Nothing Special   »   [go: up one dir, main page]

WO2017152784A1 - Système et procédé permettant une granulation centrifuge à sec d'un laitier liquide haute température et une récupération de la chaleur d'échappement - Google Patents

Système et procédé permettant une granulation centrifuge à sec d'un laitier liquide haute température et une récupération de la chaleur d'échappement Download PDF

Info

Publication number
WO2017152784A1
WO2017152784A1 PCT/CN2017/074806 CN2017074806W WO2017152784A1 WO 2017152784 A1 WO2017152784 A1 WO 2017152784A1 CN 2017074806 W CN2017074806 W CN 2017074806W WO 2017152784 A1 WO2017152784 A1 WO 2017152784A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
granulation
waste heat
liquid slag
moving bed
Prior art date
Application number
PCT/CN2017/074806
Other languages
English (en)
Chinese (zh)
Inventor
王树众
孟海鱼
陈林
于鹏飞
吴志强
张忠清
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2017152784A1 publication Critical patent/WO2017152784A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/10Arrangements for using waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/10Arrangements for using waste heat
    • F27D17/15Arrangements for using waste heat using boilers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the invention relates to the technical field of blast furnace slag waste heat recovery, in particular to a high temperature liquid slag dry centrifugal granulation waste heat recovery system and method.
  • China is currently the world's largest steel producer, and steel production has maintained its number one position in the world for 17 consecutive years.
  • China's pig iron production reached 711 million tons, accounting for about 60% of the world's total production.
  • blast furnace slag containing huge heat was also produced.
  • the blast furnace slag is generally discharged at a temperature between 1400 and 1550 ° C.
  • Each ton of slag contains (1260 to 1880) ⁇ 10 3 kJ of sensible heat, equivalent to 60 kg of standard coal.
  • the dry slag pit cooling method and the water slag slag method are the most common blast furnace slag treatment methods in China.
  • the dry slag pit cooling method directly discharges the high-temperature liquid slag into the dry slag pit to be air-cooled, and assists water cooling.
  • the method generates a large amount of water vapor when cooling, and releases a large amount of H 2 S and SO 2 gas, corrodes buildings, damages equipment, and deteriorates the working environment. Generally, the method is used only in accident handling. 90% of blast furnace slag in China is treated by water slag.
  • the water slag method refers to the use of low-temperature cooling water to directly mix with high-temperature liquid slag, so that the liquid slag temperature is rapidly lowered and the glass body slag particles are formed.
  • the water slag method can be divided into Inba method, Tula method, bottom filtration method, Lhasa method and Mintek method according to different process flow.
  • the core of the technology is to spray water quenching of high temperature liquid slag to achieve the purpose of cooling and granulation, and then slag separation, the slag water is recirculated through precipitation filtration. use.
  • vitreous slag produced by this method can be used in the cement industry for resource utilization, the process wastes a lot of water resources, generates harmful gases such as SO 2 and H 2 S, and cannot effectively recover the high temperature liquid slag. Quality waste heat resources.
  • the commonly used dry slag cooling method and water slag method not only waste all the high-quality waste heat resources contained in the high-temperature liquid slag, but also consume a lot of water resources and cause serious pollution to the environment.
  • the method has been unable to meet the urgent needs of energy saving and emission reduction in the current steel industry.
  • An efficient, non-polluting new technology must be sought to effectively recover blast furnace slag waste heat resources.
  • the object of the present invention is to provide a high-temperature liquid slag dry centrifugal granulation waste heat recovery system and method, so as to solve the problem that the current high-quality waste heat resource of the blast furnace liquid slag is seriously wasted.
  • a high-temperature liquid slag dry centrifugal granulation waste heat recovery system comprising a liquid slag granulation and heat exchange system and a waste heat recovery system;
  • the liquid slag granulation and heat exchange system consists of one or more independent granulation and heat exchange systems; the granulation and heat exchange system includes a granulation tank, a centrifugal granulator, a moving bed and a slagging device;
  • the inner surface of the chemical storage chamber is provided with a heating surface, and the top of the granulation chamber is provided with an opening, and the falling slag tube extends from the opening into the centrifugal granulator located in the granulation chamber;
  • the air supply duct is arranged on the side of the centrifugal granulator
  • the annular plenum is formed between the centrifugal granulator and the air supply duct;
  • the moving bed is located at the lower part of the granulation chamber, the inner surface of the moving bed is arranged with a heating surface, the top or side is provided with an air outlet, and the bottom is provided with an air inlet device;
  • the slag discharging device is located Below the air inlet
  • the waste heat recovery system includes a primary dust collector, a waste heat boiler, a secondary dust remover, an exhaust fan, and a chimney that are sequentially connected; the primary dust remover connects the collection air passages of the moving bed air outlets.
  • liquid slag granulation and heat exchange system is composed of a plurality of independent granulation and heat exchange systems, and the granulation and heat exchange systems are arranged in a single row or multiple rows in parallel.
  • the method further comprises a liquid slag drainage system and a liquid slag buffering system;
  • the liquid slag drainage system comprises a slag ditch, a baffle and a slag discharge port;
  • the slag ditch inlet is directly connected to the blast furnace slag discharge port, and the slag ditch outlet is located at the slag Above the inlet of the buffer system;
  • the baffle is located at the bottom of the slag ditch;
  • the slag ditch has one or more slag tapping ports;
  • the liquid slag buffering system is composed of one or more independent slag packs;
  • the slag bag comprises a package body, a cover, a slag tube and a plug rod;
  • the slag tube is located at the bottom of the slag bag;
  • the slag package has one or more slag tubes, and the stopper rod is located above the corresponding slag tube for controlling the falling Slag flow or seal slag pipe.
  • the slagging device comprises a vibrating discharger and a sealing valve at a lower part of the moving bed; a slag conveying system is arranged below the slag discharging device; the slag conveying system comprises a temperature resistant conveying belt and a buffer silo, and the conveying belt is located at the slag discharging Below the unit, the buffer silo is located at the end of the conveyor belt.
  • the stopper rod is composed of a metal inner tube and a metal outer tube set, and the two tubes are connected by a connecting rib to form a hollow arrangement, the rod head is a tapered structure or a circular structure; the lower port of the metal inner tube is The outer metal tube is connected, the lower end of the metal outer tube is sealed, the upper end is provided with a cold air outlet of the plug rod; the upper part of the metal inner tube is provided with a cold air inlet of the plug rod; the cold air is imported into the metal inner tube by the cold air inlet of the plug rod, and the metal inner tube and the metal outer tube The outer wall of the metal outer tube is cooled by the cold air outlet of the plug rod; the outer wall of the metal outer tube is fixed with the heat insulating material or the anti-corrosion coating by the hook and the pin.
  • the heating surface disposed on the inner surface of the granulation chamber comprises a heating surface of the inner surface of the vertical wall of the granulation silo and a heating surface of the inner surface of the top of the granulation chamber; a heating surface of the inner surface of the vertical wall of the granulated silo and a surface of the moving bed
  • the heating surface adopts the structure of single tube spiral rise, multi-tube parallel spiral rise, vertical tube screen or membrane water wall
  • the heating surface of the top surface of the granulation silo adopts a single tube and multiple tubes in parallel horizontal reciprocating or spiral structure, or adopts Membrane water wall structure.
  • the air inlet device comprises an air distribution device at the bottom of the moving bed, an air passage at the bottom of the moving bed, and a blower.
  • the air blower is connected to the air passage, and the air passage respectively communicates with the air supply duct and the moving bed beside the centrifugal granulator.
  • the air distribution device at the bottom; the air distribution device is located at the bottom of the moving bed, and is composed of a cloth duct and a hood, and the cross-sectional shape of the air duct is elliptical.
  • the waste heat recovery system further comprises a feed water pump, a waste heat boiler economizer, a steam drum; the outlet of the feed water pump is sequentially connected to the waste heat boiler economizer, the heated surface of the moving bed inner surface, the inner surface of the granulated silo vertical wall, the heating surface, and the grain
  • the inner surface of the top of the chemical silo is heated and steamed; the lower part of the steam drum is connected to the evaporation heating surface of the waste heat boiler through the pipeline; the top of the steam drum is connected to the waste heat boiler superheater and the main steam pipeline through the pipeline.
  • front and rear furnace walls and the intermediate furnace wall of the moving bed are vertical furnace walls
  • the left and right furnace walls are inclined furnace walls, inclined furnace walls and The angle of the horizontal plane is 60°.
  • the primary dust collector and the waste heat boiler are arranged above the granulation system or on a horizontal surface.
  • a high-temperature liquid slag dry centrifugal granulation waste heat recovery method comprises the following steps:
  • the liquid slag enters the granulation bin through the falling slag pipe and falls on the centrifugal granulator.
  • the rotating centrifugal granulator granulates the inflowing liquid slag into small droplets, and the small droplets splash into the granulation bin.
  • the slag particles having a hard outer surface become;
  • the hot air of the granulation and the air outlet of the heat exchange system is collected and then passed through a dust remover, a waste heat boiler, a secondary dust remover and an exhaust fan, and finally discharged through the chimney.
  • the water fed by the feed water pump is sequentially heated by the waste heat boiler economizer, the moving bed heating surface and the heating surface of the granulating chamber to enter the steam drum; the water in the steam drum is connected to the evaporation heating surface through the pipeline to circulate; The steam is heated by a heater and connected to the main steam line, and the generated steam is combined into a steam pipe network or power generation.
  • the liquid slag first enters the slag trench directly from the blast furnace slag discharge port, and the liquid slag is distributed into one or more independent slag packages through one or more slag discharge ports of the slag ditch to be insulated and buffered to solve the blast furnace interval.
  • liquid slag in the slag bag is passed through the slag tube at a certain flow rate under the control of the plug rod into the granulation chamber and falls on the centrifugal granulator.
  • the liquid slag drainage and buffering system of the invention has the functions of diversion, diversion and heat preservation, effectively solving the problem that the continuous operation of the blast furnace intermittent slag discharge and the waste heat recovery equipment is not synchronized, and realizing the liquid slag in situ and continuous treatment. To guarantee the whole The system operates safely and steadily.
  • the stopper rod of the present invention is composed of a metal inner tube and a metal outer tube set to form a hollow structure, and air cooling is used to ensure that the metal is completely cooled, and the wall temperature of the metal is always lower than its usable temperature.
  • the refractory material is laid on the surface of the outer tube, which can effectively reduce the temperature of the metal wall surface, and the metal outer tube is provided with a hook and a pin to ensure the mechanical properties of the refractory material.
  • the club head has a tapered structure or a circular structure, and the purpose is to closely match the lower nozzle to adjust the flow cross section.
  • the left and right inclined furnace walls of the moving bed of the present invention are at an angle of 60° with the horizontal plane, which is designed according to the angle of repose of the blast furnace slag particles to ensure that the blast furnace slag particles in the bed slide downward freely, which contributes to Drainage.
  • the air distribution device of the moving bed of the present invention adopts a combination of a cloth duct and a hood, and the hood is arranged in a square shape, so that the air in the moving bed is uniform, and the heat exchange between the air and the blast furnace slag particles is enhanced, and the hood is simultaneously
  • the structure can effectively prevent the blast furnace slag particles from entering the air distribution device during the downward movement.
  • the cross-sectional shape of the air duct of the moving bed of the present invention is elliptical, which is designed according to the special slagging method of the present invention to ensure sufficient space between the air ducts to facilitate cooling.
  • the blast furnace slag particles are discharged downward through the air distribution device.
  • the flow direction of the air and the heat transfer medium in the moving bed of the present invention is arranged in a countercurrent flow direction with the moving direction of the blast furnace slag, so that the high temperature sensible heat of the granulated blast furnace slag particles can be fully recovered.
  • the waste heat recovery system of the present invention adopts a combination of air cooling and water cooling, and solves the problem of uneven cooling caused by single water cooling, or the problem of large power consumption of a large air-cooling air flow fan, which can achieve better cooling effect. .
  • FIG. 1 is a schematic view of a high-temperature liquid slag dry centrifugal granulation waste heat recovery system according to the present invention
  • FIG. 2 is a schematic structural view of a stopper rod according to the present invention.
  • Figure 3 is a schematic view showing the structure of another stopper rod in the present invention.
  • Figure 4 is a schematic view showing the arrangement of the moving bed hood of the present invention.
  • Figure 5 is a schematic structural view of a moving bed duct and a hood according to the present invention.
  • Figure 6 is a cross-sectional view taken along line A-A of Figure 5 .
  • a high-temperature liquid slag dry centrifugal granulation waste heat recovery system comprises a liquid slag drainage system, a liquid slag buffer system, a liquid slag granulation and a heat exchange system, Slag conveying system and waste heat recovery system.
  • the liquid slag drainage system comprises a slag ditch 1, a baffle and a slag discharge port 2; the slag ditch inlet is directly connected with the blast furnace slag discharge port, and the slag ditch discharge port 2 is located above the slag buffer system inlet; the baffle is located at the bottom of the slag ditch;
  • the slag ditch has a plurality of slag ports 2 .
  • the liquid slag buffer system is composed of a plurality of independent slag packages; the slag bag comprises a slag bag body 3, a cover 4, a slag tube 5 and a stopper rod 6; the slag tube 5 is located at the bottom of the slag package and is connected to the granulation system
  • the slag bag has a plurality of slag pipes 5, which are located above the corresponding slag pipes 5 for controlling the slag flow rate or sealing the slag pipes 5.
  • the liquid slag granulation and heat exchange system consists of a plurality of independent granulation and heat exchange systems, and the system is arranged in a single row in parallel;
  • the slag granulation and heat exchange system is composed of a granulation tank 7, a centrifugal granulator 8, a moving bed 9 and a slagging device; the inner surface of the granulation chamber is arranged with a heating surface, and the center opening of the top of the granulation chamber makes the slag buffer system
  • the slag tube 5 can extend into the granulation chamber 7, the centrifugal granulator 8 is located below the slag tube 5, the lower portion of the centrifugal granulator 8 is connected to the motor 10, and the side of the centrifugal granulator 8 is provided with a supply duct.
  • the annular plenum 12 is formed between the centrifugal granulator 8 and the air supply duct 11; the moving bed 9 is located at the lower part of the granulation chamber 7, the inner surface is provided with a heated surface 22 of the moving bed inner surface, the top is provided with an air outlet 13 and the bottom is provided The air inlet device; the slagging device is located below the air inlet device.
  • the slag conveying system comprises a temperature-resistant conveying belt 14 and a buffer silo, the conveying belt is located below the slag discharging device, and the buffer silo is arranged at the intersection of the belts in different directions.
  • the waste heat recovery system includes a primary dust collector 15 connected in sequence, a waste heat boiler 16, a secondary dust remover 17, an exhaust fan 18, and a chimney 19; the primary dust collector is connected to the moving bed granulation chamber air outlet collecting duct 20.
  • the high-temperature liquid slag dry centrifugal granulation waste heat recovery system in the present embodiment realizes an effective link between the slag production system and the treatment system through the liquid slag drainage and buffer system, and has the functions of diversion, diversion and heat preservation, and is effective Solve the problem that the continuous operation of blast furnace intermittent slagging and waste heat recovery equipment is not synchronized, realize the on-site and continuous treatment of liquid slag, ensure the safe and stable operation of the whole system; realize the liquefaction and heat exchange system and waste heat recovery system through liquid slag
  • the granulation molding and waste heat recovery of liquid slag, the cooling water resources used in each stage can be recycled, which not only solves the problem of serious waste of resources and serious pollution, but also realizes efficient recovery of waste heat of high-temperature liquid slag.
  • the stopper rod 6 is composed of a metal inner tube 37 and a metal outer tube 38, and the two tubes are connected by a connecting rib 39 to form a hollow arrangement; the rod head 40 of the stopper rod 6 is a cone. A structure is provided; a thermocouple is provided in the rod head for determining the amount of air in the metal inner tube 37 and the metal outer tube 38 so that the temperature of the metal outer tube can be controlled within a suitable range.
  • the lower port of the metal inner tube 37 communicates with the metal outer tube 38, the lower end of the metal outer tube 38 is sealed, the upper end is provided with a plug cold air outlet 42; and the upper portion of the metal inner tube 37 is provided with a plug cold air inlet 41.
  • the cold air enters the metal inner tube 37 from the cold air inlet 41, and flows out between the two tubes through the plug cold air outlet 42 to form a cooling effect on the metal wall surface.
  • the surface of the metal outer tube is laid with a heat insulating material 43, and the outer tube wall is arranged to be pulled Hooks and pins secure the insulation.
  • the heat insulating material 43 is replaced with an anti-corrosion coating 44 formed by plasma high temperature spraying.
  • the inner surface of the granulated silo vertical wall 21 and the heated surface of the moving bed inner surface 22 are spirally raised by a single tube, and the inner surface of the granulated silo is heated by a single tube horizontally reciprocating structure.
  • the front and rear furnace walls and the intermediate furnace wall of the moving bed are vertical furnace walls, and the left and right furnace walls 24 of the moving bed are inclined furnace walls, and the angle between the inclined furnace walls and the horizontal plane is 60°.
  • the air inlet device comprises an air blowing device at the bottom of the moving bed, an air duct 25 at the bottom of the moving bed, and a blower 26, and the air blower 26 communicates with the air duct 25, and the air duct 25 respectively communicates with the air duct 11 and the moving side of the centrifugal granulator.
  • the air distribution device at the bottom of the bed.
  • the air distribution device is located at the bottom of the moving bed and is composed of a cloth duct 27 and a hood 28, and the air duct 27 has an elliptical cross section.
  • the air outlet of the hood 28 is disposed obliquely downward to increase the downward force of the slag particles, and to prevent the slag particles from blocking the air outlet of the hood.
  • the falling liquid slag of the falling slag tube 5 is dropped into the centrifugal granulator 8 for granulation, and the granulated particles are blown into the granulating chamber 7 under the combined action of the centrifugal force and the annular tuyere 12, and are dropped down to After a certain thickness is accumulated in the upper part of the hood, after the lower slag particles are completely cooled, the slag discharge device is opened, and the slag particles are dropped through the air inlet device to the slag discharging device.
  • the air inlet device blows from the bottom to the top, opposite to the falling direction of the particles, and effectively absorbs the heat of the particles.
  • the slagging device includes a vibrating discharger 29 and a sealing valve 30 located at a lower portion of the moving bed.
  • the waste heat recovery system further includes a feed water pump 31, a waste heat boiler economizer 32, and a steam drum 33; the outlet of the feed water pump 31 is sequentially connected to the waste heat boiler economizer 32, the heated surface of the moving bed inner surface 22, and the granulated warehouse vertical wall The inner surface heating surface 21, the granulation chamber top inner surface heating surface 23 and the steam drum 33; the lower portion of the steam drum 33 is connected to the waste heat boiler evaporation heating surface 34 through a pipeline; the top of the steam drum 33 is sequentially connected to the waste heat boiler superheater 35 and the main through the pipeline Steam line 36.
  • the invention utilizes the waste heat recovery method of the above-mentioned high-temperature liquid slag dry centrifugal granulation waste heat recovery system, which mainly comprises the following steps:
  • the liquid slag is firstly introduced into the slag ditch 1 from the slag discharge port of the blast furnace, and the liquid slag is divided by the plurality of slag discharge ports of the slag ditch. It is equipped with a plurality of independent slag packages for thermal insulation buffering to solve the problem of intermittent slag discharge in the blast furnace, and realize continuous operation of the waste heat recovery system;
  • the tempering and hot air of the air outlet of the heat exchange system are collected and passed through a dust collector, a waste heat boiler, a secondary dust collector and an exhaust fan, and finally discharged through the chimney;
  • the water fed by the feed water pump is sequentially heated by the waste heat boiler economizer, the moving bed heating surface and the heating surface of the granulating chamber to enter the steam drum; the water in the steam drum is connected to the evaporation heating surface through the pipeline for circulation; the saturated steam passes through the heat
  • the heater is connected to the main steam line after heating, and the generated steam is incorporated into the steam pipe network or generates electricity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

La présente invention concerne un système et un procédé permettant la granulation centrifuge à sec d'un laitier liquide à haute température et la récupération de la chaleur d'échappement. Le système comprend un système de drainage de laitier liquide, un système de mise en tampon de laitier liquide, un système de granulation de laitier liquide et d'échange de chaleur, un système de transport de particules de laitier et un système de récupération de la chaleur d'échappement ; le système de drainage de laitier liquide comprend une rainure de laitier (1), une chicane et un orifice de sortie de laitier (2) ; le système de mise en tampon de laitier liquide est composé d'un ou de plusieurs récipients de laitier indépendants, le récipient de laitier comprenant des structures telles qu'un corps de sac (3), une housse de sac (4), un conduit de laitier (5) et une quenouille de coulée (6) ; le système de granulation de laitier liquide et d'échange de chaleur est composé d'un ou de plusieurs systèmes de granulation et d'échange de chaleur indépendants qui sont disposés côte à côte dans une ou plusieurs rangées, chaque système de granulation et d'échange de chaleur étant composé d'une trémie de granulation (7), d'un granulateur centrifuge (8), d'un lit mobile (9) et d'un dispositif d'évacuation de laitier ; le système de transport de particules de laitier comprend une bande transporteuse résistant à la température (14) et une trémie de matériau tampon ; le système de récupération de la chaleur d'échappement comprend un collecteur de poussière primaire (15), une chaudière de chaleur d'échappement (16), un collecteur de poussière secondaire (17), un ventilateur d'extraction d'effluents gazeux (18) et une cheminée (19) qui sont raccordés en séquence.
PCT/CN2017/074806 2016-03-11 2017-02-24 Système et procédé permettant une granulation centrifuge à sec d'un laitier liquide haute température et une récupération de la chaleur d'échappement WO2017152784A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610140864.2A CN105603135B (zh) 2016-03-11 2016-03-11 一种高温液态熔渣干式离心粒化余热回收系统与方法
CN201610140864.2 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017152784A1 true WO2017152784A1 (fr) 2017-09-14

Family

ID=55983471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074806 WO2017152784A1 (fr) 2016-03-11 2017-02-24 Système et procédé permettant une granulation centrifuge à sec d'un laitier liquide haute température et une récupération de la chaleur d'échappement

Country Status (2)

Country Link
CN (1) CN105603135B (fr)
WO (1) WO2017152784A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330237A (zh) * 2017-09-27 2018-07-27 中能立化科技有限公司 一种渣流输送装置及熔渣粒化取热系统
CN110205418A (zh) * 2018-06-27 2019-09-06 西安华江环保科技股份有限公司 一种压力式高炉红渣余热回收利用系统及方法
CN110257572A (zh) * 2019-06-10 2019-09-20 北京中冶设备研究设计总院有限公司 一种干法粒化熔渣输送控流的方法
CN110643758A (zh) * 2019-11-14 2020-01-03 南京鹏昆环保科技有限公司 一种高温液态钢渣资源化处理及热能回收方法及装置
CN112129125A (zh) * 2020-10-14 2020-12-25 江苏联储能源科技有限公司 高温冶金渣气-固换热装置
CN112725553A (zh) * 2021-02-09 2021-04-30 无锡红旗除尘设备有限公司 一种高温液态稀熔渣急冷干式粒化及余热回收系统
CN112830538A (zh) * 2021-02-08 2021-05-25 南京通用电气装备有限公司 一种用于脱硫废水热处理的渣系统
CN112853013A (zh) * 2021-03-19 2021-05-28 中冶节能环保有限责任公司 一种高温钢渣余热回收装置及基于该装置的余热回收方法
CN114686624A (zh) * 2022-03-29 2022-07-01 广东韶钢松山股份有限公司 一种不停机的熔渣处理方法
CN114704814A (zh) * 2022-04-07 2022-07-05 马鞍山市如松冶金科技有限责任公司 一种环型热熔渣气化锅炉热量回收系统及其使用方法
CN114854912A (zh) * 2022-04-29 2022-08-05 安徽马钢嘉华新型建材有限公司 一种矿渣多方式冷却系统
CN115415275A (zh) * 2022-10-17 2022-12-02 国能新疆化工有限公司 一种煤气化渣固废再生利用设备
CN115747393A (zh) * 2022-11-21 2023-03-07 山东惠众鑫工程技术有限公司 一种转炉钢渣余热回收工艺
CN118086644A (zh) * 2024-03-14 2024-05-28 无锡毕恩德尔科技有限公司 一种全干法高温熔渣热能回收系统及方法
CN118189657A (zh) * 2024-05-20 2024-06-14 思源交大河北科技有限公司 一种钢渣余热利用系统

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603135B (zh) * 2016-03-11 2018-12-07 西安交通大学 一种高温液态熔渣干式离心粒化余热回收系统与方法
CN105861768B (zh) * 2016-06-20 2018-08-24 上海欧骋冶金成套设备有限公司 一种高炉熔渣的干法处理装置
CN106282447B (zh) * 2016-09-21 2018-07-03 重庆大学 具有自调节及防结渣功能的熔渣干式粒化余热回收装置
CN106423168B (zh) * 2016-09-23 2018-10-12 青岛理工大学 一种液态高炉渣粒化制取焦油裂解催化剂的方法与装置
CN106755661B (zh) * 2016-12-14 2018-12-21 重庆大学 干法离心粒化法制备钒渣粉末
CN106940140B (zh) * 2017-02-28 2018-09-04 西安交通大学 一种带有流量温度监测及控制功能的二级液态熔渣缓存系统
CN106939363B (zh) * 2017-02-28 2019-10-11 西安交通大学 用于液态熔渣干式离心粒化及余热回收的系统及控制方法
CN108330233B (zh) * 2018-02-26 2020-03-17 西安交通大学 一种具有熔渣缓存及流量控制功能的液态熔渣干式离心粒化及余热回收系统
CN108330234B (zh) * 2018-02-26 2020-01-10 西安交通大学 一种干式离心粒化及余热回收实验装置
CN108330235B (zh) * 2018-02-26 2019-12-24 西安交通大学 一种液态熔渣粒化及余热回收装置
CN108359756B (zh) * 2018-02-26 2019-12-24 西安交通大学 一种用于液态熔渣干式离心粒化及余热回收利用系统
CN109385496B (zh) * 2018-10-24 2020-06-23 青岛大学 一种液态熔渣机械离心粒化防粘结装置及其预热方法
CN109780916B (zh) * 2019-01-17 2024-02-20 南京华电节能环保股份有限公司 悬挂式快速冷却器、高炉熔渣回收余热发电的装置及方法
CN112146446B (zh) * 2019-06-28 2022-03-18 宝山钢铁股份有限公司 基于多介质耦合的高炉熔渣粒化换热装置
CN110484664A (zh) * 2019-09-27 2019-11-22 重庆大学 高温液态熔渣离心粒化余热回收系统创建方法
CN110656211A (zh) * 2019-09-29 2020-01-07 青岛理工大学 一种应用于高炉渣干法离心粒化的风冷装置及方法
CN111118239B (zh) * 2019-12-04 2021-06-29 西安交通大学 一种用于液态熔渣余热回收的模块化自然对流锅炉系统
CN111020077B (zh) * 2019-12-04 2021-07-13 西安交通大学 一种液态熔渣余热回收系统
CN111271978B (zh) * 2020-02-28 2024-10-29 西安联创分布式可再生能源研究院有限公司 一种高温熔渣余热回收系统
CN111947127B (zh) * 2020-09-08 2024-09-03 青岛达能环保设备股份有限公司 基于气水联合淬化回收钢渣余热发电系统
EP4289976A4 (fr) * 2021-02-05 2024-06-26 Jfe Steel Corporation Procédé d'estimation de quantité de chaleur fournie, dispositif d'estimation de quantité de chaleur fournie, et procédé de fonctionnement pour haut-fourneau
CN114777508A (zh) * 2022-05-06 2022-07-22 河南省冶金研究所有限责任公司 一种冶炼熔渣多级余热高效回收利用系统
CN114904890A (zh) * 2022-05-31 2022-08-16 中节能(成都)能源科技服务有限公司 一种黄磷熔渣的资源化利用系统及方法
CN116103452B (zh) * 2022-12-01 2024-09-10 中冶赛迪上海工程技术有限公司 液体冷却熔渣粒化系统
WO2024125565A1 (fr) * 2022-12-13 2024-06-20 宝山钢铁股份有限公司 Système et procédé de récupération de chaleur fatale à récupération pour particules de scorie solide à haute température
CN116240319A (zh) * 2023-03-10 2023-06-09 西安交通大学 一种高温固体散料移动床强化换热系统
CN116219093A (zh) * 2023-03-10 2023-06-06 西安交通大学 一种高温熔渣离心粒化余热回收用冷却换热系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858657B2 (ja) * 2001-09-28 2006-12-20 住友金属工業株式会社 風砕スラグ粒子の製造方法及び装置並びに排ガス処理設備
DE102009007182A1 (de) * 2009-02-03 2010-08-05 Sms Siemag Aktiengesellschaft Stopfenvorrichtung zur Vermeidung von Clogging in einer Stranggießanlage
CN102424867A (zh) * 2011-12-31 2012-04-25 钢铁研究总院 一种熔渣粒化和余热回收装置
CN202377525U (zh) * 2011-12-08 2012-08-15 武钢集团昆明钢铁股份有限公司 一种连铸机塞棒冷却装置
CN102827969A (zh) * 2012-09-06 2012-12-19 西安交通大学 一种干式粒化液态熔渣的余热回收系统及方法
CN105603135A (zh) * 2016-03-11 2016-05-25 西安交通大学 一种高温液态熔渣干式离心粒化余热回收系统与方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849697B (zh) * 2013-08-13 2015-06-10 上海耀秦冶金设备技术有限公司 高炉熔渣直接生产矿棉或微晶产品的熔渣处理装置及方法
CN105112577B (zh) * 2015-09-30 2017-05-03 东北大学 干式粒化回收高炉渣余热的装置和回收高炉渣余热的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858657B2 (ja) * 2001-09-28 2006-12-20 住友金属工業株式会社 風砕スラグ粒子の製造方法及び装置並びに排ガス処理設備
DE102009007182A1 (de) * 2009-02-03 2010-08-05 Sms Siemag Aktiengesellschaft Stopfenvorrichtung zur Vermeidung von Clogging in einer Stranggießanlage
CN202377525U (zh) * 2011-12-08 2012-08-15 武钢集团昆明钢铁股份有限公司 一种连铸机塞棒冷却装置
CN102424867A (zh) * 2011-12-31 2012-04-25 钢铁研究总院 一种熔渣粒化和余热回收装置
CN102827969A (zh) * 2012-09-06 2012-12-19 西安交通大学 一种干式粒化液态熔渣的余热回收系统及方法
CN105603135A (zh) * 2016-03-11 2016-05-25 西安交通大学 一种高温液态熔渣干式离心粒化余热回收系统与方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330237A (zh) * 2017-09-27 2018-07-27 中能立化科技有限公司 一种渣流输送装置及熔渣粒化取热系统
CN110205418A (zh) * 2018-06-27 2019-09-06 西安华江环保科技股份有限公司 一种压力式高炉红渣余热回收利用系统及方法
CN110257572A (zh) * 2019-06-10 2019-09-20 北京中冶设备研究设计总院有限公司 一种干法粒化熔渣输送控流的方法
CN110643758A (zh) * 2019-11-14 2020-01-03 南京鹏昆环保科技有限公司 一种高温液态钢渣资源化处理及热能回收方法及装置
CN112129125A (zh) * 2020-10-14 2020-12-25 江苏联储能源科技有限公司 高温冶金渣气-固换热装置
CN112830538A (zh) * 2021-02-08 2021-05-25 南京通用电气装备有限公司 一种用于脱硫废水热处理的渣系统
CN112725553A (zh) * 2021-02-09 2021-04-30 无锡红旗除尘设备有限公司 一种高温液态稀熔渣急冷干式粒化及余热回收系统
CN112853013A (zh) * 2021-03-19 2021-05-28 中冶节能环保有限责任公司 一种高温钢渣余热回收装置及基于该装置的余热回收方法
CN114686624A (zh) * 2022-03-29 2022-07-01 广东韶钢松山股份有限公司 一种不停机的熔渣处理方法
CN114704814A (zh) * 2022-04-07 2022-07-05 马鞍山市如松冶金科技有限责任公司 一种环型热熔渣气化锅炉热量回收系统及其使用方法
CN114854912A (zh) * 2022-04-29 2022-08-05 安徽马钢嘉华新型建材有限公司 一种矿渣多方式冷却系统
CN115415275A (zh) * 2022-10-17 2022-12-02 国能新疆化工有限公司 一种煤气化渣固废再生利用设备
CN115415275B (zh) * 2022-10-17 2023-10-31 国能新疆化工有限公司 一种煤气化渣固废再生利用设备
CN115747393A (zh) * 2022-11-21 2023-03-07 山东惠众鑫工程技术有限公司 一种转炉钢渣余热回收工艺
CN118086644A (zh) * 2024-03-14 2024-05-28 无锡毕恩德尔科技有限公司 一种全干法高温熔渣热能回收系统及方法
CN118189657A (zh) * 2024-05-20 2024-06-14 思源交大河北科技有限公司 一种钢渣余热利用系统

Also Published As

Publication number Publication date
CN105603135B (zh) 2018-12-07
CN105603135A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2017152784A1 (fr) Système et procédé permettant une granulation centrifuge à sec d'un laitier liquide haute température et une récupération de la chaleur d'échappement
CN108359756B (zh) 一种用于液态熔渣干式离心粒化及余热回收利用系统
WO2019161638A1 (fr) Système de granulation centrifuge à sec de laitier liquide et de récupération de chaleur perdue doté d'une fonction de mise en tampon et de régulation de débit de laitier
CN105755188B (zh) 一种用于粒化高温液态熔渣并回收高温显热的移动床装置
CN102827969B (zh) 一种干式粒化液态熔渣的余热回收系统及方法
CN109099407B (zh) 高温冶金渣粒余热回收与品质调控一体化系统及方法
CN101871025B (zh) 冶金熔渣干式处理装置及其处理方法
CN103557711A (zh) 熔融炉渣急冷粒化及余热回收发电系统及其方法
CN102952908B (zh) 一种钢渣气淬及余热回收利用的设备和方法
CN209162105U (zh) 可回收余热的高炉液渣折流冷却处理装置
CN205014851U (zh) 烧结矿显热回收装置
CN111118239B (zh) 一种用于液态熔渣余热回收的模块化自然对流锅炉系统
WO2017152782A1 (fr) Dispositif de granulation de laitier liquide à haute température et de récupération de chaleur d'échappement
CN108267013B (zh) 一种烧结矿冷却和余热利用系统和低氧全循环冷却方法
CN203534229U (zh) 一种熔融炉渣急冷粒化及余热回收发电系统
CN104388609A (zh) 一种冶金熔渣粒化及其热能回收系统与方法
CN107190110A (zh) 一种高温熔渣干法冷却粒化余热回收系统及方法
CN111607671B (zh) 一种钢渣显热回收系统及其使用方法
CN106435068A (zh) 一种基于高温渣余热回收的高炉熔渣干法处理装置
CN105154604B (zh) 提高炼铁工序能效的方法及装置
CN107723397B (zh) 炉渣风淬粒化方法
CN201778004U (zh) 一种干熄焦高温焦粉排灰装置
CN103451330A (zh) 改进的冶金熔渣干熄处理装置及其处理方法
CN107816898B (zh) 炉渣换热装置及包含该装置的高温余热回收装置
CN110195133B (zh) 一种转炉熔渣处理系统及处理方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762470

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762470

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/04/2019)