Nothing Special   »   [go: up one dir, main page]

WO2017149927A1 - リチウムイオン二次電池用正極およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2017149927A1
WO2017149927A1 PCT/JP2017/000201 JP2017000201W WO2017149927A1 WO 2017149927 A1 WO2017149927 A1 WO 2017149927A1 JP 2017000201 W JP2017000201 W JP 2017000201W WO 2017149927 A1 WO2017149927 A1 WO 2017149927A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
ion secondary
lithium ion
secondary battery
active material
Prior art date
Application number
PCT/JP2017/000201
Other languages
English (en)
French (fr)
Inventor
愛 藤澤
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59743704&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017149927(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to EP17759399.3A priority Critical patent/EP3425702B1/en
Priority to US16/081,510 priority patent/US20190020057A1/en
Priority to JP2018502549A priority patent/JP6995738B2/ja
Publication of WO2017149927A1 publication Critical patent/WO2017149927A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery.
  • lithium ion secondary batteries Since lithium ion secondary batteries have high energy density and excellent charge / discharge cycle characteristics, they are widely used as power sources for small mobile devices such as mobile phones and laptop computers. In recent years, due to increased concern for environmental issues and energy conservation, demand has increased in the fields of electric vehicles, hybrid electric vehicles, and power storage, and lithium-ion secondary batteries with large capacity and long life have been desired. Yes.
  • a lithium ion secondary battery includes a negative electrode including a carbon material capable of occluding and releasing lithium ions as a negative electrode active material, a positive electrode including a lithium composite oxide capable of occluding and releasing lithium ions as a positive electrode active material, and a negative electrode And a separator that separates the positive electrode and a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • Patent Document 1 in a non-aqueous electrolyte secondary battery comprising a positive electrode mixture containing a positive electrode active material and conductive material, an average particle diameter of 1 to 50 ⁇ m and a specific surface area of 5 ⁇ 50 m 2 / g
  • a flaky graphite powder in which a graphite powder is formed into a flaky shape having a thickness of 1 ⁇ m or less is added as the conductive substance in a range of 0.5 to 9.5% by mass with respect to the positive electrode mixture.
  • a non-aqueous electrolyte secondary battery is disclosed.
  • Patent Document 2 discloses a primary battery including a positive electrode mixture containing a positive electrode active material and a conductive material, the conductive material having a thickness of 1 ⁇ m or less, an average particle size of 1 to 50 ⁇ m, and A primary battery characterized by containing flaky graphite powder having a specific surface area of 5 to 50 m 2 / g is disclosed.
  • the present invention has been made in view of the above circumstances, and provides a positive electrode for a lithium ion secondary battery capable of realizing a lithium ion secondary battery excellent in cycle characteristics, and a lithium ion secondary battery excellent in cycle characteristics. .
  • the present inventor obtained a positive electrode for a lithium ion secondary battery capable of realizing a lithium ion secondary battery having excellent cycle characteristics by using a conductive additive having a specific condition for the positive electrode active material.
  • a positive electrode for a lithium ion secondary battery comprising: a positive electrode current collector; and a positive electrode active material layer provided on the positive electrode current collector,
  • the positive electrode active material layer includes a positive electrode active material, a conductive additive, and a binder
  • the conductive auxiliary agent includes flaky graphite having an average thickness of 0.5 ⁇ m or less, Wherein when the average particle diameter of the positive electrode active material was Katsuzai D 50, the average particle size of the flaky graphite is a (3 ⁇ Katsuzai D 50/5) or (9 ⁇ Katsuzai D 50/10) or less
  • a positive electrode for a lithium ion secondary battery is provided.
  • a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery, a negative electrode, and a non-aqueous electrolyte is provided.
  • the present invention it is possible to provide a lithium ion secondary battery having excellent cycle characteristics and a positive electrode suitable for the lithium ion secondary battery.
  • the positive electrode for a lithium ion secondary battery includes a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector.
  • the positive electrode active material layer which concerns on this embodiment contains a positive electrode active material, a conductive support agent, and a binder,
  • the said conductive support agent contains the flaky graphite whose average thickness is 0.5 micrometer or less, when the average particle diameter of the positive electrode active material was set to D 50, is the average particle size of the flaky graphite (3 ⁇ Katsuzai D 50/5) or (9 ⁇ Katsuzai D 50/10) or less.
  • the average particle diameter (active material D 50 ) of the positive electrode active material means a particle diameter (median diameter) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the flaky graphite is flat graphite.
  • the shape of the flaky graphite in plan view may be any of an ellipse including a circle, a polygon, and an irregular shape.
  • the average thickness of flaky graphite is an average value of the thickness of 50 or more flaky graphite, and can be determined from a photograph taken with an electron microscope (SEM). Specifically, 50 or more flaky graphites are photographed by SEM. From the obtained SEM photograph, the thickness of 50 or more flaky graphites is measured, and the average value is defined as the average thickness of the flaky graphite.
  • the average particle size of flaky graphite means the particle size at an integrated value of 50% in the particle size distribution (volume basis) by the laser diffraction scattering method.
  • a lithium ion secondary battery having excellent cycle characteristics can be realized.
  • the reason why such a lithium ion secondary battery can be realized is not necessarily clear, but the following reasons are conceivable.
  • the deformability of the flaky graphite is improved, and the flaky graphite can be deformed according to the shape of the positive electrode active material, so the density of the positive electrode active material layer Can be improved.
  • an average particle size of the graphite (3 ⁇ Katsuzai D 50/5) or (9 ⁇ Katsuzai D 50/10) the range of flaky graphite along the surface of the positive electrode active material And the rise in charge transfer resistance can be reduced. It is considered that a lithium ion secondary battery having excellent cycle characteristics can be realized by these synergistic effects.
  • the lower limit of the average thickness of the flaky graphite is not particularly limited, but is, for example, 0.01 ⁇ m or more, and preferably 0.05 ⁇ m or more from the viewpoint of handling properties.
  • the positive electrode active material preferably contains a lithium composite oxide from the viewpoint of increasing the energy density of the obtained lithium ion secondary battery. More preferably, the positive electrode active material includes a lithium composite oxide (lithium nickel composite oxide) containing nickel, and particularly preferably includes a lithium nickel composite oxide having a layered crystal structure.
  • the positive electrode active material layer according to the present embodiment may contain other active materials other than the lithium composite oxide, but from the viewpoint of further increasing the energy density of the obtained lithium ion secondary battery,
  • the content of the positive electrode active material contained is 100% by mass
  • the content of the lithium composite oxide in the positive electrode active material layer is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more. Is more preferable.
  • the content of the positive electrode active material in the positive electrode active material layer is 80% by mass or more. Is preferable, 85 mass% or more is more preferable, and 90 mass% or more is further preferable.
  • lithium nickel complex oxide contains the compound represented by following formula (1) from a viewpoint of raising the energy density of the lithium ion secondary battery obtained.
  • Li a Ni 1-x M x O 2 (1) (In the formula, M is at least one selected from Li, Co, Mn, Mg, and Al, and 0 ⁇ a ⁇ 1, 0 ⁇ x ⁇ 0.7)
  • the positive electrode active material contains a lithium nickel composite oxide
  • it may contain a lithium manganese composite oxide having a spinel structure as another lithium composite oxide.
  • the mixing ratio (B) mass ratio A: B) of the lithium nickel composite oxide (A) having a layered crystal structure and the lithium manganese composite oxide having a spinel structure has a higher energy density while obtaining a sufficient mixing effect. From the viewpoint of obtaining, 80:20 to 95: 5 is preferable, and 90:10 to 95: 5 is more preferable.
  • the average particle diameter (active material D 50 ) of the positive electrode active material is It is preferably 0.5 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 15 ⁇ m or less, and further preferably 2 ⁇ m or more and 12 ⁇ m or less.
  • the average particle size of the positive electrode active material (Katsuzai D 50), the particle diameter at 50% cumulative value in the particle size distribution by a laser diffraction scattering method (by volume) (median diameter: D 50) means.
  • the positive electrode active material layer may contain a conductive additive other than the flaky graphite.
  • a conductive additive other than the flaky graphite.
  • conductive support agents other than the said flake graphite
  • carbon black spherical graphite, carbon fiber
  • carbon black such as acetylene black and ketjen black is preferable.
  • the average particle size of the carbon black is the average particle size of secondary particles (primary aggregates) from the viewpoint of obtaining a positive electrode in which contact resistance and charge transfer resistance are suppressed while having a sufficient density of the positive electrode active material layer.
  • the diameter is preferably 3.5 ⁇ m or less, more preferably 3 ⁇ m or less, further preferably 2 ⁇ m or less, preferably 50 nm or more, and more preferably 100 nm or more.
  • the average particle size of the primary particles is preferably in the range of 5 nm to 500 nm, more preferably in the range of 10 nm to 300 nm, and still more preferably in the range of 50 nm to 250 nm.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • a higher proportion of the positive electrode active material in the positive electrode active material layer is preferable because the capacity per mass increases, but it is preferable to add a conductive additive from the viewpoint of reducing the resistance of the electrode.
  • the content of the conductive additive in the positive electrode active material layer is preferably 0.5% by mass or more and 10% by mass or less, more preferably 1.0% by mass when the entire positive electrode active material layer is 100% by mass. % Or more and 8.0% by mass or less, more preferably 2.0% by mass or more and 6.0% by mass or less. If the content of the conductive auxiliary is less than or equal to the above upper limit value, the ratio of the positive electrode active material in the obtained lithium ion secondary battery is increased, the capacity per mass is increased, and electrode peeling is suppressed. preferable. It is preferable that the content of the conductive auxiliary is not less than the above lower limit value because the conductivity becomes better.
  • the amount of the flaky graphite is preferably 1 part by mass or more and 95 parts by mass or less when the total of the flaky graphite and carbon black is 100 parts by mass. It is preferably 5 parts by mass or more and 75 parts by mass or less, and more preferably 10 parts by mass or more and 50 parts by mass or less.
  • the positive electrode active material layer can be formed as follows. First, a slurry containing a positive electrode active material, a conductive additive, a binder and a slurry solvent is prepared, and this is applied onto a positive electrode current collector, dried and pressed. For example, N-methyl-2-pyrrolidone (NMP) can be used as the slurry solvent used in preparing the positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • binder Although it does not specifically limit as a binder, what is normally used as a binder for positive electrodes, such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • a higher proportion of the positive electrode active material in the positive electrode active material layer is preferable because the capacity per mass increases, but it is preferable to add a binder from the viewpoint of electrode strength.
  • the content of the binder in the positive electrode active material layer is 1% by mass when the entire positive electrode active material layer is 100% by mass from the viewpoint of achieving both the energy density of the obtained lithium ion secondary battery and the binding force of the binder.
  • the content is preferably 15% by mass or less and more preferably 1% by mass or more and 10% by mass or less.
  • the content of the binder is not more than the above upper limit value, the ratio of the positive electrode active material in the obtained lithium ion secondary battery is increased, so that the capacity per mass is increased and the resistance component is decreased. It is preferable that the content of the binder is not less than the above lower limit value because electrode peeling is suppressed.
  • the thickness of the positive electrode active material layer is not particularly limited, and can be set as appropriate according to desired characteristics. For example, it can be set thick from the viewpoint of energy density, and can be set thin from the viewpoint of output characteristics.
  • the thickness of the positive electrode active material layer can be appropriately set, for example, in the range of 10 ⁇ m to 250 ⁇ m, preferably 20 ⁇ m to 200 ⁇ m, and more preferably 40 ⁇ m to 180 ⁇ m.
  • the density of the positive electrode active material layer is preferably 3.30 g / cm 3 or more, and more preferably 3.45 g / cm 3 or more and 4.00 g / cm 3 or less. It is preferable to set the density of the positive electrode active material layer within the above range because the performance balance between the energy density and the output characteristics of the obtained lithium ion secondary battery is excellent.
  • the positive electrode current collector aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • the shape include foil, flat plate, and mesh.
  • an aluminum foil can be suitably used.
  • FIG. 1 is a cross-sectional view showing an example (laminate type) structure of a lithium ion secondary battery 10 according to an embodiment of the present invention.
  • a lithium ion secondary battery 10 according to the present embodiment includes at least a positive electrode according to the present embodiment, a negative electrode capable of inserting and removing lithium, and a non-aqueous electrolyte solution.
  • a separator 5 can be provided between the positive electrode and the negative electrode.
  • a plurality of pairs of positive and negative electrodes can be provided.
  • the lithium ion secondary battery 10 includes a positive electrode current collector 3 made of a metal such as an aluminum foil and a positive electrode active material layer 1 containing a positive electrode active material provided thereon, and a copper foil.
  • the positive electrode and the negative electrode are laminated via a separator 5 made of a nonwoven fabric, a polypropylene microporous film, or the like so that the positive electrode active material layer 1 and the negative electrode active material layer 2 face each other.
  • This electrode pair is accommodated in a container formed of exterior bodies 6 and 7 made of, for example, an aluminum laminate film.
  • a positive electrode tab 9 is connected to the positive electrode current collector 3, a negative electrode tab 8 is connected to the negative electrode current collector 4, and these tabs are drawn out of the container.
  • a non-aqueous electrolyte is injected into the container and sealed. It can also be set as the structure where the electrode group by which the several electrode pair was laminated
  • the drawings are exaggerated for convenience of explanation, and the technical scope of the present invention is not limited to the form shown in the drawings.
  • the lithium ion secondary battery 10 can be manufactured according to a known method.
  • a laminated body or a wound body can be used as the electrode.
  • a metal exterior body or an aluminum laminate exterior body can be used as appropriate.
  • the shape of the battery may be any shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • the negative electrode according to the present embodiment includes a negative electrode active material layer including a negative electrode active material, and, if necessary, a binder and a conductive additive. Further, the negative electrode according to the present embodiment includes, for example, a current collector and a negative electrode active material layer provided on the current collector.
  • a material that can occlude and release lithium such as lithium metal, carbon material, and Si-based material
  • the carbon material include graphite that occludes lithium, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn.
  • Si-based material Si, SiO 2 , SiOx (0 ⁇ x ⁇ 2), Si-containing composite material, or the like can be used. A composite containing two or more of these materials may be used.
  • the negative electrode active material When lithium metal is used as the negative electrode active material, an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum evaporation method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc.
  • the negative electrode can be formed by a method.
  • a carbonaceous material or Si-based material is used as the negative electrode active material, the carbonaceous material or Si-based material and a binder are mixed, dispersed and kneaded in a slurry solvent, and the resulting slurry is used as a negative electrode current collector.
  • the negative electrode can be obtained by applying it onto the substrate, drying it, and pressing it as necessary.
  • the thin film used as the collector for negative electrodes can be formed by methods, such as a vapor deposition method, CVD method, sputtering method, and a negative electrode can be obtained.
  • the negative electrode thus produced has a negative electrode current collector and a negative electrode active material layer formed on the current collector.
  • the average particle size of the negative electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, further preferably 5 ⁇ m or more, from the viewpoint of input / output characteristics, from the viewpoint of suppressing side reactions during charge / discharge and suppressing reduction in charge / discharge efficiency. And from the viewpoint of electrode production (smoothness of electrode surface, etc.), it is preferably 80 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the negative electrode active material layer may contain a conductive additive and a binder as necessary.
  • a conductive material generally used as a conductive aid for the negative electrode such as carbonaceous materials such as carbon black, ketjen black, and acetylene black, can be used.
  • the binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Combined rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, poly (meth) acrylonitrile, isoprene rubber, butadiene rubber, fluorine rubber, etc. Is mentioned.
  • PVdF polyvinylidene fluoride
  • VdF vinylidene fluoride-hexafluoropropylene copolymer
  • vinylidene fluoride-tetrafluoroethylene copolymer vinylidene fluoride-
  • NMP N-methyl-2-pyrrolidone
  • water carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, or the like can be used as a thickener.
  • the content of the binder for the negative electrode is 0.5% by mass or more and 30% by mass or less when the entire negative electrode active material layer is 100% by mass from the viewpoint of binding force and energy density in a trade-off relationship.
  • the range is preferably 0.5% by mass to 25% by mass, and more preferably 1% by mass to 20% by mass.
  • the negative electrode current collector copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • nonaqueous electrolytic solution an electrolytic solution in which a lithium salt is dissolved in one or two or more nonaqueous solvents can be used.
  • Non-aqueous solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), butylene carbonate (BC); ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate Chain carbonates such as (DMC) and dipropyl carbonate (DPC); aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ⁇ -lactones such as ⁇ -butyrolactone; 1,2-ethoxy Examples include chain ethers such as ethane (DEE) and ethoxymethoxyethane (EME); and cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran.
  • EC ethylene carbonate
  • PC propylene carbonate
  • VVC vinylene carbonate
  • BC butylene carbonate
  • EMC ethyl methyl carbonate
  • lithium salt dissolved in the nonaqueous solvent is not particularly limited, for example LiPF 6, LiAsF 6, LiAlCl 4 , LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , and lithium bisoxalatoborate are included. These lithium salts can be used individually by 1 type or in combination of 2 or more types. Moreover, a polymer component may be included as a non-aqueous electrolyte. The concentration of the lithium salt can be set, for example, in the range of 0.8 to 1.2 mol / L, and preferably 0.9 to 1.1 mol / L.
  • a resin porous film, woven fabric, non-woven fabric, or the like can be used as the separator.
  • the resin constituting the porous film include polyolefin resins such as polypropylene and polyethylene, polyester resins, acrylic resins, styrene resins, and nylon resins.
  • a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
  • a case made of a flexible film, a can case, or the like can be used as the outer container, and a flexible film is preferably used from the viewpoint of reducing the weight of the battery.
  • a flexible film a film in which a resin layer is provided on the front and back surfaces of a metal layer serving as a base material can be used.
  • a metal layer having a barrier property such as prevention of leakage of the electrolytic solution or entry of moisture from the outside can be selected, and aluminum, stainless steel, or the like can be used.
  • a heat-fusible resin layer such as a modified polyolefin is provided.
  • An exterior container is formed by making the heat-fusible resin layers of the flexible film face each other and heat-sealing the periphery of the portion that houses the electrode laminate.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body that is the surface opposite to the surface on which the heat-fusible resin layer is formed.
  • a doctor blade In the production of the electrode, as an apparatus for forming the active material layer on the current collector, a doctor blade, a device that performs various coating methods such as a die coater, a gravure coater, a transfer method, a vapor deposition method, and the like. A combination of applicators can be used.
  • a die coater In order to form the coated end portion of the active material with high accuracy, it is particularly preferable to use a die coater.
  • the active material application method using a die coater is roughly divided into a continuous application method in which an active material is continuously formed along the longitudinal direction of a long current collector, and an active material application method along the longitudinal direction of the current collector.
  • There are two types of intermittent application methods in which the application part and the non-application part are alternately and repeatedly formed, and these methods can be selected as appropriate.
  • PVDF vinylidene fluoride
  • the obtained positive electrode was rolled at a certain linear pressure using a roller press, and the density of the positive electrode active material layer at this time was measured (evaluation of deformability). Moreover, it rolled to the density of the predetermined positive electrode active material layer, and obtained the positive electrode for characteristic evaluation of thickness 140 micrometers.
  • a negative electrode slurry in which graphite having a surface coated with amorphous carbon as a negative electrode active material and PVDF as a binder were mixed and dispersed in an organic solvent was prepared. This was applied to a negative electrode current collector (copper foil) and dried to form a negative electrode active material layer 2 to obtain a negative electrode.
  • the produced positive electrode for characteristic evaluation and negative electrode were alternately laminated via a separator made of polypropylene having a thickness of 25 ⁇ m.
  • a negative electrode terminal and a positive electrode terminal were attached thereto, accommodated in an outer container made of an aluminum laminate film, and an electrolyte solution in which a lithium salt was dissolved was added and sealed to obtain a laminated lithium ion secondary battery.
  • Example 2 Except for the use of flaky graphite 2 (average thickness: 0.3 ⁇ m, average particle size D 50 : 6 ⁇ m) in place of flaky graphite 1, the deformability was evaluated in the same manner as in Example 1 for property evaluation.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 using the positive electrode. The obtained lithium ion secondary battery was measured for charge transfer resistance (positive electrode evaluation) and capacity retention rate (cycle characteristic evaluation).
  • Example 3 Except for the use of flaky graphite 3 (average thickness: 0.4 ⁇ m, average particle size D 50 : 6 ⁇ m) instead of flaky graphite 1, the deformability was evaluated in the same manner as in Example 1 for property evaluation.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 using the positive electrode. The obtained lithium ion secondary battery was measured for charge transfer resistance (positive electrode evaluation) and capacity retention rate (cycle characteristic evaluation).
  • Example 1 Comparative Example 1 Except for the use of flaky graphite 4 (average thickness: 0.6 ⁇ m, average particle diameter D 50 : 6 ⁇ m) instead of flaky graphite 1, the deformability was evaluated in the same manner as in Example 1 for property evaluation. A lithium ion secondary battery was produced in the same manner as in Example 1 using the positive electrode. The obtained lithium ion secondary battery was measured for charge transfer resistance (positive electrode evaluation) and capacity retention rate (cycle characteristic evaluation).
  • Example 2 (Comparative Example 2) Except for the use of flaky graphite 5 (average thickness: 1.0 ⁇ m, average particle diameter D 50 : 6 ⁇ m) instead of flaky graphite 1, the deformability was evaluated in the same manner as in Example 1 for property evaluation. A lithium ion secondary battery was produced in the same manner as in Example 1 using the positive electrode. The obtained lithium ion secondary battery was measured for charge transfer resistance (positive electrode evaluation) and capacity retention rate (cycle characteristic evaluation).
  • Example 3 (Comparative Example 3) Except for the use of flaky graphite 6 (average thickness: 0.3 ⁇ m, average particle size D 50 : 4 ⁇ m) in place of flaky graphite 1, the deformability was evaluated in the same manner as in Example 1 for property evaluation. A lithium ion secondary battery was produced in the same manner as in Example 1 using the positive electrode. The obtained lithium ion secondary battery was measured for charge transfer resistance (positive electrode evaluation) and capacity retention rate (cycle characteristic evaluation).
  • Example 4 (Comparative Example 4) Except for the use of flaky graphite 7 (average thickness: 0.3 ⁇ m, average particle size D 50 : 9 ⁇ m) instead of flaky graphite 1, the deformability was evaluated in the same manner as in Example 1 for property evaluation. A lithium ion secondary battery was produced in the same manner as in Example 1 using the positive electrode. The obtained lithium ion secondary battery was measured for charge transfer resistance (positive electrode evaluation) and capacity retention rate (cycle characteristic evaluation).
  • Example 5 Comparative Example 5 Except for the use of flaky graphite 8 (average thickness: 1.0 ⁇ m, average particle diameter D 50 : 11 ⁇ m) instead of flaky graphite 1, the deformability was evaluated in the same manner as in Example 1 for property evaluation. A lithium ion secondary battery was produced in the same manner as in Example 1 using the positive electrode. The obtained lithium ion secondary battery was measured for charge transfer resistance (positive electrode evaluation) and capacity retention rate (cycle characteristic evaluation).
  • the density of the positive electrode active material layer means the mass of the positive electrode active material layer per unit volume of the positive electrode active material layer. Therefore, it calculated
  • the obtained lithium ion secondary battery was subjected to a cycle test under the following conditions. Conditions: CC-CV charge (upper limit voltage 4.15V, current 1C, CV time 1.5 hours), CC discharge (lower limit voltage 2.5V, current 1C), environmental temperature during charge / discharge: 45 ° C
  • CC-CV charge upper limit voltage 4.15V, current 1C, CV time 1.5 hours
  • CC discharge lower limit voltage 2.5V, current 1C
  • environmental temperature during charge / discharge 45 ° C
  • the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle was defined as the capacity retention rate.
  • a flaky graphite having a specific average thickness (0.5 ⁇ m or less) is deformed to obtain a positive electrode having a high electrode density, and a specific average particle diameter indicated by the average particle diameter (D 50 ) of the positive electrode active material.
  • D 50 average particle diameter
  • flake graphite having an order better to cover the surface of the positive electrode active material to obtain a positive electrode charge transfer resistance is reduced be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明のリチウムイオン二次電池用正極は、正極用集電体と、上記正極用集電体上に設けられた正極活物質層と、を備える。上記正極活物質層は、正極活物質と、導電助剤と、バインダーとを含み、上記導電助剤は平均厚さが0.5μm以下である薄片状黒鉛を含み、上記正極活物質の平均粒径をD50としたとき、上記薄片状黒鉛の平均粒径が(3×活材D50/5)以上(9×活材D50/10)以下である。

Description

リチウムイオン二次電池用正極およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極およびリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、エネルギー密度が高く、充放電サイクル特性に優れるため、携帯電話やノート型パソコン等の小型のモバイル機器用の電源として広く用いられている。また、近年では、環境問題に対する配慮と省エネルギー化に対する意識の高まりから、電気自動車やハイブリッド電気自動車、電力貯蔵といった分野でも需要が高まり、大容量で長寿命を併せ持つリチウムイオン二次電池が望まれている。
 一般的に、リチウムイオン二次電池は、リチウムイオンを吸蔵放出し得る炭素材料を負極活物質として含む負極と、リチウムイオンを吸蔵放出し得るリチウム複合酸化物を正極活物質として含む正極と、負極と正極とを隔てるセパレータと、非水溶媒にリチウム塩を溶解させた非水系電解液とで主に構成されている。
 例えば、特許文献1には、正極活物質と導電性物質とを含有する正極合剤を備えた非水電解液二次電池において、平均粒径1~50μmおよび比表面積5~50m/gの黒鉛粉末を厚さ1μm以下の薄片状に形成した薄片状黒鉛粉末を上記導電性物質として上記正極合剤に対して0.5~9.5質量%の範囲内で添加したことを特徴とする非水電解液二次電池が開示されている。
 また、特許文献2には、正極活物質と導電性物質とを含有する正極合剤を備えている一次電池であって、上記導電性物質として、厚さ1μm以下、平均粒径1~50μmおよび比表面積5~50m/gの薄片状黒鉛粉末を含有していることを特徴とする一次電池が開示されている。
特開平10-233205号公報 特開平7-147159号公報
 本発明者の検討によれば、特許文献1等に記載されている正極を用いたリチウムイオン二次電池はサイクル特性に劣る傾向にあることが明らかになった。
 本発明は上記事情に鑑みてなされたものであり、サイクル特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用正極、およびサイクル特性に優れるリチウムイオン二次電池を提供するものである。
 本発明者は鋭意検討した結果、正極活物質に対し、特定の条件を揃えた導電助剤を用いることで、サイクル特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用正極が得られることを見出した。
 すなわち、本発明によれば、
 正極用集電体と、前記正極用集電体上に設けられた正極活物質層と、を備えるリチウムイオン二次電池用正極であって、
 前記正極活物質層は、正極活物質と、導電助剤と、バインダーとを含み、
 前記導電助剤は平均厚さが0.5μm以下である薄片状黒鉛を含み、
 前記正極活物質の平均粒径を活材D50としたとき、前記薄片状黒鉛の平均粒径が(3×活材D50/5)以上(9×活材D50/10)以下であるリチウムイオン二次電池用正極が提供される。
 また、本発明によれば、
 上記リチウムイオン二次電池用正極と、負極と、非水系電解液とを備えるリチウムイオン二次電池が提供される。
 本発明によれば、サイクル特性に優れるリチウムイオン二次電池およびこれに好適な正極を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態のリチウムイオン二次電池の構造の一例を示す断面図である。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。また、数値範囲の「~」は特に断りがなければ、以上から以下を表す。
<リチウムイオン二次電池用正極>
 本実施形態に係るリチウムイオン二次電池用正極は、正極用集電体と、上記正極用集電体上に設けられた正極活物質層と、を備える。
 そして、本実施形態に係る正極活物質層は、正極活物質と、導電助剤と、バインダーとを含み、上記導電助剤は平均厚さが0.5μm以下である薄片状黒鉛を含み、上記正極活物質の平均粒径をD50としたとき、上記薄片状黒鉛の平均粒径が(3×活材D50/5)以上(9×活材D50/10)以下である。
 ここで、上記正極活物質の平均粒径(活材D50)は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径)を意味する。
 また、薄片状黒鉛は平板状の黒鉛である。薄片状黒鉛を平面視したときの形状は、円を含む楕円形、多角形、異形のいずれでもよい。
 薄片状黒鉛の平均厚さは、50個以上の薄片状黒鉛の厚さの平均値であり、電子顕微鏡(SEM)で撮影した写真から求めることができる。
 具体的には、SEMにより、50個以上の薄片状黒鉛を撮影する。得られたSEM写真から、50個以上の薄片状黒鉛の厚さをそれぞれ測定し、その平均値を薄片状黒鉛の平均厚さとする。
 薄片状黒鉛の平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径を意味する。
 本実施形態に係るリチウムイオン二次電池用正極を用いることにより、サイクル特性に優れたリチウムイオン二次電池を実現できる。
 このようなリチウムイオン二次電池を実現できる理由は必ずしも明らかではないが、以下の理由が考えられる。
 まず、薄片状黒鉛の平均厚さを0.5μm以下とすることにより、薄片状黒鉛の変形性が良好となり、正極活物質の形状に応じて薄片状黒鉛が変形できるため正極活物質層の密度を向上させることができる。
 また、上記薄片状黒鉛の平均粒径を(3×活材D50/5)以上(9×活材D50/10)以下の範囲とすることにより、薄片状黒鉛が正極活物質表面に沿って変形でき、電荷移動抵抗の上昇を低減させることができる。
 これらの相乗効果によりサイクル特性に優れたリチウムイオン二次電池を実現できると考えられる。
 薄片状黒鉛の平均厚さの下限値は特に限定されないが、例えば、0.01μm以上であり、ハンドリング性の観点から0.05μm以上が好ましい。
 正極活物質は、得られるリチウムイオン二次電池の高エネルギー密度化の点から、リチウム複合酸化物を含むことが好ましい。正極活物質は、ニッケルを含有するリチウム複合酸化物(リチウムニッケル複合酸化物)を含むことがより好ましく、層状結晶構造を有するリチウムニッケル複合酸化物を含むことが特に好ましい。
 本実施形態に係る正極活物質層は、リチウム複合酸化物以外の他の活物質を含んでいてもよいが、得られるリチウムイオン二次電池のエネルギー密度をより高める観点から、正極活物質層に含まれる正極活物質の含有量を100質量%としたとき、正極活物質層中のリチウム複合酸化物の含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。
 また、得られるリチウムイオン二次電池のエネルギー密度をより高める観点から、正極活物質層の全体を100質量%としたとき、正極活物質層中の正極活物質の含有量は、80質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上がさらに好ましい。
 また、リチウムニッケル複合酸化物は、得られるリチウムイオン二次電池のエネルギー密度をより高める観点から、下記式(1)で表される化合物を含むことがより好ましい。
  LiNi1-x       (1)
(式中、Mは、Li、Co、Mn、Mg、Alから選ばれる少なくとも一種であり、0<a≦1、0<x<0.7である)
 正極活物質はリチウムニッケル複合酸化物を含む場合、他のリチウム複合酸化物として、スピネル構造を有するリチウムマンガン複合酸化物を含んでいてもよい。
 層状結晶構造を有するリチウムニッケル複合酸化物(A)とスピネル構造を有するリチウムマンガン複合酸化物の混合比(B)(質量比A:B)は、十分な混合効果を得ながらより高いエネルギー密度を得る点から、80:20~95:5が好ましく、90:10~95:5がより好ましい。
 正極活物質の平均粒径(活材D50)は、得られるリチウムイオン二次電池のエネルギー密度と出力特性(高放電レートでの使用時における放電容量)との性能バランスを向上させる観点から、0.5μm以上20μm以下であることが好ましく、1μm以上15μm以下であることがより好ましく、2μm以上12μm以下であることがさらに好ましい。
 ここで、正極活物質の平均粒径(活材D50)は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。
 正極活物質層は、上記薄片状黒鉛以外の導電助剤を含有してもよい。上記薄片状黒鉛以外の導電助剤としては特に限定されないが、例えば、カーボンブラック、球状黒鉛、炭素繊維等の通常用いられるものを用いることができる。
 上記薄片状黒鉛以外の導電助剤は、球状非晶質カーボン粒子で構成された導電助剤を含むことが好ましく、球状非晶質カーボン粒子(1次粒子)の凝集体(2次粒子=1次凝集体)を含むことがより好ましい。このような導電助剤としては、アセチレンブラックやケッチェンブラック等のカーボンブラックが好ましい。
 上記カーボンブラックの平均粒径は、十分な正極活物質層の密度を有しながら、接触抵抗と電荷移動抵抗が抑えられた正極を得る観点から、2次粒子(1次凝集体)の平均粒径として、3.5μm以下が好ましく、3μm以下がより好ましく、2μm以下がさらに好ましく、また、50nm以上が好ましく、100nm以上がより好ましい。1次粒子の平均粒径は5nm以上500nm以下の範囲にあることが好ましく、10nm以上300nm以下の範囲にあることがより好ましく、50nm以上250nm以下の範囲にあることがさらに好ましい。
 ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。導電助剤の平均粒径が上記の範囲にあることにより、導電助剤と正極活物質の接点がより十分に形成され、また得られるリチウムイオン二次電池の充放電サイクルにおいて、正極活物質の膨張収縮に導電助剤が追従できて導電パスが確保できるため、接触抵抗と電荷移動抵抗の上昇をより抑えることができ、その結果、より一層良好なサイクル特性を有するリチウムイオン二次電池を得ることができる。
 正極活物質層中の正極活物質の割合が多い方が質量当たりの容量が大きくなるため好ましいが、電極の低抵抗化の点からは導電助剤を添加することが好ましい。
 正極活物質層中の導電助剤の含有量は、正極活物質層の全体を100質量%としたとき、好ましくは0.5質量%以上10質量%以下であり、より好ましくは1.0質量%以上8.0質量%以下であり、さらに好ましくは2.0質量%以上6.0質量%以下である。
 導電助剤の含有量が上記上限値以下であると、得られるリチウムイオン二次電池中の正極活物質の割合が大きくなり、質量当たりの容量が大きくなったり、電極剥離が抑制されたりするため好ましい。導電助剤の含有量が上記下限値以上であると、導電性がより良好になるため好ましい。
 導電助剤がカーボンブラックをさらに含む場合、上記薄片状黒鉛とカーボンブラックとの合計を100質量部としたとき、上記薄片状黒鉛の配合量が1質量部以上95質量部以下であることが好ましく、5質量部以上75質量部以下であることが好ましく、10質量部以上50質量部以下であることがさらに好ましい。
 正極活物質層は、次のようにして形成することができる。まず、正極活物質、導電助剤、バインダーおよびスラリー溶媒を含むスラリーを調製し、これを正極用集電体上に塗布し、乾燥し、プレスすることにより形成することができる。
 正極作製時に用いるスラリー溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)を用いることができる。
 バインダーとしては特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の通常正極用バインダーとして用いられるものを用いることができる。
 正極活物質層中の正極活物質の割合が多い方が質量当たりの容量が大きくなるため好ましいが、電極強度の点からバインダーを添加することが好ましい。
 正極活物質層中のバインダーの含有量は、得られるリチウムイオン二次電池のエネルギー密度とバインダーの結着力を両立させる観点から、正極活物質層の全体を100質量%としたとき、1質量%以上15質量%以下が好ましく、1質量%以上10質量%以下がより好ましい。
 バインダーの含有量が上記上限値以下であると、得られるリチウムイオン二次電池中の正極活物質の割合が大きくなるため質量当たりの容量が大きくなったり、抵抗成分が小さくなったりするため好ましい。バインダーの含有量が上記下限値以上であると、電極剥離が抑制されるため好ましい。
 正極活物質層の厚みは特に限定されるものではなく、所望の特性に応じて適宜設定することができる。例えば、エネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。正極活物質層の厚みは、例えば、10μm以上250μm以下の範囲で適宜設定でき、20μm以上200μm以下が好ましく、40μm以上180μm以下がより好ましい。
 また、正極活物質層の密度は、3.30g/cm以上であることが好ましく、3.45g/cm以上4.00g/cm以下であることがより好ましい。正極活物質層の密度を上記範囲内とすると、得られるリチウムイオン二次電池のエネルギー密度と出力特性との性能バランスに優れるため好ましい。
 正極用集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。その形状としては、箔、平板状、メッシュ状等が挙げられる。特にアルミニウム箔を好適に用いることができる。
<リチウムイオン二次電池>
 つづいて、本実施形態に係るリチウムイオン二次電池10について説明する。図1は、本発明に係る実施形態のリチウムイオン二次電池10の構造の一例(ラミネート型)を示す断面図である。
 図1に示すように、本実施形態に係るリチウムイオン二次電池10は、本実施形態に係る正極と、リチウムを挿入・脱離可能な負極と、非水系電解液と、を少なくとも備える。また、正極と負極との間にセパレータ5を設けることができる。正極と負極の電極対は複数設けることができる。
 リチウムイオン二次電池10は、例えば、アルミニウム箔等の金属からなる正極用集電体3と、その上に設けられた正極活物質を含有する正極活物質層1とからなる正極、および銅箔等の金属からなる負極用集電体4と、その上に設けられた負極活物質を含有する負極活物質層2とからなる負極を有する。
 正極および負極は、例えば、正極活物質層1と負極活物質層2とが対向するように、不織布やポリプロピレン微多孔膜等からなるセパレータ5を介して積層されている。この電極対は、例えば、アルミニウムラミネートフィルムからなる外装体6、7で形成された容器内に収容されている。正極集電体3には正極タブ9が接続され、負極用集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。
 容器内には非水系電解液が注入され封止される。複数の電極対が積層された電極群が容器内に収容された構造とすることもできる。なお、本実施形態においては、説明の都合上、図面を誇張して表現しており、本発明の技術的範囲は、図面に示す形態に限定されない。
 本実施形態に係るリチウムイオン二次電池10は公知の方法に準じて作製することができる。
 電極は、例えば、積層体や捲回体が使用できる。外装体としては、金属外装体やアルミラミネート外装体が適宜使用できる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型等いずれの形状であってもよい。
 本実施形態に係る負極は、負極活物質と、必要に応じて、バインダーと、導電助剤とを含む負極活物質層を備える。
 また、本実施形態に係る負極は、例えば、集電体と、この集電体上に設けられた負極活物質層とを備える。
 本実施形態に係る負極活物質としては、リチウム金属、炭素材料、Si系材料等のリチウムを吸蔵、放出できる材料を用いることができる。炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーン等が挙げられる。Si系材料としては、Si、SiO、SiOx(0<x≦2)、Si含有複合材料等を用いることができる。また、これらの材料を2種類以上含む複合物を用いても構わない。
 負極活物質としてリチウム金属を用いる場合は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル-ゲル方式等の適宜な方式により負極を形成することができる。
 また、負極活物質として炭素質材料やSi系材料を用いる場合は、炭素質材料またはSi系材料とバインダーを混合し、スラリー溶媒中に分散混錬し、得られたスラリーを負極用集電体上に塗布し、乾燥し、必要に応じてプレスすることで負極を得ることができる。また、予め負極活物質層を形成した後に、蒸着法、CVD法、スパッタリング法等の方法により負極用集電体となる薄膜を形成して負極を得ることができる。このようにして作製される負極は、負極用集電体と、この集電体上に形成された負極活物質層を有する。
 負極活物質の平均粒径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性の観点や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 負極活物質層は、必要に応じて導電助剤やバインダーを含有してもよい。
 負極用の導電助剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質材料等の一般に負極の導電助剤として使用されている導電性材料を用いることができる。
 負極用のバインダーとしては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合体ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリ(メタ)アクリロニトリル、イソプレンゴム、ブタジエンゴム、フッ素ゴム等が挙げられる。
 スラリー溶媒としては、N-メチル-2-ピロリドン(NMP)や水を用いることができる。水を溶媒として用いる場合、さらに増粘剤として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール等を用いることができる。
 この負極用のバインダーの含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質層の全体を100質量%としたとき、0.5質量%以上30質量%以下の範囲にあることが好ましく、0.5質量%以上25質量%以下の範囲がより好ましく、1質量%以上20質量%以下の範囲がさらに好ましい。
 負極用集電体としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
 非水系電解液としては、1種又は2種以上の非水溶媒にリチウム塩を溶解させた電解液を用いることができる。
 非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、ブチレンカーボネート(BC)等の環状カーボネート類;エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のγ-ラクトン類;1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類が挙げられる。これらの非水溶媒のうちの1種を単独で、または2種以上の混合物を使用することができる。
 非水溶媒に溶解させるリチウム塩としては、特に制限されるものではないが、例えばLiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO、リチウムビスオキサラトボレートが挙げられる。
 これらのリチウム塩は、一種を単独で、または二種以上を組み合わせて使用することができる。また、非水系電解質としてポリマー成分を含んでもよい。リチウム塩の濃度は、例えば0.8~1.2mol/Lの範囲に設定することができ、0.9~1.1mol/Lが好ましい。
 セパレータとしては、例えば、樹脂製の多孔質膜、織布、不織布等を用いることができる。多孔質膜を構成する樹脂としては、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、またはナイロン樹脂等が挙げられる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、ポリオレフィン等の樹脂層へ異種素材を含む層を形成してもよく、異種素材としては、フッ素化合物や無機粒子、アラミド層が挙げられる。
 外装容器には可撓性フィルムからなるケースや缶ケース等を用いることができ、電池の軽量化の観点からは可撓性フィルムを用いることが好ましい。
 可撓性フィルムには、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には、電解液の漏出や外部からの水分の浸入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼等を用いることができる。金属層の少なくとも一方の面には、例えば、変性ポリオレフィン等の熱融着性樹脂層が設けられる。可撓性フィルムの熱融着性樹脂層同士を対向させ、電極積層体を収納する部分の周囲を熱融着することで外装容器が形成される。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルム等の樹脂層を設けることができる。
 電極の作製において、集電体上に活物質層を形成するための装置としては、ドクターブレードや、ダイコータ、グラビアコータ、転写方式、蒸着方式等の様々な塗布方法を実施する装置や、これらの塗布装置の組み合わせを用いることが可能である。
 活物質の塗布端部を精度良く形成するためには、ダイコータを用いることが特に好ましい。ダイコータによる活物質の塗布方式としては、大別して、長尺の集電体の長手方向に沿って連続的に活物質を形成する連続塗布方式と、集電体の長手方向に沿って活物質の塗布部と未塗布部を交互に繰り返して形成する間欠塗布方式の2種類があり、これらの方式を適宜選択することができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下に本発明を、以下の実施例および比較例を用いて説明する。なお、本発明は、以下の実施例に限定されるものではない。
 (実施例1)
 正極活物質に層状結晶構造を有するリチウムニッケル複合酸化物(LiNi0.8Co0.1Mn0.1)(平均粒径(活材D50):8μm)、導電助剤に薄片状黒鉛1(平均厚さ:0.2μm、平均粒径D50:7μm)およびカーボンブラック(アセチレンブラック、2次粒子径D50=2.5μm、1次粒子径D50=150nm)、バインダーにポリフッ化ビニリデン(PVDF)を用い、質量比が正極活物質:導電助剤(薄片状黒鉛:カーボンブラック):バインダー=93:4(1:3):3となるようにこれらを混合して有機溶媒中に分散させたスラリーを調製した。これを正極用集電体(アルミニウム箔)に塗布し、乾燥し、正極活物質層1を形成した。得られた正極を、ローラープレス機を用いてある線圧で圧延し、このときの正極活物質層の密度を計測した(変形性の評価)。
 また、所定の正極活物質層の密度に圧延し、厚さ140μmの特性評価用の正極を得た。
 負極活物質として表面を非晶質炭素で被覆した黒鉛を用い、バインダーとしてPVDFを用い、これらを混合して有機溶媒中に分散した負極スラリーを調製した。これを負極用集電体(銅箔)に塗布し、乾燥し、負極活物質層2を形成して、負極を得た。
 作製した特性評価用正極と負極とを、厚さ25μmのポリプロピレンからなるセパレータを介して交互に積層した。これに負極端子と正極端子を取り付け、アルミラミネートフィルムからなる外装容器に収容し、リチウム塩が溶解した電解液を加え、封止して、積層型リチウムイオン二次電池を得た。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
 なお、電解液の溶媒としてECとDECの混合液(EC/DEC=3/7(体積比))を用い、この混合溶媒にリチウム塩としてLiPFを1mol/L溶解させた。
 (実施例2)
 薄片状黒鉛1の代わりに薄片状黒鉛2(平均厚さ:0.3μm、平均粒径D50:6μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
 (実施例3)
 薄片状黒鉛1の代わりに薄片状黒鉛3(平均厚さ:0.4μm、平均粒径D50:6μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
 (比較例1)
 薄片状黒鉛1の代わりに薄片状黒鉛4(平均厚さ:0.6μm、平均粒径D50:6μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
 (比較例2)
 薄片状黒鉛1の代わりに薄片状黒鉛5(平均厚さ:1.0μm、平均粒径D50:6μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
 (比較例3)
 薄片状黒鉛1の代わりに薄片状黒鉛6(平均厚さ:0.3μm、平均粒径D50:4μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
 (比較例4)
 薄片状黒鉛1の代わりに薄片状黒鉛7(平均厚さ:0.3μm、平均粒径D50:9μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
 (比較例5)
 薄片状黒鉛1の代わりに薄片状黒鉛8(平均厚さ:1.0μm、平均粒径D50:11μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
<評価>
(正極活物質層の密度の決定)
 正極活物質層の密度とは、正極活物質層の単位体積あたりの正極活物質層の質量を意味する。よって、正極活物質層の厚さと、単位面積あたりの質量から、以下の式に従って求めた。
 正極活物質層の密度(g/cm)=(正極活物質層の質量)/(正極活物質層の見かけの体積)
 (電荷移動抵抗の測定)
 得られたリチウムイオン二次電池を4.15Vまで充電し、周波数応答アナライザおよびポテンショ/ガルバノスタットを用いてインピーダンス測定を行い、電荷移動抵抗を算出した。
 (容量維持率の測定)
 得られたリチウムイオン二次電池について次の条件でサイクル試験を行った。
 条件:CC-CV充電(上限電圧4.15V、電流1C、CV時間1.5時間)、CC放電(下限電圧2.5V、電流1C)、充放電時の環境温度:45℃
 1サイクル目の放電容量に対する500サイクル目の放電容量の割合を容量維持率とした。
Figure JPOXMLDOC01-appb-T000001
 比較例1、2、5では、薄片状黒鉛の平均厚さが0.5μm以上であるため、薄片状黒鉛の変形性が乏しく、実施例と比較して正極活物質層の密度が上がらず、正極活物質と薄片状黒鉛との接触点も少ないため電荷移動抵抗が高く容量維持率も低いことがわかる。
 比較例3、4、5では、薄片状黒鉛の平均粒径が(3×活材D50/5)以上(9×活材D50/10)以下を外れているため、実施例より電荷移動抵抗が大きく容量維持率も低いことがわかる。
 特定の平均厚さ(0.5μm以下)を有する薄片状黒鉛が変形することによって高電極密度の正極が得られ、さらに正極活物質の平均粒径(D50)によって示される特定の平均粒径((3×活材D50/5)以上(9×活材D50/10)以下)を有する薄片状黒鉛が正極活物質表面を良好に覆うため、電荷移動抵抗が低減された正極を得ることができる。このような正極を用いることにより、エネルギー密度が高く、良好なサイクル特性を有するリチウムイオン二次電池を提供できる。
 この出願は、2016年3月3日に出願された日本出願特願2016-040757号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  正極用集電体と、前記正極用集電体上に設けられた正極活物質層と、を備えるリチウムイオン二次電池用正極であって、
     前記正極活物質層は、正極活物質と、導電助剤と、バインダーとを含み、
     前記導電助剤は平均厚さが0.5μm以下である薄片状黒鉛を含み、
     前記正極活物質の平均粒径を活材D50としたとき、前記薄片状黒鉛の平均粒径が(3×活材D50/5)以上(9×活材D50/10)以下であるリチウムイオン二次電池用正極。
  2.  請求項1に記載のリチウムイオン二次電池用正極において、
     前記導電助剤が1次粒子の平均粒径が5nm以上500nm以下であるカーボンブラックをさらに含むリチウムイオン二次電池用正極。
  3.  請求項1または2に記載のリチウムイオン二次電池用正極において、
     正極活物質がリチウム複合酸化物を含むリチウムイオン二次電池用正極。
  4.  請求項3に記載のリチウムイオン二次電池用正極において、
     前記リチウム複合酸化物が、層状結晶構造を有するリチウムニッケル複合酸化物を含むリチウムイオン二次電池用正極。
  5.  請求項3または4に記載のリチウムイオン二次電池用正極において、
     前記リチウム複合酸化物が、下記式(1)で表される化合物を含むリチウムイオン二次電池用正極。
      LiNi1-x       (1)
    (式中、Mは、Li、Co、Mn、Mg、およびAlから選ばれる少なくとも一種であり、0<a≦1、0<x<0.7である)
  6.  請求項1乃至5いずれか一項に記載のリチウムイオン二次電池用正極において、
     正極活物質層の密度が3.30g/cm以上であるリチウムイオン二次電池用正極。
  7.  請求項1乃至6いずれか一項に記載のリチウムイオン二次電池用正極において、
      前記正極活物質の平均粒径(D50)が0.5μm以上20μm以下であるリチウムイオン二次電池用正極。
  8.  請求項1乃至7いずれか一項に記載のリチウムイオン二次電池用正極と、負極と、非水系電解液とを備えるリチウムイオン二次電池。
PCT/JP2017/000201 2016-03-03 2017-01-06 リチウムイオン二次電池用正極およびリチウムイオン二次電池 WO2017149927A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17759399.3A EP3425702B1 (en) 2016-03-03 2017-01-06 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
US16/081,510 US20190020057A1 (en) 2016-03-03 2017-01-06 Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2018502549A JP6995738B2 (ja) 2016-03-03 2017-01-06 リチウムイオン二次電池用正極およびリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-040757 2016-03-03
JP2016040757 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017149927A1 true WO2017149927A1 (ja) 2017-09-08

Family

ID=59743704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000201 WO2017149927A1 (ja) 2016-03-03 2017-01-06 リチウムイオン二次電池用正極およびリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20190020057A1 (ja)
EP (1) EP3425702B1 (ja)
JP (1) JP6995738B2 (ja)
WO (1) WO2017149927A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189866A1 (ja) * 2018-03-30 2019-10-03 三井化学株式会社 マイクロカプセルを含むアンダーコート層を備えた正極及びリチウムイオン二次電池
CN112117486A (zh) * 2019-06-21 2020-12-22 太阳诱电株式会社 全固态电池
CN112750978A (zh) * 2020-12-30 2021-05-04 珠海冠宇电池股份有限公司 极片及电池
CN113711384A (zh) * 2019-11-29 2021-11-26 株式会社Lg新能源 包含片状石墨的二次电池用正极以及包含其的二次电池
WO2022168835A1 (ja) * 2021-02-03 2022-08-11 京セラ株式会社 電気化学セル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707322B (zh) * 2019-10-18 2020-12-11 泰州纳新新能源科技有限公司 一种天然石墨浆料的制备方法
CN115911257B (zh) * 2022-11-10 2024-06-25 厦门海辰储能科技股份有限公司 正极极片、电化学装置以及补锂方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016267A (ja) * 2006-07-05 2008-01-24 Hitachi Maxell Ltd 非水電解液二次電池
JP2012146590A (ja) * 2011-01-14 2012-08-02 Panasonic Corp 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
JP2012243645A (ja) * 2011-05-20 2012-12-10 Sumitomo Electric Ind Ltd 電極、および全固体型非水電解質電池
JP2014182873A (ja) * 2013-03-18 2014-09-29 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極形成材料、非水二次電池電極、及び非水二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233205A (ja) * 1997-02-19 1998-09-02 Fuji Elelctrochem Co Ltd 非水電解液二次電池
FR2970376B1 (fr) * 2011-01-07 2013-01-25 Commissariat Energie Atomique Materiau d'electrode positive biphase pour accumulateur au lithium et son procede de synthese
JP6061143B2 (ja) * 2013-04-10 2017-01-18 株式会社豊田自動織機 リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6310242B2 (ja) * 2013-12-03 2018-04-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用正極、および二次電池。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016267A (ja) * 2006-07-05 2008-01-24 Hitachi Maxell Ltd 非水電解液二次電池
JP2012146590A (ja) * 2011-01-14 2012-08-02 Panasonic Corp 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
JP2012243645A (ja) * 2011-05-20 2012-12-10 Sumitomo Electric Ind Ltd 電極、および全固体型非水電解質電池
JP2014182873A (ja) * 2013-03-18 2014-09-29 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極形成材料、非水二次電池電極、及び非水二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425702A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189866A1 (ja) * 2018-03-30 2019-10-03 三井化学株式会社 マイクロカプセルを含むアンダーコート層を備えた正極及びリチウムイオン二次電池
US11942627B2 (en) 2018-03-30 2024-03-26 Mitsui Chemicals, Inc. Positive electrode and lithium ion secondary battery that include undercoat layer containing microcapsule
CN112117486A (zh) * 2019-06-21 2020-12-22 太阳诱电株式会社 全固态电池
JP2021002482A (ja) * 2019-06-21 2021-01-07 太陽誘電株式会社 全固体電池
CN112117486B (zh) * 2019-06-21 2024-08-09 太阳诱电株式会社 全固态电池
JP7401208B2 (ja) 2019-06-21 2023-12-19 太陽誘電株式会社 全固体電池
EP3916847A4 (en) * 2019-11-29 2022-05-18 LG Energy Solution, Ltd. POSITIVE ELECTRODE FOR SECONDARY BATTERY WITH FLAKE GRAPHITE AND SECONDARY BATTERY WITH IT
JP7263531B2 (ja) 2019-11-29 2023-04-24 エルジー エナジー ソリューション リミテッド 鱗片状黒鉛を含む二次電池用正極およびこれを含む二次電池
JP2022521328A (ja) * 2019-11-29 2022-04-06 エルジー エナジー ソリューション リミテッド 鱗片状黒鉛を含む二次電池用正極およびこれを含む二次電池
CN113711384A (zh) * 2019-11-29 2021-11-26 株式会社Lg新能源 包含片状石墨的二次电池用正极以及包含其的二次电池
CN113711384B (zh) * 2019-11-29 2024-05-03 株式会社Lg新能源 包含片状石墨的二次电池用正极以及包含其的二次电池
US12107262B2 (en) 2019-11-29 2024-10-01 Lg Energy Solution, Ltd. Positive electrode for secondary battery comprising flake graphite and secondary battery comprising the same
CN112750978A (zh) * 2020-12-30 2021-05-04 珠海冠宇电池股份有限公司 极片及电池
WO2022168835A1 (ja) * 2021-02-03 2022-08-11 京セラ株式会社 電気化学セル

Also Published As

Publication number Publication date
JPWO2017149927A1 (ja) 2018-12-27
EP3425702A1 (en) 2019-01-09
EP3425702B1 (en) 2022-06-29
JP6995738B2 (ja) 2022-01-17
EP3425702A4 (en) 2019-10-30
US20190020057A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6545663B2 (ja) リチウムイオン二次電池用黒鉛系負極活物質材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6903260B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6685940B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6995738B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6919103B2 (ja) 二次電池用正極合剤、二次電池用正極の製造方法及び二次電池の製造方法
WO2017082083A1 (ja) リチウムイオン二次電池及びその製造方法
JP6560879B2 (ja) リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP7281570B2 (ja) 非水電解液二次電池およびその製造方法
WO2015152114A1 (ja) 黒鉛系活物質材料、負極及びリチウムイオン二次電池
WO2015152115A1 (ja) リチウムイオン二次電池
JP5564872B2 (ja) 非水電解質二次電池
JP2019175657A (ja) リチウムイオン二次電池。
JP6567289B2 (ja) リチウムイオン二次電池
JP2020140896A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2017056585A1 (ja) 正極活物質、正極およびリチウムイオン二次電池
JP6903261B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2018135253A1 (ja) 正極活物質、正極およびリチウムイオン二次電池
JP2020140895A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018502549

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759399

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759399

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759399

Country of ref document: EP

Kind code of ref document: A1