Nothing Special   »   [go: up one dir, main page]

WO2017154964A1 - 鋼部品、歯車部品および鋼部品の製造方法 - Google Patents

鋼部品、歯車部品および鋼部品の製造方法 Download PDF

Info

Publication number
WO2017154964A1
WO2017154964A1 PCT/JP2017/009186 JP2017009186W WO2017154964A1 WO 2017154964 A1 WO2017154964 A1 WO 2017154964A1 JP 2017009186 W JP2017009186 W JP 2017009186W WO 2017154964 A1 WO2017154964 A1 WO 2017154964A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
surface layer
steel
steel part
Prior art date
Application number
PCT/JP2017/009186
Other languages
English (en)
French (fr)
Inventor
巧治 大林
一晃 岡田
佳祐 松坂
将芝 榊原
慶 宮西
達也 小山
久保田 学
Original Assignee
アイシン・エィ・ダブリュ株式会社
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, 新日鐵住金株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201780008400.9A priority Critical patent/CN108603261B/zh
Priority to KR1020187022680A priority patent/KR20180099877A/ko
Priority to EP17763304.7A priority patent/EP3378963B1/en
Priority to JP2018504549A priority patent/JP6605118B2/ja
Priority to US16/076,658 priority patent/US10889870B2/en
Publication of WO2017154964A1 publication Critical patent/WO2017154964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a steel part, a gear part, and a method for manufacturing a steel part that are hardened through steps such as carburizing and quenching using steel as a raw material.
  • the carbon (carbon) concentration on the surface (surface layer) of the steel is improved by carburizing treatment, and then the steel is cooled at a cooling rate of 4 to 10 ° C./second so as not to generate a martensite structure.
  • the occurrence of strain (heat treatment strain) due to heat treatment in the steel is suppressed.
  • the surface layer is heated by performing induction heating on the cooled steel, and then the steel structure is martensitic transformed by quenching, so that the surface of the induction hardening steel part is transformed. Hardness and fatigue strength are improved.
  • the above prior art documents disclose that the induction hardened steel part after quenching is subjected to tempering treatment and shot peening treatment to improve the bending fatigue strength of the induction hardening steel component. Further, in the examples of the above prior art documents, it is disclosed that a steel material containing a relatively high concentration (0.5% to 2.96%) of Cr is used for the purpose of improving the temper softening resistance. Has been.
  • test material 1 (Invention Examples 14 and 15) subjected to the shot peening treatment of the above-described prior art document, the surface hardness after carburizing treatment is improved to 0.6 mass%, but the surface hardness is improved.
  • parts that require high surface hardness such as gear parts, for example, further improvement in surface hardness is desired.
  • the steel after carburizing and quenching in which the C concentration is in the hypereutectoid state is after quenching even if the carbide is dissolved and C (carbon) is sufficiently dissolved in the base metal during heating. It is also known that this structure does not sufficiently martensite, and the amount of retained austenite is larger than that of steel having a C concentration lower than the eutectoid point.
  • the retained austenite structure is lower in hardness than the martensite structure, in order to improve the surface hardness of carburized induction-hardened steel parts, work-induced transformation by a modification process such as shot peening after quenching It is necessary to transform the structure from retained austenite to martensite.
  • Example 7 of the above prior art document a test material having a surface C concentration increased to 1.5% by mass is disclosed.
  • the test material of Example 7 is not subjected to shot peening treatment.
  • the amount of retained austenite is 19%, and a lot of soft retained austenite structure remains on the surface.
  • the steel material of the above prior art document contains a relatively high concentration (1.05%) of Cr in addition to a high C concentration, so that the grain boundaries of the test material after carburizing treatment are included. It is considered that a large amount of carbides due to Cr are deposited on the surface, and it is difficult to perform the shot peening treatment due to the above-described reason (crack generation).
  • the present invention has been made in order to solve the above-described problems, and one object of the present invention is to suppress heat treatment distortion, and when the C concentration of the surface layer is higher than the eutectoid point (the surface layer is excessive).
  • Steel parts, gear parts, and the like which can suppress a decrease in fatigue strength caused by carbides precipitated at the grain boundaries and can sufficiently increase the hardness of the surface layer even in the eutectoid state) It is to provide a method for manufacturing steel parts.
  • the steel part according to the first aspect of the present invention is: As a chemical component C (carbon): 0.05 mass% or more and 0.30 mass% or less, Si (silicon): 1.0 mass% or more and 3.0 mass% or less, Mn (manganese): 0.1% by mass or more and 3.0% by mass or less, P (phosphorus): 0.03 mass% or less, S (sulfur): 0.001% by mass or more and 0.150% by mass or less, Cr (chromium): 0.01 mass% or more and 0.20 mass% or less, Al (aluminum): 0.01 mass% or more and 0.05 mass% or less, N (nitrogen): 0.003 mass% or more and 0.030 mass% or less, A steel part formed from a raw steel containing Fe, a small amount of other alloy components as an optional component and inevitable impurities: the balance, The C concentration of the surface layer of the steel part is 0.85% by mass or more and 1.2% by mass or less, which is higher than
  • the remainder of the surface layer (or the inner layer from the surface layer) has a martensite structure means that the remainder other than the retained austenite structure of the surface layer (or the inner layer from the surface layer) is completely martensitic.
  • the concept is not limited to the site structure, and includes a case where the remainder other than the retained austenite structure includes a trace amount of an inevitablely formed structure other than the retained austenite structure and the martensite structure, and grain boundary carbides.
  • grain boundary carbide means iron-based carbide (for example, cementite) and alloy carbide precipitated on the austenite grain boundary during the production of steel parts.
  • the C concentration of the surface layer is 0.6 by setting the C concentration of the surface layer to 0.85% by mass or more (so-called hypereutectoid state).
  • the hardness of the surface layer can be increased as compared with the case of mass%.
  • the surface layer has a C concentration of 1.2% by mass or less, and the surface layer has a volume ratio of the retained austenite structure of greater than 0% and less than 10%.
  • the remainder of the surface layer is configured to have a martensite structure.
  • the Si concentration is 1.0 mass% or more and the Cr concentration is 0.20 mass% or less.
  • the area ratio of the grain boundary carbide of a surface layer can be made into less than 2%, and the fall of the fatigue strength of the steel components resulting from a grain boundary carbide can be suppressed. As a result, damage to the steel part can be suppressed, and the life of the steel part can be extended. Further, unlike the case where the C concentration of the surface layer is 1.5% by mass, it is possible to suppress the soft austenite structure (residual austenite structure) from remaining 10% or more on the surface layer, so that the Vickers hardness of the surface layer is set to HV800. It can be made sufficiently large.
  • a quenching process in which a part of the austenite structure in the steel part is martensified by cooling at a speed and quenching After the quenching process, by applying mechanical energy to the surface of the steel part and its vicinity, by changing the austenite structure of the steel part to a martensite structure, the volume ratio of the residual austenite structure in the layer inside the surface layer Is larger than the surface layer, and has a reforming step in which the balance is a martensite structure.
  • the C concentration of the surface layer is higher than the C concentration at the eutectoid point by 0.85% by mass or more and 1.2.
  • mechanical energy is applied to transform the retained austenite structure existing in the surface of the steel part after quenching and in the vicinity thereof into a martensite structure.
  • carbide such as cementite is easily generated at the crystal grain boundary in the cooling step following the carburizing step.
  • the Si concentration is set to 1.0% by mass or more
  • Cr that easily promotes the generation of carbides is set to 0.20% by mass or less in order to suppress the formation of carbides.
  • the Vickers hardness of the surface layer can be sufficiently increased to, for example, HV800 or more, and the generation of carbides can be suppressed, and for example, the area ratio of grain boundary carbides in the surface layer can be less than 2%. It is possible to suppress a decrease in fatigue strength of the steel part due to the grain boundary carbide. As a result, damage to the steel part can be suppressed, and the life of the steel part can be extended.
  • the steel part is heated by high-density energy heating to raise the temperature of the steel part to a temperature equal to or higher than the austenitizing temperature, and then the austenitized steel part is made critical.
  • a part of the austenite structure in the steel part is martensitized by quenching (quenching) at a cooling rate higher than the cooling rate and quenching.
  • quenching quenching
  • cooling is performed using a refrigerant of about 80 ° C. or more and about 180 ° C. or less (for example, oil quenching).
  • a larger part of the austenite structure of the steel part can be martensitic, and the volume ratio of the retained austenite structure in the steel part can be reduced.
  • the steel part manufacturing method after the carburizing process, the steel part is cooled at a cooling rate lower than the cooling rate at which the steel part undergoes martensitic transformation.
  • the steel part is cooled at a cooling rate lower than the cooling rate at which the steel part undergoes martensitic transformation in the subsequent cooling process, resulting in the heat treatment. Can be prevented from occurring in the steel part.
  • FIG. 12 is a cross-sectional view taken along line 500-500 in FIG. It is an expanded sectional view around a rolling surface of a shaft member by a 2nd embodiment.
  • C (carbon): 0.05 mass% or more and 0.30 mass% or less) C is an element added to ensure the hardness of the material steel. Therefore, in the first embodiment, the lower limit of the C concentration is set to 0.05 mass% to ensure the hardness of the material steel. On the other hand, when the C concentration exceeds 0.30% by mass, the hardness of the material steel is increased more than necessary, and as a result, the toughness of the material steel is lowered and the machinability is lowered. For this reason, 0.30 mass% was made into the upper limit of C density
  • Si silicon (silicon): 1.0 mass% or more and 3.0 mass% or less
  • Si is an element added to suppress the precipitation of carbides at the crystal grain boundaries and to suppress the decrease in hardness due to the tempering of the martensite structure in the slow cooling after the carburizing process described later. Since the addition of Si suppresses the precipitation of grain boundary carbides, a structure in which C (carbon) is sufficiently dissolved can be obtained during high-density energy heating after carburizing treatment. Thereby, the fall of the fatigue strength resulting from a grain-boundary carbide is suppressed.
  • the lower limit of the Si concentration is set to 1.0% by mass, and the Si concentration capable of suppressing the precipitation of carbides at the crystal grain boundaries is ensured.
  • Si concentration exceeds 3.0% by mass, the hardness of the material steel becomes larger than necessary, and as a result, the machinability of the material steel is lowered. For this reason, 3.0 mass% was made into the upper limit of Si concentration.
  • a more preferable Si concentration range is 1.0% by mass or more and about 2.5% by mass or less, and more preferably about 1.5% by mass. It is at least about 2.0% by mass. Si is also effective for deoxidation in the steel making process.
  • Mn manganese: 0.1 mass% or more and 3.0 mass% or less
  • Mn is an element effective for improving deoxidation and hardenability in the steel making process.
  • the Mn concentration needs to be 0.1% by mass or more.
  • the Mn concentration exceeds 3.0% by mass, the hardness of the material steel becomes larger than necessary, and as a result, the machinability of the material steel is lowered. For this reason, 3.0 mass% was made the upper limit of the Mn concentration.
  • a more preferable range of the Mn concentration is about 0.4% by mass or more and about 2.0% by mass or less in terms of suppression of deterioration in hardenability and machinability.
  • P phosphorus: 0.03 mass% or less
  • P segregates at the grain boundaries to lower the strength of the grain boundaries and lower the toughness of the material steel. Therefore, P needs to be reduced as much as possible. Specifically, it is necessary to reduce the P concentration to 0.03% by mass or less.
  • S (sulfur): 0.001 mass% or more and 0.150 mass% or less)
  • S concentration needs to be 0.001 mass% or more.
  • S concentration exceeds 0.150% by mass, MnS segregates at the grain boundaries and reduces the toughness of the material steel, so 0.150% by mass was made the upper limit.
  • a more preferable range of S concentration is about 0.005 mass% or more and about 0.060 mass% or less.
  • Cr is an element effective for improving hardenability and temper softening resistance.
  • the Cr concentration needs to be 0.01% by mass or more.
  • the Cr concentration exceeds 0.20% by mass, a lot of grain boundary carbides are precipitated by cooling after the carburizing treatment. If a large amount of the grain boundary carbides are precipitated, the fatigue strength of the steel part is lowered because a structure in which C (carbon) is sufficiently dissolved in the high density energy heating after the carburizing process cannot be obtained. For this reason, 0.20 mass% was made into the upper limit as Cr density
  • a more preferable Cr concentration range is about 0.05 mass% or more and about 0.15 mass% or less.
  • Al is an element effective for refining the structure by suppressing the coarsening of the structure at the time of carburizing treatment and high-density energy heating by being precipitated and dispersed in the processed material as a nitride.
  • the Al concentration needs to be 0.01% by mass or more.
  • the Al concentration exceeds 0.05% by mass, the precipitates of nitride are likely to be coarsened, so 0.05% by mass was made the upper limit.
  • a more preferable range of Al concentration in terms of finer structure is about 0.02 mass% or more and about 0.04 mass% or less.
  • raw material steel may contain 1 type or 2 types in the following element groups as arbitrary alloy components.
  • Mo mobdenum
  • B boron
  • Mo and B are effective elements for improving the grain boundary strength and hardenability, and may be contained in a small amount in the material steel for the purpose of improving the strength of the structure.
  • the concentration of each element group needs to be equal to or higher than the lower limit.
  • more preferable Mo concentration range and B concentration range are about 0.03 mass% or more and about 0.20 mass% or less and about 0.0010, respectively. It is not less than mass% and not more than about 0.0030 mass%.
  • raw material steel may contain 1 type or 2 types in the following element groups as arbitrary alloy components.
  • Nb niobium
  • Ti titanium
  • V vanadium
  • Nb, Ti and V are effective elements for suppressing the coarsening of the structure, and may be contained in a small amount in the material steel for the purpose of improving the strength of the structure.
  • the concentration of each element group needs to be equal to or higher than the lower limit.
  • the effect is saturated even if it exceeds the upper limit of each element group, it is preferable not to add it beyond the upper limit.
  • more preferable Nb concentration range, Ti concentration range, and V concentration range are about 0.03% by mass or more and about 0.20% by mass or less, and about 0.00%, respectively.
  • the gear component 100 according to the first embodiment manufactured by processing the material steel is a so-called pinion as shown in FIG.
  • the gear part 100 is manufactured by performing carburizing, cooling, induction hardening, tempering, and shot peening in this order after roughing and gear cutting are performed as processing. These processes will be described in detail in the description of the manufacturing process.
  • the shot peening process is an example of the “reforming process” in the claims.
  • a tooth portion 2 having a plurality of teeth protruding outward is provided on the outer peripheral surface 20 side of the tube member 1.
  • the tooth portion 2 has a plurality of tooth surfaces 21, tooth tip surfaces 22, and tooth bottom surfaces 23 extending along the tooth trace direction, which are inclined with respect to the extending direction of the tube member 1.
  • the tooth surface 21 is formed to extend in the tooth profile direction so as to connect the tooth tip surface 22 and the tooth bottom surface 23.
  • the surface layer 31 is a region processed in the carburizing process, the cooling process, the induction hardening process, the tempering process, and the shot peening process. Specifically, the surface layer 31 is a region from the outer peripheral surface 20 to a depth of about 20 ⁇ m or more and about 40 ⁇ m or less in a direction perpendicular to the outer peripheral surface 20. The depth of the surface layer 31 can be changed depending on the conditions of the shot peening process.
  • C concentration is made into 0.85 mass% or more and 1.2 mass% or less by the carburizing process. This C concentration is higher than the C concentration of the material steel (0.05 mass% or more and 0.30 mass% or less).
  • the hardness in the surface layer 31 is 0.85% by mass or more, the relationship between the C concentration and the hardness of the steel shown in FIG. 4 (E.C. Bain and H.W. Paxton, Alloying Elements in Steel, 2nd ed., American Society for et Metals, Metals Park, OH, ⁇ 1961), the hardness can be sufficiently increased as compared with the case where the C concentration of the surface layer is low at 0.6 mass%. If the C concentration of the surface layer exceeds 1.2% by mass, a large amount of residual austenite structure remains in the induction hardening process described later, so the upper limit of the C concentration of the surface layer 31 is 1.2% by mass.
  • the C concentration of the surface layer 31 is preferably 0.85 mass% or more and about 1.1 mass% or less, more preferably about 0.9 mass% or more and about 1.05 mass% or less.
  • the surface layer 31 includes a retained austenite structure and a martensite structure. Moreover, in the surface layer 31, the volume ratio of a retained austenite structure is larger than 0% and less than 10%, and the remainder is a martensitic structure. It should be noted that the surface layer 31 only needs to be mostly composed of an austenite structure and a martensite structure, and in addition to the austenite structure and the martensite structure, an inevitable structure (for example, cementite and bainite structure) is contained in a small amount. Also good.
  • the martensitic structure here includes not only the martensitic structure that has been transformed by quenching but also the tempered martensitic structure after tempering after quenching.
  • the surface layer 31 is formed so that the area ratio of grain boundary carbides is less than 2% in both the retained austenite structure and the martensite structure.
  • the area ratio of grain boundary carbide is derived by observing a cross section having an area of a predetermined size or more (for example, an area of 10,000 ⁇ m 2 or more) and deriving a ratio of the area of the grain boundary carbide existing in the cross section. Can be obtained.
  • the Si addition amount is increased and the Cr addition amount is decreased. It has been broken.
  • the martensite structure generated in the surface layer 31 by rapid cooling during the induction hardening process and the residual austenite structure remaining in the induction hardening process are modified by the mechanical energy applied to the surface layer 31. And the martensite structure generated by the process.
  • mechanical energy is applied to the surface layer 31 by shot peening.
  • compressive residual stress of about 600 MPa or more is generated in the surface layer 31 due to the mechanical energy applied to the surface layer 31 by the shot peening process.
  • the surface layer 31 preferably has a compressive residual stress of about 1100 MPa or more.
  • the surface layer 31 has a hardness (Vickers hardness) of HV800 or higher by carburizing, induction hardening, and shot peening.
  • the Vickers hardness in the surface layer 31 is HV850 or more.
  • the volume ratio of the retained austenite structure is about 15% or more.
  • the shot peening process causes a compressive residual stress in the first intermediate layer 32 that is greater than that in the second intermediate layer 33 and the innermost layer 35.
  • a peening layer PL processed by shot peening is formed from the surface layer 31 and the first intermediate layer 32.
  • the second intermediate layer 33 is a region processed in the carburizing process, the cooling process, the induction hardening process, and the tempering process.
  • the second intermediate layer 33 is inside the first intermediate layer 32 and in a region from the outer peripheral surface 20 to a depth of about 0.5 mm or more and about 1.5 mm or less in a direction perpendicular to the outer peripheral surface 20. is there.
  • the inner peripheral surface side layer 34 is a region from the inner peripheral surface 24 to a depth of about 0.5 mm or more and about 1.5 mm or less in a direction perpendicular to the inner peripheral surface 24.
  • middle layer 33 can be changed with the conditions of a carburizing process.
  • the C concentration is made higher than the C concentration of the material steel by carburizing treatment.
  • the carburized layer CL processed by the carburizing process is formed from the surface layer 31, the first intermediate layer 32, and the second intermediate layer 33.
  • the innermost layer 35 is a region processed in heat treatment, cooling treatment, and induction hardening treatment in carburizing treatment. Specifically, the innermost layer 35 is a layer to which heat treatment is applied by carburizing treatment, while the C concentration hardly changes from the raw steel before processing. The hardness of the innermost layer 35 is greater than the hardness of the material steel before processing. In addition, the induction hardening process is performed over the whole gear component 100.
  • material steel bar steel having the above-described composition is prepared.
  • This material steel is heated to a temperature higher than the A3 transformation point (austenite-ferrite transformation point) corresponding to the C concentration of the material steel (any one of 0.05 mass% or more and 0.30 mass% or less). By doing so, normalization is performed.
  • the processed material is mainly composed of a ferrite structure and a pearlite structure throughout.
  • C carbon permeates and diffuses into the workpiece in a carburizing furnace (not shown) in a reduced pressure environment with a low oxygen concentration. That is, a vacuum carburizing process is performed on the workpiece.
  • the carburizing time and diffusion time by the hydrocarbon-based gas introduced into the carburizing furnace are determined in consideration of the C concentration of the surface layer 31 (see FIG. 3) after the completion of the gear part 100.
  • the C (carbon) permeates and diffuses from the outer peripheral surface 20 a carburized layer CL1 and an inner peripheral surface side layer whose C concentration is higher than the C concentration of the material steel are formed.
  • the C concentration is 0.85 mass% or more and 1.2 mass% or less.
  • the entire processed material 200 mainly has an austenite structure.
  • the austenitized workpiece 200 is cooled (slowly cooled) at a cooling rate lower than the critical cooling rate for martensite transformation (cooling step).
  • the surface (outer peripheral surface 20 and inner peripheral surface) side portion of the workpiece 200 mainly has a pearlite structure, and the ferrite structure increases toward the inside.
  • grain boundary carbides such as cementite are likely to precipitate at the crystal grain boundaries.
  • the Si concentration is increased to 1.0 mass% to 3.0 mass% and the Cr concentration is decreased to 0.01 mass% to 0.20 mass%. This suppresses the precipitation of grain boundary carbides at the crystal grain boundaries.
  • the austenitized workpiece 200 is cooled (slowly cooled) at a cooling rate lower than the critical cooling rate for transforming the martensite, so that a martensite structure having a volume larger than that of the pearlite structure is formed in the workpiece 200. It is suppressed from occurring. Thereby, it is suppressed that the distortion (heat treatment distortion) resulting from the heat treatment is generated in the workpiece 200.
  • the induction hardening process is performed with respect to the processed material 200 after a carburizing process and a cooling process.
  • the workpiece 200 is heated by high-density energy heating.
  • the workpiece 200 is induction-heated by intensively applying high-density energy at a predetermined high frequency (for example, a frequency of about 10 kHz or about 100 kHz) to the workpiece 200.
  • a predetermined high frequency for example, a frequency of about 10 kHz or about 100 kHz
  • the Acm transformation point is the austenitizing temperature corresponding to the C concentration of the portion on the outer peripheral surface 20 side of the carburized layer CL1.
  • the whole processed material 200 mainly becomes an austenite structure.
  • the processed material 200 is rapidly cooled. Specifically, water (refrigerant) of about 10 ° C. or more and about 40 ° C. or less is directly brought into contact with the workpiece 200 to cool the workpiece 200.
  • the workpiece 200 is cooled using a refrigerant of about room temperature (about 25 ° C.).
  • a refrigerant of about room temperature (about 25 ° C.).
  • the workpiece 300 in which a part of the austenite structure is transformed into a martensite structure (quenched martensite structure) is formed on the surface (outer peripheral surface 20 and inner peripheral surface) side portion.
  • the carburized layer CL1 after the carburizing treatment is hardened by quenching to become the carburized layer CL2, and the innermost layer 35 having a hardness higher than that of the material steel is formed inside the carburized layer CL2. Further, the inner peripheral surface side layer 134 is hardened by quenching to become the inner peripheral surface side layer 34. At this time, a part of the austenite structure is transformed into a martensite structure based on the C concentration and the refrigerant temperature, and the remainder remains as an austenite structure (residual austenite structure).
  • FIG. 7 shows a graph showing the relationship between the C concentration and the retained austenite structure at a predetermined refrigerant temperature. From this graph, it can be confirmed that when the C concentration is high, the volume ratio of the retained austenite structure ( ⁇ R ) tends to increase.
  • the volume ratio of the retained austenite structure ( ⁇ R ) with respect to the C concentration tends to increase.
  • the refrigerant temperature is as low as about 25 ° C., even if the C concentration is 0.85 mass% or more and 1.2 mass% or less, the retained austenite structure ( It is possible to reliably suppress an increase in the volume ratio of ⁇ R ).
  • the volume ratio of the retained austenite structure ( ⁇ R ) exceeds 80% and becomes large.
  • the volume ratio of the retained austenite structure greatly exceeds the ratio that can be modified by the subsequent shot peening process, a large amount of retained austenite structure remains after the shot peening process, resulting in the hardness of the surface layer. Will become smaller.
  • the C concentration is 1.0 mass%
  • the workpiece 300 is tempered by heating the workpiece 300 to a temperature lower than about 600 ° C.
  • the hardness of the portion on the outer peripheral surface 20 side of the carburized layer CL2 (the portion corresponding to the surface layer 31 of the completed gear part 100) is improved while ensuring toughness.
  • the hardness of the portion on the outer peripheral surface 20 side of the carburized layer CL2 is insufficient.
  • a shot peening process (modification process) is performed on the outer peripheral surface 20 of the workpiece 300.
  • the medium projection material
  • the medium is sprayed at a predetermined pressure onto the outer peripheral surface 20 of the processing material 300 while rotating the processing material 300.
  • the medium is sprayed onto the outer peripheral surface 20 of the workpiece 300.
  • mechanical energy is added to the deep part of the carburized layer CL2.
  • a medium having a smaller diameter than that of the first stage is sprayed onto the outer peripheral surface 20 of the workpiece 300.
  • mechanical energy is applied to the outer peripheral surface 20 side portion of the carburized layer CL2.
  • the portion on the outer peripheral surface 20 side of the carburized layer CL2 becomes the surface layer 31 including the retained austenite structure having a volume ratio of greater than 0% and less than 10% and the remaining martensite structure.
  • the increase in the volume ratio of the retained austenite structure ( ⁇ R ) in the state before the shot peening treatment is suppressed, so that in the subsequent shot peening treatment, The amount (volume) for modifying the austenite structure to the martensite structure can be suppressed.
  • the mechanical energy amount in the shot peening process such as the magnitude of the jet pressure of the medium
  • the processing time do not need to be set to a particularly large value, and remain on the surface layer 31 depending on general shot peening process conditions. It is possible to sufficiently generate a martensite structure obtained by modifying the austenite structure.
  • the inner side of the surface layer 31 in the carburized layer CL2 becomes the first intermediate layer 32 as a layer to which mechanical energy is applied by the shot peening process.
  • the volume ratio of the retained austenite structure in the first intermediate layer 32 on the inner side of the surface layer 31 is larger than that of the surface layer 31, and the remaining part is a martensite structure.
  • middle layer 32 among the carburized layers CL2 becomes the 2nd intermediate
  • compressive residual stress arises in the surface layer 31 and the 1st intermediate
  • the outer peripheral surface 20 may be subjected to a finishing process such as a mirror finish after the shot peening process.
  • the mirror finish can be performed by polishing with a grindstone.
  • the hardness of the surface layer 31 is increased by setting the C concentration of the surface layer 31 to 0.85% by mass or more as compared with the case where the C concentration of the surface layer is 0.6% by mass. be able to.
  • the C concentration of the surface layer 31 is 1.2 mass% or less
  • the volume ratio of the retained austenite structure in the surface layer 31 is greater than 0% and less than 10%
  • the balance of the surface layer 31 is martens Configure to be a site organization.
  • the Si concentration is 1.0 mass% or more and the Cr concentration is 0.20 mass% or less.
  • the area ratio of the grain boundary carbide of the surface layer 31 can be made less than 2%, and the fall of the fatigue strength of the gear component 100 resulting from a grain boundary carbide can be suppressed. As a result, damage to the gear component 100 can be suppressed, and the life of the gear component 100 can be extended. Further, unlike the case where the C concentration of the surface layer 31 is 1.5% by mass, it is possible to suppress 10% or more of the soft austenite structure (residual austenite structure) remaining in the surface layer 31, so that the Vickers hardness of the surface layer 31 is reduced.
  • the height can be sufficiently increased to HV800 or more.
  • the hardness of the surface layer 31 can be increased more effectively.
  • the C concentration of the surface layer 31 is about 1.1% by mass or less, it is possible to further suppress a large amount of soft residual austenite structure remaining in the surface layer 31.
  • precipitation of carbides such as carbides at the crystal grain boundaries can be further suppressed.
  • the surface layer 31 side layer of the first intermediate layer 32 includes an austenite structure having a volume ratio of about 15% or more.
  • a compressive residual stress of about 1100 MPa (about 600 MPa) or more is generated in the surface layer 31.
  • the Si concentration of the raw steel is about 1.5 mass% or more, it is possible to effectively suppress the cementite from remaining at the crystal grain boundaries. Moreover, if the Si concentration of the material steel is about 2.0% by mass or less, the hardness of the material steel can be effectively suppressed from becoming larger than necessary.
  • raw material steel contains 1 type or 2 types in the following element groups as an arbitrary component.
  • Mo mobdenum
  • B boron
  • raw material steel contains 1 type or 2 types in the following element groups as an arbitrary component.
  • Nb niobium
  • Ti titanium
  • Ti titanium
  • V vanadium
  • the C concentration of the surface layer 31 is higher than the C concentration at the eutectoid point by 0.85% by mass or more. .2% by mass or less, and mechanical energy is applied to transform the retained austenite structure existing in and around the outer peripheral surface 20 of the workpiece 300 after quenching into a martensite structure.
  • the C concentration of the surface layer 31 is set to 0.85% by mass or higher, which is higher than the C concentration at the eutectoid point in the carburizing step, carbide such as cementite is easily generated at the crystal grain boundary in the cooling step following the carburizing step.
  • the Si concentration is set to 1.0% by mass or more
  • Cr that easily promotes the generation of carbides is set to 0.20% by mass or less in order to suppress the formation of carbides.
  • Made of steel Thereby, the Vickers hardness of the surface layer 31 can be sufficiently increased to HV800 or more, and the generation of carbides can be suppressed, and the area ratio of grain boundary carbides in the surface layer 31 can be made less than 2%.
  • a reduction in the fatigue strength of the gear component 100 due to the grain boundary carbide can be suppressed. As a result, damage to the gear component 100 can be suppressed, and the life of the gear component 100 can be extended.
  • a larger portion of the austenite structure in the processed material 200 can be martensite, and the volume ratio of the retained austenite structure in the processed material 300 can be reduced. As a result, the volume ratio of the retained austenite structure in the surface layer 31 after the shot peening process can be reliably reduced.
  • the workpiece 200 is cooled at a cooling rate lower than the cooling rate at which the workpiece 200 undergoes martensite transformation.
  • carburizing treatment heat treatment
  • the workpiece 200 is cooled at a cooling rate lower than the cooling rate at which the workpiece 200 undergoes martensite transformation in the subsequent cooling step. It can suppress that the distortion (heat-treatment distortion) resulting from heat processing arises in the workpiece 200 (gear component 100).
  • the surface layer 31 is formed by the reforming step so that the volume ratio of the retained austenite structure is greater than 0% and less than 10%, and the balance is martensite. Form to be a site organization. Thereby, since it can suppress that many soft austenite structures (residual austenite structure
  • the residual austenite structure in the portion on the outer peripheral surface 20 side of the carburized layer CL2 (the portion corresponding to the surface layer 31 of the completed gear part 100) is performed by shot peening. To reform. Thereby, the austenite structure in the portion on the outer peripheral surface 20 side of the carburized layer CL2 can be easily modified to generate a martensite structure.
  • the work material 200 (steel component) austenitized is about 10 degreeC or more and about 40 degrees C or less refrigerant
  • coolant refrigerant of about 25 degreeC.
  • the work material 300 (steel part) is tempered after the induction hardening process and before the shot peening process.
  • the toughness of the martensite structure (quenched martensite structure) reduced by quenching can be recovered by tempering, so that the toughness of the gear part 100 can be improved.
  • the carburizing process is performed on the workpiece (gear part) in a reduced pressure environment.
  • strength of a surface falls by suppressing that the oxide of Si, etc. are formed in the grain boundary etc. of the surface of a processed material resulting from the heat
  • a gear component 100 (see FIGS. 1 to 3) of Example 1 corresponding to the first embodiment was created. Specifically, first, a material steel (steel bar, see FIG. 5) that was composed of a chemical component of steel No. A shown in Table 1 and was subjected to normalization was prepared. In addition, the material steel of this steel number A is included in the composition range shown in this embodiment. Moreover, the Vickers hardness of the steel material of steel number A is about HV140. Then, cutting, roughing and gear cutting were performed on the material steel.
  • the C concentration of the surface layer 31 was set to 1.0 mass% by performing a carburizing process on the processed material after the pre-processing. Thereafter, the workpiece 200 (see FIG. 5) was gradually cooled in a carburizing furnace.
  • the induction hardening process was performed with respect to the processed material 200 after the carburizing process and the cooling process.
  • the workpiece 200 was induction-heated so that the temperature became 1000 ° C. higher than the Acm transformation point (about 800 ° C.) so that the workpiece 200 was austenitized. Thereafter, the workpiece 200 was cooled rapidly by bringing water at 25 ° C. into contact with the workpiece 200 directly and continuously to cool the workpiece 200.
  • tempering was performed by setting the temperature of the workpiece 300 (see FIG. 6) after the rapid cooling to 150 ° C. lower than 600 ° C.
  • a shot peening process was performed on the outer peripheral surface 20 of the workpiece 300.
  • a medium having a diameter of 0.8 mm was sprayed on the outer peripheral surface 20 of the workpiece 300.
  • a medium having a diameter of 0.2 mm was sprayed onto the outer peripheral surface 20 of the workpiece 300.
  • the outer peripheral surface 20 of the workpiece 300 was polished with a grindstone so that the outer peripheral surface 20 was mirror-finished. Thereby, the gear component 100 of Example 1 was produced.
  • the volume ratio of residual austenite structure ( ⁇ R ) and the residual stress in the gear part 100 of Example 1 were measured. Specifically, first, the tooth surface 21 was electropolished to remove a predetermined thickness on the tooth surface. And the volume ratio and residual stress of the retained austenite structure were measured for the exposed surface (cross section) by the X-ray diffraction method. Regarding the residual stress, the residual stress acting in the tooth trace direction of the tooth surface 21 (see FIG. 1) was measured. As Reference Example 1, the volume ratio of the retained austenite structure was measured in the processed material 300 before the shot peening treatment as in the gear part 100 of Example 1.
  • the distance from the tooth surface 21 (outer peripheral surface 20) was within 200 ⁇ m, and in the first intermediate layer 32 excluding the surface layer 31, the volume ratio of the retained austenite structure was 10% or more. That is, in the first intermediate layer 32, the volume ratio of the retained austenite structure is larger than that of the surface layer 31. Further, in the first intermediate layer 32, in the region (first region) in which the distance from the tooth surface 21 (outer peripheral surface 20) is 50 ⁇ m or more and 100 ⁇ m or less, the volume ratio of the retained austenite structure is 15% or more. On the other hand, in the other regions (second region and third region) of the first intermediate layer 32, the volume ratio of the retained austenite structure was less than 15%. In addition, it is thought that almost all of the portions corresponding to the surface layer 31 and the first intermediate layer 32 (the carburized layer CL2, see FIG. 6) have a martensite structure except the retained austenite structure by the induction hardening process.
  • the average volume ratio of the retained austenite structure was 5%.
  • FIG. 9 the measurement result of the residual stress in the tooth surface 21 is shown.
  • the positive residual stress is a tensile residual stress acting in a direction away from each other, and the negative residual stress is a compressive residual stress acting in a direction approaching each other.
  • the residual stress of the surface layer 31 is a compressive residual stress of 1100 MPa or more (residual stress of ⁇ 1100 MPa or less), and it was confirmed that a very large compressive residual stress was generated. Thus, it was confirmed that a large compressive residual stress can be generated in the surface layer 31 by the shot peening process. Furthermore, since a large compressive residual stress was generated in the surface layer 31, it was confirmed that the progress of cracks was suppressed. Moreover, as a residual stress of the first intermediate layer 32, it was confirmed that a large compressive residual stress was generated on the surface layer 31 side.
  • the Vickers hardness of the gear component 100 of Example 1 was measured based on JIS Z 2244. Specifically, the Vickers hardness of the surface layer 31 (Vickers hardness of the tooth surface 21) on the tooth surface 21 of the outer peripheral surface subjected to the shot peening treatment was measured. Moreover, the Vickers hardness of the surface layer 31 in the tooth surface 21 of the gear component 100 was measured using the gear component 100 of Example 1 after the heat treatment that was heated to 300 ° C. and then cooled. At this time, the test force applied to the cross section to be measured was 300 gf.
  • a Vickers hardness of about HV790 was obtained in the surface layer 31. That is, in the surface layer 31 after the heat treatment, the hardness decreased only about 10% compared to the surface layer 31 before the heat treatment. This is considered to be due to the fact that the Si increase is performed on the material steel. Note that the amount of decrease in hardness is the same in the other layers (the first intermediate layer 32, the second intermediate layer 33, and the innermost layer 35). Thereby, even when the gear part 100 is disposed in a high temperature environment and when the gear part 100 is engaged with other gear parts and heat is generated, the reduction in the hardness of the gear part 100 is reduced. It was confirmed that it can be suppressed.
  • the C concentration of the gear component 100 of Example 1 was measured using an electron beam microanalyzer. Specifically, in the gear component 100 of Example 1, the C concentration of the surface layer 31 on the tooth surface 21 of the outer peripheral surface 20 subjected to the shot peening process (C concentration of the tooth surface 21) was measured.
  • the C concentration in the surface layer 31 of Example 1 was 0.99%, and it was confirmed that the C concentration can achieve both sufficient hardness and an appropriate volume ratio of retained austenite structure.
  • the fatigue strength of the gear part 100 of Example 1 was evaluated. Specifically, the bending fatigue strength at the tooth base (the boundary between the tooth surface 21 and the tooth bottom surface 23) and the surface fatigue strength at the tooth surface 21 of the gear component 100 were evaluated using a power circulation type gear testing machine. At this time, an automatic transmission fluid was used as the lubricating oil, and the test was performed under conditions of a lubricating oil temperature of 80 ° C. and a rotation speed of 2000 rpm. Further, a torque at which the bending stress at the tooth root is 500 MPa and the maximum surface pressure at the tooth surface is 2000 MPa is applied to the gear component 100, and 10 million times is set as the target cycle.
  • the gear part 100 of Example 1 was not damaged even after the stress was applied 10 million times. As a result, it was confirmed that the gear component 100 of Example 1 had a high fatigue strength capable of withstanding the stress repeatedly applied 10 million times. This is presumably because the fatigue strength of the gear component 100 has increased mainly due to the hardness of the surface layer 31 being large.
  • the area ratio of the grain boundary carbide of the surface layer 31 in the gear component 100 of Example 1 was measured. Specifically, first, the gear component 100 was cut perpendicular to the tooth surface 21 and the exposed cross section was mirror-polished. Then, the grain boundary carbide was made to appear in the cross section by corroding the cross section using a nital solution (alcohol solution added with nitric acid). And the imaging
  • photography of the cross section in the surface layer 31 was performed with 500-times multiplication factor using the optical microscope. Then, by performing image processing on the photographed cross section having a predetermined area, the grain boundary carbides and other portions were distinguished by binarization. Then, the area ratio of grain boundary carbides ( (area of grain boundary carbides in cross section / area of entire cross section) ⁇ 100) (%) was derived.
  • the area ratio of the grain boundary carbide was 0%. This is considered to be because it was possible to suppress the precipitation of carbides at the grain boundaries by setting the Si concentration to 1.0 mass% or more and the Cr concentration to 0.20 mass% or less.
  • a gear part is produced using a plurality of material steels, and the C concentration of the surface layer and the residual austenite structure in each gear part.
  • the volume ratio, the area ratio of grain boundary carbide, the hardness of the tooth surface and the fatigue strength were compared.
  • the raw steels A to J are included in the composition range shown in the present embodiment, while the raw steels K and L are not included in the composition range shown in the present embodiment.
  • the Si concentration is smaller than the composition range (1.0 mass% or more and 3.0 mass% or less) shown in the present embodiment
  • the Cr concentration is in the present embodiment. It is larger than the composition range (0.01 mass% or more and 0.20 mass% or less) shown.
  • a gear part was manufactured in the same manner as in Example 1 of the first example.
  • gear parts of Examples 1 to 10 and Comparative Examples 1 and 2 were produced using the steel materials B to L, respectively.
  • the gear parts of Comparative Examples 3 and 4 were produced by making the carburizing treatment conditions different from those of Example 1 of the first example.
  • gear parts of Comparative Example 3 were manufactured by performing a carburizing process so that the C concentration was less than 0.85 mass% (0.74 mass%).
  • the gear part of Comparative Example 4 was produced by performing a carburizing process so that the C concentration exceeded 1.2 mass% (1.25 mass%).
  • Reference Example 2 a gear part of Reference Example 2 was manufactured in the same manner as Example 1 of the first example except that the material steel A was used and shot peening was not performed.
  • Example 9 it was confirmed that the Vickers hardness of the surface layer can be increased by HV850 or more. Further, in the gear parts of Examples 1 to 10 having the above characteristics, in the evaluation of fatigue strength, no damage occurred even after applying stress 10 million times. That is, it was confirmed that the gear parts of Examples 1 to 10 had high fatigue strength.
  • the shaft member 400 according to the second embodiment manufactured by processing the same material steel as that of the material steel used for the gear part 100 in the first embodiment is a so-called so-called shaft member 400 as shown in FIGS. It is a pinion shaft.
  • the shaft member 400 is subjected to roughing as processing, followed by carburizing, cooling, induction hardening, tempering, and shot peening in this order. It is produced by being.
  • the outer peripheral surface of the shaft member 400 extending in the axial direction of the columnar support shaft 401 is a rolling surface 402.
  • An oil passage hole 403 is formed in the support shaft 401.
  • the oil passage hole 403 includes a main oil passage hole 403 a extending in the axial direction at the radial center, and a branch oil passage hole 403 b that opens to the rolling surface 402 and supplies lubricating oil to the rolling surface 402. .
  • the main oil passage hole 403a opens to the end surface portion 404a on one side in the axial direction and extends to the vicinity of the end surface portion 404b on the other side in the axial direction.
  • the end surface portions 404a and 404b are examples of the “axial end surface portion” in the claims.
  • a rolling surface 402 As shown in FIG. 13, on the outer peripheral surface side of the shaft member 400, a rolling surface 402, a surface layer 431 provided in the vicinity of the rolling surface 402, a first intermediate layer 432 radially inward of the surface layer 431, A second intermediate layer 433 radially inward of the first intermediate layer 432 and an innermost layer 435 radially inward of the second intermediate layer 433 are formed.
  • the end surface side layer 441 is formed in the end surface part 404a and the end surface part 404b.
  • the innermost layer 435 is located on the inner side in the axial direction than the end face side layer 441. Further, the rolling surface 402 and the end surface portions 404a and 404b are polished by applying a mirror finish or the like.
  • the surface layer 431 has the same properties as the surface layer 31 of the first embodiment. That is, the surface layer 431 has a C concentration of 0.85 mass% or more and 1.2 mass% or less by carburization. Moreover, in the surface layer 431, the volume ratio of a retained austenite structure is larger than 0% and less than 10%, and the remainder is a martensite structure. The surface layer 431 is formed so that the area ratio of grain boundary carbides is less than 2% in both the retained austenite structure and the martensite structure.
  • the first intermediate layer 432 has the same properties as the first intermediate layer 32 of the first embodiment. That is, in the first intermediate layer 432, the volume ratio of the retained austenite structure is larger than that of the surface layer 431, and the remainder is a martensite structure. Further, the second intermediate layer 433 and the innermost layer 435 have the same properties as the second intermediate layer 33 and the innermost layer 35 of the first embodiment, respectively.
  • the end face side layer 441 is a region processed in the carburizing process, the cooling process, the induction hardening process, and the tempering process. That is, the end surface side layer 441 is a region where processing excluding shot peening processing is performed as compared with processing performed on the outer peripheral surface. In addition, in the end surface side layer 441, it is comprised so that C concentration may become high from an axial direction outer side to an inner side by carburizing process.
  • the shot peening process is not performed on the end face side layer 441 in the vicinity of the end face portions 404a and 404b. For this reason, in the end face portions 404a and 404b, there is a quenched martensite structure in which a part of the austenite structure is transformed.
  • the martensite structure resulting from mechanical energy is not exist.
  • the volume ratio of the retained austenite structure of the end face side layer 441 (end face surface layer 442) is larger than the volume ratio of the retained austenite structure in the surface layer 431 of the rolling surface 402.
  • the hardness of the end surface portion surface layer 442 is smaller than the hardness of the surface layer 431 of the rolling surface 402. Further, no compressive residual stress due to mechanical energy is generated in the end face portions 404a and 404b.
  • the carburizing process, the cooling process, the induction hardening process, the tempering process, and the shot peening process in the manufacturing method of the shaft member 400 according to the second embodiment are the carburizing process, the cooling process, and the induction hardening process of the first embodiment, respectively. Since it is the same as the tempering process and the shot peening process, the description is omitted.
  • the C concentration of the surface layer 431 is set to 0.85% by mass or more, the C concentration of the surface layer 431 is set to 1.2% by mass or less, and the surface layer The volume ratio of the retained austenite structure in 431 is greater than 0% and less than 10%, and the remainder of the surface layer 431 is configured to have a martensite structure.
  • the Si concentration is 1.0 mass% or more and the Cr concentration is 0.20 mass% or less. Accordingly, similarly to the first embodiment, the shaft member 400 can be prevented from being damaged and the life of the shaft member 400 can be extended.
  • the C concentration of the surface layer 431 is 1.5% by mass, it is possible to suppress the soft austenite structure (residual austenite structure) from remaining in the surface layer 431 by 10% or more.
  • the height can be sufficiently increased to HV800 or more.
  • the volume ratio of the retained austenite structure of the end surface portion surface layer 442 is made larger than the volume ratio of the retained austenite structure of the surface layer 431 of the rolling surface 402.
  • the hardness of the end surface portion surface layer 442 is made smaller than the hardness of the surface layer 431 of the rolling surface 402. Thereby, the hardness in the surface layer 431 of the rolling surface 402 can fully be improved. Further, by reducing the hardness of the end surface portion surface layer 442, caulking, laser welding, and the like for joining the shaft member 400 to other members can be easily performed.
  • the remaining effects of the second embodiment are similar to those of the aforementioned first embodiment.
  • Example 11 (Configuration of shaft member of Example 11) First, the shaft member 400 (see FIGS. 11 and 12) of Example 11 corresponding to the second embodiment was created. Specifically, first, a material steel composed of chemical components of steel No. B shown in Table 1 and subjected to normalization was prepared. The material steel of steel number B is included in the composition range shown in the present embodiment. And it cut
  • the C concentration of the surface layer 431 was set to 1.0 mass% by performing a carburizing process on the processed material after the pre-processing. Thereafter, the processed material was gradually cooled in a carburizing furnace.
  • induction hardening was performed on the processed material after carburizing and cooling.
  • the work material was induction-heated so that the temperature became 1000 ° C. higher than the Acm transformation point (about 800 ° C.) so that the work material became austenite.
  • the workpiece was cooled rapidly by bringing water at 25 ° C. into contact with the workpiece directly and continuously to cool the workpiece.
  • tempering was performed by setting the temperature of the workpiece after quenching to 150 ° C. lower than 600 ° C.
  • Comparative Example 5 with respect to Example 11, a shaft member made of a steel material made of SUJ2 (based on JIS 4805 2008) and having the same outer shape as the shaft member 400 of Example 11 was prepared. And after performing induction hardening at 1000 degreeC with respect to the shaft member which consists of SUJ2, the shaft member of the comparative example 5 was produced by performing tempering at 150 degreeC. That is, in the shaft member of Comparative Example 5, the composition of the material steel is different from that of the shaft member 400 of Example 11, and the carburizing process and the shot peening process are not performed.
  • a gear component is shown as an example of the "steel part” of a claim
  • a shaft member (although a pinion shaft) is shown, the present invention is not limited to this.
  • the “steel part” in the claims may be a bearing part such as a bearing in addition to the gear part and the shaft member.
  • the gear component may also be a gear component other than the first embodiment, for example, a gear component having a short axial length (thin thickness).
  • the shaft member may be a shaft other than the second embodiment (pinion shaft).
  • the “steel part” in the claims may be a drive part other than the shaft.
  • middle layer) were shown in the gear component.
  • the gear part is a surface layer having a C concentration of 0.85% by mass or more and 1.2% by mass or less, wherein the volume fraction of the retained austenite structure is greater than 0% and less than 10%, and is a grain boundary carbide. It is only necessary that a surface layer having an area ratio of less than 2%, a volume ratio of the retained austenite structure is larger than that of the surface layer, and the remaining part is a layer inside the surface layer having a martensite structure.
  • the example in which the shot peening process is performed on the processed material is shown as a method of applying mechanical energy to the retained austenite structure, but the present invention is limited to this. Absent.
  • a method of applying mechanical energy instead of shot peening, for example, cavitation peening using bubble collapse, laser peening using a laser, or burnishing or grinding with a pressure applied was used. Polishing processing such as polishing, and so-called sub-zero processing for cooling the workpiece to 0 ° C. or lower may be performed.
  • a polishing step for polishing the workpiece may be added before the shot peening process and after the induction hardening process or the tempering process.
  • the workpiece may be heated by performing laser irradiation or electron beam irradiation instead of high-frequency heating.
  • the present invention is not limited to this.
  • the induction hardening process should just be performed in the layer inside at least a surface layer and a surface layer.
  • the quenching process may be performed only on the side where the teeth of the gear part are formed, or the quenching process may be performed only on the inner peripheral surface.
  • the work material was rapidly cooled using the water of about 25 degreeC as a refrigerant
  • coolant in the induction hardening process it was quenched with a refrigerant other than water.
  • the processed material may be quenched with water or oil to which an additive has been added.
  • the example in which the outer peripheral surface of the workpiece is polished with a grindstone and mirror-finished is shown, but the present invention is not limited to this.
  • the mirror finish may be performed by polishing using a polishing apparatus different from the grindstone.
  • the outer peripheral surface of the workpiece may be polished to perform mirror finish by barrel polishing, chemical polishing, polishing by spraying an abrasive, or the like.
  • the material steel is not limited to the material steel containing the chemical components described in the examples, and may be any material steel within the range of the chemical components described in the embodiment.
  • the example in which the work material is tempered after the induction hardening process and before the shot peening process is shown.
  • the work material (steel part) may be tempered after the process of applying mechanical energy, or the work material (steel part) is tempered before the process of applying mechanical energy, and then the mechanical energy is applied.
  • the processed material (steel part) may be tempered again after the treatment.
  • shot peening may be performed not only on the rolling surface of the shaft member but also on the axial end surface portion.
  • a layer structure similar to the rolling surface is formed on the axial end surface portion, and the fatigue strength at the axial end surface portion is increased and the wear resistance is improved.
  • the shaft member by cutting the axial end surface portion of the shaft member, part or all of the end surface portion side layer composed of the end surface portion surface layer and the inner layer thereof is removed. May be.
  • the shaft member is fixed to another member at the axial end surface portion by making the hardness of the surface of the axial end surface portion after cutting smaller than the hardness of the surface of the axial end surface portion before cutting. For this reason, it is possible to easily perform caulking, laser welding, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

この鋼部品では、表層のC濃度は、素材鋼のC濃度よりも高い0.85質量%以上1.2質量%以下であり、表層は、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であるとともに、表層の残部はマルテンサイト組織であり、表層における粒界炭化物の面積率は、2%未満であり、表層よりも内側の層は、表層より内側の層における残留オーステナイト組織の体積率が表層よりも大きく、かつ、残部はマルテンサイト組織である。

Description

鋼部品、歯車部品および鋼部品の製造方法
 本発明は、鋼を素材として、浸炭や焼入れといった工程を経て硬化された鋼部品、歯車部品および鋼部品の製造方法に関する。
 従来、鋼に対して浸炭処理を施した後に一度冷却し、冷却後に高周波焼入れ処理を行うことにより、熱処理歪みを抑制しつつ硬度を向上させた鋼部品及び鋼部品の製造方法が知られている。このような鋼部品及び鋼部品の製造方法は、たとえば、国際公開第2006/118243号(先行技術文献)に開示されている。
 上記先行技術文献では、浸炭処理により鋼の表面(表層)のC(炭素)濃度を向上させ、その後、マルテンサイト組織を生じさせないよう4~10℃/秒の冷却速度で鋼を冷却し、その後に高周波焼入れ処理を行うことによって、熱処理に起因する歪み(熱処理歪み)が鋼に生じるのを抑制している。また、上記先行技術文献の高周波焼入れ処理では、冷却した鋼に高周波加熱を行って表層を加熱し、その後焼入れを行うことによって鋼の組織をマルテンサイト変態させて、高周波焼入鋼部品の表面の硬さ及び疲労強度を向上させている。さらに、上記先行技術文献には、焼入れ後の高周波焼入鋼部品に焼戻し処理、ショットピーニング処理を施して高周波焼入鋼部品の曲げ疲労強度を向上させることが開示されている。また、上記先行技術文献の実施例には、焼戻し軟化抵抗を向上させることを目的として、比較的高い濃度(0.5%~2.96%)のCrを含有した鋼材を使用することが開示されている。
 具体的には、例えば、上記先行技術文献には、実施例の表1における発明例14、15において、浸炭処理により表面のC濃度を0.6質量%とした後、高周波焼入れ処理、および、ショットピーニング処理が行われた例が開示されている。
国際公開第2006-118243号
 しかしながら、上記先行技術文献のショットピーニング処理が行われた試験材1(発明例14、15)では、浸炭処理後の表面のC濃度を0.6質量%として表面硬さを向上させているが、たとえば歯車部品等の高い表面硬さを要求されるような部品においては、さらなる表面硬さの向上が望まれている。
 ところで、一般的に鋼に対して浸炭処理、浸炭処理後の冷却処理、焼入処理を施して硬さを向上させる場合、浸炭処理後の表面(表層)のC濃度が高いほど、焼入れ後の硬さが向上することが知られている。しかし、表面のC濃度が約0.8%(共析点)より高くなると、いわゆる過共析と呼ばれる状態となるため、熱処理に起因する歪み(熱処理歪み)を抑制するために浸炭処理後に冷却した際に、多くのセメンタイト等の炭化物が結晶粒界に析出してしまい、冷却後の高周波加熱の際に炭化物を溶解してC(炭素)を母材中に十分に固溶させることができない虞がある。そして、高周波加熱時に炭素が母材中に固溶していないと、加熱後の冷却により組織をマルテンサイト変態させようとしても、所望量のC(炭素)を固溶したマルテンサイト組織を得られない虞がある。また、浸炭・焼入れ後の鋼に、C濃度が過共析の状態であってセメンタイト等の炭化物が結晶粒界に残存している状態でショットピーニング処理を施すと、結晶粒界に析出した炭化物(析出物)に起因して、表面に微小なクラック(マイクロクラック)が発生する場合があり、結果として浸炭高周波焼入鋼部品の疲労強度や靱性が低下してしまうという虞がある。
 一方で、C濃度が過共析の状態である浸炭・焼入れ後の鋼は、加熱の際に炭化物を溶解してC(炭素)を母材中に十分に固溶させたとしても、焼入れ後の組織が十分にマルテンサイト変態せず、共析点よりもC濃度が低い鋼に比べて残留オーステナイト量が多くなることも知られている。しかし、残留オーステナイト組織は、マルテンサイト組織に比べて硬さが低いため、浸炭高周波焼入鋼部品の表面硬さを向上させるためには、焼入れ後にショットピーニング処理などの改質工程による加工誘起変態によって残留オーステナイトからマルテンサイトへ組織を変態させる必要がある。
 なお、上記先行技術文献の発明例7では表面のC濃度を1.5質量%に高めた試験材が開示されているが、この発明例7の試験材にはショットピーニング処理は施されておらず、残留オーステナイト量が19%であり、柔らかな残留オーステナイト組織が表面に多く残留している。これは、上記先行技術文献の鋼材が、C濃度が高いことに加えて、比較的高い濃度(1.05%)のCrを含有しているために、浸炭処理後の試験材の結晶粒界にCrに起因する炭化物が多く析出してしまい、上記した理由(クラック発生)によりショットピーニング処理を行うことが困難だったものと考えられる。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、熱処理歪みを抑制するとともに、表層のC濃度が共析点より高い場合(表層が過共析である状態)であっても結晶粒界に析出する炭化物に起因する疲労強度の低下を抑制し、かつ、表層の硬さを十分に大きくすることが可能な鋼部品、歯車部品およびその鋼部品の製造方法を提供することである。
 上記目的を達成するために、この発明の第1の局面における鋼部品は、
 化学成分として、
 C(炭素):0.05質量%以上0.30質量%以下、
 Si(ケイ素):1.0質量%以上3.0質量%以下、
 Mn(マンガン):0.1質量%以上3.0質量%以下、
 P(リン):0.03質量%以下、
 S(硫黄):0.001質量%以上0.150質量%以下、
 Cr(クロム):0.01質量%以上0.20質量%以下、
 Al(アルミニウム):0.01質量%以上0.05質量%以下、
 N(窒素):0.003質量%以上0.030質量%以下、
 Fe、任意成分としての少量の他の合金成分および不可避不純物:残部、を含有する素材鋼から形成される鋼部品であって、
 鋼部品の表層のC濃度は、素材鋼のC濃度よりも高い0.85質量%以上1.2質量%以下であり、表層は、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であるとともに、表層の残部はマルテンサイト組織であり、表層における粒界炭化物の面積率は、2%未満であり、表層よりも内側の層は、表層より内側の層における残留オーステナイト組織の体積率が表層よりも大きく、かつ、残部はマルテンサイト組織である。
 なお、本発明において、「表層(または表層よりも内側の層)の残部はマルテンサイト組織である」とは、表層(または表層よりも内側の層)の残留オーステナイト組織以外の残部が完全にマルテンサイト組織である場合に限られず、残留オーステナイト組織以外の残部が、残留オーステナイト組織およびマルテンサイト組織以外の不可避に形成される組織や粒界炭化物などを微量含む場合も含む概念である。また、本発明において、「粒界炭化物」は、鋼部品製造時にオーステナイト粒界上に析出する鉄系炭化物(たとえば、セメンタイト)および合金炭化物を意味する。
 この発明の第1の局面による鋼部品では、上記のように、表層のC濃度を0.85質量%以上(いわゆる、過共析の状態)にすることによって、表層のC濃度が0.6質量%の場合よりも表層の硬さを大きくすることができる。また、第1の局面による鋼部品では、表層のC濃度を1.2質量%以下にするとともに、表層を、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であるとともに、表層の残部はマルテンサイト組織であるように構成する。また、表層のC濃度を1.2質量%以下にするのに加えて、素材鋼において、Si濃度を1.0質量%以上にし、Cr濃度を0.20質量%以下にする。これらにより、表層の粒界炭化物の面積率を2%未満にして、粒界炭化物に起因する鋼部品の疲労強度の低下を抑制することができる。この結果、鋼部品の破損を抑制して、鋼部品の長寿命化を図ることができる。さらに、表層のC濃度が1.5質量%の場合と異なり、表層に柔らかなオーステナイト組織(残留オーステナイト組織)が10%以上残留するのを抑制することができるので、表層のビッカース硬さをHV800以上に十分に大きくすることができる。また、鋼部品において表層のC濃度を0.85質量%以上1.2質量%以下にするために、鋼部品に対して浸炭処理(熱処理)を行う場合には、浸炭処理時の熱に起因して鋼部品に歪(熱処理歪み)が生じやすい。そのような場合には、浸炭処理後に、鋼部品がマルテンサイト変態する冷却速度未満の冷却速度で鋼部品を冷却することによって、熱処理に起因する歪み(熱処理歪み)が鋼部品に生じるのを抑制することができる。これらの結果、熱処理歪みを抑制するとともに、表層のC濃度が共析点より高い場合(表層が過共析である状態)であっても結晶粒界に析出する炭化物に起因する疲労強度の低下を抑制し、かつ、表層の硬さを十分に大きくすることが可能な鋼部品を提供することができる。
 この発明の第2の局面における鋼部品の製造方法では、
 化学成分として、
 C(炭素):0.05質量%以上0.30質量%以下、
 Si(ケイ素):1.0質量%以上3.0質量%以下、
 Mn(マンガン):0.1質量%以上3.0質量%以下、
 P(リン):0.03質量%以下、
 S(硫黄):0.001質量%以上0.150質量%以下、
 Cr(クロム):0.01質量%以上0.20質量%以下、
 Al(アルミニウム):0.01質量%以上0.05質量%以下、
 N(窒素):0.003質量%以上0.030質量%以下、
 Fe、任意成分としての少量の他の合金成分および不可避不純物:残部、を含有する素材鋼から形成される鋼部品の製造方法において、
 鋼部品の表面およびその近傍におけるC濃度が素材鋼のC濃度よりも高い0.85質量%以上1.2質量%以下になるように、鋼部品に浸炭処理を施す浸炭工程と、
 浸炭工程の後、鋼部品がマルテンサイト変態する冷却速度未満の冷却速度で、鋼部品を冷却する冷却工程と、
 冷却工程の後、高密度エネルギー加熱により鋼部品を加熱して、鋼部品をオーステナイト化温度以上の温度まで昇温させた後、オーステナイト化された鋼部品をマルテンサイト変態させる臨界冷却速度以上の冷却速度で冷却して焼入れることにより、鋼部品におけるオーステナイト組織の一部をマルテンサイト化させる焼入れ工程と、
 焼入れ工程の後、鋼部品の表面およびその近傍に力学的エネルギーを与えることにより、鋼部品のオーステナイト組織をマルテンサイト組織に改質することによって、表層よりも内側の層では残留オーステナイト組織の体積率が表層よりも大きく、かつ、残部をマルテンサイト組織とする改質工程と、を備える。
 この発明の第2の局面による鋼部品の製造方法では、焼入れ後の表面硬さを大きくするために、表層のC濃度を共析点におけるC濃度よりも高い0.85質量%以上1.2質量%以下にするとともに、焼入れ後の鋼部品の表面およびその近傍に存在する残留オーステナイト組織をマルテンサイト組織に変態するために力学的エネルギーを与える。ここで、浸炭工程において表層のC濃度を共析点におけるC濃度よりも高い0.85質量%以上にすると、浸炭工程に続く冷却工程において結晶粒界にセメンタイト等の炭化物が生成しやくすなるものの、炭化物の生成を抑制するSiに関して、Si濃度を1.0質量%以上にし、炭化物の生成を促進しやすいCrに関して、炭化物の生成を抑制するためにCr濃度を0.20質量%以下にした素材鋼を用いている。これにより、表層のビッカース硬さをたとえばHV800以上に十分に大きくすることができるとともに、炭化物の生成を抑制して、たとえば表層における粒界炭化物の面積率を2%未満にすることができるので、粒界炭化物に起因する鋼部品の疲労強度の低下を抑制することができる。この結果、鋼部品の破損を抑制して、鋼部品の長寿命化を図ることができる。
 さらに、第2の局面による鋼部品の製造方法では、高密度エネルギー加熱により鋼部品を加熱して、鋼部品をオーステナイト化温度以上の温度まで昇温させた後、オーステナイト化された鋼部品を臨界冷却速度以上の冷却速度で冷却(急冷)して焼入れることにより、鋼部品におけるオーステナイト組織の一部をマルテンサイト化させる。ここで、たとえば、約10℃以上約40℃以下の冷媒を用いて急冷した(焼入れた)場合には、約80℃以上約180℃以下の冷媒を用いて冷却する(たとえば、油焼入れする)場合と比べて、鋼部品のオーステナイト組織のより多く部分をマルテンサイト化させて、鋼部品における残留オーステナイト組織の体積率を小さくすることができる。なお、このことは、後述する図7に示すグラフ(25℃の冷媒を用いて急冷する場合と、140℃の冷媒を用いて徐々に冷却する場合とにおける残留オーステナイト組織の体積率を示した、急冷および徐冷の一例を示すグラフ)からも明らかである。この結果、改質工程後の表層における残留オーステナイト組織の体積率を確実に小さくすることができる。
 また、第2の局面による鋼部品の製造方法では、浸炭工程の後、鋼部品がマルテンサイト変態する冷却速度未満の冷却速度で、鋼部品を冷却する。これにより、鋼部品に対して浸炭処理(熱処理)を行ったとしても、その後の冷却工程において、鋼部品がマルテンサイト変態する冷却速度未満の冷却速度で鋼部品が冷却されるので、熱処理に起因する歪み(熱処理歪み)が鋼部品に生じるのを抑制することができる。
 本発明によれば、上記のように、熱処理歪みを抑制するとともに、表層のC濃度が共析点より高い場合(表層が過共析である状態)であっても結晶粒界に析出する炭化物に起因する疲労強度の低下を抑制し、かつ、表層の硬さを十分に大きくすることが可能な鋼部品、歯車部品およびその鋼部品の製造方法を提供することができる。
第1実施形態による歯車部品の斜視図である。 第1実施形態による歯車部品の断面図である。 第1実施形態による歯車部品の拡大断面図である。 C濃度と鋼材の硬さとの関係を示したグラフである。 第1実施形態による歯車部品の製造工程を説明するための図である。 第1実施形態による歯車部品の製造工程を説明するための図である。 所定の冷媒温度におけるC濃度と残留オーステナイト組織の体積率との関係を示したグラフである。 第1実施形態の効果を確認するために行った歯車部品における残留オーステナイト組織の体積率に関する測定結果を示したグラフである。 第1実施形態の効果を確認するために行った歯車部品における残留応力の測定結果を示したグラフである。 第1実施形態の効果を確認するために行った歯車部品の歯面における表層のビッカース硬さの測定結果を示したグラフである。 第2実施形態による軸部材の軸方向から見た平面図である。 図11の500-500線に沿った断面図である。 第2実施形態による軸部材の転動面周辺の拡大断面図である。 第2実施形態による軸部材の端面部周辺の拡大断面図である。 第2実施形態の効果を確認するために行った軸部材の転動面に対する転動疲労試験の結果を示したグラフである。
 以下、実施形態を説明する。
 [第1実施形態]
 [素材鋼の組成]
 まず、第1実施形態による歯車部品100に用いられる素材鋼の組成について説明する。なお、素材鋼は、下記組成以外に、残部Fe(鉄)および不可避不純物を含有している。また、歯車部品100は、特許請求の範囲の「鋼部品」の一例である。
(C(炭素):0.05質量%以上0.30質量%以下)
 Cは、素材鋼の硬さを確保するために添加する元素である。そこで、第1実施形態では、C濃度の下限を0.05質量%として、素材鋼の硬さを確保している。一方、C濃度が0.30質量%を超えると、素材鋼の硬さが必要以上に大きくなり、その結果、素材鋼において靱性が低下するとともに、切削性が低下する。このため、0.30質量%をC濃度の上限とした。素材鋼の硬さ確保の面で、より好ましいC濃度の範囲は、約0.15質量%以上0.30質量%以下である。
(Si(ケイ素):1.0質量%以上3.0質量%以下)
 Siは、後述する浸炭処理後の徐冷において、結晶粒界に炭化物が析出するのを抑制するため、及び、マルテンサイト組織の焼戻しによる硬さ低下を抑制するために添加する元素である。Siの添加により、粒界炭化物の析出が抑制されるので、浸炭処理後の高密度エネルギー加熱の際に、C(炭素)を十分に固溶した組織を得ることができる。これにより、粒界炭化物に起因する疲労強度の低下が抑制される。なお、第1実施形態では、Si濃度の下限を1.0質量%として、結晶粒界に炭化物が析出するのを抑制することが可能なSi濃度を確保している。一方、Si濃度が3.0質量%を超えると、素材鋼の硬さが必要以上に大きくなり、その結果、素材鋼において切削性が低下する。このため、3.0質量%をSi濃度の上限とした。粒界炭化物析出の抑制および靱性・切削性の低下抑制の面で、より好ましいSi濃度の範囲は、1.0質量%以上約2.5質量%以下であり、さらに好ましくは、約1.5質量%以上約2.0質量%以下である。なお、Siは、製鋼工程における脱酸にも有効である。
(Mn(マンガン):0.1質量%以上3.0質量%以下)
 Mnは、製鋼工程における脱酸、焼入れ性の向上に有効な元素である。この効果を得るためには、Mn濃度は、0.1質量%以上である必要がある。一方、Mn濃度が3.0質量%を超えると、素材鋼の硬さが必要以上に大きくなり、その結果、素材鋼において切削性が低下する。このため、3.0質量%をMn濃度の上限とした。焼入れ性および切削性の低下抑制の面で、より好ましいMn濃度の範囲は、約0.4質量%以上約2.0質量%以下である。
(P(リン):0.03質量%以下)
 Pは、結晶粒界に偏析して結晶粒界の強度を低下させるとともに、素材鋼の靱性を低下させるため、極力低減する必要がある。具体的には、P濃度を、0.03質量%以下に小さくする必要がある。
(S(硫黄):0.001質量%以上0.150質量%以下)
 Sは、素材鋼中でMnSを生成して素材鋼の切削性の向上に有効な元素である。この効果を得るためには、S濃度は、0.001質量%以上である必要がある。ただし、S濃度が0.150質量%を超えると、MnSが結晶粒界に偏析して素材鋼の靱性を低下させるため、0.150質量%を上限とした。切削性の向上および靱性低下抑制の面で、より好ましいS濃度の範囲は、約0.005質量%以上約0.060質量%以下である。
(Cr(クロム):0.01質量%以上0.20質量%以下)
 Crは、焼入れ性および焼戻し軟化抵抗の向上に有効な元素である。この効果を得るためには、Cr濃度は、0.01質量%以上である必要がある。一方、Cr濃度が0.20質量%を超えると、浸炭処理後の冷却により、粒界炭化物が多く析出してしまう。この粒界炭化物が多く析出してしまうと、浸炭処理後の高密度エネルギー加熱の際にC(炭素)を十分に固溶した組織を得ることができないため鋼部品の疲労強度が低下する。このため、Cr濃度として、0.20質量%を上限とした。焼入れ性・焼戻し軟化抵抗の向上および粒界炭化物の析出抑制の面で、より好ましいCr濃度の範囲は、約0.05質量%以上約0.15質量%以下である。
(Al(アルミニウム):0.01質量%以上0.05質量%以下)
 Alは、窒化物として加工材中に析出分散することによって、浸炭処理時および高密度エネルギー加熱時に組織の粗大化を抑制して組織を微細化するのに有効な元素である。この効果を得るためには、Al濃度は、0.01質量%以上である必要がある。しかしながら、Al濃度が0.05質量%を超えると、析出物である窒化物が粗大化しやすくなるため、0.05質量%を上限とした。組織の微細化の面で、より好ましいAl濃度の範囲は、約0.02質量%以上約0.04質量%以下である。
(N(窒素):0.003質量%以上0.030質量%以下)
 Nは、Alなどと各種の窒化物を生成して、浸炭処理時および高密度エネルギー加熱時に組織の粗大化を抑制して組織を微細化するのに有効な元素である。この効果を得るためには、N濃度は、0.003質量%以上である必要がある。しかしながら、N濃度が0.030質量%を超えると、素材鋼の鍛造性が低下するので、0.030質量%を上限とした。組織の微細化および鍛造性の低下抑制の面で、より好ましいN濃度の範囲は、約0.005質量%以上約0.020質量%以下である。
 また、素材鋼は、任意の合金成分として以下の元素群のうち1種または2種を含有していてもよい。
 Mo(モリブデン):約0.01質量%以上約0.50質量%以下。
 B(ボロン):約0.0006質量%以上約0.0050質量%以下。
 Mo、Bは、結晶粒界の強度の向上および焼入れ性の向上に有効な元素であり、組織の強度を向上させる目的で素材鋼に少量含有されてもよい。この効果を得るためには、各々の元素群の濃度は、上記下限値以上である必要がある。しかしながら、各々の元素群の上記上限値を超えて添加しても効果が飽和するので、上記上限値を超えて添加させないのが好ましい。なお、結晶粒界の強度および焼入れ性の向上の面で、より好ましいMo濃度の範囲およびB濃度の範囲は、それぞれ、約0.03質量%以上約0.20質量%以下および約0.0010質量%以上約0.0030質量%以下である。
 また、素材鋼は、任意の合金成分として以下の元素群のうち1種または2種を含有していてもよい。
 Nb(ニオブ):約0.01質量%以上約0.30質量%以下。
 Ti(チタン):約0.005質量%以上約0.200質量%以下。
 V(バナジウム):約0.01質量%以上約0.20質量%以下。
 Nb、Ti、Vは組織の粗大化の抑制に有効な元素であり、組織の強度を向上させる目的で素材鋼に少量含有されてもよい。この効果を得るためには、各々の元素群の濃度は、上記下限値以上である必要がある。しかしながら、各々の元素群の上記上限値を超えて添加しても効果が飽和するので、上記上限値を超えて添加させないのが好ましい。なお、組織の粗大化の抑制の面で、より好ましいNb濃度の範囲、Ti濃度の範囲およびV濃度の範囲は、それぞれ、約0.03質量%以上約0.20質量%以下、約0.030質量%以上約0.100質量%以下、および、約0.03質量%以上約0.10質量%以下である。ここで、素材鋼に、MoまたはBのいずれか1種と、Nb、TiまたはVのいずれか1種との2種の元素を含有させてもよい。これにより、結晶粒界の強度の向上および焼入れ性の向上と、組織の粗大化の抑制との両方の観点から組織の強度を向上させることが可能である。
 [歯車部品の構造]
 次に、図1~図3を参照して、第1実施形態による歯車部品100の構造について説明する。
 上記素材鋼を加工処理して作製された第1実施形態による歯車部品100は、図1に示すように、いわゆるピニオンである。この歯車部品100は、加工処理として、粗加工および歯切り加工が行われた後に、浸炭処理、冷却処理、高周波焼入れ処理、焼戻し処理およびショットピーニング処理がこの順に行われることにより作製されている。なお、これらの処理については製造工程の説明において詳述する。また、ショットピーニング処理は、特許請求の範囲の「改質処理」の一例である。
 歯車部品100では、管部材1の外周面20側に、外側に突出する複数の歯を有する歯部2が設けられている。歯部2は、管部材1の延びる方向に対して傾斜する、歯筋方向に沿って延びる複数の歯面21、歯先面22および歯底面23を有している。また、図2に示すように、歯面21は、歯先面22と歯底面23とを接続するように歯形方向に延びるように形成されている。
 図3に示すように、歯車部品100の外周面20側には、外周面20(歯面21、歯先面22および歯底面23)および外周面20の近傍に設けられた表層31と、表層31よりも内側の第1中間層32と、第1中間層32よりも内側の第2中間層33とが形成されている。また、歯車部品100では、内周面24および内周面24の近傍に内周面側層34が形成されている。また、歯車部品100では、第2中間層33と内周面側層34との間である歯車部品100の内側に最内層35が形成されている。
 表層31は、浸炭処理、冷却処理、高周波焼入れ処理、焼戻し処理およびショットピーニング処理において処理された領域である。具体的には、表層31は、外周面20から外周面20に対して垂直方向に約20μm以上約40μm以下の深さまでの領域である。なお、表層31の深さは、ショットピーニング処理の条件などによって変化させることが可能である。
 ここで、第1実施形態では、表層31のうち、他の歯車がかみ合う歯面では、浸炭処理により、C濃度が0.85質量%以上1.2質量%以下にされている。このC濃度は、素材鋼のC濃度(0.05質量%以上0.30質量%以下)よりも高い。
 また、表層31におけるC濃度が0.85質量%以上であることによって、図4に示すC濃度と鋼材の硬さとの関係(E.C. Bain and H.W. Paxton, Alloying Elements in Steel, 2nd ed.,American Society for Metals, Metals Park, OH, 1961)から、表層のC濃度が0.6質量%で低い場合よりも、硬さを十分に大きくすることが可能である。また、表層のC濃度が1.2質量%を超えると、後述する高周波焼入れ処理において残留オーステナイト組織が多く残留してしまうため、表層31のC濃度の上限は1.2質量%である。なお、表層31のC濃度は、0.85質量%以上約1.1質量%以下であるのが好ましく、約0.9質量%以上約1.05質量%以下であるのがより好ましい。
 また、第1実施形態では、表層31は、残留オーステナイト組織とマルテンサイト組織とを含んでいる。また、表層31では、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であり、残部がマルテンサイト組織である。なお、表層31は、大部分がオーステナイト組織とマルテンサイト組織とから構成されていればよく、オーステナイト組織およびマルテンサイト組織以外に不可避の組織(たとえばセメンタイトおよびベイナイト組織など)などが微量含まれていてもよい。これにより、表層31において、柔らかなオーステナイト組織の残留量が10%未満で少なく、かつ、残部はマルテンサイト組織であるので、硬さの大きい表層31を有する歯車部品100を得ることが可能である。なお、ここでいうマルテンサイト組織とは、焼入れにより変態したままのマルテンサイト組織の他、焼入れ後に焼戻しを行った後の焼戻しマルテンサイト組織も含む。
 また、表層31では、残留オーステナイト組織およびマルテンサイト組織の双方において、粒界炭化物の面積率が2%未満になるように形成されている。なお、粒界炭化物の面積率は、所定の大きさ以上の面積(たとえば、10000μm2以上の面積)を有する断面を観察して、その断面内に存在する粒界炭化物の面積の割合を導出することにより取得することが可能である。
 また、第1実施形態では、素材鋼では、浸炭処理後の冷却処理時において初析セメンタイトが結晶粒界に発生するのを抑制するために、Si添加量の増量およびCr添加量の低減が行われている。
 また、マルテンサイト組織は、高周波焼入れ処理時の急冷により表層31に生成されたマルテンサイト組織と、高周波焼入れ処理において残留した残留オーステナイト組織が、表層31に加えられた力学的エネルギーにより改質されることによって生成されたマルテンサイト組織とを含んでいる。なお、第1実施形態では、力学的エネルギーは、ショットピーニング処理により表層31に加えられている。
 また、ショットピーニング処理により表層31に加えられた力学的エネルギーにより、表層31に約600MPa以上の圧縮残留応力が生じている。なお、表層31には、約1100MPa以上の圧縮残留応力が生じているのが好ましい。さらに、浸炭処理、高周波焼入れ処理、および、ショットピーニング処理により、表層31において、硬さ(ビッカース硬さ)がHV800以上にされている。なお、表層31におけるビッカース硬さはHV850以上であるのが好ましい。
 第1中間層32は、浸炭処理、冷却処理、高周波焼入れ処理、焼戻し処理およびショットピーニング処理において処理された領域である。なお、第1中間層32の深さは、ショットピーニング処理の条件などによって変化させることが可能である。
 第1中間層32では、浸炭処理により、C濃度が素材鋼のC濃度よりも高くされている。また、第1中間層32では、高周波焼入れ処理により残留オーステナイト組織とマルテンサイト組織とが主に生成されているとともに、ショットピーニング処理により残留オーステナイト組織が若干、マルテンサイト組織に変態(改質)している。この結果、第1中間層32では、残留オーステナイト組織の体積率が表層31よりも大きく、かつ、残部はマルテンサイト組織である。
 また、第1中間層32における表層31側の層では、残留オーステナイト組織の体積率は、約15%以上である。また、ショットピーニング処理により、第1中間層32では、第2中間層33および最内層35よりも大きな圧縮残留応力が生じている。なお、表層31と第1中間層32とから、ショットピーニング処理によって処理されたピーニング処理層PLが形成されている。
 第2中間層33は、浸炭処理、冷却処理、高周波焼入れ処理および焼戻し処理において処理された領域である。たとえば、第2中間層33は、第1中間層32よりも内側で、かつ、外周面20から外周面20に対して垂直方向に約0.5mm以上約1.5mm以下の深さまでの領域である。内周面側層34は、内周面24から内周面24に対して垂直方向に約0.5mm以上約1.5mm以下の深さまでの領域である。なお、第2中間層33の深さは、浸炭処理の条件などによって変化させることが可能である。第2中間層33では、浸炭処理によりC濃度が素材鋼のC濃度よりも高くされている。なお、表層31と第1中間層32と第2中間層33とから、浸炭処理によって処理された浸炭層CLが形成されている。
 最内層35は、浸炭処理における熱処理、冷却処理、高周波焼入れ処理において処理された領域である。具体的には、最内層35は、浸炭処理により熱処理が加えられる一方、C濃度が加工前の素材鋼からほとんど変化しない層である。最内層35の硬さは、加工前の素材鋼の硬さよりも大きい。なお、歯車部品100の全体に亘って高周波焼入れ処理が行われている。
 [歯車部品の製造方法]
 次に、図1~図3および図5~図7を参照して、第1実施形態による歯車部品100の製造方法について説明する。
 (準備および前加工処理)
 図5に示すように、まず、上記した組成を有する素材鋼(棒鋼)を準備する。この素材鋼は、素材鋼のC濃度(0.05質量%以上0.30質量%以下のいずれか)に対応するA3変態点(オーステナイト-フェライト変態点)より高い温度になるように加熱されることによって、焼きならしが行われている。
 そして、素材鋼を所定の長さに切断後、粗加工を施すことにより筒状に成形するとともに、加工材(素材鋼に加工が施された鋼材)の外周面20(図2参照)に歯切りを行う(前加工処理)。この際、加工材は、全体に亘って、主にフェライト組織とパーライト組織とから構成されている。
 (浸炭処理および冷却処理)
 そして、前加工処理後の加工材に対して、浸炭処理を行う。この浸炭処理では、酸素濃度が低い減圧環境の浸炭炉(図示せず)内において、加工材に対してC(炭素)の浸透と拡散を行う。つまり、加工材に対して真空浸炭処理を行う。ここで、浸炭炉内に導入される炭化水素系ガスによる浸炭時間と拡散時間とは、歯車部品100完成後の表層31(図3参照)のC濃度を考慮して定められる。
 これにより、外周面20からC(炭素)が浸透・拡散することによって、C濃度が素材鋼のC濃度よりも高い浸炭層CL1および内周面側層が形成される。なお、浸炭層CL1の外周面20側の部分(完成後の歯車部品100の表層31に対応する部分)では、C濃度が0.85質量%以上1.2質量%以下にされている。この際、加工材200の全体が、主にオーステナイト組織となる。
 その後、減圧環境の浸炭炉内において、オーステナイト化された加工材200を、マルテンサイト変態させる臨界冷却速度未満の冷却速度で冷却(徐冷)する(冷却工程)。これにより、加工材200の表面(外周面20および内周面)側の部分が主にパーライト組織となり、内部に向かってフェライト組織が増えていく。ここで、加工材200の表面側の部分では、C濃度が高いため、結晶粒界にセメンタイト等の粒界炭化物が析出しやすい。この粒界炭化物が結晶粒界に過剰に析出してしまうと、後の高周波焼入れ処理においてCを十分に固溶した組織を得ることができずに、Cの不足による硬さの低下(変態後のマルテンサイト組織の硬さ不足)だけでなく、加工材の疲労強度の低下の原因となる。そこで、第1実施形態では、素材鋼において、Si濃度を1.0質量%以上3.0質量%以下に高くするとともに、Cr濃度を0.01質量%以上0.20質量%以下に低くすることによって、結晶粒界に粒界炭化物が析出するのを抑制している。
 また、冷却工程では、オーステナイト化された加工材200をマルテンサイト変態させる臨界冷却速度未満の冷却速度で冷却(徐冷)することによって、パーライト組織よりも体積の大きなマルテンサイト組織が加工材200に生じるのが抑制される。これにより、熱処理に起因する歪み(熱処理歪み)が加工材200に生じるのが抑制される。
 (高周波焼入れ処理および焼戻し処理)
 そして、浸炭処理および冷却処理後の加工材200に対して、高周波焼入れ処理を行う。まず、図6に示すように、高密度エネルギー加熱により加工材200を加熱する。具体的には、所定の高周波(たとえば、約10kHzや約100kHzの周波数)による高密度エネルギーを加工材200に集中的に加えることによって、加工材200を誘導加熱する。この際、加工材200の温度がAcm変態点以上になるように加工材200の全体を加熱して昇温させる。なお、Acm変態点は、浸炭層CL1の外周面20側の部分のC濃度に対応する、オーステナイト化温度である。これにより、加工材200の全体が、主にオーステナイト組織となる。
 その後、加工材200を急冷する。具体的には、約10℃以上約40℃以下の水(冷媒)を直接的に加工材200に接触させて加工材200を冷却する。たとえば、室温程度(約25℃)の冷媒を用いて、加工材200を冷却する。これにより、表面(外周面20および内周面)側の部分において、オーステナイト組織の一部がマルテンサイト組織(焼入マルテンサイト組織)に変態した加工材300が形成される。なお、加工材300では、浸炭処理後の浸炭層CL1が焼入れにより硬化されて浸炭層CL2になるとともに、浸炭層CL2の内部に素材鋼よりも硬さが向上した最内層35が形成される。また、内周面側層134が焼入れにより硬化されて、内周面側層34になる。また、この際、C濃度と冷媒温度とに基づいてオーステナイト組織の一部がマルテンサイト組織に変態し、残部はオーステナイト組織(残留オーステナイト組織)として残留する。
 ここで、図7に、所定の冷媒温度におけるC濃度と残留オーステナイト組織との関係を示したグラフを示す。このグラフから、C濃度が高い場合には、残留オーステナイト組織(γR)の体積率が大きくなりやすいことが確認できる。
 ここで、油冷の場合には、冷媒温度が140℃程度で高いため、C濃度に対する残留オーステナイト組織(γR)の体積率が大きくなりやすい。それに対して、第1実施形態による水冷の場合には、冷媒温度が25℃程度と低いため、C濃度が0.85質量%以上1.2質量%以下であったとしても、残留オーステナイト組織(γR)の体積率が大きくなるのを確実に抑制することが可能である。
 たとえば、C濃度が1.0質量%である場合に、油冷(冷媒温度T=140℃)を用いると、残留オーステナイト組織(γR)の体積率が80%を超えて大きくなる。この場合、残留オーステナイト組織の体積率がその後のショットピーニング処理により改質可能な割合を大幅に超えているため、ショットピーニング処理後に残留オーステナイト組織が多く残留してしまい、その結果、表層の硬さが小さくなってしまう。一方で、C濃度が1.0質量%である場合に、水冷(冷媒温度T=25℃)を用いることによって、残留オーステナイト組織(γR)の体積率を25%程度に抑えることが可能である。これにより、ショットピーニング処理後に残留する残留オーステナイト組織の量を低減することが可能である。
 そして、図6に示すように、加工材300の温度を約600℃より低い温度に加熱することによって、加工材300を焼き戻す。
 なお、高周波焼入れ処理および焼戻し処理により、浸炭層CL2の外周面20側の部分(完成後の歯車部品100の表層31に対応する部分)では、靱性を確保しつつ、硬さが向上している。しかしながら、残留オーステナイト組織の影響により、浸炭層CL2の外周面20側の部分の硬さは不十分である。
 (ショットピーニング処理)
 最後に、加工材300の外周面20に対して、ショットピーニング処理(改質工程)を行う。具体的には、加工材300を回転させながら、加工材300の外周面20に対してメディア(投射材)を所定の圧力で噴射する。この際、第1段階として、メディアを加工材300の外周面20に噴射する。これにより、浸炭層CL2の深部にまで力学的エネルギーが加えられる。その後、第2段階として、第1段階のメディアよりも径の小さなメディアを加工材300の外周面20に噴射する。これにより、浸炭層CL2の外周面20側の部分に力学的エネルギーが加えられる。これらにより、浸炭層CL2の外周面20側の部分において、残留オーステナイト組織の一部が改質されてマルテンサイト組織に変態する。この結果、浸炭層CL2の外周面20側の部分が、0%よりも大きく、かつ、10%未満の体積率の残留オーステナイト組織と、残部であるマルテンサイト組織とを含む表層31になる。
 この際、表層31に対応する浸炭層CL2では、ショットピーニング処理前の状態において残留オーステナイト組織(γR)の体積率が大きくなることが抑制されていることによって、その後のショットピーニング処理において、残留オーステナイト組織をマルテンサイト組織に改質する量(体積)を抑制することができる。これにより、ショットピーニング処理における力学的エネルギー量(メディアの噴射圧力の大きさなど)および処理時間などを特別に大きな値に設定しなくとも、一般的なショットピーニング処理の条件によって、表層31に残留オーステナイト組織を改質したマルテンサイト組織を十分に生成することが可能である。
 また、浸炭層CL2のうち、表層31よりも内側が、ショットピーニング処理により力学的エネルギーが加えられた層として、第1中間層32になる。ここで、表層31よりも内側の第1中間層32おける残留オーステナイト組織の体積率は、表層31よりも大きくなるとともに、残部はマルテンサイト組織になる。そして、浸炭層CL2のうち、第1中間層32よりも内側が、ショットピーニング処理により力学的エネルギーが加えられなかった層として、第2中間層33になる。また、これらのショットピーニング処理により、表層31および第1中間層32(ピーニング処理層PL)には圧縮残留応力が生じる。
 また、ショットピーニング処理により外周面20に形成された凹凸をならす(平坦にする)ため、ショットピーニング処理後に外周面20に対して鏡面仕上げなどの仕上げ加工を施してもよい。なお、鏡面仕上げは、砥石を用いて研磨することによって行うことが可能である。これにより、図1~図3に示す歯車部品100が作製される。
 (第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、表層31のC濃度を0.85質量%以上にすることによって、表層のC濃度が0.6質量%の場合よりも表層31の硬さを大きくすることができる。また、表層31のC濃度を1.2質量%以下にするとともに、表層31における残留オーステナイト組織の体積率が、0%よりも大きく、かつ、10%未満であるとともに、表層31の残部はマルテンサイト組織であるように構成する。また、表層31のC濃度を1.2質量%以下にするのに加えて、素材鋼において、Si濃度を1.0質量%以上にし、Cr濃度を0.20質量%以下にする。これらにより、表層31の粒界炭化物の面積率を2%未満にして、粒界炭化物に起因する歯車部品100の疲労強度の低下を抑制することができる。この結果、歯車部品100の破損を抑制して、歯車部品100の長寿命化を図ることができる。さらに、表層31のC濃度が1.5質量%の場合と異なり、表層31に柔らかなオーステナイト組織(残留オーステナイト組織)が10%以上残留するのを抑制することができるので、表層31のビッカース硬さをHV800以上に十分に大きくすることができる。
 また、第1実施形態では、上記のように、表層31のC濃度を約0.9質量%以上にすれば、表層31の硬さをより効果的に大きくすることができる。
 また、第1実施形態では、上記のように、表層31のC濃度を約1.1質量%以下にすれば、柔らかな残留オーステナイト組織が表層31に多く残留するのをより抑制することができるとともに、結晶粒界に炭化物などの炭化物が析出するのをより抑制することができる。
 また、第1実施形態では、上記のように、第1中間層32の表層31側の層は、約15%以上の体積率のオーステナイト組織を含む。これにより、マルテンサイト組織により第1中間層32の硬さをある程度大きくしつつ、柔軟なオーステナイト組織の量を表層31よりも多くすることによって、歯車部品100の硬さと靱性との両方を確保することができる。
 また、第1実施形態では、上記のように、表層31に約1100MPa(約600MPa)以上の圧縮残留応力を生じさせる。これにより、歯車部品100の使用時に表層31に亀裂が発生したとしても、約600MPa以上の圧縮残留応力により亀裂の進行を効果的に抑制することができる。これにより、歯車部品100の長寿命化を図ることができる。
 また、第1実施形態では、上記のように、素材鋼のSi濃度を約1.5質量%以上にすれば、セメンタイトが結晶粒界に残留するのを効果的に抑制することができる。また、素材鋼のSi濃度を約2.0質量%以下にすれば、素材鋼の硬さが必要以上に大きくなるのを効果的に抑制することができる。
 また、第1実施形態では、上記のように、素材鋼が、任意成分として以下の元素群のうち1種または2種を含有している。
 Mo(モリブデン):約0.01質量%以上約0.50質量%以下。
 B(ボロン):約0.0005質量%以上約0.0050質量%以下。
 このように構成すれば、歯車部品100において、結晶粒界の強度の向上および焼入れ性の向上を図ることができるので、組織の強度を向上させることができる。
 また、第1実施形態では、上記のように、素材鋼が、任意成分として以下の元素群のうち1種または2種を含有している。
 Nb(ニオブ):約0.01質量%以上約0.30質量%以下。
 Ti(チタン):約0.005質量%以上約0.200質量%以下。
 V(バナジウム):約0.01質量%以上約0.20質量%以下。
 このように構成すれば、歯車部品100において、組織の粗大化の抑制を図ることができるので、組織の強度を向上させることができる。
 また、第1実施形態の製造方法では、上記のように、焼入れ後の表面硬さを大きくするために、表層31のC濃度を共析点におけるC濃度よりも高い0.85質量%以上1.2質量%以下にするとともに、焼入れ後の加工材300の外周面20およびその近傍に存在する残留オーステナイト組織をマルテンサイト組織に変態するために力学的エネルギーを与える。ここで、浸炭工程において表層31のC濃度を共析点におけるC濃度よりも高い0.85質量%以上にすると、浸炭工程に続く冷却工程において結晶粒界にセメンタイト等の炭化物が生成しやすくなるものの、炭化物の生成を抑制するSiに関して、Si濃度を1.0質量%以上にし、炭化物の生成を促進しやすいCrに関して、炭化物の生成を抑制するためにCr濃度を0.20質量%以下にした素材鋼を用いている。これにより、表層31のビッカース硬さをHV800以上に十分に大きくすることができるとともに、炭化物の生成を抑制して、表層31における粒界炭化物の面積率を2%未満にすることができるので、粒界炭化物に起因する歯車部品100の疲労強度の低下を抑制することができる。この結果、歯車部品100の破損を抑制して、歯車部品100の長寿命化を図ることができる。
 また、第1実施形態の製造方法では、上記のように、高密度エネルギー加熱により加工材200(鋼部品)を加熱して、加工材200をAcm変態点以上の温度まで昇温させた後、オーステナイト化された加工材200をマルテンサイト変態させる臨界冷却速度以上の冷却速度で冷却(急冷)して焼入れることにより、加工材200におけるオーステナイト組織の一部をマルテンサイト化させる。これにより、加熱された加工材200を約10℃以上約40℃以下の水(冷媒)を用いて焼入れることによって、加熱された加工材を約140℃の冷媒で焼入れる場合と比べて、加工材200におけるオーステナイト組織のより多く部分をマルテンサイト化させて、加工材300における残留オーステナイト組織の体積率を小さくすることができる。この結果、ショットピーニング処理後の表層31における残留オーステナイト組織の体積率を確実に小さくすることができる。
 また、第1実施形態の製造方法では、上記のように、浸炭工程の後、加工材200がマルテンサイト変態する冷却速度未満の冷却速度で、加工材200を冷却する。これにより、加工材200に対して浸炭処理(熱処理)を行ったとしても、その後の冷却工程において、加工材200がマルテンサイト変態する冷却速度未満の冷却速度で加工材200が冷却されるので、熱処理に起因する歪み(熱処理歪み)が加工材200(歯車部品100)に生じるのを抑制することができる。
 また、第1実施形態の製造方法では、上記のように、改質工程により、表層31を、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であるとともに、残部はマルテンサイト組織であるように形成する。これにより、表層31に柔らかなオーステナイト組織(残留オーステナイト組織)が多く残留するのを抑制することができるので、表層31のビッカース硬さをHV800以上に十分に大きくすることができる。
 また、第1実施形態の製造方法では、上記のように、ショットピーニング処理により、浸炭層CL2の外周面20側の部分(完成後の歯車部品100の表層31に対応する部分)における残留オーステナイト組織を改質させる。これにより、容易に浸炭層CL2の外周面20側の部分におけるオーステナイト組織を改質して、マルテンサイト組織を生成することができる。
 また、第1実施形態の製造方法では、上記のように、残留オーステナイト組織を改質させた後に、ショットピーニング処理により形成された凹凸をならすため、追加して表層31の外周面20を鏡面仕上げなどの仕上げ加工を施してもよい。これにより、歯車部品100のかみ合い効率を向上することができる。
 また、第1実施形態の製造方法では、上記のように、焼入れ工程において、オーステナイト化された加工材200(鋼部品)を約10℃以上約40℃以下の冷媒(約25℃の冷媒)を用いて急冷して焼入れる。これにより、加工材200におけるオーステナイト組織の一部を十分にマルテンサイト変態させることができる。
 また、第1実施形態の製造方法では、上記のように、高周波焼入れ処理後で、かつ、ショットピーニング処理前に、加工材300(鋼部品)を焼き戻す。これにより、焼入れにより低下したマルテンサイト組織(焼入マルテンサイト組織)の靱性を焼戻しにより回復させることができるので、歯車部品100における靱性を向上させることができる。
 また、第1実施形態の製造方法では、上記のように、浸炭工程において、減圧環境下で加工材(歯車部品)に浸炭処理を施す。これにより、浸炭処理時の熱に起因して加工材の表面の粒界などにSiの酸化物などが形成されることを抑制することで、表面の粒界強度が低下することを抑制できる。
 [第1実施例]
 次に、第1実施例として、上記第1実施形態の効果を確認するために行った残留オーステナイト組織の体積率の測定、硬さ測定、残留応力測定、疲労強度測定、および、粒界炭化物の面積率測定について説明する。
 (実施例1の歯車部品の構成)
 まず、第1実施形態に対応する実施例1の歯車部品100(図1~図3参照)を作成した。具体的には、まず、表1で示す鋼番Aの化学成分から構成され、焼きならしが行われた素材鋼(棒鋼、図5参照)を準備した。なお、この鋼番Aの素材鋼は、本実施形態で示した組成範囲内に含まれている。また、鋼番Aの素材鋼のビッカース硬さは、HV140程度である。そして、素材鋼に対して切断、粗加工および歯切りを行った。
Figure JPOXMLDOC01-appb-T000001
 その後、前加工処理後の加工材に対して浸炭処理を行うことによって、表層31のC濃度を1.0質量%にした。その後、浸炭炉内で加工材200(図5参照)を徐冷した。
 そして、浸炭処理および冷却処理後の加工材200に対して、高周波焼入れ処理を行った。まず、加工材200がオーステナイト化するように温度がAcm変態点(約800℃)より高い1000℃になるように、加工材200を誘導加熱した。その後、25℃の水を直接的かつ連続的に加工材200に接触させて加工材200を冷却することによって、加工材200を急冷した。
 そして、急冷後の加工材300(図6参照)の温度を600℃より低い150℃にすることによって、焼戻しを行った。
 最後に、加工材300の外周面20に対して、ショットピーニング処理を行った。まず、第1段階として、0.8mmの径を有するメディアを加工材300の外周面20に噴射した。その後、第2段階として、0.2mmの径を有するメディアを加工材300の外周面20に噴射した。最後に、加工材300の外周面20を砥石で研磨することによって、外周面20に対して鏡面仕上げを行った。これにより、実施例1の歯車部品100を作製した。
 (体積率および残留応力の測定)
 まず、実施例1の歯車部品100における残留オーステナイト組織(γR)の体積率と残留応力とを測定した。具体的には、まず、歯面21に対して電解研磨を行うことにより、歯面において所定の厚みだけ除去した。そして、露出した表面(断面)を、X線回折法により残留オーステナイト組織の体積率と残留応力とを測定した。また、残留応力に関しては、歯面21の歯筋方向(図1参照)に働く残留応力を測定した。なお、参考例1として、ショットピーニング処理を行う前の加工材300においても、実施例1の歯車部品100と同様に、残留オーステナイト組織の体積率の測定を行った。
 (体積率の測定結果)
 図8に残留オーステナイト組織の体積率の測定結果を示す。歯面21(外周面20)からの深さが35μm以内の表層31では、ショットピーニング処理前には多くて23%近くの体積率であった残留オーステナイト組織の体積率が、ショットピーニング処理後では10%以上小さくなり、1%以上10%未満になった。これは、ショットピーニング処理により、表層31における残留オーステナイト組織がマルテンサイト組織に変態したからであると考えられる。
 また、歯面21(外周面20)からの距離が200μm以内で、かつ、表層31を除く第1中間層32では、残留オーステナイト組織の体積率が10%以上になった。つまり、第1中間層32では、残留オーステナイト組織の体積率は、表層31よりも大きくなった。また、第1中間層32のうち、歯面21(外周面20)からの距離が50μm以上100μm以下の領域(第1領域)では、残留オーステナイト組織の体積率が15%以上になった。一方、第1中間層32のそれ以外の領域(第2領域および第3領域)においては、残留オーステナイト組織の体積率が15%未満になった。なお、高周波焼入れ処理により、表層31および第1中間層32に対応する部分(浸炭層CL2、図6参照)のほとんど全体において、残留オーステナイト組織を除き、マルテンサイト組織になっていると考えられる。
 なお、実施例1の歯車部品100の表層31において、残留オーステナイト組織の平均の体積率が5%になった。
 (残留応力の測定結果)
 図9に、歯面21における残留応力の測定結果を示す。なお、正の残留応力は互いに離れる方向に働く引張残留応力であり、負の残留応力は互いに近づく方向に働く圧縮残留応力である。
 表層31の残留応力は、1100MPa以上の圧縮残留応力(-1100MPa以下の残留応力)であり、非常に大きな圧縮残留応力が発生していることが確認できた。これにより、ショットピーニング処理により、表層31に大きな圧縮残留応力を発生させることが可能であることが確認できた。さらに、表層31において、大きな圧縮残留応力が発生していることから、亀裂の進行が抑制されることが確認できた。また、第1中間層32の残留応力としては、表層31側において大きな圧縮残留応力が発生していることが確認できた。
 (硬さ測定)
 次に、上記実施例1の歯車部品100のビッカース硬さを、JIS Z 2244に基づいて測定した。具体的には、ショットピーニング処理を行った外周面のうちの歯面21における表層31のビッカース硬さ(歯面21のビッカース硬さ)をそれぞれ測定した。また、300℃に加熱した後冷却した熱処理後の実施例1の歯車部品100を用いて、歯車部品100の歯面21における表層31のビッカース硬さを測定した。この際、測定する断面に加える試験力を300gfにした。
 図10に示すビッカース硬さの測定結果から、表層31のビッカース硬さは、HV800以上(HV890)になることが確認できた。これにより、歯車部品100の最外層である表層31において、十分な硬さを有していることが確認できた。この結果、歯車部品100の破損を効果的に抑制することができると考えられる。
 また、300℃の熱処理後であっても、表層31においてHV790程度のビッカース硬さが得られた。つまり、熱処理後の表層31では、熱処理前の表層31よりも1割程度しか硬さが減少しなかった。これは、Si増量が素材鋼に対して行われていることによると考えられる。なお、この硬さの減少量の少なさは、他の層(第1中間層32、第2中間層33、最内層35)においても同様である。これにより、歯車部品100が高温環境下に配置された場合、および、歯車部品100が他の歯車部品とかみ合うことにより熱が発生した場合などであっても、歯車部品100の硬さの低下を抑制することが可能であることが確認された。
 (C濃度の測定)
 次に、上記実施例1の歯車部品100のC濃度を電子線マイクロアナライザを用いて測定した。具体的には、実施例1の歯車部品100において、ショットピーニング処理を行った外周面20のうちの歯面21における表層31のC濃度(歯面21のC濃度)を測定した。
 測定結果としては、実施例1の表層31におけるC濃度は0.99%であり、十分な硬さと適正な残留オーステナイト組織の体積率を両立できるC濃度であることが確認された。
 (疲労強度測定)
 次に、上記実施例1の歯車部品100の疲労強度を評価した。具体的には、動力循環式歯車試験機を用いて、歯車部品100の歯元(歯面21と歯底面23との境界)における曲げ疲労強度と歯面21における面疲労強度とを評価した。この際、潤滑油としてオートマチックトランスミッションフルードを用い、潤滑油温80℃および回転数2000rpmの条件下で試験を行った。また、歯元における曲げ応力が500MPa、歯面における最大面圧が2000MPaとなるトルクを歯車部品100に与え、1000万回を目標サイクルとした。
 曲げ疲労強度の評価および面疲労強度の評価としては、共に、1000万回応力を加えた後でも実施例1の歯車部品100に破損は生じなかった。この結果、実施例1の歯車部品100は、1000万回繰り返し加えられる応力に耐えることができる高い疲労強度を有していることが確認できた。これは、主に表層31の硬さが大きいことに基づいて、歯車部品100の疲労強度が大きくなったためと考えられる。
 (粒界炭化物の面積率測定)
 次に、実施例1の歯車部品100における表層31の粒界炭化物の面積率を測定した。具体的には、まず、歯面21に対して垂直に歯車部品100を切断し、露出した断面を鏡面研磨した。その後、ナイタール液(硝酸が添加されたアルコール溶液)を用いて断面を腐食させることによって、断面に粒界炭化物を現出させた。そして、光学顕微鏡を用いて表層31における断面の撮影を倍率500倍で行った。そして、撮影された所定の大きさの面積を有する断面に対して画像処理を行うことによって、粒界炭化物とその他の部分とを二値化により区別した。そして、粒界炭化物の面積率(=(断面における粒界炭化物の面積/断面全体の面積)×100)(%)を導出した。
 面積率の測定結果としては、実施例1の歯車部品100における表層31では、粒界炭化物は観察されず、その結果、粒界炭化物の面積率は0%であった。これは、Si濃度を1.0質量%以上にし、Cr濃度を0.20質量%以下にすることにより、炭化物が結晶粒界に析出するのを抑制することができたためであると考えられる。
 [第2実施例]
 次に、第2実施例として、上記第1実施形態の効果を確認するために、複数の素材鋼を用いて歯車部品を作製し、各々の歯車部品における、表層のC濃度、残留オーステナイト組織の体積率、粒界炭化物の面積率、歯面の表層における硬さおよび疲労強度を比較した。
 (素材鋼の組成)
 まず、素材鋼(棒鋼)として、上記した素材鋼A以外に、表1に示す素材鋼B~Lを準備した。
 ここで、素材鋼A~Jは、本実施形態で示した組成範囲内に含まれる一方、素材鋼KおよびLは、本実施形態で示した組成範囲内に含まれない。具体的には、素材鋼Kでは、Si濃度が本実施形態で示した組成範囲(1.0質量%以上3.0質量%以下)よりも小さく、素材鋼Lでは、Cr濃度が本実施形態で示した組成範囲(0.01質量%以上0.20質量%以下)よりも大きい。
 そして、上記第1実施例の実施例1と同様にして歯車部品を作製した。具体的には、素材鋼B~Lを用いて、それぞれ、実施例1~10、比較例1および2の歯車部品を作製した。また、素材鋼Aを用いる一方、上記第1実施例の実施例1とは浸炭処理の条件を異ならせることによって、比較例3および4の歯車部品を作製した。具体的には、比較例3として、C濃度が0.85質量%未満(0.74質量%)になるように浸炭処理を行うことによって、比較例3の歯車部品を作製した。また、比較例4として、C濃度が1.2質量%を超える(1.25質量%)ように浸炭処理を行うことによって、比較例4の歯車部品を作製した。また、参考例2として、素材鋼Aを用いるとともに、ショットピーニング処理を行わない点以外は上記第1実施例の実施例1と同様にして、参考例2の歯車部品を作製した。
 そして、作製した各々の歯車部品に対して、上記第1実施例と同様に、表層のC濃度、残留オーステナイト組織の体積率、粒界炭化物の面積率、歯面の表層における硬さおよび疲労強度を測定(評価)した。測定(評価)結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 測定(評価)結果としては、実施例1~10のように、上記実施形態で示した組成範囲内に含まれる素材鋼を用い、かつ、表層のC濃度を0.85質量%以上1.2質量%以下にし、臨界冷却速度以上の冷却速度で冷却して焼入れ、外周面側のオーステナイト組織に対して力学的エネルギーを与えることによって、残留オーステナイト組織の体積率を0%よりも大きく、かつ、10%未満にし、表層における粒界炭化物の面積率を2%未満にすることができ、その結果、表層のビッカース硬さを、HV800以上にすることが可能であることが確認できた。また、実施例9を除く実施例1~8および10では、表層のビッカース硬さを、HV850以上により大きくすることが可能であることが確認できた。また、上記特性を有する実施例1~10の歯車部品では、疲労強度の評価において、1000万回応力を加えた後であっても破損は生じなかった。つまり、実施例1~10の歯車部品は高い疲労強度を有していることが確認できた。
 一方、比較例1および2のように、上記実施形態で示した組成範囲内に含まない素材鋼を用いた場合には、たとえ実施例1~10と同様の製造方法により歯車部品を作製したとしても、表層における粒界炭化物の面積率が2%以上になった。そして、疲労強度の評価において、比較例1および2の歯車部品は、1000万回の応力印加に耐えられずに、試験途中で歯元が折れ、破損した。この結果、上記実施形態で示した組成範囲内に含まない素材鋼を用いた場合には、十分な疲労強度を有する歯車部品を作製することができないことが確認できた。
 また、比較例3および4のように、上記実施形態で示した組成範囲内に含まる素材鋼を用いたとしても、表層のC濃度が0.85質量%未満にされた場合または1.2質量%を超える場合には、表層のビッカース硬さがHV800未満になった。そして、疲労強度の評価において、比較例3および4の歯車部品では、歯面の表層におけるビッカース硬さが小さいことに起因して、試験途中で歯面に穴(ピッチング)が形成された。この結果、表層のC濃度が0.85質量%未満にされた場合または1.2質量%を超える場合には、十分な疲労強度を有する歯車部品を作製することができないことが確認できた。特に、表層のC濃度が1.2質量%を超える比較例4では、残留オーステナイト組織の体積率が58%と大幅に大きくなり、歯面における表面のビッカース硬さもHV522に大幅に小さくなった。
 また、参考例2のように、上記実施形態で示した組成範囲内に含まる素材鋼を用いたとしても、ショットピーニング処理のように、外周面側のオーステナイト組織に対して力学的エネルギーを与える処理を行わない場合には、残留オーステナイト組織の体積率が19%と大きくなり、表層のビッカース硬さがHV720になった。そして、疲労強度の評価において、参考例2の歯車部品では、歯面の表層におけるビッカース硬さが小さいことに起因して、試験途中でピッチングが形成された。この結果、外周面側のオーステナイト組織に対して力学的エネルギーを与える処理を行わない場合には、十分な疲労強度を有する歯車部品を作製することができないことが確認できた。
 [第2実施形態]
 次に、第2実施形態について説明する。第2実施形態では、特許請求の範囲の「鋼部品」として、歯車部品100ではなく軸部材400を用いた例について説明する。
 [軸部材の構造]
 まず、図11~図14を参照して、第2実施形態による軸部材400の構造について説明する。なお、第1実施形態による歯車部品100と同様の構成については、適宜説明を省略する。
 上記第1実施形態において歯車部品100に用いた素材鋼の組成と同様の素材鋼を加工処理して作製された第2実施形態による軸部材400は、図11および図12に示すように、いわゆるピニオンシャフトである。この軸部材400は、上記第1実施形態の歯車部品100と同様に、加工処理として粗加工が行われた後に、浸炭処理、冷却処理、高周波焼入れ処理、焼戻し処理およびショットピーニング処理がこの順に行われることにより作製されている。
 軸部材400は、円柱状の支持軸401の軸方向に延びる外周面が転動面402となっている。支持軸401には、油路穴403が形成されている。油路穴403は、径方向の中心において軸方向に延びる主油路穴403aと、転動面402に開口し、転動面402に潤滑油を供給する分岐油路穴403bとを含んでいる。主油路穴403aは、軸方向の一方側の端面部404aに開口するとともに、軸方向の他方側の端面部404b近傍まで延びている。なお、端面部404aおよび404bは、特許請求の範囲の「軸方向端面部」の一例である。
 図13に示すように、軸部材400の外周面側では、転動面402および転動面402の近傍に設けられた表層431と、表層431よりも径方向内側の第1中間層432と、第1中間層432よりも径方向内側の第2中間層433と、第2中間層433よりも径方向内側の最内層435とが形成されている。また、図14に示すように、端面部404aおよび端面部404bでは、端面側層441が形成されている。なお、端面側層441よりも軸方向内側には、最内層435が位置している。また、転動面402、端面部404aおよび404bは、鏡面仕上げなどが施されることにより研磨されている。
 表層431は、上記第1実施形態の表層31と同様の性質を有している。つまり、表層431は、浸炭処理により、C濃度が0.85質量%以上1.2質量%以下にされている。また、表層431では、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であり、残部がマルテンサイト組織である。また、表層431では、残留オーステナイト組織およびマルテンサイト組織の双方において、粒界炭化物の面積率が2%未満になるように形成されている。
 第1中間層432は、上記第1実施形態の第1中間層32と同様の性質を有している。つまり、第1中間層432では、残留オーステナイト組織の体積率が表層431よりも大きく、かつ、残部はマルテンサイト組織である。また、第2中間層433および最内層435は、それぞれ、上記第1実施形態の第2中間層33および最内層35と同様の性質を有している。
 図14に示すように、端面側層441は、浸炭処理、冷却処理、高周波焼入れ処理および焼戻し処理において処理された領域である。つまり、端面側層441は、外周面に施される処理と比較して、ショットピーニング処理を除く処理が行われた領域である。なお、端面側層441では、浸炭処理により、軸方向外側から内側に向かって、C濃度が高くなるように構成されている。
 また、端面部404aおよび404b近傍の端面側層441には、上記したようにショットピーニング処理が行われていない。このため、端面部404aおよび404bには、オーステナイト組織の一部が変態した焼入マルテンサイト組織が存在する一方、転動面402の表層431などと異なり、力学的エネルギーに起因するマルテンサイト組織は存在しない。この結果、端面側層441(端面部表層442)の残留オーステナイト組織の体積率は、転動面402の表層431における残留オーステナイト組織の体積率よりも大きい。また、端面部表層442の硬さは、転動面402の表層431における硬さよりも小さい。さらに、端面部404aおよび404bには、力学的エネルギーに起因する圧縮残留応力は生じていない。
 なお、第2実施形態による軸部材400の製造方法における浸炭処理、冷却処理、高周波焼入れ処理、焼戻し処理およびショットピーニング処理は、それぞれ、上記第1実施形態の浸炭処理、冷却処理、高周波焼入れ処理、焼戻し処理およびショットピーニング処理と同様であるので、説明を省略する。
 (第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
 第2実施形態では、上記のように、転動面402において、表層431のC濃度を0.85質量%以上にするとともに、表層431のC濃度を1.2質量%以下にするとともに、表層431における残留オーステナイト組織の体積率が、0%よりも大きく、かつ、10%未満であるとともに、表層431の残部はマルテンサイト組織であるように構成する。また、表層431のC濃度を1.2質量%以下にするのに加えて、素材鋼において、Si濃度を1.0質量%以上にし、Cr濃度を0.20質量%以下にする。これらにより、上記第1実施形態と同様に、軸部材400の破損を抑制して、軸部材400の長寿命化を図ることができる。さらに、表層431のC濃度が1.5質量%の場合と異なり、表層431に柔らかなオーステナイト組織(残留オーステナイト組織)が10%以上残留するのを抑制することができるので、表層431のビッカース硬さをHV800以上に十分に大きくすることができる。
 また、第2実施形態では、上記のように、端面部表層442の残留オーステナイト組織の体積率を、転動面402の表層431における残留オーステナイト組織の体積率よりも大きくする。また、端面部表層442の硬さを、転動面402の表層431における硬さよりも小さくする。これにより、転動面402の表層431における硬さを十分に向上させることができる。また、端面部表層442の硬さを小さくすることによって、軸部材400を他の部材と接合するためのかしめ加工およびレーザ溶接などを容易に行うことができる。なお、第2実施形態のその他の効果は、上記第1実施形態の効果と同様である。
 次に、上記第2実施形態の効果を確認するために行った軸部材400の転動疲労試験について説明する。
 (実施例11の軸部材の構成)
 まず、第2実施形態に対応する実施例11の軸部材400(図11および図12参照)を作成した。具体的には、まず、表1で示す鋼番Bの化学成分から構成され、焼きならしが行われた素材鋼を準備した。なお、この鋼番Bの素材鋼は、本実施形態で示した組成範囲内に含まれている。そして、素材鋼に対して切断および粗加工を行った。
 その後、前加工処理後の加工材に対して浸炭処理を行うことによって、表層431のC濃度を1.0質量%にした。その後、浸炭炉内で加工材を徐冷した。
 そして、浸炭処理および冷却処理後の加工材に対して、高周波焼入れ処理を行った。まず、加工材がオーステナイト化するように温度がAcm変態点(約800℃)より高い1000℃になるように、加工材を誘導加熱した。その後、25℃の水を直接的かつ連続的に加工材に接触させて加工材を冷却することによって、加工材を急冷した。
 そして、急冷後の加工材の温度を600℃より低い150℃にすることによって、焼戻しを行った。
 最後に、加工材の転動面402に対して、ショットピーニング処理を行った。まず、第1段階として、0.8mmの径を有するメディアを加工材の転動面402に噴射した。その後、第2段階として、0.2mmの径を有するメディアを加工材の転動面402に噴射した。最後に、加工材の転動面402を砥石で研磨することによって、転動面402に対して鏡面仕上げを行った。また、端面部404aおよび404bに対しては、微鏡面仕上げを行った。これにより、実施例11の軸部材400を作製した。
 また、実施例11に対する比較例5として、SUJ2(JIS4805 2008に準拠)からなる鋼材からなり、実施例11の軸部材400と同じ外形形状を有する軸部材を準備した。そして、SUJ2からなる軸部材に対して、1000℃で高周波焼入れを行った後に、150℃で焼戻しを行うことによって、比較例5の軸部材を作製した。つまり、比較例5の軸部材では、実施例11の軸部材400とは素材鋼の組成が異なるとともに、浸炭処理およびショットピーニング処理が行われていない。
 (転動疲労試験)
 そして、実施例11の軸部材400および比較例5の軸部材に対して、転動疲労試験を行った。転動疲労試験では、円筒型転動疲れ試験機(NTN製)を用いて、荷重600kgf/mm2および回転数46240rpmの試験条件で、サイクル試験を行った。この際、軸部材の転動面となる軸部材の外周面に円筒型転動疲れ試験機の回転部材が当接するようにした。そして、転動面においてフレーキング(剥離)が発生した際の総回転数(サイクル数)を、実施例11の軸部材400のおよび比較例5の軸部材の転動面における耐久性の指標とした。
 (転動疲労試験の結果)
 図15に転動疲労試験の結果を示す。転動疲労試験の結果としては、実施例11の軸部材400のサイクル数は、比較例5の軸部材のサイクル数の17倍程度になった。これにより、実施例11の軸部材400の転動面402は、比較例5の軸部材の転動面と比べて、非常に大きな転動耐久性を有していることが確認できた。これは、表層431の粒界炭化物の面積率が小さいことにより、疲労強度の低下が抑制されたことと、表層431における残留オーステナイト組織の体積率の低下およびマルテンサイト組織の体積率の向上により、表層431の硬さが大きくなったこととによるものであると考えられる。
 [変形例]
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1実施形態では、特許請求の範囲の「鋼部品」の一例として、歯車部品を示し、上記第2実施形態では、特許請求の範囲の「鋼部品」の一例として、軸部材(ピニオンシャフト)を示したが、本発明はこれに限られない。特許請求の範囲の「鋼部品」は、歯車部品および軸部材以外に、ベアリング等の軸受部品などであってもよい。また、歯車部品についても、上記第1実施形態以外の歯車部品、たとえば、軸方向の長さが短く(厚みが薄い)歯車部品などであってもよい。さらに、軸部材についても、上記第2実施形態(ピニオンシャフト)以外のシャフトであってもよい。また、特許請求の範囲の「鋼部品」は、シャフト以外の駆動部品であってもよい。
 また、上記第1実施形態では、表層および表層よりも内側の層(第1中間層)以外にも、第2中間層、内周面側層および最内層を歯車部品に形成した例を示した。また、上記第2実施形態では、表層および表層よりも内側の層(第1中間層)以外にも、第2中間層および最内層を軸部材の転動面に形成した例を示したが、本発明はこれに限られない。歯車部品に、C濃度が0.85質量%以上1.2質量%以下である表層であって、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であり、粒界炭化物の面積率が2%未満である表層と、残留オーステナイト組織の体積率が表層よりも大きく、かつ、残部はマルテンサイト組織である表層よりも内側の層とが形成されていればよい。
 また、上記第1および第2実施形態では、残留オーステナイト組織に対して力学的エネルギーを加える方法として、加工材に対してショットピーニング処理を行った例を示したが、本発明はこれに限られない。力学的エネルギーを加える方法としては、ショットピーニング処理に替えて、たとえば、気泡崩壊を利用したキャビテーションピーニング処理、レーザを用いたレーザーピーニング処理、圧力を加えた状態で研磨するバニッシュ研磨や砥石を用いた研磨などの研磨処理、および、加工材を0℃以下に冷却するいわゆるサブゼロ処理などを行ってもよい。また、これらの処理を組み合わせて、残留オーステナイト組織に対して力学的エネルギーを加えてもよい。
 また、上記第1および第2実施形態では、高周波焼入れ処理、焼戻し処理の後にショットピーニング処理を行った例を示したが、本発明はこれに限られない。たとえば、ショットピーニング処理前で、かつ、高周波焼入れ処理、または、焼戻し処理の後に、加工材を研磨する研磨工程を加えてもよい。
 また、上記第1および第2実施形態では、加工材に対して、高密度エネルギー加熱として高周波加熱を行った例を示したが、本発明はこれに限られない。たとえば、高密度エネルギー加熱として、高周波加熱の代わりに、レーザ照射または電子ビーム照射を行うことにより、加工材を加熱してもよい。
 また、上記第1および第2実施形態では、高周波焼入れ処理において、加工材の全体を加熱した例を示したが、本発明はこれに限られない。少なくとも表層および表層よりも内側の層において、高周波焼入れ処理が行われていればよい。この際、高密度エネルギー加熱を行うことにより、表層および表層よりも内側の層に対応する部分のみを集中的に加熱してAcm変態点以上に昇温させることが可能である。具体的には、上記第1実施形態においては、歯車部品の歯が形成されている側にのみ焼入れ処理を行ってもよいし、内周面のみに焼入れ処理を行ってもよい。また、上記第2実施形態においては、転動面にのみ焼入れ処理を行ってもよい。
 また、上記第1および第2実施形態では、高周波焼入れ処理において、加工材を約25℃の水を冷媒として用いて急冷した(臨界冷却速度以上の冷却速度で冷却した)例を示したが、本発明はこれに限られない。たとえば、高周波焼入れ処理において、水以外の冷媒で急冷してもよい。具体的には、添加材を加えた水や油で加工材を急冷してもよい。
 また、上記第1および第2実施形態では、砥石により加工材の外周面を研磨して鏡面仕上げを行った例を示したが、本発明はこれに限られない。たとえば、砥石とは別の研磨装置を用いて研磨して鏡面仕上げを行ってもよい。具体的には、バレル研磨、化学研磨、および、研磨材を噴射することによる研磨などにより、加工材の外周面を研磨して鏡面仕上げを行ってもよい。
 また、上記第2実施例では、素材鋼を10種用いた例を示したが、本発明はこれに限られない。素材鋼は、実施例に記載した化学成分を含有する素材鋼に限られず、実施形態に記載した化学成分の範囲内の素材鋼であればよい。
 また、上記第1および第2実施形態では、高周波焼入れ処理後で、かつ、ショットピーニング処理(力学的エネルギーを加える処理)前に、加工材を焼き戻す例を示したが、本発明はこれに限られない。たとえば、力学的エネルギーを加える処理の後に加工材(鋼部品)を焼き戻してもよいし、力学的エネルギーを加える処理の前に加工材(鋼部品)を焼き戻した後、力学的エネルギーを加える処理の後に再度加工材(鋼部品)を焼き戻してもよい。また、加工材に対して焼戻しを行わずに、高周波焼入れ処理および力学的エネルギーを加える処理のみを行ってもよい。
 また、上記第2実施形態では、軸部材の軸方向端面部にショットピーニング処理を行わない例を示したが、本発明はこれに限られない。軸部材の転動面だけでなく軸方向端面部にも、ショットピーニング処理を行ってもよい。この場合、軸方向端面部には、転動面と同様の層構造が形成され、軸方向端面部における疲労強度が大きくなるとともに耐摩耗性が向上する。
 また、上記第2実施形態の構成において、軸部材の軸方向端面部に対して切削加工を行うことによって、端面部表層およびその内側の層からなる端面部側層の一部または全部を除去してもよい。これにより、切削後の軸方向端面部の表面の硬さを、切削前の軸方向端面部の表面の硬さよりも小さくすることで、軸方向端面部において、軸部材を他の部材に固定するためのかしめ加工やレーザ溶接などをより容易に行うことが可能である。
 31、431 表層
 32、432 第1中間層(表層よりも内側の層)
 33、433 第2中間層
 35、435 最内層
 100 歯車部品(鋼部品)
 400 軸部材(鋼部品)
 402 転動面(外周面)
 404a、404b 端面部(軸方向端面部)
 442 端面部表層

Claims (20)

  1.  化学成分として、
     C(炭素):0.05質量%以上0.30質量%以下、
     Si(ケイ素):1.0質量%以上3.0質量%以下、
     Mn(マンガン):0.1質量%以上3.0質量%以下、
     P(リン):0.03質量%以下、
     S(硫黄):0.001質量%以上0.150質量%以下、
     Cr(クロム):0.01質量%以上0.20質量%以下、
     Al(アルミニウム):0.01質量%以上0.05質量%以下、
     N(窒素):0.003質量%以上0.030質量%以下、
     Fe、任意成分としての少量の他の合金成分および不可避不純物:残部、を含有する素材鋼から形成される鋼部品であって、
     前記鋼部品の表層のC濃度は、前記素材鋼のC濃度よりも高い0.85質量%以上1.2質量%以下であり、
     前記表層は、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であるとともに、前記表層の残部はマルテンサイト組織であり、前記表層における粒界炭化物の面積率は2%未満であり、
     前記表層よりも内側の層は、当該表層より内側の層における残留オーステナイト組織の体積率が前記表層よりも大きく、かつ、残部はマルテンサイト組織である、鋼部品。
  2.  前記表層のC濃度は、0.9質量%以上1.1質量%以下である、請求項1に記載の鋼部品。
  3.  前記表層よりも内側の層における残留オーステナイト組織の体積率は、15%以上である、請求項1に記載の鋼部品。
  4.  前記表層には、600MPa以上の圧縮残留応力が生じている、請求項1に記載の鋼部品。
  5.  前記素材鋼は、
     Si(ケイ素):1.5質量%以上2.0質量%以下、を含有する、請求項1に記載の鋼部品。
  6.  前記素材鋼は、任意成分としての少量の他の合金成分として、
     Mo(モリブデン):0.01質量%以上0.50質量%以下、
     B(ボロン):0.0005質量%以上0.0050質量%以下、
    のうちのいずれか1種または2種を含有する、請求項1に記載の鋼部品。
  7.  前記素材鋼は、任意成分としての少量の他の合金成分として、
     Nb(ニオブ):0.01質量%以上0.30質量%以下、
     Ti(チタン):0.005質量%以上0.200質量%以下、
     V(バナジウム):0.01質量%以上0.20質量%以下、
    のうちのいずれか1種または2種を含有する、請求項1に記載の鋼部品。
  8.  請求項1に記載の鋼部品から構成された歯車部品であって、
     前記表層は、前記歯車部品の歯面の表層である、歯車部品。
  9.  請求項1に記載の鋼部品から構成された軸部材であって、
     前記表層は、前記軸部材の軸方向に延びる外周面の表層である、軸部材。
  10.  軸方向端面部を備え、
     前記軸方向端面部の端面部表層における残留オーステナイト組織の体積率は、前記外周面の表層における残留オーステナイト組織の体積率よりも大きい、請求項9に記載の軸部材。
  11.  軸方向端面部を備え、
     前記軸方向端面部の端面部表層における表面硬さは、前記外周面の表層における表面硬さよりも小さい、請求項9に記載の軸部材。
  12.  化学成分として、
     C(炭素):0.05質量%以上0.30質量%以下、
     Si(ケイ素):1.0質量%以上3.0質量%以下、
     Mn(マンガン):0.1質量%以上3.0質量%以下、
     P(リン):0.03質量%以下、
     S(硫黄):0.001質量%以上0.150質量%以下、
     Cr(クロム):0.01質量%以上0.20質量%以下、
     Al(アルミニウム):0.01質量%以上0.05質量%以下、
     N(窒素):0.003質量%以上0.030質量%以下、
     Fe、任意成分としての少量の他の合金成分および不可避不純物:残部、を含有する素材鋼から形成される鋼部品の製造方法において、
     前記鋼部品の表面およびその近傍におけるC濃度が素材鋼のC濃度よりも高い0.85質量%以上1.2質量%以下になるように、前記鋼部品に浸炭処理を施す浸炭工程と、
     前記浸炭工程の後、前記鋼部品がマルテンサイト変態する冷却速度未満の冷却速度で、前記鋼部品を冷却する冷却工程と、
     前記冷却工程の後、高密度エネルギー加熱により前記鋼部品を加熱して、前記鋼部品をオーステナイト化温度以上の温度まで昇温させた後、オーステナイト化された前記鋼部品をマルテンサイト変態させる冷却速度以上の冷却速度で冷却して焼入れることにより、前記鋼部品におけるオーステナイト組織の一部をマルテンサイト化させる焼入れ工程と、
     前記焼入れ工程の後、前記鋼部品の表面およびその近傍に力学的エネルギーを与えることにより、前記鋼部品のオーステナイト組織をマルテンサイト組織に改質することによって、表層よりも内側の層では残留オーステナイト組織の体積率が前記表層よりも大きく、かつ、残部をマルテンサイト組織とする改質工程と、を備える、鋼部品の製造方法。
  13.  前記改質工程により、前記表層を、残留オーステナイト組織の体積率が0%よりも大きく、かつ、10%未満であるとともに、残部はマルテンサイト組織とする、請求項12に記載の鋼部品の製造方法。
  14.  前記素材鋼は、任意成分としての少量の他の合金成分として、
     Mo(モリブデン):0.01質量%以上0.50質量%以下、
     B(ボロン):0.0005質量%以上0.0050質量%以下、
    のうちのいずれか1種または2種をさらに含有する、請求項12に記載の鋼部品の製造方法。
  15.  前記素材鋼は、任意成分としての少量の他の合金成分として、
     Nb(ニオブ):0.01質量%以上0.30質量%以下、
     Ti(チタン):0.005質量%以上0.200質量%以下、
     V(バナジウム):0.01質量%以上0.20質量%以下、
    のうちのいずれか1種または2種をさらに含有する、請求項12に記載の鋼部品の製造方法。
  16.  前記改質工程において、ショットピーニングにより、前記鋼部品の表面側の部分におけるオーステナイト組織を改質させる、請求項12に記載の鋼部品の製造方法。
  17.  前記改質工程においてオーステナイト組織を改質させた後に、前記表層を鏡面仕上げする、請求項12に記載の鋼部品の製造方法。
  18.  前記焼入れ工程において、オーステナイト化された前記鋼部品を10℃以上40℃以下の冷媒を用いて、臨界冷却速度以上の冷却速度で冷却して焼入れる、請求項12に記載の鋼部品の製造方法。
  19.  前記焼入れ工程の後で、かつ、前記改質工程の前に、前記鋼部品を焼き戻す、請求項12に記載の鋼部品の製造方法。
  20.  前記浸炭工程において、減圧環境下で前記鋼部品に浸炭処理を施す、請求項12に記載の鋼部品の製造方法。
PCT/JP2017/009186 2016-03-08 2017-03-08 鋼部品、歯車部品および鋼部品の製造方法 WO2017154964A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780008400.9A CN108603261B (zh) 2016-03-08 2017-03-08 钢部件、齿轮部件以及钢部件的制造方法
KR1020187022680A KR20180099877A (ko) 2016-03-08 2017-03-08 강 부품, 기어 부품 및 강 부품의 제조 방법
EP17763304.7A EP3378963B1 (en) 2016-03-08 2017-03-08 Steel component, gear component, and method for manufacturing steel component
JP2018504549A JP6605118B2 (ja) 2016-03-08 2017-03-08 鋼部品、歯車部品および鋼部品の製造方法
US16/076,658 US10889870B2 (en) 2016-03-08 2017-03-08 Steel component, gear component, and producing method for steel component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016044339 2016-03-08
JP2016-044339 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017154964A1 true WO2017154964A1 (ja) 2017-09-14

Family

ID=59790592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009186 WO2017154964A1 (ja) 2016-03-08 2017-03-08 鋼部品、歯車部品および鋼部品の製造方法

Country Status (6)

Country Link
US (1) US10889870B2 (ja)
EP (1) EP3378963B1 (ja)
JP (1) JP6605118B2 (ja)
KR (1) KR20180099877A (ja)
CN (1) CN108603261B (ja)
WO (1) WO2017154964A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680406B1 (ja) * 2019-01-10 2020-04-15 日本製鉄株式会社 機械部品及び機械部品の製造方法
WO2022004554A1 (ja) * 2020-06-30 2022-01-06 新東工業株式会社 表面処理方法
WO2022044392A1 (ja) * 2020-08-27 2022-03-03 株式会社日立製作所 摺動部材及びその製造方法
WO2022230937A1 (ja) * 2021-04-28 2022-11-03 日立建機株式会社 再処理部品及び再処理部品の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696447A1 (de) 2019-02-12 2020-08-19 Siemens Aktiengesellschaft Getriebeelement und verfahren zur fertigung eines getriebeelements
CN111500830B (zh) * 2020-05-28 2021-02-26 中国矿业大学 一种渗碳零件回火热处理方法及渗碳零件
US12060627B1 (en) 2020-10-30 2024-08-13 The United States Of America, As Represented By The Secretary Of The Navy Hard magnetic properties of high entropy alloys (HEAs), methods for making HEAs, and uses thereof
US12054817B1 (en) 2020-11-10 2024-08-06 United States Of America, Represented By The Secretary Of The Navy High-strength and high-toughness austenitic steel
CN113832429B (zh) * 2021-08-30 2023-10-27 东方电气(广州)重型机器有限公司 用于检测铁素体钢奥氏体晶粒度的渗碳方法和渗碳设备
CN116480677B (zh) * 2021-09-17 2024-03-15 荣耀终端有限公司 转轴结构件及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184768A (ja) * 2010-03-10 2011-09-22 Kobe Steel Ltd 高強度肌焼き鋼部品およびその製造方法
WO2011122651A1 (ja) * 2010-03-30 2011-10-06 アイシン・エィ・ダブリュ株式会社 浸炭鋼部材及びその製造方法
JP2013104081A (ja) * 2011-11-11 2013-05-30 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度鋼板およびその製造方法
JP2014019926A (ja) * 2012-07-20 2014-02-03 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度鋼板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056054A1 (fr) * 2001-12-25 2003-07-10 Aisin Aw Co., Ltd. Element carbure et trempe et son procede de production
WO2006118242A1 (ja) 2005-04-28 2006-11-09 Aisin Aw Co., Ltd. 鋼部材およびその熱処理方法
WO2007034911A1 (ja) 2005-09-26 2007-03-29 Aisin Aw Co., Ltd. 鋼部材、その熱処理方法、及びその製造方法
JP5251868B2 (ja) 2007-10-24 2013-07-31 新日鐵住金株式会社 高温での面圧疲労強度に優れた浸炭窒化高周波焼入れ鋼部品及びその製造方法
US8733199B2 (en) 2010-04-01 2014-05-27 Aisin Aw Co., Ltd. Gears and its process of manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184768A (ja) * 2010-03-10 2011-09-22 Kobe Steel Ltd 高強度肌焼き鋼部品およびその製造方法
WO2011122651A1 (ja) * 2010-03-30 2011-10-06 アイシン・エィ・ダブリュ株式会社 浸炭鋼部材及びその製造方法
WO2011122650A1 (ja) * 2010-03-30 2011-10-06 アイシン・エィ・ダブリュ株式会社 歯車およびその製造方法
JP2013104081A (ja) * 2011-11-11 2013-05-30 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度鋼板およびその製造方法
JP2014019926A (ja) * 2012-07-20 2014-02-03 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度鋼板およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680406B1 (ja) * 2019-01-10 2020-04-15 日本製鉄株式会社 機械部品及び機械部品の製造方法
WO2020144830A1 (ja) * 2019-01-10 2020-07-16 日本製鉄株式会社 機械部品及び機械部品の製造方法
WO2022004554A1 (ja) * 2020-06-30 2022-01-06 新東工業株式会社 表面処理方法
JP2022011428A (ja) * 2020-06-30 2022-01-17 新東工業株式会社 表面処理方法
JP7435309B2 (ja) 2020-06-30 2024-02-21 新東工業株式会社 表面処理方法
WO2022044392A1 (ja) * 2020-08-27 2022-03-03 株式会社日立製作所 摺動部材及びその製造方法
WO2022230937A1 (ja) * 2021-04-28 2022-11-03 日立建機株式会社 再処理部品及び再処理部品の製造方法

Also Published As

Publication number Publication date
CN108603261B (zh) 2020-07-31
JP6605118B2 (ja) 2019-11-13
EP3378963A1 (en) 2018-09-26
JPWO2017154964A1 (ja) 2018-11-08
KR20180099877A (ko) 2018-09-05
EP3378963A4 (en) 2018-12-12
CN108603261A (zh) 2018-09-28
US10889870B2 (en) 2021-01-12
EP3378963B1 (en) 2022-07-13
US20190078171A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6605118B2 (ja) 鋼部品、歯車部品および鋼部品の製造方法
JP5251868B2 (ja) 高温での面圧疲労強度に優れた浸炭窒化高周波焼入れ鋼部品及びその製造方法
JP5958652B2 (ja) 面疲労強度に優れる軟窒化高周波焼入れ鋼部品
JP5129564B2 (ja) 浸炭高周波焼入部品
JP4688727B2 (ja) 浸炭部品およびその製造方法
JP6461478B2 (ja) 高周波焼入れ歯車及び歯車の高周波焼入れ方法
JP2011184768A (ja) 高強度肌焼き鋼部品およびその製造方法
JP7152832B2 (ja) 機械部品
JP4354277B2 (ja) 浸炭焼入部材の製造方法
JP2000129347A (ja) 高強度部品の製造方法
JPH0432537A (ja) 面圧強度にすぐれた高強度機械構造用部材
JP6601358B2 (ja) 浸炭部品およびその製造方法
JP6772769B2 (ja) 転がり摺動部材、その製造方法、浸炭用鋼材及び転がり軸受
WO2019244504A1 (ja) 機械部品の製造方法
JP4757831B2 (ja) 高周波焼入れ部品およびその製造方法
JP4821582B2 (ja) 真空浸炭歯車用鋼
JP7532846B2 (ja) 鋼部品の製造方法
JP6773120B2 (ja) シャフト部品
WO2018012636A1 (ja) Cvtシーブ用鋼材、cvtシーブおよびcvtシーブの製造方法
JP2023069388A (ja) 鋼、および、浸炭焼入れ部品
JP6946636B2 (ja) 転がり摺動部材、その製造方法、浸炭窒化用鋼材及び転がり軸受
JP2023097583A (ja) 鋼、および、浸炭焼入れ部品
WO2004059029A1 (ja) 浸炭焼入部材およびその製造方法
JP2018053338A (ja) 耐摩耗性に優れた浸炭部品およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504549

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017763304

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763304

Country of ref document: EP

Effective date: 20180621

ENP Entry into the national phase

Ref document number: 20187022680

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022680

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE