Nothing Special   »   [go: up one dir, main page]

WO2017145558A1 - Head-up display device - Google Patents

Head-up display device Download PDF

Info

Publication number
WO2017145558A1
WO2017145558A1 PCT/JP2017/000942 JP2017000942W WO2017145558A1 WO 2017145558 A1 WO2017145558 A1 WO 2017145558A1 JP 2017000942 W JP2017000942 W JP 2017000942W WO 2017145558 A1 WO2017145558 A1 WO 2017145558A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
condensing
crystal element
opening
Prior art date
Application number
PCT/JP2017/000942
Other languages
French (fr)
Japanese (ja)
Inventor
孝啓 南原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016080579A external-priority patent/JP6319354B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/078,093 priority Critical patent/US10663723B2/en
Priority to KR1020187026551A priority patent/KR102050998B1/en
Priority to CN201780012208.7A priority patent/CN108700747B/en
Priority to DE112017000945.6T priority patent/DE112017000945T5/en
Publication of WO2017145558A1 publication Critical patent/WO2017145558A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present disclosure relates to a head-up display device that is mounted on a moving body and displays a virtual image.
  • a head-up display device (hereinafter abbreviated as a HUD device) that is mounted on a moving body and displays a virtual image.
  • the HUD device disclosed in Patent Document 1 includes a light source unit, a light collecting unit, a liquid crystal element, and an enlarged light guiding unit.
  • a condensing part collimates the illumination light emitted by the light source part by condensing.
  • the liquid crystal element arranges liquid crystal pixels in an opening, forms an image by illuminating the opening with illumination light, and emits display light of the image in the form of a light beam in an emission direction according to the incident direction of the illumination light.
  • the enlarged light guide part guides display light from the liquid crystal element toward the projection member so that the virtual image is enlarged.
  • the magnifying light guide has a plane mirror as an optical element having no refractive power and a concave mirror as an optical element having positive refractive power, and these optical elements are arranged on the optical path.
  • the directivity of display light is enhanced by forming an image with a liquid crystal element by illumination of parallel illumination light as in Patent Document 1. For this reason, it is considered that the display light can reliably reach the visual recognition area provided on the moving body, and the luminance of the virtual image is improved.
  • Patent Document 1 the virtual image is magnified by the concave mirror of the magnifying light guide.
  • the inventor found that the action of the concave mirror can realize a large virtual image while suppressing an increase in the size of the HUD device, but at the same time, the position of the entrance pupil in the optical system of the HUD device approaches the liquid crystal element. .
  • This disclosure is intended to provide a HUD device with good visibility of a virtual image while suppressing an increase in physique.
  • a head-up display device is mounted on a moving body, projects display light toward a projection member of the moving body, and reflects the display light on the projection member while the moving body
  • the virtual image which can be visually recognized from the inside of the said visual recognition area is displayed by making it reach
  • the head-up display device includes a light source unit that emits illumination light.
  • the head-up display device further includes a condensing unit that collimates the illumination light by condensing.
  • the head-up display device includes a plurality of liquid crystal pixels arranged in an opening, and the opening is illuminated by the illumination light emitted from the light collecting unit to form an image, and the incident direction of the illumination light And a liquid crystal element that emits the display light of the image in the form of a light beam in an emission direction according to the above.
  • the head-up display device includes a positive optical element having a positive refractive power and a negative optical element having a negative refractive power, and the virtual image is arranged by arranging both the optical elements on an optical path. Is further provided with an enlarged light guide section that guides the display light from the liquid crystal element toward the projection member.
  • the negative optical element is disposed closer to the liquid crystal element on the optical path than the positive optical element.
  • FIG. 2 is a diagram illustrating a light source unit, a light condensing unit, and a liquid crystal element in an embodiment, and is a cross-sectional view illustrating a cross section along the longitudinal direction;
  • FIG. 2 is a diagram illustrating a light source unit, a light condensing unit, and a liquid crystal element in an embodiment, and is a cross-sectional view illustrating a cross section along a short side direction; It is a graph showing the radiation angle distribution of the light emitting element in an embodiment, It is the figure which looked at the liquid crystal element in one embodiment along the normal line direction of the opening, It is a figure which expands and shows the VI section of FIG.
  • FIG. 7 is a sectional view partially showing a section taken along line VII-VII in FIG.
  • FIG. 11 It is a perspective view showing a compound lens array in one embodiment, It is a figure for explaining the condensing Fresnel surface of the compound lens array in one embodiment, It is a figure for demonstrating the compound surface of the compound lens array in one Embodiment, It is a figure which shows typically the optical system by the HUD apparatus of one Embodiment, It is a figure corresponding to FIG. 11 in a comparative example, It is a figure corresponding to Drawing 2 in modification 1, It is a figure corresponding to FIG. 3 in modification 9, and FIG. 12 is a diagram corresponding to FIG. 11 in Modification 9.
  • the HUD device 100 is mounted on a vehicle 1 that is a kind of moving body and is housed in an instrument panel 2.
  • the HUD device 100 projects display light toward a windshield 3 as a projection member of the vehicle 1, and causes the display light to reach a visual recognition area EB provided in the vehicle 1 while being reflected by the windshield 3.
  • the HUD device 100 displays the virtual image VI that is visible from within the visual recognition area EB. That is, the display light is perceived as a virtual image VI by the passenger of the vehicle 1 whose eyes are located within the visual recognition area EB in the room of the vehicle 1.
  • the occupant can recognize various information displayed as the virtual image VI. Examples of various information displayed as the virtual image VI include vehicle state values such as vehicle speed and fuel remaining amount, or vehicle information such as road information and visibility assistance information.
  • the windshield 3 of the vehicle 1 is formed in a plate shape with translucent glass or synthetic resin.
  • the surface on the indoor side has a reflective surface 3a that reflects display light in a smooth concave or flat shape.
  • the configuration of the windshield 3 is generally set by a vehicle manufacturer based on the use or design of the vehicle 1.
  • the visual recognition area EB is a spatial area in which the virtual image VI displayed by the HUD device 100 is visible. That is, the virtual image VI can be visually recognized if the occupant's eyes are within the visual recognition area EB, and the virtual image VI cannot be visually recognized if the occupant's eyes are outside the visual recognition area EB.
  • the visual recognition area EB is provided so as to overlap the eyelips set in the vehicle 1.
  • the iris is set based on an eye range that statistically represents the distribution of the positions of the eyes of the driver as an occupant (see JIS D0021: 1998 for details).
  • the iris is generally set by the vehicle manufacturer according to the position of the seat 4 of the vehicle 1. That is, the HUD device 100 performs display so that the driver sitting on the seat 4 can easily see.
  • the HUD device 100 includes a light source unit 10, a light collecting unit 14, a liquid crystal element 30, and an enlarged light guide unit 40, which are housed and held in a housing 50.
  • the light source unit 10 has a plurality of light emitting elements 12 arranged with respect to each other, as shown in FIGS.
  • Each light emitting element 12 is a light emitting diode element with little heat generation.
  • Each light emitting element 12 is disposed on a light source circuit board and is electrically connected to a power source through a wiring pattern on the board.
  • each light emitting element 12 is formed by sealing a chip-like blue light emitting diode element with a yellow phosphor in which a yellow fluorescent agent is mixed with a translucent synthetic resin. The yellow phosphor is excited by blue light emitted according to the amount of current from the blue light emitting diode element to emit yellow light, and pseudo white illumination light is emitted by combining the blue light and the yellow light.
  • each light emitting element 12 of the light source unit 10 emits illumination light with a radiation angle distribution in which the light emission intensity relatively decreases as the light emission intensity deviates from the peak direction PKD where the light emission intensity is maximum.
  • the light emitting elements 12 are arranged so that the peak direction PKD is substantially the same direction between the light emitting elements 12.
  • the condenser 14 has a condenser lens array 15 and a compound lens array 18 as shown in FIGS.
  • the condensing unit 14 collimates the illumination light from each light emitting element 12 by condensing by the lens arrays 15 and 18 so as to enter the opening 32 of the liquid crystal element 30.
  • the collimation in the present embodiment means that the illumination light is closer to the parallel light flux than the state where the illumination light is emitted radially from the light emitting element 12, and the illumination light is a completely parallel light flux. There is no need.
  • the liquid crystal element 30 of the present embodiment is an active matrix type transmissive liquid crystal panel using thin film transistors (TFTs).
  • TFTs thin film transistors
  • the liquid crystal element 30 has an opening 32 formed so as to be able to transmit illumination light.
  • the opening 32 is formed in a rectangular shape having a longitudinal direction LD and a short direction SD.
  • the plurality of liquid crystal pixels 34 are arranged in the opening 32 in a two-dimensional direction along the tangential direction of the opening 32.
  • Each liquid crystal pixel 34 is provided with a transmissive portion 34a provided so as to penetrate in the normal direction of the opening 32, and a wiring portion 34b formed so as to surround the transmissive portion 34a.
  • the liquid crystal layer 36a As shown in FIG. 7, in the part including the transmission part 34a in which the liquid crystal pixels 34 of the liquid crystal element 30 are arranged, the liquid crystal layer 36a, the pair of transparent electrodes 36b that sandwich the liquid crystal layer 36a, and the pair of polarizing plates that sandwich them. 36c and the like in a stacked state.
  • the liquid crystal layer 36a is a layer filled with a solution mainly containing liquid crystal molecules such as nematic liquid crystal.
  • the transparent electrode 36b is an electrode formed with translucency.
  • the polarizing plate 36c has a transmission axis and a light shielding axis that are substantially orthogonal to each other.
  • the polarizing plate 36c has such a property that when light having a polarization direction along the transmission axis is incident, the transmittance of the light is maximized.
  • the polarizing plate 36c has such a property that, when light having a polarization direction along the light shielding axis is incident, the transmittance of the light is minimized.
  • the pair of polarizing plates 36c are arranged so that their transmission axes are substantially orthogonal to each other.
  • the transmittance of light transmitted through the liquid crystal element 30 is individually variable for each liquid crystal pixel 34.
  • the thickness TLC of the liquid crystal layer 36a is such that the polarization direction of light incident from the thickness direction of the liquid crystal layer 36a (that is, the normal direction of the opening 32) in the case of a predetermined voltage (for example, 0 V) corresponding to the maximum transmittance.
  • the thickness of the liquid crystal layer 36a is set so as to change by 90 degrees.
  • the liquid crystal element 30 can form an image by controlling the light transmittance of each liquid crystal pixel 34 by illuminating the opening 32 with light.
  • Adjacent liquid crystal pixels 34 are provided with color filters 36d of different colors (for example, red, green, and blue), and various colors are realized by combining these color filters 36d.
  • a diffusing unit 38 is provided on the light condensing unit 14 side of the liquid crystal element 30.
  • the diffusing portion 38 is a diffusing plate that is provided along the tangential direction of the opening 32 and formed in a film shape, for example.
  • the diffusion portion 38 may be formed by providing minute irregularities on the surface of the liquid crystal element 30. Such a diffusing portion 38 exerts some diffusing action immediately before the collimated illumination light enters the opening 32.
  • the condenser lens array 15 is formed by arranging a plurality of condenser lens elements 15 a made of translucent synthetic resin or glass. Each condensing lens element 15a is provided in the same number as the light emitting elements 12, and individually corresponds to each light emitting element 12.
  • Each condensing lens element 15a has a condensing surface 17 that condenses the illumination light from the corresponding light emitting element 12.
  • each condensing surface 17 is provided as an exit side surface that faces the liquid crystal element 30 side (that is, the composite lens array 18 side) and emits illumination light.
  • the incident-side surface 16 on which the illumination light is incident is a single flat surface having a smooth flat shape common to the respective condensing lens elements 15a.
  • the condensing surface 17 is an anamorphic surface formed in a smooth convex shape.
  • the surface vertex 21a of the condensing surface 17 is arranged on a virtual straight line SL extending along the peak direction PKD from the corresponding light emitting element 12.
  • the longitudinal corresponding direction RLD corresponds to a direction obtained by projecting the longitudinal direction LD of the opening 32 onto the above-described virtual plane along the optical path of incident light.
  • the short-side corresponding direction RSD corresponds to a direction obtained by projecting the short-side direction SD of the opening 32 onto the above-described virtual plane along the optical path of incident light.
  • the longitudinal direction LD and the longitudinal corresponding direction RLD are substantially the same direction
  • the lateral direction SD and the lateral correspondence direction RSD are substantially the same direction.
  • the curvature in the long-side corresponding direction RLD and the curvature in the short-side corresponding direction RSD are different from each other.
  • the magnitude relationship between the curvatures of the two directions RLD and RSD corresponds to the illumination range IR to be illuminated by one light emitting element 12 in the opening 32.
  • the illumination range IR has a rectangular shape in which the longitudinal direction LD of the opening 32 is short.
  • the curvature in the long-side corresponding direction RLD is larger than the curvature in the short-side corresponding direction RSD.
  • the curvature in the shorter direction in the illumination range IR is larger than the curvature in the longer direction in the illumination range IR.
  • each condensing lens element 15a is formed in a parabolic shape in a cross section including the longitudinal corresponding direction RLD and the straight line SL (see FIG. 2).
  • the condensing surface 17 is formed in an arc shape (particularly in a semicircular shape in the present embodiment) in a cross section including the short corresponding direction RSD and the straight line SL (see FIG. 3).
  • the illumination light incident on the condensing lens array 15 in this way is condensed by the condensing surface 17 while varying the degree of condensing in both directions, passes through each condensing lens element 15a, and then enters the compound lens array 18. .
  • the compound lens array 18 is provided on the optical path between the condensing lens array 15 and the liquid crystal element 30, and is formed by arranging a plurality of compound lens elements 18a made of translucent synthetic resin or glass. Yes.
  • the compound lens elements 18a are provided in the same number as the light emitting elements 12 and the condenser lens elements 15a, and individually correspond to the light emitting elements 12 and the condenser lens elements 15a.
  • each compound lens element 18a faces the condenser lens array 15 and has a condensing Fresnel surface 19 as an incident side surface on which illumination light is incident.
  • each compound lens element 18a faces the liquid crystal element 30 side and has a compound surface 20 as an emission side surface for emitting illumination light.
  • a part of the shape is simplified.
  • the condensing Fresnel surface 19 is formed as one divided region obtained by dividing the virtual condensing virtual surface Sip into a short corresponding direction RSD with a predetermined division width Ws.
  • the condensing virtual surface Sip has a smooth curved surface as a convex surface convex toward the condensing lens element 15 a side of the condensing lens array 15.
  • the division width Ws in the division region of the condensing Fresnel surface 19 is set to a substantially constant value.
  • the condensing Fresnel surface 19 further condenses the illumination light from the condensing lens array 15 by refraction, and transmits it to the composite surface 20 side.
  • the composite surface 20 forms an alternating arrangement structure in which parallelizing surfaces 21 and deflecting surfaces 22 are alternately connected.
  • the parallelized surface 21 is formed as one divided region obtained by dividing the virtual parallelized virtual surface Sic into regions corresponding to the longitudinal direction RLD with a predetermined divided width Wa.
  • the parallelized virtual surface Sic has a smooth curved surface as a convex surface convex toward the liquid crystal element 30 side.
  • the curvature of the parallel virtual surface Sic is set substantially equal to the curvature of the condensing virtual surface Sip.
  • the deflection surface 22 is formed as one divided region obtained by dividing the virtual deflection virtual surface Sid in the longitudinal corresponding direction RLD with a predetermined division width Wa.
  • the deflection virtual surface Sid is composed of a plurality of inclined surfaces Sis that change in reverse gradient at locations corresponding to the surface vertices of the parallelized virtual surface Sic.
  • each inclined surface Sis has a smooth planar shape.
  • the slope of each slope Sis is set to be opposite to the slope of the corresponding portion of the parallelized virtual surface Sic.
  • the division width Wa in the division area of the parallelizing surface 21 and the deflecting surface 22 is variously set.
  • the sag amount is set to be approximately constant on each of the surfaces 21 and 22, so The entire thickness of the lens array 18 is constant.
  • the collimating surface 21 condenses the illumination light from the condensing Fresnel surface 19 by refraction and collimates it.
  • the deflecting surface 22 deflects the illumination light to the side opposite to the refraction by the collimating surface 21.
  • the surface vertex 21a of the parallel surface 21 including the surface vertex of the parallel virtual surface Sic is arranged on the straight line SL (see also FIG. 2).
  • the above-described division width Ws is set to be the largest on the parallelizing surface 21 including the surface vertex 21a.
  • the division width Ws changes so that the area ratio of the deflecting surface 22 to the parallelizing surface 21 increases as the distance from the surface vertex 21a in the longitudinal corresponding direction RLD increases.
  • the condensing lens element 15 a and the compound lens element 18 a individually correspond to each other and are arranged to face each other.
  • One corresponding condensing lens element 15a and one compound lens element 18a are collectively referred to as a lens element group 14a. That is, the condensing unit 14 has a configuration in which lens element groups 14 a are arranged corresponding to the arrangement of the plurality of light emitting elements 12.
  • the converging focal point (hereinafter referred to as the synthetic focal point of the lens element group 14a) is formed by the condensing surface 17 of the condensing lens element 15a, the condensing Fresnel surface 19 and the parallelizing surface 21 of the compound lens element 18a.
  • the condensing surface 17 being an anamorphic surface being included in the lens element group 14a
  • the focal position FPa of the combined focal point of the lens element group 14a in the cross section including the longitudinal corresponding direction RLD and the straight line SL is short.
  • the focal position FPs of the synthetic focus of the lens element group 14a in the cross section including the hand corresponding direction RSD and the straight line SL is shifted in the direction along the straight line SL. More specifically, in the present embodiment, the focal position FPa is located closer to the light collecting unit 14 than the focal position FPs.
  • Each light emitting element 12 is also arranged between the focal position FPa and the focal position FPs for the corresponding lens element group 14a. In particular, in this embodiment, it is arranged at an intermediate position between the focal position FPa and the focal position FPs.
  • Each lens element group 14a takes in a partial radiant flux including light in the peak direction PKD among the illumination lights of the light emitting elements 12 in a corresponding relationship.
  • the partial radiant flux of the captured illumination light can be collimated as described above.
  • the other part of the illumination light that has not been captured is captured by the lens element group 14a adjacent to the lens element group 14a that has a corresponding relationship.
  • illumination light having a distribution range in which the light emission intensity of the light emitting element 12 is 90% or more with respect to the peak direction PKD is partially taken into the lens element group 14a in a corresponding relationship as a radiant flux. It has become. That is, regarding the light emitting element 12 with the radiation angle distribution of the present embodiment, referring to the portion where the relative light emission intensity of 0.9 in FIG. 4 is about ⁇ 25 degrees, the lens element group 14a is Of the illumination light from the light emitting elements 12 in a corresponding relationship, an angular range of ⁇ 25 degrees to +25 degrees is partially captured as a radiant flux.
  • the entire opening 32 of the liquid crystal element 30 can be illuminated with a smaller total number of the light emitting elements 12, while the luminance unevenness of the virtual image VI becomes relatively conspicuous.
  • the angle range of the partial radiant flux is narrower, the luminance unevenness of the virtual image VI becomes less conspicuous, while the total number of the light emitting elements 12 necessary for illuminating the opening 32 becomes relatively large.
  • the light transmitted through the opening 32 in accordance with the transmittance set for each liquid crystal pixel 34 with respect to the incident illumination light is used as the image display light from the liquid crystal element 30 and the light flux according to the shape of the opening 32. Is injected into the shape. That is, the liquid crystal element 30 emits image display light in the emission direction EXD corresponding to the incident direction IND.
  • the incident direction IND of the illumination light is substantially along the normal direction of the opening 32, and the liquid crystal pixel 34 in the opening 32 basically has no element that refracts light.
  • the injection direction EXD is also substantially along the normal direction of the opening 32.
  • the display light is emitted from each liquid crystal pixel 34 in the direction other than the emission direction EXD, but the emission direction EXD is still the main direction (that is, the direction with the highest intensity). It is.
  • the display light emitted in the emission direction EXD from the liquid crystal element 30 enters the enlarged light guide 40.
  • the enlarged light guide section 40 has a convex mirror 42 and a concave mirror 44 as shown in FIG.
  • the convex mirror 42 and the concave mirror 44 are disposed on the optical path, and the convex mirror 42 is disposed closer to the liquid crystal element 30 on the optical path than the concave mirror 44 is. Accordingly, the display light from the liquid crystal element 30 first enters the convex mirror 42.
  • the convex mirror 42 is formed by evaporating aluminum as the reflective surface 43 on the surface of a base material made of synthetic resin or glass.
  • the reflective surface 43 has a negative surface refracting power by being formed into a smooth curved surface as a convex surface curved in a convex shape.
  • the reflecting surface 43 of this embodiment is a free-form surface that mainly corrects axial aberrations in the virtual image VI.
  • the convex mirror 42 reflects the display light from the liquid crystal element 30 toward the concave mirror 44 by the reflecting surface 43.
  • the convex mirror 42 functions as a negative optical element having a negative refractive power.
  • the refractive power is represented by the reciprocal of the focal length.
  • the concave mirror 44 is formed by evaporating aluminum as the reflecting surface 45 on the surface of a base material made of synthetic resin or glass.
  • the reflective surface 45 has a positive surface refractive power by being formed into a smooth curved surface as a concave surface curved in a concave shape.
  • the reflecting surface 45 of the present embodiment is a free-form surface that mainly corrects distortion aberration in the virtual image VI.
  • the concave mirror 44 reflects the display light from the convex mirror 42 toward the windshield 3 by the reflecting surface 45.
  • the concave mirror 44 functions as a positive optical element having a positive refractive power.
  • a drive mechanism 46 that swings and drives the concave mirror 44 located on the windshield 3 side in the enlarged light guide 40 is provided in the enlarged light guide 40.
  • the drive mechanism 46 swings and drives the concave mirror 44 around the rotation axis 44a by driving a stepping motor, for example, in accordance with a drive signal from the electrically connected control unit 60.
  • a stepping motor for example, in accordance with a drive signal from the electrically connected control unit 60.
  • Such an enlarged light guiding unit 40 guides display light from the liquid crystal element 30 toward the windshield 3 so that the virtual image VI is enlarged. That is, the combined refractive power of the convex mirror 42 and the concave mirror 44 is a positive refractive power.
  • a window-like window portion is provided in the housing 50 between the concave mirror 44 and the windshield 3.
  • the window portion is closed by a dustproof cover 52 formed in a light-transmitting thin plate shape. Accordingly, the display light from the concave mirror 44 passes through the dustproof cover 52 and is reflected by the windshield 3. Thus, the display light reflected by the windshield 3 reaches the visual recognition area EB.
  • the optical system constituted by such a HUD device 100 will be discussed in detail below with reference to FIGS.
  • the shape of each element shown in FIG.11, 12 and a positional relationship, the direction of a light ray, etc. are typically shown for description.
  • the interval from the virtual image VI to the visual recognition area EB is Id (however, Id ⁇ 0 for a virtual image), and the interval from the visual recognition area EB to the windshield 3 is Ed.
  • the distance from the windshield 3 to the reflecting surface 45 of the concave mirror 44 is Wd
  • the distance from the reflecting surface 45 of the concave mirror 44 to the reflecting surface 43 of the convex mirror 42 is D1
  • the opening of the liquid crystal element 30 from the reflecting surface 43 of the convex mirror 42 The interval up to 32 is D2.
  • the surface refractive power of the reflective surface 3a of the windshield 3 is ⁇ ws
  • the surface refractive power of the reflective surface 45 of the concave mirror 44 is ⁇ 1 (where ⁇ 1> 0)
  • the surface refractive power of the reflective surface 43 of the convex mirror 42 is ⁇ 2. (However, ⁇ 2 ⁇ 0).
  • the half value of the size of the virtual image VI is Is
  • the half value of the size of the visual recognition area EB is Es
  • the half value of the size of the opening 32 of the liquid crystal element 30 is Os.
  • a comparative HUD apparatus 900 in which the convex mirror 42 of the present embodiment as shown in FIG. 12 is replaced with a flat mirror 942 having a flat reflecting surface 943 will be considered.
  • D1 is read as an interval from the reflecting surface 945 of the concave mirror 944 to the reflecting surface 943 of the plane mirror 942
  • D2 is read as an interval from the reflecting surface 943 of the plane mirror 942 to the opening 932 of the liquid crystal element 930
  • the plane mirror 942 is further read.
  • the surface refractive power of the reflecting surface 943 is set to zero.
  • the angle of the imaging light beam IMR and the height of the imaging light beam IMR are sequentially obtained by tracing back rays from the visual recognition area EB to the liquid crystal element 930 side.
  • the angle of the imaging light ray IMR means that the light ray that passes through the center of the visual recognition area EB and the center of the opening 932 (hereinafter referred to as the principal light ray PRR) is visually recognized between the visual recognition area EB and the windshield 3.
  • This is an angle at which a light beam (hereinafter referred to as an imaging light beam IMR) extending along a direction connecting the end of the region EB and the center of the virtual image VI.
  • the height of the imaging light ray IMR is an interval between the main light ray PRR and the imaging light ray IMR along a direction perpendicular to the main light ray PRR.
  • the angle of the imaging light ray IMR is -Es / Id.
  • the height of the imaging light ray IMR is Es + (Es / Id) ⁇ Ed.
  • the angle of the imaging ray IMR is ⁇ Es / Is + ⁇ ws ⁇ (Es + (Es / Id) ⁇ Wd), which is set as the HUD constant A.
  • the height of the imaging ray IMR is Es + (Es / Id) ⁇ Ed + (Es / Id) ⁇ Wd ⁇ ws ⁇ Ws ⁇ (Es + Es / Id ⁇ Wd), which is set as the HUD constant B.
  • the angle of the imaging light ray IMR is A + B ⁇ ⁇ 1.
  • the height of the imaging light beam IMR is B ⁇ D1 ⁇ (A + B ⁇ ⁇ 1).
  • the angle of the imaging light ray IMR is A + B ⁇ ⁇ 1.
  • the height of the imaging light ray IMR in the liquid crystal element 930 is zero. Therefore, a state where an image is formed in the opening 932 of the liquid crystal element 930 is realized.
  • the angle of the pupil image-forming light beam PUR and the height of the pupil image-forming light beam PUR are sequentially obtained by back ray tracing from the visual recognition area EB to the liquid crystal element 930 side.
  • the angle of the pupil imaging light ray PUR is a light ray (hereinafter referred to as the light ray along the direction connecting the center of the visual recognition area EB and the end of the virtual image VI between the visual recognition area EB and the windshield 3 with respect to the principal ray PRR. , This is the pupil imaging light ray PUR).
  • the height of the pupil imaging light ray PUR is the interval between the principal light ray PRR and the pupil imaging light ray PUR along the direction perpendicular to the main light ray PRR.
  • the height of the pupil imaging light ray PUR is ⁇ ⁇ Ed.
  • the angle of the pupil imaging light ray PUR is ⁇ ⁇ Ed ⁇ ⁇ ws, which is set as the HUD constant C.
  • the height of the pupil imaging light ray PUR is ⁇ ⁇ Ed + ( ⁇ ⁇ Ed ⁇ ⁇ ws) ⁇ Wd, which is set as the HUD constant D.
  • the angle of the pupil imaging light ray PUR is C + D ⁇ ⁇ 1.
  • the height of the pupil imaging light ray PUR is D ⁇ (C + D ⁇ ⁇ 1) ⁇ D1.
  • the angle of the pupil imaging light ray PUR is C + D ⁇ ⁇ 1.
  • the height of the pupil imaging light ray PUR in the liquid crystal element 930 is Os.
  • the pupil distance Pd from the opening 932 of the liquid crystal element 930 to the entrance pupil ENP may be obtained as a distance at which the height of the pupil imaging light ray PUR is 0.
  • Pd Os / (C + D ⁇ ⁇ 1) (Formula 2)
  • Equation 1 the half angle of view ⁇ of the virtual image VI increases as the surface refractive power ⁇ 1 of the concave mirror 944 increases. In other words, it is necessary to increase the surface refractive power ⁇ 1 in order to enlarge the virtual image VI.
  • the pupil distance Pd decreases as the surface refractive power ⁇ 1 increases. That is, the enlargement of the virtual image VI and the long pupil distance Pd cannot be realized at the same time. From Equation 3, the optical path length Lm decreases as the surface refractive power ⁇ 1 increases.
  • the angle of the imaging light beam IMR and the height of the imaging light beam IMR are sequentially obtained by back ray tracing from the visual recognition area EB to the liquid crystal element 30 side.
  • the angle of the imaging light ray IMR is -Es / Id.
  • the height of the imaging light ray IMR is Es + (Es / Id) ⁇ Ed.
  • the angle of the imaging light ray IMR is ⁇ Es / Is + ⁇ ws ⁇ (Es + (Es / Id) ⁇ Wd), which is set as the HUD constant A as in the comparative example.
  • the height of the imaging light ray IMR is Es + (Es / Id) .Ed + (Es / Id) .Wd-.PHI.ws.Ws.
  • the angle of the pupil imaging light ray PUR and the height of the pupil imaging light ray PUR are sequentially obtained by tracing back rays from the visual recognition area EB to the liquid crystal element 30 side.
  • the height of the pupil imaging light ray PUR is ⁇ ⁇ Ed.
  • the angle of the pupil imaging light ray PUR is ⁇ ⁇ Ed ⁇ ⁇ ws, which is set as the HUD constant C as in the comparative example.
  • the height of the pupil imaging light ray PUR is ⁇ ⁇ Ed + ( ⁇ ⁇ Ed ⁇ ⁇ ws) ⁇ Wd, which is set as the HUD constant D as in the comparative example.
  • the angle of the pupil imaging light ray PUR is C + D ⁇ ⁇ 1.
  • the height of the pupil imaging light ray PUR is D ⁇ (C + D ⁇ ⁇ 1) ⁇ D1.
  • the angle of the pupil imaging light ray PUR is C + D ⁇ ⁇ 1 + ⁇ 2 ⁇ (D ⁇ D1 ⁇ (C + D ⁇ ⁇ 1)).
  • the height of the pupil imaging light ray PUR in the liquid crystal element 30 is Os.
  • Pd Os / ((C + D ⁇ ⁇ 1) ⁇ (1 ⁇ 2 ⁇ D1) + ⁇ 2 ⁇ D) (Formula 5)
  • Formulas 4, 5, and 6 are simultaneous equations with three variables of surface refractive powers ⁇ 1 and ⁇ 2 and a distance D1.
  • the half angle of view ⁇ and the pupil distance Pd do not have a simple relationship depending on the surface refractive power ⁇ 1 as in the comparative example.
  • the surface refractive powers ⁇ 1 and ⁇ 2 and the distance D1 it is possible to increase the pupil distance Pd while increasing the half angle of view ⁇ .
  • ⁇ 2 is negative, the angle of the pupil imaging light ray PUR between the convex mirror 42 and the liquid crystal element 30 acts to be small. In other words, since the denominator of Equation 5 becomes smaller, the pupil distance Pd can be increased.
  • the emission direction EXD of the display light emitted from the liquid crystal element 30 and the direction of the pupil imaging light ray PUR between the convex mirror 42 and the liquid crystal element 30 are spread over the entire image.
  • the pupil distance Pd is preferably larger than the interval D1 or D2.
  • Pd> 150 mm is set for both the longitudinal direction LD and the short direction SD of the opening 32.
  • the enlarged light guide 40 guides the display light from the liquid crystal element 30 toward the windshield 3.
  • the enlarged light guide 40 includes a concave mirror 44 that functions as a positive optical element having a positive refractive power, and a convex mirror 42 that functions as a negative optical element having a negative refractive power.
  • the convex mirror 42 is disposed closer to the liquid crystal element 30 on the optical path than the concave mirror 44.
  • the virtual pupil VI is enlarged using the concave mirror 44 and the convex pupil 42 is used to make the entrance pupil ENP more than the liquid crystal element 30. It can be kept away from the light source unit 10 side.
  • the entrance pupil ENP By moving the entrance pupil ENP away, it is possible to configure an optical path that looks into the opening 32 of the liquid crystal element 30 along the display light emission direction EXD from within the visual recognition area EB. Accordingly, it is possible to suppress a deviation between the direction of the display light contributing to visual recognition and the emission direction EXD from the liquid crystal element 30. Since the emission direction EXD corresponds to the incident direction IND of the collimated illumination light to the liquid crystal element 30, the illumination light is efficiently used as image display light while reducing the luminance difference between the liquid crystal pixels 34. It is possible to reach the visual recognition area EB well.
  • the direction of the display light contributing to visual recognition approaches the emission direction EXD corresponding to the incident direction IND of the illumination light collimated by the condenser 14.
  • the display light can be guided while suppressing the physique expansion of the convex mirror 42.
  • the HUD device 100 in which the visibility of the virtual image VI is good while suppressing an increase in the physique.
  • the positive optical element is the concave mirror 44 having the concave curved curved reflection surface 45
  • the negative optical element has the convex curved curved surface 43.
  • This is a convex mirror 42. Since the function of the enlarged light guide 40 is realized by the reflection by the reflecting surfaces 43 and 45, the virtual image VI is enlarged while suppressing the occurrence of chromatic aberration in the enlarged light guide 40, and the entrance pupil ENP is liquid crystal.
  • the light source unit 10 can be moved away from the element 30.
  • the compound surface 20 provided in the compound lens array 18 as a compound lens of the condensing part 14 includes the parallelizing surface 21 that collimates the illumination light by refraction and the collimation of the illumination light.
  • the deflecting surface 22 that deflects in the direction opposite to the refraction of the surface 21 forms an alternately arranged structure.
  • the directivity of the display light can be adjusted by mixing the illumination light from the light source unit 10 via the parallelizing surface 21 and the illumination light via the deflection surface 22 with each other. Therefore, in combination with the configuration of the above-described enlarged light guide 40, the luminance difference between the liquid crystal pixels 34 can be reduced.
  • the condensing surface 17 provided in the condensing lens array 15 as a condensing lens is an anamorphic surface in which the curvature in the long-side corresponding direction RLD and the curvature in the short-side corresponding direction RSD are different. .
  • the illumination light from the light source part 10 can be equalized according to the rectangular opening part 32, Therefore The brightness
  • the light emitting element 12 of the light source unit 10 overlaps the focal position FPa located on the light collecting unit 14 side among the focal position FPa and the focal position FPs. It may be arranged.
  • the proportion of light that travels inclined from the outer periphery side to the inner periphery side of the opening portion 32 decreases as it travels to the enlarged light guide portion 40 side in the illumination light that passes through the opening portion 32. To do. Therefore, combined with the action of the entrance pupil ENP moving away from the light source unit 10, the luminance in the direction of the display light contributing to visual recognition is increased, and the visibility of the virtual image VI is improved.
  • the condensing unit 14 may not include a compound lens provided with the compound surface 20 like the compound lens array 18 in the above-described embodiment.
  • a general convex lens or a convex lens array may be adopted instead of the compound lens array 18.
  • the condensing unit 14 may not include a condensing lens provided with the condensing surface 17 that is an anamorphic surface, like the condensing lens array 15 in the above-described embodiment.
  • the condensing surface 17 may be a spherical surface or a rotationally symmetric aspheric surface, and a general convex lens or convex lens array may be employed instead of the condensing lens array 15.
  • the light collecting unit 14 may be configured by one or three or more optical elements.
  • the light emitting elements 12 may be arranged in a two-dimensional direction.
  • a reflective liquid crystal element may be employed as the liquid crystal element 30.
  • a convex lens may be employed as a positive optical element.
  • a concave lens may be employed as the negative optical element.
  • the transmissive liquid crystal element 30 is arranged in a state in which the normal direction of the opening 32 is inclined with respect to the incident direction IND of the illumination light and the straight line SL. May be. Specifically, it is preferable that the normal direction of the opening 32 forms an angle of, for example, about 10 to 25 degrees with respect to the incident direction IND and the straight line SL. Since the liquid crystal pixel 34 in the opening 32 basically has no element for deflecting light, the emission direction EXD of the display light substantially coincides with the incident direction IND. Therefore, the normal direction of the opening 32 is arranged in a state inclined with respect to the injection direction EXD.
  • the liquid crystal element 30 in FIG. 14 is inclined with the longitudinal direction LD as the rotation axis. Therefore, the liquid crystal element 30 is disposed to be inclined with respect to the short-side corresponding direction RSD. As a result of this arrangement, the distance between the compound lens array 18 and the liquid crystal element 30 varies depending on the position in the cross section along the short direction SD and the short corresponding direction RSD.
  • a planar reflecting surface 39 is formed on the side facing the convex mirror 42, for example, by a mirror surface configured as a surface of a glass substrate.
  • a mirror surface configured as a surface of a glass substrate.
  • the reflection surface 39 reflects external light in a direction different from the emission direction EXD. Therefore, it can suppress that the external light reflected by the reflective surface 39 reaches
  • the inclination direction or angle of the liquid crystal element 30 is set so as to satisfy the Scheimpflug condition or the conditions in consideration of the arrangement angle of the convex mirror 42, the concave mirror 44, and the windshield 3. It is preferable to set so as to be close to. According to such an inclination direction and angle, the inclination of the virtual image VI with respect to the principal ray PRR can be suppressed.
  • the division width Wa in the area division of the parallelizing surface 21 and the deflection surface 22 may be set to be substantially the same width at each location.
  • the composite surface 20 in the composite lens array 18 may have a configuration in which the shape of the parallelizing surface 21 is replaced with an inclined flat surface.
  • the present disclosure may be applied to various moving bodies (transportation equipment) such as ships or airplanes other than the vehicle 1.
  • the head-up display device described above is mounted on the moving body 1, projects display light toward the projection member 3 of the moving body, and reflects the display light on the projection member 3 in a visual recognition area EB provided on the moving body. By making it reach
  • the light source unit 10 emits illumination light.
  • the condensing part 14 collimates illumination light by condensing.
  • the liquid crystal element 30 arranges a plurality of liquid crystal pixels 34 in the opening 32 and forms an image by illuminating the opening with illumination light emitted from the condensing part, according to the incident direction IND of the illumination light.
  • the display light of the image is emitted in the form of a light flux in the emission direction EXD.
  • the magnifying light guide unit 40 includes a positive optical element 44 having a positive refractive power and a negative optical element 42 having a negative refractive power. By arranging both optical elements on the optical path, a virtual image is obtained. , The display light from the liquid crystal element is guided toward the projection member. The negative optical element is disposed closer to the liquid crystal element on the optical path than the positive optical element.
  • the enlarged light guide unit guides display light from the liquid crystal element toward the projection member.
  • the enlarged light guide section includes a positive optical element having a positive refractive power and a negative optical element having a negative refractive power.
  • the negative optical element is arranged closer to the liquid crystal element on the optical path than the positive optical element.
  • the positive pupil is used to enlarge the virtual image, but the negative optical element is used so that the entrance pupil is closer to the light source unit than the liquid crystal element. You can keep away. By moving the entrance pupil away, it is possible to configure an optical path that looks into the opening of the liquid crystal element along the emission direction of the display light from within the viewing region.
  • the emission direction corresponds to the incident direction of the collimated illumination light to the liquid crystal element, so that the illumination light is efficiently used as the image display light in the viewing area while reducing the luminance difference between the liquid crystal pixels. Can be reached.
  • the direction of the display light contributing to visual recognition approaches the emission direction according to the incident direction of the illumination light parallelized by the condensing unit, Display light can be guided while suppressing the physique expansion of the negative optical element.
  • the image is enlarged, it is possible to provide a HUD device with good visibility of a virtual image while suppressing an increase in physique.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

This head-up display device displays a virtual image (VI) by causing display light to be reflected by a projection member (3) such that said display light reaches a viewing area (EB). A light-collecting section (14) parallelizes illuminating light from a light source unit (10) by collecting the illuminating light. A liquid crystal element (30) arranges a plurality of liquid crystal pixels (34) in an opening (32) and an image is formed as a result of the opening being illuminated with illuminating light emitted from the light-collecting section. The liquid crystal element emits display light for an image as luminous flux in an emission direction (EXD) corresponding to the entry direction (IND) of the illuminating light. A light guidance/expansion section (40) comprises a positive optical element (44) having a positive refractive power and a negative optical element (42) having a negative refractive power. Both optical elements are arranged on an optical path and guide the display light from the liquid crystal element toward the projection member so that the virtual image (VI) expands. The negative optical element is arranged further to the liquid crystal element side than the positive optical element on the optical path.

Description

ヘッドアップディスプレイ装置Head-up display device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年2月23日に出願された日本出願番号2016-32259号と、2016年4月13日に出願された日本出願番号2016-80579号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2016-32259 filed on Feb. 23, 2016 and Japanese Application No. 2016-80579 filed on Apr. 13, 2016. Is used.
 本開示は、移動体に搭載され、虚像を表示するヘッドアップディスプレイ装置に関する。 The present disclosure relates to a head-up display device that is mounted on a moving body and displays a virtual image.
 従来、移動体に搭載され、虚像を表示するヘッドアップディスプレイ装置(以下、HUD装置を略称とする)が知られている。特許文献1に開示のHUD装置は、光源部、集光部、液晶素子、及び拡大導光部を備えている。集光部は、光源部により発せられた照明光を集光により平行化する。液晶素子は、開口部に液晶画素を配列し、開口部が照明光に照明されることにより画像を形成し、照明光の入射方向に応じた射出方向に、画像の表示光を光束状に射出する。拡大導光部は、虚像が拡大されるように、液晶素子からの表示光を投影部材へ向けて導光する。 Conventionally, a head-up display device (hereinafter abbreviated as a HUD device) that is mounted on a moving body and displays a virtual image is known. The HUD device disclosed in Patent Document 1 includes a light source unit, a light collecting unit, a liquid crystal element, and an enlarged light guiding unit. A condensing part collimates the illumination light emitted by the light source part by condensing. The liquid crystal element arranges liquid crystal pixels in an opening, forms an image by illuminating the opening with illumination light, and emits display light of the image in the form of a light beam in an emission direction according to the incident direction of the illumination light. To do. The enlarged light guide part guides display light from the liquid crystal element toward the projection member so that the virtual image is enlarged.
 この拡大導光部は、屈折力を有しない光学素子としての平面鏡と、正の屈折力を有する光学素子としての凹面鏡と、を有し、これら光学素子を光路上に配置している。 The magnifying light guide has a plane mirror as an optical element having no refractive power and a concave mirror as an optical element having positive refractive power, and these optical elements are arranged on the optical path.
 特許文献1のように平行化された照明光の照明により、液晶素子にて画像を形成することで、表示光の指向性が高まる。このため、移動体に設けられた視認領域に表示光を確実に到達させることができ、虚像の輝度が改善されると考えられる。 The directivity of display light is enhanced by forming an image with a liquid crystal element by illumination of parallel illumination light as in Patent Document 1. For this reason, it is considered that the display light can reliably reach the visual recognition area provided on the moving body, and the luminance of the virtual image is improved.
 ただしヘッドアップディスプレイ装置の構成により、虚像の視認性への影響が懸念される。 However, there is concern about the effect on the visibility of virtual images due to the configuration of the head-up display device.
特開2015-90442号公報Japanese Patent Laying-Open No. 2015-90442
 特許文献1では拡大導光部の凹面鏡によって虚像を拡大している。この凹面鏡の作用によりHUD装置の体格の増大を抑制しつつ大きな虚像を実現できるが、同時に、HUD装置の光学系における入射瞳の位置が液晶素子に近づいてしまうことを、本発明者は見出した。 In Patent Document 1, the virtual image is magnified by the concave mirror of the magnifying light guide. The inventor found that the action of the concave mirror can realize a large virtual image while suppressing an increase in the size of the HUD device, but at the same time, the position of the entrance pupil in the optical system of the HUD device approaches the liquid crystal element. .
 入射瞳の位置が液晶素子に近づいてしまうと、照明光の入射方向に応じた表示光の射出方向と、実際に視認領域に到達して視認に寄与する表示光の方向との間にずれが発生し得る。このずれは配列された各液晶画素によって異なるものとなるため、各液晶画素間に輝度差が生じてしまい、虚像の視認性への悪影響が懸念されている。 When the position of the entrance pupil approaches the liquid crystal element, there is a deviation between the display light emission direction according to the incident direction of the illumination light and the direction of the display light that actually reaches the visual recognition region and contributes to visual recognition. Can occur. Since this deviation differs depending on the arranged liquid crystal pixels, a difference in luminance occurs between the liquid crystal pixels, and there is a concern about the adverse effect on the visibility of the virtual image.
 本開示は、体格増大を抑制しつつ、虚像の視認性が良好なHUD装置を提供することを目的とする。 This disclosure is intended to provide a HUD device with good visibility of a virtual image while suppressing an increase in physique.
 本開示の第一の態様によるヘッドアップディスプレイ装置は、移動体に搭載され、前記移動体の投影部材へ向けて表示光を投影し、前記表示光を前記投影部材にて反射させつつ前記移動体に設けられた視認領域に到達させることにより、前記視認領域内から視認可能な虚像を表示する。前記ヘッドアップディスプレイ装置は、照明光を発する光源部を備える。前記ヘッドアップディスプレイ装置は、前記照明光を集光により平行化する集光部を更に備える。前記ヘッドアップディスプレイ装置は、開口部に複数の液晶画素を配列し、前記開口部が前記集光部から射出された前記照明光に照明されることにより画像を形成し、前記照明光の入射方向に応じた射出方向に、前記画像の前記表示光を光束状に射出する液晶素子を更に備える。前記ヘッドアップディスプレイ装置は、正の屈折力を有する正の光学素子と、負の屈折力を有する負の光学素子と、を有し、両前記光学素子を光路上に配置することで、前記虚像が拡大されるように、前記液晶素子からの前記表示光を前記投影部材へ向けて導光する拡大導光部と、を更に備える。前記負の光学素子は、前記正の光学素子よりも前記光路上の前記液晶素子側に配置される。 A head-up display device according to a first aspect of the present disclosure is mounted on a moving body, projects display light toward a projection member of the moving body, and reflects the display light on the projection member while the moving body The virtual image which can be visually recognized from the inside of the said visual recognition area is displayed by making it reach | attain the visual recognition area provided in. The head-up display device includes a light source unit that emits illumination light. The head-up display device further includes a condensing unit that collimates the illumination light by condensing. The head-up display device includes a plurality of liquid crystal pixels arranged in an opening, and the opening is illuminated by the illumination light emitted from the light collecting unit to form an image, and the incident direction of the illumination light And a liquid crystal element that emits the display light of the image in the form of a light beam in an emission direction according to the above. The head-up display device includes a positive optical element having a positive refractive power and a negative optical element having a negative refractive power, and the virtual image is arranged by arranging both the optical elements on an optical path. Is further provided with an enlarged light guide section that guides the display light from the liquid crystal element toward the projection member. The negative optical element is disposed closer to the liquid crystal element on the optical path than the positive optical element.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
一実施形態におけるHUD装置の車両への搭載状態を示す模式図であり、 一実施形態における光源部、集光部、及び液晶素子を示す図であって、長手方向に沿った断面を示す断面図であり、 一実施形態における光源部、集光部、及び液晶素子を示す図であって、短手方向に沿った断面を示す断面図であり、 一実施形態における発光素子の放射角度分布を示すグラフであり、 一実施形態における液晶素子を開口部の法線方向に沿って見た図であり、 図5のVI部を拡大して示す図であり、 図6のVII-VII線断面を部分的に示す断面図であり、 一実施形態における複合レンズアレイを示す斜視図であり、 一実施形態における複合レンズアレイの集光フレネル面を説明するための図であり、 一実施形態における複合レンズアレイの複合面を説明するための図であり、 一実施形態のHUD装置による光学系を模式的に示す図であり、 比較例における図11に対応する図であり、 変形例1における図2に対応する図であり、 変形例9における図3に対応する図であり、また 変形例9における図11に対応する図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a schematic diagram which shows the mounting state to the vehicle of the HUD apparatus in one Embodiment, FIG. 2 is a diagram illustrating a light source unit, a light condensing unit, and a liquid crystal element in an embodiment, and is a cross-sectional view illustrating a cross section along the longitudinal direction; FIG. 2 is a diagram illustrating a light source unit, a light condensing unit, and a liquid crystal element in an embodiment, and is a cross-sectional view illustrating a cross section along a short side direction; It is a graph showing the radiation angle distribution of the light emitting element in an embodiment, It is the figure which looked at the liquid crystal element in one embodiment along the normal line direction of the opening, It is a figure which expands and shows the VI section of FIG. FIG. 7 is a sectional view partially showing a section taken along line VII-VII in FIG. It is a perspective view showing a compound lens array in one embodiment, It is a figure for explaining the condensing Fresnel surface of the compound lens array in one embodiment, It is a figure for demonstrating the compound surface of the compound lens array in one Embodiment, It is a figure which shows typically the optical system by the HUD apparatus of one Embodiment, It is a figure corresponding to FIG. 11 in a comparative example, It is a figure corresponding to Drawing 2 in modification 1, It is a figure corresponding to FIG. 3 in modification 9, and FIG. 12 is a diagram corresponding to FIG. 11 in Modification 9.
 以下、本開示の一実施形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present disclosure will be described based on the drawings.
 図1に示すように、本開示の一実施形態によるHUD装置100は、移動体の一種である車両1に搭載され、インストルメントパネル2内に収容されている。HUD装置100は、車両1の投影部材としてのウインドシールド3へ向けて表示光を投影し、当該表示光をウインドシールド3にて反射させつつ車両1に設けられた視認領域EBに到達させる。これにより、HUD装置100は、視認領域EB内から視認可能な虚像VIを表示する。すなわち、表示光が、車両1の室内において視認領域EB内に眼が位置する車両1の乗員により虚像VIとして知覚される。そして、乗員は、虚像VIとして表示される各種情報を認識することができる。虚像VIとして表示される各種情報としては、例えば、車速、燃料残量等の車両状態値、又は道路情報、視界補助情報等の車両情報が挙げられる。 As shown in FIG. 1, the HUD device 100 according to an embodiment of the present disclosure is mounted on a vehicle 1 that is a kind of moving body and is housed in an instrument panel 2. The HUD device 100 projects display light toward a windshield 3 as a projection member of the vehicle 1, and causes the display light to reach a visual recognition area EB provided in the vehicle 1 while being reflected by the windshield 3. As a result, the HUD device 100 displays the virtual image VI that is visible from within the visual recognition area EB. That is, the display light is perceived as a virtual image VI by the passenger of the vehicle 1 whose eyes are located within the visual recognition area EB in the room of the vehicle 1. The occupant can recognize various information displayed as the virtual image VI. Examples of various information displayed as the virtual image VI include vehicle state values such as vehicle speed and fuel remaining amount, or vehicle information such as road information and visibility assistance information.
 車両1のウインドシールド3は、透光性のガラスないしは合成樹脂等により板状に形成されている。ウインドシールド3において、室内側の面は表示光を反射する反射面3aを滑らかな凹面状又は平面状に形成している。ウインドシールド3の構成は、一般的に、車両1の用途あるいはデザイン等に基づいて車両メーカにより設定されている。 The windshield 3 of the vehicle 1 is formed in a plate shape with translucent glass or synthetic resin. In the windshield 3, the surface on the indoor side has a reflective surface 3a that reflects display light in a smooth concave or flat shape. The configuration of the windshield 3 is generally set by a vehicle manufacturer based on the use or design of the vehicle 1.
 視認領域EBは、HUD装置100により表示される虚像VIが視認可能となる空間領域である。すなわち、乗員の眼が視認領域EB内であれば虚像VIを視認することができ、乗員の眼が視認領域EB外であれば虚像VIを視認することができない。 The visual recognition area EB is a spatial area in which the virtual image VI displayed by the HUD device 100 is visible. That is, the virtual image VI can be visually recognized if the occupant's eyes are within the visual recognition area EB, and the virtual image VI cannot be visually recognized if the occupant's eyes are outside the visual recognition area EB.
 本実施形態では、視認領域EBは、車両1に設定されたアイリプスと重なるように設けられている。アイリプスは、乗員としての運転者の眼の位置の分布を統計的に表したアイレンジに基づいて、設定されている(詳細は、JISD0021:1998参照)。アイリプスは、一般的に車両1の座席4の位置に応じて、車両メーカにおいて設定される。すなわちHUD装置100は、座席4に着座する運転者が視認し易いように、表示を行なうようになっている。 In the present embodiment, the visual recognition area EB is provided so as to overlap the eyelips set in the vehicle 1. The iris is set based on an eye range that statistically represents the distribution of the positions of the eyes of the driver as an occupant (see JIS D0021: 1998 for details). The iris is generally set by the vehicle manufacturer according to the position of the seat 4 of the vehicle 1. That is, the HUD device 100 performs display so that the driver sitting on the seat 4 can easily see.
 このようなHUD装置100の具体的構成を、以下に説明する。HUD装置100は、光源部10、集光部14、液晶素子30、及び拡大導光部40を備えており、これらはハウジング50に収容され、保持されている。 A specific configuration of the HUD device 100 will be described below. The HUD device 100 includes a light source unit 10, a light collecting unit 14, a liquid crystal element 30, and an enlarged light guide unit 40, which are housed and held in a housing 50.
 光源部10は、図2,3に示すように、互いに配列された複数の発光素子12を有している。各発光素子12は、発熱の少ない発光ダイオード素子である。各発光素子12は、光源用回路基板上に配置され、当該基板上の配線パターンを通じて、電源と電気的に接続されている。より詳細に、各発光素子12は、チップ状の青色発光ダイオード素子を透光性を有する合成樹脂に黄色蛍光剤を混合した黄色蛍光体により封止することにより形成されている。青色発光ダイオード素子から電流量に応じて発せられる青色光により、黄色蛍光体が励起されて黄色光を発光し、青色光と黄色光との合成により疑似白色の照明光が発せられる。 The light source unit 10 has a plurality of light emitting elements 12 arranged with respect to each other, as shown in FIGS. Each light emitting element 12 is a light emitting diode element with little heat generation. Each light emitting element 12 is disposed on a light source circuit board and is electrically connected to a power source through a wiring pattern on the board. In more detail, each light emitting element 12 is formed by sealing a chip-like blue light emitting diode element with a yellow phosphor in which a yellow fluorescent agent is mixed with a translucent synthetic resin. The yellow phosphor is excited by blue light emitted according to the amount of current from the blue light emitting diode element to emit yellow light, and pseudo white illumination light is emitted by combining the blue light and the yellow light.
 ここで図4に示すように、光源部10の各発光素子12は、発光強度が最大となるピーク方向PKDから乖離するに従って発光強度が相対的に低下する放射角度分布にて、照明光を発する。本実施形態では、ピーク方向PKDが各発光素子12間で実質同方向となるように、各発光素子12は配置されている。 Here, as shown in FIG. 4, each light emitting element 12 of the light source unit 10 emits illumination light with a radiation angle distribution in which the light emission intensity relatively decreases as the light emission intensity deviates from the peak direction PKD where the light emission intensity is maximum. . In the present embodiment, the light emitting elements 12 are arranged so that the peak direction PKD is substantially the same direction between the light emitting elements 12.
 集光部14は、図2,3に示すように、集光レンズアレイ15及び複合レンズアレイ18を有している。集光部14は、これら両レンズアレイ15,18により、各発光素子12からの照明光を集光により平行化して、液晶素子30の開口部32に入射させるようになっている。ここで本実施形態における平行化とは、照明光が発光素子12から放射状に発せられた状態よりも平行光束に近づいた状態となることを意味し、照明光が完全に平行光束となっている必要はない。 The condenser 14 has a condenser lens array 15 and a compound lens array 18 as shown in FIGS. The condensing unit 14 collimates the illumination light from each light emitting element 12 by condensing by the lens arrays 15 and 18 so as to enter the opening 32 of the liquid crystal element 30. Here, the collimation in the present embodiment means that the illumination light is closer to the parallel light flux than the state where the illumination light is emitted radially from the light emitting element 12, and the illumination light is a completely parallel light flux. There is no need.
 本実施形態の液晶素子30は、薄膜トランジスタ(Thin Film Transistor、TFT)を用いたアクティブマトリクス方式の透過型液晶パネルである。 The liquid crystal element 30 of the present embodiment is an active matrix type transmissive liquid crystal panel using thin film transistors (TFTs).
 具体的に、液晶素子30は、照明光を透過可能に形成された開口部32を有している。開口部32は、図5に示すように、長手方向LD及び短手方向SDを有する矩形状に形成されている。開口部32には、図6に拡大して示すように、上述の複数の液晶画素34が開口部32の接線方向に沿って2次元方向に配列されている。 Specifically, the liquid crystal element 30 has an opening 32 formed so as to be able to transmit illumination light. As shown in FIG. 5, the opening 32 is formed in a rectangular shape having a longitudinal direction LD and a short direction SD. As shown in an enlarged view in FIG. 6, the plurality of liquid crystal pixels 34 are arranged in the opening 32 in a two-dimensional direction along the tangential direction of the opening 32.
 各液晶画素34では、開口部32の法線方向に貫通して設けられる透過部34aと、透過部34aを囲んで形成された配線部34bが設けられている。 Each liquid crystal pixel 34 is provided with a transmissive portion 34a provided so as to penetrate in the normal direction of the opening 32, and a wiring portion 34b formed so as to surround the transmissive portion 34a.
 図7に示すように、液晶素子30の液晶画素34が配列された透過部34aを含む部分では、液晶層36a、当該液晶層36aを挟む一対の透明電極36b、及びこれらを挟む一対の偏光板36c等を、積層した状態で有している。 As shown in FIG. 7, in the part including the transmission part 34a in which the liquid crystal pixels 34 of the liquid crystal element 30 are arranged, the liquid crystal layer 36a, the pair of transparent electrodes 36b that sandwich the liquid crystal layer 36a, and the pair of polarizing plates that sandwich them. 36c and the like in a stacked state.
 液晶層36aは、例えばネマティック液晶等の液晶分子を主成分とする溶液が充填された層である。透明電極36bは、透光性を有して形成されている電極である。偏光板36cは、互いに実質直交する透過軸及び遮光軸を有している。偏光板36cは、透過軸に沿った偏光方向の光が入射した場合、当該光の透過率は最大となる性質を有している。一方、偏光板36cは、遮光軸に沿った偏光方向の光が入射した場合、当該光の透過率は最小となる性質を有している。ここで、一対の偏光板36cは、透過軸を互いに実質直交して配置されている。 The liquid crystal layer 36a is a layer filled with a solution mainly containing liquid crystal molecules such as nematic liquid crystal. The transparent electrode 36b is an electrode formed with translucency. The polarizing plate 36c has a transmission axis and a light shielding axis that are substantially orthogonal to each other. The polarizing plate 36c has such a property that when light having a polarization direction along the transmission axis is incident, the transmittance of the light is maximized. On the other hand, the polarizing plate 36c has such a property that, when light having a polarization direction along the light shielding axis is incident, the transmittance of the light is minimized. Here, the pair of polarizing plates 36c are arranged so that their transmission axes are substantially orthogonal to each other.
 電気的に接続された制御部60による制御により、液晶画素34毎に、一対の透明電極36b間に電圧を印加することが可能となっている。一対の透明電極36b間の印加電圧に応じて、液晶層36aでは液晶分子の配向方向が変化することで、液晶層36aを透過する光の偏光方向は変化する。こうして、液晶素子30を透過する光の透過率が、液晶画素34毎に個別に可変となっている。なお、液晶層36aの厚みTLCは、最大透過率に対応する所定電圧(例えば0V)の場合に、液晶層36aの厚み方向(すなわち開口部32の法線方向)から入射する光の偏光方向が、液晶層36aの透過により90度変化するような厚みに設定されている。 It is possible to apply a voltage between the pair of transparent electrodes 36b for each liquid crystal pixel 34 under the control of the electrically connected control unit 60. Depending on the voltage applied between the pair of transparent electrodes 36b, the alignment direction of the liquid crystal molecules in the liquid crystal layer 36a changes, so that the polarization direction of the light transmitted through the liquid crystal layer 36a changes. Thus, the transmittance of light transmitted through the liquid crystal element 30 is individually variable for each liquid crystal pixel 34. Note that the thickness TLC of the liquid crystal layer 36a is such that the polarization direction of light incident from the thickness direction of the liquid crystal layer 36a (that is, the normal direction of the opening 32) in the case of a predetermined voltage (for example, 0 V) corresponding to the maximum transmittance. The thickness of the liquid crystal layer 36a is set so as to change by 90 degrees.
 したがって、液晶素子30は、開口部32への光の照明により、液晶画素34毎の当該光の透過率を制御して、画像を形成することが可能となっている。隣り合う液晶画素34には、互いに異なる色(例えば、赤、緑、及び青)のカラーフィルタ36dが設けられており、これらの組み合わせにより、様々な色が実現されるようになっている。 Therefore, the liquid crystal element 30 can form an image by controlling the light transmittance of each liquid crystal pixel 34 by illuminating the opening 32 with light. Adjacent liquid crystal pixels 34 are provided with color filters 36d of different colors (for example, red, green, and blue), and various colors are realized by combining these color filters 36d.
 また、液晶素子30の集光部14側には、拡散部38が設けられている。拡散部38は、開口部32の接線方向に沿って設けられ、例えばフィルム状に形成された拡散板である。あるいは、拡散部38は、液晶素子30の表面に微小な凹凸を設けることにより形成されてもよい。こうした拡散部38は、平行化された照明光に開口部32に入射する直前で、いくらかの拡散作用を及ぼす。 In addition, a diffusing unit 38 is provided on the light condensing unit 14 side of the liquid crystal element 30. The diffusing portion 38 is a diffusing plate that is provided along the tangential direction of the opening 32 and formed in a film shape, for example. Alternatively, the diffusion portion 38 may be formed by providing minute irregularities on the surface of the liquid crystal element 30. Such a diffusing portion 38 exerts some diffusing action immediately before the collimated illumination light enters the opening 32.
 ここで集光部14の説明に戻る。集光レンズアレイ15は、図2,3に示すように、透光性の合成樹脂ないしはガラス等からなる複数の集光レンズ素子15aが互いに配列されて、形成されている。各集光レンズ素子15aは、発光素子12と同数設けられ、各発光素子12とそれぞれ個別に対応している。 Returning to the description of the light collecting unit 14 here. As shown in FIGS. 2 and 3, the condenser lens array 15 is formed by arranging a plurality of condenser lens elements 15 a made of translucent synthetic resin or glass. Each condensing lens element 15a is provided in the same number as the light emitting elements 12, and individually corresponds to each light emitting element 12.
 各集光レンズ素子15aは、対応する発光素子12からの照明光を集光する集光面17を有している。特に本実施形態では、各集光面17は、液晶素子30側(すなわち複合レンズアレイ18側)を向き、照明光を射出する射出側表面として、設けられている。一方、照明光が入射する入射側表面16は、各集光レンズ素子15a間で共通の滑らかな平面状を呈した単一平面となっている。 Each condensing lens element 15a has a condensing surface 17 that condenses the illumination light from the corresponding light emitting element 12. In particular, in the present embodiment, each condensing surface 17 is provided as an exit side surface that faces the liquid crystal element 30 side (that is, the composite lens array 18 side) and emits illumination light. On the other hand, the incident-side surface 16 on which the illumination light is incident is a single flat surface having a smooth flat shape common to the respective condensing lens elements 15a.
 各集光レンズ素子15aにおいて、集光面17は、滑らかな凸面状に形成されたアナモルフィック面となっている。集光面17の面頂点21aは、対応する発光素子12からピーク方向PKDに沿っている仮想の直線SL上に配置されている。 In each condensing lens element 15a, the condensing surface 17 is an anamorphic surface formed in a smooth convex shape. The surface vertex 21a of the condensing surface 17 is arranged on a virtual straight line SL extending along the peak direction PKD from the corresponding light emitting element 12.
 ここで、仮想の直線SLと直交する仮想平面上において、開口部32の長手方向LDに対応する方向(以下、長手対応方向RLD)とし、開口部32の短手方向SDに対応する方向(以下、短手対応方向RSD)とする。長手対応方向RLDは、開口部32の長手方向LDを、入射する光の光路に沿って上述の仮想平面に射影することで得られる方向に相当する。短手対応方向RSDは、開口部32の短手方向SDを、入射する光の光路に沿って上述の仮想平面に射影することで得られる方向に相当する。 Here, on a virtual plane orthogonal to the virtual straight line SL, the direction corresponding to the longitudinal direction LD of the opening 32 (hereinafter referred to as the longitudinal corresponding direction RLD) and the direction corresponding to the short direction SD of the opening 32 (hereinafter referred to as the longitudinal direction LD). , Short direction corresponding direction RSD). The longitudinal corresponding direction RLD corresponds to a direction obtained by projecting the longitudinal direction LD of the opening 32 onto the above-described virtual plane along the optical path of incident light. The short-side corresponding direction RSD corresponds to a direction obtained by projecting the short-side direction SD of the opening 32 onto the above-described virtual plane along the optical path of incident light.
 本実施形態では、詳細は後述するが、発光素子12から液晶素子30までの光路上に、照明光のうちピーク方向PKDに沿って発せられた光の進行方向を曲げる要因はなく、かつ、照明光の入射方向INDが開口部32の法線方向に略沿っている。このため、長手方向LDと長手対応方向RLDとは実質同方向であり、短手方向SDと短手対応方向RSDとは実質同方向である。 Although details will be described later in the present embodiment, there is no cause for bending the traveling direction of the light emitted along the peak direction PKD of the illumination light on the optical path from the light emitting element 12 to the liquid crystal element 30, and the illumination The light incident direction IND is substantially along the normal direction of the opening 32. For this reason, the longitudinal direction LD and the longitudinal corresponding direction RLD are substantially the same direction, and the lateral direction SD and the lateral correspondence direction RSD are substantially the same direction.
 アナモルフィック面である集光面17において、長手対応方向RLDの曲率と短手対応方向RSDとの曲率とは、互いに異なっている。ここで、両方向RLD,RSDの曲率の大小関係は、開口部32のうち1つの発光素子12が照明すべき照明範囲IRに応じたものとなっている。例えば本実施形態では、発光素子12が長手対応方向RLDに沿って配列されている結果、照明範囲IRは、開口部32の長手方向LDが短手となる矩形状となっている。これに対応して、集光面17では、長手対応方向RLDの曲率が短手対応方向RSDの曲率よりも大きいものとなっている。要するに、照明範囲IRにおいて短手となる方向の曲率が、照明範囲IRにおいて長手となる方向の曲率よりも大きくなっている。 In the condensing surface 17 which is an anamorphic surface, the curvature in the long-side corresponding direction RLD and the curvature in the short-side corresponding direction RSD are different from each other. Here, the magnitude relationship between the curvatures of the two directions RLD and RSD corresponds to the illumination range IR to be illuminated by one light emitting element 12 in the opening 32. For example, in the present embodiment, as a result of the light emitting elements 12 being arranged along the longitudinal corresponding direction RLD, the illumination range IR has a rectangular shape in which the longitudinal direction LD of the opening 32 is short. Correspondingly, on the light condensing surface 17, the curvature in the long-side corresponding direction RLD is larger than the curvature in the short-side corresponding direction RSD. In short, the curvature in the shorter direction in the illumination range IR is larger than the curvature in the longer direction in the illumination range IR.
 また、各集光レンズ素子15aの集光面17は、長手対応方向RLD及び直線SLを含む断面において、放物線状に形成されている(図2を参照)。一方、集光面17は、短手対応方向RSD及び直線SLを含む断面において円弧状に(特に本実施形態では半円状に)形成されている(図3を参照)。 Further, the condensing surface 17 of each condensing lens element 15a is formed in a parabolic shape in a cross section including the longitudinal corresponding direction RLD and the straight line SL (see FIG. 2). On the other hand, the condensing surface 17 is formed in an arc shape (particularly in a semicircular shape in the present embodiment) in a cross section including the short corresponding direction RSD and the straight line SL (see FIG. 3).
 こうして集光レンズアレイ15に入射する照明光は、両方向の集光の度合を異ならせつつ集光面17により集光され、各集光レンズ素子15aを透過した後、複合レンズアレイ18に入射する。 The illumination light incident on the condensing lens array 15 in this way is condensed by the condensing surface 17 while varying the degree of condensing in both directions, passes through each condensing lens element 15a, and then enters the compound lens array 18. .
 複合レンズアレイ18は、集光レンズアレイ15と液晶素子30との間の光路上に設けられ、透光性の合成樹脂ないしはガラス等からなる複数の複合レンズ素子18aが互いに配列されて形成されている。各複合レンズ素子18aは、発光素子12及び集光レンズ素子15aと同数設けられ、各発光素子12及び各集光レンズ素子15aとそれぞれ個別に対応している。図8に示すように、各複合レンズ素子18aは、集光レンズアレイ15側を向き、照明光が入射する入射側表面として、集光フレネル面19を有している。一方、各複合レンズ素子18aは、液晶素子30側を向き、照明光を射出する射出側表面として、複合面20を有している。なお、図8では、一部形状が簡略化されて示されている。 The compound lens array 18 is provided on the optical path between the condensing lens array 15 and the liquid crystal element 30, and is formed by arranging a plurality of compound lens elements 18a made of translucent synthetic resin or glass. Yes. The compound lens elements 18a are provided in the same number as the light emitting elements 12 and the condenser lens elements 15a, and individually correspond to the light emitting elements 12 and the condenser lens elements 15a. As shown in FIG. 8, each compound lens element 18a faces the condenser lens array 15 and has a condensing Fresnel surface 19 as an incident side surface on which illumination light is incident. On the other hand, each compound lens element 18a faces the liquid crystal element 30 side and has a compound surface 20 as an emission side surface for emitting illumination light. In FIG. 8, a part of the shape is simplified.
 集光フレネル面19は、図9に詳細を示すように、仮想の集光仮想面Sipを短手対応方向RSDに所定の分割幅Wsで領域分割した一分割領域として、形成されている。ここで、集光仮想面Sipは、集光レンズアレイ15の集光レンズ素子15a側に凸となる凸面として滑らかな曲面状となっている。ここで、集光フレネル面19の分割領域における分割幅Wsは、略一定値に設定されている。こうした集光フレネル面19は、集光レンズアレイ15からの照明光を屈折によりさらに集光して、複合面20側に透過させる。 As shown in detail in FIG. 9, the condensing Fresnel surface 19 is formed as one divided region obtained by dividing the virtual condensing virtual surface Sip into a short corresponding direction RSD with a predetermined division width Ws. Here, the condensing virtual surface Sip has a smooth curved surface as a convex surface convex toward the condensing lens element 15 a side of the condensing lens array 15. Here, the division width Ws in the division region of the condensing Fresnel surface 19 is set to a substantially constant value. The condensing Fresnel surface 19 further condenses the illumination light from the condensing lens array 15 by refraction, and transmits it to the composite surface 20 side.
 複合面20は、図10に詳細を示すように、平行化面21と、偏向面22とが交互に連なる交互配列構造を、形成している。 As shown in detail in FIG. 10, the composite surface 20 forms an alternating arrangement structure in which parallelizing surfaces 21 and deflecting surfaces 22 are alternately connected.
 平行化面21は、仮想の平行化仮想面Sicを長手対応方向RLDに所定の分割幅Waで領域分割した一分割領域として、形成されている。ここで、平行化仮想面Sicは、液晶素子30側に凸となる凸面として滑らかな曲面状となっている。平行化仮想面Sicの曲率は、集光仮想面Sipの曲率と略等しく設定されている。 The parallelized surface 21 is formed as one divided region obtained by dividing the virtual parallelized virtual surface Sic into regions corresponding to the longitudinal direction RLD with a predetermined divided width Wa. Here, the parallelized virtual surface Sic has a smooth curved surface as a convex surface convex toward the liquid crystal element 30 side. The curvature of the parallel virtual surface Sic is set substantially equal to the curvature of the condensing virtual surface Sip.
 偏向面22は、仮想の偏向仮想面Sidを長手対応方向RLDに所定の分割幅Waで領域分割した一分割領域として、形成されている。偏向仮想面Sidは、平行化仮想面Sicの面頂点に対応する箇所で逆勾配に変わる複数の斜面Sisにより構成されており、本実施形態において各斜面Sisは、滑らかな平面状となっている。ここで、各斜面Sisの勾配は、平行化仮想面Sicの対応する箇所の勾配とは逆の勾配となるように設定されている。 The deflection surface 22 is formed as one divided region obtained by dividing the virtual deflection virtual surface Sid in the longitudinal corresponding direction RLD with a predetermined division width Wa. The deflection virtual surface Sid is composed of a plurality of inclined surfaces Sis that change in reverse gradient at locations corresponding to the surface vertices of the parallelized virtual surface Sic. In the present embodiment, each inclined surface Sis has a smooth planar shape. . Here, the slope of each slope Sis is set to be opposite to the slope of the corresponding portion of the parallelized virtual surface Sic.
 ここで、平行化面21及び偏向面22の分割領域における分割幅Waは、様々に設定されているが、各面21,22でサグ量がおよそ一定となるように設定されることで、複合レンズアレイ18全体の厚みが一定化されている。これら平行化面21と偏向面22とが交互に配列されることで、平行化仮想面Sicのうち一部の形状、及び偏向仮想面Sidのうち一部の形状が抽出されて、複合面20上に再現されている。 Here, the division width Wa in the division area of the parallelizing surface 21 and the deflecting surface 22 is variously set. However, the sag amount is set to be approximately constant on each of the surfaces 21 and 22, so The entire thickness of the lens array 18 is constant. By arranging the parallel surfaces 21 and the deflection surfaces 22 alternately, a part of the parallel virtual surface Sic and a part of the deflection virtual surface Sid are extracted, and the composite surface 20 is extracted. Reproduced above.
 こうした平行化面21は、集光フレネル面19からの照明光を屈折により集光して、平行化するようになっている。また偏向面22は、照明光を平行化面21による屈折とは逆側に偏向するようになっている。 The collimating surface 21 condenses the illumination light from the condensing Fresnel surface 19 by refraction and collimates it. The deflecting surface 22 deflects the illumination light to the side opposite to the refraction by the collimating surface 21.
 各平行化面21のうち、平行化仮想面Sicの面頂点を含む平行化面21において面頂点21aは、前述の直線SL上に配置されている(図2も参照)。上述の分割幅Wsは、この面頂点21aを含む平行化面21において最も大きく設定されている。そして、当該面頂点21aから長手対応方向RLDに離れる程、平行化面21に対して偏向面22の面積の割合が大きくなるように、分割幅Wsが変化している。 Among the parallel surfaces 21, the surface vertex 21a of the parallel surface 21 including the surface vertex of the parallel virtual surface Sic is arranged on the straight line SL (see also FIG. 2). The above-described division width Ws is set to be the largest on the parallelizing surface 21 including the surface vertex 21a. The division width Ws changes so that the area ratio of the deflecting surface 22 to the parallelizing surface 21 increases as the distance from the surface vertex 21a in the longitudinal corresponding direction RLD increases.
 こうして図2,3に示すように、集光部14では、集光レンズ素子15aと複合レンズ素子18aとがそれぞれ個別に対応して、互いに向かい合って配置される。対応する1つの集光レンズ素子15aと1つの複合レンズ素子18aとを総称して、改めてレンズ素子群14aと呼ぶこととする。すなわち集光部14は、複数の発光素子12の配列に対応して、レンズ素子群14aが配列された形態となっているのである。 Thus, as shown in FIGS. 2 and 3, in the condensing unit 14, the condensing lens element 15 a and the compound lens element 18 a individually correspond to each other and are arranged to face each other. One corresponding condensing lens element 15a and one compound lens element 18a are collectively referred to as a lens element group 14a. That is, the condensing unit 14 has a configuration in which lens element groups 14 a are arranged corresponding to the arrangement of the plurality of light emitting elements 12.
 レンズ素子群14a毎に、集光レンズ素子15aの集光面17、複合レンズ素子18aの集光フレネル面19及び平行化面21によって、合成焦点(以下、レンズ素子群14aの合成焦点という)が規定され得る。ここで、レンズ素子群14aにアナモルフィック面である集光面17が含まれている結果、長手対応方向RLD及び直線SLを含む断面におけるレンズ素子群14aの合成焦点の焦点位置FPaと、短手対応方向RSD及び直線SLを含む断面におけるレンズ素子群14aの合成焦点の焦点位置FPsとは、直線SLに沿った方向にずれたものとなっている。より詳細に、本実施形態では、焦点位置FPaの方が焦点位置FPsよりも集光部14側に位置している。 For each lens element group 14a, the converging focal point (hereinafter referred to as the synthetic focal point of the lens element group 14a) is formed by the condensing surface 17 of the condensing lens element 15a, the condensing Fresnel surface 19 and the parallelizing surface 21 of the compound lens element 18a. Can be defined. Here, as a result of the condensing surface 17 being an anamorphic surface being included in the lens element group 14a, the focal position FPa of the combined focal point of the lens element group 14a in the cross section including the longitudinal corresponding direction RLD and the straight line SL is short. The focal position FPs of the synthetic focus of the lens element group 14a in the cross section including the hand corresponding direction RSD and the straight line SL is shifted in the direction along the straight line SL. More specifically, in the present embodiment, the focal position FPa is located closer to the light collecting unit 14 than the focal position FPs.
 そして、各発光素子12は、それぞれ対応するレンズ素子群14aについても焦点位置FPaと焦点位置FPsとの間に配置されている。特に本実施形態では、焦点位置FPaと焦点位置FPsとの中間位置に配置されている。 Each light emitting element 12 is also arranged between the focal position FPa and the focal position FPs for the corresponding lens element group 14a. In particular, in this embodiment, it is arranged at an intermediate position between the focal position FPa and the focal position FPs.
 各レンズ素子群14aは、対応関係にある発光素子12の照明光のうちピーク方向PKDの光を含む一部放射束を取り込むようになっている。取り込まれた照明光の一部放射束は、前述のように平行化され得る。反対に、取り込まれなかった照明光の他部は、対応関係にあるレンズ素子群14aに隣接するレンズ素子群14aに取り込まれることとなる。 Each lens element group 14a takes in a partial radiant flux including light in the peak direction PKD among the illumination lights of the light emitting elements 12 in a corresponding relationship. The partial radiant flux of the captured illumination light can be collimated as described above. On the other hand, the other part of the illumination light that has not been captured is captured by the lens element group 14a adjacent to the lens element group 14a that has a corresponding relationship.
 本実施形態では、例えば発光素子12の発光強度がピーク方向PKDに対して90%以上である分布範囲の照明光が、一部放射束として、対応関係にあるレンズ素子群14aに取り込まれるようになっている。すなわち、本実施形態の放射角度分布の発光素子12について言えば、図4の相対発光強度が0.9となる箇所を参照すると、約±25度となっているので、レンズ素子群14aは、対応関係にある発光素子12からの照明光のうち-25度~+25度の角度範囲を一部放射束として取り込むこととなる。 In the present embodiment, for example, illumination light having a distribution range in which the light emission intensity of the light emitting element 12 is 90% or more with respect to the peak direction PKD is partially taken into the lens element group 14a in a corresponding relationship as a radiant flux. It has become. That is, regarding the light emitting element 12 with the radiation angle distribution of the present embodiment, referring to the portion where the relative light emission intensity of 0.9 in FIG. 4 is about ± 25 degrees, the lens element group 14a is Of the illumination light from the light emitting elements 12 in a corresponding relationship, an angular range of −25 degrees to +25 degrees is partially captured as a radiant flux.
 この一部放射束の角度範囲が広い程、少ない発光素子12の総数で液晶素子30の開口部32全体を照明可能となる一方、虚像VIの輝度ムラは比較的目立ち易くなる。この一部放射束の角度範囲が狭い程、虚像VIの輝度ムラは目立ち難くなる一方、開口部32を照明するために必要な発光素子12の総数は比較的多くなる。 As the angle range of the partial radiant flux is wider, the entire opening 32 of the liquid crystal element 30 can be illuminated with a smaller total number of the light emitting elements 12, while the luminance unevenness of the virtual image VI becomes relatively conspicuous. As the angle range of the partial radiant flux is narrower, the luminance unevenness of the virtual image VI becomes less conspicuous, while the total number of the light emitting elements 12 necessary for illuminating the opening 32 becomes relatively large.
 集光部14の集光により平行化され、当該集光部14から射出された照明光は、入射方向INDに沿って液晶素子30の開口部32全体を照明する。照明光の入射に対して、各液晶画素34に設定された透過率に応じて開口部32を透過した光が、液晶素子30から画像の表示光として、当該開口部32の形状に応じた光束状に射出される。すなわち、液晶素子30は、当該入射方向INDに応じた射出方向EXDに、画像の表示光を射出することとなる。本実施形態では、照明光の入射方向INDは開口部32の法線方向に略沿っており、開口部32内の液晶画素34には光を屈折させる要素が基本的にないので、表示光の射出方向EXDもまた開口部32の法線方向に略沿っている。 The illumination light that is collimated by the light collecting unit 14 and emitted from the light collecting unit 14 illuminates the entire opening 32 of the liquid crystal element 30 along the incident direction IND. The light transmitted through the opening 32 in accordance with the transmittance set for each liquid crystal pixel 34 with respect to the incident illumination light is used as the image display light from the liquid crystal element 30 and the light flux according to the shape of the opening 32. Is injected into the shape. That is, the liquid crystal element 30 emits image display light in the emission direction EXD corresponding to the incident direction IND. In the present embodiment, the incident direction IND of the illumination light is substantially along the normal direction of the opening 32, and the liquid crystal pixel 34 in the opening 32 basically has no element that refracts light. The injection direction EXD is also substantially along the normal direction of the opening 32.
 ここで、偏向面22及び拡散部38の作用により、表示光は、各液晶画素34から射出方向EXD以外にも射出されるが、それでも射出方向EXDが主たる方向(すなわち、強度が最も大きな方向)である。 Here, due to the action of the deflecting surface 22 and the diffusing unit 38, the display light is emitted from each liquid crystal pixel 34 in the direction other than the emission direction EXD, but the emission direction EXD is still the main direction (that is, the direction with the highest intensity). It is.
 こうして液晶素子30から射出方向EXDに射出された表示光は、拡大導光部40に入射する。 Thus, the display light emitted in the emission direction EXD from the liquid crystal element 30 enters the enlarged light guide 40.
 拡大導光部40は、図1に示すように、凸面鏡42及び凹面鏡44を有している。これら凸面鏡42及び凹面鏡44は、光路上に配置されており、凸面鏡42は、凹面鏡44よりも当該光路上の液晶素子30側に配置されている。したがって、液晶素子30からの表示光は、先に凸面鏡42に入射する。 The enlarged light guide section 40 has a convex mirror 42 and a concave mirror 44 as shown in FIG. The convex mirror 42 and the concave mirror 44 are disposed on the optical path, and the convex mirror 42 is disposed closer to the liquid crystal element 30 on the optical path than the concave mirror 44 is. Accordingly, the display light from the liquid crystal element 30 first enters the convex mirror 42.
 凸面鏡42は、合成樹脂ないしはガラス等からなる基材の表面に、反射面43としてアルミニウムを蒸着させること等により形成されている。反射面43は、凸状に湾曲した凸面として、滑らかな曲面状に形成されていることで、負の面屈折力を有している。特に本実施形態の反射面43は、主として虚像VIにおける軸上収差を補正する自由曲面となっている。凸面鏡42は、液晶素子30からの表示光を、反射面43によって凹面鏡44へ向けて反射する。こうして凸面鏡42は、負の屈折力を有する負の光学素子として、機能している。ここで屈折力とは、焦点距離の逆数で表される。 The convex mirror 42 is formed by evaporating aluminum as the reflective surface 43 on the surface of a base material made of synthetic resin or glass. The reflective surface 43 has a negative surface refracting power by being formed into a smooth curved surface as a convex surface curved in a convex shape. In particular, the reflecting surface 43 of this embodiment is a free-form surface that mainly corrects axial aberrations in the virtual image VI. The convex mirror 42 reflects the display light from the liquid crystal element 30 toward the concave mirror 44 by the reflecting surface 43. Thus, the convex mirror 42 functions as a negative optical element having a negative refractive power. Here, the refractive power is represented by the reciprocal of the focal length.
 凹面鏡44は、合成樹脂ないしはガラス等からなる基材の表面に、反射面45としてアルミニウムを蒸着させること等により形成されている。反射面45は、凹状に湾曲した凹面として、滑らかな曲面状に形成されていることで、正の面屈折力を有している。特に本実施形態の反射面45は、主として虚像VIにおける歪曲収差を補正する自由曲面となっている。凹面鏡44は、凸面鏡42からの表示光を、反射面45によってウインドシールド3へ向けて反射する。こうして凹面鏡44は、正の屈折力を有する正の光学素子として、機能している。 The concave mirror 44 is formed by evaporating aluminum as the reflecting surface 45 on the surface of a base material made of synthetic resin or glass. The reflective surface 45 has a positive surface refractive power by being formed into a smooth curved surface as a concave surface curved in a concave shape. In particular, the reflecting surface 45 of the present embodiment is a free-form surface that mainly corrects distortion aberration in the virtual image VI. The concave mirror 44 reflects the display light from the convex mirror 42 toward the windshield 3 by the reflecting surface 45. Thus, the concave mirror 44 functions as a positive optical element having a positive refractive power.
 また、拡大導光部40のうちウインドシールド3側に位置する凹面鏡44を、揺動駆動する駆動機構46が当該拡大導光部40に設けられている。駆動機構46は、電気的に接続された制御部60からの駆動信号に従って、例えばステッピングモータの駆動により、凹面鏡44を回転軸44aまわりに揺動駆動する。凹面鏡44が揺動することで、虚像VIの結像位置が上下して、乗員から見やすい位置に調整できるようになっている。 Also, a drive mechanism 46 that swings and drives the concave mirror 44 located on the windshield 3 side in the enlarged light guide 40 is provided in the enlarged light guide 40. The drive mechanism 46 swings and drives the concave mirror 44 around the rotation axis 44a by driving a stepping motor, for example, in accordance with a drive signal from the electrically connected control unit 60. By swinging the concave mirror 44, the imaging position of the virtual image VI moves up and down and can be adjusted to a position that is easy for the passenger to see.
 こうした拡大導光部40は、虚像VIが拡大されるように、液晶素子30からの表示光をウインドシールド3へ向けて導光する。すなわち、凸面鏡42と凹面鏡44との合成の屈折力は、正の屈折力となっている。 Such an enlarged light guiding unit 40 guides display light from the liquid crystal element 30 toward the windshield 3 so that the virtual image VI is enlarged. That is, the combined refractive power of the convex mirror 42 and the concave mirror 44 is a positive refractive power.
 凹面鏡44とウインドシールド3との間においてハウジング50に窓状の窓部が設けられている。窓部は、透光性の薄板状に形成された防塵カバー52によって塞がれている。したがって、凹面鏡44から表示光は、当該防塵カバー52を透過して、ウインドシールド3に反射される。こうしてウインドシールド3に反射された表示光が視認領域EBに到達することとなる。 A window-like window portion is provided in the housing 50 between the concave mirror 44 and the windshield 3. The window portion is closed by a dustproof cover 52 formed in a light-transmitting thin plate shape. Accordingly, the display light from the concave mirror 44 passes through the dustproof cover 52 and is reflected by the windshield 3. Thus, the display light reflected by the windshield 3 reaches the visual recognition area EB.
 このようなHUD装置100により構成される光学系について、図11,12を用いて詳細に以下に検討する。なお、図11,12に示す各要素の形状、位置関係、光線の方向等は、説明のために模式的に示されている。 The optical system constituted by such a HUD device 100 will be discussed in detail below with reference to FIGS. In addition, the shape of each element shown in FIG.11, 12 and a positional relationship, the direction of a light ray, etc. are typically shown for description.
 以下では、図11に示す当該光学系の光路において、虚像VIから視認領域EBまでの間隔をId(ただし、虚像のためId<0)とし、視認領域EBからウインドシールド3までの間隔をEdとし、ウインドシールド3から凹面鏡44の反射面45までの間隔をWd、凹面鏡44の反射面45から凸面鏡42の反射面43までの間隔をD1とし、凸面鏡42の反射面43から液晶素子30の開口部32までの間隔をD2とする。さらに、ウインドシールド3の反射面3aの面屈折力をΦwsとし、凹面鏡44の反射面45の面屈折力をΦ1(ただし、Φ1>0)とし、凸面鏡42の反射面43の面屈折力をΦ2(ただし、Φ2<0)とする。加えて、虚像VIのサイズの半値をIsとし、視認領域EBのサイズの半値をEsとし、液晶素子30の開口部32のサイズの半値をOsとする。 In the following, in the optical path of the optical system shown in FIG. 11, the interval from the virtual image VI to the visual recognition area EB is Id (however, Id <0 for a virtual image), and the interval from the visual recognition area EB to the windshield 3 is Ed. The distance from the windshield 3 to the reflecting surface 45 of the concave mirror 44 is Wd, the distance from the reflecting surface 45 of the concave mirror 44 to the reflecting surface 43 of the convex mirror 42 is D1, and the opening of the liquid crystal element 30 from the reflecting surface 43 of the convex mirror 42 The interval up to 32 is D2. Further, the surface refractive power of the reflective surface 3a of the windshield 3 is Φws, the surface refractive power of the reflective surface 45 of the concave mirror 44 is Φ1 (where Φ1> 0), and the surface refractive power of the reflective surface 43 of the convex mirror 42 is Φ2. (However, Φ2 <0). In addition, the half value of the size of the virtual image VI is Is, the half value of the size of the visual recognition area EB is Es, and the half value of the size of the opening 32 of the liquid crystal element 30 is Os.
 ここでまず、図12に示すような、本実施形態の凸面鏡42を、平面状の反射面943を有する平面鏡942に置換した比較例のHUD装置900について検討する。比較例では、D1を凹面鏡944の反射面945から平面鏡942の反射面943までの間隔と読み替え、D2を平面鏡942の反射面943から液晶素子930の開口部932までの間隔と読み替え、さらに平面鏡942の反射面943の面屈折力を0とする。 Here, first, a comparative HUD apparatus 900 in which the convex mirror 42 of the present embodiment as shown in FIG. 12 is replaced with a flat mirror 942 having a flat reflecting surface 943 will be considered. In the comparative example, D1 is read as an interval from the reflecting surface 945 of the concave mirror 944 to the reflecting surface 943 of the plane mirror 942, D2 is read as an interval from the reflecting surface 943 of the plane mirror 942 to the opening 932 of the liquid crystal element 930, and the plane mirror 942 is further read. The surface refractive power of the reflecting surface 943 is set to zero.
 このような比較例について、視認領域EBから液晶素子930側への逆光線追跡により、結像光線IMRの角度及び結像光線IMRの高さを順次求める。ここで結像光線IMRの角度とは、視認領域EBの中心及び開口部932の中心を通る光線(以下、主光線PRRとする)に対して、視認領域EBとウインドシールド3との間で視認領域EBの端部と虚像VIの中心とを結ぶ方向に沿う光線(以下、これを結像光線IMRとする)が張る角度である。結像光線IMRの高さとは、主光線PRRと垂直な方向に沿った、主光線PRRと結像光線IMRとの間隔である。 For such a comparative example, the angle of the imaging light beam IMR and the height of the imaging light beam IMR are sequentially obtained by tracing back rays from the visual recognition area EB to the liquid crystal element 930 side. Here, the angle of the imaging light ray IMR means that the light ray that passes through the center of the visual recognition area EB and the center of the opening 932 (hereinafter referred to as the principal light ray PRR) is visually recognized between the visual recognition area EB and the windshield 3. This is an angle at which a light beam (hereinafter referred to as an imaging light beam IMR) extending along a direction connecting the end of the region EB and the center of the virtual image VI. The height of the imaging light ray IMR is an interval between the main light ray PRR and the imaging light ray IMR along a direction perpendicular to the main light ray PRR.
 視認領域EBとウインドシールド3との間では、結像光線IMRの角度は、-Es/Idである。ウインドシールド3において、結像光線IMRの高さは、Es+(Es/Id)・Edである。ウインドシールド3と凹面鏡944との間では、結像光線IMRの角度は、-Es/Is+Φws・(Es+(Es/Id)・Wd)であり、これをHUD定数Aと置く。凹面鏡944において結像光線IMRの高さは、Es+(Es/Id)・Ed+(Es/Id)・Wd-Φws・Ws・(Es+Es/Id・Wd)であり、これをHUD定数Bと置く。凹面鏡944と平面鏡942との間では、結像光線IMRの角度は、A+B・Φ1である。平面鏡942において結像光線IMRの高さは、B-D1・(A+B・Φ1)である。平面鏡942と液晶素子930との間では、結像光線IMRの角度は、A+B・Φ1である。液晶素子930における結像光線IMRの高さは、0である。したがって、液晶素子930の開口部932において結像した状態が実現されている。 Between the viewing area EB and the windshield 3, the angle of the imaging light ray IMR is -Es / Id. In the windshield 3, the height of the imaging light ray IMR is Es + (Es / Id) · Ed. Between the windshield 3 and the concave mirror 944, the angle of the imaging ray IMR is −Es / Is + Φws · (Es + (Es / Id) · Wd), which is set as the HUD constant A. In the concave mirror 944, the height of the imaging ray IMR is Es + (Es / Id) · Ed + (Es / Id) · Wd−Φws · Ws · (Es + Es / Id · Wd), which is set as the HUD constant B. Between the concave mirror 944 and the plane mirror 942, the angle of the imaging light ray IMR is A + B · Φ1. In the plane mirror 942, the height of the imaging light beam IMR is B−D1 · (A + B · Φ1). Between the plane mirror 942 and the liquid crystal element 930, the angle of the imaging light ray IMR is A + B · Φ1. The height of the imaging light ray IMR in the liquid crystal element 930 is zero. Therefore, a state where an image is formed in the opening 932 of the liquid crystal element 930 is realized.
 比較例について、視認領域EBから液晶素子930側への逆光線追跡により、瞳結像光線PURの角度及び瞳結像光線PURの高さを順次求める。ここで瞳結像光線PURの角度とは、主光線PRRに対して、視認領域EBとウインドシールド3との間で視認領域EBの中心と虚像VIの端部とを結ぶ方向に沿う光線(以下、これを瞳結像光線PURとする)が張る角度である。瞳結像光線PURの高さとは、主光線PRRと垂直な方向に沿った、主光線PRRと瞳結像光線PURとの間隔である。 For the comparative example, the angle of the pupil image-forming light beam PUR and the height of the pupil image-forming light beam PUR are sequentially obtained by back ray tracing from the visual recognition area EB to the liquid crystal element 930 side. Here, the angle of the pupil imaging light ray PUR is a light ray (hereinafter referred to as the light ray along the direction connecting the center of the visual recognition area EB and the end of the virtual image VI between the visual recognition area EB and the windshield 3 with respect to the principal ray PRR. , This is the pupil imaging light ray PUR). The height of the pupil imaging light ray PUR is the interval between the principal light ray PRR and the pupil imaging light ray PUR along the direction perpendicular to the main light ray PRR.
 視認領域EBとウインドシールド3との間では、瞳結像光線PURの角度は、虚像VIの半画角θに相当し、θ=-Is/Idである。ウインドシールド3において瞳結像光線PURの高さは、-θ・Edである。ウインドシールド3と凹面鏡944との間では、瞳結像光線PURの角度は、θ-θ・Ed・Φwsであり、これをHUD定数Cと置く。凹面鏡944において瞳結像光線PURの高さは、-θ・Ed+(θ-θ・Ed・Φws)・Wdであり、これをHUD定数Dと置く。凹面鏡944と平面鏡942との間では、瞳結像光線PURの角度は、C+D・Φ1である。平面鏡942において瞳結像光線PURの高さは、D-(C+D・Φ1)・D1である。平面鏡942と液晶素子930との間では、瞳結像光線PURの角度は、C+D・Φ1である。液晶素子930における瞳結像光線PURの高さは、Osである。 Between the visual recognition area EB and the windshield 3, the angle of the pupil imaging light ray PUR corresponds to the half angle of view θ of the virtual image VI, and θ = −Is / Id. In the windshield 3, the height of the pupil imaging light ray PUR is −θ · Ed. Between the windshield 3 and the concave mirror 944, the angle of the pupil imaging light ray PUR is θ−θ · Ed · Φws, which is set as the HUD constant C. In the concave mirror 944, the height of the pupil imaging light ray PUR is −θ · Ed + (θ−θ · Ed · Φws) · Wd, which is set as the HUD constant D. Between the concave mirror 944 and the plane mirror 942, the angle of the pupil imaging light ray PUR is C + D · Φ1. In the plane mirror 942, the height of the pupil imaging light ray PUR is D− (C + D · Φ1) · D1. Between the plane mirror 942 and the liquid crystal element 930, the angle of the pupil imaging light ray PUR is C + D · Φ1. The height of the pupil imaging light ray PUR in the liquid crystal element 930 is Os.
 以上により、比較例において、半画角θは、
 θ=(Os/Es)・(A+B・Φ1)…(数式1)となる。
From the above, in the comparative example, the half angle of view θ is
θ = (Os / Es) · (A + B · Φ1) (Formula 1).
 液晶素子930の開口部932から入射瞳ENPまでの瞳距離Pdは、瞳結像光線PURの高さが0となる距離を求めればよいので、
 Pd=Os/(C+D・Φ1)…(数式2)となる。
The pupil distance Pd from the opening 932 of the liquid crystal element 930 to the entrance pupil ENP may be obtained as a distance at which the height of the pupil imaging light ray PUR is 0.
Pd = Os / (C + D · Φ1) (Formula 2)
 さらに液晶素子930の開口部932から凹面鏡944までの光路長Lmは、
 Lm=D1+D2=(Os/Es)・(B/θ)…(数式3)となる。
Further, the optical path length Lm from the opening 932 of the liquid crystal element 930 to the concave mirror 944 is
Lm = D1 + D2 = (Os / Es) · (B / θ) (Formula 3)
 すなわち、数式1より、虚像VIの半画角θは、凹面鏡944の面屈折力Φ1の増大と共に大きくなる。換言すると、虚像VIを拡大するためには面屈折力Φ1を大きくする必要がある。しかし一方で、数式2より、瞳距離Pdは、面屈折力Φ1の増大と共に小さくなる。すなわち、虚像VIの拡大と長い瞳距離Pdを同時に実現することができないのである。なお、数式3より、光路長Lmは、面屈折力Φ1の増大と共に小さくなる。 That is, from Equation 1, the half angle of view θ of the virtual image VI increases as the surface refractive power Φ1 of the concave mirror 944 increases. In other words, it is necessary to increase the surface refractive power Φ1 in order to enlarge the virtual image VI. On the other hand, however, from Equation 2, the pupil distance Pd decreases as the surface refractive power Φ1 increases. That is, the enlargement of the virtual image VI and the long pupil distance Pd cannot be realized at the same time. From Equation 3, the optical path length Lm decreases as the surface refractive power Φ1 increases.
 次に、図11に示す本実施形態のHUD装置100についても、比較例と同様に検討する。 Next, the HUD device 100 of the present embodiment shown in FIG.
 視認領域EBから液晶素子30側への逆光線追跡により、結像光線IMRの角度及び結像光線IMRの高さを順次求める。 The angle of the imaging light beam IMR and the height of the imaging light beam IMR are sequentially obtained by back ray tracing from the visual recognition area EB to the liquid crystal element 30 side.
 視認領域EBとウインドシールド3との間では、結像光線IMRの角度は、-Es/Idである。ウインドシールド3において、結像光線IMRの高さは、Es+(Es/Id)・Edである。ウインドシールド3と凹面鏡44との間では、結像光線IMRの角度は、-Es/Is+Φws・(Es+(Es/Id)・Wd)であり、これを比較例と同様にHUD定数Aと置く。凹面鏡44において結像光線IMRの高さは、Es+(Es/Id)・Ed+(Es/Id)・Wd-Φws・Ws・(Es+Es/Id・Wd)であり、これを比較例と同様にHUD定数Bと置く。凹面鏡44と凸面鏡42との間では、結像光線IMRの角度は、A+B・Φ1である。凸面鏡42において結像光線IMRの高さは、B-D1・(A+B・Φ1)である。凸面鏡42と液晶素子30との間では、結像光線IMRの角度は、A+B・Φ1+Φ2・(B-D1・(A+B)・Φ1)である。液晶素子30における結像光線IMRの高さは、0である。したがって、液晶素子30の開口部32において結像した状態が実現されている。 Between the viewing area EB and the windshield 3, the angle of the imaging light ray IMR is -Es / Id. In the windshield 3, the height of the imaging light ray IMR is Es + (Es / Id) · Ed. Between the windshield 3 and the concave mirror 44, the angle of the imaging light ray IMR is −Es / Is + Φws · (Es + (Es / Id) · Wd), which is set as the HUD constant A as in the comparative example. In the concave mirror 44, the height of the imaging light ray IMR is Es + (Es / Id) .Ed + (Es / Id) .Wd-.PHI.ws.Ws. (Es + Es / Id.Wd). Put constant B. Between the concave mirror 44 and the convex mirror 42, the angle of the imaging light ray IMR is A + B · Φ1. In the convex mirror 42, the height of the imaging light ray IMR is B−D1 · (A + B · Φ1). Between the convex mirror 42 and the liquid crystal element 30, the angle of the imaging light ray IMR is A + B · Φ1 + Φ2 · (B−D1 · (A + B) · Φ1). The height of the imaging light ray IMR in the liquid crystal element 30 is zero. Therefore, an image formed in the opening 32 of the liquid crystal element 30 is realized.
 視認領域EBから液晶素子30側への逆光線追跡により、瞳結像光線PURの角度及び瞳結像光線PURの高さを順次求める。 The angle of the pupil imaging light ray PUR and the height of the pupil imaging light ray PUR are sequentially obtained by tracing back rays from the visual recognition area EB to the liquid crystal element 30 side.
 視認領域EBとウインドシールド3との間では、瞳結像光線PURの角度は、虚像VIの半画角θに相当し、θ=-Is/Idである。ウインドシールド3において瞳結像光線PURの高さは、-θ・Edである。ウインドシールド3と凹面鏡44との間では、瞳結像光線PURの角度は、θ-θ・Ed・Φwsであり、これを比較例と同様にHUD定数Cと置く。凹面鏡44において瞳結像光線PURの高さは、-θ・Ed+(θ-θ・Ed・Φws)・Wdであり、これを比較例と同様にHUD定数Dと置く。凹面鏡44と凸面鏡42との間では、瞳結像光線PURの角度は、C+D・Φ1である。凸面鏡42において瞳結像光線PURの高さは、D-(C+D・Φ1)・D1である。凸面鏡42と液晶素子30との間では、瞳結像光線PURの角度は、C+D・Φ1+Φ2・(D-D1・(C+D・Φ1))である。液晶素子30における瞳結像光線PURの高さは、Osである。 Between the visual recognition area EB and the windshield 3, the angle of the pupil imaging light ray PUR corresponds to the half angle of view θ of the virtual image VI, and θ = −Is / Id. In the windshield 3, the height of the pupil imaging light ray PUR is −θ · Ed. Between the windshield 3 and the concave mirror 44, the angle of the pupil imaging light ray PUR is θ−θ · Ed · Φws, which is set as the HUD constant C as in the comparative example. In the concave mirror 44, the height of the pupil imaging light ray PUR is −θ · Ed + (θ−θ · Ed · Φws) · Wd, which is set as the HUD constant D as in the comparative example. Between the concave mirror 44 and the convex mirror 42, the angle of the pupil imaging light ray PUR is C + D · Φ1. In the convex mirror 42, the height of the pupil imaging light ray PUR is D− (C + D · Φ1) · D1. Between the convex mirror 42 and the liquid crystal element 30, the angle of the pupil imaging light ray PUR is C + D · Φ1 + Φ2 · (D−D1 · (C + D · Φ1)). The height of the pupil imaging light ray PUR in the liquid crystal element 30 is Os.
 以上により、比較例において、半画角θは、
 θ=(Os/Es)・(A+B・Φ1+Φ2・(B-D1・(A+B・Φ1)))
     …(数式4)となる。
From the above, in the comparative example, the half angle of view θ is
θ = (Os / Es) · (A + B · Φ1 + Φ2 · (B−D1 · (A + B · Φ1)))
(Equation 4)
 液晶素子30の開口部32から入射瞳ENPまでの瞳距離Pdは、瞳結像光線PURの高さが0となる距離を求めればよいので、
 Pd=Os/((C+D・Φ1)・(1-Φ2・D1)+Φ2・D)…(数式5)となる。
As the pupil distance Pd from the opening 32 of the liquid crystal element 30 to the entrance pupil ENP, a distance at which the height of the pupil imaging light ray PUR is 0 can be obtained.
Pd = Os / ((C + D · Φ1) · (1−Φ2 · D1) + Φ2 · D) (Formula 5)
 さらに液晶素子30の開口部32から凹面鏡44までの光路長Lmは、
 Lm=D1+D2
   =D1+(B-D1・(A+B・Φ1))
     /(A+B・Φ1+Φ2・(B-D1・(A+B・Φ1)))…(数式6)となる。
Furthermore, the optical path length Lm from the opening 32 of the liquid crystal element 30 to the concave mirror 44 is
Lm = D1 + D2
= D1 + (B-D1 ・ (A + B ・ Φ1))
/ (A + B · Φ1 + Φ2 · (B−D1 · (A + B · Φ1))) (Formula 6)
 すなわち、数式4,5,6は、面屈折力Φ1,Φ2及び間隔D1の3変数による連立方程式となる。これにより、半画角θと瞳距離Pdは、比較例のような面屈折力Φ1に依存した単純な関係ではなくなる。面屈折力Φ1,Φ2及び間隔D1を適宜設定することにより、半画角θを大きくしつつも、瞳距離Pdを大きくすることが可能となるのである。具体的に、Φ2が負であることにより、凸面鏡42と液晶素子30との間の瞳結像光線PURの角度は、小さくなるように作用する。換言すると数式5の分母が小さくなるので、瞳距離Pdを大きくすることができるのである。 That is, Formulas 4, 5, and 6 are simultaneous equations with three variables of surface refractive powers Φ1 and Φ2 and a distance D1. As a result, the half angle of view θ and the pupil distance Pd do not have a simple relationship depending on the surface refractive power Φ1 as in the comparative example. By appropriately setting the surface refractive powers Φ1 and Φ2 and the distance D1, it is possible to increase the pupil distance Pd while increasing the half angle of view θ. Specifically, when Φ2 is negative, the angle of the pupil imaging light ray PUR between the convex mirror 42 and the liquid crystal element 30 acts to be small. In other words, since the denominator of Equation 5 becomes smaller, the pupil distance Pd can be increased.
 瞳距離Pdを大きくすることで、液晶素子30から射出される表示光の射出方向EXDと、上述の凸面鏡42と液晶素子30との間の瞳結像光線PURの方向とを、画像全体に亘って合わせることが可能となる。例えば瞳距離Pdは、間隔D1又はD2よりも大きいことが好ましい。ここで、本実施形態では、開口部32の長手方向LD及び短手方向SDについて共にPd>150mmに設定されている。このようにすることで、射出方向EXDと瞳結像光線PURの方向とのずれを十分小さいとみなすことができる。 By increasing the pupil distance Pd, the emission direction EXD of the display light emitted from the liquid crystal element 30 and the direction of the pupil imaging light ray PUR between the convex mirror 42 and the liquid crystal element 30 are spread over the entire image. Can be combined. For example, the pupil distance Pd is preferably larger than the interval D1 or D2. Here, in the present embodiment, Pd> 150 mm is set for both the longitudinal direction LD and the short direction SD of the opening 32. By doing so, it is possible to consider that the deviation between the exit direction EXD and the direction of the pupil imaging light ray PUR is sufficiently small.
 (作用効果)
 以上説明した本実施形態の作用効果を以下に説明する。
(Function and effect)
The operational effects of the present embodiment described above will be described below.
 本実施形態によると、拡大導光部40は、液晶素子30からの表示光をウインドシールド3へ向けて導光する。ここで拡大導光部40は、正の屈折力を有する正の光学素子して機能する凹面鏡44と、負の屈折力を有する負の光学素子として機能する凸面鏡42と、を有する。そして、凸面鏡42は、凹面鏡44よりも光路上の液晶素子30側に配置される。こうした両光学素子42,44が光路上に配置されたHUD装置100の光学系では、凹面鏡44を用いて虚像VIを拡大しつつも、凸面鏡42も用いることで入射瞳ENPを液晶素子30よりも光源部10側に遠ざけることができる。入射瞳ENPが遠ざかることにより、視認領域EB内から表示光の射出方向EXDに沿って液晶素子30の開口部32を覗き込むような光路が構成可能となる。したがって、視認に寄与する表示光の方向と、液晶素子30からの射出方向EXDとのずれを抑制可能となる。当該射出方向EXDは、平行化された照明光の液晶素子30への入射方向INDに応じたものであるため、液晶画素34間の輝度差を減少させつつ、照明光を画像の表示光として効率よく視認領域EBに到達させることができる。 According to the present embodiment, the enlarged light guide 40 guides the display light from the liquid crystal element 30 toward the windshield 3. Here, the enlarged light guide 40 includes a concave mirror 44 that functions as a positive optical element having a positive refractive power, and a convex mirror 42 that functions as a negative optical element having a negative refractive power. The convex mirror 42 is disposed closer to the liquid crystal element 30 on the optical path than the concave mirror 44. In the optical system of the HUD device 100 in which both the optical elements 42 and 44 are arranged on the optical path, the virtual pupil VI is enlarged using the concave mirror 44 and the convex pupil 42 is used to make the entrance pupil ENP more than the liquid crystal element 30. It can be kept away from the light source unit 10 side. By moving the entrance pupil ENP away, it is possible to configure an optical path that looks into the opening 32 of the liquid crystal element 30 along the display light emission direction EXD from within the visual recognition area EB. Accordingly, it is possible to suppress a deviation between the direction of the display light contributing to visual recognition and the emission direction EXD from the liquid crystal element 30. Since the emission direction EXD corresponds to the incident direction IND of the collimated illumination light to the liquid crystal element 30, the illumination light is efficiently used as image display light while reducing the luminance difference between the liquid crystal pixels 34. It is possible to reach the visual recognition area EB well.
 さらに、凸面鏡42と液晶素子30との間の光路上では、視認に寄与する表示光の方向が、集光部14により平行化された照明光の入射方向INDに応じた射出方向EXDに近づくことで、当該凸面鏡42の体格拡大を抑制しつつ、表示光を導光可能となる。以上により、画像を拡大しても、体格増大を抑制しつつ、虚像VIの視認性が良好なHUD装置100を提供できる。 Further, on the optical path between the convex mirror 42 and the liquid crystal element 30, the direction of the display light contributing to visual recognition approaches the emission direction EXD corresponding to the incident direction IND of the illumination light collimated by the condenser 14. Thus, the display light can be guided while suppressing the physique expansion of the convex mirror 42. As described above, even when the image is enlarged, it is possible to provide the HUD device 100 in which the visibility of the virtual image VI is good while suppressing an increase in the physique.
 また、本実施形態によると、正の光学素子は、凹状に湾曲した曲面状の反射面45を有する凹面鏡44であり、負の光学素子は、凸状に湾曲した曲面状に反射面43を有する凸面鏡42である。これら反射面43,45による反射により、拡大導光部40の機能が実現されるので、拡大導光部40での色収差の発生を抑制しつつ、虚像VIを拡大すると共に、入射瞳ENPを液晶素子30よりも光源部10側に遠ざけることができる。 Further, according to the present embodiment, the positive optical element is the concave mirror 44 having the concave curved curved reflection surface 45, and the negative optical element has the convex curved curved surface 43. This is a convex mirror 42. Since the function of the enlarged light guide 40 is realized by the reflection by the reflecting surfaces 43 and 45, the virtual image VI is enlarged while suppressing the occurrence of chromatic aberration in the enlarged light guide 40, and the entrance pupil ENP is liquid crystal. The light source unit 10 can be moved away from the element 30.
 また、本実施形態によると、集光部14の複合レンズとしての複合レンズアレイ18に設けられた複合面20は、照明光を屈折により平行化する平行化面21と、照明光を当該平行化面21の屈折とは逆側に偏向する偏向面22とが、交互に連なる交互配列構造を、形成している。この配列構造では、光源部10から平行化面21を経由する照明光と偏向面22を経由する照明光とを互いに混ぜ合わせることで、表示光の指向性を調整可能となる。したがって、上述の拡大導光部40の構成と相俟って、液晶画素34間の輝度差を減少させることができる。 Moreover, according to this embodiment, the compound surface 20 provided in the compound lens array 18 as a compound lens of the condensing part 14 includes the parallelizing surface 21 that collimates the illumination light by refraction and the collimation of the illumination light. The deflecting surface 22 that deflects in the direction opposite to the refraction of the surface 21 forms an alternately arranged structure. In this arrangement structure, the directivity of the display light can be adjusted by mixing the illumination light from the light source unit 10 via the parallelizing surface 21 and the illumination light via the deflection surface 22 with each other. Therefore, in combination with the configuration of the above-described enlarged light guide 40, the luminance difference between the liquid crystal pixels 34 can be reduced.
 また、本実施形態によると、集光レンズとしての集光レンズアレイ15に設けられた集光面17は、長手対応方向RLDの曲率と短手対応方向RSDの曲率が異なるアナモルフィック面である。このようにすることで、矩形状の開口部32に合わせて、光源部10からの照明光を均一化できるので、液晶画素34間の輝度差を減少させることができる。 Further, according to the present embodiment, the condensing surface 17 provided in the condensing lens array 15 as a condensing lens is an anamorphic surface in which the curvature in the long-side corresponding direction RLD and the curvature in the short-side corresponding direction RSD are different. . By doing in this way, the illumination light from the light source part 10 can be equalized according to the rectangular opening part 32, Therefore The brightness | luminance difference between the liquid crystal pixels 34 can be reduced.
 (他の実施形態)
 以上、本開示の一実施形態について説明したが、本開示は、当該実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although one embodiment of the present disclosure has been described above, the present disclosure is not construed as being limited to the embodiment, and can be applied to various embodiments without departing from the gist of the present disclosure. it can.
 具体的に変形例1としては、図13に示すように、光源部10の発光素子12は、焦点位置FPa及び焦点位置FPsのうち、集光部14側に位置する焦点位置FPaと重なる位置に配置されていてもよい。このような発光素子12の配置により、開口部32を透過する照明光のうち、拡大導光部40側に進むに従って開口部32の外周側から内周側に傾斜して進む光の割合が減少する。したがって、入射瞳ENPが光源部10側に遠ざかる作用と相俟って、視認に寄与する表示光の方向の輝度が高まることとなり、虚像VIの視認性より良好となる。 Specifically, as a first modification, as illustrated in FIG. 13, the light emitting element 12 of the light source unit 10 overlaps the focal position FPa located on the light collecting unit 14 side among the focal position FPa and the focal position FPs. It may be arranged. With such an arrangement of the light emitting element 12, the proportion of light that travels inclined from the outer periphery side to the inner periphery side of the opening portion 32 decreases as it travels to the enlarged light guide portion 40 side in the illumination light that passes through the opening portion 32. To do. Therefore, combined with the action of the entrance pupil ENP moving away from the light source unit 10, the luminance in the direction of the display light contributing to visual recognition is increased, and the visibility of the virtual image VI is improved.
 変形例2としては、集光部14は、上述の実施形態における複合レンズアレイ18のような、複合面20が設けられた複合レンズを有していなくてもよい。例えば、複合レンズアレイ18の代わりに、一般的な凸レンズ又は凸レンズアレイを採用してもよい。 As a second modification, the condensing unit 14 may not include a compound lens provided with the compound surface 20 like the compound lens array 18 in the above-described embodiment. For example, instead of the compound lens array 18, a general convex lens or a convex lens array may be adopted.
 変形例3としては、集光部14は、上述の実施形態における集光レンズアレイ15のような、アナモルフィック面である集光面17が設けられた集光レンズを有していなくてもよい。例えば、集光面17は球面又は回転対称非球面であってもよく、また、集光レンズアレイ15の代わりに、一般的な凸レンズ又は凸レンズアレイを採用してもよい。 As a third modification, the condensing unit 14 may not include a condensing lens provided with the condensing surface 17 that is an anamorphic surface, like the condensing lens array 15 in the above-described embodiment. Good. For example, the condensing surface 17 may be a spherical surface or a rotationally symmetric aspheric surface, and a general convex lens or convex lens array may be employed instead of the condensing lens array 15.
 変形例4としては、集光部14は、1つ又は3つ以上の光学素子により構成されていてもよい。 As a fourth modification, the light collecting unit 14 may be configured by one or three or more optical elements.
 変形例5としては、発光素子12は、2次元方向に配列されていてもよい。 As a fifth modification, the light emitting elements 12 may be arranged in a two-dimensional direction.
 変形例6としては、液晶素子30として、反射型の液晶素子が採用されていてもよい。 As a sixth modification, a reflective liquid crystal element may be employed as the liquid crystal element 30.
 変形例7としては、正の光学素子として、凸レンズが採用されていてもよい。 As a modified example 7, a convex lens may be employed as a positive optical element.
 変形例8としては、負の光学素子として、凹レンズが採用されていてもよい。 As a modified example 8, a concave lens may be employed as the negative optical element.
 変形例9としては、図14に示すように、透過型の液晶素子30は、開口部32の法線方向を、照明光の入射方向IND及び直線SLに対して傾斜させた状態で配置されていてもよい。具体的に、開口部32の法線方向が入射方向IND及び直線SLに対して例えば10~25度程度の角度をなすことが好ましい。開口部32内の液晶画素34には光を偏向させる要素が基本的にないので、表示光の射出方向EXDは入射方向INDと略一致している。したがって、開口部32の法線方向は、射出方向EXDに対しても傾斜させた状態で配置されている。 As a modified example 9, as shown in FIG. 14, the transmissive liquid crystal element 30 is arranged in a state in which the normal direction of the opening 32 is inclined with respect to the incident direction IND of the illumination light and the straight line SL. May be. Specifically, it is preferable that the normal direction of the opening 32 forms an angle of, for example, about 10 to 25 degrees with respect to the incident direction IND and the straight line SL. Since the liquid crystal pixel 34 in the opening 32 basically has no element for deflecting light, the emission direction EXD of the display light substantially coincides with the incident direction IND. Therefore, the normal direction of the opening 32 is arranged in a state inclined with respect to the injection direction EXD.
 より詳細に、図14の液晶素子30は、長手方向LDを回転軸として傾斜している。したがって、液晶素子30は、短手対応方向RSDに対して傾斜して配置されている。この配置の結果、短手方向SD及び短手対応方向RSDに沿った断面において、複合レンズアレイ18と液晶素子30との間隔は、位置により異なるものとなっている。 More specifically, the liquid crystal element 30 in FIG. 14 is inclined with the longitudinal direction LD as the rotation axis. Therefore, the liquid crystal element 30 is disposed to be inclined with respect to the short-side corresponding direction RSD. As a result of this arrangement, the distance between the compound lens array 18 and the liquid crystal element 30 varies depending on the position in the cross section along the short direction SD and the short corresponding direction RSD.
 こうした液晶素子30では、図15にも示すように、凸面鏡42と対向する側に、例えばガラス基板の表面として構成された鏡面によって、平面状の反射面39が形成されている。例えば太陽光等の外光がウインドシールド3を透過して凹面鏡44及び凸面鏡42に反射されて液晶素子30に到達すると、当該外光は射出方向EXDとは真逆に液晶素子30に入射する可能性が高い。ここで、開口部32の法線方向が射出方向EXDに対して傾斜していることにより、反射面39は、射出方向EXDとは別の方向に外光を反射する。したがって、反射面39に反射された外光が表示光と一緒に視認領域EBに到達することを抑制することができる。 In such a liquid crystal element 30, as shown in FIG. 15, a planar reflecting surface 39 is formed on the side facing the convex mirror 42, for example, by a mirror surface configured as a surface of a glass substrate. For example, when external light such as sunlight passes through the windshield 3 and is reflected by the concave mirror 44 and the convex mirror 42 to reach the liquid crystal element 30, the external light can enter the liquid crystal element 30 in the direction opposite to the emission direction EXD. High nature. Here, since the normal direction of the opening 32 is inclined with respect to the emission direction EXD, the reflection surface 39 reflects external light in a direction different from the emission direction EXD. Therefore, it can suppress that the external light reflected by the reflective surface 39 reaches | attains the visual recognition area EB with display light.
 また、図15に示すように、液晶素子30の傾斜方向又は角度は、凸面鏡42、凹面鏡44、及びウインドシールド3の配置角度を考慮して、シャインプルーフの条件を満足するように、又は当該条件に近くなるように、設定されることが好ましい。こうした傾斜方向及び角度によれば、主光線PRRに対する虚像VIの傾斜を抑制することができる。 Further, as shown in FIG. 15, the inclination direction or angle of the liquid crystal element 30 is set so as to satisfy the Scheimpflug condition or the conditions in consideration of the arrangement angle of the convex mirror 42, the concave mirror 44, and the windshield 3. It is preferable to set so as to be close to. According to such an inclination direction and angle, the inclination of the virtual image VI with respect to the principal ray PRR can be suppressed.
 変形例10としては、複合レンズアレイ18において、平行化面21及び偏向面22の領域分割における分割幅Waは、各箇所において実質同じ幅に設定されていてもよい。 As a tenth modification, in the compound lens array 18, the division width Wa in the area division of the parallelizing surface 21 and the deflection surface 22 may be set to be substantially the same width at each location.
 変形例11としては、複合レンズアレイ18における複合面20は、平行化面21の形状を、傾斜した平面状に置き換えた構成であってもよい。 As a modification 11, the composite surface 20 in the composite lens array 18 may have a configuration in which the shape of the parallelizing surface 21 is replaced with an inclined flat surface.
 変形例12としては、車両1以外の船舶ないしは飛行機等の各種移動体(輸送機器)に、本開示を適用してもよい。 As a twelfth modification, the present disclosure may be applied to various moving bodies (transportation equipment) such as ships or airplanes other than the vehicle 1.
 上述したヘッドアップディスプレイ装置は、移動体1に搭載され、移動体の投影部材3へ向けて表示光を投影し、表示光を投影部材にて反射させつつ移動体に設けられた視認領域EBに到達させることにより、視認領域内から視認可能な虚像VIを表示する。光源部10は、照明光を発する。集光部14は、照明光を集光により平行化する。液晶素子30は、開口部32に複数の液晶画素34を配列し、開口部が集光部から射出された照明光に照明されることにより画像を形成し、照明光の入射方向INDに応じた射出方向EXDに、画像の表示光を光束状に射出する。拡大導光部40は、正の屈折力を有する正の光学素子44と、負の屈折力を有する負の光学素子42と、を有し、両光学素子を光路上に配置することで、虚像が拡大されるように、液晶素子からの表示光を投影部材へ向けて導光する。負の光学素子は、正の光学素子よりも光路上の液晶素子側に配置される。 The head-up display device described above is mounted on the moving body 1, projects display light toward the projection member 3 of the moving body, and reflects the display light on the projection member 3 in a visual recognition area EB provided on the moving body. By making it reach | attain, the virtual image VI which can be visually recognized from the inside of a visual recognition area | region is displayed. The light source unit 10 emits illumination light. The condensing part 14 collimates illumination light by condensing. The liquid crystal element 30 arranges a plurality of liquid crystal pixels 34 in the opening 32 and forms an image by illuminating the opening with illumination light emitted from the condensing part, according to the incident direction IND of the illumination light. The display light of the image is emitted in the form of a light flux in the emission direction EXD. The magnifying light guide unit 40 includes a positive optical element 44 having a positive refractive power and a negative optical element 42 having a negative refractive power. By arranging both optical elements on the optical path, a virtual image is obtained. , The display light from the liquid crystal element is guided toward the projection member. The negative optical element is disposed closer to the liquid crystal element on the optical path than the positive optical element.
 このような開示によると、拡大導光部は、液晶素子からの表示光を投影部材へ向けて導光する。ここで拡大導光部は、正の屈折力を有する正の光学素子と、負の屈折力を有する負の光学素子と、を有する。そして、負の光学素子は、正の光学素子よりも光路上の液晶素子側に配置される。こうした両光学素子が光路上に配置されたHUD装置の光学系では、正の光学素子を用いて虚像を拡大しつつも、負の光学素子も用いることで入射瞳を液晶素子よりも光源部側に遠ざけることができる。入射瞳が遠ざかることにより、視認領域内から表示光の射出方向に沿って液晶素子の開口部を覗き込むような光路が構成可能となる。したがって、視認に寄与する表示光の方向と、液晶素子からの射出方向とのずれを抑制可能となる。当該射出方向は、平行化された照明光の液晶素子への入射方向に応じたものであるため、液晶画素間の輝度差を減少させつつ、照明光を画像の表示光として効率よく視認領域に到達させることができる。 According to such disclosure, the enlarged light guide unit guides display light from the liquid crystal element toward the projection member. Here, the enlarged light guide section includes a positive optical element having a positive refractive power and a negative optical element having a negative refractive power. The negative optical element is arranged closer to the liquid crystal element on the optical path than the positive optical element. In the optical system of the HUD device in which both of these optical elements are arranged on the optical path, the positive pupil is used to enlarge the virtual image, but the negative optical element is used so that the entrance pupil is closer to the light source unit than the liquid crystal element. You can keep away. By moving the entrance pupil away, it is possible to configure an optical path that looks into the opening of the liquid crystal element along the emission direction of the display light from within the viewing region. Therefore, it is possible to suppress a deviation between the direction of display light contributing to visual recognition and the direction of emission from the liquid crystal element. The emission direction corresponds to the incident direction of the collimated illumination light to the liquid crystal element, so that the illumination light is efficiently used as the image display light in the viewing area while reducing the luminance difference between the liquid crystal pixels. Can be reached.
 さらに、負の光学素子と液晶素子との間の光路上では、視認に寄与する表示光の方向が、集光部により平行化された照明光の入射方向に応じた射出方向に近づくことで、当該負の光学素子の体格拡大を抑制しつつ、表示光を導光可能となる。以上により、画像を拡大しても、体格増大を抑制しつつ、虚像の視認性が良好なHUD装置を提供できる。 Furthermore, on the optical path between the negative optical element and the liquid crystal element, the direction of the display light contributing to visual recognition approaches the emission direction according to the incident direction of the illumination light parallelized by the condensing unit, Display light can be guided while suppressing the physique expansion of the negative optical element. As described above, even if the image is enlarged, it is possible to provide a HUD device with good visibility of a virtual image while suppressing an increase in physique.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  移動体(1)に搭載され、前記移動体の投影部材(3)へ向けて表示光を投影し、前記表示光を前記投影部材(3)にて反射させつつ前記移動体に設けられた視認領域(EB)に到達させることにより、前記視認領域(EB)内から視認可能な虚像(VI)を表示するヘッドアップディスプレイ装置であって、
     照明光を発する光源部(10)と、
     前記照明光を集光により平行化する集光部(14)と、
     開口部(32)に複数の液晶画素(34)を配列し、前記開口部(32)が前記集光部(14)から射出された前記照明光に照明されることにより画像を形成し、前記照明光の入射方向(IND)に応じた射出方向(EXD)に、前記画像の前記表示光を光束状に射出する液晶素子(30)と、
     正の屈折力を有する正の光学素子(44)と、負の屈折力を有する負の光学素子(42)と、を有し、両前記光学素子(44,42)を光路上に配置することで、前記虚像(VI)が拡大されるように、前記液晶素子(30)からの前記表示光を前記投影部材(3)へ向けて導光する拡大導光部(40)と、を備え、
     前記負の光学素子(42)は、前記正の光学素子(44)よりも前記光路上の前記液晶素子(30)側に配置されるヘッドアップディスプレイ装置。
    Mounted on the moving body (1), projecting display light toward the projecting member (3) of the moving body, and reflecting the display light on the projecting member (3), provided on the moving body A head-up display device that displays a virtual image (VI) that is visible from within the visual recognition region (EB) by reaching the region (EB),
    A light source unit (10) for emitting illumination light;
    A condensing part (14) for collimating the illumination light by condensing;
    A plurality of liquid crystal pixels (34) are arranged in the opening (32), and the opening (32) is illuminated with the illumination light emitted from the light collecting part (14) to form an image, A liquid crystal element (30) for emitting the display light of the image in the form of a light beam in an emission direction (EXD) corresponding to an incident direction (IND) of illumination light;
    A positive optical element (44) having a positive refractive power and a negative optical element (42) having a negative refractive power, and both the optical elements (44, 42) are disposed on an optical path; And an enlarged light guide (40) for guiding the display light from the liquid crystal element (30) toward the projection member (3) so that the virtual image (VI) is enlarged,
    The negative optical element (42) is a head-up display device arranged closer to the liquid crystal element (30) on the optical path than the positive optical element (44).
  2.  前記正の光学素子(44)は、凹状に湾曲した曲面状の反射面(45)を有する凹面鏡であり、
     前記負の光学素子(42)は、凸状に湾曲した曲面状の反射面(43)を有する凸面鏡である請求項1に記載のヘッドアップディスプレイ装置。
    The positive optical element (44) is a concave mirror having a curved reflecting surface (45) curved in a concave shape,
    The head-up display device according to claim 1, wherein the negative optical element (42) is a convex mirror having a curved reflecting surface (43) curved in a convex shape.
  3.  前記集光部(14)は、複合面(20)が設けられた複合レンズ(18)を有し、
     前記複合面(20)は、前記照明光を屈折により平行化する平行化面(21)と、前記照明光を前記平行化面の屈折とは逆側に偏向する偏向面(22)とが、交互に連なる交互配列構造を、形成している請求項1又は2に記載のヘッドアップディスプレイ装置。
    The condensing part (14) has a compound lens (18) provided with a compound surface (20),
    The composite surface (20) includes a collimating surface (21) that collimates the illumination light by refraction, and a deflection surface (22) that deflects the illumination light to the opposite side of the refraction of the collimating surface. The head-up display device according to claim 1, wherein an alternately arranged structure is formed alternately.
  4.  前記開口部(32)は、長手方向(LD)及び短手方向(SD)を有する矩形状に形成され、
     前記集光部(14)は、前記照明光を集光する集光面(17)が設けられた集光レンズ(15)を有し、
     前記集光面は、前記長手方向に対応する方向(RLD)の曲率と前記短手方向に対応する方向(RSD)の曲率が異なるアナモルフィック面である請求項1から3のいずれか1項に記載のヘッドアップディスプレイ装置。
    The opening (32) is formed in a rectangular shape having a longitudinal direction (LD) and a short direction (SD),
    The condensing part (14) has a condensing lens (15) provided with a condensing surface (17) for condensing the illumination light,
    The said condensing surface is an anamorphic surface from which the curvature of the direction (RLD) corresponding to the said longitudinal direction and the curvature (RSD) corresponding to the said transversal direction differ. The head-up display device described in 1.
PCT/JP2017/000942 2016-02-23 2017-01-13 Head-up display device WO2017145558A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/078,093 US10663723B2 (en) 2016-02-23 2017-01-13 Head-up display device
KR1020187026551A KR102050998B1 (en) 2016-02-23 2017-01-13 Head-up display device
CN201780012208.7A CN108700747B (en) 2016-02-23 2017-01-13 Head-up display device
DE112017000945.6T DE112017000945T5 (en) 2016-02-23 2017-01-13 HEAD-UP DISPLAY DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-032259 2016-02-23
JP2016032259 2016-02-23
JP2016080579A JP6319354B2 (en) 2016-02-23 2016-04-13 Head-up display device
JP2016-080579 2016-04-13

Publications (1)

Publication Number Publication Date
WO2017145558A1 true WO2017145558A1 (en) 2017-08-31

Family

ID=59686100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000942 WO2017145558A1 (en) 2016-02-23 2017-01-13 Head-up display device

Country Status (1)

Country Link
WO (1) WO2017145558A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109435849A (en) * 2018-10-10 2019-03-08 浙江零跑科技有限公司 A kind of Vehicular head-up display system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087698A (en) * 2013-11-01 2015-05-07 Necプラットフォームズ株式会社 Virtual image display device
WO2015098075A1 (en) * 2013-12-27 2015-07-02 パナソニックIpマネジメント株式会社 Display equipment and display unit
JP2015232608A (en) * 2014-06-09 2015-12-24 株式会社デンソー Head-up display device and illumination unit of the same
JP5866644B1 (en) * 2014-12-26 2016-02-17 パナソニックIpマネジメント株式会社 Head-up display and moving body with head-up display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087698A (en) * 2013-11-01 2015-05-07 Necプラットフォームズ株式会社 Virtual image display device
WO2015098075A1 (en) * 2013-12-27 2015-07-02 パナソニックIpマネジメント株式会社 Display equipment and display unit
JP2015232608A (en) * 2014-06-09 2015-12-24 株式会社デンソー Head-up display device and illumination unit of the same
JP5866644B1 (en) * 2014-12-26 2016-02-17 パナソニックIpマネジメント株式会社 Head-up display and moving body with head-up display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109435849A (en) * 2018-10-10 2019-03-08 浙江零跑科技有限公司 A kind of Vehicular head-up display system

Similar Documents

Publication Publication Date Title
JP6579212B2 (en) Head-up display device
JP6508125B2 (en) HEAD-UP DISPLAY DEVICE AND IMAGE PROJECTION UNIT
JP6677268B2 (en) Head-up display device
EP3447561B1 (en) Head-up display device
US20170115553A1 (en) Scanning projector transmissive screen, and scanning projector system
US10712617B2 (en) Backlight unit and head-up display device
JP6481649B2 (en) Head-up display device
KR101741938B1 (en) Head-up display device
WO2018131444A1 (en) Head-up display device
WO2017187758A1 (en) Head-up display device
JP7195454B2 (en) Light source device, information display system and head-up display device using the same
WO2017130481A1 (en) Head up display apparatus and manufacturing method of same
WO2017145557A1 (en) Head-up display device
WO2017145558A1 (en) Head-up display device
US10527923B2 (en) Scanning projector transmissive screen, and scanning projector system
JP2022011390A (en) Virtual image display device
CN115210629B (en) virtual image display device
WO2022014179A1 (en) Virtual-image display device
WO2024080170A1 (en) Optical system and virtual image display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112017000945

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20187026551

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026551

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756000

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756000

Country of ref document: EP

Kind code of ref document: A1