terminal, where different SPS C-RNTIs are located in different RRC signaling.
  • the network side device carries the same identifier information in all RRC signalings of any one of the multiple SPS C-RNTIs.
  • the terminal determines the received multiple RRC signaling including the same identification information, and uses each SPSC-RNTI of the multiple RRC signaling including the same identification information as the SPS C- of the same service.
  • the RNTI, and the SPS period in each RRC signaling is used as the SPS period of the SPS configuration corresponding to the SPS C-RNTI in the RRC signaling.
  • the SPS C-RNTI corresponding to a service has A, B, and C, A corresponds to SPS period 1 of SPS configuration, B corresponds to SPS period 2 of SPS configuration, C corresponds to SPS period 3 of SPS configuration, and the identification information of the service is 11 .
  • the network side device places A, SPS periods 1 and 11 in RRC signaling 1; B, SPS periods 2 and 11 in RRC signaling 2; and C, SPS periods 3 and 11 in RRC signaling 1 .
  • the terminal may determine the RRC signaling because the identification information included in the RRC signaling 1, the RRC signaling 2, and the RRC signaling 3 is 11. 1.
  • the SPS C-RNTI included in the RRC signaling 2 and the RRC signaling 3 corresponds to the same service, and the RRC signaling 1 includes the A and SPS cycle 1, and can determine the SPS cycle 1 corresponding to the SPS configuration of the A; RRC signaling 2 includes B and SPS period 2, and it can be determined that B corresponds to the SPS period 2 of the SPS configuration; RRC signaling 3 includes C and SPS period 3, and can determine the SPS period 3 corresponding to the SPS configuration.
  • the embodiment of the present application configures the SPS frequency domain resource configuration information for the terminal by using PDCCH signaling.
  • the network side device puts the SPS frequency domain resource configuration information of one SPS configuration into the PDCCH signaling, and scrambles the PDCCH signaling by using the SPS C-RNTI corresponding to the SPS configuration.
  • the SPS frequency domain resource configuration information of each SPS configuration is in the above manner, that is, one PDCCH signaling includes one SPS frequency domain resource configuration information.
  • the terminal can determine, according to the SPS C-RNTI, which service corresponding to the SPS frequency domain resource configuration information included in the PDCCH information, and which SPS period is a group, so that the same according to the same
  • the SPS period in the group and the SPS frequency domain resource configuration information can determine a set of SPS configurations.
  • SPS C-RNTI corresponding to one service has A, B, and C
  • A corresponds to SPS period 1 and SPS frequency domain resource configuration information 1 of SPS configuration
  • B corresponds to SPS period 2 and SPS frequency domain resource configuration information 2 of SPS configuration
  • C corresponds to the SPS period 3 of the SPS configuration and the SPS frequency domain resource configuration information 3.
  • the network side device scrambles the PDCCH signaling 1 including the SPS frequency domain resource configuration information 1 with the SPS C-RNTIA, and scrambles the PDCCH signaling 2 including the SPS frequency domain resource configuration information 2 with the SPS C-RNTIB, which will include the SPS.
  • the PDCCH signaling 3 of the frequency domain resource configuration information 3 is scrambled with the SPS C-RNTIB.
  • the terminal after receiving the PDCCH signaling 1 scrambled by the SPS C-RNTIA, the terminal knows that the SPS C-RNTIA corresponds to the SPS frequency domain resource configuration information 1 in the PDCCH signaling 1, because after receiving the RRC signaling, It is known that the SPS C-RNTIA corresponds to the SPS cycle 1, so that it is known that the SPS frequency domain resource configuration information 1 and the SPS cycle 1 are a group.
  • the terminal After receiving the PDCCH signaling 2 scrambled by the SPS C-RNTIB, the terminal knows that the SPS C-RNTIB corresponds to the SPS frequency domain resource configuration information 2 in the PDCCH signaling 2, and since the RRC signaling is received, the SPS C is known.
  • the -RNTIB corresponds to the SPS period 2, so that it is known that the SPS frequency domain resource configuration information 2 and the SPS period 2 are a group.
  • the terminal After receiving the PDCCH signaling 3 scrambled by the SPS C-RNTIC, the terminal knows that the SPS C-RNTIC corresponds to the SPS frequency domain resource configuration information 3 in the PDCCH signaling 3. Since the RRC signaling is received, the terminal knows the SPS C. - RNTIC corresponds to SPS period 3, so that it is known that SPS frequency domain resource configuration information 3 and SPS period 3 are a group.
  • the network side device may determine, according to the service feature of the service, a sending moment of each PDCCH signaling; for the multiple SPS C-RNTIs. Any one of the SPS C-RNTIs, after the network-side device arrives at the corresponding transmission time, transmits PDCCH signaling including SPS frequency domain resource configuration information scrambled by each SPS C-RNTI.
  • the service features of the embodiment of the present application include, but are not limited to, part or all of the following information: a data packet arrival time, and a data packet size.
  • a service feature includes one large packet and four small packets in one cycle, and each data packet is separated by 100 ms. If the service is scheduled from the subframe n, then the SPS resource for the large packet is sent in the subframe n. active PDCCH signaling; PDCCH signaling for packet SPS resource activation is transmitted in subframe structure n+100.
  • Another way is to add a time domain offset k in the PDCCH signaling.
  • the PDCCH transmission time is n
  • the SPS resource activation time is n+k.
  • two PDCCH signalings are simultaneously transmitted at time n, the time domain offset corresponding to one PDCCH signaling is taken as k, and the time domain offset corresponding to another PDCCH signaling is taken as k+100.
  • the above describes the network side device to configure multiple sets of SPS configurations for the terminal. After the configuration is completed, the service transmission can be performed according to the SPS configuration. If the SPS configuration is the uplink SPS configuration, the network side device is the transmitting end; the terminal is the receiving end; if the SPS configuration is the downlink SPS configuration, the network side device is the receiving end; the terminal is the transmitting end.
  • the sending end can predict the SPS configuration that the sender needs to use from the multiple SPS configurations (such as information according to the service model), the SPS data can be received according to the SPS configuration used by the predicted service. Otherwise, multiple sets of SPS resources need to be blindly detected.
  • the receiving end can stipulate the specific selected condition.
  • the SPS configuration that the sending end needs to use from the multiple SPS configurations is directly used for the service.
  • the SPS configuration is detected.
  • the sender selects an SPS configuration to be used by the service from multiple SPS configurations: if the SPS configuration corresponding to each SPS C-RNTI does not overlap in the time domain, the network side device will each SPS C - the SPS configuration corresponding to the RNTI is used as the SPS configuration to be used; if the SPS configuration corresponding to each SPS C-RNTI overlaps in the time domain, the network side device selects each SPS C according to the selected selection condition.
  • the SPS configuration that needs to be used is determined in the SPS configuration corresponding to the RNTI.
  • the selection condition is one of the following conditions:
  • V2V Take V2V as an example.
  • the sender has two sets of SPS configurations for the same service.
  • the senders determine the SPS frequency domain resources in the time domain according to the maximum SPS frequency domain resource block.
  • the SPS frequency domain resources finally determined by the sender are as shown in the figure. 2B is shown.
  • the T1 position overlaps with the SP1 frequency domain resource at the T1+500ms position.
  • the other locations select SPS frequency domain resources that can be used because there is no SPS frequency domain resource overlap. If you are determined by the minimum SPS frequency domain resource block, you need to select SPS configuration 1. If the SPS frequency domain resource block is selected according to the data to be transmitted, an SPS frequency domain resource block that is not smaller than the data to be transmitted is selected according to the size of the data to be transmitted, such as the T1 position and the T1+500 ms position in FIG. 2B. SPS frequency domain resources overlap. If SPS configuration 1 is selected, data to be transmitted can be transmitted, then SPS configuration 1 is selected. If SPS configuration 1 cannot transmit data to be transmitted, SPS configuration 2 can transmit data to be transmitted, then select SPS configuration. 2.
  • the network side device can release multiple SPS configurations when the SPS configuration needs to be released.
  • the terminal sends a continuous padding BSR (cache status report) with no data portion to the network side device by using the resource configured by the SPS. And configured to notify the network side device to release the SPS configuration.
  • the network side device releases the SPS configuration for the terminal after receiving the consecutive N padding BSRs without data portions through the frequency domain resources corresponding to the SPS configuration.
  • N is an integer greater than or equal to 1.
  • the network side device uses the PDCCH signaling scrambled by each SPS C-RNTI to notify the terminal to release the SPS configuration corresponding to the SPS C-RNTI (such as PDCCH signaling). Taking a special value for one (or some) of the fields indicates that the PDCCH signaling is PDCCH signaling for release).
  • the terminal after receiving the PDCCH signaling for the release that is scrambled by the SPS C-RNTI, the terminal notifies the terminal to release the corresponding SPS configuration.
  • the terminal After receiving the PDCCH signaling for the release of the SPS C-RNTI, the terminal determines the SPS configuration corresponding to the SPS C-RNTI, and releases the SPS configuration corresponding to the SPS C-RNTI, where the SPS corresponding to the SPS C-RNTI
  • the configuration is an SPS configuration determined using PDCCH signaling scrambled by the SPS C-RNTI.
  • the network side device utilizes PDCCH signaling scrambled by any one of the multiple SPS C-RNTIs (such as one of the PDCCH signalings (or some)
  • the domain takes a special value to indicate that the PDCCH signaling is PDCCH signaling for release, and notifies the terminal to release the multiple SPS configurations.
  • the terminal after receiving the PDCCH signaling for release that is scrambled by the SPS C-RNTI, the terminal notifies the terminal to release all SPS configurations.
  • the first network side device in this embodiment of the present application includes:
  • the processing module 300 is configured to notify the SPS C-RNTI of the terminal and the SPS period of the SPS configuration corresponding to each SPS C-RNTI, and the configuration module 301 is configured to use any one of the multiple SPS C-RNTIs - RNTI, using the PDCCH signaling scrambled by the SPS C-RNTI, to send the SPS corresponding to the SPS C-RNTI to the terminal Set SPS frequency domain resource configuration information.
  • the processing module 300 is specifically configured to: send the SPS period of the SPS C-RNTI and the SPS configuration corresponding to each SPS C-RNTI in an RRC signaling to the terminal; or And the SPS period of the SPS C-RNTI and the SPS configuration corresponding to the SPS C-RNTI is placed in the RRC signaling, and is sent to the SPS C-RNTI in the multiple SPS C-RNTIs.
  • the processing module 300 is further configured to: configure the SPS C-RNTI and the SPS corresponding to the SPS C-RNTI for any one of the multiple SPS C-RNTIs
  • the same identification information is carried in all RRC signaling including any one of the multiple SPS C-RNTIs before being sent to the terminal in the RRC signaling.
  • the processing module 300 is specifically configured to: use, by using the SPS C-RNTI, the PDCCH signaling that is scrambled by the SPS C-RNTI, in the configuration module, for any one of the multiple SPS C-RNTIs, Before transmitting the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal, determining, according to the service feature of the service corresponding to the SPS configuration, the sending time of each PDCCH signaling; for the multiple SPS C - any one of the SPS C-RNTIs in the RNTI, after arriving at the corresponding transmission time, transmits PDCCH signaling including SPS frequency domain resource configuration information scrambled by the SPS C-RNTI.
  • the processing module 300 is specifically configured to: use, by using the SPS C-RNTI, the PDCCH signaling that is scrambled by the SPS C-RNTI, in the configuration module, for any one of the multiple SPS C-RNTIs, After transmitting the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal, perform:
  • the SPS is configured as an uplink SPS
  • the processing module 300 is specifically configured to: use the SPS C in the configuration module for any one of the multiple SPS C-RNTIs - RNTI scrambled PDCCH signaling, after transmitting the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal, for each set of SPS configurations, receiving the continuous N through the resources corresponding to the SPS configuration After the BSR is filled in the padding buffer state without the data portion, the SPS configuration is released.
  • the configuration module 301 is further configured to: use, by the configuration module, the PDCCH signaling that is scrambled by the SPS C-RNTI for any one of the multiple SPS C-RNTIs, After transmitting the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal, perform:
  • each SPS C-RNTI is mapped.
  • the SPS configuration is used as the SPS configuration to be used; if the SPS configuration corresponding to each SPS C-RNTI overlaps in the time domain, it is determined from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the SPS configuration that needs to be used.
  • the selection condition is one of the following conditions:
  • the first terminal in this embodiment of the present application includes:
  • the period determining module 400 is configured to determine, according to the notification of the network side device, a plurality of SPS C-RNTIs and SPS periods of SPS configurations of each SPS C-RNTI, where each SPS C-RNTI corresponds to a different SPS configuration;
  • the information determining module 401 is configured to determine, according to the PDCCH signaling that is scrambled by each SPS C-RNTI in the multiple SPS C-RNTIs, the SPS frequency domain resource configuration of each SPS configured by the network side device for the terminal. information;
  • the configuration determining module 402 is configured to determine, according to the SPS frequency domain resource configuration information and the SPS period of each SPS configuration, the multiple sets of SPS configurations configured by the network side device for the terminal.
  • the period determining module 400 is specifically configured to: determine all SPS C-RNTs in the received RRC signaling, and determine an SPS period of the SPS configuration corresponding to each SPS C-RNTI in the RRC signaling; Or, determining the received multiple RRC signaling including the same identification information, and determining each SPS C-RNTI in the multiple RRC signaling including the same identification information, and using the SPS cycle in each RRC signaling The SPS period of the SPS configuration corresponding to the SPS C-RNTI in the RRC signaling.
  • the configuration determining module 402 is further configured to: after determining, according to the SPS frequency domain resource configuration information and the SPS period of each set of the SPS, the network side device to configure multiple sets of SPS configured for the terminal, perform:
  • the SPS configuration corresponding to each SPS C-RNTI is used as the SPS configuration that the terminal needs to use; if each SPS C-RNTI corresponds to the SPS If the configuration has overlap in the time domain, the SPS configuration that the terminal needs to use is determined from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the selection condition is one of the following conditions:
  • the SPS is configured as an uplink SPS
  • the configuration determining module 402 is further configured to: after determining, by the network side device, multiple sets of SPS configurations configured by the terminal, for each set of SPS configurations, by using the SPS configuration
  • the resource sends a continuous N padding BSRs with no data portions to the network side device, to notify the network side device to release the SPS configuration.
  • the second network side device in this embodiment of the present application includes:
  • the processor 501 is configured to read a program in the memory 504 and perform the following process:
  • the transceiver 502 Notifying the terminal of the plurality of SPS C-RNTIs and the SPS period of the SPS configuration corresponding to each SPS C-RNTI by the transceiver 502; utilizing the SPS C for any one of the plurality of SPS C-RNTIs
  • the RN signaling scrambled by the RNTI transmits the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal through the transceiver 502.
  • the transceiver 502 is configured to receive and transmit data under the control of the processor 501.
  • the processor 501 is configured to: send the SPS period of the SPS C-RNTI and the SPS configuration corresponding to each SPS C-RNTI to an RRC signaling to be sent to the terminal; or, The SPS C-RNTI of the SPS C-RNTI and the SPS of the SPS configured by the SPS C-RNTI are placed in the RRC signaling and sent to the terminal.
  • the different SPS C-RNTIs are located in different RRC signaling.
  • the processor 501 is further configured to: configure an SPS period of the SPS C-RNTI and the SPS configuration corresponding to the SPS C-RNTI for any one of the multiple SPS C-RNTIs Before being sent to the terminal in RRC signaling, the same identification information is carried in all RRC signaling including any one of the multiple SPS C-RNTIs.
  • the processor 501 is specifically configured to: send, by using the SPS C-RNTI scrambled PDCCH signaling, the SPS C to the terminal, for any one of the multiple SPS C-RNTIs Determining the transmission time of each PDCCH signaling according to the service characteristics of the service corresponding to the SPS configuration before the SPS frequency domain resource configuration information of the SPS configuration corresponding to the RNTI; for any one of the multiple SPS C-RNTIs
  • the C-RNTI transmits PDCCH signaling including SPS frequency domain resource configuration information scrambled by the SPS C-RNTI after the corresponding transmission time arrives.
  • the processor 501 is specifically configured to: send, by using the SPS C-RNTI scrambled PDCCH signaling, the SPS C to the terminal, for any one of the multiple SPS C-RNTIs After the SPS configured SPS frequency domain resource configuration information corresponding to the RNTI, execute:
  • the SPS is configured as an uplink SPS
  • the processor 501 is specifically configured to: target the multiple SPSs.
  • the SPS C-RNTI in the C-RNTI after transmitting the SPS frequency domain resource configuration information of the SPS configuration corresponding to the SPS C-RNTI to the terminal by using the PDCCH signaling scrambled by the SPS C-RNTI,
  • the set of SPS is configured to release the SPS configuration after the BSR is configured to be reported by the SPS configuration.
  • the processor 501 is further configured to: send the SPS C to the terminal by using the SPS C-RNTI scrambled PDCCH signaling for any one of the multiple SPS C-RNTIs After the SPS configured SPS frequency domain resource configuration information corresponding to the RNTI, execute:
  • the SPS configuration corresponding to each SPS C-RNTI is configured as the SPS configuration to be used; if the SPS configuration corresponding to each SPS C-RNTI If there is overlap in the time domain, the SPS configuration to be used is determined from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the selection condition is one of the following conditions:
  • bus 500 can include any number of interconnected buses and bridges, and bus 500 will include one or more processors represented by processor 501 and memory represented by memory 504. The various circuits are linked together. The bus 500 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 503 provides an interface between bus 500 and transceiver 502. Transceiver 502 can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. Data processed by processor 501 is transmitted over wireless medium via antenna 505. Further, antenna 505 also receives the data and transmits the data to processor 501.
  • the processor 501 is responsible for managing the bus 500 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 504 can be used to store data used by the processor 501 when performing operations.
  • the processor 501 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the second terminal in this embodiment of the present application includes:
  • the processor 601 is configured to receive, by using the transceiver 602, a notification of the network side device, and according to the notification of the network side device, Determining SPS periods of multiple SPS C-RNTIs and SPS configurations of each SPS C-RNTI, where each SPS C-RNTI corresponds to a different SPS configuration; scrambling according to each SPS C-RNTI in multiple SPS C-RNTIs PDCCH signaling, determining SPS frequency domain resource configuration information configured by the network side device for each SPS configured by the terminal; determining the network side according to SPS frequency domain resource configuration information and SPS period configured by each SPS The device configures multiple sets of SPS for the terminal.
  • the transceiver 602 is configured to receive and transmit data under the control of the processor 601.
  • the processor 601 is specifically configured to: determine all SPS C-RNTIs in the received RRC signaling, and determine an SPS period of the SPS configuration corresponding to each SPS C-RNTI in the RRC signaling; or, determine Receiving a plurality of RRC signalings including the same identification information, and determining each SPS C-RNTI of the plurality of RRC signalings including the same identification information, using the SPS cycle in each RRC signaling as the The SPS period of the SPS configuration corresponding to the SPS C-RNTI in the RRC signaling.
  • the processor 601 is further configured to: after determining, according to the SPS frequency domain resource configuration information and the SPS period of each set of the SPS, the network side device to configure multiple sets of SPS configured for the terminal, perform:
  • the SPS configuration corresponding to each SPS C-RNTI is used as the SPS configuration that the terminal needs to use; if each SPS C-RNTI corresponds to the SPS If the configuration has overlap in the time domain, the SPS configuration that the terminal needs to use is determined from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the selection condition is one of the following conditions:
  • the SPS is configured as an uplink SPS
  • the processor 601 is further configured to: after determining, by the network side device, multiple sets of SPS configurations configured by the terminal, configured by using the SPS for each set of SPS configurations
  • the resource sends a continuous N padding BSRs with no data part to the network side device, to notify the network side device to release the SPS configuration.
  • bus 600 may include any number of interconnected buses and bridges, and bus 600 will include one or more processors and memory 604 represented by general purpose processor 601. The various circuits of the memory are linked together.
  • the bus 600 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 603 provides an interface between bus 600 and transceiver 602.
  • the transceiver 602 can be one component or multiple components, such as multiple receivers and transmitters, provided for use on transmission media and various He is the unit that communicates with the device. For example, transceiver 602 receives external data from other devices.
  • the transceiver 602 is configured to send the processed data of the processor 601 to other devices.
  • a user interface 605 can also be provided, such as a keypad, display, speaker, microphone, joystick.
  • the processor 601 is responsible for managing the bus 600 and the usual processing, running a general purpose operating system as described above.
  • the memory 604 can be used to store data used by the processor 601 in performing operations.
  • the processor 601 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • the embodiment of the present application further provides a method for configuring semi-persistent scheduling, where the device corresponding to the method is a network side device in the system for channel estimation in the embodiment of the present application, and the method solves the problem. Similar to the system, so the implementation of the method can refer to the implementation of the system, and the repeated description will not be repeated.
  • the first method for configuring semi-persistent scheduling in the embodiment of the present application includes:
  • Step 700 The network side device notifies the SPS C-RNTI of the terminal and the SPS period of the SPS configuration corresponding to each SPS C-RNTI;
  • Step 701 For any one of the multiple SPS C-RNTIs, the network side device sends the SPS C-RNTI corresponding to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • SPS configuration SPS frequency domain resource configuration information.
  • the network side device notifies the SPS C-RNTI of the terminal and the SPS period of the SPS configuration corresponding to each SPS C-RNTI, where the network side device includes the multiple SPS C-RNTIs and each The SPS period of the SPS configuration corresponding to the SPS C-RNTI is sent to the terminal in one RRC signaling; or, for any one of the multiple SPS C-RNTIs, the network side device The SPS period of the SPS C-RNTI and the SPS configuration corresponding to the SPS C-RNTI is sent to the terminal in an RRC signaling, where different SPS C-RNTIs are located in different RRC signaling.
  • the network side device places an SPS period of the SPS C-RNTI and an SPS configuration corresponding to the SPS C-RNTI Before being sent to the terminal in the RRC signaling, the network side device further carries the same identification information in all RRC signalings including any one of the multiple SPS C-RNTIs.
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • the network side device further determines, according to the service feature of the service corresponding to the SPS configuration, the sending time of each PDCCH signaling.
  • the network side device For the SPS C-RNTI of the plurality of SPS C-RNTIs, the network side device sends the SPS configuration corresponding to the SPS C-RNTI to the terminal by using the PDCCH signaling scrambled by the SPS C-RNTI SPS frequency domain resource configuration information, including: for the plurality of SPS C-RNTIs Any one of the SPS C-RNTIs, after the network-side device arrives at the corresponding transmission time, transmits the PDCCH signaling including the SPS frequency domain resource configuration information scrambled by the SPS C-RNTI.
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • the network side device further or not simultaneously uses the PDCCH signaling scrambled by each SPS C-RNTI to notify the terminal to release the SPS corresponding to the SPS C-RNTI.
  • the network side device notifies the terminal to release the multiple SPS configurations by using PDCCH signaling scrambled by any one of the multiple SPS C-RNTIs.
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • the method further includes: the SPS is configured as an uplink SPS configuration, and for each set of SPS, the network side device receives consecutive N by using resources corresponding to the SPS configuration. After the BSR is filled in the padding buffer state without the data portion, the SPS configuration is released.
  • the network side device sends the SPS C-RNTI to the terminal by using the SPS C-RNTI scrambled PDCCH signaling.
  • the method further includes: if the SPS configuration corresponding to each SPS C-RNTI does not overlap in the time domain, the network side device uses the SPS corresponding to each SPS C-RNTI. If the SPS configuration corresponding to each SPS C-RNTI overlaps in the time domain, the network side device selects the SPS corresponding to each SPS C-RNTI according to the set selection condition. The configuration determines the SPS configuration to be used.
  • the selection condition is one of the following conditions:
  • a method for determining semi-persistent scheduling is also provided in the embodiment of the present application.
  • the device corresponding to the method is a terminal in the system for channel estimation in the embodiment of the present application, and the method solves the problem and the method
  • the system is similar, so the implementation of the method can be seen in the implementation of the system, and the repeated description will not be repeated.
  • the second method for determining semi-persistent scheduling in the embodiment of the present application includes:
  • Step 800 The terminal determines, according to the notification of the network device, the SPS period of the SPS C-RNTI and the SPS configuration of each SPS C-RNTI, where each SPS C-RNTI corresponds to a different SPS configuration.
  • Step 801 The terminal determines, according to the PDCCH signaling that is scrambled by each SPS C-RNTI in the multiple SPS C-RNTIs, the SPS frequency domain resource configuration information configured by the network side device for each SPS configured by the terminal. ;
  • Step 802 The terminal determines, according to the SPS frequency domain resource configuration information and the SPS period configured by each set of SPS, the multiple sets of SPS configurations configured by the network side device for the terminal.
  • the terminal determines, according to the notification of the network side device, a plurality of SPS C-RNTIs and an SPS period of the SPS configuration corresponding to each SPS C-RNTI, where the terminal determines that the received RRC signaling is received by the terminal. All the SPS C-RNTIs in the RRC signaling, and determining the SPS period of the SPS configuration corresponding to each SPS C-RNTI in the RRC signaling; or the terminal determining the received multiple RRC signaling including the same identification information, And determining each SPS C-RNTI in the multiple RRC signaling that includes the same identification information, and using the SPS period in each RRC signaling as the SPS configured by the SPS C-RNTI in the RRC signaling. cycle.
  • the terminal determines, after the network side device configures multiple sets of SPSs for the terminal, the method further includes: if each SPS C- If the SPS configuration corresponding to the RNTI does not overlap in the time domain, the terminal configures the SPS corresponding to each SPS C-RNTI as the SPS configuration that the terminal needs to use; if the SPS corresponding to each SPS C-RNTI is configured at the time If there is an overlap on the domain, the terminal determines the SPS configuration that the terminal needs to use from the SPS configuration corresponding to each SPS C-RNTI according to the set selection condition.
  • the selection condition is one of the following conditions:
  • the terminal further includes:
  • the SPS is configured as an uplink SPS configuration.
  • the terminal For each set of SPS, the terminal sends a continuous N padding BSRs with no data part to the network side device by using the resources of the SPS to notify the network side.
  • the device releases the SPS configuration.
  • Embodiment 1 Association between multiple SPS C-RNTIs of a service is notified by one RRC signaling.
  • Step 1 The base station determines multiple SPS C-RNTIs for the same service, and notifies the terminal by RRC signaling.
  • the base station when the base station needs to configure multiple sets of SPS frequency domain resources of different sizes, the base station can carry multiple SPS C-RNTIs and SPS periods corresponding to each SPS C-RNTI in one RRC signaling, thereby The SPS C-RNTI in the RRC signaling of the notification terminal is implemented for the same service.
  • the number N of SPS C-RNTIs depends on the number of SPS frequency domain resource blocks of different sizes to be allocated for one SPS service.
  • the service data packet arrives according to a large packet of 4 packets, and each data packet arrives at a pattern of 100 ms intervals. Then, the base station sends The RRC signaling may carry two SPS C-RNTIs, one SPS C-RNTI corresponding to a period of 500 ms, and one SPS C-RNTI corresponding to a period of 100 ms.
  • the RRC signaling used to configure the SPS frequency domain resource may also carry other parameters, such as parameters such as the HARQ process.
  • parameters such as the HARQ process.
  • Table 1 and Table 2 The contents of the specific RRC signaling and the meanings of the various parameters are exemplified in Table 1 and Table 2 below. It should be noted that the parameters listed in the following table can be combined into one parameter if they have the same value for different SPS C-RNTIs to save signaling overhead.
  • Step 2 The base station transmits PDCCH signaling for SPS activation.
  • the base station activates a plurality of SPS frequency domain resources of different sizes for the terminal by using the PDCCH scrambled by the SPS C-RNTI corresponding to the same service of the terminal. That is, the base station places the SPS frequency domain resource configuration information in the PDCCH signaling, and scrambles through the corresponding SPS C-RNTI.
  • the PDCCH signaling transmission time required for the SPS frequency domain resource activation of the same service needs to match the service characteristics.
  • the service data packet arrives according to a large packet of 4 packets, and each data packet arrives at a pattern of 100 ms intervals. Then, the base station sends the PDCCH signaling for the SPS frequency domain resource activation for the packet and the small packet transmission.
  • the SPS frequency domain resources that need to satisfy the activation are overlapped in the time domain every interval of 500 ms, as shown in FIG. 2A. Shown as follows:
  • Step 3 The terminal determines multiple sets of SPS configurations.
  • the terminal determines, according to the content of the RRC signaling, that all SPS frequency domain resources scheduled by all SPS C-RNTIs included in one RRC signaling are for the same service (the action determined here may occur between step 1 and step 2). ).
  • the terminal determines the SPS frequency domain resource location corresponding to each SPS C-RNTI according to the SPS frequency domain resource configuration information in the PDCCH signaling scrambled by each SPS C-RNTI included in the RRC signaling.
  • SPS frequency domain resource configuration information A there are SPS frequency domain resource configuration information A and SPS frequency domain resource configuration information B. It is assumed that the SPS C-RNTIs in the RRC signaling are XX and YY, respectively, and the RRC signaling also includes the SPS periods 1 and YY corresponding to XX. SPS cycle 2.
  • the terminal Since XX and YY are in one RRC, the terminal knows that XX and YY are for the same service.
  • the PDCCH scrambling PDCCH signaling includes the SPS frequency domain resource configuration information A; the YY scrambled PDCCH signaling includes the SPS frequency domain resource configuration information B, and the terminal determines the SPS frequency domain resource configuration information A and XX corresponding SPS periods. 1 corresponds to the same set of SPS configurations, and SPS frequency domain resource configuration information B and YY correspond to SPS cycle 2 corresponding to the same set of SPS configurations.
  • the terminal determines a set of SPS configurations according to the SPS cycle 1 and the SPS frequency domain resource configuration information A, and determines another set of SPS configurations according to the SPS cycle 1 and the SPS frequency domain resource configuration information B.
  • the network side device may also determine multiple SPS configurations configured for the terminal. For the manner in which the network side device determines the multiple sets of SPS configurations configured for the terminal, refer to step 3. Since multiple sets of SPS configurations are configured for the terminal by the network side device, the network side device can also directly determine which SPS configurations correspond to the terminal from multiple sets of SPS configurations.
  • the network side device determines multiple sets of SPS configurations.
  • the foregoing is only an example. Any manner that enables the network side device to determine multiple sets of SPS configurations is applicable to the embodiments of the present application.
  • Step 4 The sender determines the SPS configuration that the service needs to use from multiple SPS configurations.
  • the transmitting end is a terminal, and the receiving end is a base station; if it is a downlink service, the transmitting end is a base station, and the receiving end is a terminal.
  • the sender uses all configured SPS frequency domain resources as SPS frequency domain resources that it can use.
  • the transmitting end determines to select the SPS frequency domain resource to be specifically used in the time domain overlapping position according to one of the following rules, and the rule may be pre-configured or notified by the base station.
  • the transmitting end has two sets of SPS configurations for the same service, and the transmitting end determines the SPS frequency domain resources in the time domain overlap according to the maximum SPS frequency domain resource block, and then the SPS frequency domain finally determined by the transmitting end.
  • the resources are shown in Figure 2B.
  • the T1 position overlaps with the SP1 frequency domain resource at the T1+500ms position, and the SPS configuration 2 is selected according to the maximum SPS frequency domain resource block. Since the other locations do not overlap with the SPS frequency domain resources, the SPS frequency domain resources that can be used are selected.
  • Step 5 The receiver detects the SPS.
  • the SPS frequency domain resource selected in the time domain overlap position is selected: the corresponding SPS is selected according to the actual data transmission requirement. Frequency domain resource block.
  • the receiving end can predict the SPS frequency domain resource block size used by the transmitting end (for example, according to the service model and the like)
  • the SPS data receiving may be performed according to the SPS frequency domain resource block size used by the predicted terminal. Otherwise, multiple sets of SPS configurations need to be blindly detected.
  • the receiving end determines the SPS frequency domain resource used by the transmitting end, and directly detects the SPS frequency domain resource.
  • Step 6 Release the SPS frequency domain resources for the same service.
  • Different SPS frequency domain resource releases may be performed simultaneously for the same service, or may be performed at different times. which is:
  • Different SPS frequency domain resources for the same SPS service can implicitly release uplink SPS frequency domain resources by sending consecutive N data-free padding BSRs.
  • the downlink only supports the explicit release mode, and the PDCCHs that are scrambled by the base station simultaneously or differently using different SPS C-RNTIs release the downlink SPS frequency domain resources corresponding to each SPS C-RNTI.
  • Embodiment 2 Association relationship between multiple SPS C-RNTIs of one service is notified by multiple RRC signaling.
  • Step 1 The base station determines multiple SPS C-RNTIs for the same service, and notifies the terminal by RRC signaling.
  • the base station when the base station needs to configure multiple sets of SPS frequency domain resource blocks of different sizes for the terminal, the base station separately transmits RRC signaling for SPS configuration for each set of SPS frequency domain resources.
  • Each RRC signaling used for the SPS configuration carries only one SPS C-RNTI and its corresponding SPS frequency domain resource period, and the identification information information is added in the RRC signaling.
  • the size of the identifier information is M bit, and the value of the M value depends on the number of SPS services that the terminal can support at the same time. For example, if the number of SPS services supported by the terminal is four, then M needs 2 bits, and 00, 01, 10, and 11 respectively correspond to four services.
  • the contents included in the signaling are as shown in Table 3 and Table 4 below.
  • the period of the uplink SPS resource is generally configured as the interval at which the uplink packet arrives.
  • implicitReleaseAfter Indicates that the SPS resource is implicitly released after several empty transmissions.
  • p0-NominalPUSCH-Persistent Related parameters for uplink power control p0-UE-PUSCH-Persistent Related parameters for uplink power control twoIntervalsConfig Whether to use multimode SPS (only for TDD systems) ServiceIndentifier Business identifier
  • Step 2 The base station transmits PDCCH signaling for SPS activation.
  • the base station activates a plurality of SPS frequency domain resources of different sizes for the terminal by using the PDCCH scrambled by the SPS C-RNTI corresponding to the same service of the terminal. That is, the base station places the SPS frequency domain resource configuration information in the PDCCH signaling, and scrambles through the corresponding SPS C-RNTI.
  • the PDCCH signaling transmission time required for the SPS frequency domain resource activation of the same service needs to match the service characteristics.
  • the service data packet arrives according to a large packet of 4 packets, and each data packet arrives at a pattern of 100 ms intervals. Then, the base station sends the PDCCH signaling for the SPS frequency domain resource activation for the packet and the small packet transmission. According to the scheduling timing relationship, the SPS frequency domain resources that need to satisfy the activation are overlapped in the time domain every interval of 500 ms, as shown in FIG. 2A. Shown.
  • Step 3 The terminal determines multiple sets of SPS configurations.
  • the terminal determines, according to the content of the RRC signaling, that all SPS frequency domain resources scheduled by all SPS C-RNTIs included in one RRC signaling are for the same service (the action determined here may occur between step 1 and step 2). ).
  • the terminal determines, according to the SPS frequency domain resource configuration information in the PDCCH signaling that is scrambled by the SPS C-RNTI included in each RRC signaling, the SPS frequency domain resource location corresponding to each SPS C-RNTI, and according to each RRC signaling
  • the identification information included in the SPS C-RNTI belongs to the same service and determines which SPS frequency domain resource configuration information belongs to the same service.
  • SPS frequency domain resource configuration information A there are SPS frequency domain resource configuration information A and SPS frequency domain resource configuration information B, assuming that the SPS C-RNTI included in the RRC signaling A is XX, and the SPS period is 1, the identification information is 00; the SPS in the RRC signaling B The C-RNTI is YY corresponding to the SPS period 21, and the identification information is 00.
  • the terminal determines that XX and YY belong to the same service.
  • the PDCCH scrambling PDCCH signaling includes the SPS frequency domain resource configuration information A; the YY scrambled PDCCH signaling includes the SPS frequency domain resource configuration information B, and the terminal determines the SPS frequency domain resource configuration information A and XX corresponding SPS periods. 1 corresponds to the same set of SPS configurations, and SPS frequency domain resource configuration information B and YY correspond to SPS cycle 2 corresponding to the same set of SPS configurations.
  • the terminal determines a set of SPS configurations according to the SPS cycle 1 and the SPS frequency domain resource configuration information A, and determines another set of SPS configurations according to the SPS cycle 1 and the SPS frequency domain resource configuration information B.
  • the network side device may also determine multiple SPS configurations configured for the terminal. For the manner in which the network side device determines the multiple sets of SPS configurations configured for the terminal, refer to step 3. Since multiple sets of SPS configurations are configured for the terminal by the network side device, the network side device can also directly determine which SPS configurations correspond to the terminal from multiple sets of SPS configurations.
  • the network side device determines multiple sets of SPS configurations.
  • the foregoing is only an example. Any manner that enables the network side device to determine multiple sets of SPS configurations is applicable to the embodiments of the present application.
  • Step 4 The sender determines the SPS configuration that the service needs to use from multiple SPS configurations.
  • the transmitting end is a terminal, and the receiving end is a base station; if it is a downlink service, the transmitting end is a base station, and the receiving end is a terminal.
  • the sender uses all configured SPS frequency domain resources as SPS frequency domain resources that it can use.
  • the transmitting end determines to select the SPS frequency domain resource to be specifically used in the time domain overlapping position according to one of the following rules, and the rule may be pre-configured or notified by the base station.
  • the transmitting end has two sets of SPS configurations for the same service, and the transmitting end determines the SPS frequency domain resources in the time domain overlap according to the maximum SPS frequency domain resource block, and then the SPS frequency domain finally determined by the transmitting end.
  • the resources are shown in Figure 2B.
  • the T1 position overlaps with the SP1 frequency domain resource at the T1+500ms position, and the SPS configuration 2 is selected according to the maximum SPS frequency domain resource block. Since the other locations do not overlap with the SPS frequency domain resources, the SPS frequency domain resources that can be used are selected.
  • Step 5 The receiver detects the SPS.
  • the SPS frequency domain resource selected in the time domain overlap position is selected: the corresponding SPS is selected according to the actual data transmission requirement. Frequency domain resource block.
  • the receiving end can predict the SPS frequency domain resource block size used by the transmitting end (for example, according to the service model and the like)
  • the SPS data receiving may be performed according to the SPS frequency domain resource block size used by the predicted terminal. Otherwise, multiple sets of SPS configurations need to be blindly detected.
  • the receiving end determines the SPS frequency domain resource used by the transmitting end, and directly detects the SPS frequency domain resource.
  • Step 6 Release the SPS frequency domain resources for the same service.
  • Different SPS frequency domain resource releases may be performed simultaneously for the same service, or may be performed at different times. which is:
  • Different SPS frequency domain resources for the same SPS service can implicitly release uplink SPS frequency domain resources by sending consecutive N data-free padding BSRs.
  • the downlink only supports the explicit release mode, and the PDCCHs that are scrambled by the base station simultaneously or differently using different SPS C-RNTIs release the downlink SPS frequency domain resources corresponding to each SPS C-RNTI.
  • the application can also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the application can take the form of a computer program product on a computer usable or computer readable storage medium having computer usable or computer readable program code embodied in a medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
  • a computer usable or computer readable medium can be any medium that can contain, store, communicate, communicate, or transport a program for use by an instruction execution system, apparatus or device, or in conjunction with an instruction execution system, Used by the device or device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及无线通信技术领域,特别涉及一种配置和确定半持续调度的方法及设备,用以解决现有技术中存在的LTE SPS方式应用于V2X通信方式中,会造成资源浪费或者增加开销的问题。本申请实施例网络侧设备通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,并利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。由于一个SPS C-RNTI对应一套SPS配置,与背景技术中只能配置一套SPS配置相比,增加了SPS配置的数量,从而降低了资源浪费和开销;进一步提高了系统性能。

Description

一种配置和确定半持续调度的方法及设备
本申请要求在2016年3月15日提交中国专利局、申请号为201610147587.8、申请名称为“一种配置和确定半持续调度的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种配置和确定半持续调度的方法及设备。
背景技术
为了减少控制信令的开销,长期演进(Long Term Evolution,LTE)系统针对数据包大小基本相同且到达时间间隔比较有规律的业务引入了半持续调度(Semi-Persistent Scheduling,SPS)。
目前LTE系统支持两种调度方式:动态调度和SPS。动态调度适用于业务数据到达时间比较随机或者数据包大小不规则的业务;而SPS主要适用于业务数据SPS周期达到且数据包大小比较固定的业务。对于传统的LTE系统,SPS主要针对语音业务设计,语音业务典型的特点是数据包到达间隔固定,数据包大小基本固定,因此在配置SPS配置时只需要配置一套SPS周期性重复的SPS配置即可。
LTE Rel-14引入了车与万物(Vechile-to-Everything,V2X)通信。V2X通信主要包含三方面内容:
车到车(Vechile-to-Vechile,V2V):车上的车载单元(On Broad Unit,OBU)之间的通信。
车到网络(Vechile-to-Infrastructure,V2I):车和路侧设备(Road Side Unit,RSU)之间的通信。
车到行人(Vechile-to-Pedestrian,V2P):车和行人之间的通信。
其中,V2V业务特点是业务数据包SPS周期到达(SPS周期100ms),但是数据包大小并非基本固定,携带有完整证书的业务数据包较大,其他数据包则比较小。因此从业务模型上看,V2V业务模型是一个大包后面跟随若干个小包,然后再一个大包,后面再跟随若干个小包,一直循环重复。如果直接将传统的LTE SPS方式应用于V2V,如果按照大包分配SPS配置,对于小包使用该SPS配置传输必然存在资源浪费;如果按照小包分配SPS配置,那么大包的数据就不能通过SPS配置传输完,后续还需要通过调度请求(Scheduling  Request,SR)或缓冲区状态上报(Buffer Status Reporting,BSR)请求基站执行动态调度。这样就会增加上/下行开销。其他V2X也有与V2V类似的问题。
综上所述,目前LTE SPS方式应用于V2X通信方式中,会造成资源浪费或者增加开销。
发明内容
本申请实施例提供一种配置和确定半持续调度的方法及设备,用以解决现有技术中存在的LTE SPS方式应用于V2X通信方式中,会造成资源浪费或者增加开销的问题。
本申请方实施例提供的一种配置半持续调度的方法,该方法包括:
网络侧设备通知终端多个半持续调度SPS小区无线网络临时标识符C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;
针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的物理下行控制信道PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。
可选的,所述网络侧设备通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,包括:所述网络侧设备将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条无线资源控制RRC信令中发送给所述终端;或,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,还包括:所述网络侧设备在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之前,还包括:所述网络侧设备根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻;针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息,包括:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备在对应的发送时刻到达后,发送利用所述SPS  C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:所述网络侧设备同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,所述网络侧设备利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:所述SPS配置为上行SPS配置,针对每套SPS配置,所述网络侧设备通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充padding缓存状态上报BSR后,释放所述SPS配置。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则所述网络侧设备将每个SPS C-RNTI对应的SPS配置作为所述需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则所述网络侧设备根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
本申请实施例提供的一种确定半持续调度的方法,该方法包括:终端根据网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;所述终端根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;所述终端根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置。
可选的,所述终端根据所述网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,包括:所述终端确定收到的RRC信令中的所有SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或,所述 终端确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
可选的,所述终端根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,还包括:若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则所述终端将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则所述终端根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述终端确定所述网络侧设备为所述终端配置的多套SPS配置之后,还包括:
所述SPS配置为上行SPS配置,针对每套SPS配置,所述终端通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
本申请实施例提供的一种配置半持续调度的网络侧设备,该网络侧设备包括:
处理模块,用于通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;
配置模块,用于针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。
可选的,所述处理模块具体用于:将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条RRC信令中发送给所述终端;或,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
可选的,所述处理模块还用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令 中携带相同的标识信息。
可选的,所述处理模块具体用于:在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之前,根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻;针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,在对应的发送时刻到达后,发送利用所述SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
可选的,所述处理模块具体用于:在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
可选的,所述SPS配置为上行SPS配置,所述处理模块具体用于:在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,针对每套SPS配置,通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充padding缓存状态上报BSR后,释放所述SPS配置。
可选的,所述配置模块还用于:在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为所述需要使用的SPS配置;
若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
本申请实施例提供的一种确定半持续调度的终端,该终端包括:
周期确定模块,用于根据网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS  C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;
信息确定模块,用于根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;
配置确定模块,用于根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置。
可选的,所述周期确定模块具体用于:确定收到的RRC信令中的所有SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或,确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
可选的,所述配置确定模块还用于:根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,执行:若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述SPS配置为上行SPS配置,所述配置确定模块还用于:确定所述网络侧设备为所述终端配置的多套SPS配置之后,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
本申请实施例还提供了一种网络侧设备,包括:处理器、收发机和存储器;
所述处理器,用于读取存储器中的程序,执行:
通过所述收发机通知终端多个半持续调度SPS小区无线网络临时标识符C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;
针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的物理下行控制信道PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息;
所述收发机,用于在所述处理器的控制下接收和发送数据。
可选的,所述处理器具体用于:将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条RRC信令中发送给所述终端;或,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
可选的,所述处理器还用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。
可选的,所述处理器具体用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之前,根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻;针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,在对应的发送时刻到达后,发送利用所述SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
可选的,所述处理器具体用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
可选的,所述SPS配置为上行SPS配置,所述处理器具体用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,针对每套SPS配置,通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充缓存状态上报BSR后,释放所述SPS配置,N为大于等于1的整数。
可选的,所述处理器还用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应 的SPS配置作为需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
本申请实施例还提供了一种终端,包括:处理器、收发机和存储器;所述处理器,用于读取存储器中的程序,执行:
通过收发机接收网络侧设备的通知,并根据网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;
根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;
根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置;
所述收发机,用于在所述处理器的控制下接收和发送数据。
可选的,所述处理器具体用于:确定收到的RRC信令中的所有SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或,确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
可选的,所述处理器还用于:根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,执行:
若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述SPS配置为上行SPS配置,所述处理器还用于:确定所述网络侧设备为所述终端配置的多套SPS配置之后,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的填充BSR,用于通知所述网络侧设备释放所述SPS配置。
本申请实施例中,网络侧设备通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,并利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。由于一个SPS C-RNTI对应一套SPS配置,与背景技术中只能配置一套SPS配置相比,增加了SPS配置的数量,从而降低了资源浪费和开销,进一步提高了系统性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例配置半持续调度的系统结构示意图;
图2A为本申请实施例不同SPS频域资源之间时域关系示意图;
图2B为本申请实施例SPS频域资源重叠示意图;
图3为本申请实施例第一种网络设备的结构示意图;
图4为本申请实施例第一种终端的结构示意图;
图5为本申请实施例第二种网络设备的结构示意图;
图6为本申请实施例第二种终端的结构示意图;
图7为本申请实施例第一种配置半持续调度的方法流程示意图;
图8为本申请实施例第二种确定半持续调度的方法流程示意图。
具体实施方式
本申请实施例中,网络设备通知终端多个SPS小区无线网络临时标识符(Cell Radio Network Temporary Identifier,C-RNTI)以及每个SPS C-RNTI对应的SPS配置的SPS周期,并利用所述SPS C-RNTI加扰的物理下行控制信道(Physical Downlink Control Channel, PDCCH)信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。由于一个SPS C-RNTI对应一套SPS配置,与背景技术中只能配置一套SPS配置相比,增加了SPS配置的数量,从而降低了资源浪费和开销,进一步提高了系统性能。
本申请实施例网络设备向终端发送多套SPS配置,终端确定网络设备配置的多套SPS配置。
如果SPS配置是上行SPS配置,则终端从多套SPS配置中选择终端需要使用的SPS配置,并通过终端需要使用的SPS配置向网络设备发送数据;相应的,网络设备如果可以确定终端使用的SPS,可以对终端使用的SPS检测,如果无法确定终端使用的SPS,需要对多套SPS配置对应的资源检测。
如果SPS配置是下行SPS配置,则网络侧设备从多套SPS配置中选择终端需要使用的SPS配置,并通过终端需要使用的SPS配置向终端发送数据;相应的,终端如果可以确定网络侧设备使用的SPS,可以对网络侧设备使用的SPS检测,如果无法确定网络侧设备使用的SPS,需要对多套SPS配置对应的资源检测。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
如图1所示,本申请实施例配置半持续调度的系统包括:网络侧设备10,用于通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。
终端20,用于根据网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置。
其中,本申请实施例的网络侧设备可以是基站(比如宏基站(包括演进基站等)、家庭基站等),也可以是RN(中继)设备,还可以是其它网络侧设备。
本申请实施例网络侧设备为终端配置的多套SPS配置时,包括为终端配置的多套SPS配置对应的SPS频域资源配置信息和SPS周期。
其中,在为终端配置SPS周期时,本申请有两种方式,下面分别进行介绍。
方式一、通过一条无线资源控制(Radio Resource Control,RRC)信令为终端配置SPS周期。
具体的,所述网络侧设备将所述所有SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条RRC信令中发送给所述终端;相应的,终端将收到的RRC信令中的所有SPS C-RNTI作为同一个业务的SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期。
比如一个业务对应的SPS C-RNTI有A、B和C,A对应SPS配置的SPS周期1,B对应SPS配置的SPS周期2,C对应SPS配置的SPS周期3。网络侧设备将A和SPS周期1绑定关系、B和SPS周期2绑定关系,以及和C和SPS周期3绑定关系都置于一个RRC信令中。相应的,终端在收到一个RRC信令后,由于RRC信令中包括A、B和C,所以终端确定A、B和C属于同一个业务,并且根据RRC信令中的绑定关系就可以确定A对应SPS配置的SPS周期1,B对应SPS配置的SPS周期2,C对应SPS配置的SPS周期3。
方式二、通过多条RRC信令为终端配置SPS周期。
具体的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
可选的,对于方式二,所述网络侧设备在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。相应的,所述终端确定收到的包含同一个标识信息的多个RRC信令,并将包含同一个标识信息的多个RRC信令中的每个SPSC-RNTI作为同一个业务的SPS C-RNTI,并将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
比如一个业务对应的SPS C-RNTI有A、B和C,A对应SPS配置的SPS周期1,B对应SPS配置的SPS周期2,C对应SPS配置的SPS周期3,该业务的标识信息为11。网络侧设备将A、SPS周期1和11置于RRC信令1中;将B、SPS周期2和11置于RRC信令2中;将C、SPS周期3和11置于RRC信令1中。终端在收到RRC信令1、RRC信令2和RRC信令3后,由于RRC信令1、RRC信令2和RRC信令3中包括的标识信息都是11,所以可以确定RRC信令1、RRC信令2和RRC信令3中包括的SPS C-RNTI对应同一个业务,并且RRC信令1中包括A和SPS周期1,可以确定A对应SPS配置的SPS周期1;RRC信令2中包括B和SPS周期2,可以确定B对应SPS配置的SPS周期2;RRC信令3中包括C和SPS周期3,可以确定C对应SPS配置的SPS周期3。
本申请实施例在为终端配置SPS频域资源配置信息时,通过PDCCH信令为终端配置SPS频域资源配置信息。具体的,网络侧设备将一个SPS配置的SPS频域资源配置信息置于PDCCH信令中,并用SPS配置对应的SPS C-RNTI对该PDCCH信令进行加扰。每个SPS配置的SPS频域资源配置信息都采用上述方式,也就是说,一个PDCCH信令中包括一个SPS频域资源配置信息。相应的,终端在收到加扰后的PDCCH信息后,根据SPS C-RNTI,就可以确定PDCCH信息中包括的SPS频域资源配置信息对应哪个业务以及和哪个SPS周期是一组,从而根据同一组中的SPS周期和SPS频域资源配置信息就可以确定一套SPS配置。
比如一个业务对应的SPS C-RNTI有A、B和C,A对应SPS配置的SPS周期1和SPS频域资源配置信息1,B对应SPS配置的SPS周期2和SPS频域资源配置信息2,C对应SPS配置的SPS周期3和SPS频域资源配置信息3。网络侧设备将包含SPS频域资源配置信息1的PDCCH信令1用SPS C-RNTIA加扰,将包含SPS频域资源配置信息2的PDCCH信令2用SPS C-RNTIB加扰,将包含SPS频域资源配置信息3的PDCCH信令3用SPS C-RNTIB加扰。
相应的,终端在收到用SPS C-RNTIA加扰的PDCCH信令1后,知道SPS C-RNTIA对应PDCCH信令1中的SPS频域资源配置信息1,由于在收到RRC信令后,知道SPS C-RNTIA对应SPS周期1,从而就知道SPS频域资源配置信息1和SPS周期1是一组。终端在收到用SPS C-RNTIB加扰的PDCCH信令2后,知道SPS C-RNTIB对应PDCCH信令2中的SPS频域资源配置信息2,由于在收到RRC信令后,知道SPS C-RNTIB对应SPS周期2,从而就知道SPS频域资源配置信息2和SPS周期2是一组。
终端在收到用SPS C-RNTIC加扰的PDCCH信令3后,知道SPS C-RNTIC对应PDCCH信令3中的SPS频域资源配置信息3,由于在收到RRC信令后,知道SPS C-RNTIC对应SPS周期3,从而就知道SPS频域资源配置信息3和SPS周期3是一组。
可选的,为了保证终端在进行业务时,使用确定的SPS配置,所以网络侧设备可以根据所述业务的业务特征,确定每个PDCCH信令的发送时刻;针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备在对应的发送时刻到达后,发送利用每个SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
其中,本申请实施例的业务特征包括但不限于下列信息中的部分或全部:数据包达到时刻、数据包大小。
比如图2A中,一个业务特征为一个周期内包括1个大包和4个小包,每个数据包都间隔100ms,假设业务从子帧n开始调度,那么在子帧n发送针对大包SPS资源激活的 PDCCH信令;在子帧结构n+100发送针对小包SPS资源激活的PDCCH信令。
还有一种方式是在PDCCH信令中增加一个时域偏移量k,这种情况下PDCCH发送时刻为n,那么SPS资源激活时刻为n+k。对应到上面的业务就是在时刻n同时发送两个PDCCH信令,一个PDCCH信令对应的时域偏移量取k,另一个PDCCH信令对应的时域偏移量取k+100。
上面介绍了网络侧设备为终端配置多套SPS配置。在配置完后,就可以根据所述SPS配置进行业务传输。如果SPS配置是上行SPS配置,则网络侧设备是发送端;终端是接收端;如果SPS配置是下行SPS配置,则网络侧设备是接收端;终端是发送端。
其中,对于发送端,需要从多套SPS配置中选择业务需要使用的SPS配置。相应的,如果接收端可以预测发送端从多套SPS配置中选择的业务需要使用的SPS配置(比如根据业务模型等信息),那么可以按照预测的业务需要使用的SPS配置进行SPS数据接收。否则,需要盲检测多套SPS资源。
除了接收端预测的方式,如果发送端和接收端约定具体选择的条件,则接收端可以约定具体选择的条件发送端从多套SPS配置中选择的业务需要使用的SPS配置,直接对业务需要使用的SPS配置进行检测。
可选的,发送端从多套SPS配置中选择业务需要使用的SPS配置时:若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则所述网络侧设备将每个SPS C-RNTI对应的SPS配置作为所述需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则所述网络侧设备根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
以V2V为例,假设发送端针对同一个业务有两套SPS配置,发送端对于时域重叠的SPS频域资源按照最大SPS频域资源块确定,那么发送端最终确定的SPS频域资源如图2B所示。T1位置和T1+500ms位置SPS频域资源重叠。
如果按照最大SPS频域资源块,选择SPS配置2,其他位置由于没有SPS频域资源重叠,所以选择可以使用的SPS频域资源。如果按照最小SPS频域资源块确定,就需要选择SPS配置1。如果根据需要传输的数据选择SPS频域资源块,则根据需要传输的数据大小,选择不小于需要传输的数据的SPS频域资源块,比如图2B中,T1位置和T1+500ms位置 SPS频域资源重叠,如果选择SPS配置1就可以传输需要传输的数据,则选择SPS配置1;如果SPS配置1不能传输需要传输的数据,SPS配置2能传输需要传输的数据,则选择SPS配置2。
可选的,网络侧设备在为终端配置多套SPS配置后,在需要释放SPS配置时,还可以释放多套SPS配置(需要释放SPS配置的触发条件有很多,比如对应的业务完成、需要停止业务等)。
本申请实施例给出了隐式和显式两种释放方式,下面分别进行介绍。
一、隐式释放方式
如果SPS配置为上行SPS配置,针对每套SPS配置,所述终端通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的填充(padding)BSR(缓存状态上报),用于通知所述网络侧设备释放所述SPS配置。相应的,针对每套SPS配置,网络侧设备如果通过所述SPS配置对应的频域资源接收到连续N个没有数据部分的padding BSR后,释放针对所述终端的所述SPS配置。其中,N为大于等于1的整数。
二、显式释放方式
作为显式释放方式的一个例子,所述网络侧设备同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置(比如将PDCCH信令中的某个(或些)域取特殊值就表示该PDCCH信令是用于释放的PDCCH信令)。相应的,终端在收到利用所述SPS C-RNTI加扰的用于释放的PDCCH信令后,通知终端释放对应的SPS配置。
比如终端收到利用SPS C-RNTI加扰的用于释放的PDCCH信令后,确定SPS C-RNTI对应的SPS配置,并释放SPS C-RNTI对应的SPS配置,其中SPS C-RNTI对应的SPS配置是利用SPS C-RNTI加扰的PDCCH信令确定的SPS配置。
作为显式释放方式的另一个例子,所述网络侧设备利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令(比如将PDCCH信令中的某个(或些)域取特殊值就表示该PDCCH信令是用于释放的PDCCH信令),通知终端释放所述多个SPS配置。相应的,终端在收到利用所述SPS C-RNTI加扰的用于释放的PDCCH信令后,通知终端释放所有的SPS配置。
如图3所示,本申请实施例第一种网络侧设备包括:
处理模块300,用于通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;配置模块301,用于针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配 置的SPS频域资源配置信息。
可选的,所述处理模块300具体用于:将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条RRC信令中发送给所述终端;或,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
可选的,所述处理模块300还用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。
可选的,所述处理模块300具体用于:在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之前,根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻;针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,在对应的发送时刻到达后,发送利用所述SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
可选的,所述处理模块300具体用于:在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
可选的,所述SPS配置为上行SPS配置,所述处理模块300具体用于:在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,针对每套SPS配置,通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充padding缓存状态上报BSR后,释放所述SPS配置。
可选的,所述配置模块301还用于:在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应 的SPS配置作为所述需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
如图4所示,本申请实施例第一种终端包括:
周期确定模块400,用于根据网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;
信息确定模块401,用于根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;
配置确定模块402,用于根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置。
可选的,所述周期确定模块400具体用于:确定收到的RRC信令中的所有SPS C-RNT,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或,确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
可选的,所述配置确定模块402还用于:根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,执行:
若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述SPS配置为上行SPS配置,所述配置确定模块402还用于:确定所述网络侧设备为所述终端配置的多套SPS配置之后,针对每套SPS配置,通过所述SPS配置 的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
如图5所示,本申请实施例第二种网络侧设备包括:
处理器501,用于读取存储器504中的程序,执行下列过程:
通过收发机502通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,通过收发机502向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。
收发机502,用于在处理器501的控制下接收和发送数据。
可选的,处理器501具体用于:将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条RRC信令中发送给所述终端;或,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
可选的,处理器501还用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。
可选的,处理器501具体用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之前,根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻;针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,在对应的发送时刻到达后,发送利用所述SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
可选的,处理器501具体用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
可选的,所述SPS配置为上行SPS配置,处理器501具体用于:针对所述多个SPS  C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,针对每套SPS配置,通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充padding缓存状态上报BSR后,释放所述SPS配置。
可选的,处理器501还用于:针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为所述需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
在图5中,总线架构(用总线500来代表),总线500可以包括任意数量的互联的总线和桥,总线500将包括由处理器501代表的一个或多个处理器和存储器504代表的存储器的各种电路链接在一起。总线500还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口503在总线500和收发机502之间提供接口。收发机502可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器501处理的数据通过天线505在无线介质上进行传输,进一步,天线505还接收数据并将数据传送给处理器501。
处理器501负责管理总线500和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器504可以被用于存储处理器501在执行操作时所使用的数据。
可选的,处理器501可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
如图6所示,本申请实施例第二种终端包括:
处理器601,用于通过收发机602接收网络侧设备的通知,并根据网络侧设备的通知, 确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置。
收发机602,用于在处理器601的控制下接收和发送数据。
可选的,处理器601具体用于:确定收到的RRC信令中的所有SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或,确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
可选的,处理器601还用于:根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,执行:
若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述SPS配置为上行SPS配置,处理器601还用于:确定所述网络侧设备为所述终端配置的多套SPS配置之后,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
在图6中,总线架构(用总线600来代表),总线600可以包括任意数量的互联的总线和桥,总线600将包括由通用处理器601代表的一个或多个处理器和存储器604代表的存储器的各种电路链接在一起。总线600还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口603在总线600和收发机602之间提供接口。收发机602可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其 他装置通信的单元。例如:收发机602从其他设备接收外部数据。收发机602用于将处理器601处理后的数据发送给其他设备。取决于计算系统的性质,还可以提供用户接口605,例如小键盘、显示器、扬声器、麦克风、操纵杆。
处理器601负责管理总线600和通常的处理,如前述所述运行通用操作系统。而存储器604可以被用于存储处理器601在执行操作时所使用的数据。
可选的,处理器601可以是CPU、ASIC、FPGA或CPLD。
基于同一申请构思,本申请实施例中还提供了一种配置半持续调度的方法,由于该方法对应的设备是本申请实施例信道估计的系统中的网络侧设备,并且该方法解决问题的原理与该系统相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图7所示,本申请实施例第一种配置半持续调度的方法包括:
步骤700、网络侧设备通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;
步骤701、针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。
可选的,所述网络侧设备通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,包括:所述网络侧设备将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条RRC信令中发送给所述终端;或,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,还包括:所述网络侧设备在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之前,还包括:所述网络侧设备根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻。针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息,包括:针对所述多个SPS C-RNTI中 的任意一个SPS C-RNTI,所述网络侧设备在对应的发送时刻到达后,发送利用所述SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:所述网络侧设备同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,所述网络侧设备利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:所述SPS配置为上行SPS配置,针对每套SPS配置,所述网络侧设备通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充padding缓存状态上报BSR后,释放所述SPS配置。
可选的,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则所述网络侧设备将每个SPS C-RNTI对应的SPS配置作为所述需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则所述网络侧设备根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
基于同一申请构思,本申请实施例中还提供了一种确定半持续调度的方法,由于该方法对应的设备是本申请实施例信道估计的系统中的终端,并且该方法解决问题的原理与该系统相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图8所示,本申请实施例第二种确定半持续调度的方法包括:
步骤800、终端根据网络设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;
步骤801、所述终端根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;
步骤802、所述终端根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置。
可选的,所述终端根据所述网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,包括:所述终端确定收到的RRC信令中的所有SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或,所述终端确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
可选的,所述终端根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,还包括:若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则所述终端将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则所述终端根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
可选的,所述选取条件为下列条件中的一种:
选择最大的SPS频域资源块;
选择最小的SPS频域资源块;
根据需要传输的数据,选择SPS频域资源块。
可选的,所述终端确定所述网络侧设备为所述终端配置的多套SPS配置之后,还包括:
所述SPS配置为上行SPS配置,针对每套SPS配置,所述终端通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
下面列举几个例子,对本申请的方案进行详细说明。
实施例1:一个业务的多个SPS C-RNTI之间的关联关系通过一条RRC信令通知。
步骤1:基站确定针对同一个业务的多个SPS C-RNTI,并通过RRC信令通知终端。
针对同一个SPS业务,当基站需要配置多套不同大小的SPS频域资源时,基站可以通过在一条RRC信令中携带多个SPS C-RNTI及每个SPS C-RNTI对应的SPS周期,从而实现通知终端RRC信令中的SPS C-RNTI是针对同一个业务的。SPS C-RNTI的个数N取决于要为一个SPS业务分配的不同大小的SPS频域资源块个数。
以V2V业务为例,对于V2V业务,由于其支持两种不同大小的数据包,业务数据包到达是按照1大包4小包,每个数据包间隔100ms的pattern到达的。那么,基站发送的 RRC信令中可以携带2个SPS C-RNTI,一个SPS C-RNTI对应的周期为500ms,一个SPS C-RNTI对应的周期为100ms配置。
当然,用于配置SPS频域资源的RRC信令中还可以携带其他参数,比如HARQ process等参数。具体RRC信令包含的内容以及各个参数的含义举例说明如下表1和表2。需要注意,下表中列出的参数如果对于不同SPS C-RNTI取值相同,那么可以合并为一个参数,以节省信令开销。
表1 配置下行SPS的RRC信令包含的内容
Figure PCTCN2017073799-appb-000001
表2 配置上行SPS的RRC信令包含的内容
Figure PCTCN2017073799-appb-000002
Figure PCTCN2017073799-appb-000003
步骤2:基站发送用于SPS激活的PDCCH信令。
基站分别利用通知给终端的同一个业务对应的SPS C-RNTI加扰的PDCCH为终端激活多个不同大小的SPS频域资源。即基站将SPS频域资源配置信息置于PDCCH信令中,并通过对应的SPS C-RNTI加扰。
基站发送PDCCH时对于同一个业务不同SPS频域资源激活的PDCCH信令发送时刻需要和业务特征相互匹配。
以V2V业务为例,对于V2V业务,由于其支持两种不同大小的数据包,业务数据包到达是按照1大包4小包,每个数据包间隔100ms的pattern到达的。那么,基站发送针对打包和小包发送的用于SPS频域资源激活的PDCCH信令,根据调度定时关系,需要能够满足激活的SPS频域资源每间隔500ms在时域上是重叠的,如图2A所示:
步骤3:终端确定多套SPS配置。
终端根据RRC信令的内容,确定一条RRC信令中包含的所有SPS C-RNTI调度的所有SPS频域资源都是针对同一个业务的(这里确定的动作可以发生在步骤1和步骤2之间)。
终端根据RRC信令中包括的每个SPS C-RNTI加扰的PDCCH信令中的SPS频域资源配置信息,确定各个SPS C-RNTI对应的SPS频域资源位置。
比如有SPS频域资源配置信息A和SPS频域资源配置信息B,假设RRC信令中的包括SPS C-RNTI分别为XX和YY,RRC信令中还包括XX对应的SPS周期1和YY对应的SPS周期2。
由于XX和YY在一个RRC中,所以终端知道XX和YY针对同一个业务。
假设XX加扰的PDCCH信令中包括SPS频域资源配置信息A;YY加扰的PDCCH信令中包括SPS频域资源配置信息B,则终端确定SPS频域资源配置信息A和XX对应SPS周期1对应同一套SPS配置,以及SPS频域资源配置信息B和YY对应SPS周期2对应同一套SPS配置。
终端根据SPS周期1和SPS频域资源配置信息A确定一套SPS配置,根据SPS周期1和SPS频域资源配置信息B确定另一套SPS配置。
其中,网络侧设备在需要与终端可进行业务传输时,也可以确定为终端配置的多套SPS配置。网络侧设备确定为终端配置的多套SPS配置的方式也可以参照步骤3。由于多套SPS配置是网络侧设备为终端配置的,所以网络侧设备也可以直接从多套SPS配置中确定哪些SPS配置对应该终端。
需要说明的是,网络侧设备确定多套SPS配置的方式有很多,上述只是举例说明,任何能够使网络侧设备确定多套SPS配置的方式都适用本申请实施例。
步骤4:发送端从多套SPS配置中确定业务需要使用的SPS配置。
其中,如果是上行业务,则发送端是终端,接收端是基站;如果是下行业务,则发送端是基站,接收端是终端。
如果多套SPS配置在时域没有重叠,则发送端将所有配置的SPS频域资源作为其可以使用的SPS频域资源。
如果多套SPS配置在时域上有重叠,则发送端按照如下规则之一确定在时域重叠位置选择具体使用的SPS频域资源,该规则可以是预配置或者基站通知的。
总是选择最大的SPS频域资源块。
根据实际数据传输需求选择相应SPS频域资源块。
总是选择最小的SPS频域资源块。
具体的,以V2V为例,假设发送端针对同一个业务有两套SPS配置,发送端对于时域重叠的SPS频域资源按照最大SPS频域资源块确定,那么发送端最终确定的SPS频域资源如图2B所示。
T1位置和T1+500ms位置SPS频域资源重叠,按照最大SPS频域资源块,选择SPS配置2,其他位置由于没有SPS频域资源重叠,所以选择可以使用的SPS频域资源。
步骤5:接收端对SPS的检测。
如果多套SPS配置在时域上有重叠,且接收端(下行指基站;上行指终端)按照如下规则确定在时域重叠位置选择具体使用的SPS频域资源:根据实际数据传输需求选择相应SPS频域资源块。
接收端如果可以预测发送端使用的SPS频域资源块大小(比如根据业务模型等信息),那么可以按照预测终端使用的SPS频域资源块大小进行SPS数据接收。否则,需要盲检测多套SPS配置。
如果能够确定发送端在时域重叠位置选择具体使用的SPS频域资源,则接收端确定发送端使用的SPS频域资源,直接对该SPS频域资源检测即可。
步骤6:针对同一个业务的SPS频域资源释放。
针对同一个业务不同SPS频域资源释放可以同时进行,也可以不同时进行。即:
对于上行:
隐示释放:针对同一个SPS业务的不同SPS频域资源可以分别通过发送连续N个没有数据部分padding BSR来隐示释放上行SPS频域资源。
显式释放:基站同时或者不同时使用不同SPS C-RNTI加扰的PDCCH分别释放各个SPS C-RNTI对应的上行SPS频域资源。
下行仅支持显式释放方式,基站同时或者不同时使用不同SPS C-RNTI加扰的PDCCH分别释放各个SPS C-RNTI对应的下行SPS频域资源。
实施例2:一个业务的多个SPS C-RNTI之间的关联关系通过多条RRC信令通知。
步骤1:基站确定针对同一个业务的多个SPS C-RNTI,并通过RRC信令通知终端。
对同一个SPS业务,当基站需要为终端配置多套不同大小的SPS频域资源块时,基站针对每一套SPS频域资源,分别发送用于SPS配置的RRC信令。每条用于SPS配置的RRC信令中仅携带一个SPS C-RNTI及其对应的SPS频域资源周期,同时在RRC信令中增加标识信息信息。标识信息大小是M bit,M取值大小取决于终端能够同时支持的SPS业务个数。比如终端能支持SPS业务个数是4个,则M需要2bit,00、01、10和11分别对应4个业务。
在SPS配置的RRC信令中增加标识信息后,信令中包含的内容如下表3和表4所示。
表3 配置下行SPS的RRC信令包含的内容
Figure PCTCN2017073799-appb-000004
表4 配置上行SPS的RRC信令包含的内容
域名 含义
semiPersistSchedC-RNTI 用于SPS调度的C-RNTI
semiPersistSchedIntervalUL 上行SPS资源的周期,一般配置为上行数据包到达的时间间隔
implicitReleaseAfter 表示经过几次空传输后SPS资源隐式释放
p0-NominalPUSCH-Persistent 用于进行上行功率控制的相关参数
p0-UE-PUSCH-Persistent 用于进行上行功率控制的相关参数
twoIntervalsConfig 是否使用多模SPS(仅适用于TDD系统)
ServiceIndentifier 业务标识
步骤2:基站发送用于SPS激活的PDCCH信令。
基站分别利用通知给终端的同一个业务对应的SPS C-RNTI加扰的PDCCH为终端激活多个不同大小的SPS频域资源。即基站将SPS频域资源配置信息置于PDCCH信令中,并通过对应的SPS C-RNTI加扰。
基站发送PDCCH时对于同一个业务不同SPS频域资源激活的PDCCH信令发送时刻需要和业务特征相互匹配。
以V2V业务为例,对于V2V业务,由于其支持两种不同大小的数据包,业务数据包到达是按照1大包4小包,每个数据包间隔100ms的pattern到达的。那么,基站发送针对打包和小包发送的用于SPS频域资源激活的PDCCH信令,根据调度定时关系,需要能够满足激活的SPS频域资源每间隔500ms在时域上是重叠的,如图2A所示。
步骤3:终端确定多套SPS配置。
终端根据RRC信令的内容,确定一条RRC信令中包含的所有SPS C-RNTI调度的所有SPS频域资源都是针对同一个业务的(这里确定的动作可以发生在步骤1和步骤2之间)。
终端根据每个RRC信令中包括的SPS C-RNTI加扰的PDCCH信令中的SPS频域资源配置信息,确定各个SPS C-RNTI对应的SPS频域资源位置,并根据每个RRC信令中包括的标识信息,确定哪些SPS频域资源配置信息属于同一个业务,哪些SPS C-RNTI属于同一个业务。
比如有SPS频域资源配置信息A和SPS频域资源配置信息B,假设RRC信令A中包括的SPS C-RNTI为XX,以及SPS周期1,标识信息为00;RRC信令B中的SPS C-RNTI为YY对应SPS周期21,标识信息为00。
由于RRC信令A中标识信息和RRC信令B中标识信息相同,所以终端确定XX和YY属于同一个业务。
假设XX加扰的PDCCH信令中包括SPS频域资源配置信息A;YY加扰的PDCCH信令中包括SPS频域资源配置信息B,则终端确定SPS频域资源配置信息A和XX对应SPS周期1对应同一套SPS配置,以及SPS频域资源配置信息B和YY对应SPS周期2对应同一套SPS配置。
终端根据SPS周期1和SPS频域资源配置信息A确定一套SPS配置,根据SPS周期1和SPS频域资源配置信息B确定另一套SPS配置。
其中,网络侧设备在需要与终端可进行业务传输时,也可以确定为终端配置的多套SPS配置。网络侧设备确定为终端配置的多套SPS配置的方式也可以参照步骤3。由于多套SPS配置是网络侧设备为终端配置的,所以网络侧设备也可以直接从多套SPS配置中确定哪些SPS配置对应该终端。
需要说明的是,网络侧设备确定多套SPS配置的方式有很多,上述只是举例说明,任何能够使网络侧设备确定多套SPS配置的方式都适用本申请实施例。
步骤4:发送端从多套SPS配置中确定业务需要使用的SPS配置。
其中,如果是上行业务,则发送端是终端,接收端是基站;如果是下行业务,则发送端是基站,接收端是终端。
如果多套SPS配置在时域没有重叠,则发送端将所有配置的SPS频域资源作为其可以使用的SPS频域资源。
如果多套SPS配置在时域上有重叠,则发送端按照如下规则之一确定在时域重叠位置选择具体使用的SPS频域资源,该规则可以是预配置或者基站通知的。
总是选择最大的SPS频域资源块。
根据实际数据传输需求选择相应SPS频域资源块。
总是选择最小的SPS频域资源块。
具体的,以V2V为例,假设发送端针对同一个业务有两套SPS配置,发送端对于时域重叠的SPS频域资源按照最大SPS频域资源块确定,那么发送端最终确定的SPS频域资源如图2B所示。
T1位置和T1+500ms位置SPS频域资源重叠,按照最大SPS频域资源块,选择SPS配置2,其他位置由于没有SPS频域资源重叠,所以选择可以使用的SPS频域资源。
步骤5:接收端对SPS的检测。
如果多套SPS配置在时域上有重叠,且接收端(下行指基站;上行指终端)按照如下规则确定在时域重叠位置选择具体使用的SPS频域资源:根据实际数据传输需求选择相应SPS频域资源块。
接收端如果可以预测发送端使用的SPS频域资源块大小(比如根据业务模型等信息),那么可以按照预测终端使用的SPS频域资源块大小进行SPS数据接收。否则,需要盲检测多套SPS配置。
如果能够确定发送端在时域重叠位置选择具体使用的SPS频域资源,则接收端确定发送端使用的SPS频域资源,直接对该SPS频域资源检测即可。
步骤6:针对同一个业务的SPS频域资源释放。
针对同一个业务不同SPS频域资源释放可以同时进行,也可以不同时进行。即:
对于上行:
隐示释放:针对同一个SPS业务的不同SPS频域资源可以分别通过发送连续N个没有数据部分padding BSR来隐示释放上行SPS频域资源。
显式释放:基站同时或者不同时使用不同SPS C-RNTI加扰的PDCCH分别释放各个SPS C-RNTI对应的上行SPS频域资源。
下行仅支持显式释放方式,基站同时或者不同时使用不同SPS C-RNTI加扰的PDCCH分别释放各个SPS C-RNTI对应的下行SPS频域资源。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (39)

  1. 一种配置半持续调度的方法,其特征在于,该方法包括:
    网络侧设备通知终端多个半持续调度SPS小区无线网络临时标识符C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的物理下行控制信道PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。
  2. 如权利要求1所述的方法,其特征在于,所述网络侧设备通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,包括:
    所述网络侧设备将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条无线资源控制RRC信令中发送给所述终端;或
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
  3. 如权利要求2所述的方法,其特征在于,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,还包括:
    所述网络侧设备在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。
  4. 如权利要求1所述的方法,其特征在于,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之前,还包括:
    所述网络侧设备根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻;
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPSC-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息,包括:
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备在对应的发送时刻到达后,发送利用所述SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
  5. 如权利要求1~4任一所述的方法,其特征在于,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:
    所述网络侧设备同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,
    所述网络侧设备利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
  6. 如权利要求1~4任一所述的方法,其特征在于,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:
    所述SPS配置为上行SPS配置,针对每套SPS配置,所述网络侧设备通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充缓存状态上报BSR后,释放所述SPS配置,N为大于等于1的整数。
  7. 如权利要求1~4任一所述的方法,其特征在于,针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,所述网络侧设备利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,还包括:
    若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则所述网络侧设备将每个SPS C-RNTI对应的SPS配置作为需要使用的SPS配置;
    若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则所述网络侧设备根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定需要使用的SPS配置。
  8. 如权利要求7述的方法,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  9. 一种确定半持续调度的方法,其特征在于,该方法包括:
    终端根据网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;
    所述终端根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;
    所述终端根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置。
  10. 如权利要求9所述的方法,其特征在于,所述终端根据所述网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期,包括:
    所述终端确定收到的RRC信令中的所有SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或
    所述终端确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
  11. 如权利要求9或10所述的方法,其特征在于,所述终端根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,还包括:
    若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则所述终端将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;
    若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则所述终端根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
  12. 如权利要求11述的方法,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  13. 如权利要求9~12任一述的方法,其特征在于,所述终端确定所述网络侧设备为所述终端配置的多套SPS配置之后,还包括:
    所述SPS配置为上行SPS配置,针对每套SPS配置,所述终端通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的padding BSR,用于通知所述网络侧设备释放所述SPS配置。
  14. 一种网络侧设备,其特征在于,该网络侧设备包括:
    处理模块,用于通知终端多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;
    配置模块,用于针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息。
  15. 如权利要求14所述的网络侧设备,其特征在于,所述处理模块具体用于:
    将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条 RRC信令中发送给所述终端;或
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
  16. 如权利要求15所述的网络侧设备,其特征在于,所述处理模块还用于:
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。
  17. 如权利要求14所述的网络侧设备,其特征在于,所述处理模块具体用于:
    在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之前,根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻;
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,在对应的发送时刻到达后,发送利用所述SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
  18. 如权利要求14~17任一所述的网络侧设备,其特征在于,所述处理模块具体用于:
    在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
    同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,
    利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
  19. 如权利要求14~17任一所述的网络侧设备,其特征在于,所述SPS配置为上行SPS配置,所述处理模块具体用于:
    在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,针对每套SPS配置,通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充缓存状态上报BSR后,释放所述SPS配置,N为大于等于1的整数。
  20. 如权利要求14~17任一所述的网络侧设备,其特征在于,所述配置模块还用于:
    在所述配置模块针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
    若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为需要使用的SPS配置;
    若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定需要使用的SPS配置。
  21. 如权利要求20述的网络侧设备,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  22. 一种确定半持续调度的终端,其特征在于,该终端包括:
    周期确定模块,用于根据网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;
    信息确定模块,用于根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;
    配置确定模块,用于根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置。
  23. 如权利要求22所述的终端,其特征在于,所述周期确定模块具体用于:
    确定收到的RRC信令中的所有SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或
    确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
  24. 如权利要求22或23所述的终端,其特征在于,所述配置确定模块还用于:
    根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,执行:
    若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;
    若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个 SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
  25. 如权利要求24述的终端,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  26. 如权利要求22~25任一述的终端,其特征在于,所述SPS配置为上行SPS配置,所述配置确定模块还用于:
    确定所述网络侧设备为所述终端配置的多套SPS配置之后,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的填充BSR,用于通知所述网络侧设备释放所述SPS配置。
  27. 一种网络侧设备,其特征在于,包括:处理器、收发机和存储器;
    所述处理器,用于读取存储器中的程序,执行:
    通过所述收发机通知终端多个半持续调度SPS小区无线网络临时标识符C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期;
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的物理下行控制信道PDCCH信令,通过所述收发机向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息;
    所述收发机,用于在所述处理器的控制下接收和发送数据。
  28. 如权利要求27所述的网络侧设备,其特征在于,所述处理器具体用于:
    将所述多个SPS C-RNTI以及每个SPS C-RNTI对应的SPS配置的SPS周期置于一条RRC信令中发送给所述终端;或
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端,其中不同SPS C-RNTI位于不同的RRC信令中。
  29. 如权利要求28所述的网络侧设备,其特征在于,所述处理器还用于:
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,将所述SPS C-RNTI以及所述SPS C-RNTI对应的SPS配置的SPS周期置于RRC信令中发送给所述终端之前,在包含多个SPS C-RNTI中的任意一个SPS C-RNTI的所有RRC信令中携带相同的标识信息。
  30. 如权利要求27所述的网络侧设备,其特征在于,所述处理器具体用于:
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之 前,根据使用SPS配置对应的业务的业务特征,确定每个PDCCH信令的发送时刻;
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,在对应的发送时刻到达后,发送利用所述SPS C-RNTI加扰的包含SPS频域资源配置信息的PDCCH信令。
  31. 如权利要求27~30任一所述的网络侧设备,其特征在于,所述处理器具体用于:
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
    同时或不同时利用每个SPS C-RNTI加扰的PDCCH信令,通知终端释放该SPS C-RNTI对应的SPS配置;或者,
    利用所述多个SPS C-RNTI中任何一个SPS C-RNTI加扰的PDCCH信令,通知终端释放所述多个SPS配置。
  32. 如权利要求27~30任一所述的网络侧设备,其特征在于,所述SPS配置为上行SPS配置,所述处理器具体用于:
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,针对每套SPS配置,通过所述SPS配置对应的资源,接收到连续N个没有数据部分的填充缓存状态上报BSR后,释放所述SPS配置,N为大于等于1的整数。
  33. 如权利要求27~30任一所述的网络侧设备,其特征在于,所述处理器还用于:
    针对所述多个SPS C-RNTI中的任意一个SPS C-RNTI,利用所述SPS C-RNTI加扰的PDCCH信令,向终端发送所述SPS C-RNTI对应的SPS配置的SPS频域资源配置信息之后,执行:
    若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为需要使用的SPS配置;
    若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定需要使用的SPS配置。
  34. 如权利要求33述的网络侧设备,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  35. 一种终端,其特征在于,包括:处理器、收发机和存储器;
    所述处理器,用于读取存储器中的程序,执行:
    通过收发机接收网络侧设备的通知,并根据网络侧设备的通知,确定多个SPS C-RNTI以及每个SPS C-RNTI的SPS配置的SPS周期,其中每个SPS C-RNTI对应不同的SPS配置;
    根据多个SPS C-RNTI中每个SPS C-RNTI加扰的PDCCH信令,确定所述网络侧设备为所述终端配置的每套SPS配置的SPS频域资源配置信息;
    根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置;
    所述收发机,用于在所述处理器的控制下接收和发送数据。
  36. 如权利要求35所述的终端,其特征在于,所述处理器具体用于:
    确定收到的RRC信令中的所有SPS C-RNTI,并确定RRC信令中的每个SPS C-RNTI对应的SPS配置的SPS周期;或
    确定收到的包含同一个标识信息的多个RRC信令,并确定包含同一个标识信息的多个RRC信令中的每个SPS C-RNTI,将每个RRC信令中的SPS周期作为所述RRC信令中的SPS C-RNTI对应的SPS配置的SPS周期。
  37. 如权利要求35或36所述的终端,其特征在于,所述处理器还用于:
    根据每套SPS配置的SPS频域资源配置信息和SPS周期,确定所述网络侧设备为所述终端配置的多套SPS配置之后,执行:
    若每个SPS C-RNTI对应的SPS配置在时域上没有重叠,则将每个SPS C-RNTI对应的SPS配置作为所述终端需要使用的SPS配置;
    若每个SPS C-RNTI对应的SPS配置在时域上有重叠,则根据设定的选取条件从每个SPS C-RNTI对应的SPS配置中确定所述终端需要使用的SPS配置。
  38. 如权利要求37所述的终端,其特征在于,所述选取条件为下列条件中的一种:
    选择最大的SPS频域资源块;
    选择最小的SPS频域资源块;
    根据需要传输的数据,选择SPS频域资源块。
  39. 如权利要求35~38任一述的终端,其特征在于,所述SPS配置为上行SPS配置,所述处理器还用于:
    确定所述网络侧设备为所述终端配置的多套SPS配置之后,针对每套SPS配置,通过所述SPS配置的资源,向所述网络侧设备发送连续N个没有数据部分的填充BSR,用于通知所述网络侧设备释放所述SPS配置。
PCT/CN2017/073799 2016-03-15 2017-02-16 一种配置和确定半持续调度的方法及设备 WO2017157128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610147587.8 2016-03-15
CN201610147587.8A CN107197523B (zh) 2016-03-15 2016-03-15 一种配置和确定半持续调度的方法及设备

Publications (1)

Publication Number Publication Date
WO2017157128A1 true WO2017157128A1 (zh) 2017-09-21

Family

ID=59850540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073799 WO2017157128A1 (zh) 2016-03-15 2017-02-16 一种配置和确定半持续调度的方法及设备

Country Status (2)

Country Link
CN (1) CN107197523B (zh)
WO (1) WO2017157128A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565538A (en) * 2017-08-11 2019-02-20 Samsung Electronics Co Ltd Improvements in and relating to semi persistent scheduling in a telecommunication network
CN111416697A (zh) * 2019-01-07 2020-07-14 中国移动通信有限公司研究院 一种小区无线网络临时标识的配置方法及设备
CN111435906A (zh) * 2019-03-27 2020-07-21 维沃移动通信有限公司 一种参考值的确定方法及终端
US11234241B2 (en) 2019-01-11 2022-01-25 At&T Intellectual Property I, L.P. Assisted resource allocation in a peer to peer wireless network

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587790A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 资源配置方法及装置
CN111480385A (zh) 2017-12-27 2020-07-31 Oppo广东移动通信有限公司 数据发送方法、装置、计算机设备及存储介质
EP3869905B1 (en) * 2018-10-18 2023-11-29 Beijing Xiaomi Mobile Software Co., Ltd. Unicast connection and data transmission based on direct thing-to-thing connection
CN111148262B (zh) * 2018-11-07 2021-09-24 维沃移动通信有限公司 一种数据传输方法、信息配置方法、终端及网络设备
CN111435877A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 资源配置方法及装置
CN113015256B (zh) * 2019-12-20 2024-01-23 大唐移动通信设备有限公司 一种信息处理方法、装置、设备及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645764A (zh) * 2008-09-28 2010-02-10 中国移动通信集团公司 用户上行数据调度方法及用户设备
CN101754268A (zh) * 2008-12-04 2010-06-23 中国移动通信集团公司 用户上行数据调度方法及用户设备
US20130148597A1 (en) * 2011-12-07 2013-06-13 Kt Corporation Scheduling based on channel status

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158973B (zh) * 2010-02-11 2013-11-20 电信科学技术研究院 半持续调度、传输及处理方法、系统和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645764A (zh) * 2008-09-28 2010-02-10 中国移动通信集团公司 用户上行数据调度方法及用户设备
CN101754268A (zh) * 2008-12-04 2010-06-23 中国移动通信集团公司 用户上行数据调度方法及用户设备
US20130148597A1 (en) * 2011-12-07 2013-06-13 Kt Corporation Scheduling based on channel status

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565538A (en) * 2017-08-11 2019-02-20 Samsung Electronics Co Ltd Improvements in and relating to semi persistent scheduling in a telecommunication network
CN111416697A (zh) * 2019-01-07 2020-07-14 中国移动通信有限公司研究院 一种小区无线网络临时标识的配置方法及设备
WO2020143615A1 (zh) * 2019-01-07 2020-07-16 中国移动通信有限公司研究院 小区无线网络临时标识的配置方法及设备
CN111416697B (zh) * 2019-01-07 2022-04-01 中国移动通信有限公司研究院 一种小区无线网络临时标识的配置方法及设备
US11234241B2 (en) 2019-01-11 2022-01-25 At&T Intellectual Property I, L.P. Assisted resource allocation in a peer to peer wireless network
CN111435906A (zh) * 2019-03-27 2020-07-21 维沃移动通信有限公司 一种参考值的确定方法及终端
CN111435906B (zh) * 2019-03-27 2021-11-19 维沃移动通信有限公司 一种参考值的确定方法及终端

Also Published As

Publication number Publication date
CN107197523A (zh) 2017-09-22
CN107197523B (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2017157128A1 (zh) 一种配置和确定半持续调度的方法及设备
WO2017157089A1 (zh) 一种配置和确定半持续调度的方法及设备
JP6355281B2 (ja) バッファステータスレポートおよびスケジューリングリクエストを二重接続を用いて処理する方法および装置
WO2017133596A1 (zh) 上行控制信息的传输方法及装置
WO2018028269A1 (zh) 一种资源调度方法和装置
WO2017133445A1 (zh) 一种传输上行控制信息的方法和设备
JP6726767B2 (ja) ページング検出ウィンドウ
CN105429736B (zh) 一种发送和接收反馈的方法及设备
WO2018141244A1 (zh) 一种资源调度方法、装置及系统
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
TWI825848B (zh) 處理量測的通訊裝置及方法
WO2020034740A1 (zh) 一种调度请求资源确定及配置方法、设备及存储介质
WO2013166670A1 (zh) 上行信道资源配置方法和设备
JP2014131240A (ja) バッファ状態報告の送信制御方法、ユーザ装置、および無線通信システム
JP6353077B2 (ja) リソース割り当て方法、リソースコンテンション方法、および関連する装置
WO2018233552A1 (zh) 用于传输数据的方法和设备
WO2017167074A1 (zh) 一种调度方法、装置和设备
WO2020063927A1 (zh) 一种资源配置方法、信息发送方法及装置
KR20210111850A (ko) 리소스 구성 및 데이터 전송을 위한 방법 및 장치
WO2016168967A1 (zh) 一种分量载波组的配置方法及设备
CN109392137B (zh) 一种数据发送、接收方法及装置
WO2019014993A1 (zh) 上行传输方法、终端设备和网络设备
TWI698145B (zh) 處理用於邏輯通道的排程請求的裝置及方法
JP6530057B2 (ja) コンテンションベースアップリンク送信の復号のための方法およびノード
WO2020088517A1 (zh) 数据传输方法和设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765670

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17765670

Country of ref document: EP

Kind code of ref document: A1