WO2017150742A1 - Coastal surface sediment remediation agent - Google Patents
Coastal surface sediment remediation agent Download PDFInfo
- Publication number
- WO2017150742A1 WO2017150742A1 PCT/KR2016/001982 KR2016001982W WO2017150742A1 WO 2017150742 A1 WO2017150742 A1 WO 2017150742A1 KR 2016001982 W KR2016001982 W KR 2016001982W WO 2017150742 A1 WO2017150742 A1 WO 2017150742A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bacteria
- oxygen
- sediment
- coastal
- improver
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/08—Reclamation of contaminated soil chemically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/10—Reclamation of contaminated soil microbiologically, biologically or by using enzymes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K17/00—Soil-conditioning materials or soil-stabilising materials
- C09K17/40—Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K17/00—Soil-conditioning materials or soil-stabilising materials
- C09K17/40—Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
- C09K17/42—Inorganic compounds mixed with organic active ingredients, e.g. accelerators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
Definitions
- the present invention relates to a coastal quality improvement agent for improving the environmental pollution caused by sediment deposited on the bottom of the coast, rivers, lakes.
- the coastal surface together with the aquatic layer, constitutes the aquatic ecosystem and provides habitat for benthic creatures and is closely linked to the aquatic environment. Pollution in coastal waters leads to water pollution and adversely affects the vegetation of species sensitive to environmental changes.
- Coastal sediments are formed as sediment enters the sea, including living sewage, concentrated livestock sewage, farm dung and sewage. Pollution gradually intensifies as the inflow and deposition of contaminants exceeds the natural self-cleaning capacity.
- seawater exchange is not smooth and the degree of pollution deepens very quickly.
- microorganisms in the coastal surface decompose coastal deposits (organic matter) while consuming oxygen.
- the mixing between the layers is not performed, so that the oxygen supply is not smooth.
- the lack of oxygen reduces the activity of benthic organisms in the sediments, and the production of phytoplankton, phosphorus, nitrogen, which produces red algae, green algae, blue algae, and hypoxic water masses.
- Degradation of organic matter in anaerobic sediments can also produce toxic by-products such as hydrogen sulfide or ammonia, limiting the number and type of species inhabiting the sediment.
- clay spraying drugs such as clay and quicklime as another method for treating sediments
- clay spraying has a problem in that alumina and silica components in clay aggregate and precipitate organic suspensions in water.
- the calcium component in quicklime reacts with sulfate in water to form limestone and gypsum to cover the deposit, thus blocking the oxygen contact of living organisms in the deposit and causing a lot of damage.
- the method of improving the environment of the sediment layer by using the base substitution ability and pH control effect of these materials by spraying ocher, zeolite, etc. are used to improve the low quality by simply adsorbing microorganisms that decompose organic matter.
- the stabilization of degrading microorganisms does not achieve a clear effect.
- improvements using biological methods have been attempted.
- the present invention has been made to solve the above problems, and an object thereof is to provide an improving agent including a biological agent to improve the contaminated coastal surface deposits.
- LOM surface organic matter
- it provides a remediator for removing surface organic matter (LOM) contaminants that affect oxygen consumption.
- LOM surface organic matter
- it is intended to provide an improved material that decomposes marine source organic matter when oxygen is deficient due to poor oxygen in summer.
- Most organic matter in surface deposits is labile oganic matter, so oxygen consumption can be reduced by supplying a modifier.
- Coastal surface sediment improver for achieving the above object is, for cleaning the contaminated sediment is sprayed on the contaminated sediment of the coastal surface, the oxygen generator for supplying oxygen to the coastal surface sediment; And a bio ball fixed with microorganisms for removing organic matter and contaminants in the deposit using a porous crystalline aluminosilicate as a carrier, wherein the microorganisms include phototrophic bacteria, lactobacillus bacteria, and Bacillus. It is characterized by the inclusion of (bacillus) bacteria and pseudomonas bacteria.
- Sediment improver according to the present invention has an excellent effect in a variety of environmental items, such as chemical oxygen demand, total nitrogen, total phosphorus of the coastal surface layer.
- environmental items such as chemical oxygen demand, total nitrogen, total phosphorus of the coastal surface layer.
- the bioball when it is more than two times, more preferably three times more than the oxygen supply agent, it exerts an excellent effect in all items including ecotoxicity.
- the sediment improver according to the present invention is expected to be able to change the ecological environment of the coast by introducing a technology for dissolving the vacant oxygen lumps in the coast at the same time.
- Coastal surface sediment improver for achieving the above object is, for cleaning the contaminated sediment is sprayed on the contaminated sediment of the coastal surface, the oxygen generator for supplying oxygen to the coastal surface sediment; And a bio ball fixed with microorganisms for removing organic matter and contaminants in the deposit using a porous crystalline aluminosilicate as a carrier, wherein the microorganisms include phototrophic bacteria, lactobacillus bacteria, and Bacillus. It is characterized by the inclusion of (bacillus) bacteria and pseudomonas bacteria.
- lipolytic yeast and pseudomonas bacteria and nitrosomonas bacteria can additionally be immobilized on the carrier.
- the nitrobacter bacteria are additionally fixed to the carrier.
- the oxygen generating agent may be used in the form of any one of hydroxides, oxides and peroxides of magnesium and calcium.
- the bio ball is preferably blended in a ratio of 200 to 350 parts by weight.
- the present invention relates to sediment improvers for environmentally purifying coastal surface sediments.
- the present invention is applicable not only to sediments of coastal surface layers, but also to contaminated sediments of lakes and rivers.
- the pollutant of the sediment to be treated in the present invention is mainly an organic substance, but also includes all inorganic substances such as nitrogen and phosphorus.
- 'sediment improver' the coastal surface sediment improver
- Sediment improver according to an embodiment of the present invention is made by mixing the oxygen generating agent and the biological agent.
- Coastal surface sediment contaminants are primarily organic. This is due to the fact that various organic matters generated by the concentration of the population in a certain area and the concentrated concentration of the agricultural industry are introduced into the coast along with wastewater and sewage. If organic matter is introduced more than natural purification capacity, they cannot be decomposed and cause eutrophication. Organic matter is decomposed mainly by aerobic microorganisms. As oxygen is deficient due to eutrophication, organic matter is accumulated and accumulated continuously. If this condition persists over the long term, the sediment will turn into an anaerobic environment and the pollution will become more severe.
- the improvement agent is formed by mixing the microorganism as the oxygen generating agent and the biological agent, as described above. In other words, it is intended to decompose contaminants by supplying oxygen and microorganisms together.
- Oxygen generators in the present invention are used in the form of oxides, peroxides and hydroxides of divalent cations such as calcium and magnesium.
- Oxygen generators in the present invention are used in the form of oxides, peroxides and hydroxides of divalent cations such as calcium and magnesium.
- at least one or two or more of MgO, CaO, MgO 2 , CaO 2 , Mg (OH) 2 , and Ca (OH) 2 are used in combination.
- the peroxide form is mainly used.
- Peroxides MgO 2 and CaO 2 , react with water to convert oxygen into magnesium hydroxide and calcium hydroxide to release oxygen.
- the bio ball is a form in which microorganisms are adsorbed and immobilized on a carrier.
- Porous, crystalline materials are used as the carrier, and zeolite is particularly used in this embodiment.
- Zeolites can be used as adsorbents of contaminants as porous materials. This is because zeolite has a high C.F.C (Cation Exchange Capacity).
- C.F.C Cation Exchange Capacity
- zeolite is porous and has a large specific surface area where reaction can occur, it has an advantage of functioning as a very good adsorbent of pollutants.
- the carrier since the carrier must be able to immobilize a large number of microorganisms, it is advantageous to use a zeolite which is a porous material having a large specific surface area.
- the zeolite in the present invention performs the function of the adsorbent which adsorbs and removes contaminants in water or sediment by itself and as a carrier for microorganisms to be stably received.
- the zeolite is used by firing and has a particle size of approximately 1 to 3 mm.
- the particle diameter is 1 to 3mm, it is possible to maximize the fixed amount of the microorganisms and the adsorption of contaminants.
- phototrophic bacteria, lactobacillus bacteria, bacillus bacteria, and pseudomonas bacteria are immobilized on a carrier.
- a method of fixing the microorganism to the carrier various known methods can be used. That is, the microorganisms may be immobilized by culturing in a carrier, and the pre-cultured microorganisms may be adsorbed onto the carrier by a spray method using an adsorbent such as sodium alginate.
- Phototropic bacteria is a generic term for bacteria that perform carbon assimilation using light energy.
- Purple and green bacteria can be used, and may contain halobacteria. More specifically, rhodopila, rhodobacter, chlorobium, or the like may be used. Red bacteria and green bacteria fix nitrogen and decompose organic matter. Degradation of organics lowers the chemical oxygen demand (COD) and turbidity in the deposits.
- COD chemical oxygen demand
- Lactobacillus bacteria produce lactic acid mainly from glucose and are gram-positive rod-like bacteria. More specifically, Lactobacillus casei, L. bulgaricus, L. plantarum, L. acidophilus, L. delbruckii, L. brevis, L. fermenti, L. bifidus and the like may be used. Lactobacillus bacteria also break down sediments and organics in the water column.
- Bacillus bacteria are rod-shaped or cylindrical bacteria, which have various shapes such as long and short, but their size and shape are almost constant according to species. Bacillus bacteria are divided into positive and negative bacteria by gram staining. More specifically, in this embodiment, Bacillaceae, Lactobacillaceae, and the like may be used as Gram-positive Bacillus bacteria, and Enterobacteriaceae, Pseudomo-nadaceae, etc. may be used as Gram-negative Bacillus. Bacillus is a microorganism with a multiple enzyme system that can decompose proteins, carbohydrates, and lipids, and can remove nitrogen and lead.
- Pseudomonas bacteria are Gram-negative bacilli that are very widely distributed in soil and water, and are generally mobile and have one or several polar flagella. Many pigments (piocyanine, fluoresine) are produced, and the medium may be colored or fluoresce. Generally aerobic, but anaerobic growth in denitrification or nitric acid breathing. It is widely used to decompose organic substances such as aliphatic hydrocarbons, aromatic hydrocarbons, phenols, terpenes and steroids.
- lipolytic yeast, nitrosomonas bacteria, and nitrobacter bacteria can be immobilized on a carrier.
- the present invention has another feature of using bacteria in nitrosomonas and nitrobacter to remove ammonia.
- Nitrosomonas bacteria are the first genus of nitrite bacteria, ellipsoidal or simple intermittent, with one to two subpolar flagella. It is a gram-negative, chemically independent nutrient that oxidizes ammonia to nitrous acid and simultaneously fixes carbonic acid. It is a combination aerobic bacteria and is distributed in freshwater, ocean, and soil. Specifically, N. europaea can be used. It can be removed by oxidizing ammonia in the deposit.
- Nitrobacter bacteria are the first genus of nitrate bacteria, a type of simple bacilli, which proliferate into buds and are nonmotile gram-negative. Many strains are organized chemically independent nutrients that oxidize nitrous acid to nitric acid and fix it at the same time. A few strains grow heterotrophically, but growth is slower than when they grow autotrophically. Reproductive sites are soil, fresh water, ocean, etc. In this embodiment, N. winogradskyi is used.
- gram-negative Brachymonas denitrificans is used to achieve aerobic denitrification and sludge reduction.
- the microorganism may further include sulfur bacteria.
- Sulfur bacteria are a group of bacteria that oxidize sulfur and its compounds to obtain energy among autorophic bacteria. More specifically, beggiatoa, thiothrix, thioploca, acromatium, acidthiobacillus, chromatium thiocapsa, chloro Chlorobium and the like may be used.
- the microorganisms have a cell count of about 1 ⁇ 10 8 to 1 ⁇ 10 9 cfu / g. To do this, the number of cells per gram of culture should be larger than the above number.
- the bioball and the oxygen generator in which microorganisms capable of decomposing and removing organic and inorganic substances are immobilized on a carrier may be used in a range of 200 to 350 parts by weight of a bioball based on 100 parts by weight of an oxygen generator. .
- the blending ratio is very important, and through various experiments to be described later, it is advantageous to mix the oxygen generator: bioball 1: 3 parts by weight.
- bioballs can achieve a sufficient effect of 1.5 to 2.5 compared to oxygen generators, but the ratio of 1: 3 is the best when considering ecotoxicological effects.
- the A improver for comparison with the present invention is a microbial agent mainly composed of Brachymonas denitrificans, proteinclasticum ruminis and Bacteroides bacterium, and the D improver is an oxygen generating agent, mainly composed of MgO 2 and CaO 2 , and the E improver is zeolite It is an improver consisting of only bioballs that contain microorganisms.
- And sediment improver according to the present invention is F, G, H as F is a mixture of a bio ball and an oxygen generator in a 1: 1, G is a mixture of an oxygen generator and a bio ball in a 2: 1, H is Conversely, the oxygen generator and the bioball are combined at 1: 2.
- the bioball contained all of the microorganisms mentioned in the examples of the present invention, and each bacterium was tested to have a number of cells of 1 ⁇ 10 8 to 1 ⁇ 10 9 cfu / g.
- the sediment test was conducted in accordance with the Marine Environmental Process Test Method.
- the pH and oxidation reduction potential (ORP) of the sediments were measured five times for 28 days with a measuring instrument (ORION model 210A, USA).
- the pH and ORP were measured directly from the sediments of each reactor through the electrodes.
- Chemical Oxygen Demand was measured by alkaline potassium permanganate method. The expression of sodium thiosulfate solution was placed in a 250 ml Erlenmeyer flask with 25 ml of 0.1 N sodium dichromate solution, and then 100 ml of distilled water and 10 ml of potassium iodide solution and 10% sulfuric acid solution. 2 ml of solution was added. The solution was allowed to cool and then titrated with 0.1 N sodium thiosulfate solution. The titer f after titration was calculated as follows.
- AVS Acid Volatile Sulfide
- 2 g of wet sediment was transferred to the gas generating pipe combined with the detection pipe, and then 2 ml of 18 N sulfuric acid (H2SO4) was added and pumped for a predetermined time.
- AVS was calculated by reading the scale when the discoloration of was stopped. At this time, the suction time was observed and the generated gas was not leaked.
- the yellow detection tube used in the experiment (Detectop Tube NO. 201H, GASTEC, Japan) was used.
- T-N Total Nitrogen
- T-P Total Phosphorus
- TN was decomposed into alkaline potassium persulfate, oxidized to nitrate nitrogen, and passed through a cadmium-copper reduction column to reduce nitrite ions to nitrite ions.
- the colorimetric quantification was performed using a spectrophotometer UV-1800 (Shimadzu, USA) to wavelength 543 nm. Absorbance was measured at.
- T-P was oxidatively decomposed with potassium persulfate, changed to phosphate (PO4-P) form, and then colorimetrically determined by ascorbic acid reduction. Absorbance was measured at a wavelength of 885 nm with UV-1800 (Shimadzu, USA).
- the moisture content of the sediment was dried in a constant amount, and then weighed in a predetermined amount in a weighed bottle, and then dried at 110 ° C. for 24 hours at a drying temperature. After the first drying, the weight was measured, dried again for 12 hours or more, and dried until the weight was measured, and the weight of the dried bottle was measured. The difference between the weight before drying and the weight after drying was measured.
- Moisture content (sample weight when drying-sample weight after drying) / sample weight before drying
- TVCs Total Viable Counts
- the sample is 100g of sediment of each reactor in a beaker, shaken for 30 minutes, the supernatant is collected, diluted 100-fold, 1 ml of the solution uniformly inoculated in Marine Agar medium, and then incubated for 2 days at room temperature, Colony counts were calculated on the colony count, multiplied by the dilution factor, and finally the result was obtained.
- the researchers confirmed the superiority of the sediment improver mixed with the bio-ball containing the oxygen generator and the microorganism according to the present invention through the above experiment, more specifically, according to the mixing ratio of the oxygen generator and the bio-ball An experiment was conducted to confirm the difference in effects. The result is as follows.
- the researchers performed an ecological impact assessment for the sediment improver according to the present invention.
- two benthic star clusters were selected and tested.
- the benthic unipod Mandibulophoxus mai was collected on the sands of Manlipo and Cheonlipo , Taean-gun, Chungcheongnam-do prior to the test.
- acherusicum used test subjects in constant culture at NeoEnbiz Laboratory.
- M. acherusicum which has been cultivated in the laboratory at all times, has been subcultured since 2003 when it was collected from the tidal flats of Daebu Island.
- the seawater used for the experiment was supplied by filtered seawater from the Incheon Fisheries Research Institute located in Yeongheung-do, Incheon.
- the quality of the experimental seawater was always checked during the incubation period and throughout the experimental period.
- Basic water quality items were water temperature, salinity, pH, dissolved oxygen and ammonia. Except for temperature and salt tolerance experiments, water temperature was 20 ⁇ 1 °C, salinity was 30 ⁇ 1 psu, pH was 8.0 ⁇ 0.5, dissolved oxygen was> 80% and ammonia was ⁇ 1 mg, regardless of species. L-1 was maintained.
- Experimental seawater was exchanged daily instead of aeration in the water-only test, and exchanged once every 5 days in the aeration of the overlying water in the sediment toxicity test.
- Sediment ecotoxicity assessment using benthic monopods has been widely used as a test method for assessing biological effects by comparing the survival rate or mortality in experimental and control groups after exposure to benthic monopods for 10 days.
- the benthic monopod M. acherusicum which is passaged in the laboratory, passes through the standard 500- ⁇ m mesh and passes the 300- ⁇ m standard, while the M. mai passes the 2 mm standard and the 1 mm standard does not Was selected for the test, and only healthy and active subjects were selected and used in the experiment without any external wounds or damage to appendages.
- the sediments used for the test with the sediment improver were used to minimize the difference in sediment characteristics between the samples collected by mixing several times taken from the same peak. This homogenized sediment was passed through a 500- ⁇ m standard to remove coarse particles and endogenous organisms and used in the experiment.
- the bioball is mixed by more than three times by weight of the bioball as compared with the oxygen supply agent. If you broaden the range, it should be included at least twice. And if more than three times more than the bio ball is not required, in summary, the bio-ball with 200 to 350 parts by weight of 100 parts by weight of oxygen supply, sediment and water layer environmental treatment and ecotoxicity It was confirmed that the best in terms of.
- a bioball having microorganisms supported on zeolite and an oxygen supply agent composed of a peroxide of calcium and magnesium are mixed to use as a sediment improver for the coastal surface layer.
- Sediment improver according to the present invention was confirmed to have an excellent effect in a variety of environmental items such as chemical oxygen demand, total nitrogen, total phosphorus of the coastal surface layer.
- the bioball is more than two times, more preferably three times more than the oxygen supply agent, it exerts an excellent effect in all items including ecotoxicity.
- the sediment improving agent according to the present invention at the same time by introducing a technique for resolving the empty oxygen lumps in the coastal water layer will be able to environmentally change the ecological environment of the coast.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Soil Sciences (AREA)
- Mycology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Virology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Botany (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Biological Wastes In General (AREA)
Abstract
The present invention relates to a sediment remediation agent for eco-friendly cleaning up of coastal surface sediments. According to the present invention, the sediment remediation agent is formed by mixing an oxygen generator capable of generating oxygen at a surface layer and bio-balls supporting microorganisms in zeolite. The sediment remediation agent was sprayed on the surface of the coast and exhibited excellent effects in various areas such as chemical oxygen demand, total nitrogen and total phosphorus. It is expected that an ecological environment of a coast can be changed in an eco-friendly manner by spraying the sediment remediation agent of the present invention on the surface of the coast and simultaneously introducing a technique for resolving the oxygen-deficient water mass layer of the coast.
Description
본 발명은 연안, 하천, 호소의 바닥에 침전된 퇴적물로 인하여 발생하는 환경 오염을 개선하기 위한 연안 저질 개선제에 관한 것이다. The present invention relates to a coastal quality improvement agent for improving the environmental pollution caused by sediment deposited on the bottom of the coast, rivers, lakes.
연안 표층은 수층과 함께 수생생태계를 구성하는 기본 요소로서 저서생물의 서식지를 제공하며, 수생 환경과 밀접하게 연결되어 있다. 이에 연안 표층의 오염은 수층의 오염으로 이어지며, 환경 변화에 민감한 생물종들의 식생에 악영향을 미치게 된다. The coastal surface, together with the aquatic layer, constitutes the aquatic ecosystem and provides habitat for benthic creatures and is closely linked to the aquatic environment. Pollution in coastal waters leads to water pollution and adversely affects the vegetation of species sensitive to environmental changes.
연안 표층의 오염에서 가중 중요한 인자는 연안 퇴적물이다. An important factor in coastal surface contamination is coastal sedimentation.
연안 퇴적물은 생활하수, 농축산하수, 양식장 배설물, 오폐수가 바다로 유입되어 침전되면서 형성된다. 그리고 오염물이 유입 및 퇴적되는 양이 자연의 자정능력을 초과하면서 오염이 점차 심화된다. 특히 대한민국 남해안과 같이 반 폐쇄 또는 폐쇄성 해안선을 가진 연안의 경우 해수 교환이 원활하지 않아 오염 정도가 매우 빠르게 심화된다. 즉, 연안 표층의 미생물은 산소를 소모하면서 연안 퇴적물(유기물)을 분해한다. 그러나 해수의 수층 사이의 밀도 차이로 인하여 층간의 혼합이 이루어지지 않아 산소 공급이 원활하지 않게 된다. 산소의 결핍으로 인해 퇴적물 내의 저서생물의 활동이 저하되며, 식물 플랑크톤의 먹이인 인, 질소가 생성되어 적조, 녹조, 청조, 빈산소수괴가 발생된다.Coastal sediments are formed as sediment enters the sea, including living sewage, concentrated livestock sewage, farm dung and sewage. Pollution gradually intensifies as the inflow and deposition of contaminants exceeds the natural self-cleaning capacity. Especially in the case of coasts with semi-closed or closed coastlines, such as the south coast of Korea, seawater exchange is not smooth and the degree of pollution deepens very quickly. In other words, microorganisms in the coastal surface decompose coastal deposits (organic matter) while consuming oxygen. However, due to the difference in density between the water layers of the seawater, the mixing between the layers is not performed, so that the oxygen supply is not smooth. The lack of oxygen reduces the activity of benthic organisms in the sediments, and the production of phytoplankton, phosphorus, nitrogen, which produces red algae, green algae, blue algae, and hypoxic water masses.
또한 혐기적 상태에서 퇴적물 내 유기물이 분해될 경우 황화수소나 암모니아와 같은 독성이 있는 부산물들이 생성되어 퇴적물 내 서식 생물종의 수와 형태를 제한할 수도 있다. Degradation of organic matter in anaerobic sediments can also produce toxic by-products such as hydrogen sulfide or ammonia, limiting the number and type of species inhabiting the sediment.
종래에는 오염된 표층퇴적물을 개선하기 위하여 폭기, 준설 등의 방법을 실시하고 있지만, 이러한 방법들은 수질의 오염물질 확산, 어패류의 양식 중지, 2차 오염물의 처리, 실시비용의 과다 등의 문제가 있다.Conventionally, methods such as aeration and dredging are performed to improve contaminated surface sediments, but these methods have problems such as spreading of water pollutants, stopping fish farming, treating secondary pollutants, and excessive execution cost. .
또한 퇴적물의 처리를 위한 다른 방법으로 점토, 생석회 등의 약제를 살포하는 방법이 있지만, 점토살포는 점토 중의 알루미나 및 실리카 성분이 수중의 유기 현탁물을 응집, 침전시키는 문제가 있다. 또한 생석회 중 칼슘성분은 수중의 황산염과 반응하여 석회석과 석고를 생성시켜 퇴적물을 피복시킴으로써 퇴적물 내부에 서식하는 생물의 산소접촉을 차단시켜 많은 피해가 발생한다.In addition, there is a method of spraying drugs such as clay and quicklime as another method for treating sediments, but clay spraying has a problem in that alumina and silica components in clay aggregate and precipitate organic suspensions in water. In addition, the calcium component in quicklime reacts with sulfate in water to form limestone and gypsum to cover the deposit, thus blocking the oxygen contact of living organisms in the deposit and causing a lot of damage.
또한 황토, 제오라이트 등을 살포하여 이들 물질이 갖는 염기 치환능, pH 조절효과 등을 이용하여 퇴적층의 환경을 개선하는 방법도 사용하지만, 이들은 단순히 유기물을 분해하는 미생물을 흡착시켜 저질 개선에 이용되지만 유기물 분해 미생물의 안정화를 이루지 못해 뚜렷한 효과를 보지 못하고 있다. 최근에는 생물학적 방법을 이용한 개선이 시도되고 있다. In addition, the method of improving the environment of the sediment layer by using the base substitution ability and pH control effect of these materials by spraying ocher, zeolite, etc., but they are used to improve the low quality by simply adsorbing microorganisms that decompose organic matter. The stabilization of degrading microorganisms does not achieve a clear effect. Recently, improvements using biological methods have been attempted.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 오염된 연안 표층 퇴적물을 개선하기 위하여 생물학적 제제를 포함하는 개선제를 제공하는데 그 목적이 있다. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide an improving agent including a biological agent to improve the contaminated coastal surface deposits.
즉, 산소소모에 영향을 미치는 표층유기물(LOM) 오염퇴적물을 제거하기 위한 개선제를 공급한다. 특히 여름철 빈산소 수괴로 산소가 부족해지는 시기에 해양기원 유기물을 분해하는 개선재를 제공하고자 한다. 표층 퇴적물에 내 유기물은 대부분 분해되기 쉬운 유기물(Labile oganic matter)이므로 개선제를 공급함으로써 산소 소모를 줄일 수 있다.That is, it provides a remediator for removing surface organic matter (LOM) contaminants that affect oxygen consumption. In particular, it is intended to provide an improved material that decomposes marine source organic matter when oxygen is deficient due to poor oxygen in summer. Most organic matter in surface deposits is labile oganic matter, so oxygen consumption can be reduced by supplying a modifier.
상기 목적을 달성하기 위한 본 발명에 따른 연안 표층 퇴적물 개선제는, 연안 표층의 오염된 퇴적물에 살포되어 오염된 퇴적물을 정화하기 위한 것으로서, 연안 표층 퇴적물에 산소를 공급하기 위한 산소발생제; 및 다공성의 결정질 알루미노규산염을 담체로 하여 상기 퇴적물 내 유기물과 오염물을 제거하기 위한 미생물을 고정시킨 바이오 볼;을 포함하며, 상기 미생물은 포토트로픽(phototrophic) 박테리아, 락토바실루스(lactobacillus) 박테리아, 바실루스(bacillus) 박테리아 및 수도모나스(pseudomonas) 박테리아를 포함하는 것에 특징이 있다. Coastal surface sediment improver according to the present invention for achieving the above object is, for cleaning the contaminated sediment is sprayed on the contaminated sediment of the coastal surface, the oxygen generator for supplying oxygen to the coastal surface sediment; And a bio ball fixed with microorganisms for removing organic matter and contaminants in the deposit using a porous crystalline aluminosilicate as a carrier, wherein the microorganisms include phototrophic bacteria, lactobacillus bacteria, and Bacillus. It is characterized by the inclusion of (bacillus) bacteria and pseudomonas bacteria.
본 발명에 따른 퇴적물 개선제는 연안 표층의 화학적 산소요구량, 총질소, 총인 등 다양한 환경 항목에서 우수한 효과가 있다. 특히 바이오볼이 산소공급제보다 2배 이상, 더욱 바람직하게는 바이오볼이 3배 이상 혼합될 때 생태독성을 포함한 모든 항목에서 우수한 효과를 발휘한다. Sediment improver according to the present invention has an excellent effect in a variety of environmental items, such as chemical oxygen demand, total nitrogen, total phosphorus of the coastal surface layer. In particular, when the bioball is more than two times, more preferably three times more than the oxygen supply agent, it exerts an excellent effect in all items including ecotoxicity.
본 발명에 따른 퇴적물 개선제를 연안 표층에 살포함과 동시에 연안의 빈산소 수괴층을 해소하는 기술을 함께 도입하여 연안의 생태환경을 친환경적으로 변화시킬 수 있을 것으로 기대된다. The sediment improver according to the present invention is expected to be able to change the ecological environment of the coast by introducing a technology for dissolving the vacant oxygen lumps in the coast at the same time.
한편, 여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급됨을 첨언한다.On the other hand, even if the effects are not explicitly mentioned herein, the effects described in the following specification expected by the technical features of the present invention and its provisional effects are treated as described in the specification of the present invention.
상기 목적을 달성하기 위한 본 발명에 따른 연안 표층 퇴적물 개선제는, 연안 표층의 오염된 퇴적물에 살포되어 오염된 퇴적물을 정화하기 위한 것으로서, 연안 표층 퇴적물에 산소를 공급하기 위한 산소발생제; 및 다공성의 결정질 알루미노규산염을 담체로 하여 상기 퇴적물 내 유기물과 오염물을 제거하기 위한 미생물을 고정시킨 바이오 볼;을 포함하며, 상기 미생물은 포토트로픽(phototrophic) 박테리아, 락토바실루스(lactobacillus) 박테리아, 바실루스(bacillus) 박테리아 및 수도모나스(pseudomonas) 박테리아를 포함하는 것에 특징이 있다. Coastal surface sediment improver according to the present invention for achieving the above object is, for cleaning the contaminated sediment is sprayed on the contaminated sediment of the coastal surface, the oxygen generator for supplying oxygen to the coastal surface sediment; And a bio ball fixed with microorganisms for removing organic matter and contaminants in the deposit using a porous crystalline aluminosilicate as a carrier, wherein the microorganisms include phototrophic bacteria, lactobacillus bacteria, and Bacillus. It is characterized by the inclusion of (bacillus) bacteria and pseudomonas bacteria.
본 발명에 따르면, 지질분해 효모(yeast) 및 수도모나스(pseudomonas) 박테리아, 니트로소모나스(nitrosomonas) 박테리아가 추가적으로 상기 담체에 고정될 수 있다. According to the invention, lipolytic yeast and pseudomonas bacteria and nitrosomonas bacteria can additionally be immobilized on the carrier.
또한, 본 발명의 일 실시예에 따르면, 니트로박터(nitrobacter) 박테리아가 추가적으로 상기 담체에 고정되는 것이 바람직하다. In addition, according to an embodiment of the present invention, it is preferable that the nitrobacter bacteria are additionally fixed to the carrier.
본 발명의 일 실시예에서, 상기 산소발생제는 마그네슘과 칼슘의 수산화물, 산화물 및 과산화물 중 어느 하나의 형태가 사용될 수 있다. In one embodiment of the present invention, the oxygen generating agent may be used in the form of any one of hydroxides, oxides and peroxides of magnesium and calcium.
본 발명의 일 실시예에서, 상기 산소발생제 100 중량부에 대하여, 상기 바이오 볼은 200 ~ 350 중량부의 비율로 배합되는 것이 바람직하다. In one embodiment of the present invention, with respect to 100 parts by weight of the oxygen generating agent, the bio ball is preferably blended in a ratio of 200 to 350 parts by weight.
본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. In the following description of the present invention, when it is determined that the subject matter of the present invention may be unnecessarily obscured by the person skilled in the art with respect to the related well-known functions, the detailed description will be omitted.
본 발명은 연안 표층 퇴적물을 환경적으로 정화하기 위한 퇴적물 개선제에 관한 것이다. 다만, 본 발명이 연안 표층의 퇴적물 뿐만 아니라, 호소나 하천의 오염된 퇴적물에 대해서도 적용 가능하다. 또한, 본 발명의 처리 대상이 되는 퇴적물의 오염원은 주로 유기물이지만, 질소, 인과 같은 무기물도 모두 포함한다. The present invention relates to sediment improvers for environmentally purifying coastal surface sediments. However, the present invention is applicable not only to sediments of coastal surface layers, but also to contaminated sediments of lakes and rivers. In addition, the pollutant of the sediment to be treated in the present invention is mainly an organic substance, but also includes all inorganic substances such as nitrogen and phosphorus.
이하, 본 발명의 일 실시예에 따른 연안 표층 퇴적물 개선제(이하 '퇴적물 개선제'라고 한다)에 대하여 더욱 상세히 설명하기로 한다. Hereinafter, the coastal surface sediment improver (hereinafter referred to as 'sediment improver') according to an embodiment of the present invention will be described in more detail.
본 발명의 일 실시예에 따른 퇴적물 개선제는 산소발생제와 생물학적 제제가 혼합하여 이루어진다. Sediment improver according to an embodiment of the present invention is made by mixing the oxygen generating agent and the biological agent.
연안 표층 퇴적물 오염원은 주로 유기물이다. 인구가 특정 지역에 밀집되고, 농축산업이 대규모로 집중화되면서 발생되는 다양한 유기물이 오폐수, 하수와 함께 연안으로 유입되어 퇴적되기 때문이다. 유기물이 자연적 정화능력 이상으로 많이 유입되면 이들은 분해되지 못하고 부영양화를 일으키게 된다. 주로 호기성 미생물에 의해서 유기물이 분해되는데 부영양화에 따라 산소가 부족해지면서 유기물은 분해되지 못하고 계속 쌓이게 된다. 이러한 상태가 장기적으로 지속되면 퇴적물은 혐기성 환경으로 변화하게 되고 오염은 더욱 심각해진다. Coastal surface sediment contaminants are primarily organic. This is due to the fact that various organic matters generated by the concentration of the population in a certain area and the concentrated concentration of the agricultural industry are introduced into the coast along with wastewater and sewage. If organic matter is introduced more than natural purification capacity, they cannot be decomposed and cause eutrophication. Organic matter is decomposed mainly by aerobic microorganisms. As oxygen is deficient due to eutrophication, organic matter is accumulated and accumulated continuously. If this condition persists over the long term, the sediment will turn into an anaerobic environment and the pollution will become more severe.
본 발명에서 산소발생제와 생물학적 제제로서 미생물을 혼합하여 개선제를 조성한 것은 상기한 이유와 같다. 즉 산소와 미생물을 함께 공급함으로써 오염물을 분해하고자 하는 것이다. In the present invention, the improvement agent is formed by mixing the microorganism as the oxygen generating agent and the biological agent, as described above. In other words, it is intended to decompose contaminants by supplying oxygen and microorganisms together.
본 발명에서 산소발생제로는 칼슘, 마그네슘과 같은 2가 양이온의 산화물, 과산화물 및 수산화물 형태가 사용된다. 예컨대, 본 실시예에서는 MgO, CaO, MgO2, CaO2, Mg(OH)2, Ca(OH)2 중 적어도 어느 하나 또는 2개 이상을 조합하여 사용한다. 특히 과산화물 형태를 주로 사용한다. Oxygen generators in the present invention are used in the form of oxides, peroxides and hydroxides of divalent cations such as calcium and magnesium. For example, in the present embodiment, at least one or two or more of MgO, CaO, MgO 2 , CaO 2 , Mg (OH) 2 , and Ca (OH) 2 are used in combination. In particular, the peroxide form is mainly used.
과산화물인 MgO2와 CaO2는 아래의 반응식과 같이 물과 반응하여 마그네슘 하이드록사이드와 칼슘 하이드록사이드로 바뀌면서 산소를 배출시킨다. Peroxides, MgO 2 and CaO 2 , react with water to convert oxygen into magnesium hydroxide and calcium hydroxide to release oxygen.
MgO2 + H2O = Mg(OH)2 + 1/2 O2
MgO 2 + H 2 O = Mg (OH) 2 + 1/2 O 2
CaO2 + H2O = Ca(OH)2 + 1/2 O2
CaO 2 + H 2 O = Ca (OH) 2 + 1/2 O 2
상기한 반응은 장시간에 걸쳐 지속적으로 일어나므로 퇴적물에 산소 공급을 원활하게 할 수 있다. 산소가 공급되면 호기성 미생물이 활동할 수 있는 분위기를 형성하게 된다. Since the above reaction occurs continuously over a long time, it is possible to smoothly supply oxygen to the deposit. When oxygen is supplied, it creates an atmosphere in which aerobic microorganisms can act.
본 발명에서 바이오 볼은 담체에 미생물을 흡착, 고정화시킨 형태이다. In the present invention, the bio ball is a form in which microorganisms are adsorbed and immobilized on a carrier.
담체로서는 다공성, 결정질 물질이 사용되는데, 본 실시예에서는 특히 제오라이트가 사용된다. 제오라이트는 다공성 물질로서 오염물의 흡착제로 사용될 수 있다. 제오라이트는 양이온 교환능력(C.F.C:Cation Exchange Capacity)이 크기 때문이다. 또한 제오라이트는 다공성으로 이루어져 반응이 일어날 수 있는 비표면적이 매우 넓으므로 그 자체로서 매우 우수한 오염물질의 흡착제로서 기능한다는 이점이 있다. 무엇보다도 담체는 많은 수의 미생물이 고정화될 수 있어야 하므로, 비표면적이 넓은 다공성 물질인 제오라이트를 사용하면 이점이 있다. Porous, crystalline materials are used as the carrier, and zeolite is particularly used in this embodiment. Zeolites can be used as adsorbents of contaminants as porous materials. This is because zeolite has a high C.F.C (Cation Exchange Capacity). In addition, since zeolite is porous and has a large specific surface area where reaction can occur, it has an advantage of functioning as a very good adsorbent of pollutants. Above all, since the carrier must be able to immobilize a large number of microorganisms, it is advantageous to use a zeolite which is a porous material having a large specific surface area.
정리하면 본 발명에서 제오라이트는 그 자체로서 수중 또는 퇴적물 내 오염물을 흡착시켜 제거하는 흡착제의 기능과, 미생물이 안정적으로 수용되는 담체로서의 기능을 함께 수행한다. In summary, the zeolite in the present invention performs the function of the adsorbent which adsorbs and removes contaminants in water or sediment by itself and as a carrier for microorganisms to be stably received.
본 실시예에서 제오라이트는 소성하여 사용하며 대략 1~3 mm의 입경을 가진다. 입경이 1~3mm인 경우가 미생물의 고정량 및 오염원 흡착을 최대화할 수 있다. In this embodiment, the zeolite is used by firing and has a particle size of approximately 1 to 3 mm. When the particle diameter is 1 to 3mm, it is possible to maximize the fixed amount of the microorganisms and the adsorption of contaminants.
담체에는 다양한 종류의 미생물이 고정화된다. Various kinds of microorganisms are immobilized on the carrier.
본 발명에서는 포토트로픽(phototrophic) 박테리아, 락토바실루스(lactobacillus) 박테리아, 바실루스(bacillus) 박테리아 및 수도모나스(pseudomonas) 박테리아를 담체에 고정시킨다. 미생물을 담체에 고정시키는 방법은 공지의 다양한 방법을 사용할 수 있다. 즉, 미생물을 담체에서 배양시키는 방법을 통해 고정화할 수도 있으며, 알긴산소다 등의 흡착제를 이용하여 기배양된 미생물을 스프레이 방식으로 담체에 흡착시킬 수도 있다. In the present invention, phototrophic bacteria, lactobacillus bacteria, bacillus bacteria, and pseudomonas bacteria are immobilized on a carrier. As a method of fixing the microorganism to the carrier, various known methods can be used. That is, the microorganisms may be immobilized by culturing in a carrier, and the pre-cultured microorganisms may be adsorbed onto the carrier by a spray method using an adsorbent such as sodium alginate.
포토트로픽 박테리아는 광에너지를 이용하여 탄소 동화작용을 행하는 세균을 총칭한다. 홍색세균(purple bacteria)과 녹색세균(green bacteria)을 사용 가능하며, 할로박테리아를 포함할 수도 있다. 보다 구체적으로는 로도필라(rhodopila), 로도박터(rhodobacter), 클로로비움(chlorobium) 등을 사용할 수 있다. 홍색세균과 녹색세균은 질소를 고정하며 유기물을 분해한다. 유기물의 분해에 의하여 퇴적물 내 화학적 산소요구량(COD)과 탁도를 낮춘다. Phototropic bacteria is a generic term for bacteria that perform carbon assimilation using light energy. Purple and green bacteria can be used, and may contain halobacteria. More specifically, rhodopila, rhodobacter, chlorobium, or the like may be used. Red bacteria and green bacteria fix nitrogen and decompose organic matter. Degradation of organics lowers the chemical oxygen demand (COD) and turbidity in the deposits.
락토바실루스 박테리아는 글루코오스로부터 주로 락트산을 만들며 그람 양성으로 포자 생성능이 없는 간상 세균을 총칭한다. 보다 구체적으로 Lactobacillus casei, L. bulgaricus, L. plantarum, L. acidophilus, L. delbruckii, L. brevis, L. fermenti, L. bifidus 등이 사용될 수 있다. 락토바실루스 박테리아도 퇴적물과 수층 내 유기물을 분해한다. Lactobacillus bacteria produce lactic acid mainly from glucose and are gram-positive rod-like bacteria. More specifically, Lactobacillus casei, L. bulgaricus, L. plantarum, L. acidophilus, L. delbruckii, L. brevis, L. fermenti, L. bifidus and the like may be used. Lactobacillus bacteria also break down sediments and organics in the water column.
바실루스 박테리아는 막대모양 또는 원통모양의 세균으로서 가늘고 긴 것, 짧은 것 등 여러 가지 형상이지만, 크기와 형태는 종에 따라 거의 일정하다. 바실루스 박테리아는 그람염색법에 의해 양성균과 음성균으로 나뉜다. 보다 구체적을 h본 실시예에서 그람양성 바실루스 박테리아로서 Bacillaceae, Lactobacillaceae 등을 사용 가능하며, 그람음성 바실루스로는 Enterobacteriaceae, Pseudomo-nadaceae 등을 사용 가능하다. 바실루스는 다중 효소 시스템(multiple enzyme system)을 가진 미생물로서 단백질, 탄수화물 및 지질을 분해가능하며, 질소와 인도 제거할 수 있다. Bacillus bacteria are rod-shaped or cylindrical bacteria, which have various shapes such as long and short, but their size and shape are almost constant according to species. Bacillus bacteria are divided into positive and negative bacteria by gram staining. More specifically, in this embodiment, Bacillaceae, Lactobacillaceae, and the like may be used as Gram-positive Bacillus bacteria, and Enterobacteriaceae, Pseudomo-nadaceae, etc. may be used as Gram-negative Bacillus. Bacillus is a microorganism with a multiple enzyme system that can decompose proteins, carbohydrates, and lipids, and can remove nitrogen and lead.
수도모나스 박테리아는 토양, 수중에 매우 넓게 분포하는 그람음성의 간균으로, 일반적으로는 운동성이 있으며 1개 또는 여러 개의 극성 편모를 갖는다. 색소(피오시아닌, 플오레신)를 생산하는 것도 많아 배지가 착색되거나 형광을 발하는 경우가 있다. 대체로 대단히 호기적이지만 탈질소작용이나 질산호흡을 하는 것에서는 혐기적으로 생육한다. 지방족탄화수소, 방향족탄화수소, 페놀류, 테르펜, 스테로이드 등 광범위하게 유기물을 분해한다. Pseudomonas bacteria are Gram-negative bacilli that are very widely distributed in soil and water, and are generally mobile and have one or several polar flagella. Many pigments (piocyanine, fluoresine) are produced, and the medium may be colored or fluoresce. Generally aerobic, but anaerobic growth in denitrification or nitric acid breathing. It is widely used to decompose organic substances such as aliphatic hydrocarbons, aromatic hydrocarbons, phenols, terpenes and steroids.
또한 본 발명에서는 지질분해 효모(yeast), 니트로소모나스(nitrosomonas) 박테리아, 니트로박터(nitrobacter) 박테리아를 담체에 고정화할 수 있다. In the present invention, lipolytic yeast, nitrosomonas bacteria, and nitrobacter bacteria can be immobilized on a carrier.
특히 본 발명에서는 암모니아 제거를 위하여 니트로소모나스와 니트로박터 속의 박테리아를 사용한다는데 또 다른 특징이 있다. In particular, the present invention has another feature of using bacteria in nitrosomonas and nitrobacter to remove ammonia.
니트로소모나스 박테리아는 아질산균의 1속으로서 타원형 또는 단간균이며, 1내지 2개의 아극편모가 있다. 그람음성이며 편성의 화학독립영양세균으로 암모니아를 아질산으로 산화하며 동시에 탄산을 고정다. 편성호기성균이며 담수, 해양, 토양 등에 분포한다. 구체적으로 N. europaea를 사용할 수 있다. 퇴적물에서 암모니아를 산화시켜 제거가능하다. Nitrosomonas bacteria are the first genus of nitrite bacteria, ellipsoidal or simple intermittent, with one to two subpolar flagella. It is a gram-negative, chemically independent nutrient that oxidizes ammonia to nitrous acid and simultaneously fixes carbonic acid. It is a combination aerobic bacteria and is distributed in freshwater, ocean, and soil. Specifically, N. europaea can be used. It can be removed by oxidizing ammonia in the deposit.
니트로박터 박테리아는 질산균의 1속이며, 단간균의 일종으로 출아로 증식하고 비운동성 그람음성이다. 많은 균주는 편성 화학독립영양세균으로서 아질산을 질산으로 산화시키며 동시에 탄산고정을 한다. 소수의 균주는 종속영양적으로도 성장하지만 성장속도는 독립영양적으로 성장하는 경우에 비하면 느리다. 생식장소는 토양, 담수, 해양 등이며, 본 실시예에서는 N. winogradskyi가 사용된다. Nitrobacter bacteria are the first genus of nitrate bacteria, a type of simple bacilli, which proliferate into buds and are nonmotile gram-negative. Many strains are organized chemically independent nutrients that oxidize nitrous acid to nitric acid and fix it at the same time. A few strains grow heterotrophically, but growth is slower than when they grow autotrophically. Reproductive sites are soil, fresh water, ocean, etc. In this embodiment, N. winogradskyi is used.
한편, 본 발명에서는 그람음성의 Brachymonas denitrificans를 사용하여 호기적 탈질과 슬러지 감량을 도모한다. 또한 단백질 분해가 능한 혐기성 박테리아인 proteinclasticum ruminis을 사용할 수 있다. 또한 혐기적 탈질이 가능한 박테로이데스 세균(bacteroidales)을 사용할 수 있다. Meanwhile, in the present invention, gram-negative Brachymonas denitrificans is used to achieve aerobic denitrification and sludge reduction. You can also use proteinclasticum ruminis, a proteolytic anaerobic bacterium. It is also possible to use bacteroidales capable of anaerobic denitrification.
본 발명에서는 미생물로서 설퍼 박테리아(sulfur bacteria)를 더 포함할 수 있다. 설퍼 박테리아는 무기영양균(autorophic bacteria) 가운데 유황 및 그 화합물을 산화해서 에너지를 얻는 세균군을 말한다. 보다 구체적으로 배지아토아(beggiatoa), 씨오트릭스(thiothrix), 씨오플로카(thioploca), 아크로마티움(acromatium), 애시드티오바실루스(acidthiobacillus), 크로마티움(chromatium) 씨오카프사(thiocapsa), 클로로비움(chlorobium) 등이 사용될 수 있다. In the present invention, the microorganism may further include sulfur bacteria. Sulfur bacteria are a group of bacteria that oxidize sulfur and its compounds to obtain energy among autorophic bacteria. More specifically, beggiatoa, thiothrix, thioploca, acromatium, acidthiobacillus, chromatium thiocapsa, chloro Chlorobium and the like may be used.
상기한 미생물들은 대략 1×108 ~ 1×109 cfu/g 정도의 균체수가 되도록 한다. 이를 위해서 배양시에는 단위 그램당 균체수가 위 수보다 더 커져야 할 것이다. The microorganisms have a cell count of about 1 × 10 8 to 1 × 10 9 cfu / g. To do this, the number of cells per gram of culture should be larger than the above number.
상기한 바와 같이 유기물 및 무기물을 분해하여 제거할 수 있는 미생물들이 담체에 고정화된 바이오볼과 산소발생제는, 산소발생제 100 중량부에 대하여 바이오볼 200 ~ 350 중량부의 범위로 배합하여 사용할 수 있다. 배합비는 매우 중요한데, 후술할 각종 실험을 통해 최적 배합은 산소발생제:바이오볼이 1:3 중량부로 배합하는 것이 유리하다. 유기물과 무기물의 분해 및 제거의 측면에서는 바이오볼이 산소발생제 대비 1.5~2.5 정도로도 충분한 효과를 얻을 수 있지만, 생태독성영향 평가를 고려할 때 1:3의 비율이 가장 우수한 것으로 확인하였다. As described above, the bioball and the oxygen generator in which microorganisms capable of decomposing and removing organic and inorganic substances are immobilized on a carrier may be used in a range of 200 to 350 parts by weight of a bioball based on 100 parts by weight of an oxygen generator. . The blending ratio is very important, and through various experiments to be described later, it is advantageous to mix the oxygen generator: bioball 1: 3 parts by weight. In terms of decomposition and removal of organic and inorganic matters, bioballs can achieve a sufficient effect of 1.5 to 2.5 compared to oxygen generators, but the ratio of 1: 3 is the best when considering ecotoxicological effects.
본 발명의 연구진은 산소발생제와 바이오볼의 배합 비율을 달리하여 오염물 제거에 대한 다양한 실험을 진행하였다. 그리고 본 발명에 따른 퇴적물의 각 구성성분만을 따로 분리하여 함께 실험하였다. 실험결과에 대해서는 이하 설명하기로 한다.The researchers conducted various experiments on the removal of contaminants by varying the ratio of oxygen generator and bioball. And only each component of the sediment according to the present invention was separated and tested together. The experimental results will be described below.
(1) 시료 (1) sample
실험에서는 A, D, E, F, G, H의 6개의 퇴적물 개선제를 사용하였고, 대조군(control)으로서 아무런 처리도 하지 않은 시료를 사용하였다. 본 발명과 비교하기 위한 A개선제는 Brachymonas denitrificans, proteinclasticum ruminis 및 박테로이데스 세균을 우점종으로 한 미생물 제제이며, D개선제는 산소발생제로서 MgO2와 CaO2를 주성분으로 하는 개선제이며, E개선제는 제올라이트에 미생물을 수용한 바이오볼만으로 이루어진 개선제이다. In the experiment, six sediment improvers of A, D, E, F, G, and H were used, and a sample without any treatment was used as a control. The A improver for comparison with the present invention is a microbial agent mainly composed of Brachymonas denitrificans, proteinclasticum ruminis and Bacteroides bacterium, and the D improver is an oxygen generating agent, mainly composed of MgO 2 and CaO 2 , and the E improver is zeolite It is an improver consisting of only bioballs that contain microorganisms.
그리고 본 발명에 따른 퇴적물 개선제는 F, G, H로서 F는 바이오볼과 산소발생제를 1:1로 혼합한 것이고, G는 산소발생제와 바이오볼을 2:1로 배합한 것이고, H는 거꾸로 산소발생제와 바이오볼을 1:2로 배합한 것이다. 그리고 바이오볼에는 본 발명에서 예로 언급한 미생물이 모두 포함되게 하였으며, 각 세균은 1×108 ~ 1×109 cfu/g 의 균체수가 되도록 하여 실험하였다. And sediment improver according to the present invention is F, G, H as F is a mixture of a bio ball and an oxygen generator in a 1: 1, G is a mixture of an oxygen generator and a bio ball in a 2: 1, H is Conversely, the oxygen generator and the bioball are combined at 1: 2. In addition, the bioball contained all of the microorganisms mentioned in the examples of the present invention, and each bacterium was tested to have a number of cells of 1 × 10 8 to 1 × 10 9 cfu / g.
(2)실험 방법(2) Experiment method
- 이화학적 성분 분석-Physicochemical Component Analysis
퇴적물의 실험법은 해양환경공정시험법에 준하여 실시하였다. 퇴적물의 pH와 ORP(oxidation Reduction Potential)는 측정기기(ORION model 210A, USA)로 28일간 총 5회 측정하였으며 각 반응조의 퇴적물로부터 전극을 통해 직접 pH 및 ORP를 측정하였다. The sediment test was conducted in accordance with the Marine Environmental Process Test Method. The pH and oxidation reduction potential (ORP) of the sediments were measured five times for 28 days with a measuring instrument (ORION model 210A, USA). The pH and ORP were measured directly from the sediments of each reactor through the electrodes.
COD(Chemical Oxygen Demand)는 알칼리성 과망간산칼륨법으로 측정하였으며, 티오황산나트륨용액의 표정은 250ml 삼각 플라스크에 0.1N 중크롬산나트륨 용액 25ml를 넣은 후, 이 용액에 증류수 약 100ml와 요오드화 칼륨용액 10ml 및 10% 황산용액 2ml를 더하였다. 이 용액을 방냉한 후 0.1N 티오황산나트륨용액으로 적정하였다. 적정 후 역가 f는 다음과 같이 구하였다.Chemical Oxygen Demand (COD) was measured by alkaline potassium permanganate method.The expression of sodium thiosulfate solution was placed in a 250 ml Erlenmeyer flask with 25 ml of 0.1 N sodium dichromate solution, and then 100 ml of distilled water and 10 ml of potassium iodide solution and 10% sulfuric acid solution. 2 ml of solution was added. The solution was allowed to cool and then titrated with 0.1 N sodium thiosulfate solution. The titer f after titration was calculated as follows.
f = 25/(표정시 들어간 양)f = 25 / (quantity entered)
AVS(Acid Volatile Sulfide)는 황 검지관법으로 수행하였으며 습식 퇴적물 2 g을 검지관이 결합 된 가스발생 관에 옮긴 후, 18 N 황산(H2SO4)2㎖를 가하여 일정 시간 동안 펌프로 흡입시킨 후 검지관의 변색이 멈출 때 눈금을 읽어 AVS를 계산하였다. 이때 흡입시간의 준수와 발생가스가 누출되지 않도록 주의하였으며 실험에 이용된 황 검지관은 (Detectop Tube NO. 201H, GASTEC, Japan)을 사용하였다. AVS (Acid Volatile Sulfide) was carried out by the sulfur detection method, and 2 g of wet sediment was transferred to the gas generating pipe combined with the detection pipe, and then 2 ml of 18 N sulfuric acid (H2SO4) was added and pumped for a predetermined time. AVS was calculated by reading the scale when the discoloration of was stopped. At this time, the suction time was observed and the generated gas was not leaked. The yellow detection tube used in the experiment (Detectop Tube NO. 201H, GASTEC, Japan) was used.
T-N(Total Nitrogen)과 T-P(Total Phosphorus)는 습식 퇴적물 20g을 원심분리시켜 상등액을 채취하여 GF/C(47mm)로 여과시키고 희석한 뒤 해수법에 따라 수행하였다. T-N은 알칼리성 과황산칼륨으로 분해하여 질산성 질소로 산화시킨 후 카드뮴-구리 환원칼럼을 통과시켜 질산이온을 아질산 이온으로 환원하여 비색 정량하였으며 분광광도계 UV-1800(Shimadzu, USA)으로 543 nm의 파장에서 흡광도를 측정하였다. T-P는 과황산칼륨으로 산화 분해하여 인산염(PO4-P)형태로 변화시킨 다음 아스코르빈산 환원법으로 비색 정량하였으며 UV-1800(Shimadzu, USA)으로 885 nm의 파장에서 흡광도를 측정하였다.T-N (Total Nitrogen) and T-P (Total Phosphorus) were collected by centrifugation of 20 g of wet sediments, and the supernatant was collected, filtered and diluted with GF / C (47 mm), followed by seawater method. TN was decomposed into alkaline potassium persulfate, oxidized to nitrate nitrogen, and passed through a cadmium-copper reduction column to reduce nitrite ions to nitrite ions. The colorimetric quantification was performed using a spectrophotometer UV-1800 (Shimadzu, USA) to wavelength 543 nm. Absorbance was measured at. T-P was oxidatively decomposed with potassium persulfate, changed to phosphate (PO4-P) form, and then colorimetrically determined by ascorbic acid reduction. Absorbance was measured at a wavelength of 885 nm with UV-1800 (Shimadzu, USA).
퇴적물의 함수율은 항량으로 건조한 후, 무게를 측정한 병에 일정량의 시료의 무게를 측정한 후, 건조온도인 110℃에서 24시간 동안 건조시켰다. 1차 건조가 끝나면 무게를 측정한 후 다시 12시간 이상 건조시킨 후 항량으로 될 때까지 건조하여 건조 후 병의 무게를 측정하였다. 해저 퇴적물의 건조 전 무게와 건조 후 무게 차이를 측정하였다.The moisture content of the sediment was dried in a constant amount, and then weighed in a predetermined amount in a weighed bottle, and then dried at 110 ° C. for 24 hours at a drying temperature. After the first drying, the weight was measured, dried again for 12 hours or more, and dried until the weight was measured, and the weight of the dried bottle was measured. The difference between the weight before drying and the weight after drying was measured.
함수율 = (건조시 시료 무게 - 건조 후 시료 무게)/건조 전 시료 무게Moisture content = (sample weight when drying-sample weight after drying) / sample weight before drying
- 총 생균수(Total Viable Counts: TVCs)Total Viable Counts (TVCs)
분석 시, 시료는 각 반응조의 퇴적토를 100g을 비커에 담은 뒤 30분간 shake하여 상등수를 채취, 100배 희석한 후, 액 1㎖를 Marine Agar배지에 균일하게 접종한 후, 상온에서 이틀간 배양하고, Colony Count로 배지상의 집락(colony)을 계산하고, 희석배수를 곱한 후 최종적으로 결과를 도출하였다.In the analysis, the sample is 100g of sediment of each reactor in a beaker, shaken for 30 minutes, the supernatant is collected, diluted 100-fold, 1 ml of the solution uniformly inoculated in Marine Agar medium, and then incubated for 2 days at room temperature, Colony counts were calculated on the colony count, multiplied by the dilution factor, and finally the result was obtained.
(3) 결과 및 고찰(3) Results and Discussion
A. 개별 개선제(A, D, E)와 복합개선제(F)의 퇴적물에 대한 환경변화조사A. Environmental Change Survey on Sediments of Individual Improvement Agents (A, D, E) and Complex Improvement Agents (F)
[표 1] 개별개선제(A, D, E)와 복합개선제(F)의 퇴적물에 대한 COD분석[Table 1] COD analysis of sediments of individual improvers (A, D, E) and complex improvers (F)
[표 2]개별개선제(A, D, E)와 복합개선제(F)의 퇴적물에 대한 AVS분석[Table 2] AVS analysis of sediments of individual improvers (A, D, E) and complex improvers (F)
[표 3]개별개선제(A, D, E)와 복합개선제(F)의 퇴적물에 대한 T-N 분석[Table 3] T-N analysis of sediments of individual improvers (A, D, E) and complex improvers (F)
[표 4]개별개선제(A, D, E)와 복합개선제(F)의 퇴적물에 대한 T-P 분석[Table 4] T-P analysis of sediments of individual improvers (A, D, E) and complex improvers (F)
[표 5]개별개선제(A, D, E)와 복합개선제(F)의 퇴적물에 대한 총세균수 분석[Table 5] Analysis of total bacterial counts on sediments of individual improvers (A, D, E) and complex improvers (F)
위의 표 1 내지 표 5를 참고하면, 화학적산소요구량(COD), AVS(산성 휘발성 설파이드), 총 질소(T-N), 총 인(T-P) 및 총세균수를 실험한 결과, 개별적 실험항목에서는 D개선제 또는 E개선제가 가장 탁월한 효과가 있는 사항도 있었지만, 전체적으로 보면 본 발명에 따른 개선제 F가 모든 항목에서 고르게 우수한 효과를 나타내는 것으로 확인되었다. Referring to Tables 1 to 5 above, chemical oxygen demand (COD), AVS (acidic volatile sulfide), total nitrogen (TN), total phosphorus (TP) and total bacterial counts were tested. Although there were some matters in which the improver or the E improver had the most excellent effect, it was confirmed that the improver F according to the present invention showed an excellent effect evenly in all items.
본 연구진은 퇴적물 뿐만 아니라 수층에 대해서도 개선제 F에 대한 실험을 진행하였다. 그 결과는 아래와 같다. The researchers tested the improver F on the sediment as well as on the water column. The result is as follows.
B. 개별개선제(A, D, E)와 복합개선제(F)의 수층에 대한 환경변화조사B. Environmental Changes in Water Layers of Individual Improvement Agents (A, D, E) and Complex Improvement Agents (F)
[표 6]개별개선제(A, D, E)와 복합개선제(F)의 수층에 대한 COD 분석[Table 6] COD analysis of water layers of individual improvers (A, D, E) and complex improvers (F)
[표 7]개별개선제(A, D, E)와 복합개선제(F)의 수층에 대한 T-P 분석[Table 7] T-P analysis of the water layer of individual improvers (A, D, E) and complex improvers (F)
[표 8]개별개선제(A, D, E)와 복합개선제(F)의 수층에 대한 PO4-P 분석[Table 8] PO 4 -P Analysis of Water Layers of Individual Enhancers (A, D, E) and Complex Enhancers (F)
[표 9]개별개선제(A, D, E)와 복합개선제(F)의 수층에 대한 T-N 분석[Table 9] T-N analysis of the water layer of individual improvers (A, D, E) and complex improvers (F)
[표 10]개별개선제(A, D, E)와 복합개선제(F)의 수층에 대한 NO2-N 분석[Table 10] NO 2 -N Analysis of Water Layers of Individual Enhancers (A, D, E) and Complex Enhancers (F)
[표 11]개별개선제(A, D, E)와 복합개선제(F)의 수층에 대한 NO3-N 분석[Table 11] NO 3 -N Analysis of Water Layers of Individual Improvement Agents (A, D, E) and Complex Improvement Agents (F)
[표 12]개별개선제(A, D, E)와 복합개선제(F)의 수층에 대한 NH4-N 분석[Table 12] NH 4 -N Analysis of Water Layers of Individual Improvement Agents (A, D, E) and Complex Improvement Agents (F)
위의 표 6 내지 표 12를 참고하면, 화학적산소요구량, 총 인, 인산염 인, 총 질소, 아질산성 질소, 질산성 질소, 암모니아성 질소를 실험한 결과, 개별적 실험항목에서는 D개선제 또는 E개선제가 가장 탁월한 효과가 있는 사항도 있었지만, 전체적으로 보면 본 발명에 따른 개선제 F가 모든 항목에서 고르게 우수한 효과를 나타내는 것으로 확인되었다. Referring to Tables 6 to 12 above, chemical oxygen demand, total phosphorus, phosphate phosphorus, total nitrogen, nitrite nitrogen, nitrate nitrogen, and ammonia nitrogen were tested. Although there were some matters with the most excellent effect, it was confirmed that the improver F according to the present invention showed excellent effects evenly in all items.
한편, 본 연구진은 위 실험은 통해 본 발명에 따른 산소발생제와 미생물을 포함하는 바이오볼을 혼합한 퇴적물 개선제의 우수성에 대하여 확인한 후, 좀 더 구체적으로 산소발생제와 바이오볼의 혼합비율에 따른 효과 차이를 확인하는 실험을 진행하였다. 그 결과는 아래와 같다. On the other hand, the researchers confirmed the superiority of the sediment improver mixed with the bio-ball containing the oxygen generator and the microorganism according to the present invention through the above experiment, more specifically, according to the mixing ratio of the oxygen generator and the bio-ball An experiment was conducted to confirm the difference in effects. The result is as follows.
C. 혼합비율에 따른 퇴적물에 대한 환경변화조사C. Environmental Changes in Sediments According to Mixing Ratio
[표 13] 혼합비율에 따른 퇴적물에 대한 COD분석[Table 13] COD Analysis of Sediments According to Mixing Ratio
[표 14]혼합비율에 따른 퇴적물에 대한 AVS분석[Table 14] AVS Analysis of Sediments by Mixing Ratio
[표 15]혼합비율에 따른 퇴적물에 대한 T-N 분석[Table 15] T-N Analysis of Sediments According to Mixing Ratio
[표 16]혼합비율에 따른 퇴적물에 대한 T-P 분석[Table 16] T-P Analysis of Sediments According to Mixing Ratio
위의 표 13 내지 표 16을 참고하면, 거의; 대부분 항목에서 바이오볼이 산소발생제보다 높은 중량으로 함유되었을 때 그 효과가 더 우수한 것으로 나타났다. 즉 바이오볼 대비 산소발생제가 2:1인 경우가 퇴적물층에 대한 환경처리에 있어서 우수하였다. Referring to Tables 13-16 above, almost; In most cases, the effect was better when the bioball contained higher weight than oxygen generator. That is, when the oxygen generating agent is 2: 1 compared to the bioball, the environmental treatment of the sediment layer was excellent.
본 연구진은 퇴적물 뿐만 아니라 수층에 대해서도 동일한 실험을 진행하였다. 그 결과는 아래와 같다. The researchers conducted the same experiments on the water column as well as the sediments. The result is as follows.
D. 혼합비율에 따른 수층에 대한 환경변화조사D. Investigation of Environmental Changes in Water Layer According to Mixing Ratio
[표 17]혼합비율에 따른 수층에 대한 COD 분석[Table 17] COD Analysis of Water Layers by Mixing Ratio
[표 18]혼합비율에 따른 수층에 대한 T-P 분석[Table 18] T-P Analysis of Water Layer According to Mixing Ratio
[표 19]혼합비율에 따른 수층에 대한 PO4-P 분석[Table 19] PO 4 -P Analysis of Water Layer According to Mixing Ratio
[표 20]혼합비율에 따른의 수층에 대한 T-N 분석Table 20: T-N Analysis of Water Layers with Mix Ratios
[표 21]혼합비율에 따른의 수층에 대한 NO2-N 분석[Table 21] NO 2 -N Analysis of Water Layers with Mix Ratio
[표 22]혼합비율에 따른 수층에 대한 NO3-N 분석[Table 22] NO 3 -N Analysis of Water Layers by Mixing Ratio
[표 23]혼합비율에 따른 수층에 대한 NH4-N 분석[Table 23] NH 4 -N Analysis of Water Layer According to Mixing Ratio
위의 표 17 내지 표 23을 참고하면, 수층에 대한 화학적산소요구량, 총 인, 인산염 인, 총 질소, 아질산성 질소, 질산성 질소, 암모니아성 질소를 실험한 결과, 여기서도 마찬가지로 바이오볼이 산소발생제에 대하여 2배의 중량으로 포함되는 경우가 더 우수한 효과를 나타낸 것으로 확인되었다. Referring to Tables 17 to 23 above, the results of experiments on chemical oxygen demand, total phosphorus, phosphate phosphorus, total nitrogen, nitrite nitrogen, nitrate nitrogen, and ammonia nitrogen for the water layer were found. It was confirmed that the case included at twice the weight with respect to the agent showed a better effect.
그리고 본 연구진은 본 발명에 따른 퇴적물 개선제에 대한 생태영향평가를 수행하였다. 이를 위하여 2종의 저서 성단각류를 선택하여 실험하였다. 저서성 단각류 Mandibulophoxus
mai는 시험 전에 충청남도 태안군 만리포와 천리포 모래사장에서 채집하였고, Monocorophium
acherusicum은 (주)네오엔비즈 연구실에서 상시배양중인 시험개체를 이용하였다. 실험실에서 상시배양중인 M.
acherusicum은 2003년 대부도 갯벌에서 채집한 이후 현재까지 계대배양을 실시하고 있다. In addition, the researchers performed an ecological impact assessment for the sediment improver according to the present invention. For this, two benthic star clusters were selected and tested. The benthic unipod Mandibulophoxus mai was collected on the sands of Manlipo and Cheonlipo , Taean-gun, Chungcheongnam-do prior to the test. acherusicum used test subjects in constant culture at NeoEnbiz Laboratory. M. acherusicum, which has been cultivated in the laboratory at all times, has been subcultured since 2003 when it was collected from the tidal flats of Daebu Island.
실험에 이용한 해수는 인천 영흥도에 위치한 인천수산연구소에서 여과해수를 공급받아 이용하였다. 실험해수의 수질은 배양기간과 실험기간 전 과정 동안에 항상 점검하였다. 기본 수질항목으로는 수온, 염분, pH, 용존산소 및 암모니아를 측정하였다. 온도, 염분 내성실험을 제외하면 종에 관계없이 모든 배양과 실험과정에서 수온은 20±1℃, 염분은 30±1 psu, pH는 8.0±0.5, 용존산소는 >80%, 암모니아는 <1 mg·l-1를 유지하도록 하였다. 실험해수는 해수독성시험(water-only test)의 경우 폭기하지 않는 대신 매일 교환하였고, 퇴적물 독성시험의 경우 배양해수(overlying water)를 폭기하면서 5일에 한번 교환해 주었다.The seawater used for the experiment was supplied by filtered seawater from the Incheon Fisheries Research Institute located in Yeongheung-do, Incheon. The quality of the experimental seawater was always checked during the incubation period and throughout the experimental period. Basic water quality items were water temperature, salinity, pH, dissolved oxygen and ammonia. Except for temperature and salt tolerance experiments, water temperature was 20 ± 1 ℃, salinity was 30 ± 1 psu, pH was 8.0 ± 0.5, dissolved oxygen was> 80% and ammonia was <1 mg, regardless of species. L-1 was maintained. Experimental seawater was exchanged daily instead of aeration in the water-only test, and exchanged once every 5 days in the aeration of the overlying water in the sediment toxicity test.
본 연구에서 결과를 제시한 환경요인 내성 및 유해물질 민감도 파악 시험 및 현장 퇴적물 독성시험 방법에 대한 자세한 설명은 기존 문헌을 참조한다(Lee et al., 2005a; 이 등, 2005). 단각류를 이용한 생태영향시험법은 10일 동안의 단기 노출 영향을 반영하므로 다른 만성 시험법에 비해 다소 민감도가 낮을 수 있지만, 시험법이 전 세계적으로 퇴적물의 독성 시험평가에서 가장 널리 이용될 뿐만 아니라, 가장 기본적인 시험법으로 인식되고 있다. 이 시험법은 퇴적물 유해물질 오염에 의한 생물영향에 대해 신속 스크리닝이라는 목적에 따라 보다 널리 활용될 필요가 있다. Refer to the existing literature for a detailed description of the environmental factor tolerance and hazardous substance sensitivity testing and site sediment toxicity testing methods presented in this study (Lee et al., 2005a; Lee et al., 2005). The ecological impact test using shellfish reflects the effects of short-term exposure over 10 days, so it may be somewhat less sensitive than other chronic tests, but the test method is not only the most widely used in sediment toxicity testing worldwide. It is recognized as the most basic test method. This test method needs to be used more widely for the purpose of rapid screening for biological effects of sediment hazardous material contamination.
저서성 단각류를 이용한 퇴적물 생태독성 평가는 실험생물인 저서성 단각류를 10일간 퇴적물 노출배양한 이후 각 실험구와 대조구에서 생존율 또는 사망률을 비교하여 생물영향을 평가하는 시험법으로 널리 활용되고 있다 (해양환경공정기준 별첨 3. 폐기물공정시험기준 참조).Sediment ecotoxicity assessment using benthic monopods has been widely used as a test method for assessing biological effects by comparing the survival rate or mortality in experimental and control groups after exposure to benthic monopods for 10 days. Refer to Annex 3. Waste Process Test Criteria).
실험실에서 계대배양 중인 저서성 단각류 M.
acherusicum은 망목 500-㎛인 표준체는 통과하고 300-㎛ 표준체는 통과하지 못하는 개체를, M. mai는 2 mm 표준체는 통과하고 1 mm 표준체는 통과하지 못하는 개체를 선별하여 시험에 이용하였으며, 외관상 상처나 부속지의 손상이 없이 건강하고 움직임이 활발한 개체만을 선별하여 실험에 이용하였다.The benthic monopod M. acherusicum, which is passaged in the laboratory, passes through the standard 500-μm mesh and passes the 300-μm standard, while the M. mai passes the 2 mm standard and the 1 mm standard does not Was selected for the test, and only healthy and active subjects were selected and used in the experiment without any external wounds or damage to appendages.
퇴적물 개선제와 함께 시험에 사용한 퇴적물은 동일 정점에서 수차례에 걸쳐 채취된 것을 혼합하여 채취된 시료간의 퇴적물 특성의 차이를 최소화하여 사용하였다. 이렇게 균질화된 퇴적물은 500-㎛의 표준체를 통과시켜 굵은 입자와 내서 생물을 제거한 후 실험에 사용하였다.The sediments used for the test with the sediment improver were used to minimize the difference in sediment characteristics between the samples collected by mixing several times taken from the same peak. This homogenized sediment was passed through a 500-㎛ standard to remove coarse particles and endogenous organisms and used in the experiment.
10일간의 노출이 끝난 후, 300-㎛의 표준체로 걸러서 체에 남은 개체들을 수거하여 현미경으로 생존한 개체와 사망한 개체를 관찰하여 각각을 계수하였으며, 계수된 결과를 이용하여 생존율(또는 사망률)은 다음과 같은 식으로 계산하였다.After 10 days of exposure, 300-μm standard sieves were collected and the remaining subjects were collected and counted by observing surviving and deceased individuals under a microscope, and counting the survival rates (or mortality rates) using the counted results. Was calculated by the following equation.
S (%) = (Nf / N0) 100, M (%) = 100 - SS (%) = (Nf / N0) 100, M (%) = 100-S
[S: 생존율; Nf = 최종 생존개체수; N0: 초기투입 개체수, M: 사망률][S: survival rate; Nf = number of final surviving individuals; N0: initial input population, M: mortality rate]
각 시료의 생존율이 대조구와 통계적 차이가 있는지 여부를 알아보기 위하여 Student's t-test를 실시하여 독성의 유무를 판단하였으며, 저서성 단각류를 이용한 퇴적물 개선제에 대한 생태영향시험의 수행조건은 아래의 표 24에 정리하였다. To determine whether the survival rate of each sample was statistically different from that of the control group, Student's t-test was conducted to determine the toxicity. The conditions of ecological impact test for sediment modifiers using benthic shellfish are shown in Table 24 below. Summarized in
[표 24]TABLE 24
퇴적물 개선제에 대한 생태영향평가를 위하여 2종의 저서성단각류를 선택하여 실험하였다. 저서성 단각류 Mandibulophoxus
mai와 Monocorophium
acherusicum을 이용하였다. 생태영향평가를 수행한 퇴적물 개선제는 바이오볼과 산소공급제를 1:1 ~ 9:1의 범위에서 실험하였다. 그리고 퇴적물에 살포하는 방식과 혼합하는 방식으로 나누어서 실험하였다. For the ecological impact assessment of sediment modifiers, two benthic monopods were selected and tested. Benthic Monopods Mandibulophoxus mai with Monocorophium acherusicum was used. Sediment modifiers for ecological impact assessments were tested for bioballs and oxygen supplies in the range of 1: 1 to 9: 1. And the experiment was divided into a method of spraying and mixing the sediment.
퇴적물개선제 혼합사용에 대한 생태영향평가 결과, 산소공급제와 바이오볼을 혼합하여 사용하는 경우, 바이오볼의 구성비가 75 % 이상이면 퇴적물 표면에 살포하는 방식 또는 혼합하는 방식 모두 생태영향이 없는 것으로 나타났다(표 25 참고). As a result of ecological impact assessment for the use of sediment improver, it was found that there is no ecological effect when spraying or mixing the surface of sediment when the composition of the bioball is 75% or more. (See Table 25).
[표 25]TABLE 25
즉, 생태독성평가 결과 바이오볼이 산소공급제에 비하여 3배 이상의 중량%로 혼합되는 것이 바람직하다. 범위를 좀 넓히는 경우 적어도 2배 이상으로 포함되어야 할 것으로 보인다. 그리고 3배가 넘는 경우라면 그 이상으로 바이오볼이 더 요구되는 것은 아니기 때문에, 정리하면 산소공급제 100 중량부에 대하여 바이오볼 200~350 중량부 수준으로 배합되는 것이 퇴적물과 수층의 환경처리 및 생태독성의 관점에서 가장 우수한 것으로 확인되었다. That is, it is preferable that the bioball is mixed by more than three times by weight of the bioball as compared with the oxygen supply agent. If you broaden the range, it should be included at least twice. And if more than three times more than the bio ball is not required, in summary, the bio-ball with 200 to 350 parts by weight of 100 parts by weight of oxygen supply, sediment and water layer environmental treatment and ecotoxicity It was confirmed that the best in terms of.
이상에서 설명한 바와 같이, 본 발명에서는 제오라이트에 미생물을 담지한 바이오볼과, 칼슘과 마그네슘의 과산화물로 이루어진 산소공급제를 혼합하여 연안 표층의 퇴적물 개선제로 활용한다. 본 발명에 따른 퇴적물 개선제는 연안 표층의 화학적 산소요구량, 총질소, 총인 등 다양한 환경 항목에서 우수한 효과가 있음을 확인하였다. 특히 바이오볼이 산소공급제보다 2배 이상, 더욱 바람직하게는 바이오볼이 3배 이상 혼합될 때 생태독성을 포함한 모든 항목에서 우수한 효과를 발휘한다. 본 발명에 따른 퇴적물 개선제를 이용함과 동시에 연안 수층의 빈산소 수괴층을 해소하는 기술을 함께 도입하여 연안의 생태환경을 친환경적으로 변화시킬 수 있을 것이다. As described above, in the present invention, a bioball having microorganisms supported on zeolite and an oxygen supply agent composed of a peroxide of calcium and magnesium are mixed to use as a sediment improver for the coastal surface layer. Sediment improver according to the present invention was confirmed to have an excellent effect in a variety of environmental items such as chemical oxygen demand, total nitrogen, total phosphorus of the coastal surface layer. In particular, when the bioball is more than two times, more preferably three times more than the oxygen supply agent, it exerts an excellent effect in all items including ecotoxicity. In addition to using the sediment improving agent according to the present invention at the same time by introducing a technique for resolving the empty oxygen lumps in the coastal water layer will be able to environmentally change the ecological environment of the coast.
Claims (8)
- 연안 표층의 오염된 퇴적물에 살포되어 오염된 퇴적물을 정화하기 위한 것으로서, It is intended to purify contaminated sediments by spraying them on the coastal surface.연안 표층 퇴적물에 산소를 공급하기 위한 산소발생제; 및 Oxygen generators for supplying oxygen to coastal surface sediments; And다공성의 결정질 물질을 담체로 하여 상기 퇴적물 내 유기물과 오염물을 제거하기 위한 미생물을 고정시킨 바이오 볼;을 포함하며, And a bio ball fixed with microorganisms for removing organic substances and contaminants in the deposit using a porous crystalline material as a carrier.상기 미생물은 포토트로픽(phototrophic) 박테리아, 락토바실루스(lactobacillus) 박테리아, 바실루스(bacillus) 박테리아 및 수도모나스(pseudomonas) 박테리아를 포함하는 것을 특징으로 하는 연안 표층 퇴적물 개선제. The microorganism is a coastal surface sediment improver comprising a phototrophic bacteria, lactobacillus bacteria, bacillus bacteria and pseudomonas bacteria.
- 제1항에 있어서, The method of claim 1,상기 담체에 지질분해 효모(yeast) 및 수도모나스(pseudomonas) 박테리아가 추가적으로 고정되는 것을 특징으로 하는 연안 표층 퇴적물 개선제. Lipolysis yeast (seeast) and pseudomonas (pseudomonas) bacteria to the carrier further characterized in that the surface sediment improver.
- 제1항에 있어서, The method of claim 1,니트로소모나스(nitrosomonas) 박테리아가 추가적으로 상기 담체에 고정되는 것을 특징으로 하는 연안 표층 퇴적물 개선제. Nitrosomonas (nitrosomonas) bacterium surface sediment improver, characterized in that additionally fixed to the carrier.
- 제1항에 있어서, The method of claim 1,니트로박터(nitrobacter) 박테리아가 추가적으로 상기 담체에 고정되는 것을 특징으로 하는 연안 표층 퇴적물 개선제. A surface superficial sediment improver, characterized in that the nitrobacter bacteria are additionally immobilized on the carrier.
- 제1항에 있어서, The method of claim 1,상기 미생물은 브라키모나스 데니트리피컨스(Brachymonas denitrificans) 및 박테로이데스 세균(bacteroidales)을 포함하는 것을 특징으로 하는 연안 표층 퇴적물 개선제. The microorganism is a coastal surface sediment improver comprising brachymonas denitrificans and bacteroidales bacteria.
- 제1항에 있어서, The method of claim 1,상기 미생물은 배지아토아(beggiatoa), 씨오트릭스(thiothrix), 씨오플로카(thioploca), 아크로마티움(acromatium), 애시드티오바실루스(acidthiobacillus), 크로마티움(chromatium), 씨오카프사(thiocapsa) 및 클로로비움(chlorobium)을 모두 포함하는 것을 특징으로 하는 연안 표층 퇴적물 개선제. The microorganisms include beggiatoa, thiothrix, thioploca, acromatium, acidthiobacillus, chromatium, thiocapsa, and Coastal surface sediment improver comprising all of the chlorobium (chlorobium).
- 제1항에 있어서,The method of claim 1,상기 산소발생제는 마그네슘과 칼슘의 수산화물, 산화물 및 과산화물 중 어느 하나의 형태인 것을 특징으로 하는 연안 표층 퇴적물 개선제. The oxygen generator is a coastal surface sediment improver, characterized in that any one of the form of hydroxides, oxides and peroxides of magnesium and calcium.
- 제1항에 있어서, The method of claim 1,상기 산소발생제 100 중량부에 대하여, 상기 바이오 볼은 200 ~ 350 중량부의 비율로 배합되는 것을 특징으로 하는 연안 표층 퇴적물 개선제. With respect to 100 parts by weight of the oxygen generating agent, the bio-ball is a coastal surface sediment improver, characterized in that blended at a ratio of 200 to 350 parts by weight.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160023976A KR20170101448A (en) | 2016-02-29 | 2016-02-29 | Microbial and chemical agents for remediation of coastal bottom sediments |
KR10-2016-0023977 | 2016-02-29 | ||
KR1020160023977A KR20170101449A (en) | 2016-02-29 | 2016-02-29 | Microbial and chemical agents for remediation of coastal bottom sediments |
KR10-2016-0023976 | 2016-02-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017150742A1 true WO2017150742A1 (en) | 2017-09-08 |
Family
ID=59743935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/001982 WO2017150742A1 (en) | 2016-02-29 | 2016-02-29 | Coastal surface sediment remediation agent |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017150742A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108865944A (en) * | 2018-07-18 | 2018-11-23 | 河南兰贵坊水族用品科技有限公司 | A kind of microorganism live bacteria agent for fish raising |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001087782A (en) * | 1999-09-27 | 2001-04-03 | Baioseru:Kk | Foamed carrier for microorganism immobilizing treatment and method for treating waste water such as organic waste water and eutrophicated water using the foamed carrier |
JP2002136957A (en) * | 2000-11-06 | 2002-05-14 | Toshiaki Saito | Garbage treatment method, soil or ground improvement agent, recovery material of oil polluting sea and lake |
KR20090004927A (en) * | 2006-03-08 | 2009-01-12 | 지멘스 워터 테크놀로지스 코포레이션 | Wastewater treatment system and method |
KR101041607B1 (en) * | 2010-01-27 | 2011-06-15 | 시원해양 주식회사 | Bio restorating agent for purificating polluted ground and water deposit |
KR20130069283A (en) * | 2011-12-15 | 2013-06-26 | 주식회사 소미테크 | Composition for treating sewage and a method for treating sewage using the same |
-
2016
- 2016-02-29 WO PCT/KR2016/001982 patent/WO2017150742A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001087782A (en) * | 1999-09-27 | 2001-04-03 | Baioseru:Kk | Foamed carrier for microorganism immobilizing treatment and method for treating waste water such as organic waste water and eutrophicated water using the foamed carrier |
JP2002136957A (en) * | 2000-11-06 | 2002-05-14 | Toshiaki Saito | Garbage treatment method, soil or ground improvement agent, recovery material of oil polluting sea and lake |
KR20090004927A (en) * | 2006-03-08 | 2009-01-12 | 지멘스 워터 테크놀로지스 코포레이션 | Wastewater treatment system and method |
KR101041607B1 (en) * | 2010-01-27 | 2011-06-15 | 시원해양 주식회사 | Bio restorating agent for purificating polluted ground and water deposit |
KR20130069283A (en) * | 2011-12-15 | 2013-06-26 | 주식회사 소미테크 | Composition for treating sewage and a method for treating sewage using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108865944A (en) * | 2018-07-18 | 2018-11-23 | 河南兰贵坊水族用品科技有限公司 | A kind of microorganism live bacteria agent for fish raising |
CN108865944B (en) * | 2018-07-18 | 2022-07-01 | 德州迈科生物技术有限公司 | Microbial live bacteria agent for fish breeding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
John et al. | Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium | |
KR101041607B1 (en) | Bio restorating agent for purificating polluted ground and water deposit | |
CN109486721B (en) | Pseudomonas putida and application thereof | |
CN113149339B (en) | Composite material for treating blue algae bloom and its use | |
CN1844361A (en) | Polycyclic aromatic hydrocarbon degrading bacteria and use thereof | |
CN101397545B (en) | O-nitrobenzaldehyde degrading bacteria and use thereof | |
WO2015046664A1 (en) | Alcaligenes faecalis ebn-ns13 (kctc 12471bp) having remarkable nitrification and denitrification capacity | |
CN102533582A (en) | Efficient degradation bacteria for PBDEs (polybrominated diphenyl ethers) and application thereof | |
CN107673558B (en) | Black and odorous water body purification method | |
CN110591947B (en) | Heterotrophic ammonia oxidizing bacteria and application thereof | |
Yazdi et al. | Removal of penicillin in aqueous solution using chlorella vulgaris and spirulina platensis from hospital wastewater | |
Muthukrishnan et al. | Identification of indigenous bacteria isolated from shrimp aquaculture wastewater with bioremediation application: total ammoniacal nitrogen (TAN) and nitrite removal | |
WO2017150742A1 (en) | Coastal surface sediment remediation agent | |
Qu et al. | Optimizing concentration and interaction mechanism of Demodesmus sp. and Achromobacter pulmonis sp. consortium to evaluate their potential for dibutyl phthalate removal from synthetic wastewater | |
Yang et al. | Oligotrophic Nitrification and Denitrification Bacterial Communities in a Constructed Sewage Treatment Ecosystem and Nitrogen Removal of NF4 | |
KR20170101449A (en) | Microbial and chemical agents for remediation of coastal bottom sediments | |
Lin et al. | Removal of nitrogen, phosphorus, and organic pollutants from water using seeding type immobilized microorganisms | |
Timmermann et al. | Effects of the polychaetes Arenicola marina and Nereis diversicolor on microbial pyrene mineralization | |
JP2004261123A (en) | Female hormone decomposing bacterium and its application | |
KR20170101448A (en) | Microbial and chemical agents for remediation of coastal bottom sediments | |
Kfir et al. | Detection of toxic substances in water by means of a mammalian cell culture technique | |
JP3553253B2 (en) | Biological nitrification denitrification method | |
Raja et al. | Bioremediation by using of microbes and algae with special reference to coastline environment | |
KR100693865B1 (en) | 0210-09 [-11368] Development of the isolate Pseudomonas fluorescens HYK0210-SK09 against the harmful diatom in fresh water growth control method and bio-agent using the isolate | |
Hamlett | Alteration of a salt marsh bacterial community by fertilization with sewage sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16892755 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.01.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16892755 Country of ref document: EP Kind code of ref document: A1 |