WO2017150355A1 - 超音波診断装置及び超音波情報処理方法 - Google Patents
超音波診断装置及び超音波情報処理方法 Download PDFInfo
- Publication number
- WO2017150355A1 WO2017150355A1 PCT/JP2017/006978 JP2017006978W WO2017150355A1 WO 2017150355 A1 WO2017150355 A1 WO 2017150355A1 JP 2017006978 W JP2017006978 W JP 2017006978W WO 2017150355 A1 WO2017150355 A1 WO 2017150355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display
- frame
- unit
- evaluation value
- ultrasonic
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
Definitions
- the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic information processing method.
- an ultrasonic diagnostic apparatus that can observe tissue structure and properties by irradiating an ultrasonic wave inside a subject, receiving the reflected wave, and imaging or analyzing it.
- ultrasonic diagnosis a subject can be examined non-destructively and non-invasively.
- a strain elastography technique for imaging a strain distribution generated by applying pressure to a subject of an object using an ultrasonic probe is known.
- the hardness of an object can be evaluated from the difference in relative distortion between the object (for example, a tumor) and a reference (for example, fat).
- An ultrasonic diagnostic apparatus is known in which the acquired frame group and the compression direction are linked to such a background, and the selection of a frame that is uniformly compressed by the user is simplified (see Patent Document 1). ).
- This ultrasonic diagnostic apparatus can display an elastic image of a frame with a good compression direction.
- the pressed state can be confirmed, but basically a single feature amount is displayed. For example, a plurality of compression strengths, compression directions, and the like are displayed. When it is desired to make a comprehensive determination based on the characteristics, it is necessary to switch the display, which may make the operation complicated.
- An object of the present invention is to make it possible to easily select a frame of an elastic image with a good pressing state based on a plurality of types of feature amounts.
- an ultrasonic diagnostic apparatus comprises: An ultrasonic diagnostic apparatus that applies pressure to an object by an ultrasonic probe that transmits and receives ultrasonic waves, transmits and receives ultrasonic waves to the object of the object, and measures the hardness of the object, A transmission unit for transmitting a drive signal to the ultrasonic probe; A reception unit for processing a reception signal output from the ultrasonic probe; A transmission / reception unit for transmitting a drive signal to the ultrasonic probe and processing a reception signal output from the ultrasonic probe; Based on the processed received signal, a feature amount calculation unit that calculates a plurality of types of feature amounts indicating the pressed state for each frame of the elastic image; An evaluation value is calculated from the plurality of calculated feature amounts, and based on the evaluation value, an evaluation value calculation unit that generates information of a stable section including a frame having a good pressing state; A display control unit that displays information on the generated stable section on a display unit.
- the invention according to claim 2 is the ultrasonic diagnostic apparatus according to claim 1,
- An elastic image generation unit that generates elastic image data based on the received signal
- the feature amount calculation unit generates display information of the calculated plurality of feature amounts
- a storage unit for storing the generated elasticity image data and display information of a plurality of feature amounts
- an operation input unit that receives an input of a type of the characteristic amount to be displayed among the plurality of characteristic amounts and an input of a display frame of the elastic image data to be displayed;
- the display control unit includes the stored elasticity image data corresponding to the input display frame, display information of the stored feature amount corresponding to the type of the display frame and the input feature amount, Is displayed on the display unit.
- the invention according to claim 3 is the ultrasonic diagnostic apparatus according to claim 2,
- the display information of the feature amount includes display information indicating whether or not the display frame is a stable section.
- the invention according to claim 4 is the ultrasonic diagnostic apparatus according to claim 2 or 3,
- the evaluation value calculation unit includes a cine frame selection bar that indicates a frame of a stable section among a plurality of frames as information of the generated stable section, a display frame of an elastic image, and a cursor that can be moved and changed. And the initial display frame corresponding to the cursor is set as the display frame in the stable section.
- the invention according to claim 5 is the ultrasonic diagnostic apparatus according to any one of claims 2 to 4,
- the evaluation value calculation unit includes a cine frame selection bar that indicates a frame of a stable section among a plurality of frames as information of the generated stable section, a display frame of an elastic image, and a cursor that can be moved and changed.
- Produces A cursor control unit configured to set a movement speed of the cursor slower when the cursor is within the stable section than when the cursor is outside the stable section;
- the invention according to claim 6 is the ultrasonic diagnostic apparatus according to any one of claims 2 to 5, Based on the evaluation value, the evaluation value calculation unit makes the frame immediately before the freeze operation more likely to be a stable interval than the frame other than immediately before the freeze operation, and generates stable interval information.
- the invention according to claim 7 is the ultrasonic diagnostic apparatus according to any one of claims 1 to 6,
- An elastic image generation unit that generates elastic image data based on the received signal, In the live mode, the display control unit displays the generated elasticity image data and the generated stable section information on the display unit.
- the invention according to claim 8 is the ultrasonic diagnostic apparatus according to claim 7, A freeze control unit configured to perform freeze setting when the calculated evaluation value satisfies a predetermined condition.
- the invention according to claim 9 is: An ultrasonic information processing method for applying pressure to an object by an ultrasonic probe that transmits and receives ultrasonic waves and transmitting and receiving ultrasonic waves to the object of the object and measuring the hardness of the object, Transmitting a drive signal to the ultrasonic probe; Processing the received signal output from the ultrasound probe; Based on the processed received signal, calculating a plurality of types of feature amounts indicating a pressed state for each frame of the elastic image; Calculating an evaluation value from the plurality of calculated feature amounts, and generating information on a stable section including a frame having a good pressing state based on the evaluation value; Displaying information on the generated stable section on a display unit.
- FIG. 1 is an external view of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. It is a block diagram which shows the function structure of an ultrasonic diagnosing device. It is a conceptual diagram which shows evaluation value calculation from a some feature-value. It is a figure which shows distribution of the evaluation value with respect to time. It is a figure which shows a cine frame selection bar. It is a flowchart which shows an elasticity image display process. It is a figure which shows the display image containing a synthetic elasticity image.
- FIG. 1 is an external view of an ultrasonic diagnostic apparatus 100 according to the present embodiment.
- FIG. 2 is a block diagram showing a functional configuration of the ultrasonic diagnostic apparatus 100.
- the ultrasonic diagnostic apparatus 100 is an apparatus that displays and outputs an ultrasonic image of a state of a living body tissue of a subject such as a living body of a patient. That is, the ultrasonic diagnostic apparatus 100 transmits ultrasonic waves (transmission ultrasonic waves) to the inside of a subject such as a living body, and transmits reflected ultrasonic waves (reflected ultrasonic waves: echoes) reflected within the subject. Receive. The ultrasound diagnostic apparatus 100 converts the received reflected ultrasound into an electrical signal, and generates ultrasound image data based on this. The ultrasonic diagnostic apparatus 100 displays the internal state in the subject as an ultrasonic image based on the generated ultrasonic image data. The ultrasonic diagnostic apparatus 100 also has a strain elastography function that shows a strain distribution inside the subject to which pressure is applied.
- the ultrasonic diagnostic apparatus 100 includes an ultrasonic diagnostic apparatus main body 1 having an operation input unit 11 and a display unit 20, an ultrasonic probe 2, and a cable 3.
- the ultrasonic probe 2 transmits transmission ultrasonic waves to the inside of the subject and receives reflected ultrasonic waves from the inside of the subject.
- the ultrasonic diagnostic apparatus main body 1 is connected to the ultrasonic probe 2 via the cable 3, and transmits an electric signal drive signal to the ultrasonic probe 2 so that the ultrasonic probe 2 is connected to the inside of the subject.
- the ultrasonic diagnostic apparatus main body 1 also receives a reception signal that is an electrical signal generated by the ultrasonic probe 2 in response to the reflected ultrasonic wave from the subject received by the ultrasonic probe 2. Then, ultrasonic image data is generated and displayed using the received signal.
- the ultrasonic probe 2 includes a transducer 2a (see FIG. 2) made of a piezoelectric element.
- a transducer 2a made of a piezoelectric element.
- a plurality of the transducers 2a are arranged in a one-dimensional array in the azimuth direction (scanning direction).
- the ultrasonic probe 2 including 192 transducers 2a is used.
- the vibrators 2a may be arranged in a two-dimensional array.
- the number of vibrators 2a can be set arbitrarily.
- a linear electronic scanning probe is used as the ultrasonic probe 2 to perform ultrasonic scanning by the linear scanning method.
- either the sector scanning method or the convex scanning method is used. It can also be adopted.
- Communication between the ultrasonic diagnostic apparatus main body 1 and the ultrasonic probe 2 may be performed by wireless communication such as UWB (Ultra Wide Band) instead of wired communication via the cable 3.
- UWB Ultra Wide Band
- the ultrasonic diagnostic apparatus body 1 includes, for example, an operation input unit 11, a transmission unit 12, a reception unit 13, a B-mode image generation unit 14, a storage unit 14a, and an elastic image generation unit. 15, a storage unit 15a, an elastic image composition unit 16, a feature amount calculation unit 17, an evaluation value calculation unit 18, a display image generation unit 19 as a display control unit, a display unit 20, a cursor control unit, And a control unit 21 as a freeze control unit.
- the operation input unit 11 includes, for example, various switches, buttons, a trackball, a mouse, and a keyboard for an inspector such as a doctor or an engineer to input data such as a command for starting diagnosis or personal information of a subject. Etc., and outputs an operation signal to the control unit 21.
- the operation input unit 11 includes a touch panel provided on the display screen of the display unit 20.
- the transmission unit 12 is a circuit that supplies a drive signal, which is an electrical signal, to the ultrasonic probe 2 via the cable 3 according to the control of the control unit 21 and causes the ultrasonic probe 2 to generate transmission ultrasonic waves.
- the transmission unit 12 includes, for example, a clock generation circuit, a delay circuit, a time and voltage setting unit, and a pulse generation circuit.
- the clock generation circuit is a circuit that generates a clock signal that determines the transmission timing and transmission frequency of the drive signal.
- the delay circuit sets a delay time for each individual path corresponding to each transducer corresponding to the transmission timing of the drive signal, delays the transmission of the drive signal by the set delay time, and transmits the transmission beam constituted by the transmission ultrasonic waves. This is a circuit for focusing.
- the time and voltage setting unit is a circuit that sets the voltage of the pulse width of the pulse signal generated from the pulse generation circuit and the voltage of the amplitude.
- the pulse generation circuit is a circuit for generating a pulse signal as a drive signal in accordance with the time and voltage set by the time and voltage setting unit.
- the transmitter 12 configured as described above drives, for example, a continuous part (for example, 64) of a plurality (for example, 192) of the transducers 2a arranged in the ultrasound probe 2. Then, transmit ultrasonic waves are generated. Then, the transmission unit 12 performs scanning (scanning) by shifting the driven vibrator in the azimuth direction each time transmission ultrasonic waves are generated.
- the receiving unit 13 is a circuit that receives a reception signal, which is an electrical signal, from the ultrasound probe 2 via the cable 3 under the control of the control unit 21 and generates sound ray data by performing signal processing on the reception signal. .
- the receiving unit 13 includes, for example, an amplifier, an A / D conversion circuit, and a phasing addition circuit.
- the amplifier is a circuit for amplifying a received signal with a preset amplification factor for each individual path corresponding to each transducer.
- the A / D conversion circuit is a circuit for A / D converting the amplified received signal.
- the phasing addition circuit adjusts the time phase by giving a delay time to each individual path corresponding to each transducer with respect to the A / D converted received signal, and adds these (phasing addition) to generate a sound ray. It is a circuit for generating data.
- the B-mode image generation unit 14 Under the control of the control unit 21, the B-mode image generation unit 14 performs envelope detection processing, logarithmic amplification, and the like on the sound ray data from the reception unit 13, and adjusts the dynamic range and gain to perform luminance conversion.
- B (Brightness) mode ultrasonic image data (B-mode image data) is generated as tomographic image data.
- the B-mode image data represents the intensity of the received signal by luminance.
- the storage unit 14a is a storage unit configured by a semiconductor memory such as a flash memory.
- the B mode image generation unit 14 stores the generated B mode image data in association with the frame number (time) in the storage unit 14a as cine frame cine image data in units of frames.
- the B-mode image generation unit 14 reads out the B-mode image data stored in the storage unit 14 a and outputs the B-mode image data to the elastic image synthesis unit 16 under the control of the control unit 21.
- the elastic image generation unit 15 performs an operation on the sound ray data from the reception unit 13 according to the control of the control unit 21, converts it into a distortion amount as elastic information, and performs color mapping to convert the elastic image data. Generate.
- the size of the image of the elasticity image data generated by the elasticity image generation unit 15 is the size of the ROI (Region Of : Interest: region of interest) designated and input by the examiner via the operation input unit 11. It is not limited, and it may be the same as the image size of the B-mode image data.
- the storage unit 15a is a storage unit configured by a semiconductor memory such as a flash memory.
- the examiner grasps the ultrasonic probe 2 and applies pressure to the body surface of the subject.
- the pressure applied from the ultrasonic probe 2 to the subject changes due to the vibration of the examiner himself or the breathing of the subject.
- the upper end of an object such as a tumor is located at a distance xr in the depth direction (X direction) from the body surface in contact with the ultrasound probe 2 in the subject before the pressure is applied.
- the width of the object in the depth direction is L.
- the elastic image generation unit 15 appropriately stores and reads the sound ray data from the reception unit 13 in the storage unit 15a for each frame.
- sound ray data of two frames that are temporally continuous is acquired.
- the pressurized state of the subject corresponding to the first signal waveform of the sound ray data of the first frame is set as the first pressurized state, and the second signal waveform of the sound ray data of the second frame is handled.
- the pressurized state of the subject to be performed is the second pressurized state.
- the elastic image generation unit 15 extracts a phase difference component at each time between the first signal waveform and the second signal waveform, and according to a correlation between each time and the phase difference component at each time. Then, the distortion difference and the initial phase difference relating to the frequency difference between the first signal waveform and the second signal waveform are calculated, and the distortion amount is calculated based on the distortion difference. The elastic image generation unit 15 calculates the distortion amount for all the pixels, and generates image data including the distortion amount pixels.
- the elastic image generation unit 15 generates elastic image data by coloring the image data of the distortion amount by color mapping in which the distortion amount increases in the order of blue ⁇ green ⁇ yellow ⁇ red, for example.
- the distortion amount is expressed in the order of black ⁇ white.
- the elastic image generation unit 15 stores the generated elastic image data as cine image data of the cine frame in the storage unit 15a in association with the frame number (time) in units of frames.
- the elastic image generation unit 15 reads the elastic image data stored in the storage unit 15 a and outputs the elastic image data to the elastic image synthesis unit 16 under the control of the control unit 21.
- the elastic image composition unit 16 applies predetermined elasticity image data generated by the elastic image generation unit 15 to the B mode image data generated by the B mode image generation unit 14. To generate composite elastic image data.
- the feature amount calculation unit 17 includes the elasticity image data generated by the elasticity image generation unit 15, the sound ray data generated by the reception unit 13, and the information stored in the storage unit 17a. Using at least one, calculate a plurality of types of feature amounts indicating the pressed state of the subject for each frame of the elastic image data, and generate display information of a plurality of feature amounts indicating the calculated feature amounts, The elastic image data and the display information of the plurality of feature amounts are output to the evaluation value calculation unit 18, and the display information of the plurality of feature amounts is stored in the storage unit 17a.
- the storage unit 17a is a non-volatile storage unit configured by a semiconductor memory such as a flash memory.
- the feature amount calculation unit 17 calculates three types of feature amounts: an elastic image distortion amount d, a distortion amount tempo b, and a confidence value s.
- the type and number of feature amounts calculated by the feature amount calculation unit 17 are not limited to this example.
- the feature amount calculation unit 17 uses the elastic image data generated by the elastic image generation unit 15 to calculate the distortion amount d of the elastic image defined by the average distortion amount in the elastic image (ROI) by the following equation (1). calculate.
- ROI all pixels of elastic image data
- x distortion amount in variable q of pixels in elastic image
- n number of pixels in ROI.
- the feature amount calculation unit 17 uses the elastic image data of a plurality of continuous frames generated by the elastic image generation unit 15 to calculate the sine of the time waveform of the distortion amount of the elastic image (ROI) by the following equation (2).
- a tempo b of the distortion amount of the elastic image defined by the similarity to the waveform / cosine waveform is calculated.
- the feature amount calculation unit 17 appropriately writes and reads the elasticity image data generated by the elasticity image generation unit 15 in the storage unit 17a, and uses it as elasticity image data of a plurality of continuous frames.
- D ( ⁇ ) FFT (D (t)), D (t): time waveform of distortion amount, and t: time / frame number.
- the feature amount calculation unit 17 uses the sound ray data of the continuous frames generated by the reception unit 13 and calculates the elasticity image defined by the correlation value of the sound ray data of the two consecutive frames according to the following equation (3). A confidence value (restoration rate) s is calculated. At this time, the feature amount calculation unit 17 appropriately writes and reads the sound ray data of each frame generated by the reception unit 13 in the storage unit 17a and uses it as the sound ray data of the continuous frames.
- s AutoCorr (f (x), fprev (x + ⁇ x)) (3)
- AutoCorr is an autocorrelation calculation
- f (x) signal waveform of sound ray data at a position in the depth direction (depth x) of the current frame
- f prev (x + ⁇ x) a position in the depth direction of the previous frame ( It is a signal waveform of sound ray data at depth x + ⁇ x).
- the feature quantity calculation unit 17 uses the calculated current and past feature quantities to calculate the current feature quantity calculated by the following equation (4) and the maximum value of the past feature quantities.
- the degree of similarity p with the past feature amount defined by the error may be calculated.
- the feature amount calculation unit 17 appropriately writes and reads the calculated feature amount of each frame in the storage unit 17a and uses it as a past feature amount.
- p
- y current feature value
- y past the highest value of past feature values.
- the distortion amount d is used.
- the feature amounts are not limited to this.
- a tempo b or a confidence value s may be used, or a sum of values obtained by multiplying a plurality of feature quantities by a weighting coefficient may be used.
- the feature amount calculation unit 17 distributes the distortion amount in the horizontal direction (scanning direction) of the pixels of the elastic image data (the sum or average value of the distortion amounts of all the pixels for each column in the depth direction). ), A regression line of the strain distribution is generated, and a score with a perfect score of the slope 0 of the balance line corresponding to the slope of the regression line may be calculated as the feature amount. In this configuration, a balance line may be displayed as the feature amount display information together with the distortion distribution score.
- the feature quantity calculation unit 17 generates display information of each calculated feature quantity.
- the display information of the distortion amount d as the feature amount is display information of a graph indicating the distortion amount from the previous predetermined period to the present.
- the feature amount calculation unit 17 appropriately reads out the current and past feature amounts from the storage unit 17a and uses them to generate display information of the feature amounts.
- the feature amount calculation unit 17 stores the generated display information of the feature amount in association with the frame number (time) in the storage unit 17a for the cine frame.
- the evaluation value calculation unit 18 calculates an evaluation value score using a plurality of feature amounts generated by the feature amount calculation unit 17 according to the control of the control unit 21, and generates a cine frame bar based on the evaluation value score.
- the display information of the plurality of feature amounts generated by the feature amount calculation unit 17 and the generated cine frame bar are output to the display image generation unit 19.
- the evaluation value calculation unit 18 calculates the evaluation value score by the following equation (5), for example.
- score w d ⁇ d + w b ⁇ b + w s ⁇ s (5)
- w d weight coefficient of distortion amount d
- w b weight coefficient of tempo b
- w s weight coefficient of confidence value s.
- FIG. 3 is a conceptual diagram showing evaluation value calculation from a plurality of feature amounts. As illustrated in FIG. 3, the evaluation value calculation unit 18 calculates an evaluation value from a plurality of feature amounts (distortion amount d, tempo b, confidence value s, similarity p) of frames at the same time.
- the configuration in which the evaluation value calculation unit 18 calculates the evaluation value score by the equation (5) is not limited, and for example, a configuration in which the evaluation value score is calculated by the equation (6) may be employed.
- score d ⁇ b ⁇ s (6)
- the evaluation value calculation unit 18 associates the calculated evaluation value with the frame number (time) and stores it in the storage unit 18a for the cine frame.
- the storage unit 18a is a non-volatile storage unit configured by a semiconductor memory such as a flash memory.
- the evaluation value calculation unit 18 generates a cine frame selection bar having a stable section composed of a group of frames having high evaluation values and temporally continuous based on the current and past evaluation values stored in the storage unit 18a.
- the generation of the cine frame selection bar will be described with reference to FIGS. 4A and 4B.
- FIG. 4A is a diagram illustrating a distribution of evaluation values with respect to time.
- FIG. 4B is a diagram showing a cine frame selection bar 300.
- the distribution of evaluation values for each frame with respect to time is shown in FIG. 4A, for example.
- the time for one frame is, for example, 1/5 to 1/20 [s].
- the evaluation value calculation unit 18 calculates a moving average value of evaluation values for a predetermined time (for example, a section of 1 second) over time for the evaluation values of all cine frames. Then, the evaluation value calculation unit 18 generates a cine frame selection bar in which a section for a predetermined time in which the moving average value is equal to or greater than a predetermined threshold is set as a stable section. Note that the moving average value calculation section and the stable section may have different times.
- the evaluation value calculation unit 18 generates, for example, the cine frame selection bar 300 illustrated in FIG. 4B corresponding to the distribution of evaluation values in FIG.
- the cine frame selection bar 300 has a stable section 301 and a normal section 302.
- the stable section 301 is a stable section indicating a cine frame having a moving average value of evaluation values equal to or greater than a predetermined threshold among all cine frames.
- the normal section 302 is a normal section indicating a cine frame having a moving average value of evaluation values less than a predetermined threshold among all cine frames.
- the display image generation unit 19 In the live mode, the display image generation unit 19 generates the composite elastic image data generated by the elastic image combining unit 16 as display image data in the live mode, and the elastic image combining unit 16 generates the display image data in the cine mode.
- the combined elasticity image data of the cine frame, the display information of the feature amount input from the feature amount calculation unit 17, and the cine frame selection bar input from the evaluation value calculation unit 18 are combined to generate display image data.
- the display image generation unit 19 converts the generated display image data into an image signal for the display unit 20 and outputs the image signal to the display unit 20.
- the display unit 20 may be a display device such as an LCD (Liquid Crystal Display), a CRT (Cathode-Ray Tube) display, an organic EL (Electronic Luminescence) display, an inorganic EL display, or a plasma display.
- the display unit 20 displays an image on the display screen according to the image signal output from the display image generation unit 19.
- the control unit 21 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and reads various processing programs such as a system program stored in the ROM to read the RAM.
- the operation of each part of the ultrasonic diagnostic apparatus 100 is centrally controlled according to the developed program.
- the ROM is configured by a non-volatile memory such as a semiconductor, and stores a system program corresponding to the ultrasonic diagnostic apparatus 100, a program executable on the system program, various data such as a gamma table, and the like. These programs are stored in the form of computer-readable program code, and the CPU sequentially executes operations according to the program code.
- the RAM forms a work area for temporarily storing various programs executed by the CPU and data related to these programs. In order to prevent the diagram from becoming complicated, some control lines from the control unit 21 to each unit are omitted in FIG.
- each functional block can be realized as a hardware circuit such as an integrated circuit.
- the integrated circuit is, for example, an LSI (Large Scale Integration), and the LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
- the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor, and the connection and setting of FPGA (Field Programmable Gate Array) and circuit cells inside LSI can be reconfigured.
- a reconfigurable processor may be used.
- some or all of the functions of each function block may be executed by software.
- the software is stored in one or more storage media such as a ROM, an optical disk, or a hard disk, and the software is executed by the arithmetic processor.
- FIG. 5 is a flowchart showing the elasticity image display process.
- the ultrasonic probe 2 is first contacted with the subject to generate B-mode image data and a B-mode image is displayed.
- the examiner appropriately inputs the elastic image ROI via the operation input unit 11, and the ultrasonic probe 2 applies pressure to the body surface around the subject of the subject.
- control part 21 performs the elasticity image display process shown in FIG.
- the direct subject of the process of the step is described as the subject of each step, but the control unit 21 controls the subject of each step.
- the transmission unit 12 supplies a drive signal to the ultrasonic probe 2 to transmit / receive ultrasonic waves
- the reception unit 13 receives a reception signal from the ultrasonic probe 2 and generates sound ray data (Ste S11).
- the B-mode image generation unit 14 performs one-frame B-mode image data generation and storage as a cine frame in the storage unit 14a using the sound ray data generated in step S11, and the elastic image generation unit 15
- elastic image data generation for one frame and storage as a cine frame in the storage unit 15a are performed.
- the elastic image composition unit 16 synthesizes the generated B-mode image data and elastic image data to generate one frame of synthetic elastic image data (step S12).
- the feature amount calculation unit 17 uses the sound ray data obtained in step S11, the elastic image data obtained in step S12, and past information stored in the storage unit 17a, so that the feature amount (distortion amount d, Tempo b, confidence value s) is calculated, and display information of each feature quantity is generated and stored in the storage unit 17a (step S13).
- the evaluation value calculation unit 18 calculates an evaluation value score of the feature amount using the feature amount calculated in step S13, and generates information on a stable section in the cineframe selection bar and stores it in the storage unit 18a. (Step S14).
- the display image generation unit 19 generates one frame of display image data from the one frame of synthetic elastic image data generated in step S12, and displays the display image on the display unit 20 (step S15).
- the examiner can diagnose the hardness of an object such as a tumor in the synthetic elastic image by visually observing the synthetic elastic image displayed on the display unit 20.
- step S16 determines whether the freeze input was performed from the examiner via the operation input part 11 (step S16). If the freeze input has not been made (step S16; NO), the process proceeds to step S11.
- the freeze input is made (step S16; YES)
- the control unit 21 assigns the initial display frame number of the cine image data to the B-mode image generation unit 14, the elastic image generation unit 15, the feature amount.
- the setting is output to the calculation unit 17 and the evaluation value calculation unit 18 (step S17).
- the initial display frame is, for example, a cine frame immediately before freezing among a plurality of cine frames.
- the B-mode image generation unit 14 reads out the B-mode image data of the input display frame number from the storage unit 14a and outputs it to the elastic image synthesis unit 16, and the elastic image generation unit 15 inputs the display frame number. Are read from the storage unit 15a and output to the elastic image composition unit 16, and the elastic image composition unit 16 synthesizes the input B-mode image data and the elastic image data to generate composite elastic image data ( Step S18).
- the feature amount calculation unit 17 reads out the display information of the feature amount of the type for which the input display frame number is being set (initially initial setting) from the storage unit 17a and outputs it to the display image generation unit 19 (Step S1). S19).
- the default feature amount is, for example, a distortion amount d.
- the evaluation value calculation unit 18 reads the stable section information from the storage unit 18a, and generates a cine frame selection bar having a cursor at a position corresponding to the input display frame number based on the stable section information. It outputs to the display image generation part 19 (step S20).
- the display image generation unit 19 generates display image data by combining the composite elastic image data of the input display frame number, the display information of the feature amount, and the cine frame selection bar, and the display image is displayed on the display unit 20. It is displayed (step S21). And the control part 21 discriminate
- step S24 determines whether or not a feature amount change input has been made by the inspector via the operation input unit 11 (step S24).
- step S24; YES the feature amount calculation unit 17 reads out display information of the type of feature amount corresponding to the feature amount after the change in step S24 from the storage unit 17a and generates a display image. It outputs to the part 19 (step S25), and transfers to step S21. If the feature amount change input has not been made (step S24; NO), the elastic image display process is terminated.
- FIG. 6 is a diagram showing a display image 200 including a synthetic elastic image 210.
- the display image 200 of the display frame number is displayed on the display unit 20 in the cine mode.
- the display image 200 includes a composite elasticity image 210, a cine frame selection bar 300A, a frame number display field 310, feature amount display information 400, and a feature amount switching button 410.
- the composite elastic image 210 is a composite image of a B mode image 211 based on the B mode image data of the display frame number and an elastic image 212 based on the elastic image data of the display frame number.
- the cine frame selection bar 300A has a stable section 301A, a normal section 302A, and a cursor 303.
- the stable section 301A is a part of a bar indicating a stable section among cine frames of all cine image data.
- the normal section 302A is a part of a bar indicating the normal section among all cine frames.
- the cursor 303 is an operation display element that is arranged at the position of the display frame number corresponding to the composite elastic image 210 and receives a selection input of a cine frame to be displayed from the examiner via the operation input unit 11, and is a stable section 301A. In addition, movement change input can be made to the left and right on the normal section 302A.
- the frame number display column 310 is a display column indicating the frame number of the order of the composite elastic image 210 (cursor 303) out of the number of cine frames of all cine image data.
- the display colors of the stable section 301A and the normal section 302A are preferably different.
- the feature amount display information 400 is a display column for a distortion amount d as a default feature amount.
- the feature amount display information 400 includes a graph part 401, a reference area 402, and a frame part 403.
- the graph unit 401 is a part showing a graph of the distortion amount d with time with the horizontal axis representing time, the vertical axis representing the distortion amount d of the feature amount, and the center of the vertical axis of the feature amount display information 400 being the reference value. is there.
- the right end of the graph part 401 is set as the distortion amount d of the frame immediately before freezing.
- the reference area 402 is an area indicating an appropriate range of the distortion amount d from the center of the vertical axis of the feature amount display information 400. That is, if the graph portion 401 is within the reference region 402, it indicates that the distortion amount d of the portion is appropriate. If the graph portion 401 protrudes from the reference region 402, the distortion amount d of the portion is not appropriate. Show.
- the frame part 403 is a frame part of the feature amount display information 400, and the display color is set to whether or not the cine frame corresponding to the cursor 303 is a stable section. For example, when the cine frame corresponding to the cursor 303 is a stable section, the frame portion 403 is displayed in the same display color as that of the stable section 301A.
- the feature amount switching button 410 is an operation display element that receives a switching input of the type of feature amount displayed by the feature amount display information 400 displayed from the examiner via the operation input unit 11. For example, every time the feature amount switching button 410 is pressed, the feature amount of the feature amount display information 400 is switched in the order of distortion amount d ⁇ tempo b ⁇ reliable value s ⁇ distortion amount d ⁇ . Corresponding to step S ⁇ b> 24, when the feature amount switching button 410 is touch-inputted via the operation input unit 11, the control unit 21 outputs the switched display feature amount information to the feature amount calculation unit 17.
- the feature amount calculation unit 17 reads out display information of the feature amount corresponding to the input display feature amount information with the same display frame number from the storage unit 17a and outputs the display information to the display image generation unit 19.
- the display image generation unit 19 generates display image data by combining the composite elastic image data having the same display frame number, the display information of the feature value after switching, and the cine frame selection bar, and displays the display image on the display unit 20.
- the display information of the feature amount is not limited to the display format of the graph over time, but may be another display format such as a numerical display of the feature amount.
- step S22 when a display cine frame is selected and input by moving the cursor 303 via the operation input unit 11, the composite image data, the cine frame selection bar corresponding to the display frame number after selection, A display image including the display information of the feature value after switching is displayed.
- the ultrasound diagnostic apparatus 100 supplies the drive signal to the ultrasound probe 2, processes the reception signal output from the ultrasound probe 2, and processes the received signal. And calculating a plurality of types of feature amounts indicating the pressing state for each frame of the elastic image, calculating an evaluation value from the calculated plurality of feature amounts, and based on the evaluation value, the pressing state is good
- a cine frame selection bar is generated as information of a stable section composed of frames, and the generated cine frame selection bar is displayed on the display unit 20.
- the inspector can visually check the elastic image frame in the stable section in a good pressed state based on a plurality of types of feature values, and can easily select it.
- the ultrasonic diagnostic apparatus 100 generates elasticity image data based on the received signal, generates display information of the calculated plurality of feature amounts, and generates the generated elasticity image data and the display information of the plurality of feature amounts.
- Stored in the storage units 15a and 17a, and in cine mode accepts an input of the type of feature quantity to be displayed among a plurality of feature quantities and an input of a display frame of elastic image data to be displayed, and corresponds to the input display frame
- the display unit 20 displays the stored elasticity image data and the display information of the stored feature value corresponding to the type of the display frame and the input feature value. Therefore, the inspector can visually recognize the feature amount of the displayed cineframe.
- the feature amount display unit 400 includes a frame unit 403 that indicates whether or not the display frame is a stable section by a display color. For this reason, the inspector can easily recognize the feature amount of the displayed cine frame together with the information indicating whether or not it is a stable section.
- the control unit 21 displays the display frame number of the cine image data to be displayed in the initial setting corresponding to the cursor, and displays the cine frame other than immediately after the freeze.
- the frame number is set.
- the control unit 21 is configured to set the display frame number of cine image data to be displayed at the start of the cine mode to the frame number of a cine frame within the stable section (for example, the center of the stable section). According to this configuration, information on the cine frame in the stable section important for diagnosis can be confirmed first, and the diagnosis can be performed accurately and the diagnosis time can be shortened.
- the control unit 21 is within the normal section for the same movement operation from the examiner via the operation input unit 11 in the cursor movement display of the cine frame selection bar.
- the moving speed of the cursor in the stable section is set slower. According to this configuration, it is easy to select a display cine frame in a stable section important for diagnosis.
- the third modified example is a configuration in which the evaluation value calculation unit 18 makes it easier to set the cine frame immediately before the freeze of the cine frame selection bar as a stable section than the cine frame other than immediately before the freeze in the ultrasound diagnostic apparatus 100. is there.
- a configuration in which an evaluation value of a cine frame immediately before freezing is multiplied by a predetermined coefficient of 1 or more a configuration in which a threshold for determining a stable interval with respect to a moving average value of evaluation values including an evaluation value of a cine frame immediately before freezing is reduced There is. According to this configuration, it is possible to easily set the latest frame that has been freeze-operated by the examiner as determined to be important as a stable interval important for diagnosis, and the diagnosis can be performed more accurately.
- the evaluation value calculation unit 18 performs a stable interval based on an evaluation value obtained by calculating a moving average value corresponding to a predetermined number of frames up to the present time in the live mode.
- the normal section information is output to the display image generation unit 19, and the display image generation unit 19 displays the input stable section information together with the live composite image data on the display unit 20. According to this configuration, even in the live mode, the inspector can visually recognize a frame of an elastic image in a stable section with a good pressing state based on a plurality of types of feature amounts.
- the evaluation value calculation unit 18 performs a stable interval based on an evaluation value obtained by calculating a moving average value corresponding to a predetermined number of frames up to now during the live mode.
- information on the normal section is output to the control unit 21.
- the control unit 21 determines whether or not the evaluation value satisfies a predetermined condition set in advance, and automatically sets the freeze when the predetermined condition is satisfied.
- the predetermined condition is, for example, that the moving average value of the evaluation values is equal to or more than a second predetermined threshold different from the first predetermined threshold for determining the stable section. According to this configuration, even in the live mode, the examiner can easily visually confirm the elastic image frame important for the diagnosis corresponding to the stable section as the elastic image of the still image frame.
- the stable section in the cineframe selection bar is set to the same color.
- the stable section may have a different display color according to the height of the evaluation value.
- the display color density of the stable section may be increased as the evaluation value increases. According to this configuration, the height of the evaluation value of the stable section can be easily confirmed, and each stable section can be easily identified particularly when there are a plurality of stable sections in the cine frame selection bar.
- the image data indicating the strain amount as the elasticity data is generated and used as the elasticity image data by the strain elastography.
- the present invention is not limited to this.
- image data indicating shear wave velocity as elastic data by shear wave elastography may be generated and used as elastic image data.
- the ultrasonic diagnostic apparatus and ultrasonic information processing method of the present invention can be applied to ultrasonic diagnosis using elastic images.
- Ultrasonic diagnostic apparatus 1 Ultrasonic diagnostic apparatus main body 11 Operation input part 12 Transmission part 13 Reception part 14 B-mode image generation part 14a, 15a, 17a, 18a Storage part 15 Elastic image generation part 16 Elastic image synthesis part 17 Feature-value calculation Unit 18 evaluation value calculation unit 19 display image generation unit 20 display unit 21 control unit 2 ultrasonic probe 2a transducer 3 cable
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
超音波診断装置100は、超音波を送受信する超音波探触子2により被検体に圧迫を加え被検体の対象に超音波を送受信し対象の硬さを測定する。超音波診断装置100は、超音波探触子2に駆動信号を送信する送信部12と、超音波探触子2から出力された受信信号を処理する受信部13と、処理された受信信号に基づいて、弾性画像のフレーム毎の押圧状態を示す複数の種類の特徴量を算出する特徴量算出部17と、算出された複数の特徴量から評価値を算出し、当該評価値に基づいて、押圧状態が良好なフレームからなる安定区間の情報を生成する評価値算出部18と、生成された安定区間の情報を表示部20に表示する表示画像生成部19と、を備える。
Description
本発明は、超音波診断装置及び超音波情報処理方法に関する。
従来、超音波を被検体内部に照射し、その反射波を受信して画像化または解析することにより組織構造や性状を観察できる超音波診断装置がある。超音波診断では、被検体を非破壊、非侵襲で調べることが出来る。
また、超音波診断装置において、超音波探触子を用いて被検体の対象に圧迫を加えることで生じる歪み分布を画像化するストレインエラストグラフィ(Strain Elastography)の技術が知られている。ストレインエラストグラフィでは、対象(例えば腫瘍)とリファレンス(例えば脂肪)との相対的な歪みの差から対象の硬さを評価できる。
硬さの確かな評価には、被検体への安定した圧迫が求められる。このような背景に対して、取得したフレーム群と圧迫方向を紐付け、ユーザーによる均一な圧迫がなされたフレームの選択の簡便化を図った超音波診断装置が知られている(特許文献1参照)。この超音波診断装置は、圧迫方向がよいフレームの弾性画像を表示することが可能である。
しかし、上記従来の超音波診断装置では、押圧状態を確認することができるが、基本的には単一の特徴量を表示するものであり、例えば、圧迫の強さや圧迫の方向など、複数の特徴に基づいて総合的に判断したい場合には、表示の切り替えが必要になり、操作が煩雑になる可能性があった。
本発明の課題は、複数の種類の特徴量に基づいて押圧状態が良好な弾性画像のフレームを簡便に選択できるようにすることである。
上記課題を解決するため、請求項1に記載の発明の超音波診断装置は、
超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の硬さを測定する超音波診断装置であって、
前記超音波探触子に駆動信号を送信する送信部と、
前記超音波探触子から出力された受信信号を処理する受信部と、
前記超音波探触子に駆動信号を送信し当該超音波探触子から出力された受信信号を処理する送受信部と、
前記処理された受信信号に基づいて、弾性画像のフレーム毎の押圧状態を示す複数の種類の特徴量を算出する特徴量算出部と、
前記算出された複数の特徴量から評価値を算出し、当該評価値に基づいて、押圧状態が良好なフレームからなる安定区間の情報を生成する評価値算出部と、
前記生成された安定区間の情報を表示部に表示する表示制御部と、を備える。
超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の硬さを測定する超音波診断装置であって、
前記超音波探触子に駆動信号を送信する送信部と、
前記超音波探触子から出力された受信信号を処理する受信部と、
前記超音波探触子に駆動信号を送信し当該超音波探触子から出力された受信信号を処理する送受信部と、
前記処理された受信信号に基づいて、弾性画像のフレーム毎の押圧状態を示す複数の種類の特徴量を算出する特徴量算出部と、
前記算出された複数の特徴量から評価値を算出し、当該評価値に基づいて、押圧状態が良好なフレームからなる安定区間の情報を生成する評価値算出部と、
前記生成された安定区間の情報を表示部に表示する表示制御部と、を備える。
請求項2に記載の発明は、請求項1に記載の超音波診断装置において、
前記受信信号に基づいて、弾性画像データを生成する弾性画像生成部を備え、
前記特徴量算出部は、前記算出した複数の特徴量の表示情報を生成し、
前記生成された弾性画像データ及び複数の特徴量の表示情報を記憶する記憶部と、
記憶された弾性画像データを選択して表示するシネモードにおいて、前記複数の特徴量のうち表示する特徴量の種類の入力と、表示する弾性画像データの表示フレームの入力と、を受け付ける操作入力部と、を備え、
前記表示制御部は、前記入力された表示フレームに対応する前記記憶された弾性画像データと、当該表示フレーム及び前記入力された特徴量の種類に対応する前記記憶された特徴量の表示情報と、を前記表示部に表示する。
前記受信信号に基づいて、弾性画像データを生成する弾性画像生成部を備え、
前記特徴量算出部は、前記算出した複数の特徴量の表示情報を生成し、
前記生成された弾性画像データ及び複数の特徴量の表示情報を記憶する記憶部と、
記憶された弾性画像データを選択して表示するシネモードにおいて、前記複数の特徴量のうち表示する特徴量の種類の入力と、表示する弾性画像データの表示フレームの入力と、を受け付ける操作入力部と、を備え、
前記表示制御部は、前記入力された表示フレームに対応する前記記憶された弾性画像データと、当該表示フレーム及び前記入力された特徴量の種類に対応する前記記憶された特徴量の表示情報と、を前記表示部に表示する。
請求項3に記載の発明は、請求項2に記載の超音波診断装置において、
前記特徴量の表示情報は、前記表示フレームが安定区間であるか否かを示す表示情報を含む。
前記特徴量の表示情報は、前記表示フレームが安定区間であるか否かを示す表示情報を含む。
請求項4に記載の発明は、請求項2又は3に記載の超音波診断装置において、
前記評価値算出部は、前記生成された安定区間の情報として、複数のフレームのうち安定区間のフレームを示し、弾性画像の表示フレームを示し且つ移動変更操作が可能なカーソルを有するシネフレーム選択バーを生成し、当該カーソルに対応する初期設定の表示フレームを前記安定区間内の表示フレームに設定する。
前記評価値算出部は、前記生成された安定区間の情報として、複数のフレームのうち安定区間のフレームを示し、弾性画像の表示フレームを示し且つ移動変更操作が可能なカーソルを有するシネフレーム選択バーを生成し、当該カーソルに対応する初期設定の表示フレームを前記安定区間内の表示フレームに設定する。
請求項5に記載の発明は、請求項2から4のいずれか一項に記載の超音波診断装置において、
前記評価値算出部は、前記生成された安定区間の情報として、複数のフレームのうち安定区間のフレームを示し、弾性画像の表示フレームを示し且つ移動変更操作が可能なカーソルを有するシネフレーム選択バーを生成し、
前記カーソルが前記安定区間内にある場合に、当該安定区間以外にある場合よりも当該カーソルの移動速度を遅く設定するカーソル制御部を備える。
前記評価値算出部は、前記生成された安定区間の情報として、複数のフレームのうち安定区間のフレームを示し、弾性画像の表示フレームを示し且つ移動変更操作が可能なカーソルを有するシネフレーム選択バーを生成し、
前記カーソルが前記安定区間内にある場合に、当該安定区間以外にある場合よりも当該カーソルの移動速度を遅く設定するカーソル制御部を備える。
請求項6に記載の発明は、請求項2から5のいずれか一項に記載の超音波診断装置において、
前記評価値算出部は、前記評価値に基づいて、フリーズ操作直前以外のフレームよりもフリーズ操作直前のフレームを安定区間にしやすくして安定区間の情報を生成する。
前記評価値算出部は、前記評価値に基づいて、フリーズ操作直前以外のフレームよりもフリーズ操作直前のフレームを安定区間にしやすくして安定区間の情報を生成する。
請求項7に記載の発明は、請求項1から6のいずれか一項に記載の超音波診断装置において、
前記受信信号に基づいて、弾性画像データを生成する弾性画像生成部を備え、
前記表示制御部は、ライブモードにおいて、前記生成された弾性画像データと、前記生成された安定区間の情報と、を前記表示部に表示する。
前記受信信号に基づいて、弾性画像データを生成する弾性画像生成部を備え、
前記表示制御部は、ライブモードにおいて、前記生成された弾性画像データと、前記生成された安定区間の情報と、を前記表示部に表示する。
請求項8に記載の発明は、請求項7に記載の超音波診断装置において、
前記算出された評価値が所定の条件を満たした場合に、フリーズ設定を行うフリーズ制御部を備える。
前記算出された評価値が所定の条件を満たした場合に、フリーズ設定を行うフリーズ制御部を備える。
請求項9に記載の発明は、
超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の硬さを測定する超音波情報処理方法であって、
前記超音波探触子に駆動信号を送信する工程と、
前記超音波探触子から出力された受信信号を処理する工程と、
前記処理された受信信号に基づいて、弾性画像のフレーム毎の押圧状態を示す複数の種類の特徴量を算出する工程と、
前記算出された複数の特徴量から評価値を算出し、当該評価値に基づいて、押圧状態が良好なフレームからなる安定区間の情報を生成する工程と、
前記生成された安定区間の情報を表示部に表示する工程と、を含む。
超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の硬さを測定する超音波情報処理方法であって、
前記超音波探触子に駆動信号を送信する工程と、
前記超音波探触子から出力された受信信号を処理する工程と、
前記処理された受信信号に基づいて、弾性画像のフレーム毎の押圧状態を示す複数の種類の特徴量を算出する工程と、
前記算出された複数の特徴量から評価値を算出し、当該評価値に基づいて、押圧状態が良好なフレームからなる安定区間の情報を生成する工程と、
前記生成された安定区間の情報を表示部に表示する工程と、を含む。
本発明によれば、複数の種類の特徴量に基づいて押圧状態が良好な弾性画像のフレームを簡便に選択できる。
添付図面を参照して本発明の一例に係る実施の形態及び変形例を詳細に説明する。なお、本発明は、図示例に限定されるものではない。
(実施の形態)
図1~図5を参照して、本発明に係る実施の形態を説明する。先ず、図1及び図2を参照して、本実施の形態の超音波診断装置100の装置構成を説明する。図1は、本実施の形態の超音波診断装置100の外観図である。図2は、超音波診断装置100の機能構成を示すブロック図である。
図1~図5を参照して、本発明に係る実施の形態を説明する。先ず、図1及び図2を参照して、本実施の形態の超音波診断装置100の装置構成を説明する。図1は、本実施の形態の超音波診断装置100の外観図である。図2は、超音波診断装置100の機能構成を示すブロック図である。
超音波診断装置100は、患者の生体等の被検体の生体内部組織の状態を超音波画像にして表示出力する装置である。すなわち、超音波診断装置100は、生体等の被検体内に対して超音波(送信超音波)を送信するとともに、この被検体内で反射した超音波の反射波(反射超音波:エコー)を受信する。超音波診断装置100は、受信した反射超音波を電気信号に変換し、これに基づいて超音波画像データを生成する。超音波診断装置100は、生成した超音波画像データに基づき、被検体内の内部状態を超音波画像として表示する。また、超音波診断装置100は、圧迫を加えた被検体内部の歪み分布を示すストレインエラストグラフィ機能を有する。
図1に示すように、超音波診断装置100は、操作入力部11、表示部20を有する超音波診断装置本体1と、超音波探触子2と、ケーブル3と、を備える。超音波探触子2は、被検体内に対して送信超音波を送信するとともに、被検体内からの反射超音波を受信する。超音波診断装置本体1は、超音波探触子2とケーブル3を介して接続され、超音波探触子2に電気信号の駆動信号を送信することによって超音波探触子2に被検体内に対して送信超音波を送信させる。また、超音波診断装置本体1は、超音波探触子2にて受信した被検体内からの反射超音波に応じて超音波探触子2で生成された電気信号である受信信号を受信し、受信信号を用いて超音波画像データを生成し表示する。
超音波探触子2は、圧電素子からなる振動子2a(図2参照)を備えており、この振動子2aは、例えば、方位方向(走査方向)に一次元アレイ状に複数配列されている。本実施の形態では、例えば、192個の振動子2aを備えた超音波探触子2を用いている。なお、振動子2aは、二次元アレイ状に配列されたものであってもよい。また、振動子2aの個数は、任意に設定することができる。また、本実施の形態では、超音波探触子2としてリニア電子スキャンプローブを用いて、リニア走査方式による超音波の走査を行うものとするが、セクタ走査方式あるいはコンベックス走査方式の何れの方式を採用することもできる。超音波診断装置本体1と超音波探触子2との通信は、ケーブル3を介する有線通信に代えて、UWB(Ultra Wide Band)等の無線通信により行うこととしてもよい。
図2に示すように、超音波診断装置本体1は、例えば、操作入力部11と、送信部12と、受信部13と、Bモード画像生成部14と、記憶部14aと、弾性画像生成部15と、記憶部15aと、弾性画像合成部16と、特徴量算出部17と、評価値算出部18と、表示制御部としての表示画像生成部19と、表示部20と、カーソル制御部、フリーズ制御部としての制御部21と、を備える。
操作入力部11は、例えば、医師、技師等の検査者が、診断開始を指示するコマンドや被検体の個人情報等のデータの入力などを行うための各種スイッチ、ボタン、トラックボール、マウス、キーボード等を備えており、操作信号を制御部21に出力する。操作入力部11は、表示部20の表示画面上に設けられたタッチパネルを含むものとする。
送信部12は、制御部21の制御に従って、超音波探触子2にケーブル3を介して電気信号である駆動信号を供給して超音波探触子2に送信超音波を発生させる回路である。また、送信部12は、例えば、クロック発生回路、遅延回路、時間及び電圧設定部、パルス発生回路を備えている。クロック発生回路は、駆動信号の送信タイミングや送信周波数を決定するクロック信号を発生させる回路である。遅延回路は、駆動信号の送信タイミングを振動子毎に対応した個別経路毎に遅延時間を設定し、設定された遅延時間だけ駆動信号の送信を遅延させて送信超音波によって構成される送信ビームの集束を行うための回路である。時間及び電圧設定部は、パルス発生回路から発生されるパルス信号のパルス幅の時間及び振幅の電圧を設定する回路である。パルス発生回路は、時間及び電圧設定部により設定された時間及び電圧に応じて、駆動信号としてのパルス信号を発生させるための回路である。上述のように構成された送信部12は、例えば、超音波探触子2に配列された複数(例えば、192個)の振動子2aのうちの連続する一部(例えば、64個)を駆動して送信超音波を発生させる。そして、送信部12は、送信超音波を発生させる毎に駆動する振動子を方位方向にずらすことで走査(スキャン)を行う。
受信部13は、制御部21の制御に従って、超音波探触子2からケーブル3を介して電気信号である受信信号を受信し、受信信号を信号処理して音線データを生成する回路である。受信部13は、例えば、増幅器、A/D変換回路、整相加算回路を備えている。増幅器は、受信信号を、振動子毎に対応した個別経路毎に、予め設定された増幅率で増幅させるための回路である。A/D変換回路は、増幅された受信信号をA/D変換するための回路である。整相加算回路は、A/D変換された受信信号に対して、振動子毎に対応した個別経路毎に遅延時間を与えて時相を整え、これらを加算(整相加算)して音線データを生成するための回路である。
Bモード画像生成部14は、制御部21の制御に従って、受信部13からの音線データに対して包絡線検波処理や対数増幅などを実施し、ダイナミックレンジやゲインの調整を行って輝度変換することにより、断層画像データとしてのB(Brightness)モードの超音波画像データ(Bモード画像データ)を生成する。すなわち、Bモード画像データは、受信信号の強さを輝度によって表したものである。
記憶部14aは、フラッシュメモリーなどの半導体メモリーによって構成された記憶部である。Bモード画像生成部14は、生成したBモード画像データをフレーム番号(時刻)に対応付けてフレーム単位で記憶部14aにシネフレームのシネ画像データとして記憶する。Bモード画像生成部14は、制御部21の制御に従って、記憶部14aに記憶したBモード画像データを読み出して弾性画像合成部16に出力する。
弾性画像生成部15は、制御部21の制御に従って、受信部13からの音線データに対して演算を実施し、弾性情報としての歪み量に変換し、カラーマッピングすることにより、弾性画像データを生成する。弾性画像生成部15により生成される弾性画像データの画像の大きさは、操作入力部11を介して検査者から指定入力されたROI(Region Of Interest:関心領域)の大きさとするが、これに限定されるものではなく、Bモード画像データの画像の大きさと同じとしてもよい。記憶部15aは、フラッシュメモリーなどの半導体メモリーによって構成された記憶部である。
ここで、歪み量について説明する。検査者は、超音波探触子2を把持して被検体の体表に圧迫を加える。このとき、検査者自身の振動や、被検体の呼吸により、超音波探触子2から被検体に加わる圧迫が変化する。例えば、圧迫が加わる前の被検体内には、超音波探触子2と接触する体表から深さ方向(X方向)へ距離xrの位置に腫瘍等の対象物の上端があるものとする。また、この対象物の深さ方向の幅がLであるものとする。被検体に圧迫ρ(応力)が加えられた状態で、対象物にも同様に圧迫ρがかかるとすると、この対象物の上端位置が深さ方向へ距離xsと変化し、対象物の深さ方向の幅がL-ΔLとなるように変化するものとする。すると、これら2つの状態における対象物を計測することで、歪み量ε=ΔL/Lが求められる。
より具体的には、例えば、特開2015-211733号公報に記載のように、弾性画像生成部15は、受信部13からの音線データをフレーム毎に記憶部15aに適宜記憶及び読み出しすることにより、時間的に連続する2フレームの音線データを取得する。この2つのフレームのうち、第1フレームの音線データの第1信号波形に対応する被検体の加圧状態を第1加圧状態とし、第2フレームの音線データの第2信号波形に対応する被検体の加圧状態を第2加圧状態とする。そして、弾性画像生成部15は、第1信号波形と第2信号波形との間での各時間における位相差成分を抽出し、各時間と当該各時間における位相差成分との相関関係に応じて、第1信号波形と第2信号波形との間の各周波数の差分に係る歪み差及び初期位相差を算出し、当該歪み差に基づいて歪み量を算出する。弾性画像生成部15は、この歪み量の算出を全ての画素について行い、歪み量の画素からなる画像データを生成する。
そして、弾性画像生成部15は、例えば、青→緑→黄→赤の順に歪み量が高くなるカラーマッピングにより歪み量の画像データに色付けを行い弾性画像データを生成する。但し、後述する図5の図面上では、弾性画像において、黒→白の順に歪み量が高くなる表現としている。
また、弾性画像生成部15は、生成した弾性画像データをフレーム番号(時刻)に対応付けてフレーム単位で記憶部15aにシネフレームのシネ画像データとして記憶する。弾性画像生成部15は、制御部21の制御に従って、記憶部15aに記憶した弾性画像データを読み出して弾性画像合成部16に出力する。
弾性画像合成部16は、制御部21の制御に従って、Bモード画像生成部14で生成されたBモード画像データに対して、弾性画像生成部15で生成された同時刻の弾性画像データを、所定の合成率で合成して合成弾性画像データを生成する。
特徴量算出部17は、制御部21の制御に従って、弾性画像生成部15で生成された弾性画像データと、受信部13で生成された音線データと、記憶部17aに記憶された情報との少なくとも1つを用いて、弾性画像データのフレーム毎の被検体の押圧状態を示す複数の種類の特徴量を算出し、それらの算出した特徴量を示す複数の特徴量の表示情報を生成し、弾性画像データ及び複数の特徴量の表示情報を評価値算出部18に出力し、複数の特徴量の表示情報を記憶部17aに記憶する。記憶部17aは、フラッシュメモリーなどの半導体メモリーによって構成された不揮発性の記憶部である。
具体的な一例として、特徴量算出部17が、弾性画像の歪み量d、歪み量のテンポb、信頼値s、の3種類の特徴量を算出する例を説明する。但し、特徴量算出部17が算出する特徴量の種類及び数は、この例に限定されるものではない。
特徴量算出部17は、弾性画像生成部15で生成された弾性画像データを用いて次式(1)により、弾性画像(ROI)内の平均歪み量で定義される弾性画像の歪み量dを算出する。
但し、ROI:弾性画像データの全画素、x:弾性画像内の画素の変数qにおける歪み量、n:ROI内の画素数、である。
また、特徴量算出部17は、弾性画像生成部15で生成された連続する複数フレームの弾性画像データを用いて次式(2)により、弾性画像(ROI)の歪み量の時間波形の、正弦波形・余弦波形への類似度で定義される弾性画像の歪み量のテンポbを算出する。このとき、特徴量算出部17は、弾性画像生成部15で生成された弾性画像データを適宜記憶部17aに書き込み及び読み出しをして、連続する複数フレームの弾性画像データとして使用する。
但し、D(ω)=FFT(D(t))、D(t):歪み量の時間波形、t:時間・フレーム番号、である。式(2)は、一定の間隔で歪みが生じている場合、特定の周波数が強くなり、分子が大きくなる。この状態をテンポが良い状態と定義している。このとき、分子では周波数成分の最大値を算出するが、単に強い押圧に反応しないよう低周波成分を最大値の算出対象から除き、中周波または高周波成分を最大値の算出対象としても良い。分母は、歪み量に依存しない特徴量として算出するために歪み量の総和で正規化している。また、テンポbと歪み量とを同時に考慮していい場合に、弾性画像の歪み量のテンポbは次式(2A)により算出される。
また、特徴量算出部17は、受信部13で生成された連続フレームの音線データを用いて次式(3)により、連続する2フレームの音線データの相関値で定義される弾性画像の信頼値(復元率)sを算出する。このとき、特徴量算出部17は、受信部13で生成された各フレームの音線データを適宜記憶部17aに書き込み及び読み出しをして連続フレームの音線データとして使用する。
s=AutoCorr(f(x),fprev(x+Δx)) …(3)
但し、AutoCorrは自己相関演算、f(x):現在のフレームの深さ方向の位置(深さx)における音線データの信号波形、fprev(x+Δx):前フレームの深さ方向の位置(深さx+Δx)における音線データの信号波形、である。
s=AutoCorr(f(x),fprev(x+Δx)) …(3)
但し、AutoCorrは自己相関演算、f(x):現在のフレームの深さ方向の位置(深さx)における音線データの信号波形、fprev(x+Δx):前フレームの深さ方向の位置(深さx+Δx)における音線データの信号波形、である。
また、その他の特徴量として、特徴量算出部17は、上記算出した現在及び過去の特徴量を用いて、次式(4)により、算出した現在の特徴量と、過去の特徴量の最高値との誤差で定義される過去の特徴量との類似度pを算出しても良い。このとき、特徴量算出部17は、算出した各フレームの特徴量を適宜記憶部17aに書き込み及び読み出しをして過去の特徴量として使用する。
p=|y-ypast| …(4)
但し、y:現在の特徴量、ypast:過去の特徴量の最高値、である。特徴量y,ypastとしては、例えば、歪み量dを用いる構成とするが、これに限定されるものではない。特徴量y,ypastとして、テンポb又は信頼値sを用いたり、複数の特徴量に重み係数をかけた値の和を用いる構成としてもよい。
p=|y-ypast| …(4)
但し、y:現在の特徴量、ypast:過去の特徴量の最高値、である。特徴量y,ypastとしては、例えば、歪み量dを用いる構成とするが、これに限定されるものではない。特徴量y,ypastとして、テンポb又は信頼値sを用いたり、複数の特徴量に重み係数をかけた値の和を用いる構成としてもよい。
また、その他の特徴量として、特徴量算出部17が、弾性画像データの画素の水平方向(走査方向)の歪み量の分布(深さ方向の列毎の全画素の歪み量の和又は平均値)から歪み分布の回帰直線を生成し、当該回帰直線の傾きに対応するバランス直線の傾き0を満点としたスコアを特徴量として算出する構成としてもよい。この構成において、特徴量表示情報として、歪み分布のスコアとともに、バランス直線を表示させる構成としてもよい。
また、特徴量算出部17は、算出した各特徴量の表示情報を生成する。例えば、特徴量としての歪み量dの表示情報は、過去の所定期間前から現在までの歪み量を示すグラフの表示情報とする。このとき、特徴量算出部17は、現在及び過去の特徴量を適宜記憶部17aから読み出して特徴量の表示情報の生成に使用する。特徴量算出部17は、生成した特徴量の表示情報をフレーム番号(時刻)に対応付けて、シネフレーム用に記憶部17aに記憶する。
評価値算出部18は、制御部21の制御に従って、特徴量算出部17で生成された複数の特徴量を用いて、評価値scoreを算出し、評価値scoreに基づくシネフレームバーを生成し、特徴量算出部17で生成された複数の特徴量の表示情報と、生成したシネフレームバーとを表示画像生成部19に出力する。
評価値算出部18は、例えば、次式(5)により、評価値scoreを算出する。
score=wd・d+wb・b+ws・s …(5)
但し、wd:歪み量dの重み係数、wb:テンポbの重み係数、ws:信頼値sの重み係数、である。
score=wd・d+wb・b+ws・s …(5)
但し、wd:歪み量dの重み係数、wb:テンポbの重み係数、ws:信頼値sの重み係数、である。
図3は、複数の特徴量からの評価値算出を示す概念図である。図3に示すように、評価値算出部18は、同時刻のフレームの複数の特徴量(歪み量d、テンポb、信頼値s、類似度p)から評価値を算出する。
但し、評価値算出部18が、評価値scoreを式(5)により算出する構成に限定されるものではなく、例えば式(6)により算出する構成としてもよい。
score=d・b・s …(6)
score=d・b・s …(6)
評価値算出部18は、算出した評価値をフレーム番号(時刻)に対応付けて、シネフレーム用に記憶部18aに記憶する。記憶部18aは、フラッシュメモリーなどの半導体メモリーによって構成された不揮発性の記憶部である。
また、評価値算出部18は、記憶部18aに記憶された現在及び過去の評価値に基づき、評価値が高く時間的に連続したフレーム群からなる安定区間を有するシネフレーム選択バーを生成する。ここで、図4A、図4Bを参照して、シネフレーム選択バーの生成を説明する。図4Aは、時間に対する評価値の分布を示す図である。図4Bは、シネフレーム選択バー300を示す図である。
時間に対する1フレーム毎の評価値の分布は、例えば図4Aに示される。1フレームの時間は、例えば1/5~1/20[s]とする。評価値算出部18は、全てのシネフレームの評価値について、経時的に所定時間分(例えば、1秒間の区間)の評価値の移動平均値を算出していく。そして、評価値算出部18は、移動平均値が所定の閾値以上となった所定時間分の区間を安定区間として設定したシネフレーム選択バーを生成する。なお、移動平均値算出の区間と、安定区間との時間を異にする構成としてもよい。評価値算出部18は、例えば、図4Aの評価値の分布に対応する図4Bに示すシネフレーム選択バー300を生成する。シネフレーム選択バー300は、安定区間301と、通常区間302と、を有する。安定区間301は、全てのシネフレームのうち、評価値の移動平均値が所定の閾値以上のシネフレームを示す安定区間である。通常区間302は、全てのシネフレームのうち、評価値の移動平均値が所定の閾値未満のシネフレームを示す通常区間である。
表示画像生成部19は、制御部21の制御に従って、ライブモードでは、弾性画像合成部16で生成された合成弾性画像データを表示画像データとして生成し、シネモードでは、弾性画像合成部16で生成されたシネフレームの合成弾性画像データと、特徴量算出部17から入力された特徴量の表示情報と、評価値算出部18から入力されたシネフレーム選択バーと、を合成して表示画像データとして生成する。表示画像生成部19は、生成した表示画像データを表示部20用の画像信号に変換して表示部20に出力する。
表示部20は、LCD(Liquid Crystal Display)、CRT(Cathode-Ray Tube)ディスプレイ、有機EL(Electronic Luminescence)ディスプレイ、無機ELティスプレイ及びプラズマディスプレイ等の表示装置が適用可能である。表示部20は、表示画像生成部19から出力された画像信号に従って表示画面上に画像の表示を行う。
制御部21は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備えて構成され、ROMに記憶されているシステムプログラム等の各種処理プログラムを読み出してRAMに展開し、展開したプログラムに従って超音波診断装置100の各部の動作を集中制御する。ROMは、半導体等の不揮発メモリー等により構成され、超音波診断装置100に対応するシステムプログラム及び該システムプログラム上で実行可能なプログラムや、ガンマテーブル等の各種データ等を記憶する。これらのプログラムは、コンピューターが読み取り可能なプログラムコードの形態で格納され、CPUは、当該プログラムコードに従った動作を逐次実行する。RAMは、CPUにより実行される各種プログラム及びこれらプログラムに係るデータを一時的に記憶するワークエリアを形成する。なお、図が複雑になるのを防ぐため、図2上で、制御部21から各部への制御線は、一部省略されている。
超音波診断装置100が備える各部について、各々の機能ブロックの一部又は全部の機能は、集積回路などのハードウェア回路として実現することができる。集積回路とは、例えばLSI(Large Scale Integration)であり、LSIは集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよいし、FPGA(Field Programmable Gate Array)やLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。また、各々の機能ブロックの一部又は全部の機能をソフトウェアにより実行するようにしてもよい。この場合、このソフトウェアは一つ又はそれ以上のROMなどの記憶媒体、光ディスク、又はハードディスクなどに記憶されており、このソフトウェアが演算処理器により実行される。
次に、図5を参照して、超音波診断装置100の動作を説明する。図5は、弾性画像表示処理を示すフローチャートである。
超音波診断装置100を用いたストレインエラストグラフィによる被検体の診断において、予め、ライブモードとして、先ず被検体に超音波探触子2が接触されBモード画像データが生成されBモード画像が表示され、検査者により、操作入力部11を介して、適宜弾性画像のROIの指定入力がなされ、超音波探触子2により被検体の対象周辺の体表への圧迫が加えられる。
そして、超音波診断装置100において、制御部21が、図5に示す弾性画像表示処理を実行する。以下、各ステップの主体として、そのステップの処理の直接の主体を記載するが、制御部21が各ステップの主体を制御している。
先ず、送信部12は、超音波探触子2に駆動信号を供給して超音波を送受信させ、受信部13が、超音波探触子2から受信信号を受信し音線データを生成する(ステップS11)。そして、Bモード画像生成部14は、ステップS11で生成された音線データを用いて、1フレームのBモード画像データ生成及び記憶部14aへのシネフレームとしての記憶を行い、弾性画像生成部15が、ステップS11で生成された音線データ、記憶部15aに記憶された1フレーム前の音線データを用いて、1フレームの弾性画像データ生成及び記憶部15aへのシネフレームとしての記憶を行い、弾性画像合成部16が、生成されたBモード画像データ及び弾性画像データを合成して1フレームの合成弾性画像データを生成する(ステップS12)。
そして、特徴量算出部17は、ステップS11で得られた音線データ、ステップS12で得られた弾性画像データ、記憶部17aに記憶された過去の情報を用いて、特徴量(歪み量d,テンポb,信頼値s)を算出し、各特徴量の表示情報の生成及び記憶部17aへの記憶を行う(ステップS13)。そして、評価値算出部18は、ステップS13で算出された特徴量を用いて、特徴量の評価値scoreを算出し、シネフレーム選択バーにおける安定区間の情報生成及び記憶部18aへの記憶を行う(ステップS14)。
そして、表示画像生成部19は、ステップS12で生成した1フレームの合成弾性画像データから1フレームの表示画像データを生成し、その表示画像を表示部20に表示する(ステップS15)。検査者は、表示部20に表示された合成弾性画像を目視することにより、合成弾性画像内の腫瘍等の対象物の硬さを診断できる。
そして、制御部21は、操作入力部11を介して検査者からフリーズ入力がされたか否かを判別する(ステップS16)。フリーズ入力がされていない場合(ステップS16;NO)、ステップS11に移行される。フリーズ入力がされた場合(ステップS16;YES)、シネモードが開始され、制御部21は、シネ画像データの初期設定の表示フレーム番号を、Bモード画像生成部14、弾性画像生成部15、特徴量算出部17、評価値算出部18に出力して設定する(ステップS17)。初期設定の表示フレームは、例えば、複数のシネフレームのうちのフリーズ直前のシネフレームとする。
そして、Bモード画像生成部14は、入力された表示フレーム番号のBモード画像データを記憶部14aから読み出して弾性画像合成部16に出力し、弾性画像生成部15が、入力された表示フレーム番号の弾性画像データを記憶部15aから読み出して弾性画像合成部16に出力し、弾性画像合成部16が、入力されたBモード画像データ及び弾性画像データを合成して合成弾性画像データを生成する(ステップS18)。
そして、特徴量算出部17は、入力された表示フレーム番号の設定中(最初は、初期設定)の種類の特徴量の表示情報を記憶部17aから読み出して表示画像生成部19に出力する(ステップS19)。初期設定の特徴量は、例えば、歪み量dとする。そして、評価値算出部18は、安定区間の情報を記憶部18aから読み出し、当該安定区間の情報に基づき、入力された表示フレーム番号に対応する位置のカーソルを有するシネフレーム選択バーを生成して表示画像生成部19に出力する(ステップS20)。
そして、表示画像生成部19は、入力された表示フレーム番号の合成弾性画像データ、特徴量の表示情報、シネフレーム選択バーを合成して表示画像データを生成し、その表示画像を表示部20に表示する(ステップS21)。そして、制御部21は、操作入力部11を介して検査者からカーソル移動入力がされたか否かを判別する(ステップS22)。カーソル移動入力がされた場合(ステップS22;YES)、制御部21は、ステップS22のカーソル移動に対応する変更後の表示フレーム番号を、Bモード画像生成部14、弾性画像生成部15、特徴量算出部17、評価値算出部18に出力して設定し(ステップS23)、ステップS18に移行する。
カーソル移動入力がされていない場合(ステップS22;NO)、制御部21は、操作入力部11を介して検査者から特徴量変更入力がされたか否かを判別する(ステップS24)。特徴量変更入力がされた場合(ステップS24;YES)、特徴量算出部17は、ステップS24の変更後の特徴量に対応する種類の特徴量の表示情報を記憶部17aから読み出して表示画像生成部19に出力し(ステップS25)、ステップS21に移行する。特徴量変更入力がされていない場合(ステップS24;NO)、弾性画像表示処理が終了する。
図6は、合成弾性画像210を含む表示画像200を示す図である。例えば、図6に示すように、シネモードにおいて、表示フレーム番号の表示画像200が表示部20に表示される。表示画像200は、合成弾性画像210と、シネフレーム選択バー300Aと、フレーム番号表示欄310と、特徴量表示情報400と、特徴量切替ボタン410と、を有する。
合成弾性画像210は、表示フレーム番号のBモード画像データに基づくBモード画像211と、表示フレーム番号の弾性画像データに基づく弾性画像212と、の合成画像である。シネフレーム選択バー300Aは、安定区間301Aと、通常区間302Aと、カーソル303と、を有する。
安定区間301Aは、全てのシネ画像データのシネフレームのうち、安定区間を示すバーの一部分である。通常区間302Aは、全てのシネフレームのうち、通常区間を示すバーの一部分である。カーソル303は、合成弾性画像210に対応する表示フレーム番号の位置に配置されるとともに、操作入力部11を介して検査者から表示するシネフレームの選択入力を受け付ける操作表示要素であり、安定区間301A及び通常区間302A上の左右に移動変更入力が可能である。フレーム番号表示欄310は、全てのシネ画像データのシネフレームの枚数のうちの合成弾性画像210(カーソル303)の順番のフレーム番号を示す表示欄である。安定区間301Aと通常区間302Aとの表示色は、異にするのが好ましい。
特徴量表示情報400は、初期設定の特徴量としての歪み量dの表示欄である。特徴量表示情報400は、グラフ部401と、基準領域402と、枠部403と、を有する。グラフ部401は、横軸を時間、縦軸を特徴量の歪み量dの値とし、特徴量表示情報400の縦軸の中心を基準値とした経時的な歪み量dのグラフを示す部分である。グラフ部401の右端を、フリーズ直前のフレームの歪み量dとする。基準領域402は、特徴量表示情報400の縦軸の中心から適切な歪み量dの値の範囲を示す領域である。つまり、グラフ部401が基準領域402以内であると、その部分の歪み量dが適正であることを示し、グラフ部401が基準領域402からはみ出ると、その部分の歪み量dが適正でないことを示す。
枠部403は、特徴量表示情報400の枠部であるとともに、表示色がカーソル303に対応するシネフレームが安定区間か否かに設定されている。例えば、カーソル303に対応するシネフレームが安定区間である場合に、枠部403は、安定区間301Aと同じ表示色で表示される。
特徴量切替ボタン410は、操作入力部11を介して検査者から表示する特徴量表示情報400で表示する特徴量の種類の切替入力を受け付ける操作表示要素である。例えば、特徴量切替ボタン410を押す度に、特徴量表示情報400の特徴量が、歪み量d→テンポb→信頼値s→歪み量d→…のように切り替わる。ステップS24に対応して、特徴量切替ボタン410が操作入力部11を介してタッチ入力されると、制御部21は、切替後の表示特徴量情報を特徴量算出部17に出力する。特徴量算出部17は、同じ表示フレーム番号の、入力された表示特徴量情報に対応する特徴量の表示情報を記憶部17aから読み出して表示画像生成部19に出力する。表示画像生成部19は、同じ表示フレーム番号の合成弾性画像データ、切替後の特徴量の表示情報、シネフレーム選択バーを合成して表示画像データを生成し、その表示画像を表示部20に表示させる。なお、特徴量の表示情報は、経時的なグラフの表示形式に限定されるものではなく、特徴量の数値表示等、他の表示形式としてもよい。
また、ステップS22に対応して、操作入力部11を介してカーソル303の移動により表示シネフレームが選択入力されると、選択後の表示フレーム番号に対応する、合成画像データ、シネフレーム選択バー、切替後の特徴量の表示情報と、を含む表示画像が表示される。
以上、本実施の形態によれば、超音波診断装置100は、超音波探触子2に駆動信号を供給し超音波探触子2から出力された受信信号を処理し、処理された受信信号に基づいて、弾性画像のフレーム毎の押圧状態を示す複数の種類の特徴量を算出し、算出された複数の特徴量から評価値を算出し、当該評価値に基づいて、押圧状態が良好なフレームからなる安定区間の情報としてシネフレーム選択バーを生成し、生成されたシネフレーム選択バーを表示部20に表示する。
このため、検査者が、複数の種類の特徴量に基づいて押圧状態が良好な安定区間の弾性画像のフレームを視覚的に確認して簡便に選択できる。
また、超音波診断装置100は、受信信号に基づいて、弾性画像データを生成し、算出した複数の特徴量の表示情報を生成し、生成された弾性画像データ及び複数の特徴量の表示情報を記憶部15a,17aに記憶し、シネモードにおいて、複数の特徴量のうち表示する特徴量の種類の入力と、表示する弾性画像データの表示フレームの入力と、を受け付け、入力された表示フレームに対応する記憶された弾性画像データと、表示フレーム及び入力された特徴量の種類に対応する記憶された特徴量の表示情報と、を表示部20に表示する。このため、検査者が、表示しているシネフレームの特徴量を視覚的に認識できる。
また、特徴量表示部400は、表示フレームが安定区間であるか否かを表示色により示す枠部403を含む。このため、検査者が、表示しているシネフレームの特徴量を、安定区間であるか否かの情報とともに容易に認識できる。
(変形例)
上記実施の形態の複数の変形例を順に説明する。
上記実施の形態の複数の変形例を順に説明する。
第1の変形例は、超音波診断装置100において、制御部21が、シネモードの開始時に、カーソルに対応する初期設定の表示するシネ画像データの表示フレーム番号を、フリーズ直後以外のシネフレームの表示フレーム番号に設定する構成である。例えば、制御部21が、シネモードの開始時に表示するシネ画像データの表示フレーム番号を安定区間内(例えば安定区間の中央)のシネフレームのフレーム番号に設定する構成である。この構成によれば、診断に重要な安定区間のシネフレームの情報を最初に確認でき、診断を正確に行うことができるとともに、診断時間を短縮できる。
第2の変形例は、超音波診断装置100において、制御部21が、シネフレーム選択バーのカーソルの移動表示において、操作入力部11を介する検査者からの同じ移動操作に対して、通常区間内よりも安定区間内のカーソルの移動速度を遅く設定する構成である。この構成によれば、診断に重要な安定区間の表示シネフレームの選択が容易になる。
第3の変形例は、超音波診断装置100において、評価値算出部18が、シネフレーム選択バーのフリーズ直前のシネフレームを、フリーズ直前以外のシネフレームよりも安定区間に設定しやすくする構成である。例えば、フリーズ直前のシネフレームの評価値に1以上の所定係数を乗じる構成や、フリーズ直前のシネフレームの評価値を含む評価値の移動平均値に対する安定区間判別のための閾値を低くする構成等がある。この構成によれば、検査者が重要と判断してフリーズ操作した直近のフレームを診断に重要な安定区間に設定しやすくでき、診断をより正確に行うことができる。
第4の変形例は、超音波診断装置100において、評価値算出部18が、ライブモード中に、現在までの所定数のフレームに対応して移動平均値を算出した評価値に基づく安定区間及び通常区間の情報を表示画像生成部19に出力し、表示画像生成部19が、入力された安定区間の情報をライブの合成画像データとともに表示部20に表示させる構成である。この構成によれば、ライブモード時にも、検査者が、複数の種類の特徴量に基づいて押圧状態が良好な安定区間の弾性画像のフレームを視覚的に認識できる。
第5の変形例は、超音波診断装置100において、評価値算出部18が、ライブモード中に、現在までの所定数のフレームに対応して移動平均値を算出した評価値に基づく安定区間及び通常区間の情報を制御部21に出力する構成である。さらに、制御部21が、評価値が予め設定された所定の条件を満たすか否かを判別し、所定の条件を満たす場合に、フリーズを自動設定する。所定の条件とは、例えば、評価値の移動平均値が、安定区間を判定するための第1の所定閾値とは別の第2の所定閾値以上となることである。この構成によれば、ライブモード時にも、検査者が、安定区間に対応する診断に重要な弾性画像のフレームを静止画のフレームの弾性画像として容易に視覚的に確認できる。
なお、上記実施の形態及び変形例における記述は、本発明に係る好適な超音波診断装置及び超音波情報処理方法の一例であり、これに限定されるものではない。例えば、上記実施の形態及び変形例の少なくとも2つを組み合わせる構成としてもよい。
また、上記実施の形態及び変形例では、シネフレーム選択バーにおける安定区間を同じ色に設定する構成としたが、これに限定されるものではない。安定区間を評価値の高さに応じて表示色を異にする構成としてもよい。例えば、評価値が高くなるにつれて安定区間の表示色の濃さを濃くする構成としてもよい。この構成によれば、安定区間の評価値の高さを容易に確認できるとともに、特に、シネフレーム選択バーに複数の安定区間が存在する場合に、各安定区間を容易に識別できる。
また、上記実施の形態では、弾性画像データとして、ストレインエラストグラフィにより弾性データとしての歪み量を示す画像データを生成して用いる構成としたが、これに限定されるものではない。例えば、シアウェーブエラストグラフィ(Shear Wave Elastography)により弾性データとしてのせん断波速度を示す画像データを弾性画像データとして生成して用いる構成としてもよい。
また、以上の実施の形態及び変形例における超音波診断装置100を構成する各部の細部構成及び細部動作に関して本発明の趣旨を逸脱することのない範囲で適宜変更可能である。
以上のように、本発明の超音波診断装置及び超音波情報処理方法は、弾性画像を用いた超音波診断に適用できる。
100 超音波診断装置
1 超音波診断装置本体
11 操作入力部
12 送信部
13 受信部
14 Bモード画像生成部
14a,15a,17a,18a 記憶部
15 弾性画像生成部
16 弾性画像合成部
17 特徴量算出部
18 評価値算出部
19 表示画像生成部
20 表示部
21 制御部
2 超音波探触子
2a 振動子
3 ケーブル
1 超音波診断装置本体
11 操作入力部
12 送信部
13 受信部
14 Bモード画像生成部
14a,15a,17a,18a 記憶部
15 弾性画像生成部
16 弾性画像合成部
17 特徴量算出部
18 評価値算出部
19 表示画像生成部
20 表示部
21 制御部
2 超音波探触子
2a 振動子
3 ケーブル
Claims (9)
- 超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の硬さを測定する超音波診断装置であって、
前記超音波探触子に駆動信号を送信する送信部と、
前記超音波探触子から出力された受信信号を処理する受信部と、
前記処理された受信信号に基づいて、弾性画像のフレーム毎の押圧状態を示す複数の種類の特徴量を算出する特徴量算出部と、
前記算出された複数の特徴量から評価値を算出し、当該評価値に基づいて、押圧状態が良好なフレームからなる安定区間の情報を生成する評価値算出部と、
前記生成された安定区間の情報を表示部に表示する表示制御部と、を備える超音波診断装置。 - 前記受信信号に基づいて、弾性画像データを生成する弾性画像生成部を備え、
前記特徴量算出部は、前記算出した複数の特徴量の表示情報を生成し、
前記生成された弾性画像データ及び複数の特徴量の表示情報を記憶する記憶部と、
記憶された弾性画像データを選択して表示するシネモードにおいて、前記複数の特徴量のうち表示する特徴量の種類の入力と、表示する弾性画像データの表示フレームの入力と、を受け付ける操作入力部と、を備え、
前記表示制御部は、前記入力された表示フレームに対応する前記記憶された弾性画像データと、当該表示フレーム及び前記入力された特徴量の種類に対応する前記記憶された特徴量の表示情報と、を前記表示部に表示する請求項1に記載の超音波診断装置。 - 前記特徴量の表示情報は、前記表示フレームが安定区間であるか否かを示す表示情報を含む請求項2に記載の超音波診断装置。
- 前記評価値算出部は、前記生成された安定区間の情報として、複数のフレームのうち安定区間のフレームを示し、弾性画像の表示フレームを示し且つ移動変更操作が可能なカーソルを有するシネフレーム選択バーを生成し、当該カーソルに対応する初期設定の表示フレームを前記安定区間内の表示フレームに設定する請求項2又は3に記載の超音波診断装置。
- 前記評価値算出部は、前記生成された安定区間の情報として、複数のフレームのうち安定区間のフレームを示し、弾性画像の表示フレームを示し且つ移動変更操作が可能なカーソルを有するシネフレーム選択バーを生成し、
前記カーソルが前記安定区間内にある場合に、当該安定区間以外にある場合よりも当該カーソルの移動速度を遅く設定するカーソル制御部を備える請求項2から4のいずれか一項に記載の超音波診断装置。 - 前記評価値算出部は、前記評価値を算出する際に、フリーズ操作直前以外のフレームよりもフリーズ操作直前のフレームの評価値を相対的に高くして安定区間の情報を生成する請求項2から5のいずれか一項に記載の超音波診断装置。
- 前記受信信号に基づいて、弾性画像データを生成する弾性画像生成部を備え、
前記表示制御部は、ライブモードにおいて、前記生成された弾性画像データと、前記生成された安定区間の情報と、を前記表示部に表示する請求項1から6のいずれか一項に記載の超音波診断装置。 - 前記算出された評価値が所定の条件を満たした場合に、フリーズ設定を行うフリーズ制御部を備える請求項7に記載の超音波診断装置。
- 超音波を送受信する超音波探触子により被検体に圧迫を加え当該被検体の対象に超音波を送受信し当該対象の硬さを測定する超音波情報処理方法であって、
前記超音波探触子に駆動信号を送信する工程と、
前記超音波探触子から出力された受信信号を処理する工程と、
前記処理された受信信号に基づいて、弾性画像のフレーム毎の押圧状態を示す複数の種類の特徴量を算出する工程と、
前記算出された複数の特徴量から評価値を算出し、当該評価値に基づいて、押圧状態が良好なフレームからなる安定区間の情報を生成する工程と、
前記生成された安定区間の情報を表示部に表示する工程と、を含む超音波情報処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780014191.9A CN108697406B (zh) | 2016-02-29 | 2017-02-24 | 超声波诊断装置以及超声波信息处理方法 |
JP2018503094A JP6662447B2 (ja) | 2016-02-29 | 2017-02-24 | 超音波診断装置及び超音波診断装置の作動方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016037136 | 2016-02-29 | ||
JP2016-037136 | 2016-02-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017150355A1 true WO2017150355A1 (ja) | 2017-09-08 |
Family
ID=59744114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/006978 WO2017150355A1 (ja) | 2016-02-29 | 2017-02-24 | 超音波診断装置及び超音波情報処理方法 |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP6662447B2 (ja) |
CN (1) | CN108697406B (ja) |
WO (1) | WO2017150355A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020077598A1 (zh) * | 2018-10-18 | 2020-04-23 | 深圳迈瑞生物医疗电子股份有限公司 | 一种超声弹性检测方法及其系统 |
JPWO2021111640A1 (ja) * | 2019-12-06 | 2021-06-10 | ||
JP2022513225A (ja) * | 2018-12-17 | 2022-02-07 | コーニンクレッカ フィリップス エヌ ヴェ | フレームのインデックス付け及び画像レビューのためのシステム及び方法 |
CN114072060A (zh) * | 2019-12-06 | 2022-02-18 | 深圳迈瑞生物医疗电子股份有限公司 | 一种超声成像方法以及超声成像系统 |
US12089989B2 (en) | 2018-10-03 | 2024-09-17 | Canon Medical Systems Corporation | Analyzing apparatus and analyzing method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7438850B2 (ja) * | 2020-05-29 | 2024-02-27 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置及び医用画像処理装置 |
CN112998751A (zh) * | 2021-04-06 | 2021-06-22 | 无锡海斯凯尔医学技术有限公司 | 组织弹性检测成像方法及设备 |
JPWO2023048267A1 (ja) * | 2021-09-27 | 2023-03-30 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010017585A (ja) * | 2004-06-09 | 2010-01-28 | Hitachi Medical Corp | 超音波診断装置の作動方法及び超音波診断装置 |
JP2014064912A (ja) * | 2012-09-10 | 2014-04-17 | Toshiba Corp | 超音波診断装置、画像処理装置及び画像処理方法 |
JP2015058193A (ja) * | 2013-09-19 | 2015-03-30 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083745A1 (ja) * | 2006-01-20 | 2007-07-26 | Hitachi Medical Corporation | 弾性画像表示方法及び弾性画像表示装置 |
JP5426101B2 (ja) * | 2008-02-25 | 2014-02-26 | 株式会社東芝 | 超音波診断装置及、超音波画像処理装置及び超音波画像処理プログラム |
JP2011025011A (ja) * | 2009-06-26 | 2011-02-10 | Toshiba Corp | 超音波診断装置及び超音波診断装置制御プログラム |
JP5535575B2 (ja) * | 2009-10-27 | 2014-07-02 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置 |
CN102939050B (zh) * | 2010-06-04 | 2015-04-01 | 株式会社日立医疗器械 | 超声波诊断装置以及超声波收发方法 |
US20120078111A1 (en) * | 2010-09-29 | 2012-03-29 | Fujifilm Corporation | Ultrasound probe |
JP2013141575A (ja) * | 2012-01-12 | 2013-07-22 | Toshiba Corp | 超音波診断装置、超音波プローブ及びプログラム |
US20150222838A1 (en) * | 2012-09-19 | 2015-08-06 | Konica Minolta, Inc. | Ultrasound diagnostic device, ultrasound diagnostic device control method, and ultrasound diagnostic device control apparatus |
US9691433B2 (en) * | 2014-04-18 | 2017-06-27 | Toshiba Medical Systems Corporation | Medical image diagnosis apparatus and medical image proccessing apparatus |
-
2017
- 2017-02-24 JP JP2018503094A patent/JP6662447B2/ja active Active
- 2017-02-24 CN CN201780014191.9A patent/CN108697406B/zh active Active
- 2017-02-24 WO PCT/JP2017/006978 patent/WO2017150355A1/ja active Application Filing
-
2020
- 2020-02-13 JP JP2020022032A patent/JP6881629B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010017585A (ja) * | 2004-06-09 | 2010-01-28 | Hitachi Medical Corp | 超音波診断装置の作動方法及び超音波診断装置 |
JP2014064912A (ja) * | 2012-09-10 | 2014-04-17 | Toshiba Corp | 超音波診断装置、画像処理装置及び画像処理方法 |
JP2015058193A (ja) * | 2013-09-19 | 2015-03-30 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12089989B2 (en) | 2018-10-03 | 2024-09-17 | Canon Medical Systems Corporation | Analyzing apparatus and analyzing method |
WO2020077598A1 (zh) * | 2018-10-18 | 2020-04-23 | 深圳迈瑞生物医疗电子股份有限公司 | 一种超声弹性检测方法及其系统 |
JP2022513225A (ja) * | 2018-12-17 | 2022-02-07 | コーニンクレッカ フィリップス エヌ ヴェ | フレームのインデックス付け及び画像レビューのためのシステム及び方法 |
JP7427002B2 (ja) | 2018-12-17 | 2024-02-02 | コーニンクレッカ フィリップス エヌ ヴェ | フレームのインデックス付け及び画像レビューのためのシステム及び方法 |
JPWO2021111640A1 (ja) * | 2019-12-06 | 2021-06-10 | ||
CN114072060A (zh) * | 2019-12-06 | 2022-02-18 | 深圳迈瑞生物医疗电子股份有限公司 | 一种超声成像方法以及超声成像系统 |
JP7238164B2 (ja) | 2019-12-06 | 2023-03-13 | オリンパス株式会社 | 超音波観測装置、超音波観測システム、超音波観測方法、超音波観測プログラム、及び超音波内視鏡システム |
Also Published As
Publication number | Publication date |
---|---|
CN108697406B (zh) | 2021-02-26 |
JPWO2017150355A1 (ja) | 2018-12-27 |
CN108697406A (zh) | 2018-10-23 |
JP6881629B2 (ja) | 2021-06-02 |
JP6662447B2 (ja) | 2020-03-11 |
JP2020096894A (ja) | 2020-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6881629B2 (ja) | 超音波診断装置及び超音波診断装置の作動方法 | |
JP5925438B2 (ja) | 超音波診断装置 | |
US11672506B2 (en) | Ultrasound diagnosis apparatus and image processing apparatus | |
JP4455003B2 (ja) | 超音波診断装置 | |
JP2014033914A (ja) | 超音波画像診断装置及び超音波画像診断方法 | |
JP2007105400A (ja) | 超音波診断装置及び画像処理装置 | |
CN112450976A (zh) | 解析装置 | |
WO2014038702A1 (ja) | 超音波診断装置、画像処理装置及び画像処理方法 | |
JP5415669B2 (ja) | 超音波診断装置 | |
CN110575198B (zh) | 解析装置及解析方法 | |
CN106691502B (zh) | 用于生成弹性图像的超声系统和方法 | |
JP2008154626A (ja) | 超音波診断装置 | |
JP5473527B2 (ja) | 超音波診断装置 | |
WO2008029728A1 (fr) | Échographe | |
JP5623609B2 (ja) | 超音波診断装置 | |
JP5128149B2 (ja) | 超音波診断装置 | |
JP7343342B2 (ja) | 超音波診断装置、及び画像処理装置 | |
KR101574851B1 (ko) | 초음파 진단 장치 및 그 제어 프로그램 | |
JP6144990B2 (ja) | 超音波画像撮像装置及び超音波画像撮像方法 | |
JP6728767B2 (ja) | 超音波診断装置及び超音波情報処理方法 | |
JP6289225B2 (ja) | 超音波診断装置及び制御プログラム | |
JP2013244136A (ja) | 超音波診断装置および超音波診断画像生成方法 | |
JP5663640B2 (ja) | 超音波診断装置 | |
JP2018051040A (ja) | 超音波診断装置および画像合成方法 | |
JP6724414B2 (ja) | 超音波診断装置、超音波診断装置の制御方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018503094 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17759821 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17759821 Country of ref document: EP Kind code of ref document: A1 |