WO2017141775A1 - Ionic liquid, lubricant, and magnetic recording medium - Google Patents
Ionic liquid, lubricant, and magnetic recording medium Download PDFInfo
- Publication number
- WO2017141775A1 WO2017141775A1 PCT/JP2017/004451 JP2017004451W WO2017141775A1 WO 2017141775 A1 WO2017141775 A1 WO 2017141775A1 JP 2017004451 W JP2017004451 W JP 2017004451W WO 2017141775 A1 WO2017141775 A1 WO 2017141775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- acid
- ionic liquid
- stretching vibration
- lubricant
- Prior art date
Links
- 0 *[n]1cncc1 Chemical compound *[n]1cncc1 0.000 description 2
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/72—Protective coatings, e.g. anti-static or antifriction
- G11B5/725—Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
- G11B5/7253—Fluorocarbon lubricant
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C215/00—Compounds containing amino and hydroxy groups bound to the same carbon skeleton
- C07C215/02—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C215/40—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton with quaternised nitrogen atoms bound to carbon atoms of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/06—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
- C07D233/60—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/08—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
- C07D295/084—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/088—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/56—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
- C10M105/70—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/72—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing sulfur, selenium or tellurium
Definitions
- the present invention relates to an ionic liquid, a lubricant containing the ionic liquid, and a magnetic recording medium using the same.
- a lubricant is applied to the surface of the magnetic layer in order to reduce friction and wear on the magnetic head and the medium surface.
- the actual film thickness of the lubricant is at the molecular level in order to avoid adhesion such as stiction. Therefore, in thin film magnetic recording media, it is no exaggeration to say that the most important thing is the selection of a lubricant having excellent wear resistance under all circumstances.
- the lubricant be present on the surface of the medium without causing desorption, spin-off, chemical degradation, and the like.
- the presence of the lubricant on the medium surface becomes more difficult as the surface of the thin film magnetic recording medium becomes smoother. This is because the thin film magnetic recording medium does not have a lubricant replenishment capability unlike the coating type magnetic recording medium.
- the lubricant film thickness decreases during heating and sliding, which accelerates wear and requires a large amount of lubricant. It is said. A large amount of lubricant becomes a mobile lubricant and can have a function of replenishing the lost lubricant. However, the excess lubricant makes the film thickness of the lubricant larger than the surface roughness, causing problems related to adhesion, and in the fatal case, it becomes a stiction and causes drive failure. There is.
- Non-Patent Document 1 the increase rate of the in-plane recording density of the product hard disk drive has been decreasing for the past several years, but it has achieved an annual rate of 25%, which is one target of 4Tb. / In 2 is about to arrive.
- FIG. 2 it can be seen that the distance between the head disk interfaces is decreasing with the increase in recording density, but there is always a need to improve the reliability. This is described, for example, in Non-Patent Documents 2 to 4 below.
- the current recording density is about 1 Tb / in 2
- the spacing is about 6 nm
- the lubricant thickness is 0.8 nm.
- the thickness of the lubricant must be reduced. Don't be.
- PFPE perfluoropolyether
- a new lubricant is molecularly designed and synthesized in order to eliminate these trade-offs.
- Many reports on the lubricity of PFPE have been submitted.
- the lubricant is very important in the magnetic recording medium.
- Table 1 shows the chemical structure of a typical PFPE lubricant.
- Z-DOL in Table 1 is one of the commonly used lubricants for thin film magnetic recording media.
- Z-tetraol (ZTMD) is one in which a functional hydroxyl group is further introduced into the main chain of PFPE, and it has been reported that the reliability of the drive is improved while reducing the gap in the head media interface.
- A20H suppresses decomposition of the PFPE main chain by Lewis acid or Lewis base and improves tribological properties.
- Mono has a report that the polymer main chain and the polar group are polynormalpropyloxy and amine, respectively, unlike the above-mentioned PFPE, and reduce the adhesion interaction in the near contact.
- the liquid lubricant has mobility such that the lubricant removed by abrasion by the head moves from the adjacent lubricant layer and is replenished.
- the disk spins off during disk operation and lubricant is reduced, resulting in a loss of protection.
- a high-viscosity and low-volatile lubricant is suitably used, and the evaporation rate can be suppressed and the life of the disk drive can be extended.
- requirements for low friction and low wear lubricants used in thin film magnetic recording media are as follows. (1) Low volatility. (2) Low surface tension for the surface replenishment function. (3) There is an interaction between the terminal polar group and the disk surface. (4) High thermal and oxidative stability so that there is no decomposition or decrease during the period of use. (5) It is chemically inert to metals, glass, and polymers and does not generate wear powder on the head or guide. (6) There must be no toxicity or flammability. (7) Excellent boundary lubrication characteristics. (8) Dissolve in an organic solvent.
- ionic liquids are attracting attention as one of the environmentally friendly solvents for synthesizing organic and inorganic materials in power storage materials, separation technologies, and catalyst technologies.
- Ionic liquids fall into the large category of low melting point molten salts, but generally, those having a melting point of 100 ° C. or lower among them.
- Important characteristics of ionic liquids used as lubricants include low volatility, lack of flammability, thermal stability, and excellent dissolution performance.
- friction and wear on the metal or ceramic surface may be reduced by using a certain ionic liquid as compared with a conventional hydrocarbon-based lubricant.
- a certain ionic liquid as compared with a conventional hydrocarbon-based lubricant.
- an imidazole cation-based ionic liquid substituted with a fluoroalkyl group is synthesized, and alkyl imidazolium tetrafluoroborate or hexafluorophosphate can be used for steel, aluminum, copper, single crystal SiO 2 , silicon, sialon ceramics ( When used for Si—Al—O—N), it has been reported that it exhibits superior tribological properties over cyclic phosphazene (X-1P) and PFPE.
- Non-Patent Document 5 reports an imidazole-based tris (pentafluoroethyl) trifluorophosphate ionic liquid, but only shows the possibility, and does not mention specific tribological characteristics.
- perfluorooctanoic acid alkylammonium salt is a protonic ionic liquid (PIL), but it has been reported that it has a remarkable effect of reducing friction of magnetic recording media as compared with Z-DOL described above.
- PIL protonic ionic liquid
- these perfluorocarboxylic acid ammonium salts have a weak cation-anion interaction in the reaction shown in the following reaction formula (A), and the equilibrium is on the left at high temperatures due to Le Chatelier's law. , It becomes a dissociated neutral compound and the thermal stability is deteriorated. That is, proton transfer occurs at a high temperature, and the equilibrium moves to a neutral substance and dissociates (see, for example, Non-Patent Document 9). That is, the thermal stability at a high temperature is deteriorated.
- the limit of the surface recording density of the hard disk is said to be 1-2.5 Tb / in 2 .
- the limit is approaching, but energetic development of high-capacity technology has been continued on the premise of miniaturization of magnetic particles. Technologies for increasing the capacity include reduction of effective flying height, introduction of single write (BMP), and the like.
- FIG. 3 shows an outline of the heat-assisted magnetic recording.
- reference numeral 1 indicates laser light
- reference numeral 2 indicates near-field light
- reference numeral 3 indicates a recording head (PMR element)
- reference numeral 4 indicates a reproducing head (TMR element).
- PMR element recording head
- TMR element reproducing head
- the protic ionic liquid is generally a substance having high thermal stability in order to form ions as described above.
- the equilibrium is shown in the following Scheme 1.
- HA represents a Bronsted acid
- B represents a Bronsted base.
- the acid (HA) and the base (B) react to form a salt (A ⁇ HB + ) as shown in Scheme 1.
- the dissociation constants K a1 and K b2 of the acid and the base can be expressed as the following Scheme 2 in a form including the concentration.
- the difference ⁇ pKa in acid dissociation constant between acid and base will be discussed.
- the acid / base reaction is influenced by the acidity / basicity of each other (or the acidity of the conjugate acid), and the acidity difference ⁇ pKa can be expressed together in the following Scheme 3.
- Non-Patent Documents 12 and 13 Regarding the heat resistance of ionic liquids reports that the decomposition temperature rises to a certain extent, but the decomposition temperature does not increase so much even if ⁇ pKa is increased beyond that. (See Non-Patent Documents 12 and 13).
- a pyrrolidinium-based ionic liquid having a geminal dication may improve heat resistance as compared with a normal monocation ionic liquid (see Non-Patent Document 13).
- Non-Patent Document 14 the relationship between the molecular structure constituting the structure and physical or chemical properties is not well understood. The combination of cation and anion greatly affects the physical or chemical properties of the ionic liquid.
- the anion moiety is rich in variability, but the relationship is not clear unless it is a structurally similar cation (see, for example, Non-Patent Document 15).
- the stronger the hydrogen bonding force of halogen (Cl>Br> I), the more viscous the liquid.
- the method for increasing the viscosity is not limited to this, and it is possible, for example, by changing the alkyl chain of imidazole.
- it affects melting point, surface tension, and thermal stability, but the effect of its anion has not been studied extensively. Therefore, it is possible to change these physical or chemical properties by a combination of cation and anion, but it is difficult to predict.
- a polar group such as a hydroxyl group is introduced at the end in order to enhance the interaction with the media surface.
- a hydroxyl group reacts with the surface of the medium and is fixed by heat treatment to improve thermal stability, and also has an effect of lowering the polar term component of the surface energy by bonding with the hydroxyl group (Non-patent Document 16). ).
- the ionic liquid lubricant preferably has a lower melting point when considering uses other than hard disks.
- the present invention has been proposed in view of such a conventional situation, and has an excellent lubricity even at a high temperature and can be lowered in melting point, so that it can be applied to various purposes.
- the present invention provides a lubricant that has excellent lubricity even at a high temperature and can be applied to various purposes because of a low melting point, and a magnetic recording medium having excellent practical characteristics.
- ⁇ 1> containing an ionic liquid having a conjugate base and a conjugate acid
- the conjugate acid has a group containing a hydroxyl group and a group containing a linear hydrocarbon group having 6 or more carbon atoms;
- the lubricant is characterized in that the pKa in acetonitrile of the acid which is the base of the conjugate base is 10 or less.
- R 1, and R 2 represents independently a hydrogen atom, and one of the group carbon atoms containing 6 or more straight chain hydrocarbon radical, n Represents an integer of 1 or more. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms. However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1. However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
- R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
- R 1, and R 2 are each independently a hydrogen atom
- n represents an integer of 1 or more.
- l represents an integer of 1-12.
- l represents the integer of 1-12.
- a magnetic material comprising a nonmagnetic support, a magnetic layer on the nonmagnetic support, and the lubricant according to any one of ⁇ 1> to ⁇ 3> on the magnetic layer. It is a recording medium.
- ⁇ 5> having a conjugate base and a conjugate acid,
- the conjugate acid has a group containing a hydroxyl group and a group containing a linear hydrocarbon group having 6 or more carbon atoms; It is an ionic liquid characterized in that the pKa in acetonitrile of the acid that is the base of the conjugate base is 10 or less.
- the conjugate acid according to ⁇ 5> wherein the conjugate acid is represented by any one of the following general formula (A), the following general formula (B), the following general formula (C), and the following general formula (D). It is an ionic liquid.
- the general formula (A), R 1, and R 2 represents independently a hydrogen atom, and one of the group carbon atoms containing 6 or more straight chain hydrocarbon radical, n Represents an integer of 1 or more.
- at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
- R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
- R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
- the general formula (D) R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more.
- l represents an integer of 1-12.
- l represents the integer of 1-12.
- an ionic liquid that has excellent lubricity even at a high temperature and can be applied to various purposes because it can have a low melting point, has an excellent lubricity even at a high temperature, and low Since the melting point can be increased, it is possible to provide a lubricant that can be applied to various purposes and a magnetic recording medium having excellent practical characteristics.
- FIG. 1 is a graph showing the transition and prediction of the in-plane recording density of a hard disk drive.
- FIG. 2 is a road map of head media spacing (HMS) with respect to the in-plane recording density of the hard disk.
- FIG. 3 is a schematic diagram showing heat-assisted magnetic recording.
- FIG. 4 is a cross-sectional view showing an example of a hard disk according to an embodiment of the present invention.
- FIG. 5 is a cross-sectional view showing an example of a magnetic tape according to an embodiment of the present invention.
- the lubricant shown as one embodiment of the present invention contains an ionic liquid having a conjugate acid and a conjugate base.
- the ionic liquid shown as one embodiment of the present invention has a conjugate acid and a conjugate base.
- the conjugate acid has a group containing a hydrocarbon group.
- the hydrocarbon group is a linear hydrocarbon group having 6 or more carbon atoms.
- the “linear hydrocarbon group having 6 or more carbon atoms” may be a partially fluorinated hydrocarbon group in which a part of hydrogen atoms bonded to carbon is substituted with a fluorine atom.
- the conjugate acid has a group containing a hydroxyl group.
- the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less.
- the ionic liquid in this embodiment has a conjugate acid and a conjugate base, and the pKa in acetonitrile of the acid that is the base of the conjugate base is 10 or less, and therefore exhibits excellent thermal stability. be able to. Since the cationic part has a group containing a hydrocarbon group having 6 or more carbon atoms, it can have excellent lubricating properties. Moreover, since a hydroxyl group was introduced into the cation moiety, the heat resistance and solubility in a fluorinated solvent were improved, and the melting point was lowered.
- Some compounds have improved solubility in CF 3 (CHF) 2 CF 2 CF 3 , which is often used as a fluorinated solvent in hard disk lubricant coating processes, resulting in explosion-proof production lines for magnetic recording media There is no need to make specifications.
- the lubricant containing the ionic liquid may be used at a concentration of about 0.05% by mass of the ionic liquid. Therefore, the solubility of the ionic liquid in the fluorine-based solvent is preferably 0.05% by mass or more. Further, depending on the use situation, higher solubility may be required.
- the pKa is a strong acid of 10 or less, and preferably 6.0 or less.
- the lower limit of the pKa is not particularly limited and may be appropriately selected depending on the intended purpose. However, the pKa is preferably ⁇ 5.0 or more.
- pKa in the present specification is an acid dissociation constant, which is an acid dissociation constant in acetonitrile.
- the conjugate base is not particularly limited as long as the pKa in acetonitrile of the original acid is 10 or less, and can be appropriately selected according to the purpose.
- the conjugate base is represented by the following general formula (X).
- the conjugate base represented by the following general formula (X) and the conjugate base represented by the following general formula (Y) are preferable in that the solubility of the ionic liquid in the solvent can be increased.
- l represents an integer of 1 to 12 and is preferably an integer of 1 to 6.
- l represents the integer of 1-12, and an integer of 1-6 is preferable.
- the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms, and further has a group containing a hydroxyl group.
- the method for introducing a hydroxyl group into the conjugate acid is not particularly limited.
- One example of this method employs a method of alkylating a nitrogen atom of a conjugate acid using a halide as described in the following examples. Therefore, the introduction method is completely different from Z-DOL and Z-Tetraol, which are general perfluoropolyether lubricants, and the method is not helpful.
- the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms.
- the number of carbon atoms of the hydrocarbon group is not particularly limited as long as it is 6 or more, and can be appropriately selected according to the purpose, but is preferably 10 or more.
- the upper limit of the carbon number of the linear hydrocarbon group having 6 or more carbon atoms is not particularly limited and may be appropriately selected depending on the purpose. From the viewpoint of procurement of raw materials, the carbon number Is preferably 30 or less, more preferably 25 or less, and particularly preferably 20 or less.
- the group containing a linear hydrocarbon group having 6 or more carbon atoms is preferably a linear hydrocarbon group having 6 or more carbon atoms.
- the carbon number of the hydrocarbon group is determined in consideration of the effect of reducing the friction coefficient and the solubility in a solvent.
- the hydrocarbon group may be linear, and may be either a saturated hydrocarbon group, an unsaturated hydrocarbon group partially having a double bond, or an unsaturated branched hydrocarbon group partially having a branch. Good.
- an alkyl group which is a saturated hydrocarbon group is preferable from the viewpoint of wear resistance.
- hydrocarbon group examples include a group represented by the following general formula (I) and a group represented by the following general formula (II).
- l represents an integer of 5 or more, preferably an integer of 9 to 29, more preferably an integer of 9 to 24, and particularly preferably an integer of 9 to 19.
- m represents an integer of 1 to 6, and n represents an integer of 3 to 20. However, m + n is 7 or more.
- m is preferably an integer of 1 to 3, and n is preferably an integer of 5 to 10.
- the conjugate acid has a group containing a hydroxyl group.
- the group containing a hydroxyl group include a group represented by the following general formula (IV). — (CH 2 ) n —OH Formula (IV)
- n is an integer of 1 or more, preferably an integer of 1 to 10, and more preferably an integer of 1 to 6.
- conjugate acid a conjugate acid represented by the following general formula (A), a conjugate acid represented by the following general formula (B), a conjugate acid represented by the following general formula (C), and the following general formula (
- the conjugate acid represented by D) is preferable in terms of heat resistance and lubrication characteristics.
- the general formula (A), R 1, and R 2 represents independently a hydrogen atom, and one of the group carbon atoms containing 6 or more straight chain hydrocarbon radical, n Represents an integer of 1 or more.
- at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
- R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
- R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
- R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms
- R 1, and R 2 are each independently a hydrogen atom
- n represents an integer of 1 or more.
- it is 6 or more, there is no restriction
- the upper limit of the carbon number of the hydrocarbon group is not particularly limited and may be appropriately selected depending on the intended purpose. From the viewpoint of procurement of raw materials, the carbon number is preferably 30 or less, and 25 or less. More preferred is 20 or less.
- the hydrocarbon group is a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
- the said C6 or more linear hydrocarbon group is preferable.
- the carbon number of the hydrocarbon group is determined in consideration of the effect of reducing the friction coefficient and the solubility in a solvent.
- the R 1 and R 2 in the general formula (A), the R in the general formula (B), the R in the general formula (C), and the hydrocarbon group in the R in the general formula (D). May be a straight chain, and may be a saturated hydrocarbon group, an unsaturated hydrocarbon group partially having a double bond, or an unsaturated branched hydrocarbon group partially having a branch.
- an alkyl group which is a saturated hydrocarbon group is preferable from the viewpoint of wear resistance.
- Examples of the R 1 and R 2 in the general formula (A), the R in the general formula (B), the R in the general formula (C), and the R in the general formula (D) include: Examples include groups represented by the following general formula (III). — (CH 2 ) 1 —CH 3 General Formula (III) In the general formula (III), l represents an integer of 5 or more, preferably an integer of 9 or more and 29 or less, and more preferably an integer of 9 or more and 19 or less.
- R 1 and R 2 in the general formula (D) are hydrocarbon groups, the carbon number thereof is not particularly limited and may be appropriately selected depending on the intended purpose. 10 is preferable, and 1 to 6 carbon atoms is more preferable.
- N is an integer of 1 or more, preferably an integer of 1 to 10, and more preferably an integer of 1 to 6.
- conjugate acid represented by the general formula (A) examples include conjugate acids represented by the following general formula (A-1).
- R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents an integer of 1 or more.
- an ionic liquid represented by the following general formula (1) As the ionic liquid, an ionic liquid represented by the following general formula (1), an ionic liquid represented by the following general formula (2), an ionic liquid represented by the following general formula (3), and the following general formula (4) The ionic liquid represented by this is preferable.
- a ⁇ represents a conjugate base
- R 1 and R 2 each independently represent a hydrogen atom and a linear hydrocarbon group having 6 or more carbon atoms. Any one of the groups to be included, and n represents an integer of 1 or more. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
- a - represents a conjugate base
- R represents the number of carbon atoms represents a group containing 6 or more straight chain hydrocarbon group
- n is an integer of 1 or more .
- a ⁇ represents a conjugate base
- R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
- R 1 and R 2 are respectively Independently, it represents either a hydrogen atom or a hydrocarbon group
- n represents an integer of 1 or more.
- an ionic liquid represented by the general formula (1) an ionic liquid represented by the following general formula (1-1) and an ionic liquid represented by the following general formula (1-2) are preferable.
- R 1 and R 2 each independently represent either a hydrogen atom or a group containing a linear hydrocarbon group having 6 or more carbon atoms.
- N represents an integer of 1 or more
- l represents an integer of 1 to 12.
- at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
- R 1 and R 2 each independently represent either a hydrogen atom or a group containing a linear hydrocarbon group having 6 or more carbon atoms.
- N represents an integer of 1 or more
- l represents an integer of 1 to 12.
- at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
- an ionic liquid represented by the general formula (2) an ionic liquid represented by the following general formula (2-1) and an ionic liquid represented by the following general formula (2-2) are preferable.
- an ionic liquid represented by the following general formula (2-2) is more preferable from the viewpoint of excellent solubility in a fluorine-based solvent.
- R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
- n represents an integer of 1 or more
- l represents 1 to 12 Represents the following integers:
- R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
- n represents an integer of 1 or more
- l represents 1 or more and 12 Represents the following integers:
- Examples of the ionic liquid represented by the general formula (3) include an ionic liquid represented by the following general formula (3-1) and an ionic liquid represented by the following general formula (3-2). It is preferable at the point which is excellent in the solubility to.
- R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, n represents an integer of 1 or more, and l represents 1 or more and 12 Represents the following integers:
- R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, n represents an integer of 1 or more, and l represents 1 or more and 12 Represents the following integers:
- Examples of the ionic liquid represented by the general formula (4) include an ionic liquid represented by the following general formula (4-1) and an ionic liquid represented by the following general formula (4-2). It is preferable at the point which is excellent in the solubility to.
- R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
- R 1 and R 2 are each independently a hydrogen atom
- n represents an integer of 1 or more
- l represents an integer of 1 or more and 12 or less.
- R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms
- R 1 and R 2 are each independently a hydrogen atom
- n represents an integer of 1 or more
- l represents an integer of 1 or more and 12 or less.
- the preferable range of R in the general formula of the ionic liquid is the same as the preferable range of R in the general formula of the corresponding conjugate acid.
- R 1 and R 2 in the ionic liquid represented by the general formula (1), the ionic liquid represented by the general formula (1-1), and the ionic liquid represented by the general formula (1-2) are preferable.
- the range is the same as the preferable range of R 1 and R 2 of the conjugate acid represented by the corresponding general formula (A).
- R 1 and R 2 in the ionic liquid represented by the general formula (4), the ionic liquid represented by the general formula (4-1), and the ionic liquid represented by the general formula (4-2) are preferable.
- the range is the same as the preferable range of R 1 and R 2 of the conjugate acid represented by the corresponding general formula (D).
- the preferable range of n in the general formula of the ionic liquid is the same as the preferable range of n of the corresponding general formula of the conjugate acid.
- the preferable range of l in the general formula of the ionic liquid is the same as the preferable range of l of the corresponding general formula of the conjugate base.
- the above-described ionic liquid may be used alone or in combination with a conventionally known lubricant.
- it can be used in combination with long chain carboxylic acid, long chain carboxylic acid ester, perfluoroalkyl carboxylic acid ester, carboxylic acid perfluoroalkyl ester, perfluoroalkyl carboxylic acid perfluoroalkyl ester, perfluoropolyether derivative, etc. Is possible.
- an extreme pressure agent may be used in combination at a mass ratio of about 30:70 to 70:30.
- the extreme pressure agent acts to prevent friction and wear by forming a reaction product film by reacting with the metal surface due to frictional heat generated when metal contact occurs partially in the boundary lubrication region.
- the extreme pressure agent for example, any of a phosphorus extreme pressure agent, a sulfur extreme pressure agent, a halogen extreme pressure agent, an organometallic extreme pressure agent, a composite extreme pressure agent, and the like can be used.
- the rust inhibitor may be any rust inhibitor that can be used as a rust inhibitor for this type of magnetic recording medium.
- the rust preventive agent may be used as a lubricant, but a magnetic layer is formed on a nonmagnetic support, a rust preventive layer is applied thereon, and then a lubricant layer is applied. Thus, it may be applied in two or more layers.
- solvent for the lubricant for example, alcohol solvents such as isopropyl alcohol (IPA) and ethanol can be used alone or in combination.
- IPA isopropyl alcohol
- ethanol can be used by mixing a hydrocarbon solvent such as normal hexane or a fluorine solvent.
- a fluorine-based solvent is preferable.
- fluorine-based solvent examples include hydrofluoroethers [for example, C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F 7 , CF 3 (CHF) 2 CF 2 CF 3 ], etc., and alcohols such as IPA, ethanol or methanol may be used in combination.
- the fluorinated solvent may be a commercially available product. Examples of the commercially available products include Novec TM 7000, 7100, 7200, 7300, 71IPA manufactured by 3M, Vertrel XF, X-P10 manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and the like.
- a magnetic recording medium shown as an embodiment of the present invention has at least a magnetic layer on a nonmagnetic support, and the magnetic layer contains the above-mentioned lubricant.
- the lubricant in the present embodiment can be applied to a so-called metal thin film type magnetic recording medium in which a magnetic layer is formed on the surface of a nonmagnetic support by a technique such as vapor deposition or sputtering.
- the present invention can also be applied to a magnetic recording medium having a configuration in which an underlayer is interposed between a nonmagnetic support and a magnetic layer. Examples of such a magnetic recording medium include a magnetic disk and a magnetic tape.
- FIG. 4 is a cross-sectional view showing an example of a hard disk.
- This hard disk has a structure in which a substrate 11, an underlayer 12, a magnetic layer 13, a carbon protective layer 14, and a lubricant layer 15 are sequentially laminated.
- FIG. 5 is a cross-sectional view showing an example of a magnetic tape.
- This magnetic tape has a structure in which a backcoat layer 25, a substrate 21, a magnetic layer 22, a carbon protective layer 23, and a lubricant layer 24 are sequentially laminated.
- the nonmagnetic support corresponds to the substrate 11 and the underlayer 12, and in the magnetic tape shown in FIG. 5, the nonmagnetic support corresponds to the substrate 21.
- a rigid substrate such as an Al alloy plate or a glass plate
- an oxide film such as an alumite treatment or Ni-P film may be formed on the substrate surface to harden the surface. Good.
- the magnetic layers 13 and 22 are formed as a continuous film by a technique such as plating, sputtering, vacuum deposition, or plasma CVD.
- the magnetic layers 13 and 22 include metals such as Fe, Co, Ni, Co—Ni alloys, Co—Pt alloys, Co—Ni—Pt alloys, Fe—Co alloys, Fe—Ni alloys, In-plane magnetization recording metal magnetic film made of Fe—Co—Ni alloy, Fe—Ni—B alloy, Fe—Co—B alloy, Fe—Co—Ni—B alloy, etc., Co—Cr alloy Examples thereof include perpendicular magnetic recording metal magnetic thin films such as thin films and Co—O thin films.
- a nonmagnetic material such as Bi, Sb, Pb, Sn, Ga, In, Ge, Si, or Tl is previously formed on the nonmagnetic support as the underlayer 12.
- metal magnetic materials are vapor-deposited or sputtered from the vertical direction, and these non-magnetic materials are diffused in the magnetic metal thin film to eliminate orientation and ensure in-plane isotropy and improve coercive force. You may do it.
- hard protective layers 14 and 23 such as a carbon film, a diamond-like carbon film, a chromium oxide film, and a SiO 2 film may be formed on the surfaces of the magnetic layers 13 and 22.
- the top surface of the magnetic layers 13 and 22 or the surface of the protective layers 14 and 23 is used.
- the method of coating is mentioned.
- the coating amount of the lubricant is preferably 0.1 mg / m 2 to 100 mg / m 2 , more preferably 0.5 mg / m 2 to 30 mg / m 2 , and 0.5 mg / m 2 to Particularly preferred is 20 mg / m 2 .
- a back coat layer 25 may be formed as necessary.
- the back coat layer 25 is formed by adding a carbon-based fine powder for imparting conductivity to the resin binder and an inorganic pigment for controlling the surface roughness.
- the aforementioned lubricant may be added to the back coat layer 25 by internal addition or top coat. Further, the above-described lubricant may be added to both the magnetic layer 22 and the back coat layer 25 by internal addition or top coat.
- the lubricant can be applied to a so-called coating type magnetic recording medium in which a magnetic coating film is formed as a magnetic layer by applying a magnetic paint to the surface of a nonmagnetic support. is there.
- a coating type magnetic recording medium any conventionally known magnetic powder, resin binder and the like constituting the nonmagnetic support, the magnetic coating film, and the like can be used.
- the nonmagnetic support for example, a polymer support formed of a polymer material typified by polyesters, polyolefins, cellulose derivatives, vinyl resins, polyimides, polyamides, polycarbonates and the like. Examples thereof include metal substrates made of aluminum alloy, titanium alloy, etc., ceramics substrates made of alumina glass, etc., glass substrates, and the like.
- the shape is not limited at all, and any shape such as a tape shape, a sheet shape, or a drum shape may be used.
- the non-magnetic support may be subjected to a surface treatment so as to form fine irregularities in order to control the surface property.
- the magnetic powder examples include ferromagnetic iron oxide particles such as ⁇ -Fe 2 O 3 and cobalt-coated ⁇ -Fe 2 O 3 , ferromagnetic chromium dioxide particles, metals such as Fe, Co, Ni, and the like. Examples thereof include ferromagnetic metal particles made of an alloy containing hexagonal plate-like ferrite fine particles.
- the resin binder examples include vinyl chloride, vinyl acetate, vinyl alcohol, vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, butadiene, acrylonitrile, or a combination of these two or more, polyurethane Resins, polyester resins, epoxy resins and the like are exemplified.
- a hydrophilic polar group such as a carboxylic acid group, a carboxyl group or a phosphoric acid group may be introduced in order to improve the dispersibility of the magnetic powder.
- a dispersant In addition to the magnetic powder and the resin binder, a dispersant, an abrasive, an antistatic agent, an antirust agent, and the like may be added to the magnetic coating film as an additive.
- Examples of a method for retaining the lubricant in such a coating type magnetic recording medium include a method of internally adding the magnetic layer constituting the magnetic coating film formed on the nonmagnetic support, There is a method of top-coating the surface of the layer, or a combination of both.
- the lubricant is internally added to the magnetic coating film, it is added in the range of 0.2 to 20 parts by mass with respect to 100 parts by mass of the resin binder.
- the coating amount is preferably 0.1 mg / m 2 to 100 mg / m 2 , and 0.5 mg / m 2 to 20 mg / m 2. 2 is more preferable.
- an ionic liquid is dissolved in a solvent, and the obtained solution is applied or sprayed, or a magnetic recording medium is immersed in this solution.
- the magnetic recording medium to which the lubricant in the present embodiment is applied exhibits excellent running performance, wear resistance, durability, and the like due to the lubricating action, and can further improve the thermal stability.
- Example> Hereinafter, specific examples of the present invention will be described.
- an ionic liquid was synthesized to produce a lubricant containing the ionic liquid.
- Bertrell CF 3 (CHF) 2 CF 2 CF 3
- the lubricant solution was applied to the surfaces of a magnetic disk and a magnetic tape, and the disk durability and tape durability were evaluated, respectively.
- the production of the magnetic disk, the disk durability test, the production of the magnetic tape, and the tape durability test were performed as follows. The present invention is not limited to these examples.
- a magnetic thin film was formed on a glass substrate to produce a magnetic disk as shown in FIG. Specifically, a chemically strengthened glass disk made of aluminum silicate glass with an outer diameter of 65 mm, an inner diameter of 20 mm, and a disk thickness of 0.635 mm is prepared, and the surface is polished so that Rmax is 4.8 nm and Ra is 0.43 nm. did.
- the glass substrate was subjected to ultrasonic cleaning in pure water and isopropyl alcohol (IPA) having a purity of 99.9% or more for 5 minutes each, left in IPA saturated vapor for 1.5 minutes and then dried. did.
- IPA isopropyl alcohol
- a NiAl alloy Ni: 50 mol%, Al: 50 mol%) thin film is formed as a seed layer by DC magnetron sputtering, and a CrMo alloy (Cr: 80 mol%, Mo: 20 mol) is used as the underlayer 12. %)
- a thin film having a thickness of 8 nm and a CoCrPtB alloy (Co: 62 mol%, Cr: 20 mol%, Pt: 12 mol%, B: 6 mol%) as a magnetic layer 13 were sequentially formed to a thickness of 15 nm.
- a carbon protective layer 14 made of amorphous diamond-like carbon is formed to 5 nm by plasma CVD, and the disk sample is ultrasonicated in isopropyl alcohol (IPA) having a purity of 99.9% or more for 10 minutes in a cleaner. Cleaning was performed to remove impurities on the disk surface, and then drying was performed. After that, the lubricant layer 15 was formed to have a thickness of about 1 nm by applying it to the disk surface by a dip coating method using a mixed solvent of ionic liquid n-hexane and ethanol in an environment of 25 ° C. and 50% relative humidity (RH).
- IPA isopropyl alcohol
- TG / DTA measurement EXSTAR6000 manufactured by Seiko Instruments Inc. is used, and measurement is performed in a temperature range of 30 ° C-600 ° C at a temperature increase rate of 10 ° C / min while introducing air at a flow rate of 200 ml / min. went. The endothermic peak temperature in the measurement was taken as the melting point.
- ⁇ Disk durability test> Using a commercially available strain gauge type disk friction and wear tester, after mounting the hard disk on the rotating spindle with a tightening torque of 14.7 Ncm, the center of the air bearing surface on the inner circumference side of the hard disk of the head slider is A head slider was mounted on the hard disk so as to be 17.5 mm from the center, and a CSS durability test was conducted.
- the head used in this measurement is an IBM 3370 type inline head, the material of the slider is Al 2 O 3 —TiC, and the head load is 63.7 mN.
- the maximum value of the frictional force was monitored for each CSS (Contact, Start, Stop) in an environment of clean cleanliness 100 and 25 ° C. 60% RH.
- the number of times the friction coefficient exceeded 1.0 was taken as the result of the CSS durability test.
- “> 50,000” was displayed.
- the CSS durability test after performing the heat test for 3 minutes at the temperature of 200 degreeC was similarly done.
- a magnetic tape having a cross-sectional structure as shown in FIG. 5 was produced.
- Co was deposited on a substrate 21 made of a Toray Mikutron (aromatic polyamide) film having a thickness of 5 ⁇ m by an oblique deposition method to form a magnetic layer 22 made of a ferromagnetic metal thin film having a thickness of 100 nm.
- a carbon protective layer 23 made of 10 nm diamond-like carbon was formed on the surface of the ferromagnetic metal thin film by plasma CVD, and then cut to a width of 6 mm.
- An ionic liquid dissolved in IPA was applied onto the carbon protective layer 23 so as to have a film thickness of about 1 nm to form a lubricant layer 24, thereby preparing a sample tape.
- ⁇ Tape durability test> About each sample tape, the still durability under a temperature of -5 ° C and a temperature of 40 ° C and 30% RH, and the friction coefficient and shuttle durability under a temperature of -5 ° C and a temperature of 40 ° C and 90% RH. Measurements were made. For the still durability, the decay time until the output in the pause state decreased by -3 dB was evaluated. Shuttle durability was evaluated by the number of shuttles until the output decreased by 3 dB after repeatedly running the shuttle for 2 minutes each time. Moreover, in order to investigate heat resistance, the durability test after performing the heat test for 10 minutes at the temperature of 100 degreeC was similarly done.
- the ionic liquid in the present embodiment has a conjugate base and a conjugate acid, and the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less. Furthermore, it is preferable that the conjugate acid (cation moiety) has a group containing a hydrocarbon group having 6 or more carbon atoms and a hydroxyl group. The influence on the thermal stability of such an ionic liquid and the durability of a magnetic recording medium using the ionic liquid was investigated. Furthermore, the solubility in a fluorinated solvent was examined.
- Example 1A Synthesis of Nonafluorobutanesulfonic Acid-1- 'Hydroxypropyl-3-octadecylimidazolium> Synthesis of nonafluorobutanesulfonic acid-1-3′hydroxylpropyl-3-octadecylimidazolium was performed according to the following scheme.
- 1-octadecyl imidazole was obtained by dissolving 3 g of imidazole in 100 mL of acetonitrile, adding 14.9 g of octadecyl bromide and 2.51 g of potassium hydroxide, heating the mixture with stirring, and refluxing for 4 hours. After removing the solvent, the mixture was extracted with dichloromethane and purified by column chromatography. When analyzed by gas chromatography, the purity was 98.5% or more.
- the product was identified as bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium.
- the pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium, in the acetonitrile is 0. 0.
- Bromooctadecane 52.4 g and potassium hydroxide 8.75 g were added to acetonitrile, and pyrrolidine 11.09 g was added. Thereafter, heating under reflux was performed for 24 hours. After filtering the crystals, the solvent of the organic layer was removed and the residue was purified by silica gel column chromatography using a mixed solvent of hexane and ethyl acetate to obtain 44.05 g of octadecylpyrrolidine. The purity by gas chromatography was 99.0% or more.
- Octadecylpyrrolidine (6.00 g) and 3-bromopropanol (3.23 g) were added to the flask and heated at 120 ° C. for 3.0 hours. After returning to room temperature, ethyl acetate was added for crystallization to obtain 7.77 g of N-3'hydroxylpropyl-N-octadecylpyrrolidinium bromide. Yield 90.5%.
- the product was identified as bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium.
- pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium, 0.0.
- 6-Octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene is a non-patent document [N. Matsumura, H.M. Nishiguchi, M. Okada, and S. Yoneda, J.A. Heterocyclic Chem. Pp. 885-887, Vol / 23. Synthesized according to Issue 3 (1986)].
- 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium 5.71 g and 3-bromopropanol 3.23 g were added to the flask and heated at 120 ° C. for 3.0 hours. After returning to normal temperature, ethyl acetate was added to dissolve the reaction product, which was then crystallized in a freezer. The crystals were quickly filtered at a low temperature and then vacuum-dried to obtain 6.60 g of 6-octadecyl-8-3'-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide. Yield 81.9%.
- 1134 cm ⁇ 1 is a SO 2 -bonded symmetric stretching vibration
- 1255 cm ⁇ 1 is a CF 2 symmetric stretching vibration
- 1352 cm ⁇ 1 is an SO 2 -bonded symmetric stretching vibration
- 1466 cm ⁇ 1 is a CH 2 bending vibration
- 1609 cm ⁇ 1 C N stretching vibration
- 2855 cm ⁇ 1 symmetric CH 2 stretching vibration 2926 cm ⁇ 1 CH 2 inverse symmetric stretching vibration
- 3479 cm ⁇ 1 hydroxyl group stretching vibration 3479 cm ⁇ 1 hydroxyl group stretching vibration.
- nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium is a base acid for the conjugate base (nonafluorobutanesulfonic acid).
- PKa in acetonitrile is 0.7.
- 6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide (2.04 g) synthesized in Example 4A was dissolved by heating pure water, A solution in which 3.07 g of potassium bis (nonafluorobutanesulfonyl) imide was dissolved by heating pure water and ethanol was added, reacted at room temperature for 1 hour, and then heated to reflux for 1 hour. After cooling, the reaction solution was extracted with dichloromethane, and the organic layer was washed with pure water until the AgNO 3 test became negative.
- 1-octadecyl-2-heptadecylimidazole is prepared by dissolving 15.34 g of 2-heptadecylimidazole in 100 mL of toluene, adding 17.62 g of octadecyl bromide and 4.86 g of potassium hydroxide, and heating with stirring. And obtained by refluxing for 11 hours. After removing the solvent, the mixture was extracted with dichloromethane and purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate 9: 1. Analysis by gas chromatography revealed a purity of 99.3% or more.
- the product was identified as bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-2-heptadecyl-3-octadecylimidazolium.
- pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide] which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide 1-3′hydroxyl-2-heptadecyl-3-octadecylimidazolium Is 0.0.
- N, N-dimethyltetradecylamine 6.83 g and 3-bromopropanol 5.80 g were put in a closed flask and reacted at 90 ° C. for 5 hours. When the temperature was returned to room temperature after the completion of the reaction, it became a viscous liquid. When n-hexane was added thereto, a precipitate was deposited. Decanted and the supernatant was discarded. This operation was performed three times to purify the product, and 9.50 g of N, N-dimethyl-N-3'hydroxypropyltetradecylammonium bromide was obtained. Yield 89.2%.
- the product was identified as bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium. It should be noted that pKa of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium as the base of the conjugate base [bis (nonafluorobutanesulfonyl) imide] in acetonitrile Is 0.0.
- N, N-dimethyloctadecylamine 8.71 g and 3-bromopropanol 4.19 g were placed in a closed flask and reacted at 120 ° C. for 2 hours. Crystals precipitated after returning to room temperature were recrystallized from a mixed solvent of ethyl acetate and ethanol to obtain 11.28 g of N-3'hydroxypropyl-N, N-dimethyloctadecylammonium bromide. Yield 88.2%.
- Example 4A To an ethanol solution of 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene synthesized in Example 4A (4.04 g) was added 5.00 g of heptadecafluorooctanesulfonic acid, and the mixture was stirred at room temperature for 1 hour. Thereafter, heating under reflux was performed for 1 hour. After removing the solvent, it was dissolved in dichloromethane and washed thoroughly with water. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed.
- 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene synthesized in Example 4A was added to an ethanol solution of 2.18 g of hexafluorocyclopropane-1,3-bis (sulfonyl) imide (3.00 g). After stirring at room temperature for 1 hour, the mixture was heated to reflux for 1 hour. After removing the solvent, it was dissolved in dichloromethane and washed thoroughly with water. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed. Vacuum drying at 90 ° C.
- nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium was synthesized.
- Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium, a base acid of a conjugate base [hexafluorocyclopropane-1,3-bis (sulfonyl) imide PKa in acetonitrile is -0.8.
- Octadecylamine was dissolved in ethanol, and an equimolar amount of an ethanol solution of bis (nonafluorobutanesulfonyl) imide was added. Heating under reflux was performed for 1 hour, and the solvent was removed after cooling. The residue was extracted with dichloromethane and the organic layer was washed thoroughly with water. After drying over anhydrous sodium sulfate, the solvent is removed and recrystallization is performed from a mixed solvent of n-hexane and ethanol to obtain colorless crystals of bis (nonafluorobutanesulfonyl) imide-octadecylammonium. Yield 91.1%.
- the product was identified as bis (nonafluorobutanesulfonyl) imide-octadecylammonium.
- the product was identified as nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecyl ammonium.
- the pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecylammonium is 0.7.
- Example 1B to 5B, and Comparative Examples 1B to 5B, Comparative Example 10B, and Comparative Example 11B ⁇ Measurement results of solubility in fluorine-based solvents> Vertrel XF [CF 3 (CHF) 2 CF 2 CF manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.] as a fluorinated solvent for the ionic liquids synthesized in each Example and each Comparative Example, and Z-DOL and Z-TETRAOL 3 ] was used to conduct a solubility test.
- Vertrel XF CF 3 (CHF) 2 CF 2 CF manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.
- ionic liquid, Z-DOL and Z-TETRAOL were added to a predetermined mass of Bertrell XF, respectively, irradiated with ultrasonic waves for 5 minutes, and allowed to stand for 1 day, and its solubility was visually confirmed. Specifically, 1.0 parts by weight, 0.5 parts by weight, and 0.1 parts by weight of ionic liquid, and Z-DOL and Z-TETRAOL are added to 100 parts by weight of Bertrell XF (25 ° C.). After being left for 1 day after being irradiated with ultrasonic waves for 5 minutes, its solubility was visually confirmed and evaluated according to the following evaluation criteria.
- the solubility of the ionic liquid of Example 1A in the fluorinated solvent was less than 0.1% by mass.
- the solubility of the ionic liquid of Example 2A in the fluorine-based solvent was 0.1% by mass or more and less than 0.5% by mass.
- the solubility of the ionic liquid of Example 3A in the fluorine-based solvent was 0.5% by mass or more.
- the solubility of the ionic liquid of Example 4A in the fluorinated solvent was 0.1% by mass or more and less than 0.5% by mass.
- the solubility of the ionic liquid of Example 5A in the fluorine-based solvent was 0.1% by mass or more and less than 0.5% by mass.
- the solubility of the ionic liquids of Comparative Examples 1A to 5A in the fluorine-based solvent was less than 0.1% by mass.
- the solubility of Z-DOL and Z-TETRAOL in a fluorine-based solvent was 0.5% by mass or more.
- the ionic liquids used in the examples have improved solubility in the fluorinated solvent Bartrel XF.
- the compounds of Examples 2A-5A are sufficient for use in production for hard disk applications.
- Example 2B As can be seen from Comparative Example 1B and Comparative Example 2B, the imidazole-based ionic liquid has low solubility in Vertrel, but it can be seen that Example 2B into which hydroxyl groups have been introduced has improved solubility. That is, it can be seen that introduction of a hydroxyl group as a molecular design method is effective for solubility in vertell.
- Example 3A having bis (nonafluorobutanesulfonyl) imide as an anion. Even in the case of having the same octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene skeleton, Comparative Examples 3B and 4B have low solubility in Vertrel but are improved in Examples 4B and 5B. ing.
- Example 6B to Example 10B and Comparative Example 6B to Comparative Example 11B ⁇ Solubility measurement results in solvent> Vertrel XF [CF 3 (CHF) 2 CF 2 manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.] as a fluorinated solvent for the ionic liquids synthesized in the examples and comparative examples, and Z-DOL and Z-TETRAOL) CF 3 ], and a reagent-grade n-hexane and ethanol manufactured by Junsei Chemical Co., Ltd. were used for the solubility test.
- Vertrel XF CF 3 (CHF) 2 CF 2 manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.
- Z-DOL and Z-TETRAOL Z-DOL and Z-TETRAOL
- An ionic liquid was added to a predetermined mass of Bertrell XF, n-hexane, or ethanol, and the mixture was allowed to stand for 1 day after being irradiated with ultrasonic waves for 5 minutes, and its solubility was visually confirmed. Specifically, 0.2 parts by mass of an ionic liquid is added to 100 parts by mass of Bertrell XF (25 ° C.), irradiated with ultrasonic waves for 5 minutes, and left for 1 day, and then its solubility is visually checked. Confirmed and evaluated according to the following evaluation criteria.
- ⁇ n-hexane and ethanol >> ⁇ 0.5% by mass or more: It dissolves by addition of 0.5 part by mass. -Less than 0.5% by mass: The addition of 0.5 part by mass is insoluble.
- the solubility of the ionic liquid of Example 6A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
- the solubility of the ionic liquid of Example 7A in a fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
- the solubility of the ionic liquid of Example 8A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
- the solubility of the ionic liquid of Example 9A in a fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
- the solubility of the ionic liquid of Example 10A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
- the solubility of the ionic liquids of Comparative Examples 6A to 9A in ethanol was 0.5% by mass or more, the solubility in a fluorine-based solvent was less than 0.2% by mass, and the solubility in n-hexane The solubility was less than 0.5% by mass.
- the ionic liquid of Comparative Example 5A had a solubility in a fluorine-based solvent of less than 0.2% by mass, but the solubility in n-hexane and ethanol was 0.5% by mass or more.
- the solubility of Z-DOL and Z-TETRAOL in a fluorine-based solvent was 0.2% by mass or more, but the solubility in n-hexane and ethanol was less than 0.5% by mass.
- the ionic liquid using the sulfonate shown in the comparative example as a raw material has poor solubility in fluorine and hydrocarbon solvents, although it is a sulfonate having the same polarity. It can be seen that the solubility of the example sulfonate ionic liquid is greatly improved. Taking into account that the material widely used as a lubricant is a long-chain fatty acid or an ester thereof, dissolving in hexane means that the effect as an additive can be exhibited from the compatibility. Further, since it dissolves in the fluoric solvent Vertrel XF, it is sufficient for use in production as a micromachine or a hard disk. Comparative Examples 10B and 11B having a perfluoropolyether skeleton have high solubility in a fluorine solvent, but their use is limited because of their low solubility in hydrocarbon solvents or alcohols.
- the solubility the influence of the molecular structure is very complicated and difficult to predict.
- the imidazole ionic liquid is low in solubility in bartrel or n-hexane in the imidazole ionic liquid having a long alkyl chain, as can be seen from Comparative Example 6B and Comparative Example 7B.
- the solubility was improved in Examples 6B and 7B into which a hydroxyl group was introduced.
- ammonium-based lubricants have poor solubility with sulfonates or sulfoimide salts, but it is also found that the solubility is improved by the introduction of hydroxyl groups. That is, it can be seen that introduction of a hydroxyl group as a molecular design method is effective for solubility in Vertrel or n-hexane.
- Example 1C ⁇ Thermal stability measurement result> The 5%, 10% and 20% weight loss temperatures of nonafluorobutanesulfonic acid 1-3′hydroxylpropyl-3-octadecylimidazolium are 307.7 ° C., 357.2 ° C. and 388.2 ° C., respectively.
- a commercially available perfluoropolyether Z-DOL (Comparative Example 10C), which is generally known as a lubricant for magnetic recording media, shown as a comparative example, 140 ° C. or higher, and Z-TETRAOL (Comparative Example 11C) ) And 60 ° C. or higher.
- Example 2C ⁇ Thermal stability measurement result> The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium are 327.7 ° C., 361.7 ° C., and 389.3 ° C., respectively. there were. It can be seen that the thermal stability is improved by 150 ° C. and 90 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
- Example 3C ⁇ Thermal stability measurement result> The 5%, 10% and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium were 349.8 ° C., 370.8 ° C. and 387.6 respectively. ° C. Even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C), it can be seen that the thermal stability is improved by 160 ° C. and 100 ° C. or more, respectively.
- Example 4C ⁇ Thermal stability measurement result> Nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium 5%, 10%, 20% It was 0.0 degreeC, 356.5 degreeC, and 390.1 degreeC. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
- Example 5C ⁇ Thermal stability measurement result> The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium are The temperature was 326.2 ° C., 360.8 ° C., and 387.7 ° C., respectively. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
- Example 6C ⁇ Thermal stability measurement result> The 5%, 10%, and 20% weight loss temperatures of 1-dodecyl-2-undecyl-3-'hydroxypropylimidazolium nonafluorobutanesulfonate were 335.4 ° C, 368.6 ° C, 396.2 ° C, respectively.
- a commercially available perfluoropolyether Z-DOL (Comparative Example 10C), which is generally known as a lubricant for magnetic recording media, shown as a comparative example, is 170 ° C. or higher, and Z-TETRAOL Even if it compares with (Comparative Example 11C), it turns out that it is 90 degreeC or more higher.
- Example 7C ⁇ Thermal stability measurement result> The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-'hydroxylpropyloctadecylimidazolium were 350.9 ° C and 373.7 ° C, respectively. It was 394.8 degreeC. Even when compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C), it can be seen that the thermal stability is improved by 170 ° C. and 110 ° C. or more, respectively.
- Example 8C ⁇ Thermal stability measurement result>
- the 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-1- 3'hydroxypropyl-2-heptadecyl-3-octadecylimidazolium are 327.8 ° C, 364.3 ° C, respectively.
- the temperature was 398.8 ° C. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
- Example 9C Thermal stability measurement result>
- the 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium were 340.0 ° C., 359.0 ° C., 375 respectively. 0 ° C. It can be seen that the thermal stability is improved at 145 ° C. and 90 ° C. or more, respectively, as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
- Example 10C ⁇ Thermal stability measurement result> The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyloctadecylammonium were 336.5 ° C., 359.4 ° C., and 376. It was 6 ° C. It can be seen that the thermal stability is improved by 150 ° C. and 90 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
- Comparative Example 10C ⁇ Thermal stability measurement result>
- a commercially available perfluoropolyether Z-DOL having a hydroxyl group at the terminal and having a molecular weight of about 2000 was measured.
- the 5%, 10%, and 20% weight loss temperatures were 165.0 ° C., 197.0 ° C., 226.0 ° C.
- the weight loss is attributed to evaporation.
- Z-TETRAOL Perfluoropolyether having a molecular weight of about 2000 and having a plurality of hydroxyl groups at the terminals, which is a commercially available product and is generally used as a lubricant for magnetic recording media, was used as the lubricant of Comparative Example 11C.
- the 5%, 10%, and 20% weight loss temperatures of Z-TETRAOL are 240.0 ° C., 261.0 ° C., and 282.0 ° C., respectively.
- the weight loss is caused by evaporation.
- the ionic liquid lubricant is overwhelmingly superior in thermal stability as compared with the commercially available perfluoropolyethers of Comparative Examples 10C and 11C, except for Comparative Example 5C.
- the ionic liquid about thermal stability
- group ionic liquid In Examples into which hydroxyl groups were introduced, the weight loss temperatures of 5% and 10% were lower than those of the Comparative Examples, but the weight loss temperatures of 20% were almost the same, and it is considered that they had sufficient thermal stability.
- the pyrrolidine ionic liquid into which the hydroxyl group is introduced also exhibits almost the same thermal stability as the imidazole ionic liquid.
- Examples having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure can be compared from Examples 3C and 4C and Comparative Examples 3C and 4C. In this case as well, the weight reduction temperature is higher in the comparative example of about 20 ° C to 430 ° C.
- an ionic liquid having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure has a considerably high weight loss temperature, and the 20% weight loss temperature is close to 390 ° C., so that it has sufficient thermal stability. It is considered to have Further, in Examples 6C to 10C, the weight reduction temperature does not change much compared with Comparative Examples 6C to 9C, and is almost the same, and is considered to have sufficient thermal stability.
- the melting point there is a great reduction effect by introducing a hydroxyl group. That is, the ionic liquid shown in the comparative example is a solid at 25 ° C. because it has a long-chain alkyl group. However, all ionic liquids having a hydroxyl group introduced and having bis (nonafluorobutanesulfonyl) imide as a conjugate base are liquid at room temperature. In the case of imidazole having the sulfonic acid of Example 1A as a conjugate base, the melting point is lower than that of the comparative example.
- the low melting point of the lubricant is advantageous in that the application can be greatly expanded in addition to the hard disk. For example, it can be expected that high-efficiency production with a liquid-type lubricant is realized in high-temperature extrusion / high-temperature forging (Non-Patent Document: Tribology Society 2014 Spring, Proceedings).
- Example 1D to 10D and Comparative Examples 1D to 4D and Comparative Examples 6D to 9D ⁇ Disk durability test>
- Lubricants containing the respective ionic liquids of Examples 1A to 10A, Comparative Examples 1A to 4A, and Comparative Examples 6A to 9A were applied to produce magnetic disks. As shown in Table 4, the CSS measurement of the magnetic disk exceeded 50,000 times, and the CSS measurement after the heating test exceeded 50,000 times, indicating excellent durability.
- Table 4 summarizes the results of Example 1D to Example 10D and Comparative Example 1D to Comparative Example 11D.
- Example 1E to Example 10E Comparative Example 1E to Comparative Example 11E
- the magnetic tapes described above were prepared using the ionic liquids of Examples 1A to 10A, the ionic liquids of Comparative Examples 1A to 9A, Z-DOL, and Z-Tetraol, the following measurements were performed. It was.
- Friction coefficient of magnetic tape after 100 times of shuttle operation Temperature -5 °C or 40 °C, relative humidity 90% ⁇ Still endurance test -5 °C or 40 °C relative Under 30% humidity environment ⁇ Shuttle endurance test -5 ° C environment or 40 ° C temperature, 90% relative humidity environment ⁇ Coefficient of friction of magnetic tape after 100 shuttle runs after heating test Environment or temperature 40 ° C, relative humidity 90% • Still durability test after heating test Temperature ⁇ 5 ° C environment or temperature 40 ° C, relative humidity 30% environment • Shuttle durability test after heating test Temperature Under an environment of -5 ° C or under a temperature of 40 ° C and relative humidity of 90%
- an ionic liquid having a conjugated base and a conjugated acid is contained, and the conjugated acid is a group containing a linear hydrocarbon group having 6 or more carbon atoms and a hydroxyl group.
- an ionic liquid lubricant having a pKa in acetonitrile of the base acid of the conjugate base of 10 or less excellent heat resistance and durability in magnetic tape and magnetic disk are obtained.
- the heat resistance and durability of the magnetic recording medium excellent, but some of them also dissolve in the vertebral solvent bartrel, so when considering the application of hard disks in particular, the manufacturing process can be improved. But there is no problem.
- the ionic liquid lubricant having pKa in acetonitrile of 10 or less of the acid that is the base of the conjugate base has a high decomposition temperature, 5%, 10%, and 20% weight loss temperature, and is thermally stable. Excellent. In addition, excellent lubricity can be maintained even under high temperature conditions as compared with conventional perfluoropolyethers, and lubricity can be maintained over a long period of time. Therefore, the magnetic recording medium using the lubricant containing the ionic liquid can obtain very excellent running performance, wear resistance, and durability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
- Magnetic Record Carriers (AREA)
Abstract
The present invention relates to a lubricant containing an ionic liquid that has a conjugate base and a conjugate acid, wherein the conjugate acid has a group including a hydroxyl group and a group including a linear hydrocarbon group having six or more carbon atoms, and the acid that becomes the source for the conjugate base has a pKa value not higher than 10 in acetonitrile.
Description
本発明は、イオン液体、該イオン液体を含有する潤滑剤、及びそれを用いた磁気記録媒体に関する。
The present invention relates to an ionic liquid, a lubricant containing the ionic liquid, and a magnetic recording medium using the same.
従来、薄膜磁気記録媒体では、磁気ヘッドと媒体表面における摩擦や摩耗を減少させるために磁性層表面に潤滑剤が塗布される。実際の潤滑剤の膜厚は、スティクションのような接着を避けるため、分子レベルになる。それゆえ、薄膜磁気記録媒体において、最も重要なことは、あらゆる環境下においても、優れた耐摩耗性を有する潤滑剤の選択にあるといっても過言ではない。
Conventionally, in a thin film magnetic recording medium, a lubricant is applied to the surface of the magnetic layer in order to reduce friction and wear on the magnetic head and the medium surface. The actual film thickness of the lubricant is at the molecular level in order to avoid adhesion such as stiction. Therefore, in thin film magnetic recording media, it is no exaggeration to say that the most important thing is the selection of a lubricant having excellent wear resistance under all circumstances.
磁気記録媒体のライフにおいて、脱離、スピンオフ、化学的な劣化などを生じさせずに、潤滑剤を媒体表面に存在させることは重要である。潤滑剤を媒体表面に存在させることは、薄膜磁気記録媒体の表面が平滑になるほど困難となる。これは、薄膜磁気記録媒体が塗布型磁気記録媒体のような潤滑剤の補充能力を有していないからである。
In the life of a magnetic recording medium, it is important that the lubricant be present on the surface of the medium without causing desorption, spin-off, chemical degradation, and the like. The presence of the lubricant on the medium surface becomes more difficult as the surface of the thin film magnetic recording medium becomes smoother. This is because the thin film magnetic recording medium does not have a lubricant replenishment capability unlike the coating type magnetic recording medium.
また、潤滑剤と磁性層表面の保護膜との接着力が弱い場合には、加熱や摺動時に潤滑剤膜厚の減少が生じ、摩耗を加速することになるため、多量の潤滑剤が必要とされる。多量の潤滑剤は、移動性の潤滑剤となり、消失した潤滑剤の補充機能を持たせることができる。しかし、過剰な潤滑剤は、潤滑剤の膜厚を表面疎度よりも大きくするため、接着に関連する問題が生じ、致命的な場合にはスティクションとなってドライブ不良の原因になるというジレンマがある。
In addition, if the adhesive force between the lubricant and the protective film on the magnetic layer surface is weak, the lubricant film thickness decreases during heating and sliding, which accelerates wear and requires a large amount of lubricant. It is said. A large amount of lubricant becomes a mobile lubricant and can have a function of replenishing the lost lubricant. However, the excess lubricant makes the film thickness of the lubricant larger than the surface roughness, causing problems related to adhesion, and in the fatal case, it becomes a stiction and causes drive failure. There is.
また図1に示すように非特許文献1において、生産品のハードディスクドライブの面内記録密度の増加率はここ数年減少しているものの年率25%を達成しており、一つの目標である4Tb/in2に届こうとしている。図2に示すようにその記録密度の増加に対するヘッドディスクインターフェイス間の距離は減少していることが分かるが、それに伴い常に信頼性を改善する必要性が存在する。そのことは、例えば次の非特許文献2~非特許文献4に述べられている。
Further, as shown in FIG. 1, in Non-Patent Document 1, the increase rate of the in-plane recording density of the product hard disk drive has been decreasing for the past several years, but it has achieved an annual rate of 25%, which is one target of 4Tb. / In 2 is about to arrive. As shown in FIG. 2, it can be seen that the distance between the head disk interfaces is decreasing with the increase in recording density, but there is always a need to improve the reliability. This is described, for example, in Non-Patent Documents 2 to 4 below.
現在の記録密度は約1Tb/in2で、スペーシングは約6nm、潤滑剤の厚みは0.8nmであり、将来的な4Tb/in2の記録密度ではその潤滑剤の厚さも減少させなければならない。ところが、従来のPFPE潤滑剤では膜厚を減少させるためにはその分子量を小さくする必要があるが、そうすると熱安定性が劣化してしまう欠点がある。これらの信頼性の問題は、従来のパーフルオロポリエーテル(PFPE)系潤滑剤では、十分には解決されていないことがわかる。
The current recording density is about 1 Tb / in 2 , the spacing is about 6 nm, and the lubricant thickness is 0.8 nm. At the future recording density of 4 Tb / in 2 , the thickness of the lubricant must be reduced. Don't be. However, in the conventional PFPE lubricant, in order to reduce the film thickness, it is necessary to reduce the molecular weight, but there is a drawback that the thermal stability is deteriorated. It can be seen that these reliability problems are not sufficiently solved by conventional perfluoropolyether (PFPE) -based lubricants.
特に、表面平滑性の高い薄膜磁気記録媒体では、これらのトレードオフを解消するために、新規潤滑剤が分子設計され、合成されている。また、PFPEの潤滑性に関する報告が数多く提出されている。このように、磁気記録媒体において、潤滑剤は、大変重要なものである。
Especially in thin film magnetic recording media with high surface smoothness, a new lubricant is molecularly designed and synthesized in order to eliminate these trade-offs. Many reports on the lubricity of PFPE have been submitted. Thus, the lubricant is very important in the magnetic recording medium.
表1に、代表的なPFPE系潤滑剤の化学構造を示す。
Table 1 shows the chemical structure of a typical PFPE lubricant.
表1中のZ-DOLは、一般に使用されている薄膜磁気記録媒体用の潤滑剤の一つである。また、Z-tetraol(ZTMD)は、機能性の水酸基をPFPEの主鎖にさらに導入したものであり、ヘッドメディアインターフェイスの隙間を減少させながらドライブの信頼性を高めるとの報告がある。A20Hは、PFPE主鎖のルイス酸やルイス塩基による分解を抑え、トライボロジー特性を改善するとの報告がある。一方、Monoは、高分子主鎖及び極性基が、上記のPFPEと異なり、それぞれポリノルマルプロピルオキシとアミンであり、ニアコンタクトにおける接着相互作用を減少させるとの報告がある。
Z-DOL in Table 1 is one of the commonly used lubricants for thin film magnetic recording media. In addition, Z-tetraol (ZTMD) is one in which a functional hydroxyl group is further introduced into the main chain of PFPE, and it has been reported that the reliability of the drive is improved while reducing the gap in the head media interface. There is a report that A20H suppresses decomposition of the PFPE main chain by Lewis acid or Lewis base and improves tribological properties. On the other hand, Mono has a report that the polymer main chain and the polar group are polynormalpropyloxy and amine, respectively, unlike the above-mentioned PFPE, and reduce the adhesion interaction in the near contact.
しかし、融点が高く熱的に安定と考えられる一般的な固体潤滑剤では、非常に高感度である電磁変換プロセスを妨害し、また、ヘッドによって削られた摩耗粉が走行トラックに生じるために摩耗特性が悪くなる。前述のように液体潤滑剤では、ヘッドによる摩耗によって取り除かれた潤滑剤に対して隣の潤滑層から移動して補充するといった移動性がある。しかし、この移動性のために、特に高温では、ディスク稼働中にディスク表面からスピンオフして潤滑剤が減少し、その結果、防護機能が失われる。このため、粘度が高くまた低揮発性の潤滑剤が好適に用いられており、蒸発速度を抑え、ディスクドライブの寿命を延ばすことを可能としている。
However, common solid lubricants, which have a high melting point and are considered to be thermally stable, interfere with the electromagnetic conversion process, which is very sensitive, and wear due to wear powder scraped by the head on the traveling track. The characteristics deteriorate. As described above, the liquid lubricant has mobility such that the lubricant removed by abrasion by the head moves from the adjacent lubricant layer and is replenished. However, due to this mobility, especially at high temperatures, the disk spins off during disk operation and lubricant is reduced, resulting in a loss of protection. For this reason, a high-viscosity and low-volatile lubricant is suitably used, and the evaporation rate can be suppressed and the life of the disk drive can be extended.
これらの潤滑機構から鑑みると、薄膜磁気記録媒体に用いられる低摩擦、低摩耗の潤滑剤への要求としては、以下のようになる。
(1)低揮発性であること。
(2)表面補充機能のために低表面張力であること。
(3)末端極性基とディスク表面への相互作用があること。
(4)使用期間での分解、減少がないように、熱的及び酸化安定性が高いこと。
(5)金属、ガラス、高分子に対して化学的に不活性で、ヘッドやガイドに対して摩耗粉を生じないこと。
(6)毒性、可燃性がないこと。
(7)境界潤滑特性に優れていること。
(8)有機溶媒に溶解すること。 In view of these lubrication mechanisms, requirements for low friction and low wear lubricants used in thin film magnetic recording media are as follows.
(1) Low volatility.
(2) Low surface tension for the surface replenishment function.
(3) There is an interaction between the terminal polar group and the disk surface.
(4) High thermal and oxidative stability so that there is no decomposition or decrease during the period of use.
(5) It is chemically inert to metals, glass, and polymers and does not generate wear powder on the head or guide.
(6) There must be no toxicity or flammability.
(7) Excellent boundary lubrication characteristics.
(8) Dissolve in an organic solvent.
(1)低揮発性であること。
(2)表面補充機能のために低表面張力であること。
(3)末端極性基とディスク表面への相互作用があること。
(4)使用期間での分解、減少がないように、熱的及び酸化安定性が高いこと。
(5)金属、ガラス、高分子に対して化学的に不活性で、ヘッドやガイドに対して摩耗粉を生じないこと。
(6)毒性、可燃性がないこと。
(7)境界潤滑特性に優れていること。
(8)有機溶媒に溶解すること。 In view of these lubrication mechanisms, requirements for low friction and low wear lubricants used in thin film magnetic recording media are as follows.
(1) Low volatility.
(2) Low surface tension for the surface replenishment function.
(3) There is an interaction between the terminal polar group and the disk surface.
(4) High thermal and oxidative stability so that there is no decomposition or decrease during the period of use.
(5) It is chemically inert to metals, glass, and polymers and does not generate wear powder on the head or guide.
(6) There must be no toxicity or flammability.
(7) Excellent boundary lubrication characteristics.
(8) Dissolve in an organic solvent.
近年、蓄電材料、分離技術、触媒技術などにおいて、イオン液体が、有機や無機材料合成のための環境にやさしい溶媒の一つとして、注目を集めている。イオン液体は、低融点の溶融塩という大きな範疇に入るが、一般的には、その中でも融点が100℃以下のものをいう。潤滑剤として使用するイオン液体の重要な特性として、揮発性が低いこと、可燃性がないこと、熱的に安定であること、溶解性能に優れていることがある。
In recent years, ionic liquids are attracting attention as one of the environmentally friendly solvents for synthesizing organic and inorganic materials in power storage materials, separation technologies, and catalyst technologies. Ionic liquids fall into the large category of low melting point molten salts, but generally, those having a melting point of 100 ° C. or lower among them. Important characteristics of ionic liquids used as lubricants include low volatility, lack of flammability, thermal stability, and excellent dissolution performance.
例えば金属やセラミックス表面での摩擦及び摩耗が、あるイオン液体を用いることにより、従来の炭化水素系潤滑剤と比較して低減することがある。例えばフルオロアルキル基で置換したイミダゾールカチオンベースのイオン液体が合成され、アルキルイミダゾリウムのテトラフルオロホウ酸塩やヘキサフルオロリン酸塩が、鋼、アルミニウム、銅、単結晶SiO2、シリコン、サイアロンセラミックス(Si-Al-O-N)に用いた場合、環状フォスファゼン(X-1P)やPFPEよりも優れたトライボロジー特性を示すとの報告がある。また、アンモニウムベースのイオン液体では、弾性流体から境界潤滑領域において、ベースオイルよりも摩擦を低下させる報告もある。また、イオン液体は、ベースオイルへの添加剤としての効果が調べられたり、化学的な及びトライボ化学的な反応が潤滑機構を理解するうえで研究されたりしているが、分子レベルでの潤滑特性が要求される磁気記録媒体としての応用例は少ない。例えば非特許文献5ではイミダゾール系トリス(ペンタフルオロエチル)トリフルオロホスフェートのイオン液体が報告されているが、可能性が示されているだけで、具体的なトライボロジー特性までについては触れられていない。
For example, friction and wear on the metal or ceramic surface may be reduced by using a certain ionic liquid as compared with a conventional hydrocarbon-based lubricant. For example, an imidazole cation-based ionic liquid substituted with a fluoroalkyl group is synthesized, and alkyl imidazolium tetrafluoroborate or hexafluorophosphate can be used for steel, aluminum, copper, single crystal SiO 2 , silicon, sialon ceramics ( When used for Si—Al—O—N), it has been reported that it exhibits superior tribological properties over cyclic phosphazene (X-1P) and PFPE. In addition, there is a report that the friction of the ammonium-based ionic liquid is lower than that of the base oil in the boundary lubrication region from the elastic fluid. In addition, ionic liquids have been investigated for their effect as additives to base oils, and chemical and tribochemical reactions have been studied to understand the lubrication mechanism. However, there are few application examples as a magnetic recording medium that requires the above. For example, Non-Patent Document 5 reports an imidazole-based tris (pentafluoroethyl) trifluorophosphate ionic liquid, but only shows the possibility, and does not mention specific tribological characteristics.
その中でパーフルオロオクタン酸アルキルアンモニウム塩は、プロトン性イオン液体(PIL)であるが、既述のZ-DOLと比較して、著しく磁気記録媒体の摩擦低減の効果があることを報告している(例えば、特許文献1、及び2、並びに非特許文献6~8参照)。
しかし、これらのパーフルオロカルボン酸アンモニウム塩は、以下の反応式(A)に示す反応の中で、カチオンとアニオンの相互作用が弱く、Le Chatelier’sの法則から、高温では平衡が左側になり、解離した中性の化合物となって熱的な安定性が悪くなる。つまり、高温ではプロトンの移動が起こり、平衡が中性の物質へと移動して解離する(例えば、非特許文献9参照)。即ち、高温での熱的な安定性が悪くなる。 Among them, perfluorooctanoic acid alkylammonium salt is a protonic ionic liquid (PIL), but it has been reported that it has a remarkable effect of reducing friction of magnetic recording media as compared with Z-DOL described above. (For example, seePatent Documents 1 and 2 and Non-Patent Documents 6 to 8).
However, these perfluorocarboxylic acid ammonium salts have a weak cation-anion interaction in the reaction shown in the following reaction formula (A), and the equilibrium is on the left at high temperatures due to Le Chatelier's law. , It becomes a dissociated neutral compound and the thermal stability is deteriorated. That is, proton transfer occurs at a high temperature, and the equilibrium moves to a neutral substance and dissociates (see, for example, Non-Patent Document 9). That is, the thermal stability at a high temperature is deteriorated.
しかし、これらのパーフルオロカルボン酸アンモニウム塩は、以下の反応式(A)に示す反応の中で、カチオンとアニオンの相互作用が弱く、Le Chatelier’sの法則から、高温では平衡が左側になり、解離した中性の化合物となって熱的な安定性が悪くなる。つまり、高温ではプロトンの移動が起こり、平衡が中性の物質へと移動して解離する(例えば、非特許文献9参照)。即ち、高温での熱的な安定性が悪くなる。 Among them, perfluorooctanoic acid alkylammonium salt is a protonic ionic liquid (PIL), but it has been reported that it has a remarkable effect of reducing friction of magnetic recording media as compared with Z-DOL described above. (For example, see
However, these perfluorocarboxylic acid ammonium salts have a weak cation-anion interaction in the reaction shown in the following reaction formula (A), and the equilibrium is on the left at high temperatures due to Le Chatelier's law. , It becomes a dissociated neutral compound and the thermal stability is deteriorated. That is, proton transfer occurs at a high temperature, and the equilibrium moves to a neutral substance and dissociates (see, for example, Non-Patent Document 9). That is, the thermal stability at a high temperature is deteriorated.
ところで、ハードディスクの面記録密度の限界は、1-2.5Tb/in2と言われている。現在、その限界に近付きつつあるが、磁性粒子の微細化を大前提として、大容量化技術への精力的な開発が続けられている。大容量化の技術として、実効フライングハイトの減少、Shingle Writeの導入(BMP)などがある。
By the way, the limit of the surface recording density of the hard disk is said to be 1-2.5 Tb / in 2 . At present, the limit is approaching, but energetic development of high-capacity technology has been continued on the premise of miniaturization of magnetic particles. Technologies for increasing the capacity include reduction of effective flying height, introduction of single write (BMP), and the like.
また、次世代記録技術として、「熱アシスト磁気記録(Heat Assisted Magnetic Recording)」がある。図3に、熱アシスト磁気記録の概略を示す。なお、図3において、符号1は、レーザー光を示し、符号2は、近接場光を示し、符号3は、記録ヘッド(PMR素子)を示し、符号4は、再生ヘッド(TMR素子)を示す。この技術の課題としては、記録再生時にレーザーで記録部分を加熱するために、磁性層表面の潤滑剤の蒸発あるいは分解による耐久性の悪化が挙げられる。熱アシスト磁気記録は、短い時間ではあるが400℃以上とも言われる高温に晒される可能性があり、一般に使用されている薄膜磁気記録媒体用の潤滑剤パーフルオロポリエーテル、例えばZ-DOLやZ-TETRAOLでは、その熱的な安定性が懸念されている。
Further, as a next generation recording technology, there is “heat assisted magnetic recording”. FIG. 3 shows an outline of the heat-assisted magnetic recording. In FIG. 3, reference numeral 1 indicates laser light, reference numeral 2 indicates near-field light, reference numeral 3 indicates a recording head (PMR element), and reference numeral 4 indicates a reproducing head (TMR element). . As a problem of this technique, since the recording portion is heated by a laser at the time of recording / reproducing, deterioration of durability due to evaporation or decomposition of the lubricant on the surface of the magnetic layer can be mentioned. Thermally assisted magnetic recording is likely to be exposed to high temperatures said to be 400 ° C. or more for a short time, and is generally used as a lubricant perfluoropolyether for thin film magnetic recording media such as Z-DOL and Z -For TETRAOL, there is concern about its thermal stability.
プロトン性イオン液体は、前述のようにイオンを形成するために一般的には熱的な安定性が高い物質である。その平衡は次のScheme1に示される。
The protic ionic liquid is generally a substance having high thermal stability in order to form ions as described above. The equilibrium is shown in the following Scheme 1.
ここでHAはブレンステッド酸を、Bはブレンステッド塩基を示す。酸(HA)と塩基(B)はScheme1に示すように反応して塩(A-HB+)となる。
このときに酸及び塩基のそれぞれの解離定数Ka1及びKb2は、濃度を含めた形で次のScheme2のように表すことができる。
Here, HA represents a Bronsted acid and B represents a Bronsted base. The acid (HA) and the base (B) react to form a salt (A − HB + ) as shown in Scheme 1.
At this time, the dissociation constants K a1 and K b2 of the acid and the base can be expressed as the following Scheme 2 in a form including the concentration.
このときに酸及び塩基のそれぞれの解離定数Ka1及びKb2は、濃度を含めた形で次のScheme2のように表すことができる。
At this time, the dissociation constants K a1 and K b2 of the acid and the base can be expressed as the following Scheme 2 in a form including the concentration.
Ka1及びKb2は物質によって大きく異なり、場合によっては大きな桁数になるため、取扱いに不便なため、負の常用対数で表される場合が多い。つまり、次のScheme3に示すように-log10Ka1=pKa1と定義し、明らかにpKa1が小さい酸ほど酸性が強い。
ここで酸と塩基の酸解離定数の差ΔpKaについて議論する。酸・塩基反応はお互いにその酸性・塩基性(あるいはその共役酸の酸性)に影響され、その酸性度の差ΔpKaは併せて次のScheme3に表すことができる。
Since K a1 and K b2 vary greatly depending on the substance and in some cases have a large number of digits, which is inconvenient to handle, it is often expressed as a negative common logarithm. That is, as shown in the following Scheme 3, -log 10 K a1 = pK a1 is defined, and an acid having a clearly smaller pK a1 has a stronger acidity.
Here, the difference ΔpKa in acid dissociation constant between acid and base will be discussed. The acid / base reaction is influenced by the acidity / basicity of each other (or the acidity of the conjugate acid), and the acidity difference ΔpKa can be expressed together in the followingScheme 3.
ここで酸と塩基の酸解離定数の差ΔpKaについて議論する。酸・塩基反応はお互いにその酸性・塩基性(あるいはその共役酸の酸性)に影響され、その酸性度の差ΔpKaは併せて次のScheme3に表すことができる。
Here, the difference ΔpKa in acid dissociation constant between acid and base will be discussed. The acid / base reaction is influenced by the acidity / basicity of each other (or the acidity of the conjugate acid), and the acidity difference ΔpKa can be expressed together in the following
ΔpKaは、酸濃度及び塩基濃度に対して塩濃度[A-HB+]が大きくなると大きくなる、ことがわかる。
It can be seen that ΔpKa increases as the salt concentration [A − HB + ] increases with respect to the acid concentration and the base concentration.
その中でYoshizawaらは、酸と塩基のpKaの差(ΔpKa)が10以上となるとプロトン移動が起こりやすくなり、
[AH]+[B]⇔[A-HB+]
上記式の平衡がイオン側(右側)へシフトし、より安定性が増すことを報告している(例えば、非特許文献9参照)。また、渡邉らは、プロトン性イオン液体のプロトン移動性と熱的な安定性がΔpKaに大きく依存し、塩基としてDBU(1,8-ジアザビシクロ[5,4,0]ウンデ-7-セン)を用いた場合、酸と塩基のpKaの差(ΔpKa)が15以上となる酸を用いることにより、イオン液体の熱的安定性が大きく向上することを報告している(非特許文献10参照)。また、近藤らは、ΔpKaが大きいパーフルオロオクタンスルホン酸オクタデシルアンモニウム塩系のプロトン性イオン液体が磁気記録媒体の耐久性を改善することを報告している(非特許文献11、特許文献3参照)。また、イオン液体の耐熱性に関しての最近の近藤らの報告では、ΔpKaがある程度までは分解温度は上昇するが、それ以上ではΔpKaを大きくしてもその分解温度はそれほど高くはならないことが報告されている(非特許文献12、及び13参照)。また、ジェミナルなジカチオンを持つピロリジニウム系イオン液体では、通常のモノカチオンのイオン液体よりも耐熱性を改善する場合があることが報告されている(非特許文献13参照)。しかし、非特許文献14にも掲載されているように、それを構成する分子構造と物理的又は化学的な性質との関係についてはよく理解されていない。カチオンとアニオンとのコンビネーションは、イオン液体の物理的又は化学的な性質に非常に影響を与える。アニオン部分はバライアティに富むが、構造的に類似なカチオンでなければその関係性は明確にはならない(例えば、非特許文献15参照)。例えば、ハロゲンの水素結合力が強いほど(Cl>Br>I)液体の粘性は増加する。しかし、粘性を増加させる方法はこれだけではなく、例えば、イミダゾールのアルキル鎖を変化させることによっても可能である。同様に融点、表面張力、熱安定性についても影響を与えるが、そのアニオンの効果は広範囲にわたっては研究されていない。それゆえ、カチオンやアニオンのコンビネーションにより、これらの物理的又は化学的な性質を変化させることは可能であるが、予測することは難しい。 Among them, Yoshizawa et al. Are prone to proton transfer when the difference in acid and base pKa (ΔpKa) is 10 or more.
[AH] + [B] ⇔ [A − HB + ]
It has been reported that the equilibrium of the above equation shifts to the ion side (right side) and the stability is further increased (for example, see Non-Patent Document 9). In addition, Watanabe et al. Strongly depend on ΔpKa for proton mobility and thermal stability of a protic ionic liquid, and DBU (1,8-diazabicyclo [5,4,0] unde-7-cene) is used as a base. It has been reported that the thermal stability of an ionic liquid is greatly improved by using an acid having a pKa difference (ΔpKa) of 15 or more when used (see Non-Patent Document 10). Kondo et al. Have reported that perfluorooctane sulfonate octadecyl ammonium salt-based protic ionic liquid having a large ΔpKa improves the durability of the magnetic recording medium (seeNon-Patent Document 11 and Patent Document 3). . In addition, a recent report by Kondo et al. Regarding the heat resistance of ionic liquids reports that the decomposition temperature rises to a certain extent, but the decomposition temperature does not increase so much even if ΔpKa is increased beyond that. (See Non-Patent Documents 12 and 13). In addition, it has been reported that a pyrrolidinium-based ionic liquid having a geminal dication may improve heat resistance as compared with a normal monocation ionic liquid (see Non-Patent Document 13). However, as described in Non-Patent Document 14, the relationship between the molecular structure constituting the structure and physical or chemical properties is not well understood. The combination of cation and anion greatly affects the physical or chemical properties of the ionic liquid. The anion moiety is rich in variability, but the relationship is not clear unless it is a structurally similar cation (see, for example, Non-Patent Document 15). For example, the stronger the hydrogen bonding force of halogen (Cl>Br> I), the more viscous the liquid. However, the method for increasing the viscosity is not limited to this, and it is possible, for example, by changing the alkyl chain of imidazole. Similarly, it affects melting point, surface tension, and thermal stability, but the effect of its anion has not been studied extensively. Therefore, it is possible to change these physical or chemical properties by a combination of cation and anion, but it is difficult to predict.
[AH]+[B]⇔[A-HB+]
上記式の平衡がイオン側(右側)へシフトし、より安定性が増すことを報告している(例えば、非特許文献9参照)。また、渡邉らは、プロトン性イオン液体のプロトン移動性と熱的な安定性がΔpKaに大きく依存し、塩基としてDBU(1,8-ジアザビシクロ[5,4,0]ウンデ-7-セン)を用いた場合、酸と塩基のpKaの差(ΔpKa)が15以上となる酸を用いることにより、イオン液体の熱的安定性が大きく向上することを報告している(非特許文献10参照)。また、近藤らは、ΔpKaが大きいパーフルオロオクタンスルホン酸オクタデシルアンモニウム塩系のプロトン性イオン液体が磁気記録媒体の耐久性を改善することを報告している(非特許文献11、特許文献3参照)。また、イオン液体の耐熱性に関しての最近の近藤らの報告では、ΔpKaがある程度までは分解温度は上昇するが、それ以上ではΔpKaを大きくしてもその分解温度はそれほど高くはならないことが報告されている(非特許文献12、及び13参照)。また、ジェミナルなジカチオンを持つピロリジニウム系イオン液体では、通常のモノカチオンのイオン液体よりも耐熱性を改善する場合があることが報告されている(非特許文献13参照)。しかし、非特許文献14にも掲載されているように、それを構成する分子構造と物理的又は化学的な性質との関係についてはよく理解されていない。カチオンとアニオンとのコンビネーションは、イオン液体の物理的又は化学的な性質に非常に影響を与える。アニオン部分はバライアティに富むが、構造的に類似なカチオンでなければその関係性は明確にはならない(例えば、非特許文献15参照)。例えば、ハロゲンの水素結合力が強いほど(Cl>Br>I)液体の粘性は増加する。しかし、粘性を増加させる方法はこれだけではなく、例えば、イミダゾールのアルキル鎖を変化させることによっても可能である。同様に融点、表面張力、熱安定性についても影響を与えるが、そのアニオンの効果は広範囲にわたっては研究されていない。それゆえ、カチオンやアニオンのコンビネーションにより、これらの物理的又は化学的な性質を変化させることは可能であるが、予測することは難しい。 Among them, Yoshizawa et al. Are prone to proton transfer when the difference in acid and base pKa (ΔpKa) is 10 or more.
[AH] + [B] ⇔ [A − HB + ]
It has been reported that the equilibrium of the above equation shifts to the ion side (right side) and the stability is further increased (for example, see Non-Patent Document 9). In addition, Watanabe et al. Strongly depend on ΔpKa for proton mobility and thermal stability of a protic ionic liquid, and DBU (1,8-diazabicyclo [5,4,0] unde-7-cene) is used as a base. It has been reported that the thermal stability of an ionic liquid is greatly improved by using an acid having a pKa difference (ΔpKa) of 15 or more when used (see Non-Patent Document 10). Kondo et al. Have reported that perfluorooctane sulfonate octadecyl ammonium salt-based protic ionic liquid having a large ΔpKa improves the durability of the magnetic recording medium (see
表1に示されるハードディスク用の潤滑剤を考慮した場合に、メディア表面との相互作用を高めるために末端に水酸基のような極性基が導入されている。このような水酸基は加熱処理を行うことによりメディア表面と反応して固定化され熱安定性が改善され、また水酸基が結合することにより表面エネルギーの極性項成分を下げる効果もある(非特許文献16)。
In consideration of the hard disk lubricant shown in Table 1, a polar group such as a hydroxyl group is introduced at the end in order to enhance the interaction with the media surface. Such a hydroxyl group reacts with the surface of the medium and is fixed by heat treatment to improve thermal stability, and also has an effect of lowering the polar term component of the surface energy by bonding with the hydroxyl group (Non-patent Document 16). ).
また、イオン液体型潤滑剤は、ハードディスク以外の用途も考慮した場合には、融点が低い方が好ましい。
Also, the ionic liquid lubricant preferably has a lower melting point when considering uses other than hard disks.
本発明は、このような従来の実情に鑑みて提案されたものであり、高温においても優れた潤滑性を有し、かつ低融点化が可能なために多用途への適用が可能なイオン液体、高温においても優れた潤滑性を有し、かつ低融点化が可能なために多用途への適用が可能な潤滑剤、及び優れた実用特性を有する磁気記録媒体を提供する。
The present invention has been proposed in view of such a conventional situation, and has an excellent lubricity even at a high temperature and can be lowered in melting point, so that it can be applied to various purposes. The present invention provides a lubricant that has excellent lubricity even at a high temperature and can be applied to various purposes because of a low melting point, and a magnetic recording medium having excellent practical characteristics.
<1> 共役塩基と、共役酸とを有するイオン液体を含有し、
前記共役酸が、水酸基を含む基、及び炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であることを特徴とする潤滑剤である。
<2> 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、及び下記一般式(D)のいずれかで表される前記<1>に記載の潤滑剤である。
ただし、前記一般式(A)中、R1、及びR2は、それぞれ独立して、水素原子、及び炭素数が6以上の直鎖状の炭化水素基を含む基のいずれかを表し、nは、1以上の整数を表す。ただし、R1、及びR2の少なくともいずれかは、炭素数が6以上の直鎖状の炭化水素基を含む基である。
ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。
<3> 前記共役塩基が、下記一般式(X)、及び下記一般式(Y)のいずれかで表される前記<1>から<2>のいずれかに記載の潤滑剤である。
ただし、前記一般式(X)中、lは、1以上12以下の整数を表す。
ただし、前記一般式(Y)中、lは、1以上12以下の整数を表す。
<4> 非磁性支持体と、前記非磁性支持体上に磁性層と、前記磁性層上に前記<1>から<3>のいずれかに記載の潤滑剤とを有することを特徴とする磁気記録媒体である。
<5> 共役塩基と、共役酸とを有し、
前記共役酸が、水酸基を含む基、及び炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であることを特徴とするイオン液体である。
<6> 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、及び下記一般式(D)のいずれかで表される前記<5>に記載のイオン液体である。
ただし、前記一般式(A)中、R1、及びR2は、それぞれ独立して、水素原子、及び炭素数が6以上の直鎖状の炭化水素基を含む基のいずれかを表し、nは、1以上の整数を表す。ただし、R1、及びR2の少なくともいずれかは、炭素数が6以上の直鎖状の炭化水素基を含む基である。
ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。
<7> 前記共役塩基が、下記一般式(X)、及び下記一般式(Y)のいずれかで表される前記<5>から<6>のいずれかに記載のイオン液体である。
ただし、前記一般式(X)中、lは、1以上12以下の整数を表す。
ただし、前記一般式(Y)中、lは、1以上12以下の整数を表す。 <1> containing an ionic liquid having a conjugate base and a conjugate acid,
The conjugate acid has a group containing a hydroxyl group and a group containing a linear hydrocarbon group having 6 or more carbon atoms;
The lubricant is characterized in that the pKa in acetonitrile of the acid which is the base of the conjugate base is 10 or less.
<2> The conjugate acid according to <1>, wherein the conjugate acid is represented by any one of the following general formula (A), the following general formula (B), the following general formula (C), and the following general formula (D). Lubricant.
However, the general formula (A), R 1, and R 2 represents independently a hydrogen atom, and one of the group carbon atoms containing 6 or more straight chain hydrocarbon radical, n Represents an integer of 1 or more. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, the general formula (D), R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more.
<3> The lubricant according to any one of <1> to <2>, wherein the conjugate base is represented by any one of the following general formula (X) and the following general formula (Y).
However, in said general formula (X), l represents an integer of 1-12.
However, in said general formula (Y), l represents the integer of 1-12.
<4> A magnetic material comprising a nonmagnetic support, a magnetic layer on the nonmagnetic support, and the lubricant according to any one of <1> to <3> on the magnetic layer. It is a recording medium.
<5> having a conjugate base and a conjugate acid,
The conjugate acid has a group containing a hydroxyl group and a group containing a linear hydrocarbon group having 6 or more carbon atoms;
It is an ionic liquid characterized in that the pKa in acetonitrile of the acid that is the base of the conjugate base is 10 or less.
<6> The conjugate acid according to <5>, wherein the conjugate acid is represented by any one of the following general formula (A), the following general formula (B), the following general formula (C), and the following general formula (D). It is an ionic liquid.
However, the general formula (A), R 1, and R 2 represents independently a hydrogen atom, and one of the group carbon atoms containing 6 or more straight chain hydrocarbon radical, n Represents an integer of 1 or more. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, the general formula (D), R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more.
<7> The conjugated liquid according to any one of <5> to <6>, wherein the conjugate base is represented by any one of the following general formula (X) and the following general formula (Y).
However, in said general formula (X), l represents an integer of 1-12.
However, in said general formula (Y), l represents the integer of 1-12.
前記共役酸が、水酸基を含む基、及び炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であることを特徴とする潤滑剤である。
<2> 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、及び下記一般式(D)のいずれかで表される前記<1>に記載の潤滑剤である。
ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。
<3> 前記共役塩基が、下記一般式(X)、及び下記一般式(Y)のいずれかで表される前記<1>から<2>のいずれかに記載の潤滑剤である。
ただし、前記一般式(Y)中、lは、1以上12以下の整数を表す。
<4> 非磁性支持体と、前記非磁性支持体上に磁性層と、前記磁性層上に前記<1>から<3>のいずれかに記載の潤滑剤とを有することを特徴とする磁気記録媒体である。
<5> 共役塩基と、共役酸とを有し、
前記共役酸が、水酸基を含む基、及び炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であることを特徴とするイオン液体である。
<6> 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、及び下記一般式(D)のいずれかで表される前記<5>に記載のイオン液体である。
ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。
<7> 前記共役塩基が、下記一般式(X)、及び下記一般式(Y)のいずれかで表される前記<5>から<6>のいずれかに記載のイオン液体である。
ただし、前記一般式(Y)中、lは、1以上12以下の整数を表す。 <1> containing an ionic liquid having a conjugate base and a conjugate acid,
The conjugate acid has a group containing a hydroxyl group and a group containing a linear hydrocarbon group having 6 or more carbon atoms;
The lubricant is characterized in that the pKa in acetonitrile of the acid which is the base of the conjugate base is 10 or less.
<2> The conjugate acid according to <1>, wherein the conjugate acid is represented by any one of the following general formula (A), the following general formula (B), the following general formula (C), and the following general formula (D). Lubricant.
However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, the general formula (D), R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more.
<3> The lubricant according to any one of <1> to <2>, wherein the conjugate base is represented by any one of the following general formula (X) and the following general formula (Y).
However, in said general formula (Y), l represents the integer of 1-12.
<4> A magnetic material comprising a nonmagnetic support, a magnetic layer on the nonmagnetic support, and the lubricant according to any one of <1> to <3> on the magnetic layer. It is a recording medium.
<5> having a conjugate base and a conjugate acid,
The conjugate acid has a group containing a hydroxyl group and a group containing a linear hydrocarbon group having 6 or more carbon atoms;
It is an ionic liquid characterized in that the pKa in acetonitrile of the acid that is the base of the conjugate base is 10 or less.
<6> The conjugate acid according to <5>, wherein the conjugate acid is represented by any one of the following general formula (A), the following general formula (B), the following general formula (C), and the following general formula (D). It is an ionic liquid.
However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, the general formula (D), R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more.
<7> The conjugated liquid according to any one of <5> to <6>, wherein the conjugate base is represented by any one of the following general formula (X) and the following general formula (Y).
However, in said general formula (Y), l represents the integer of 1-12.
本発明によれば、高温においても優れた潤滑性を有し、かつ低融点化が可能なために多用途への適用が可能なイオン液体、高温においても優れた潤滑性を有し、かつ低融点化が可能なために多用途への適用が可能な潤滑剤、及び優れた実用特性を有する磁気記録媒体を提供することができる。
According to the present invention, an ionic liquid that has excellent lubricity even at a high temperature and can be applied to various purposes because it can have a low melting point, has an excellent lubricity even at a high temperature, and low Since the melting point can be increased, it is possible to provide a lubricant that can be applied to various purposes and a magnetic recording medium having excellent practical characteristics.
以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1. 潤滑剤及びイオン液体
2. 磁気記録媒体
3. 実施例 Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Lubricant and ionic liquid 2. Magnetic recording medium Example
1. 潤滑剤及びイオン液体
2. 磁気記録媒体
3. 実施例 Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Lubricant and ionic liquid 2. Magnetic recording medium Example
<1.潤滑剤及びイオン液体>
本発明の一実施形態として示す潤滑剤は、共役酸と、共役塩基とを有するイオン液体を含有する。
本発明の一実施形態として示すイオン液体は、共役酸と、共役塩基とを有する。
前記イオン液体において、前記共役酸は、炭化水素基を含む基を有する。前記炭化水素基は、炭素数が6以上の直鎖状の炭化水素基である。ここで、「炭素数が6以上の直鎖状の炭化水素基」は、炭素に結合する水素原子の一部がフッ素原子に置換された部分フッ素化炭化水素基であってもよい。
前記イオン液体において、前記共役酸は、水酸基を含む基を有する。
前記イオン液体において、前記共役塩基の元となる酸のアセトニトリル中でのpKaは、10以下である。 <1. Lubricant and ionic liquid>
The lubricant shown as one embodiment of the present invention contains an ionic liquid having a conjugate acid and a conjugate base.
The ionic liquid shown as one embodiment of the present invention has a conjugate acid and a conjugate base.
In the ionic liquid, the conjugate acid has a group containing a hydrocarbon group. The hydrocarbon group is a linear hydrocarbon group having 6 or more carbon atoms. Here, the “linear hydrocarbon group having 6 or more carbon atoms” may be a partially fluorinated hydrocarbon group in which a part of hydrogen atoms bonded to carbon is substituted with a fluorine atom.
In the ionic liquid, the conjugate acid has a group containing a hydroxyl group.
In the ionic liquid, the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less.
本発明の一実施形態として示す潤滑剤は、共役酸と、共役塩基とを有するイオン液体を含有する。
本発明の一実施形態として示すイオン液体は、共役酸と、共役塩基とを有する。
前記イオン液体において、前記共役酸は、炭化水素基を含む基を有する。前記炭化水素基は、炭素数が6以上の直鎖状の炭化水素基である。ここで、「炭素数が6以上の直鎖状の炭化水素基」は、炭素に結合する水素原子の一部がフッ素原子に置換された部分フッ素化炭化水素基であってもよい。
前記イオン液体において、前記共役酸は、水酸基を含む基を有する。
前記イオン液体において、前記共役塩基の元となる酸のアセトニトリル中でのpKaは、10以下である。 <1. Lubricant and ionic liquid>
The lubricant shown as one embodiment of the present invention contains an ionic liquid having a conjugate acid and a conjugate base.
The ionic liquid shown as one embodiment of the present invention has a conjugate acid and a conjugate base.
In the ionic liquid, the conjugate acid has a group containing a hydrocarbon group. The hydrocarbon group is a linear hydrocarbon group having 6 or more carbon atoms. Here, the “linear hydrocarbon group having 6 or more carbon atoms” may be a partially fluorinated hydrocarbon group in which a part of hydrogen atoms bonded to carbon is substituted with a fluorine atom.
In the ionic liquid, the conjugate acid has a group containing a hydroxyl group.
In the ionic liquid, the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less.
本実施の形態におけるイオン液体は、共役酸と、共役塩基とを有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であるため、優れた熱安定性を発揮することができる。カチオン部分に炭素数6以上の炭化水素基を含む基を持つために優れた潤滑特性を併せ持つことができる。またカチオン部分に水酸基が導入されているために耐熱性及びフッ素系溶媒への溶解性が改善され、また融点が低下した。一部の化合物はハードディスクの潤滑剤塗布工程でフッ素系溶媒としてよく使用されるCF3(CHF)2CF2CF3への溶解性が改善するため、その結果、磁気記録媒体の生産ラインを防爆仕様にする必要がなくなる。
ここで、イオン液体を含有する潤滑剤は、イオン液体が0.05質量%程度の濃度で使用されることがある。そのため、前記イオン液体のフッ素系溶媒に対する溶解性としては、0.05質量%以上が好ましい。また、使用状況によっては、それ以上の溶解性が要求されることもある。更には、潤滑剤の使用状況、保存状況の変化等を加味すると、0.1質量%以上〔CF3(CHF)2CF2CF3100質量部に対してイオン液体が0.1質量部以上〕の溶解性が要求されることがある。 The ionic liquid in this embodiment has a conjugate acid and a conjugate base, and the pKa in acetonitrile of the acid that is the base of the conjugate base is 10 or less, and therefore exhibits excellent thermal stability. be able to. Since the cationic part has a group containing a hydrocarbon group having 6 or more carbon atoms, it can have excellent lubricating properties. Moreover, since a hydroxyl group was introduced into the cation moiety, the heat resistance and solubility in a fluorinated solvent were improved, and the melting point was lowered. Some compounds have improved solubility in CF 3 (CHF) 2 CF 2 CF 3 , which is often used as a fluorinated solvent in hard disk lubricant coating processes, resulting in explosion-proof production lines for magnetic recording media There is no need to make specifications.
Here, the lubricant containing the ionic liquid may be used at a concentration of about 0.05% by mass of the ionic liquid. Therefore, the solubility of the ionic liquid in the fluorine-based solvent is preferably 0.05% by mass or more. Further, depending on the use situation, higher solubility may be required. Furthermore, the use of lubricants conditions, when considering the changes in the storage status, or 0.1 wt% [CF 3 (CHF) 2 CF 2 CF 3 ionic liquid 0.1 parts by mass or more with respect to 100 parts by weight ] May be required.
ここで、イオン液体を含有する潤滑剤は、イオン液体が0.05質量%程度の濃度で使用されることがある。そのため、前記イオン液体のフッ素系溶媒に対する溶解性としては、0.05質量%以上が好ましい。また、使用状況によっては、それ以上の溶解性が要求されることもある。更には、潤滑剤の使用状況、保存状況の変化等を加味すると、0.1質量%以上〔CF3(CHF)2CF2CF3100質量部に対してイオン液体が0.1質量部以上〕の溶解性が要求されることがある。 The ionic liquid in this embodiment has a conjugate acid and a conjugate base, and the pKa in acetonitrile of the acid that is the base of the conjugate base is 10 or less, and therefore exhibits excellent thermal stability. be able to. Since the cationic part has a group containing a hydrocarbon group having 6 or more carbon atoms, it can have excellent lubricating properties. Moreover, since a hydroxyl group was introduced into the cation moiety, the heat resistance and solubility in a fluorinated solvent were improved, and the melting point was lowered. Some compounds have improved solubility in CF 3 (CHF) 2 CF 2 CF 3 , which is often used as a fluorinated solvent in hard disk lubricant coating processes, resulting in explosion-proof production lines for magnetic recording media There is no need to make specifications.
Here, the lubricant containing the ionic liquid may be used at a concentration of about 0.05% by mass of the ionic liquid. Therefore, the solubility of the ionic liquid in the fluorine-based solvent is preferably 0.05% by mass or more. Further, depending on the use situation, higher solubility may be required. Furthermore, the use of lubricants conditions, when considering the changes in the storage status, or 0.1 wt% [CF 3 (CHF) 2 CF 2 CF 3 ionic liquid 0.1 parts by mass or more with respect to 100 parts by weight ] May be required.
前記pKaは、10以下の強酸であり、6.0以下が好ましい。
前記pKaの下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、前記pKaは、-5.0以上が好ましい。 The pKa is a strong acid of 10 or less, and preferably 6.0 or less.
The lower limit of the pKa is not particularly limited and may be appropriately selected depending on the intended purpose. However, the pKa is preferably −5.0 or more.
前記pKaの下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、前記pKaは、-5.0以上が好ましい。 The pKa is a strong acid of 10 or less, and preferably 6.0 or less.
The lower limit of the pKa is not particularly limited and may be appropriately selected depending on the intended purpose. However, the pKa is preferably −5.0 or more.
ここで、本明細書におけるpKaは、酸解離定数であって、アセトニトリル中における酸解離定数である。
Here, pKa in the present specification is an acid dissociation constant, which is an acid dissociation constant in acetonitrile.
<<共役塩基>>
前記共役塩基としては、元となる酸のアセトニトリル中でのpKaが10以下であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(X)で表される共役塩基、下記一般式(Y)で表される共役塩基、下記一般式(U)で表される共役塩基、下記一般式(V)で表される共役塩基、下記一般式(W)で表される共役塩基などが挙げられる。これらの中でも、前記イオン液体の溶媒に対する溶解性を高くできる点で、下記一般式(X)で表される共役塩基、下記一般式(Y)で表される共役塩基が好ましい。
ただし、前記一般式(X)中、lは、1以上12以下の整数を表し、1以上6以下の整数が好ましい。
ただし、前記一般式(Y)中、lは、1以上12以下の整数を表し、1以上6以下の整数が好ましい。 << Conjugate base >>
The conjugate base is not particularly limited as long as the pKa in acetonitrile of the original acid is 10 or less, and can be appropriately selected according to the purpose. For example, the conjugate base is represented by the following general formula (X). A conjugate base represented by the following general formula (Y), a conjugate base represented by the following general formula (U), a conjugate base represented by the following general formula (V), and the following general formula (W) And the conjugate base represented. Among these, the conjugate base represented by the following general formula (X) and the conjugate base represented by the following general formula (Y) are preferable in that the solubility of the ionic liquid in the solvent can be increased.
However, in the general formula (X), l represents an integer of 1 to 12 and is preferably an integer of 1 to 6.
However, in the said general formula (Y), l represents the integer of 1-12, and an integer of 1-6 is preferable.
前記共役塩基としては、元となる酸のアセトニトリル中でのpKaが10以下であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(X)で表される共役塩基、下記一般式(Y)で表される共役塩基、下記一般式(U)で表される共役塩基、下記一般式(V)で表される共役塩基、下記一般式(W)で表される共役塩基などが挙げられる。これらの中でも、前記イオン液体の溶媒に対する溶解性を高くできる点で、下記一般式(X)で表される共役塩基、下記一般式(Y)で表される共役塩基が好ましい。
ただし、前記一般式(Y)中、lは、1以上12以下の整数を表し、1以上6以下の整数が好ましい。 << Conjugate base >>
The conjugate base is not particularly limited as long as the pKa in acetonitrile of the original acid is 10 or less, and can be appropriately selected according to the purpose. For example, the conjugate base is represented by the following general formula (X). A conjugate base represented by the following general formula (Y), a conjugate base represented by the following general formula (U), a conjugate base represented by the following general formula (V), and the following general formula (W) And the conjugate base represented. Among these, the conjugate base represented by the following general formula (X) and the conjugate base represented by the following general formula (Y) are preferable in that the solubility of the ionic liquid in the solvent can be increased.
However, in the said general formula (Y), l represents the integer of 1-12, and an integer of 1-6 is preferable.
前記共役塩基の元となる酸(HA)としては、ビス((パーフルオロアルキル)スルホニル)イミド〔(ClF2l+1SO2)2NH〕(pKa=0~0.3)、パーフルオロシクロプロパンスルホイミド(pKa=-0.8)、パーフルオロアルキルスルホン酸(CmF2m+1SO3H)(pKa=0.7)、トリス(パーフルオロアルカンスルホニル)メチド化合物〔(CF3SO2)3CH〕(pKa=-3.7)、トリシアノメタン(pKa=5.1)、無機酸〔硝酸(pKa=9.4)、硫酸(pKa=8.7)等〕、テトラフルオロホウ酸(pKa=1.8)、ヘキサフルオロ燐酸などのスーパー酸に位置づけられるブレンステッド酸が好ましい。これらのpKaは、例えば、J. Org. Chem. Vol.76, No2, p.394に紹介されている。
Examples of the acid (HA) that is the base of the conjugate base include bis ((perfluoroalkyl) sulfonyl) imide [(C l F 21 + 1 SO 2 ) 2 NH] (pKa = 0 to 0.3), perfluorocyclopropane Sulfonimide (pKa = −0.8), perfluoroalkylsulfonic acid (C m F 2m + 1 SO 3 H) (pKa = 0.7), tris (perfluoroalkanesulfonyl) methide compound [(CF 3 SO 2 ) 3 CH] (pKa = -3.7), tricyanomethane (pKa = 5.1), inorganic acid [nitric acid (pKa = 9.4), sulfuric acid (pKa = 8.7), etc.], tetrafluoroboric acid ( pKa = 1.8), and Bronsted acid positioned as a super acid such as hexafluorophosphoric acid is preferable. These pKas are described, for example, in J. Org. Org. Chem. Vol. 76, No2, p. 394.
<<共役酸>>
前記共役酸は、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、更に水酸基を含む基を有する。 << Conjugated acid >>
The conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms, and further has a group containing a hydroxyl group.
前記共役酸は、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、更に水酸基を含む基を有する。 << Conjugated acid >>
The conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms, and further has a group containing a hydroxyl group.
前記共役酸への水酸基の導入法に特に制限はない。例えば、直鎖のアルキレン鎖を介して導入する方法がある。この方法の一例では、後の実施例で記載しているように、ハロゲン化物を用いて共役酸の窒素原子をアルキル化する方法を取っている。それゆえ一般的なパーフルオロポリエーテル系潤滑剤であるZ-DOLやZ-Tetraolとは全くその導入法は異なり、その方法が参考となることはない。
The method for introducing a hydroxyl group into the conjugate acid is not particularly limited. For example, there is a method of introducing via a linear alkylene chain. One example of this method employs a method of alkylating a nitrogen atom of a conjugate acid using a halide as described in the following examples. Therefore, the introduction method is completely different from Z-DOL and Z-Tetraol, which are general perfluoropolyether lubricants, and the method is not helpful.
前記共役酸は、炭素数が6以上の直鎖状の炭化水素基を含む基を有する。
前記炭化水素基の炭素数としては、6以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、10以上が好ましい。 The conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms.
The number of carbon atoms of the hydrocarbon group is not particularly limited as long as it is 6 or more, and can be appropriately selected according to the purpose, but is preferably 10 or more.
前記炭化水素基の炭素数としては、6以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、10以上が好ましい。 The conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms.
The number of carbon atoms of the hydrocarbon group is not particularly limited as long as it is 6 or more, and can be appropriately selected according to the purpose, but is preferably 10 or more.
前記炭素数が6以上の直鎖状の炭化水素基の炭素数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、原材料の調達の観点から、前記炭素数は、30以下が好ましく、25以下がより好ましく、20以下が特に好ましい。前記炭化水素基が長鎖であることにより、摩擦係数を低減し、潤滑特性を向上させることができる。
前記炭素数が6以上の直鎖状の炭化水素基を含む基としては、前記炭素数が6以上の直鎖状の炭化水素基が好ましい。
ただし、炭素数が多すぎると溶媒への溶解性が低下する傾向にあるため、前記炭化水素基の炭素数は、摩擦係数低減の効果と溶媒への溶解性とを考慮して決定される。 The upper limit of the carbon number of the linear hydrocarbon group having 6 or more carbon atoms is not particularly limited and may be appropriately selected depending on the purpose. From the viewpoint of procurement of raw materials, the carbon number Is preferably 30 or less, more preferably 25 or less, and particularly preferably 20 or less. When the hydrocarbon group is a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
The group containing a linear hydrocarbon group having 6 or more carbon atoms is preferably a linear hydrocarbon group having 6 or more carbon atoms.
However, since the solubility in a solvent tends to decrease when the number of carbon atoms is too large, the carbon number of the hydrocarbon group is determined in consideration of the effect of reducing the friction coefficient and the solubility in a solvent.
前記炭素数が6以上の直鎖状の炭化水素基を含む基としては、前記炭素数が6以上の直鎖状の炭化水素基が好ましい。
ただし、炭素数が多すぎると溶媒への溶解性が低下する傾向にあるため、前記炭化水素基の炭素数は、摩擦係数低減の効果と溶媒への溶解性とを考慮して決定される。 The upper limit of the carbon number of the linear hydrocarbon group having 6 or more carbon atoms is not particularly limited and may be appropriately selected depending on the purpose. From the viewpoint of procurement of raw materials, the carbon number Is preferably 30 or less, more preferably 25 or less, and particularly preferably 20 or less. When the hydrocarbon group is a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
The group containing a linear hydrocarbon group having 6 or more carbon atoms is preferably a linear hydrocarbon group having 6 or more carbon atoms.
However, since the solubility in a solvent tends to decrease when the number of carbon atoms is too large, the carbon number of the hydrocarbon group is determined in consideration of the effect of reducing the friction coefficient and the solubility in a solvent.
前記炭化水素基は直鎖状であればよく、飽和炭化水素基でも、一部に二重結合を有する不飽和炭化水素基、又は一部に分岐を有する不飽和分枝炭化水素基のいずれでもよい。これらの中でも、耐摩耗性の観点から飽和炭化水素基であるアルキル基であることが好ましい。また、一部にも分岐を有さない直鎖状の炭化水素基であることも好ましい。もちろん一部にも分岐を有する炭化水素基であってもよい。
The hydrocarbon group may be linear, and may be either a saturated hydrocarbon group, an unsaturated hydrocarbon group partially having a double bond, or an unsaturated branched hydrocarbon group partially having a branch. Good. Among these, an alkyl group which is a saturated hydrocarbon group is preferable from the viewpoint of wear resistance. Moreover, it is also preferable that it is a linear hydrocarbon group which does not have a branch in part. Of course, it may be a partially branched hydrocarbon group.
前記炭化水素基としては、例えば、下記一般式(I)で表される基、下記一般式(II)で表される基などが挙げられる。
-(CH2)l-CH3 一般式(I)
-(CH2)m-(CF2)n-CF3 一般式(II)
前記一般式(I)中、lは、5以上の整数を表し、9以上29以下の整数が好ましく、9以上24以下の整数がより好ましく、9以上19以下の整数が特に好ましい。
前記一般式(II)中、mは、1以上6以下の整数を表し、nは、3以上20以下の整数を表す。ただし、m+nは、7以上である。mは、1以上3以下の整数が好ましく、nは、5以上10以下の整数が好ましい。 Examples of the hydrocarbon group include a group represented by the following general formula (I) and a group represented by the following general formula (II).
— (CH 2 ) 1 —CH 3 General Formula (I)
— (CH 2 ) m — (CF 2 ) n —CF 3 General Formula (II)
In the general formula (I), l represents an integer of 5 or more, preferably an integer of 9 to 29, more preferably an integer of 9 to 24, and particularly preferably an integer of 9 to 19.
In the general formula (II), m represents an integer of 1 to 6, and n represents an integer of 3 to 20. However, m + n is 7 or more. m is preferably an integer of 1 to 3, and n is preferably an integer of 5 to 10.
-(CH2)l-CH3 一般式(I)
-(CH2)m-(CF2)n-CF3 一般式(II)
前記一般式(I)中、lは、5以上の整数を表し、9以上29以下の整数が好ましく、9以上24以下の整数がより好ましく、9以上19以下の整数が特に好ましい。
前記一般式(II)中、mは、1以上6以下の整数を表し、nは、3以上20以下の整数を表す。ただし、m+nは、7以上である。mは、1以上3以下の整数が好ましく、nは、5以上10以下の整数が好ましい。 Examples of the hydrocarbon group include a group represented by the following general formula (I) and a group represented by the following general formula (II).
— (CH 2 ) 1 —CH 3 General Formula (I)
— (CH 2 ) m — (CF 2 ) n —CF 3 General Formula (II)
In the general formula (I), l represents an integer of 5 or more, preferably an integer of 9 to 29, more preferably an integer of 9 to 24, and particularly preferably an integer of 9 to 19.
In the general formula (II), m represents an integer of 1 to 6, and n represents an integer of 3 to 20. However, m + n is 7 or more. m is preferably an integer of 1 to 3, and n is preferably an integer of 5 to 10.
前記共役酸は、水酸基を含む基を有する。前記水酸基を含む基としては、例えば、下記一般式(IV)で表される基などが挙げられる。
-(CH2)n-OH 一般式(IV)
前記一般式(IV)中、nは、1以上の整数であり、1以上10以下の整数が好ましく、1以上6以下の整数がより好ましい。 The conjugate acid has a group containing a hydroxyl group. Examples of the group containing a hydroxyl group include a group represented by the following general formula (IV).
— (CH 2 ) n —OH Formula (IV)
In the general formula (IV), n is an integer of 1 or more, preferably an integer of 1 to 10, and more preferably an integer of 1 to 6.
-(CH2)n-OH 一般式(IV)
前記一般式(IV)中、nは、1以上の整数であり、1以上10以下の整数が好ましく、1以上6以下の整数がより好ましい。 The conjugate acid has a group containing a hydroxyl group. Examples of the group containing a hydroxyl group include a group represented by the following general formula (IV).
— (CH 2 ) n —OH Formula (IV)
In the general formula (IV), n is an integer of 1 or more, preferably an integer of 1 to 10, and more preferably an integer of 1 to 6.
前記共役酸としては、下記一般式(A)で表される共役酸、下記一般式(B)で表される共役酸、下記一般式(C)で表される共役酸、及び下記一般式(D)で表される共役酸が、耐熱性及び潤滑特性の点で好ましい。
ただし、前記一般式(A)中、R1、及びR2は、それぞれ独立して、水素原子、及び炭素数が6以上の直鎖状の炭化水素基を含む基のいずれかを表し、nは、1以上の整数を表す。ただし、R1、及びR2の少なくともいずれかは、炭素数が6以上の直鎖状の炭化水素基を含む基である。
ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。 As the conjugate acid, a conjugate acid represented by the following general formula (A), a conjugate acid represented by the following general formula (B), a conjugate acid represented by the following general formula (C), and the following general formula ( The conjugate acid represented by D) is preferable in terms of heat resistance and lubrication characteristics.
However, the general formula (A), R 1, and R 2 represents independently a hydrogen atom, and one of the group carbon atoms containing 6 or more straight chain hydrocarbon radical, n Represents an integer of 1 or more. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, the general formula (D), R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more.
ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。 As the conjugate acid, a conjugate acid represented by the following general formula (A), a conjugate acid represented by the following general formula (B), a conjugate acid represented by the following general formula (C), and the following general formula ( The conjugate acid represented by D) is preferable in terms of heat resistance and lubrication characteristics.
However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, the general formula (D), R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more.
前記一般式(A)の前記R1及び前記R2、前記一般式(B)の前記R、前記一般式(C)の前記R、並びに前記一般式(D)の前記Rにおける前記炭化水素基の炭素数としては、6以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、10以上が好ましい。
前記炭化水素基の炭素数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、原材料の調達の観点から、前記炭素数は、30以下が好ましく、25以下がより好ましく、20以下が特に好ましい。前記炭化水素基が長鎖であることにより、摩擦係数を低減し、潤滑特性を向上させることができる。
前記R1、前記R2、及び前記Rとしては、前記炭素数が6以上の直鎖状の炭化水素基が好ましい。
ただし、炭素数が多すぎると溶媒への溶解性が低下する傾向にあるため、前記炭化水素基の炭素数は、摩擦係数低減の効果と溶媒への溶解性とを考慮して決定される。 The R 1 and R 2 in the general formula (A), the R in the general formula (B), the R in the general formula (C), and the hydrocarbon group in the R in the general formula (D). As long as it is 6 or more, there is no restriction | limiting in particular, Although it can select suitably according to the objective, 10 or more is preferable.
The upper limit of the carbon number of the hydrocarbon group is not particularly limited and may be appropriately selected depending on the intended purpose. From the viewpoint of procurement of raw materials, the carbon number is preferably 30 or less, and 25 or less. More preferred is 20 or less. When the hydrocarbon group is a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
As said R < 1 >, said R < 2 >, and said R, the said C6 or more linear hydrocarbon group is preferable.
However, since the solubility in a solvent tends to decrease when the number of carbon atoms is too large, the carbon number of the hydrocarbon group is determined in consideration of the effect of reducing the friction coefficient and the solubility in a solvent.
前記炭化水素基の炭素数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、原材料の調達の観点から、前記炭素数は、30以下が好ましく、25以下がより好ましく、20以下が特に好ましい。前記炭化水素基が長鎖であることにより、摩擦係数を低減し、潤滑特性を向上させることができる。
前記R1、前記R2、及び前記Rとしては、前記炭素数が6以上の直鎖状の炭化水素基が好ましい。
ただし、炭素数が多すぎると溶媒への溶解性が低下する傾向にあるため、前記炭化水素基の炭素数は、摩擦係数低減の効果と溶媒への溶解性とを考慮して決定される。 The R 1 and R 2 in the general formula (A), the R in the general formula (B), the R in the general formula (C), and the hydrocarbon group in the R in the general formula (D). As long as it is 6 or more, there is no restriction | limiting in particular, Although it can select suitably according to the objective, 10 or more is preferable.
The upper limit of the carbon number of the hydrocarbon group is not particularly limited and may be appropriately selected depending on the intended purpose. From the viewpoint of procurement of raw materials, the carbon number is preferably 30 or less, and 25 or less. More preferred is 20 or less. When the hydrocarbon group is a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
As said R < 1 >, said R < 2 >, and said R, the said C6 or more linear hydrocarbon group is preferable.
However, since the solubility in a solvent tends to decrease when the number of carbon atoms is too large, the carbon number of the hydrocarbon group is determined in consideration of the effect of reducing the friction coefficient and the solubility in a solvent.
前記一般式(A)の前記R1及び前記R2、前記一般式(B)の前記R、前記一般式(C)の前記R、並びに前記一般式(D)の前記Rにおける前記炭化水素基は直鎖状であればよく、飽和炭化水素基でも、一部に二重結合を有する不飽和炭化水素基、又は一部に分岐を有する不飽和分枝炭化水素基のいずれでもよい。これらの中でも、耐摩耗性の観点から飽和炭化水素基であるアルキル基であることが好ましい。また、一部にも分岐を有さない直鎖状の炭化水素基であることも好ましい。
The R 1 and R 2 in the general formula (A), the R in the general formula (B), the R in the general formula (C), and the hydrocarbon group in the R in the general formula (D). May be a straight chain, and may be a saturated hydrocarbon group, an unsaturated hydrocarbon group partially having a double bond, or an unsaturated branched hydrocarbon group partially having a branch. Among these, an alkyl group which is a saturated hydrocarbon group is preferable from the viewpoint of wear resistance. Moreover, it is also preferable that it is a linear hydrocarbon group which does not have a branch in part.
前記一般式(A)の前記R1及び前記R2、前記一般式(B)の前記R、前記一般式(C)の前記R、並びに前記一般式(D)の前記Rとしては、例えば、下記一般式(III)で表される基などが挙げられる。
-(CH2)l-CH3 一般式(III)
前記一般式(III)中、lは、5以上の整数を表し、9以上29以下の整数が好ましく、9以上19以下の整数がより好ましい。 Examples of the R 1 and R 2 in the general formula (A), the R in the general formula (B), the R in the general formula (C), and the R in the general formula (D) include: Examples include groups represented by the following general formula (III).
— (CH 2 ) 1 —CH 3 General Formula (III)
In the general formula (III), l represents an integer of 5 or more, preferably an integer of 9 or more and 29 or less, and more preferably an integer of 9 or more and 19 or less.
-(CH2)l-CH3 一般式(III)
前記一般式(III)中、lは、5以上の整数を表し、9以上29以下の整数が好ましく、9以上19以下の整数がより好ましい。 Examples of the R 1 and R 2 in the general formula (A), the R in the general formula (B), the R in the general formula (C), and the R in the general formula (D) include: Examples include groups represented by the following general formula (III).
— (CH 2 ) 1 —CH 3 General Formula (III)
In the general formula (III), l represents an integer of 5 or more, preferably an integer of 9 or more and 29 or less, and more preferably an integer of 9 or more and 19 or less.
前記一般式(D)における前記R1、及び前記R2が、炭化水素基の場合、その炭素数としては、特に制限はなく、目的に応じて適宜選択することができるが、炭素数1~10が好ましく、炭素数1~6がより好ましい。
When R 1 and R 2 in the general formula (D) are hydrocarbon groups, the carbon number thereof is not particularly limited and may be appropriately selected depending on the intended purpose. 10 is preferable, and 1 to 6 carbon atoms is more preferable.
前記nとしては、1以上の整数であり、1以上10以下の整数が好ましく、1以上6以下の整数がより好ましい。
N is an integer of 1 or more, preferably an integer of 1 to 10, and more preferably an integer of 1 to 6.
前記一般式(A)で表される共役酸としては、例えば、下記一般式(A-1)で表される共役酸などが挙げられる。
ただし、前記一般式(A-1)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
Examples of the conjugate acid represented by the general formula (A) include conjugate acids represented by the following general formula (A-1).
In the general formula (A-1), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents an integer of 1 or more.
<<イオン液体の好適例>>
前記イオン液体としては、下記一般式(1)で表されるイオン液体、下記一般式(2)表されるイオン液体、下記一般式(3)で表されるイオン液体、及び下記一般式(4)で表されるイオン液体が好ましい。
ただし、前記一般式(1)中、A-は、共役塩基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭素数が6以上の直鎖状の炭化水素基を含む基のいずれかを表し、nは、1以上の整数を表す。ただし、R1、及びR2の少なくともいずれかは、炭素数が6以上の直鎖状の炭化水素基を含む基である。
ただし、前記一般式(2)中、A-は、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(3)中、A-は、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(4)中、A-は、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。 << Preferred example of ionic liquid >>
As the ionic liquid, an ionic liquid represented by the following general formula (1), an ionic liquid represented by the following general formula (2), an ionic liquid represented by the following general formula (3), and the following general formula (4) The ionic liquid represented by this is preferable.
However, in the general formula (1), A − represents a conjugate base, and R 1 and R 2 each independently represent a hydrogen atom and a linear hydrocarbon group having 6 or more carbon atoms. Any one of the groups to be included, and n represents an integer of 1 or more. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, the general formula (2), A - represents a conjugate base, R represents the number of carbon atoms represents a group containing 6 or more straight chain hydrocarbon group, n is an integer of 1 or more .
Provided that said Chu general formula (3), A - represents a conjugate base, R represents the number of carbon atoms represents a group containing 6 or more straight chain hydrocarbon group, n is an integer of 1 or more .
However, in the general formula (4), A − represents a conjugate base, R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 1 and R 2 are respectively Independently, it represents either a hydrogen atom or a hydrocarbon group, and n represents an integer of 1 or more.
前記イオン液体としては、下記一般式(1)で表されるイオン液体、下記一般式(2)表されるイオン液体、下記一般式(3)で表されるイオン液体、及び下記一般式(4)で表されるイオン液体が好ましい。
ただし、前記一般式(2)中、A-は、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(3)中、A-は、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(4)中、A-は、共役塩基を表し、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。 << Preferred example of ionic liquid >>
As the ionic liquid, an ionic liquid represented by the following general formula (1), an ionic liquid represented by the following general formula (2), an ionic liquid represented by the following general formula (3), and the following general formula (4) The ionic liquid represented by this is preferable.
However, the general formula (2), A - represents a conjugate base, R represents the number of carbon atoms represents a group containing 6 or more straight chain hydrocarbon group, n is an integer of 1 or more .
Provided that said Chu general formula (3), A - represents a conjugate base, R represents the number of carbon atoms represents a group containing 6 or more straight chain hydrocarbon group, n is an integer of 1 or more .
However, in the general formula (4), A − represents a conjugate base, R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 1 and R 2 are respectively Independently, it represents either a hydrogen atom or a hydrocarbon group, and n represents an integer of 1 or more.
前記一般式(1)で表されるイオン液体としては、下記一般式(1-1)で表されるイオン液体、及び下記一般式(1-2)で表されるイオン液体が好ましい。
ただし、前記一般式(1-1)中、R1、及びR2は、それぞれ独立して、水素原子、及び炭素数が6以上の直鎖状の炭化水素基を含む基のいずれかを表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。ただし、R1、及びR2の少なくともいずれかは、炭素数が6以上の直鎖状の炭化水素基を含む基である。
ただし、前記一般式(1-2)中、R1、及びR2は、それぞれ独立して、水素原子、及び炭素数が6以上の直鎖状の炭化水素基を含む基のいずれかを表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。ただし、R1、及びR2の少なくともいずれかは、炭素数が6以上の直鎖状の炭化水素基を含む基である。 As the ionic liquid represented by the general formula (1), an ionic liquid represented by the following general formula (1-1) and an ionic liquid represented by the following general formula (1-2) are preferable.
However, in the general formula (1-1), R 1 and R 2 each independently represent either a hydrogen atom or a group containing a linear hydrocarbon group having 6 or more carbon atoms. , N represents an integer of 1 or more, and l represents an integer of 1 to 12. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (1-2), R 1 and R 2 each independently represent either a hydrogen atom or a group containing a linear hydrocarbon group having 6 or more carbon atoms. , N represents an integer of 1 or more, and l represents an integer of 1 to 12. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
ただし、前記一般式(1-2)中、R1、及びR2は、それぞれ独立して、水素原子、及び炭素数が6以上の直鎖状の炭化水素基を含む基のいずれかを表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。ただし、R1、及びR2の少なくともいずれかは、炭素数が6以上の直鎖状の炭化水素基を含む基である。 As the ionic liquid represented by the general formula (1), an ionic liquid represented by the following general formula (1-1) and an ionic liquid represented by the following general formula (1-2) are preferable.
However, in the general formula (1-2), R 1 and R 2 each independently represent either a hydrogen atom or a group containing a linear hydrocarbon group having 6 or more carbon atoms. , N represents an integer of 1 or more, and l represents an integer of 1 to 12. However, at least one of R 1 and R 2 is a group containing a linear hydrocarbon group having 6 or more carbon atoms.
前記一般式(2)で表されるイオン液体としては、下記一般式(2-1)で表されるイオン液体、下記一般式(2-2)で表されるイオン液体が好ましい。これらの中でも、フッ素系溶媒への溶解性が優れる点で、下記一般式(2-2)で表されるイオン液体がより好ましい。
ただし、前記一般式(2-1)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。
ただし、前記一般式(2-2)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。 As the ionic liquid represented by the general formula (2), an ionic liquid represented by the following general formula (2-1) and an ionic liquid represented by the following general formula (2-2) are preferable. Among these, an ionic liquid represented by the following general formula (2-2) is more preferable from the viewpoint of excellent solubility in a fluorine-based solvent.
In the general formula (2-1), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, n represents an integer of 1 or more, and l represents 1 to 12 Represents the following integers:
In the general formula (2-2), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, n represents an integer of 1 or more, and l represents 1 or more and 12 Represents the following integers:
ただし、前記一般式(2-2)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。 As the ionic liquid represented by the general formula (2), an ionic liquid represented by the following general formula (2-1) and an ionic liquid represented by the following general formula (2-2) are preferable. Among these, an ionic liquid represented by the following general formula (2-2) is more preferable from the viewpoint of excellent solubility in a fluorine-based solvent.
In the general formula (2-2), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, n represents an integer of 1 or more, and l represents 1 or more and 12 Represents the following integers:
前記一般式(3)で表されるイオン液体としては、下記一般式(3-1)で表されるイオン液体、及び下記一般式(3-2)で表されるイオン液体が、フッ素系溶媒への溶解性に優れる点で、好ましい。
ただし、前記一般式(3-1)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。
ただし、前記一般式(3-2)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。 Examples of the ionic liquid represented by the general formula (3) include an ionic liquid represented by the following general formula (3-1) and an ionic liquid represented by the following general formula (3-2). It is preferable at the point which is excellent in the solubility to.
In the general formula (3-1), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, n represents an integer of 1 or more, and l represents 1 or more and 12 Represents the following integers:
In the general formula (3-2), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, n represents an integer of 1 or more, and l represents 1 or more and 12 Represents the following integers:
ただし、前記一般式(3-2)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。 Examples of the ionic liquid represented by the general formula (3) include an ionic liquid represented by the following general formula (3-1) and an ionic liquid represented by the following general formula (3-2). It is preferable at the point which is excellent in the solubility to.
In the general formula (3-2), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, n represents an integer of 1 or more, and l represents 1 or more and 12 Represents the following integers:
前記一般式(4)で表されるイオン液体としては、下記一般式(4-1)で表されるイオン液体、及び下記一般式(4-2)で表されるイオン液体が、フッ素系溶媒への溶解性に優れる点で、好ましい。
ただし、前記一般式(4-1)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。
ただし、前記一般式(4-2)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。 Examples of the ionic liquid represented by the general formula (4) include an ionic liquid represented by the following general formula (4-1) and an ionic liquid represented by the following general formula (4-2). It is preferable at the point which is excellent in the solubility to.
However, in the general formula (4-1), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 1 and R 2 are each independently a hydrogen atom, And n represents an integer of 1 or more, and l represents an integer of 1 or more and 12 or less.
In the general formula (4-2), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 1 and R 2 are each independently a hydrogen atom, And n represents an integer of 1 or more, and l represents an integer of 1 or more and 12 or less.
ただし、前記一般式(4-2)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表し、lは、1以上12以下の整数を表す。 Examples of the ionic liquid represented by the general formula (4) include an ionic liquid represented by the following general formula (4-1) and an ionic liquid represented by the following general formula (4-2). It is preferable at the point which is excellent in the solubility to.
In the general formula (4-2), R represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 1 and R 2 are each independently a hydrogen atom, And n represents an integer of 1 or more, and l represents an integer of 1 or more and 12 or less.
前記イオン液体の一般式におけるRの好ましい範囲は、対応する前記共役酸の一般式のRの好ましい範囲と同じである。
前記一般式(1)で表されるイオン液体、前記一般式(1-1)で表されるイオン液体、前記一般式(1-2)で表されるイオン液体におけるR1及びR2の好ましい範囲は、対応する前記一般式(A)で表される共役酸のR1及びR2の好ましい範囲と同じである。
前記一般式(4)で表されるイオン液体、前記一般式(4-1)で表されるイオン液体、前記一般式(4-2)で表されるイオン液体におけるR1及びR2の好ましい範囲は、対応する前記一般式(D)で表される共役酸のR1及びR2の好ましい範囲と同じである。
前記イオン液体の一般式におけるnの好ましい範囲は、対応する前記共役酸の一般式のnの好ましい範囲と同じである。
前記イオン液体の一般式におけるlの好ましい範囲は、対応する前記共役塩基の一般式のlの好ましい範囲と同じである。 The preferable range of R in the general formula of the ionic liquid is the same as the preferable range of R in the general formula of the corresponding conjugate acid.
R 1 and R 2 in the ionic liquid represented by the general formula (1), the ionic liquid represented by the general formula (1-1), and the ionic liquid represented by the general formula (1-2) are preferable. The range is the same as the preferable range of R 1 and R 2 of the conjugate acid represented by the corresponding general formula (A).
R 1 and R 2 in the ionic liquid represented by the general formula (4), the ionic liquid represented by the general formula (4-1), and the ionic liquid represented by the general formula (4-2) are preferable. The range is the same as the preferable range of R 1 and R 2 of the conjugate acid represented by the corresponding general formula (D).
The preferable range of n in the general formula of the ionic liquid is the same as the preferable range of n of the corresponding general formula of the conjugate acid.
The preferable range of l in the general formula of the ionic liquid is the same as the preferable range of l of the corresponding general formula of the conjugate base.
前記一般式(1)で表されるイオン液体、前記一般式(1-1)で表されるイオン液体、前記一般式(1-2)で表されるイオン液体におけるR1及びR2の好ましい範囲は、対応する前記一般式(A)で表される共役酸のR1及びR2の好ましい範囲と同じである。
前記一般式(4)で表されるイオン液体、前記一般式(4-1)で表されるイオン液体、前記一般式(4-2)で表されるイオン液体におけるR1及びR2の好ましい範囲は、対応する前記一般式(D)で表される共役酸のR1及びR2の好ましい範囲と同じである。
前記イオン液体の一般式におけるnの好ましい範囲は、対応する前記共役酸の一般式のnの好ましい範囲と同じである。
前記イオン液体の一般式におけるlの好ましい範囲は、対応する前記共役塩基の一般式のlの好ましい範囲と同じである。 The preferable range of R in the general formula of the ionic liquid is the same as the preferable range of R in the general formula of the corresponding conjugate acid.
R 1 and R 2 in the ionic liquid represented by the general formula (1), the ionic liquid represented by the general formula (1-1), and the ionic liquid represented by the general formula (1-2) are preferable. The range is the same as the preferable range of R 1 and R 2 of the conjugate acid represented by the corresponding general formula (A).
R 1 and R 2 in the ionic liquid represented by the general formula (4), the ionic liquid represented by the general formula (4-1), and the ionic liquid represented by the general formula (4-2) are preferable. The range is the same as the preferable range of R 1 and R 2 of the conjugate acid represented by the corresponding general formula (D).
The preferable range of n in the general formula of the ionic liquid is the same as the preferable range of n of the corresponding general formula of the conjugate acid.
The preferable range of l in the general formula of the ionic liquid is the same as the preferable range of l of the corresponding general formula of the conjugate base.
前記イオン液体の合成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、以下の実施例に記載の方法を参考にすることで、種々の前記イオン液体を合成することができる。
There is no restriction | limiting in particular as the synthesis | combining method of the said ionic liquid, According to the objective, it can select suitably, For example, various said ionic liquids are synthesize | combined by referring to the method as described in the following Example. be able to.
本実施の形態における潤滑剤は、前述のイオン液体を単独で使用してもよいが、従来公知の潤滑剤と組み合わせて用いてもよい。例えば、長鎖カルボン酸、長鎖カルボン酸エステル、パーフルオロアルキルカルボン酸エステル、カルボン酸パーフルオロアルキルエステル、パーフルオロアルキルカルボン酸パーフルオロアルキルエステル、パーフルオロポリエーテル誘導体などと組み合わせて使用することが可能である。
As the lubricant in the present embodiment, the above-described ionic liquid may be used alone or in combination with a conventionally known lubricant. For example, it can be used in combination with long chain carboxylic acid, long chain carboxylic acid ester, perfluoroalkyl carboxylic acid ester, carboxylic acid perfluoroalkyl ester, perfluoroalkyl carboxylic acid perfluoroalkyl ester, perfluoropolyether derivative, etc. Is possible.
また、厳しい条件で潤滑効果を持続させるために、質量比30:70~70:30程度の配合比で極圧剤を併用してもよい。前記極圧剤は、境界潤滑領域において部分的に金属接触が生じたときに、これに伴う摩擦熱によって金属面と反応し、反応生成物皮膜を形成することにより、摩擦・摩耗防止作用を行うものである。前記極圧剤としては、例えば、リン系極圧剤、イオウ系極圧剤、ハロゲン系極圧剤、有機金属系極圧剤、複合型極圧剤などのいずれも使用できる。
In order to maintain the lubricating effect under severe conditions, an extreme pressure agent may be used in combination at a mass ratio of about 30:70 to 70:30. The extreme pressure agent acts to prevent friction and wear by forming a reaction product film by reacting with the metal surface due to frictional heat generated when metal contact occurs partially in the boundary lubrication region. Is. As the extreme pressure agent, for example, any of a phosphorus extreme pressure agent, a sulfur extreme pressure agent, a halogen extreme pressure agent, an organometallic extreme pressure agent, a composite extreme pressure agent, and the like can be used.
また、必要に応じて防錆剤を併用してもよい。前記防錆剤としては、通常この種の磁気記録媒体の防錆剤として使用可能であるものであればよく、例えば、フェノール類、ナフトール類、キノン類、窒素原子を含む複素環化合物、酸素原子を含む複素環化合物、硫黄原子を含む複素環化合物などが挙げられる。また、前記防錆剤は、潤滑剤として混合して用いてもよいが、非磁性支持体上に磁性層を形成し、その上部に防錆剤層を塗布した後、潤滑剤層を塗布するというように、2層以上に分けて被着してもよい。
Moreover, you may use a rust preventive together as needed. The rust inhibitor may be any rust inhibitor that can be used as a rust inhibitor for this type of magnetic recording medium. For example, phenols, naphthols, quinones, heterocyclic compounds containing nitrogen atoms, oxygen atoms And heterocyclic compounds containing sulfur atoms, and the like. The rust preventive agent may be used as a lubricant, but a magnetic layer is formed on a nonmagnetic support, a rust preventive layer is applied thereon, and then a lubricant layer is applied. Thus, it may be applied in two or more layers.
また、前記潤滑剤の溶媒としては、例えば、イソプロピルアルコール(IPA)、エタノール等のアルコール系溶媒などから単独又は組み合わせて使用することができる。例えば、ノルマルヘキサンのような炭化水素系溶剤やフッ素系溶媒を混合しても使用することができる。
前記溶媒としては、フッ素系溶媒が好ましい。前記フッ素系溶媒としては、例えば、ハイドロフルオロエーテル〔例えば、C3F7OCH3、C4F9OCH3、C4F9OC2H5、C2F5CF(OCH3)C3F7、CF3(CHF)2CF2CF3〕などが挙げられるが、それにIPAやエタノールあるいはメタノール等のアルコールを混合して用いても良い。
前記フッ素系溶媒は、市販品であってもよい。前記市販品としては、例えば、3M社製のNovecTM 7000、7100、7200、7300、71IPA、三井・デュポン フロロケミカル株式会社製のVertrel XF、X-P10などが挙げられる。 In addition, as the solvent for the lubricant, for example, alcohol solvents such as isopropyl alcohol (IPA) and ethanol can be used alone or in combination. For example, it can be used by mixing a hydrocarbon solvent such as normal hexane or a fluorine solvent.
As the solvent, a fluorine-based solvent is preferable. Examples of the fluorine-based solvent include hydrofluoroethers [for example, C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F 7 , CF 3 (CHF) 2 CF 2 CF 3 ], etc., and alcohols such as IPA, ethanol or methanol may be used in combination.
The fluorinated solvent may be a commercially available product. Examples of the commercially available products include Novec ™ 7000, 7100, 7200, 7300, 71IPA manufactured by 3M, Vertrel XF, X-P10 manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and the like.
前記溶媒としては、フッ素系溶媒が好ましい。前記フッ素系溶媒としては、例えば、ハイドロフルオロエーテル〔例えば、C3F7OCH3、C4F9OCH3、C4F9OC2H5、C2F5CF(OCH3)C3F7、CF3(CHF)2CF2CF3〕などが挙げられるが、それにIPAやエタノールあるいはメタノール等のアルコールを混合して用いても良い。
前記フッ素系溶媒は、市販品であってもよい。前記市販品としては、例えば、3M社製のNovecTM 7000、7100、7200、7300、71IPA、三井・デュポン フロロケミカル株式会社製のVertrel XF、X-P10などが挙げられる。 In addition, as the solvent for the lubricant, for example, alcohol solvents such as isopropyl alcohol (IPA) and ethanol can be used alone or in combination. For example, it can be used by mixing a hydrocarbon solvent such as normal hexane or a fluorine solvent.
As the solvent, a fluorine-based solvent is preferable. Examples of the fluorine-based solvent include hydrofluoroethers [for example, C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F 7 , CF 3 (CHF) 2 CF 2 CF 3 ], etc., and alcohols such as IPA, ethanol or methanol may be used in combination.
The fluorinated solvent may be a commercially available product. Examples of the commercially available products include Novec ™ 7000, 7100, 7200, 7300, 71IPA manufactured by 3M, Vertrel XF, X-P10 manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and the like.
<2.磁気記録媒体>
次に、前述の潤滑剤を用いた磁気記録媒体について説明する。本発明の一実施形態として示す磁気記録媒体は、非磁性支持体上に少なくとも磁性層を有してなり、前記磁性層に前述の潤滑剤を保有してなるものである。 <2. Magnetic recording media>
Next, a magnetic recording medium using the above-described lubricant will be described. A magnetic recording medium shown as an embodiment of the present invention has at least a magnetic layer on a nonmagnetic support, and the magnetic layer contains the above-mentioned lubricant.
次に、前述の潤滑剤を用いた磁気記録媒体について説明する。本発明の一実施形態として示す磁気記録媒体は、非磁性支持体上に少なくとも磁性層を有してなり、前記磁性層に前述の潤滑剤を保有してなるものである。 <2. Magnetic recording media>
Next, a magnetic recording medium using the above-described lubricant will be described. A magnetic recording medium shown as an embodiment of the present invention has at least a magnetic layer on a nonmagnetic support, and the magnetic layer contains the above-mentioned lubricant.
本実施の形態における潤滑剤は、磁性層が非磁性支持体表面に蒸着やスパッタリング等の手法により形成された、所謂、金属薄膜型の磁気記録媒体に適用することが可能である。また、非磁性支持体と磁性層との間に下地層を介した構成の磁気記録媒体にも適用することもできる。このような磁気記録媒体としては、磁気ディスク、磁気テープなどを挙げることができる
The lubricant in the present embodiment can be applied to a so-called metal thin film type magnetic recording medium in which a magnetic layer is formed on the surface of a nonmagnetic support by a technique such as vapor deposition or sputtering. The present invention can also be applied to a magnetic recording medium having a configuration in which an underlayer is interposed between a nonmagnetic support and a magnetic layer. Examples of such a magnetic recording medium include a magnetic disk and a magnetic tape.
図4は、ハードディスクの一例を示す断面図である。このハードディスクは、基板11と、下地層12と、磁性層13と、カーボン保護層14と、潤滑剤層15とが順次積層された構造を有する。
FIG. 4 is a cross-sectional view showing an example of a hard disk. This hard disk has a structure in which a substrate 11, an underlayer 12, a magnetic layer 13, a carbon protective layer 14, and a lubricant layer 15 are sequentially laminated.
また、図5は、磁気テープの一例を示す断面図である。この磁気テープは、バックコート層25と、基板21と、磁性層22と、カーボン保護層23と、潤滑剤層24とが順次積層された構造を有する。
FIG. 5 is a cross-sectional view showing an example of a magnetic tape. This magnetic tape has a structure in which a backcoat layer 25, a substrate 21, a magnetic layer 22, a carbon protective layer 23, and a lubricant layer 24 are sequentially laminated.
図4に示す磁気ディスクにおいて、非磁性支持体は、基板11、下地層12が該当し、図5に示す磁気テープにおいて、非磁性支持体は、基板21が該当する。非磁性支持体として、Al合金板やガラス板等の剛性を有する基板を使用した場合、基板表面にアルマイト処理等の酸化皮膜やNi-P皮膜等を形成して、その表面を硬くしてもよい。
In the magnetic disk shown in FIG. 4, the nonmagnetic support corresponds to the substrate 11 and the underlayer 12, and in the magnetic tape shown in FIG. 5, the nonmagnetic support corresponds to the substrate 21. When a rigid substrate such as an Al alloy plate or a glass plate is used as the nonmagnetic support, an oxide film such as an alumite treatment or Ni-P film may be formed on the substrate surface to harden the surface. Good.
磁性層13、22は、メッキ、スパッタリング、真空蒸着、プラズマCVD等の手法により、連続膜として形成される。磁性層13、22としては、Fe、Co、Ni等の金属や、Co-Ni系合金、Co-Pt系合金、Co-Ni-Pt系合金、Fe-Co系合金、Fe-Ni系合金、Fe-Co-Ni系合金、Fe-Ni-B系合金、Fe-Co-B系合金、Fe-Co-Ni-B系合金等からなる面内磁化記録金属磁性膜や、Co-Cr系合金薄膜、Co-O系薄膜等の垂直磁化記録金属磁性薄膜が例示される。
The magnetic layers 13 and 22 are formed as a continuous film by a technique such as plating, sputtering, vacuum deposition, or plasma CVD. The magnetic layers 13 and 22 include metals such as Fe, Co, Ni, Co—Ni alloys, Co—Pt alloys, Co—Ni—Pt alloys, Fe—Co alloys, Fe—Ni alloys, In-plane magnetization recording metal magnetic film made of Fe—Co—Ni alloy, Fe—Ni—B alloy, Fe—Co—B alloy, Fe—Co—Ni—B alloy, etc., Co—Cr alloy Examples thereof include perpendicular magnetic recording metal magnetic thin films such as thin films and Co—O thin films.
特に、面内磁化記録金属磁性薄膜を形成する場合、予め非磁性支持体上にBi、Sb、Pb、Sn、Ga、In、Ge、Si、Tl等の非磁性材料を、下地層12として形成しておき、金属磁性材料を垂直方向から蒸着あるいはスパッタし、磁性金属薄膜中にこれら非磁性材料を拡散せしめ、配向性を解消して面内等方性を確保するとともに、抗磁力を向上するようにしてもよい。
In particular, when an in-plane magnetization recording metal magnetic thin film is formed, a nonmagnetic material such as Bi, Sb, Pb, Sn, Ga, In, Ge, Si, or Tl is previously formed on the nonmagnetic support as the underlayer 12. In addition, metal magnetic materials are vapor-deposited or sputtered from the vertical direction, and these non-magnetic materials are diffused in the magnetic metal thin film to eliminate orientation and ensure in-plane isotropy and improve coercive force. You may do it.
また、磁性層13、22の表面に、カーボン膜、ダイヤモンド状カーボン膜、酸化クロム膜、SiO2膜等の硬質な保護層14、23を形成してもよい。
Further, hard protective layers 14 and 23 such as a carbon film, a diamond-like carbon film, a chromium oxide film, and a SiO 2 film may be formed on the surfaces of the magnetic layers 13 and 22.
このような金属薄膜型の磁気記録媒体に前述の潤滑剤を保有させる方法としては、図4及び図5に示すように、磁性層13、22の表面や、保護層14、23の表面にトップコートする方法が挙げられる。潤滑剤の塗布量としては、0.1mg/m2~100mg/m2であることが好ましく、0.5mg/m2~30mg/m2であることがより好ましく、0.5mg/m2~20mg/m2であることが特に好ましい。
As a method of retaining the above-mentioned lubricant in such a metal thin film type magnetic recording medium, as shown in FIG. 4 and FIG. 5, the top surface of the magnetic layers 13 and 22 or the surface of the protective layers 14 and 23 is used. The method of coating is mentioned. The coating amount of the lubricant is preferably 0.1 mg / m 2 to 100 mg / m 2 , more preferably 0.5 mg / m 2 to 30 mg / m 2 , and 0.5 mg / m 2 to Particularly preferred is 20 mg / m 2 .
また、図5に示すように、金属薄膜型の磁気テープは、磁性層22である金属磁性薄膜の他に、バックコート層25が必要に応じて形成されていてもよい。
Further, as shown in FIG. 5, in the metal thin film type magnetic tape, in addition to the metal magnetic thin film as the magnetic layer 22, a back coat layer 25 may be formed as necessary.
バックコート層25は、樹脂結合剤に導電性を付与するためのカーボン系微粉末や表面粗度をコントロールするための無機顔料を添加し塗布形成されるものである。本実施の形態においては、前述の潤滑剤を、バックコート層25に内添又はトップコートにより含有させてもよい。また、前述の潤滑剤を、磁性層22とバックコート層25のいずれにも内添、トップコートにより含有させてもよい。
The back coat layer 25 is formed by adding a carbon-based fine powder for imparting conductivity to the resin binder and an inorganic pigment for controlling the surface roughness. In the present embodiment, the aforementioned lubricant may be added to the back coat layer 25 by internal addition or top coat. Further, the above-described lubricant may be added to both the magnetic layer 22 and the back coat layer 25 by internal addition or top coat.
また、他の実施の形態として、磁性塗料を非磁性支持体表面に塗布することにより磁性塗膜が磁性層として形成される、所謂、塗布型の磁気記録媒体にも潤滑剤の適用が可能である。塗布型の磁気記録媒体において、非磁性支持体や磁性塗膜を構成する磁性粉末、樹脂結合剤などは、従来公知のものがいずれも使用可能である。
As another embodiment, the lubricant can be applied to a so-called coating type magnetic recording medium in which a magnetic coating film is formed as a magnetic layer by applying a magnetic paint to the surface of a nonmagnetic support. is there. In the coating-type magnetic recording medium, any conventionally known magnetic powder, resin binder and the like constituting the nonmagnetic support, the magnetic coating film, and the like can be used.
例えば、前記非磁性支持体としては、例えば、ポリエステル類、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、ポリイミド類、ポリアミド類、ポリカーボネート等に代表されるような高分子材料により形成される高分子支持体や、アルミニウム合金、チタン合金等からなる金属基板、アルミナガラス等からなるセラミックス基板、ガラス基板などが例示される。また、その形状も何ら限定されるものではなく、テープ状、シート状、ドラム状等、如何なる形態であってもよい。さらに、この非磁性支持体には、その表面性をコントロールするために、微細な凹凸が形成されるような表面処理が施されたものであってもよい。
For example, as the nonmagnetic support, for example, a polymer support formed of a polymer material typified by polyesters, polyolefins, cellulose derivatives, vinyl resins, polyimides, polyamides, polycarbonates and the like. Examples thereof include metal substrates made of aluminum alloy, titanium alloy, etc., ceramics substrates made of alumina glass, etc., glass substrates, and the like. Moreover, the shape is not limited at all, and any shape such as a tape shape, a sheet shape, or a drum shape may be used. Further, the non-magnetic support may be subjected to a surface treatment so as to form fine irregularities in order to control the surface property.
前記磁性粉末としては、γ-Fe2O3、コバルト被着γ-Fe2O3等の強磁性酸化鉄系粒子、強磁性二酸化クロム系粒子、Fe、Co、Ni等の金属や、これらを含んだ合金からなる強磁性金属系粒子、六角板状の六方晶系フェライト微粒子等が例示される。
Examples of the magnetic powder include ferromagnetic iron oxide particles such as γ-Fe 2 O 3 and cobalt-coated γ-Fe 2 O 3 , ferromagnetic chromium dioxide particles, metals such as Fe, Co, Ni, and the like. Examples thereof include ferromagnetic metal particles made of an alloy containing hexagonal plate-like ferrite fine particles.
前記樹脂結合剤としては、塩化ビニル、酢酸ビニル、ビニルアルコール、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、ブタジエン、アクリロニトリル等の重合体、あるいはこれら二種以上を組み合わせた共重合体、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂等が例示される。これら結合剤には、磁性粉末の分散性を改善するために、カルボン酸基やカルボキシル基、リン酸基等の親水性極性基が導入されてもよい。
Examples of the resin binder include vinyl chloride, vinyl acetate, vinyl alcohol, vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, butadiene, acrylonitrile, or a combination of these two or more, polyurethane Resins, polyester resins, epoxy resins and the like are exemplified. In these binders, a hydrophilic polar group such as a carboxylic acid group, a carboxyl group or a phosphoric acid group may be introduced in order to improve the dispersibility of the magnetic powder.
前記磁性塗膜には、前記の磁性粉末、樹脂結合剤の他、添加剤として分散剤、研磨剤、帯電防止剤、防錆剤等が加えられてもよい。
In addition to the magnetic powder and the resin binder, a dispersant, an abrasive, an antistatic agent, an antirust agent, and the like may be added to the magnetic coating film as an additive.
このような塗布型の磁気記録媒体に前述の潤滑剤を保有させる方法としては、前記非磁性支持体上に形成される前記磁性塗膜を構成する前記磁性層中に内添する方法、前記磁性層の表面にトップコートする方法、若しくはこれら両者の併用等がある。また、前記潤滑剤を前記磁性塗膜中に内添する場合には、前記樹脂結合剤100質量部に対して0.2質量部~20質量部の範囲で添加される。
Examples of a method for retaining the lubricant in such a coating type magnetic recording medium include a method of internally adding the magnetic layer constituting the magnetic coating film formed on the nonmagnetic support, There is a method of top-coating the surface of the layer, or a combination of both. When the lubricant is internally added to the magnetic coating film, it is added in the range of 0.2 to 20 parts by mass with respect to 100 parts by mass of the resin binder.
また、前記潤滑剤を前記磁性層の表面にトップコートする場合には、その塗布量は0.1mg/m2~100mg/m2であることが好ましく、0.5mg/m2~20mg/m2であることがより好ましい。なお、前記潤滑剤をトップコートする場合の被着方法としては、イオン液体を溶媒に溶解し、得られた溶液を塗布若しくは噴霧するか、又はこの溶液中に磁気記録媒体を浸漬すればよい。
Further, when the lubricant is top-coated on the surface of the magnetic layer, the coating amount is preferably 0.1 mg / m 2 to 100 mg / m 2 , and 0.5 mg / m 2 to 20 mg / m 2. 2 is more preferable. In addition, as a deposition method when the lubricant is top-coated, an ionic liquid is dissolved in a solvent, and the obtained solution is applied or sprayed, or a magnetic recording medium is immersed in this solution.
本実施の形態における潤滑剤を適用した磁気記録媒体は、潤滑作用により、優れた走行性、耐摩耗性、耐久性等を発揮し、さらに、熱的安定性を向上させることができる。
The magnetic recording medium to which the lubricant in the present embodiment is applied exhibits excellent running performance, wear resistance, durability, and the like due to the lubricating action, and can further improve the thermal stability.
<3.実施例>
以下、本発明の具体的な実施例について説明する。本実施例では、イオン液体を合成し、イオン液体を含有する潤滑剤を作製した。そして、まずはフッ素系溶媒であるバートレル〔CF3(CHF)2CF2CF3〕への溶解性について調べた。その潤滑剤溶液を用いて磁気ディスク及び磁気テープの表面に塗布して、それぞれディスク耐久性及びテープ耐久性について評価した。磁気ディスクの製造、ディスク耐久性試験、磁気テープの製造、及びテープ耐久性試験は、次のように行った。なお、本発明は、これらの実施例に限定されるものではない。 <3. Example>
Hereinafter, specific examples of the present invention will be described. In this example, an ionic liquid was synthesized to produce a lubricant containing the ionic liquid. First, the solubility in Bertrell [CF 3 (CHF) 2 CF 2 CF 3 ], which is a fluorine-based solvent, was examined. The lubricant solution was applied to the surfaces of a magnetic disk and a magnetic tape, and the disk durability and tape durability were evaluated, respectively. The production of the magnetic disk, the disk durability test, the production of the magnetic tape, and the tape durability test were performed as follows. The present invention is not limited to these examples.
以下、本発明の具体的な実施例について説明する。本実施例では、イオン液体を合成し、イオン液体を含有する潤滑剤を作製した。そして、まずはフッ素系溶媒であるバートレル〔CF3(CHF)2CF2CF3〕への溶解性について調べた。その潤滑剤溶液を用いて磁気ディスク及び磁気テープの表面に塗布して、それぞれディスク耐久性及びテープ耐久性について評価した。磁気ディスクの製造、ディスク耐久性試験、磁気テープの製造、及びテープ耐久性試験は、次のように行った。なお、本発明は、これらの実施例に限定されるものではない。 <3. Example>
Hereinafter, specific examples of the present invention will be described. In this example, an ionic liquid was synthesized to produce a lubricant containing the ionic liquid. First, the solubility in Bertrell [CF 3 (CHF) 2 CF 2 CF 3 ], which is a fluorine-based solvent, was examined. The lubricant solution was applied to the surfaces of a magnetic disk and a magnetic tape, and the disk durability and tape durability were evaluated, respectively. The production of the magnetic disk, the disk durability test, the production of the magnetic tape, and the tape durability test were performed as follows. The present invention is not limited to these examples.
<磁気ディスクの製造>
例えば、国際公開第2005/068589号公報に従って、ガラス基板上に磁性薄膜を形成し、図4に示すような磁気ディスクを作製した。具体的には、アルミシリケートガラスからなる外径65mm、内径20mm、ディスク厚0.635mmの化学強化ガラスディスクを準備し、その表面をRmaxが4.8nm、Raが0.43nmになるように研磨した。ガラス基板を純水及び純度99.9%以上のイソプロピルアルコール(IPA)中で、それぞれ5分間超音波洗浄を行い、IPA飽和蒸気内に1.5分間放置後、乾燥させ、これを基板11とした。 <Manufacture of magnetic disks>
For example, in accordance with International Publication No. 2005/068589, a magnetic thin film was formed on a glass substrate to produce a magnetic disk as shown in FIG. Specifically, a chemically strengthened glass disk made of aluminum silicate glass with an outer diameter of 65 mm, an inner diameter of 20 mm, and a disk thickness of 0.635 mm is prepared, and the surface is polished so that Rmax is 4.8 nm and Ra is 0.43 nm. did. The glass substrate was subjected to ultrasonic cleaning in pure water and isopropyl alcohol (IPA) having a purity of 99.9% or more for 5 minutes each, left in IPA saturated vapor for 1.5 minutes and then dried. did.
例えば、国際公開第2005/068589号公報に従って、ガラス基板上に磁性薄膜を形成し、図4に示すような磁気ディスクを作製した。具体的には、アルミシリケートガラスからなる外径65mm、内径20mm、ディスク厚0.635mmの化学強化ガラスディスクを準備し、その表面をRmaxが4.8nm、Raが0.43nmになるように研磨した。ガラス基板を純水及び純度99.9%以上のイソプロピルアルコール(IPA)中で、それぞれ5分間超音波洗浄を行い、IPA飽和蒸気内に1.5分間放置後、乾燥させ、これを基板11とした。 <Manufacture of magnetic disks>
For example, in accordance with International Publication No. 2005/068589, a magnetic thin film was formed on a glass substrate to produce a magnetic disk as shown in FIG. Specifically, a chemically strengthened glass disk made of aluminum silicate glass with an outer diameter of 65 mm, an inner diameter of 20 mm, and a disk thickness of 0.635 mm is prepared, and the surface is polished so that Rmax is 4.8 nm and Ra is 0.43 nm. did. The glass substrate was subjected to ultrasonic cleaning in pure water and isopropyl alcohol (IPA) having a purity of 99.9% or more for 5 minutes each, left in IPA saturated vapor for 1.5 minutes and then dried. did.
この基板11上に、DCマグネトロンスパッタリング法によりシード層としてNiAl合金(Ni:50モル%、Al:50モル%)薄膜を30nm、下地層12としてCrMo合金(Cr:80モル%、Mo:20モル%)薄膜を8nm、磁性層13としてCoCrPtB合金(Co:62モル%、Cr:20モル%、Pt:12モル%、B:6モル%)薄膜を15nmとなるように順次形成した。
On this substrate 11, a NiAl alloy (Ni: 50 mol%, Al: 50 mol%) thin film is formed as a seed layer by DC magnetron sputtering, and a CrMo alloy (Cr: 80 mol%, Mo: 20 mol) is used as the underlayer 12. %) A thin film having a thickness of 8 nm and a CoCrPtB alloy (Co: 62 mol%, Cr: 20 mol%, Pt: 12 mol%, B: 6 mol%) as a magnetic layer 13 were sequentially formed to a thickness of 15 nm.
次に、プラズマCVD法によりアモルファスのダイヤモンドライクカーボンからなるカーボン保護層14を5nm製膜し、そのディスクサンプルを洗浄器内に純度99.9%以上のイソプロピルアルコール(IPA)中で10分間超音波洗浄を行い、ディスク表面上の不純物を取り除いた後に乾燥させた。その後、25℃50%相対湿度(RH)の環境においてディスク表面にイオン液体のn-ヘキサンとエタノールの混合溶媒を用いてディップコート法により塗布することで、潤滑剤層15を約1nm形成した。
Next, a carbon protective layer 14 made of amorphous diamond-like carbon is formed to 5 nm by plasma CVD, and the disk sample is ultrasonicated in isopropyl alcohol (IPA) having a purity of 99.9% or more for 10 minutes in a cleaner. Cleaning was performed to remove impurities on the disk surface, and then drying was performed. After that, the lubricant layer 15 was formed to have a thickness of about 1 nm by applying it to the disk surface by a dip coating method using a mixed solvent of ionic liquid n-hexane and ethanol in an environment of 25 ° C. and 50% relative humidity (RH).
<熱安定性測定>
TG/DTA測定では、セイコーインスツルメント社製EXSTAR6000を使用し、200ml/minの流量で空気中を導入しながら、10℃/minの昇温速度で30℃-600℃の温度範囲で測定を行った。
測定における吸熱ピーク温度を融点とした。 <Thermal stability measurement>
In TG / DTA measurement, EXSTAR6000 manufactured by Seiko Instruments Inc. is used, and measurement is performed in a temperature range of 30 ° C-600 ° C at a temperature increase rate of 10 ° C / min while introducing air at a flow rate of 200 ml / min. went.
The endothermic peak temperature in the measurement was taken as the melting point.
TG/DTA測定では、セイコーインスツルメント社製EXSTAR6000を使用し、200ml/minの流量で空気中を導入しながら、10℃/minの昇温速度で30℃-600℃の温度範囲で測定を行った。
測定における吸熱ピーク温度を融点とした。 <Thermal stability measurement>
In TG / DTA measurement, EXSTAR6000 manufactured by Seiko Instruments Inc. is used, and measurement is performed in a temperature range of 30 ° C-600 ° C at a temperature increase rate of 10 ° C / min while introducing air at a flow rate of 200 ml / min. went.
The endothermic peak temperature in the measurement was taken as the melting point.
<ディスク耐久性試験>
市販のひずみゲージ式ディスク摩擦・摩耗試験機を用いて、ハードディスクを14.7Ncmの締め付けトルクで回転スピンドルに装着後、ヘッドスライダーのハードディスクに対して内周側のエアベアリング面の中心が、ハードディスクの中心より17.5mmになるようにヘッドスライダーをハードディスク上に取り付けCSS耐久試験を行った。本測定に用いたヘッドは、IBM3370タイプのインライン型ヘッドであり、スライダーの材質はAl2O3-TiC、ヘッド荷重は63.7mNである。本試験は、クリーン清浄度100、25℃60%RHの環境下で、CSS(Contact、Start、Stop)毎に摩擦力の最大値をモニターした。摩擦係数が1.0を超えた回数をCSS耐久試験の結果とした。CSS耐久試験の結果において、50,000回を超える場合には「>50,000」と表示した。また、耐熱性を調べるために、200℃の温度で3分間加熱試験を行った後のCSS耐久性試験を同様に行った。 <Disk durability test>
Using a commercially available strain gauge type disk friction and wear tester, after mounting the hard disk on the rotating spindle with a tightening torque of 14.7 Ncm, the center of the air bearing surface on the inner circumference side of the hard disk of the head slider is A head slider was mounted on the hard disk so as to be 17.5 mm from the center, and a CSS durability test was conducted. The head used in this measurement is an IBM 3370 type inline head, the material of the slider is Al 2 O 3 —TiC, and the head load is 63.7 mN. In this test, the maximum value of the frictional force was monitored for each CSS (Contact, Start, Stop) in an environment of clean cleanliness 100 and 25 ° C. 60% RH. The number of times the friction coefficient exceeded 1.0 was taken as the result of the CSS durability test. In the result of the CSS endurance test, when it exceeded 50,000 times, “> 50,000” was displayed. Moreover, in order to investigate heat resistance, the CSS durability test after performing the heat test for 3 minutes at the temperature of 200 degreeC was similarly done.
市販のひずみゲージ式ディスク摩擦・摩耗試験機を用いて、ハードディスクを14.7Ncmの締め付けトルクで回転スピンドルに装着後、ヘッドスライダーのハードディスクに対して内周側のエアベアリング面の中心が、ハードディスクの中心より17.5mmになるようにヘッドスライダーをハードディスク上に取り付けCSS耐久試験を行った。本測定に用いたヘッドは、IBM3370タイプのインライン型ヘッドであり、スライダーの材質はAl2O3-TiC、ヘッド荷重は63.7mNである。本試験は、クリーン清浄度100、25℃60%RHの環境下で、CSS(Contact、Start、Stop)毎に摩擦力の最大値をモニターした。摩擦係数が1.0を超えた回数をCSS耐久試験の結果とした。CSS耐久試験の結果において、50,000回を超える場合には「>50,000」と表示した。また、耐熱性を調べるために、200℃の温度で3分間加熱試験を行った後のCSS耐久性試験を同様に行った。 <Disk durability test>
Using a commercially available strain gauge type disk friction and wear tester, after mounting the hard disk on the rotating spindle with a tightening torque of 14.7 Ncm, the center of the air bearing surface on the inner circumference side of the hard disk of the head slider is A head slider was mounted on the hard disk so as to be 17.5 mm from the center, and a CSS durability test was conducted. The head used in this measurement is an IBM 3370 type inline head, the material of the slider is Al 2 O 3 —TiC, and the head load is 63.7 mN. In this test, the maximum value of the frictional force was monitored for each CSS (Contact, Start, Stop) in an environment of
<磁気テープの製造>
図5に示すような断面構造の磁気テープを作製した。先ず、5μm厚の東レ製ミクトロン(芳香族ポリアミド)フィルムからなる基板21に、斜め蒸着法によりCoを被着させ、膜厚100nmの強磁性金属薄膜からなる磁性層22を形成した。次に、この強磁性金属薄膜表面にプラズマCVD法により10nmのダイヤモンドライクカーボンからなるカーボン保護層23を形成させた後、6ミリ幅に裁断した。このカーボン保護層23上にIPAに溶解したイオン液体を、膜厚が1nm程度となるように塗布して潤滑剤層24を形成し、サンプルテープを作製した。 <Manufacture of magnetic tape>
A magnetic tape having a cross-sectional structure as shown in FIG. 5 was produced. First, Co was deposited on a substrate 21 made of a Toray Mikutron (aromatic polyamide) film having a thickness of 5 μm by an oblique deposition method to form amagnetic layer 22 made of a ferromagnetic metal thin film having a thickness of 100 nm. Next, a carbon protective layer 23 made of 10 nm diamond-like carbon was formed on the surface of the ferromagnetic metal thin film by plasma CVD, and then cut to a width of 6 mm. An ionic liquid dissolved in IPA was applied onto the carbon protective layer 23 so as to have a film thickness of about 1 nm to form a lubricant layer 24, thereby preparing a sample tape.
図5に示すような断面構造の磁気テープを作製した。先ず、5μm厚の東レ製ミクトロン(芳香族ポリアミド)フィルムからなる基板21に、斜め蒸着法によりCoを被着させ、膜厚100nmの強磁性金属薄膜からなる磁性層22を形成した。次に、この強磁性金属薄膜表面にプラズマCVD法により10nmのダイヤモンドライクカーボンからなるカーボン保護層23を形成させた後、6ミリ幅に裁断した。このカーボン保護層23上にIPAに溶解したイオン液体を、膜厚が1nm程度となるように塗布して潤滑剤層24を形成し、サンプルテープを作製した。 <Manufacture of magnetic tape>
A magnetic tape having a cross-sectional structure as shown in FIG. 5 was produced. First, Co was deposited on a substrate 21 made of a Toray Mikutron (aromatic polyamide) film having a thickness of 5 μm by an oblique deposition method to form a
<テープ耐久性試験>
各サンプルテープについて、温度-5℃環境下、温度40℃30%RH環境下のスチル耐久性、並びに、温度-5℃環境下、温度40℃90%RH環境下の摩擦係数及びシャトル耐久性について測定を行った。スチル耐久性は、ポーズ状態での出力が-3dB低下するまでの減衰時間を評価した。シャトル耐久性は、1回につき2分間の繰り返しシャトル走行を行い、出力が3dB低下するまでのシャトル回数で評価した。また、耐熱性を調べるために、100℃の温度で10分間加熱試験を行った後の耐久性試験も同様に行った。 <Tape durability test>
About each sample tape, the still durability under a temperature of -5 ° C and a temperature of 40 ° C and 30% RH, and the friction coefficient and shuttle durability under a temperature of -5 ° C and a temperature of 40 ° C and 90% RH. Measurements were made. For the still durability, the decay time until the output in the pause state decreased by -3 dB was evaluated. Shuttle durability was evaluated by the number of shuttles until the output decreased by 3 dB after repeatedly running the shuttle for 2 minutes each time. Moreover, in order to investigate heat resistance, the durability test after performing the heat test for 10 minutes at the temperature of 100 degreeC was similarly done.
各サンプルテープについて、温度-5℃環境下、温度40℃30%RH環境下のスチル耐久性、並びに、温度-5℃環境下、温度40℃90%RH環境下の摩擦係数及びシャトル耐久性について測定を行った。スチル耐久性は、ポーズ状態での出力が-3dB低下するまでの減衰時間を評価した。シャトル耐久性は、1回につき2分間の繰り返しシャトル走行を行い、出力が3dB低下するまでのシャトル回数で評価した。また、耐熱性を調べるために、100℃の温度で10分間加熱試験を行った後の耐久性試験も同様に行った。 <Tape durability test>
About each sample tape, the still durability under a temperature of -5 ° C and a temperature of 40 ° C and 30% RH, and the friction coefficient and shuttle durability under a temperature of -5 ° C and a temperature of 40 ° C and 90% RH. Measurements were made. For the still durability, the decay time until the output in the pause state decreased by -3 dB was evaluated. Shuttle durability was evaluated by the number of shuttles until the output decreased by 3 dB after repeatedly running the shuttle for 2 minutes each time. Moreover, in order to investigate heat resistance, the durability test after performing the heat test for 10 minutes at the temperature of 100 degreeC was similarly done.
本実施の形態におけるイオン液体は、共役塩基と、共役酸とを有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下である。更には、共役酸(カチオン部分)に炭素数6以上の炭化水素基及び水酸基を含む基を持つことが好ましい。そのようなイオン液体の熱安定性、及び前記イオン液体を用いた磁気記録媒体の耐久性についての影響を調べた。更に、フッ素系溶媒への溶解性について調べた。
The ionic liquid in the present embodiment has a conjugate base and a conjugate acid, and the pKa in acetonitrile of the acid serving as the base of the conjugate base is 10 or less. Furthermore, it is preferable that the conjugate acid (cation moiety) has a group containing a hydrocarbon group having 6 or more carbon atoms and a hydroxyl group. The influence on the thermal stability of such an ionic liquid and the durability of a magnetic recording medium using the ionic liquid was investigated. Furthermore, the solubility in a fluorinated solvent was examined.
(実施例1A)
<ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
Example 1A
<Synthesis of Nonafluorobutanesulfonic Acid-1- 'Hydroxypropyl-3-octadecylimidazolium>
Synthesis of nonafluorobutanesulfonic acid-1-3′hydroxylpropyl-3-octadecylimidazolium was performed according to the following scheme.
<ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of Nonafluorobutanesulfonic Acid-1- 'Hydroxypropyl-3-octadecylimidazolium>
Synthesis of nonafluorobutanesulfonic acid-1-3′hydroxylpropyl-3-octadecylimidazolium was performed according to the following scheme.
1-オクタデシルイミダゾールは、3gのイミダゾールを100mLのアセトニトリルに溶解させ、オクタデシルブロミド14.9gと水酸化カリウム2.51gとを加えて撹拌しながら加熱して4時間還流させて得た。溶媒を除去後、ジクロルメタンで抽出し、カラムクロマトグラフィーで精製した。ガスクロマトグラフィーでの分析したところ98.5%以上の純度であった。
1-octadecyl imidazole was obtained by dissolving 3 g of imidazole in 100 mL of acetonitrile, adding 14.9 g of octadecyl bromide and 2.51 g of potassium hydroxide, heating the mixture with stirring, and refluxing for 4 hours. After removing the solvent, the mixture was extracted with dichloromethane and purified by column chromatography. When analyzed by gas chromatography, the purity was 98.5% or more.
6.13gの1-オクタデシルイミダゾールと3-ブロモプロパノール3.66gとをフラスコに加え、120℃で5.5時間加熱した。常温に戻した後、酢酸エチルを加えて結晶化させた。この結晶を酢酸エチルから再結晶を行い、無色の結晶1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムブロミドを7.66g得た。収率87.1%。
6.13 g of 1-octadecylimidazole and 3.66 g of 3-bromopropanol were added to the flask and heated at 120 ° C. for 5.5 hours. After returning to normal temperature, ethyl acetate was added for crystallization. The crystals were recrystallized from ethyl acetate to obtain 7.66 g of colorless crystals of 1-3'hydroxylpropyl-3-octadecylimidazolium bromide. Yield 87.1%.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.843(t/J=6.8Hz,3H), 1.160-1.350(m,30H), 1.830-1.940(m,2H), 2.095-2.140(m,2H), 3.626(t/J=5.6Hz,2H), 4.276(t/J=7.6Hz,2H), 4.510(t/J=6.4Hz,2H), 7.262-7.271(m,1H), 7.566-7.575(m,1H), 10.225(s,1H)
13C-NMR(CDCl3,δppm);14.080, 22.647, 26.259, 28.962, 29.326, 29.479, 29.623, 29.671, 30.208, 31.884, 32.392, 47.179, 50.245, 57.135, 121.502, 122.480, 137.381 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.843 (t / J = 6.8 Hz, 3H), 1.160-1.350 (m, 30H), 1.830-1.940 (m, 2H) ), 2.095-2.140 (m, 2H), 3.626 (t / J = 5.6 Hz, 2H), 4.276 (t / J = 7.6 Hz, 2H), 4.510 (t /J=6.4 Hz, 2H), 7.262-7.271 (m, 1H), 7.566-7.575 (m, 1H), 10.225 (s, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.080, 22.647, 26.259, 28.962, 29.326, 29.479, 29.623, 29.671, 30.208, 31.844 , 32.392, 47.179, 50.245, 57.135, 121.502, 122.480, 137.381
1H-NMR(CDCl3,δppm);0.843(t/J=6.8Hz,3H), 1.160-1.350(m,30H), 1.830-1.940(m,2H), 2.095-2.140(m,2H), 3.626(t/J=5.6Hz,2H), 4.276(t/J=7.6Hz,2H), 4.510(t/J=6.4Hz,2H), 7.262-7.271(m,1H), 7.566-7.575(m,1H), 10.225(s,1H)
13C-NMR(CDCl3,δppm);14.080, 22.647, 26.259, 28.962, 29.326, 29.479, 29.623, 29.671, 30.208, 31.884, 32.392, 47.179, 50.245, 57.135, 121.502, 122.480, 137.381 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.843 (t / J = 6.8 Hz, 3H), 1.160-1.350 (m, 30H), 1.830-1.940 (m, 2H) ), 2.095-2.140 (m, 2H), 3.626 (t / J = 5.6 Hz, 2H), 4.276 (t / J = 7.6 Hz, 2H), 4.510 (t /J=6.4 Hz, 2H), 7.262-7.271 (m, 1H), 7.566-7.575 (m, 1H), 10.225 (s, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.080, 22.647, 26.259, 28.962, 29.326, 29.479, 29.623, 29.671, 30.208, 31.844 , 32.392, 47.179, 50.245, 57.135, 121.502, 122.480, 137.381
これらのスペクトルから、生成物が1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムブロミドであることが同定された。
From these spectra, the product was identified as 1-3'hydroxylpropyl-3-octadecylimidazolium bromide.
1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムブロミド3.16gを水を加熱して溶解させ、ノナフルオロブタンスルホン酸カリウム塩2.33gの水溶液を加えた。常温で1時間攪拌後、加熱還流を1時間行った。冷却後反応液をジクロルメタンで抽出し、これを硝酸銀テストが陰性になるまで水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を除去して、無色の結晶ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウム4.32gを得た。収率92.6%。
1-3 'hydroxylpropyl-3-octadecylimidazolium bromide 3.16 g was dissolved by heating water, and an aqueous solution of 2.33 g of potassium nonafluorobutanesulfonate was added. After stirring at room temperature for 1 hour, heating under reflux was performed for 1 hour. After cooling, the reaction solution was extracted with dichloromethane and washed thoroughly with water until the silver nitrate test was negative. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed to obtain 4.32 g of colorless crystalline nonafluorobutanesulfonic acid-1-3'hydroxylpropyl-3-octadecylimidazolium. Yield 92.6%.
生成物のFTIR吸収とその帰属を以下に示す。
1133cm-1にSO2結合の対称伸縮振動、1255cm-1にCF2の対称伸縮振動、1352cm-1にSO2結合の逆対称伸縮振動、1469cm-1にCH2の変角振動、1566cm-1にC=Nの対称伸縮振動,2851cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3150cm-1にイミダゾール環のCH伸縮振動、3481cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 bind to 1133cm -1, symmetric stretching vibration of CF 2 to 1255cm -1, antisymmetric stretching vibration of SO 2 bind to 1352cm -1, bending vibration of CH 2 in 1469cm -1, 1566cm -1 C = N symmetric stretching vibration, 2851 cm −1 CH 2 symmetric stretching vibration, 2920 cm −1 CH 2 inverse symmetric stretching vibration, 3150 cm −1 imidazole ring CH stretching vibration, and 3481 cm −1 OH stretching vibration. Vibration was seen.
1133cm-1にSO2結合の対称伸縮振動、1255cm-1にCF2の対称伸縮振動、1352cm-1にSO2結合の逆対称伸縮振動、1469cm-1にCH2の変角振動、1566cm-1にC=Nの対称伸縮振動,2851cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3150cm-1にイミダゾール環のCH伸縮振動、3481cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 bind to 1133cm -1, symmetric stretching vibration of CF 2 to 1255cm -1, antisymmetric stretching vibration of SO 2 bind to 1352cm -1, bending vibration of CH 2 in 1469cm -1, 1566cm -1 C = N symmetric stretching vibration, 2851 cm −1 CH 2 symmetric stretching vibration, 2920 cm −1 CH 2 inverse symmetric stretching vibration, 3150 cm −1 imidazole ring CH stretching vibration, and 3481 cm −1 OH stretching vibration. Vibration was seen.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.852(t/J=6.8Hz,3H), 1.170-1.320(m,30H), 1.780-1.880(m,2H), 2.058-2.088(m,2H), 3.613(t/J=6.0Hz,2H), 4.158(t/J=7.6Hz,2H), 4.373(t/J=6.0Hz,2H), 7.218-7.226(m,1H), 7.422-7.431(m,1H), 9.091(s,1H)
13C-NMR(CDCl3,δppm);14.070, 22.656, 26.173, 28.885, 29.326, 29.470, 29.671, 30.064, 31.894, 32.153, 47.265, 50.149, 57.950, 121.780, 122.643, 136.461 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.852 (t / J = 6.8 Hz, 3H), 1.170-1.320 (m, 30H), 1.780-1.880 (m, 2H) ), 2.058-2.088 (m, 2H), 3.613 (t / J = 6.0 Hz, 2H), 4.158 (t / J = 7.6 Hz, 2H), 4.373 (t /J=6.0 Hz, 2H), 7.218-7.226 (m, 1H), 7.422-7.431 (m, 1H), 9.091 (s, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.070, 22.656, 26.173, 28.885, 29.326, 29.470, 29.671, 30.644, 31.894, 32.153 , 47.265, 50.149, 57.950, 121.780, 122.643, 136.461
1H-NMR(CDCl3,δppm);0.852(t/J=6.8Hz,3H), 1.170-1.320(m,30H), 1.780-1.880(m,2H), 2.058-2.088(m,2H), 3.613(t/J=6.0Hz,2H), 4.158(t/J=7.6Hz,2H), 4.373(t/J=6.0Hz,2H), 7.218-7.226(m,1H), 7.422-7.431(m,1H), 9.091(s,1H)
13C-NMR(CDCl3,δppm);14.070, 22.656, 26.173, 28.885, 29.326, 29.470, 29.671, 30.064, 31.894, 32.153, 47.265, 50.149, 57.950, 121.780, 122.643, 136.461 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.852 (t / J = 6.8 Hz, 3H), 1.170-1.320 (m, 30H), 1.780-1.880 (m, 2H) ), 2.058-2.088 (m, 2H), 3.613 (t / J = 6.0 Hz, 2H), 4.158 (t / J = 7.6 Hz, 2H), 4.373 (t /J=6.0 Hz, 2H), 7.218-7.226 (m, 1H), 7.422-7.431 (m, 1H), 9.091 (s, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.070, 22.656, 26.173, 28.885, 29.326, 29.470, 29.671, 30.644, 31.894, 32.153 , 47.265, 50.149, 57.950, 121.780, 122.643, 136.461
これらのスペクトルから、生成物がノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムであることが同定された。
なお、ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。 From these spectra, it was identified that the product was nonafluorobutanesulfonic acid 1-3′hydroxylpropyl-3-octadecylimidazolium.
The pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-1-3′hydroxylpropyl-3-octadecylimidazolium is 0.7.
なお、ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。 From these spectra, it was identified that the product was nonafluorobutanesulfonic acid 1-3′hydroxylpropyl-3-octadecylimidazolium.
The pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-1-3′hydroxylpropyl-3-octadecylimidazolium is 0.7.
(実施例2A)
<ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
(Example 2A)
<Synthesis of bis (nonafluorobutanesulfonyl) imide 1-3'hydroxylpropyl-3-octadecylimidazolium>
Synthesis of bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium was performed according to the following scheme.
<ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonafluorobutanesulfonyl) imide 1-3'hydroxylpropyl-3-octadecylimidazolium>
Synthesis of bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium was performed according to the following scheme.
実施例1Aで合成した1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムブロミド3.07gを、加熱した純水に溶解させ、カリウムビス(ノナフルオロブタンスルホニル)イミド4.22gを水とエタノールの混合溶媒に溶解させたものを加えた。加熱還流を1時間行い、冷却後ジクロルメタンで抽出を行った。有機層を純水でAgNO3試験が陰性になるまで洗浄を行った。無水硫酸ナトリウムで乾燥後溶媒を除去してビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウム5.20gの無色の液体を得た。収率81.1%。
3.07 g of 1-3′hydroxylpropyl-3-octadecylimidazolium bromide synthesized in Example 1A was dissolved in heated pure water, and 4.22 g of potassium bis (nonafluorobutanesulfonyl) imide was mixed with water and ethanol. What was dissolved in the solvent was added. The mixture was heated to reflux for 1 hour, cooled and extracted with dichloromethane. The organic layer was washed with pure water until the AgNO 3 test was negative. After drying over anhydrous sodium sulfate, the solvent was removed to obtain 5.20 g of bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium as a colorless liquid. Yield 81.1%.
生成物のFTIR吸収とその帰属を以下に示す。
1077cm-1にSO2結合の対称伸縮振動、1236cm-1にCF2の対称伸縮振動、1354cm-1にSO2結合の逆対称伸縮振動、1466cm-1にCH2の変角振動、1565cm-1にC=Nの対称伸縮振動,2856cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3152cm-1にイミダゾール環のCH伸縮振動、3553cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 binding to 1077 cm -1, symmetric stretching vibration of CF 2 to 1236cm -1, antisymmetric stretching vibration of SO 2 bind to 1354cm -1, bending vibration of CH 2 in 1466cm -1, 1565cm -1 C = N symmetrical stretching vibration, 2856cm −1 CH 2 symmetric stretching vibration, 2927cm −1 CH 2 reverse symmetric stretching vibration, 3152cm −1 imidazole ring CH stretching vibration, 3553cm −1 OH stretching vibration Vibration was seen.
1077cm-1にSO2結合の対称伸縮振動、1236cm-1にCF2の対称伸縮振動、1354cm-1にSO2結合の逆対称伸縮振動、1466cm-1にCH2の変角振動、1565cm-1にC=Nの対称伸縮振動,2856cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3152cm-1にイミダゾール環のCH伸縮振動、3553cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 binding to 1077 cm -1, symmetric stretching vibration of CF 2 to 1236cm -1, antisymmetric stretching vibration of SO 2 bind to 1354cm -1, bending vibration of CH 2 in 1466cm -1, 1565cm -1 C = N symmetrical stretching vibration, 2856cm −1 CH 2 symmetric stretching vibration, 2927cm −1 CH 2 reverse symmetric stretching vibration, 3152cm −1 imidazole ring CH stretching vibration, 3553cm −1 OH stretching vibration Vibration was seen.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.855(t/J=6.8Hz,3H), 1.180-1.330(m,30H), 1.780-1.880(m,2H), 2.057-2.086(m,2H), 3.655(t/J=6.0Hz,2H), 4.138(t/J=7.6Hz,2H), 4.345(t/J=6.0Hz,2H), 7.211-7.235(m,1H), 7.357-7.366(m,1H), 8.794(s,1H)
13C-NMR(CDCl3,δppm);14.070, 22.666, 26.106, 28.847, 29.288, 29.335, 29.450, 29.556, 29.671, 30.073, 31.904, 31.980, 47.341, 50.235, 58.323, 121.838, 122.777, 135.857 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.855 (t / J = 6.8 Hz, 3H), 1.180-1.330 (m, 30H), 1.780-1.880 (m, 2H) ), 2.057-2.086 (m, 2H), 3.655 (t / J = 6.0 Hz, 2H), 4.138 (t / J = 7.6 Hz, 2H), 4.345 (t /J=6.0 Hz, 2H), 7.211-7.235 (m, 1H), 7.357-7366 (m, 1H), 8.794 (s, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.070, 22.666, 26.106, 28.847, 29.288, 29.335, 29.450, 29.556, 29.671, 30.073 , 31.904, 31.980, 47.341, 50.235, 58.323, 121.838, 122.777, 135.857
1H-NMR(CDCl3,δppm);0.855(t/J=6.8Hz,3H), 1.180-1.330(m,30H), 1.780-1.880(m,2H), 2.057-2.086(m,2H), 3.655(t/J=6.0Hz,2H), 4.138(t/J=7.6Hz,2H), 4.345(t/J=6.0Hz,2H), 7.211-7.235(m,1H), 7.357-7.366(m,1H), 8.794(s,1H)
13C-NMR(CDCl3,δppm);14.070, 22.666, 26.106, 28.847, 29.288, 29.335, 29.450, 29.556, 29.671, 30.073, 31.904, 31.980, 47.341, 50.235, 58.323, 121.838, 122.777, 135.857 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.855 (t / J = 6.8 Hz, 3H), 1.180-1.330 (m, 30H), 1.780-1.880 (m, 2H) ), 2.057-2.086 (m, 2H), 3.655 (t / J = 6.0 Hz, 2H), 4.138 (t / J = 7.6 Hz, 2H), 4.345 (t /J=6.0 Hz, 2H), 7.211-7.235 (m, 1H), 7.357-7366 (m, 1H), 8.794 (s, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.070, 22.666, 26.106, 28.847, 29.288, 29.335, 29.450, 29.556, 29.671, 30.073 , 31.904, 31.980, 47.341, 50.235, 58.323, 121.838, 122.777, 135.857
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium, in the acetonitrile is 0. 0.
なお、ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium, in the acetonitrile is 0. 0.
(実施例3A)
<ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムの合成は、以下のスキームにしたがって行った。
(Example 3A)
<Synthesis of bis (nonafluorobutanesulfonyl) imide-N-3'hydroxylpropyl-N-octadecylpyrrolidinium>
Bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium was synthesized according to the following scheme.
<ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonafluorobutanesulfonyl) imide-N-3'hydroxylpropyl-N-octadecylpyrrolidinium>
Bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium was synthesized according to the following scheme.
ブロモオクタデカン52.4gと水酸化カリウム8.75gとをアセトニトリル中に加え、ピロリジン11.09gを添加した。その後加熱還流を24時間行った。結晶を濾過後、有機層の溶媒を除去後にヘキサンと酢酸エチルの混合溶媒を用いてシリカゲルカラムクロマトグラフィーを行い精製して、オクタデシルピロリジン44.05gを得た。ガスクロマトグラフィーによる純度は99.0%以上であった。
Bromooctadecane 52.4 g and potassium hydroxide 8.75 g were added to acetonitrile, and pyrrolidine 11.09 g was added. Thereafter, heating under reflux was performed for 24 hours. After filtering the crystals, the solvent of the organic layer was removed and the residue was purified by silica gel column chromatography using a mixed solvent of hexane and ethyl acetate to obtain 44.05 g of octadecylpyrrolidine. The purity by gas chromatography was 99.0% or more.
オクタデシルピロリジン6.00gと3-ブロモプロパノール3.23gとをフラスコに加え、120℃で3.0時間加熱した。常温に戻した後、酢酸エチルを加えて結晶化させてN-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムブロミド7.77g得た。収率90.5%。
Octadecylpyrrolidine (6.00 g) and 3-bromopropanol (3.23 g) were added to the flask and heated at 120 ° C. for 3.0 hours. After returning to room temperature, ethyl acetate was added for crystallization to obtain 7.77 g of N-3'hydroxylpropyl-N-octadecylpyrrolidinium bromide. Yield 90.5%.
また、重メタノール中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CD3OD,δppm);0.875(t/J=7.0Hz,3H), 1.190-1.440(m,30H), 1.670-1.790(m,2H), 1.860-1.950(m,2H), 2.130-2.230(m,4H), 3.250-3.292(m,2H), 3.356-3.397(m,2H), 3.537(t/J=7.2Hz,4H), 3.637(t/J=5.8Hz,2H)
13C-NMR(CD3OD,δppm);14.454, 22.830, 23.740, 24.219, 27.333, 27.506, 30.266, 30.477, 30.592, 30.649, 30.793, 33.073, 55.104, 58.477, 59.301, 61.132, 64.122 In addition, the peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated methanol is shown below.
1 H-NMR (CD 3 OD, δ ppm); 0.875 (t / J = 7.0 Hz, 3H), 1.190-1.440 (m, 30H), 1.670-1.790 (m, 2H), 1.860-1.950 (m, 2H), 2.130-2230 (m, 4H), 3.250-3.292 (m, 2H), 3.356-3.397 ( m, 2H), 3.537 (t / J = 7.2 Hz, 4H), 3.637 (t / J = 5.8 Hz, 2H)
13 C-NMR (CD 3 OD, δ ppm); 14.454, 22.830, 23.740, 24.219, 27.333, 27.506, 30.266, 30.477, 30.292, 30. 649, 30.793, 33.073, 55.104, 58.477, 59.301, 61.132, 64.122
1H-NMR(CD3OD,δppm);0.875(t/J=7.0Hz,3H), 1.190-1.440(m,30H), 1.670-1.790(m,2H), 1.860-1.950(m,2H), 2.130-2.230(m,4H), 3.250-3.292(m,2H), 3.356-3.397(m,2H), 3.537(t/J=7.2Hz,4H), 3.637(t/J=5.8Hz,2H)
13C-NMR(CD3OD,δppm);14.454, 22.830, 23.740, 24.219, 27.333, 27.506, 30.266, 30.477, 30.592, 30.649, 30.793, 33.073, 55.104, 58.477, 59.301, 61.132, 64.122 In addition, the peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated methanol is shown below.
1 H-NMR (CD 3 OD, δ ppm); 0.875 (t / J = 7.0 Hz, 3H), 1.190-1.440 (m, 30H), 1.670-1.790 (m, 2H), 1.860-1.950 (m, 2H), 2.130-2230 (m, 4H), 3.250-3.292 (m, 2H), 3.356-3.397 ( m, 2H), 3.537 (t / J = 7.2 Hz, 4H), 3.637 (t / J = 5.8 Hz, 2H)
13 C-NMR (CD 3 OD, δ ppm); 14.454, 22.830, 23.740, 24.219, 27.333, 27.506, 30.266, 30.477, 30.292, 30. 649, 30.793, 33.073, 55.104, 58.477, 59.301, 61.132, 64.122
これらのスペクトルから、生成物がN-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムブロミドであることが同定された。
From these spectra, the product was identified as N-3'hydroxylpropyl-N-octadecylpyrrolidinium bromide.
N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムブロミド2.77gを純水を加熱して溶解させ、ビス(ノナフルオロブタンスルホニル)イミドカリウム3.88gを純水とエタノールの混合溶媒を加熱して溶解させたものを加えた。加熱還流を1時間行った。析出物をジクロルメタンで抽出し、有機層を純水でAgNO3試験が陰性になるまで十分に洗浄を行った。無水硫酸ナトリウムで乾燥後溶媒を除去して、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウム5.62gの無色の液体を得た。収率97.4%。
2.77 g of N-3′hydroxylpropyl-N-octadecylpyrrolidinium bromide is dissolved by heating pure water, and 3.88 g of potassium bis (nonafluorobutanesulfonyl) imide is heated in a mixed solvent of pure water and ethanol. And dissolved. Heating under reflux was performed for 1 hour. The precipitate was extracted with dichloromethane, and the organic layer was thoroughly washed with pure water until the AgNO 3 test was negative. After drying over anhydrous sodium sulfate, the solvent was removed to obtain 5.52 g of a colorless liquid of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium. Yield 97.4%.
生成物のFTIR吸収とその帰属を以下に示す。
1140cm-1にSO2結合の対称伸縮振動、1237cm-1にCF2の対称伸縮振動、1354m-1にSO2結合の逆対称伸縮振動、1467cm-1にCH2結合の変角振動、2857cm-1にCH2結合の対称伸縮振動、2928cm-1にCH2結合の逆対称伸縮振動,3553cm-1にOH結合の伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 binding to 1140 cm -1, symmetric stretching vibration of CF 2 to 1237cm -1, antisymmetric stretching vibration of SO 2 bind to 1354m -1, bending vibration of CH 2 bound to 1467cm -1, 2857cm - symmetric stretching vibration of CH 2 bound to 1, antisymmetric stretching vibration of CH 2 bound to 2928cm -1, the stretching vibration of the OH bond to 3553cm -1 were observed.
1140cm-1にSO2結合の対称伸縮振動、1237cm-1にCF2の対称伸縮振動、1354m-1にSO2結合の逆対称伸縮振動、1467cm-1にCH2結合の変角振動、2857cm-1にCH2結合の対称伸縮振動、2928cm-1にCH2結合の逆対称伸縮振動,3553cm-1にOH結合の伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 binding to 1140 cm -1, symmetric stretching vibration of CF 2 to 1237cm -1, antisymmetric stretching vibration of SO 2 bind to 1354m -1, bending vibration of CH 2 bound to 1467cm -1, 2857cm - symmetric stretching vibration of CH 2 bound to 1, antisymmetric stretching vibration of CH 2 bound to 2928cm -1, the stretching vibration of the OH bond to 3553cm -1 were observed.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.855(t/J=7.0Hz,3H), 1.170-1.360(m,30H), 1.640-1.740(m,2H), 1.850-1.940(m,2H), 2.140-2.290(m,4H), 2.623(brs, 1H), 3.110-3.190(m,2H), 3.340-3.410(m,2H), 3.420-3.580(m,4H), 3.707(t/J=5.4Hz,2H)
13C-NMR(CDCl3,δppm);14.080, 21.708, 22.666, 23.289, 26.173, 26.240, 29.010, 29.335, 29.393, 29.546, 29.680, 31.904, 57.643, 58.333, 60.384, 63.095 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.855 (t / J = 7.0 Hz, 3H), 1.170-1.360 (m, 30H), 1.640-1.740 (m, 2H) ), 1.850-1.940 (m, 2H), 2.140-2.290 (m, 4H), 2.623 (brs, 1H), 3.110-3.190 (m, 2H), 3.340-3.410 (m, 2H), 3.420-3.580 (m, 4H), 3.707 (t / J = 5.4 Hz, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.080, 21.708, 22.666, 23.289, 26.173, 26.240, 29.010, 29.335, 29.393, 29.546 , 29.680, 31.904, 57.643, 58.333, 60.384, 63.095
1H-NMR(CDCl3,δppm);0.855(t/J=7.0Hz,3H), 1.170-1.360(m,30H), 1.640-1.740(m,2H), 1.850-1.940(m,2H), 2.140-2.290(m,4H), 2.623(brs, 1H), 3.110-3.190(m,2H), 3.340-3.410(m,2H), 3.420-3.580(m,4H), 3.707(t/J=5.4Hz,2H)
13C-NMR(CDCl3,δppm);14.080, 21.708, 22.666, 23.289, 26.173, 26.240, 29.010, 29.335, 29.393, 29.546, 29.680, 31.904, 57.643, 58.333, 60.384, 63.095 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.855 (t / J = 7.0 Hz, 3H), 1.170-1.360 (m, 30H), 1.640-1.740 (m, 2H) ), 1.850-1.940 (m, 2H), 2.140-2.290 (m, 4H), 2.623 (brs, 1H), 3.110-3.190 (m, 2H), 3.340-3.410 (m, 2H), 3.420-3.580 (m, 4H), 3.707 (t / J = 5.4 Hz, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.080, 21.708, 22.666, 23.289, 26.173, 26.240, 29.010, 29.335, 29.393, 29.546 , 29.680, 31.904, 57.643, 58.333, 60.384, 63.095
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムにおける共役塩基の元となる酸[ビス(ノナフルオロブタンスルホニル)イミド]のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium.
In addition, pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium, 0.0.
なお、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムにおける共役塩基の元となる酸[ビス(ノナフルオロブタンスルホニル)イミド]のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium.
In addition, pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium, 0.0.
(実施例4A)
<ノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
ノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成は、以下のスキームにしたがって行った。
(Example 4A)
<Synthesis of nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
Nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme.
<ノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
ノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
Nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme.
6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセンは、Matsumuraらの非特許文献〔N. Matsumura, H. Nishiguchi, M. Okada, and S. Yoneda, J. Heterocyclic Chem. pp.885-887, Vol/23. Issue 3 (1986)〕に従って、合成した。
6-Octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene is a non-patent document [N. Matsumura, H.M. Nishiguchi, M. Okada, and S. Yoneda, J.A. Heterocyclic Chem. Pp. 885-887, Vol / 23. Synthesized according to Issue 3 (1986)].
6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウム5.71gと3-ブロモプロパノール3.23gとをフラスコに加え、120℃で3.0時間加熱した。常温に戻した後、酢酸エチルを加えて反応物を溶解させた後に、冷凍庫で結晶化させた。この結晶を低温ですばやく濾過後に真空乾燥させて、6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド6.60g得た。収率81.9%。
6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium 5.71 g and 3-bromopropanol 3.23 g were added to the flask and heated at 120 ° C. for 3.0 hours. After returning to normal temperature, ethyl acetate was added to dissolve the reaction product, which was then crystallized in a freezer. The crystals were quickly filtered at a low temperature and then vacuum-dried to obtain 6.60 g of 6-octadecyl-8-3'-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide. Yield 81.9%.
6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド4.30gを純水を加熱して溶解させ、ノナフルオロブタンスルホン酸カリウム2.99gを純水を加熱して溶解させた水溶液を加え、常温で1時間反応後、1時間加熱還流させた。冷却後に反応溶液をジクロルメタンで抽出後、有機層を純水でAgNO3試験が陰性になるまで洗浄した。溶媒を除去した後にノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウム6.00gの薄黄色液体を得た。収率99.4%。
6.30 g of 6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide is dissolved by heating pure water, and potassium nonafluorobutanesulfonate An aqueous solution in which 2.99 g of pure water was dissolved by heating was added, reacted at room temperature for 1 hour, and then heated to reflux for 1 hour. After cooling, the reaction solution was extracted with dichloromethane, and the organic layer was washed with pure water until the AgNO 3 test became negative. After removing the solvent, 6.00 g of nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium was obtained as a pale yellow liquid. Yield 99.4%.
生成物のFTIR吸収とその帰属を以下に示す。
1134cm-1にSO2結合の対称伸縮振動、1255cm-1にCF2の対称伸縮振動、1352cm-1にSO2結合の逆対称伸縮振動、1466cm-1にCH2の変角振動、1609cm-1にC=Nの伸縮振動,2855cm-1にCH2の対称伸縮振動、2926cm-1にCH2の逆対称伸縮振動、3479cm-1水酸基の伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1134 cm −1 is a SO 2 -bonded symmetric stretching vibration, 1255 cm −1 is a CF 2 symmetric stretching vibration, 1352 cm −1 is an SO 2 -bonded symmetric stretching vibration, 1466 cm −1 is a CH 2 bending vibration, 1609 cm −1 C = N stretching vibration, 2855 cm −1 symmetric CH 2 stretching vibration, 2926 cm −1 CH 2 inverse symmetric stretching vibration, and 3479 cm −1 hydroxyl group stretching vibration.
1134cm-1にSO2結合の対称伸縮振動、1255cm-1にCF2の対称伸縮振動、1352cm-1にSO2結合の逆対称伸縮振動、1466cm-1にCH2の変角振動、1609cm-1にC=Nの伸縮振動,2855cm-1にCH2の対称伸縮振動、2926cm-1にCH2の逆対称伸縮振動、3479cm-1水酸基の伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1134 cm −1 is a SO 2 -bonded symmetric stretching vibration, 1255 cm −1 is a CF 2 symmetric stretching vibration, 1352 cm −1 is an SO 2 -bonded symmetric stretching vibration, 1466 cm −1 is a CH 2 bending vibration, 1609 cm −1 C = N stretching vibration, 2855 cm −1 symmetric CH 2 stretching vibration, 2926 cm −1 CH 2 inverse symmetric stretching vibration, and 3479 cm −1 hydroxyl group stretching vibration.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.849(t/J=6.8Hz,3H), 1.140-1.480(m,34H), 1.520-1.940(m,8H), 1.960-2.140(m,2H), 2.423(brs,1H), 2.770-2.860(m,1H), 3.160-3.610(m,6H), 3.610-3.710(m,2H) 3.760-3.940(m,2H)
13C-NMR(CDCl3,δppm);14.089, 20.433, 22.033, 22.656, 25.646, 26.528, 27.179, 27.419, 29.335, 29.412, 29.680, 30.945, 31.894, 38.631, 47.562, 50.983, 51.337, 54.059, 58.534, 168.122 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.849 (t / J = 6.8 Hz, 3H), 1.140-1.480 (m, 34H), 1.520-1.940 (m, 8H) ), 1.960-2.140 (m, 2H), 2.423 (brs, 1H), 2.770-2.860 (m, 1H), 3.160-3.610 (m, 6H), 3.610-3.710 (m, 2H) 3.760-3.940 (m, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.089, 20.433, 22.033, 22.656, 25.646, 26.528, 27.179, 27.419, 29.335, 29.412 , 29.680, 30.945, 31.894, 38.631, 47.562, 50.833, 51.337, 54.059, 58.534, 168.122
1H-NMR(CDCl3,δppm);0.849(t/J=6.8Hz,3H), 1.140-1.480(m,34H), 1.520-1.940(m,8H), 1.960-2.140(m,2H), 2.423(brs,1H), 2.770-2.860(m,1H), 3.160-3.610(m,6H), 3.610-3.710(m,2H) 3.760-3.940(m,2H)
13C-NMR(CDCl3,δppm);14.089, 20.433, 22.033, 22.656, 25.646, 26.528, 27.179, 27.419, 29.335, 29.412, 29.680, 30.945, 31.894, 38.631, 47.562, 50.983, 51.337, 54.059, 58.534, 168.122 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.849 (t / J = 6.8 Hz, 3H), 1.140-1.480 (m, 34H), 1.520-1.940 (m, 8H) ), 1.960-2.140 (m, 2H), 2.423 (brs, 1H), 2.770-2.860 (m, 1H), 3.160-3.610 (m, 6H), 3.610-3.710 (m, 2H) 3.760-3.940 (m, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.089, 20.433, 22.033, 22.656, 25.646, 26.528, 27.179, 27.419, 29.335, 29.412 , 29.680, 30.945, 31.894, 38.631, 47.562, 50.833, 51.337, 54.059, 58.534, 168.122
これらのスペクトルから、生成物がノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
なお、ノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。 These spectra identified the product as nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
In addition, nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium is a base acid for the conjugate base (nonafluorobutanesulfonic acid). PKa in acetonitrile is 0.7.
なお、ノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。 These spectra identified the product as nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
In addition, nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium is a base acid for the conjugate base (nonafluorobutanesulfonic acid). PKa in acetonitrile is 0.7.
(実施例5A)
<ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成は、以下のスキームにしたがって行った。
(Example 5A)
<Synthesis of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3'-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
Bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme.
<ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3'-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
Bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme.
実施例4Aで合成した6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド2.04gを純水を加熱して溶解させ、ビス(ノナフルオロブタンスルホニル)イミドカリウム3.07gを純水とエタノールを加熱して溶解させた溶液を加え、常温で1時間反応後、1時間加熱還流させた。冷却後に反応溶液をジクロルメタンで抽出後、有機層を純水でAgNO3試験が陰性になるまで洗浄した。溶媒を除去した後にビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウム3.42gの薄黄色液体を得た。収率87.3%。
6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide (2.04 g) synthesized in Example 4A was dissolved by heating pure water, A solution in which 3.07 g of potassium bis (nonafluorobutanesulfonyl) imide was dissolved by heating pure water and ethanol was added, reacted at room temperature for 1 hour, and then heated to reflux for 1 hour. After cooling, the reaction solution was extracted with dichloromethane, and the organic layer was washed with pure water until the AgNO 3 test became negative. After removing the solvent, 3.42 g of a pale yellow liquid of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium was added. Obtained. Yield 87.3%.
生成物のFTIR吸収とその帰属を以下に示す。
1074cm-1にSNS結合の逆対称伸縮振動、1232cm-1にCF2の対称伸縮振動、1352cm-1にSO2結合の逆対称伸縮振動、1468cm-1にCH2の変角振動、1608cm-1にC=Nの伸縮振動,2854cm-1にCH2の対称伸縮振動、2924cm-1にCH2の逆対称伸縮振動、3479cm-1に水酸基の伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1074 cm −1 is an anti-symmetric stretching vibration of SNS bond, 1232 cm −1 is a symmetrical stretching vibration of CF 2 , 1352 cm −1 is an anti-symmetric stretching vibration of SO 2 bond, 1468 cm −1 is an angular vibration of CH 2 , 1608 cm −1 C = N stretching vibration, 2854 cm −1 CH 2 symmetrical stretching vibration, 2924 cm −1 CH 2 antisymmetric stretching vibration, and 3479 cm −1 hydroxyl group stretching vibration.
1074cm-1にSNS結合の逆対称伸縮振動、1232cm-1にCF2の対称伸縮振動、1352cm-1にSO2結合の逆対称伸縮振動、1468cm-1にCH2の変角振動、1608cm-1にC=Nの伸縮振動,2854cm-1にCH2の対称伸縮振動、2924cm-1にCH2の逆対称伸縮振動、3479cm-1に水酸基の伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1074 cm −1 is an anti-symmetric stretching vibration of SNS bond, 1232 cm −1 is a symmetrical stretching vibration of CF 2 , 1352 cm −1 is an anti-symmetric stretching vibration of SO 2 bond, 1468 cm −1 is an angular vibration of CH 2 , 1608 cm −1 C = N stretching vibration, 2854 cm −1 CH 2 symmetrical stretching vibration, 2924 cm −1 CH 2 antisymmetric stretching vibration, and 3479 cm −1 hydroxyl group stretching vibration.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.854(t/J=7.2Hz,3H), 1.130-1.340(m,34H), 1.520-1.910(m,8H), 1.960-2.140(m,2H), 2.770-2.860(m,1H), 3.380-3.600(m,6H), 3.610-3.715(m,2H) 3.740-3.940(m,2H)
13C-NMR(CDCl3,δppm);14.080, 19.197, 20.299, 21.947, 22.666, 26.518, 27.409, 29.307, 29.345, 29.412, 29.508, 29.537, 29.585, 29.642, 29.690, 30.715, 31.904, 38.640, 47.389, 50.858, 51.069, 54.011, 58.592, 168.228 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.854 (t / J = 7.2 Hz, 3H), 1.130-1.340 (m, 34H), 1.520-1.910 (m, 8H) ), 1.960-2.140 (m, 2H), 2.770-2.860 (m, 1H), 3.380-3.600 (m, 6H), 3.610-3.715 (m , 2H) 3.740-3.940 (m, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.080, 19.197, 20.299, 21.947, 22.666, 26.518, 27.409, 29.307, 29.345, 29.412 , 29.508, 29.537, 29.585, 29.642, 29.690, 30.715, 31.904, 38.640, 47.389, 50.858, 51.068, 54.011, 58 .592, 168.228
1H-NMR(CDCl3,δppm);0.854(t/J=7.2Hz,3H), 1.130-1.340(m,34H), 1.520-1.910(m,8H), 1.960-2.140(m,2H), 2.770-2.860(m,1H), 3.380-3.600(m,6H), 3.610-3.715(m,2H) 3.740-3.940(m,2H)
13C-NMR(CDCl3,δppm);14.080, 19.197, 20.299, 21.947, 22.666, 26.518, 27.409, 29.307, 29.345, 29.412, 29.508, 29.537, 29.585, 29.642, 29.690, 30.715, 31.904, 38.640, 47.389, 50.858, 51.069, 54.011, 58.592, 168.228 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.854 (t / J = 7.2 Hz, 3H), 1.130-1.340 (m, 34H), 1.520-1.910 (m, 8H) ), 1.960-2.140 (m, 2H), 2.770-2.860 (m, 1H), 3.380-3.600 (m, 6H), 3.610-3.715 (m , 2H) 3.740-3.940 (m, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.080, 19.197, 20.299, 21.947, 22.666, 26.518, 27.409, 29.307, 29.345, 29.412 , 29.508, 29.537, 29.585, 29.642, 29.690, 30.715, 31.904, 38.640, 47.389, 50.858, 51.068, 54.011, 58 .592, 168.228
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸[ビス(ノナフルオロブタンスルホニル)イミド]のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium It was done.
In addition, bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium is a base acid of a conjugate base [bis ( PKa in acetonitrile of nonafluorobutanesulfonyl) imide] is 0.0.
なお、ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸[ビス(ノナフルオロブタンスルホニル)イミド]のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium It was done.
In addition, bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium is a base acid of a conjugate base [bis ( PKa in acetonitrile of nonafluorobutanesulfonyl) imide] is 0.0.
(実施例6A)
<ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシプロピルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシプロピルイミダゾリウムの合成は、以下のスキームにしたがって行った。
(Example 6A)
<Synthesis of nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3'hydroxypropylimidazolium>
Synthesis of nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3′hydroxypropylimidazolium was performed according to the following scheme.
<ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシプロピルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシプロピルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3'hydroxypropylimidazolium>
Synthesis of nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3′hydroxypropylimidazolium was performed according to the following scheme.
1-ドデシル-2-ウンデシルイミダゾールは、17.76gの2-ウンデシルイミダゾールを100mLのトルエンに溶解させ、ドデシルブロミド20.00gと水酸化カリウム7.75gとを加えて撹拌しながら加熱して8時間還流させて得た。溶媒を除去後、ジクロルメタンで抽出し、n-ヘキサン:酢酸エチル=9:1(体積比)の溶液を用いてシリカゲルカラムクロマトグラフィーで精製した。ガスクロマトグラフィーでの分析したところ98.9%以上の純度であった。
For 1-dodecyl-2-undecylimidazole, 17.76 g of 2-undecylimidazole was dissolved in 100 mL of toluene, and 20.00 g of dodecyl bromide and 7.75 g of potassium hydroxide were added and heated with stirring. Obtained by refluxing for 8 hours. After removing the solvent, the mixture was extracted with dichloromethane and purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 9: 1 (volume ratio). When analyzed by gas chromatography, the purity was 98.9% or more.
7.04gの1-ドデシル-2-ウンデシルイミダゾールと3-ブロモプロパノール3.84gとをフラスコに加え、120℃で4時間加熱した。常温に戻した後、析出した結晶を酢酸エチルから再結晶を行い、無色の結晶1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムブロミドを8.00g得た。収率83.8%。
7.04 g of 1-dodecyl-2-undecylimidazole and 3.84 g of 3-bromopropanol were added to the flask and heated at 120 ° C. for 4 hours. After returning to normal temperature, the precipitated crystals were recrystallized from ethyl acetate to obtain 8.00 g of colorless crystals 1-dodecyl-2-undecyl-3-3-3'hydroxylimidazolium bromide. Yield 83.8%.
生成物のFTIR吸収とその帰属を以下に示す。
1470cm-1にCH2の変角振動、1526cm-1にC=Nの対称伸縮振動、2851cm-1にCH2の対称伸縮振動、2919cm-1にCH2の逆対称伸縮振動、3086,3123cm-1にイミダゾール環のCH伸縮振動、3317cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1470 cm −1 is CH 2 bending vibration, 1526 cm −1 is C = N symmetric stretching vibration, 2851 cm −1 is CH 2 symmetric stretching vibration, 2919 cm −1 is CH 2 inverse symmetric stretching vibration, 3086, 3123 cm −. An imidazole ring CH stretching vibration was observed in 1 and an OH stretching vibration was observed in 3317 cm −1 .
1470cm-1にCH2の変角振動、1526cm-1にC=Nの対称伸縮振動、2851cm-1にCH2の対称伸縮振動、2919cm-1にCH2の逆対称伸縮振動、3086,3123cm-1にイミダゾール環のCH伸縮振動、3317cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1470 cm −1 is CH 2 bending vibration, 1526 cm −1 is C = N symmetric stretching vibration, 2851 cm −1 is CH 2 symmetric stretching vibration, 2919 cm −1 is CH 2 inverse symmetric stretching vibration, 3086, 3123 cm −. An imidazole ring CH stretching vibration was observed in 1 and an OH stretching vibration was observed in 3317 cm −1 .
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.835(t/J=6.8Hz,6H), 1.160-1.440(m,34H), 1.571(quint/J=8.0Hz,2H), 1.760-1.860(m,2H), 2.115(quint/J=6.0Hz,2H), 3.083(t/J=8.2Hz,2H), 3.596(t/J=5.4Hz,2H), 4.094(t/J=7.8Hz,2H), 4.347(t/J=7.0Hz,2H), 7.434(d/J=2.0Hz,1H), 7.831(d/J=2.0Hz,1H)
13C-NMR(CDCl3,δppm);14.051, 22.608, 26.422, 27.888, 29.000, 29.067, 29.259, 29.297, 29.460, 29.498, 29.527, 30.006, 31.808, 32.038, 45.348, 48.606, 57.020, 121.138, 122.154, 146.609 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.835 (t / J = 6.8 Hz, 6H), 1.160-1.440 (m, 34H), 1.571 (quint / J = 8.0 Hz) , 2H), 1.760-1.860 (m, 2H), 2.115 (quant / J = 6.0 Hz, 2H), 3.083 (t / J = 8.2 Hz, 2H), 3.596 (T / J = 5.4 Hz, 2H), 4.094 (t / J = 7.8 Hz, 2H), 4.347 (t / J = 7.0 Hz, 2H), 7.434 (d / J = 2.0Hz, 1H), 7.831 (d / J = 2.0Hz, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.051, 22.608, 26.422, 27.888, 29.000, 29.067, 29.259, 29.297, 29.460, 29.498 , 29.527, 30.006, 31.808, 32.038, 45.348, 48.606, 57.020, 121.138, 122.154, 146.609
1H-NMR(CDCl3,δppm);0.835(t/J=6.8Hz,6H), 1.160-1.440(m,34H), 1.571(quint/J=8.0Hz,2H), 1.760-1.860(m,2H), 2.115(quint/J=6.0Hz,2H), 3.083(t/J=8.2Hz,2H), 3.596(t/J=5.4Hz,2H), 4.094(t/J=7.8Hz,2H), 4.347(t/J=7.0Hz,2H), 7.434(d/J=2.0Hz,1H), 7.831(d/J=2.0Hz,1H)
13C-NMR(CDCl3,δppm);14.051, 22.608, 26.422, 27.888, 29.000, 29.067, 29.259, 29.297, 29.460, 29.498, 29.527, 30.006, 31.808, 32.038, 45.348, 48.606, 57.020, 121.138, 122.154, 146.609 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.835 (t / J = 6.8 Hz, 6H), 1.160-1.440 (m, 34H), 1.571 (quint / J = 8.0 Hz) , 2H), 1.760-1.860 (m, 2H), 2.115 (quant / J = 6.0 Hz, 2H), 3.083 (t / J = 8.2 Hz, 2H), 3.596 (T / J = 5.4 Hz, 2H), 4.094 (t / J = 7.8 Hz, 2H), 4.347 (t / J = 7.0 Hz, 2H), 7.434 (d / J = 2.0Hz, 1H), 7.831 (d / J = 2.0Hz, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.051, 22.608, 26.422, 27.888, 29.000, 29.067, 29.259, 29.297, 29.460, 29.498 , 29.527, 30.006, 31.808, 32.038, 45.348, 48.606, 57.020, 121.138, 122.154, 146.609
これらのスペクトルから、生成物が1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムブロミドであることが同定された。
From these spectra, the product was identified as 1-dodecyl-2-undecyl-3-3'hydroxyl imidazolium bromide.
1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムブロミド3.60gを水と少量のエタノールに加熱して溶解させ、ノナフルオロブタンスルホン酸カリウム塩2.80gの水溶液を加えた。常温で1時間攪拌後、加熱還流を1時間行った。冷却後反応液をジクロルメタンで抽出し、これを硝酸銀テストが陰性になるまで水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を除去し、100℃で真空乾燥を20時間行い、無色の液体ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウム4.80gを得た。収率94.3%。
1.60 g of 1-dodecyl-2-undecyl-3-3'hydroxyl imidazolium bromide was dissolved by heating in water and a small amount of ethanol, and an aqueous solution of 2.80 g of potassium nonafluorobutanesulfonate was added. After stirring at room temperature for 1 hour, heating under reflux was performed for 1 hour. After cooling, the reaction solution was extracted with dichloromethane and washed thoroughly with water until the silver nitrate test was negative. The organic layer was dried over anhydrous sodium sulfate and then the solvent was removed, followed by vacuum drying at 100 ° C. for 20 hours to obtain colorless liquid nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3-3′hydroxypropylimidazolium 4 .80 g was obtained. Yield 94.3%.
生成物のFTIR吸収とその帰属を以下に示す。
1054cm-1にSO2結合の対称伸縮振動、1134及び1255cm-1にCF2の対称伸縮振動、1351cm-1にSO2結合の逆対称伸縮振動、1466cm-1にCH2の変角振動、1525cm-1にC=Nの対称伸縮振動、2857cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3134cm-1にイミダゾール環のCH伸縮振動、3478cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1054cm -1 to symmetric stretching vibration of SO 2 bond, 1134 and symmetric stretching vibration of 1255cm -1 to CF 2, antisymmetric stretching vibration of SO 2 bind to 1351cm -1, bending vibration of CH 2 in 1466cm -1, 1525cm -1 symmetric stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2857Cm -1, antisymmetric stretching vibration of CH 2 in 2927cm -1, CH stretching vibration of the imidazole ring to 3134cm -1, to 3478Cm -1 OH Stretching vibration was observed.
1054cm-1にSO2結合の対称伸縮振動、1134及び1255cm-1にCF2の対称伸縮振動、1351cm-1にSO2結合の逆対称伸縮振動、1466cm-1にCH2の変角振動、1525cm-1にC=Nの対称伸縮振動、2857cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3134cm-1にイミダゾール環のCH伸縮振動、3478cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1054cm -1 to symmetric stretching vibration of SO 2 bond, 1134 and symmetric stretching vibration of 1255cm -1 to CF 2, antisymmetric stretching vibration of SO 2 bind to 1351cm -1, bending vibration of CH 2 in 1466cm -1, 1525cm -1 symmetric stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2857Cm -1, antisymmetric stretching vibration of CH 2 in 2927cm -1, CH stretching vibration of the imidazole ring to 3134cm -1, to 3478Cm -1 OH Stretching vibration was observed.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.852(t/J=6.8Hz,6H), 1.160-1.440(m,34H), 1.573(quint/J=7.8Hz,2H), 1.740-1.850(m,2H), 2.063(quint/J=5.8Hz,2H), 2.427(brs,1H), 3.009(t/J=8.4Hz,2H), 3.588(t/J=5.8Hz,2H), 4.022(t/J=7.8Hz,2H), 4.242(t/J=7.0Hz,2H), 7.237(d/J=2.8Hz,1H), 7.470(d/J=2.0Hz,1H)
13C-NMR(CDCl3,δppm);14.070, 22.647, 26.422, 27.745, 28.990, 29.038, 29.268, 29.297, 29.326, 29.479, 29.537, 29.565, 29.901, 31.846, 31.865, 45.204, 48.453, 57.518, 120.994, 121.684, 146.791 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.852 (t / J = 6.8 Hz, 6H), 1.160-1.440 (m, 34H), 1.573 (quint / J = 7.8 Hz) , 2H), 1.740-1.850 (m, 2H), 2.063 (quant / J = 5.8 Hz, 2H), 2.427 (brs, 1H), 3.009 (t / J = 8) .4 Hz, 2H), 3.588 (t / J = 5.8 Hz, 2H), 4.022 (t / J = 7.8 Hz, 2H), 4.242 (t / J = 7.0 Hz, 2H) 7.237 (d / J = 2.8 Hz, 1H), 7.470 (d / J = 2.0 Hz, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.070, 22.647, 26.422, 27.745, 28.990, 29.038, 29.268, 29.297, 29.326, 29.479 , 29.537, 29.565, 29.901, 31.847, 31.865, 45.204, 48.453, 57.518, 120.994, 121.684, 146.791
1H-NMR(CDCl3,δppm);0.852(t/J=6.8Hz,6H), 1.160-1.440(m,34H), 1.573(quint/J=7.8Hz,2H), 1.740-1.850(m,2H), 2.063(quint/J=5.8Hz,2H), 2.427(brs,1H), 3.009(t/J=8.4Hz,2H), 3.588(t/J=5.8Hz,2H), 4.022(t/J=7.8Hz,2H), 4.242(t/J=7.0Hz,2H), 7.237(d/J=2.8Hz,1H), 7.470(d/J=2.0Hz,1H)
13C-NMR(CDCl3,δppm);14.070, 22.647, 26.422, 27.745, 28.990, 29.038, 29.268, 29.297, 29.326, 29.479, 29.537, 29.565, 29.901, 31.846, 31.865, 45.204, 48.453, 57.518, 120.994, 121.684, 146.791 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.852 (t / J = 6.8 Hz, 6H), 1.160-1.440 (m, 34H), 1.573 (quint / J = 7.8 Hz) , 2H), 1.740-1.850 (m, 2H), 2.063 (quant / J = 5.8 Hz, 2H), 2.427 (brs, 1H), 3.009 (t / J = 8) .4 Hz, 2H), 3.588 (t / J = 5.8 Hz, 2H), 4.022 (t / J = 7.8 Hz, 2H), 4.242 (t / J = 7.0 Hz, 2H) 7.237 (d / J = 2.8 Hz, 1H), 7.470 (d / J = 2.0 Hz, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.070, 22.647, 26.422, 27.745, 28.990, 29.038, 29.268, 29.297, 29.326, 29.479 , 29.537, 29.565, 29.901, 31.847, 31.865, 45.204, 48.453, 57.518, 120.994, 121.684, 146.791
これらのスペクトルから、生成物がノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムであることが同定された。
なお、ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。 From these spectra, it was identified that the product was nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3'hydroxylimidazolium.
The pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3′hydroxylpropylimidazolium is 0.7 It is.
なお、ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。 From these spectra, it was identified that the product was nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3'hydroxylimidazolium.
The pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-1-dodecyl-2-undecyl-3-3′hydroxylpropylimidazolium is 0.7 It is.
(実施例7A)
<ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルオクタデシルイミダゾリウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルオクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
(Example 7A)
<Synthesis of bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-3'hydroxylpropyloctadecylimidazolium>
Synthesis of bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-'hydroxylpropyloctadecylimidazolium was performed according to the following scheme.
<ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルオクタデシルイミダゾリウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルオクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-3'hydroxylpropyloctadecylimidazolium>
Synthesis of bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-'hydroxylpropyloctadecylimidazolium was performed according to the following scheme.
実施例6Aで合成した1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルオクタデシルイミダゾリウムブロミド3.64gを、加熱した純水と少量のエタノール溶液に溶解させ、リチウムビス(ノナフルオロブタンスルホニル)イミド4.13gを水に溶解させたものを加えた。加熱還流を1時間行い、冷却後ジクロルメタンで抽出を行った。有機層を純水でAgNO3試験が陰性になるまで洗浄を行い、無水硫酸ナトリウムで乾燥後溶媒を除去した。100℃で真空乾燥を20時間行い、ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウム6.80gの無色の液体を得た。収率96.6%。
1.64 g of 1-dodecyl-2-undecyl-3-3′hydroxylpropyloctadecylimidazolium bromide synthesized in Example 6A was dissolved in heated pure water and a small amount of ethanol solution to obtain lithium bis (nonafluorobutanesulfonyl). A solution prepared by dissolving 4.13 g of imide in water was added. The mixture was heated to reflux for 1 hour, cooled and extracted with dichloromethane. The organic layer was washed with pure water until the AgNO 3 test was negative, dried over anhydrous sodium sulfate, and then the solvent was removed. Vacuum drying was carried out at 100 ° C. for 20 hours to obtain 6.80 g of a colorless liquid of bis (nonafluorobutanesulfonyl) imide-1-dodecyl-2-undecyl-3-3′hydroxylimidazolium. Yield 96.6%.
生成物のFTIR吸収とその帰属を以下に示す。
1054cm-1にSNSの対称伸縮振動、1134cm-1にSO2結合の対称伸縮振動、1236及び1255cm-1にCF2の対称伸縮振動、1352cm-1にSO2結合の逆対称伸縮振動、1466cm-1にCH2の変角振動、1525cm-1にC=Nの対称伸縮振動、2857cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3134cm-1にイミダゾール環のCH伸縮振動、3478cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SNS at 1054 cm −1 , symmetrical stretching vibration of SO 2 bond at 1134 cm −1 , symmetrical stretching vibration of CF 2 at 1236 and 1255 cm −1 , reverse symmetrical stretching vibration of SO 2 bond at 1352 cm −1 , 1466 cm − 1 is CH 2 bending vibration, 1525 cm −1 is C = N symmetric stretching vibration, 2857 cm −1 is CH 2 symmetric stretching vibration, 2927 cm −1 is CH 2 antisymmetric stretching vibration, 3134 cm −1 is an imidazole ring The CH stretching vibration of OH and the stretching vibration of OH at 3478 cm −1 were observed.
1054cm-1にSNSの対称伸縮振動、1134cm-1にSO2結合の対称伸縮振動、1236及び1255cm-1にCF2の対称伸縮振動、1352cm-1にSO2結合の逆対称伸縮振動、1466cm-1にCH2の変角振動、1525cm-1にC=Nの対称伸縮振動、2857cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3134cm-1にイミダゾール環のCH伸縮振動、3478cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SNS at 1054 cm −1 , symmetrical stretching vibration of SO 2 bond at 1134 cm −1 , symmetrical stretching vibration of CF 2 at 1236 and 1255 cm −1 , reverse symmetrical stretching vibration of SO 2 bond at 1352 cm −1 , 1466 cm − 1 is CH 2 bending vibration, 1525 cm −1 is C = N symmetric stretching vibration, 2857 cm −1 is CH 2 symmetric stretching vibration, 2927 cm −1 is CH 2 antisymmetric stretching vibration, 3134 cm −1 is an imidazole ring The CH stretching vibration of OH and the stretching vibration of OH at 3478 cm −1 were observed.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.852(t/J=7.0Hz,6H), 1.140-1.440(m,34H), 1.586(quint/J=8.0Hz,2H),1.750-1.850(m,2H), 2.045(quint/J=6.2Hz,2H), 2.963(t/J=8.2Hz,2H), 3.607(t/J=5.4Hz,2H), 4.000(t/J=7.8Hz,2H), 4.220(t/J=7.0Hz,2H), 7.195(d/J=2.0Hz,1H), 7.335(d/J=2.0Hz,1H)
13C-NMR(CDCl3,δppm);14.061, 22.647, 26.374, 27.659, 28.943, 28.971, 29.268, 29.297, 29.470, 29.527, 29.556, 29.882, 31.616, 31.846, 45.109, 48.472, 57.691, 121.071, 121.531, 146.657 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.852 (t / J = 7.0 Hz, 6H), 1.140-1.440 (m, 34H), 1.586 (quint / J = 8.0 Hz) , 2H), 1.750-1.850 (m, 2H), 2.045 (quant / J = 6.2 Hz, 2H), 2.963 (t / J = 8.2 Hz, 2H), 3.607. (T / J = 5.4 Hz, 2H), 4.000 (t / J = 7.8 Hz, 2H), 4.220 (t / J = 7.0 Hz, 2H), 7.195 (d / J = 2.0Hz, 1H), 7.335 (d / J = 2.0Hz, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.061, 22.647, 26.374, 27.659, 28.943, 28.971, 29.268, 29.297, 29.470, 29.527 , 29.556, 29.882, 31.616, 31.646, 45.109, 48.472, 57.691, 121.071, 121.531, 146.657
1H-NMR(CDCl3,δppm);0.852(t/J=7.0Hz,6H), 1.140-1.440(m,34H), 1.586(quint/J=8.0Hz,2H),1.750-1.850(m,2H), 2.045(quint/J=6.2Hz,2H), 2.963(t/J=8.2Hz,2H), 3.607(t/J=5.4Hz,2H), 4.000(t/J=7.8Hz,2H), 4.220(t/J=7.0Hz,2H), 7.195(d/J=2.0Hz,1H), 7.335(d/J=2.0Hz,1H)
13C-NMR(CDCl3,δppm);14.061, 22.647, 26.374, 27.659, 28.943, 28.971, 29.268, 29.297, 29.470, 29.527, 29.556, 29.882, 31.616, 31.846, 45.109, 48.472, 57.691, 121.071, 121.531, 146.657 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.852 (t / J = 7.0 Hz, 6H), 1.140-1.440 (m, 34H), 1.586 (quint / J = 8.0 Hz) , 2H), 1.750-1.850 (m, 2H), 2.045 (quant / J = 6.2 Hz, 2H), 2.963 (t / J = 8.2 Hz, 2H), 3.607. (T / J = 5.4 Hz, 2H), 4.000 (t / J = 7.8 Hz, 2H), 4.220 (t / J = 7.0 Hz, 2H), 7.195 (d / J = 2.0Hz, 1H), 7.335 (d / J = 2.0Hz, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.061, 22.647, 26.374, 27.659, 28.943, 28.971, 29.268, 29.297, 29.470, 29.527 , 29.556, 29.882, 31.616, 31.646, 45.109, 48.472, 57.691, 121.071, 121.531, 146.657
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-3′hydroxylimidazolium.
It should be noted that bis (nonafluorobutanesulfonyl) imide-1-dodecyl-2-undecyl-3-'hydroxypropylimidazolium has a base acid conjugate acid [bis (nonafluorobutanesulfonyl) imide] in acetonitrile. pKa is 0.0.
なお、ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-3′hydroxylimidazolium.
It should be noted that bis (nonafluorobutanesulfonyl) imide-1-dodecyl-2-undecyl-3-'hydroxypropylimidazolium has a base acid conjugate acid [bis (nonafluorobutanesulfonyl) imide] in acetonitrile. pKa is 0.0.
(実施例8A)
<ビス(ノナフルオロブタンスルホニル)イミド-1-3’ヒドロキシプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-1-3’ヒドロキシプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
(Example 8A)
<Synthesis of bis (nonafluorobutanesulfonyl) imide-1- 3'hydroxypropyl-2-heptadecyl-3-octadecylimidazolium>
The synthesis of bis (nonafluorobutanesulfonyl) imide-1- 3'hydroxypropyl-2-heptadecyl-3-octadecylimidazolium was performed according to the following scheme.
<ビス(ノナフルオロブタンスルホニル)イミド-1-3’ヒドロキシプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-1-3’ヒドロキシプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonafluorobutanesulfonyl) imide-1- 3'hydroxypropyl-2-heptadecyl-3-octadecylimidazolium>
The synthesis of bis (nonafluorobutanesulfonyl) imide-1- 3'hydroxypropyl-2-heptadecyl-3-octadecylimidazolium was performed according to the following scheme.
1-オクタデシル-2-ヘプタデシルイミダゾ-ルは、15.34gの2-ヘプタデシルイミダゾールを100mLのトルエンに溶解させ、オクタデシルブロミド17.62gと水酸化カリウム4.86gとを加えて撹拌しながら加熱して11時間還流させて得た。溶媒を除去後、ジクロルメタンで抽出し、n-ヘキサン:酢酸エチル9:1の溶液を用いてシリカゲルカラムクロマトグラフィーで精製した。ガスクロマトグラフィーでの分析したところ99.3%以上の純度であった。
1-octadecyl-2-heptadecylimidazole is prepared by dissolving 15.34 g of 2-heptadecylimidazole in 100 mL of toluene, adding 17.62 g of octadecyl bromide and 4.86 g of potassium hydroxide, and heating with stirring. And obtained by refluxing for 11 hours. After removing the solvent, the mixture was extracted with dichloromethane and purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate 9: 1. Analysis by gas chromatography revealed a purity of 99.3% or more.
8.42gの1-オクタデシル-2-ヘプタデシルイミダゾールと3-ブロモプロパノール3.20gとをフラスコに加え、密閉状態で120℃で4時間加熱した。常温に戻した後、析出した結晶を酢酸エチルから再結晶を行い、無色の結晶1-3’ヒドロキシルプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムブロミドを9.75g得た。収率92.7%。
8.42 g of 1-octadecyl-2-heptadecylimidazole and 3.20 g of 3-bromopropanol were added to the flask and heated at 120 ° C. for 4 hours in a sealed state. After returning to room temperature, the precipitated crystals were recrystallized from ethyl acetate to obtain 9.75 g of colorless crystals of 1-3'hydroxylpropyl-2-heptadecyl-3-octadecylimidazolium bromide. Yield 92.7%.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.848(t/J=7.2Hz,6H), 1.140-1.460(m,58H), 1.580(quint/J=7.2Hz,2H), 1.760-1.860(m,2H), 2.129(quint/J=6.0Hz,2H), 3.083(t/J=8.2Hz,2H), 3.618(t/J=5.4Hz,2H), 4.097(t/J=7.8Hz,2H), 4.356(t/J=6.8Hz,2H), 7.380(d/J=2.0Hz,1H), 7.813(d/J=1.6Hz,1H)
13C-NMR(CDCl3,δppm);14.099, 22.666, 24.007, 26.470, 27.927, 29.038, 29.105, 29.335, 29.518, 29.642, 29.680, 29.968, 31.894, 45.348, 48.683, 56.991, 120.994, 122.087, 146.829 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.848 (t / J = 7.2 Hz, 6H), 1.140-1.460 (m, 58H), 1.580 (quint / J = 7.2 Hz) , 2H), 1.760-1.860 (m, 2H), 2.129 (quant / J = 6.0 Hz, 2H), 3.083 (t / J = 8.2 Hz, 2H), 3.618 (T / J = 5.4 Hz, 2H), 4.097 (t / J = 7.8 Hz, 2H), 4.356 (t / J = 6.8 Hz, 2H), 7.380 (d / J = 2.0 Hz, 1 H), 7.813 (d / J = 1.6 Hz, 1 H)
13 C-NMR (CDCl 3 , δ ppm); 14.99, 22.666, 24.007, 26.470, 27.927, 29.038, 29.105, 29.335, 29.518, 29.642 , 29.680, 29.968, 31.894, 45.348, 48.683, 56.991, 120.994, 122.087, 146.829
1H-NMR(CDCl3,δppm);0.848(t/J=7.2Hz,6H), 1.140-1.460(m,58H), 1.580(quint/J=7.2Hz,2H), 1.760-1.860(m,2H), 2.129(quint/J=6.0Hz,2H), 3.083(t/J=8.2Hz,2H), 3.618(t/J=5.4Hz,2H), 4.097(t/J=7.8Hz,2H), 4.356(t/J=6.8Hz,2H), 7.380(d/J=2.0Hz,1H), 7.813(d/J=1.6Hz,1H)
13C-NMR(CDCl3,δppm);14.099, 22.666, 24.007, 26.470, 27.927, 29.038, 29.105, 29.335, 29.518, 29.642, 29.680, 29.968, 31.894, 45.348, 48.683, 56.991, 120.994, 122.087, 146.829 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.848 (t / J = 7.2 Hz, 6H), 1.140-1.460 (m, 58H), 1.580 (quint / J = 7.2 Hz) , 2H), 1.760-1.860 (m, 2H), 2.129 (quant / J = 6.0 Hz, 2H), 3.083 (t / J = 8.2 Hz, 2H), 3.618 (T / J = 5.4 Hz, 2H), 4.097 (t / J = 7.8 Hz, 2H), 4.356 (t / J = 6.8 Hz, 2H), 7.380 (d / J = 2.0 Hz, 1 H), 7.813 (d / J = 1.6 Hz, 1 H)
13 C-NMR (CDCl 3 , δ ppm); 14.99, 22.666, 24.007, 26.470, 27.927, 29.038, 29.105, 29.335, 29.518, 29.642 , 29.680, 29.968, 31.894, 45.348, 48.683, 56.991, 120.994, 122.087, 146.829
これらのスペクトルから、生成物が1-3’ヒドロキシルプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムブロミドであることが同定された。
From these spectra, it was identified that the product was 1-3'hydroxylpropyl-2-heptadecyl-3-octadecylimidazolium bromide.
1-3’ヒドロキシルプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムブロミド3.15gを、加熱した純水と少量のエタノール溶液に溶解させ、カリウムビス(ノナフルオロブタンスルホニル)イミド2.90gを純水と少量のエタノール溶液に溶解させたものを加えた。加熱還流を1時間行い、冷却後ジクロルメタンで抽出を行った。有機層を純水でAgNO3試験が陰性になるまで洗浄を行い、無水硫酸ナトリウムで乾燥後溶媒を除去した。100℃で真空乾燥を20時間行い、ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウム5.03gの無色の液体を得た。収率93.0%。
3.15 g of 1-3 ′ hydroxylpropyl-2-heptadecyl-3-octadecylimidazolium bromide is dissolved in heated pure water and a small amount of ethanol solution, and 2.90 g of potassium bis (nonafluorobutanesulfonyl) imide is purified water. And a solution dissolved in a small amount of ethanol solution. The mixture was heated to reflux for 1 hour, cooled and extracted with dichloromethane. The organic layer was washed with pure water until the AgNO 3 test was negative, dried over anhydrous sodium sulfate, and then the solvent was removed. Vacuum drying was performed at 100 ° C. for 20 hours to obtain 5.03 g of a bis (nonafluorobutanesulfonyl) imide 1-3′hydroxyl-2-heptadecyl-3-octadecylimidazolium colorless liquid. Yield 93.0%.
生成物のFTIR吸収とその帰属を以下に示す。
1076cm-1にSNSの対称伸縮振動、1140cm-1にSO2結合の対称伸縮振動、1216及び1237cm-1にCF2の対称伸縮振動、1355cm-1にSO2結合の逆対称伸縮振動、1467cm-1にCH2の変角振動、1525cm-1にC=Nの対称伸縮振動、2855cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3146cm-1にイミダゾール環のCH伸縮振動、3555cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetrical stretching vibration of SNS at 1076 cm −1 , symmetrical stretching vibration of SO 2 bond at 1140 cm −1 , symmetrical stretching vibration of CF 2 at 1216 and 1237 cm −1 , reverse symmetrical stretching vibration of SO 2 bond at 1355 cm −1 , 1467 cm − 1 CH 2 bending vibration, 1525 cm −1 C = N symmetric stretching vibration, 2855 cm −1 CH 2 symmetric stretching vibration, 2927 cm −1 CH 2 inverse symmetric stretching vibration, 3146 cm −1 imidazole ring The CH stretching vibration of OH and the stretching vibration of OH at 3555 cm −1 were observed.
1076cm-1にSNSの対称伸縮振動、1140cm-1にSO2結合の対称伸縮振動、1216及び1237cm-1にCF2の対称伸縮振動、1355cm-1にSO2結合の逆対称伸縮振動、1467cm-1にCH2の変角振動、1525cm-1にC=Nの対称伸縮振動、2855cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3146cm-1にイミダゾール環のCH伸縮振動、3555cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetrical stretching vibration of SNS at 1076 cm −1 , symmetrical stretching vibration of SO 2 bond at 1140 cm −1 , symmetrical stretching vibration of CF 2 at 1216 and 1237 cm −1 , reverse symmetrical stretching vibration of SO 2 bond at 1355 cm −1 , 1467 cm − 1 CH 2 bending vibration, 1525 cm −1 C = N symmetric stretching vibration, 2855 cm −1 CH 2 symmetric stretching vibration, 2927 cm −1 CH 2 inverse symmetric stretching vibration, 3146 cm −1 imidazole ring The CH stretching vibration of OH and the stretching vibration of OH at 3555 cm −1 were observed.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.855(t/J=6.6Hz,6H), 1.140-1.440(m,58H), 1.588(quint/J=8.0Hz,2H),1.740-1.850(m,2H), 2.049(quint/J=6.3Hz,2H), 2.966(t/J=8.2Hz,2H), 3.613(t/J=5.6Hz,2H), 4.003(t/J=7.8Hz,2H), 4.224(t/J=6.8Hz,2H), 7.193(d/J=2.0Hz,1H), 7.335(d/J=2.0Hz,1H)
13C-NMR(CDCl3,δppm);14.099, 22.675, 26.384, 27.668, 28.952, 28.990, 29.278, 29.355, 29.508, 29.652, 29.690, 29.882, 31.597, 31.913, 45.118, 48.482, 57.700, 121.061, 121.531, 146.666 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.855 (t / J = 6.6 Hz, 6H), 1.140-1.440 (m, 58H), 1.588 (quint / J = 8.0 Hz) , 2H), 1.740-1.850 (m, 2H), 2.049 (quant / J = 6.3 Hz, 2H), 2.966 (t / J = 8.2 Hz, 2H), 3.613 (T / J = 5.6 Hz, 2H), 4.003 (t / J = 7.8 Hz, 2H), 4.224 (t / J = 6.8 Hz, 2H), 7.193 (d / J = 2.0Hz, 1H), 7.335 (d / J = 2.0Hz, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.99, 22.675, 26.384, 27.668, 28.952, 28.990, 29.278, 29.355, 29.508, 29.652. , 29.690, 29.882, 31.597, 31.913, 45.118, 48.482, 57.700, 121.061, 121.531, 146.666.
1H-NMR(CDCl3,δppm);0.855(t/J=6.6Hz,6H), 1.140-1.440(m,58H), 1.588(quint/J=8.0Hz,2H),1.740-1.850(m,2H), 2.049(quint/J=6.3Hz,2H), 2.966(t/J=8.2Hz,2H), 3.613(t/J=5.6Hz,2H), 4.003(t/J=7.8Hz,2H), 4.224(t/J=6.8Hz,2H), 7.193(d/J=2.0Hz,1H), 7.335(d/J=2.0Hz,1H)
13C-NMR(CDCl3,δppm);14.099, 22.675, 26.384, 27.668, 28.952, 28.990, 29.278, 29.355, 29.508, 29.652, 29.690, 29.882, 31.597, 31.913, 45.118, 48.482, 57.700, 121.061, 121.531, 146.666 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.855 (t / J = 6.6 Hz, 6H), 1.140-1.440 (m, 58H), 1.588 (quint / J = 8.0 Hz) , 2H), 1.740-1.850 (m, 2H), 2.049 (quant / J = 6.3 Hz, 2H), 2.966 (t / J = 8.2 Hz, 2H), 3.613 (T / J = 5.6 Hz, 2H), 4.003 (t / J = 7.8 Hz, 2H), 4.224 (t / J = 6.8 Hz, 2H), 7.193 (d / J = 2.0Hz, 1H), 7.335 (d / J = 2.0Hz, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.99, 22.675, 26.384, 27.668, 28.952, 28.990, 29.278, 29.355, 29.508, 29.652. , 29.690, 29.882, 31.597, 31.913, 45.118, 48.482, 57.700, 121.061, 121.531, 146.666.
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-2-heptadecyl-3-octadecylimidazolium.
In addition, pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide] which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide 1-3′hydroxyl-2-heptadecyl-3-octadecylimidazolium Is 0.0.
なお、ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-2-heptadecyl-3-octadecylimidazolium.
In addition, pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide] which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide 1-3′hydroxyl-2-heptadecyl-3-octadecylimidazolium Is 0.0.
(実施例9A)
<ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムの合成は、以下のスキームにしたがって行った。
(Example 9A)
<Synthesis of bis (nonafluorobutanesulfonyl) imide-N-3'hydroxypropyl-N, N-dimethyltetradecylammonium>
The synthesis of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium was carried out according to the following scheme.
<ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonafluorobutanesulfonyl) imide-N-3'hydroxypropyl-N, N-dimethyltetradecylammonium>
The synthesis of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium was carried out according to the following scheme.
N,N-ジメチルテトラデシルアミン6.83gと3-ブロモプロパノール5.80gを密閉したフラスコに入れ、90℃で5時間反応させた。反応終了後に常温に戻すと、粘ちょうな液体になった。これにn-ヘキサンを加えると沈殿が析出した。デカンテーションを行って上澄み液を捨てた。この操作を3回行って生成物を精製し、N,N-ジメチル-N-3’ヒドロキシプロピルテトラデシルアンモニウムブロミド9.50gを得た。収率89.2%。
N, N-dimethyltetradecylamine 6.83 g and 3-bromopropanol 5.80 g were put in a closed flask and reacted at 90 ° C. for 5 hours. When the temperature was returned to room temperature after the completion of the reaction, it became a viscous liquid. When n-hexane was added thereto, a precipitate was deposited. Decanted and the supernatant was discarded. This operation was performed three times to purify the product, and 9.50 g of N, N-dimethyl-N-3'hydroxypropyltetradecylammonium bromide was obtained. Yield 89.2%.
生成物の重クロロホルム中でのプロトン(1H)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.852(t/J=6.4Hz,3H), 1.180-1.400(m,22H), 1.670-1.760(m,2H), 1.871(brs,1H), 2.005-2.090(m,2H), 3.276(s,6H), 3.330-3.410(m,2H) 3.700-3.790(m,4H) The peak of proton ( 1 H) NMR in deuterated chloroform of the product is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.852 (t / J = 6.4 Hz, 3H), 1.180-1.400 (m, 22H), 1.670-1.760 (m, 2H) ), 1.871 (brs, 1H), 2.005-2.090 (m, 2H), 3.276 (s, 6H), 3.330-3.410 (m, 2H) 3.700-3 .790 (m, 4H)
1H-NMR(CDCl3,δppm);0.852(t/J=6.4Hz,3H), 1.180-1.400(m,22H), 1.670-1.760(m,2H), 1.871(brs,1H), 2.005-2.090(m,2H), 3.276(s,6H), 3.330-3.410(m,2H) 3.700-3.790(m,4H) The peak of proton ( 1 H) NMR in deuterated chloroform of the product is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.852 (t / J = 6.4 Hz, 3H), 1.180-1.400 (m, 22H), 1.670-1.760 (m, 2H) ), 1.871 (brs, 1H), 2.005-2.090 (m, 2H), 3.276 (s, 6H), 3.330-3.410 (m, 2H) 3.700-3 .790 (m, 4H)
これらのスペクトルから、生成物がN,N-ジメチル-N-3’ヒドロキシプロピルテトラデシルブロミドであることが同定された。
From these spectra, the product was identified as N, N-dimethyl-N-3'hydroxypropyltetradecyl bromide.
N,N-ジメチル-N-3’ヒドロキシプロピルテトラデシルアンモニウムブロミド3.50gを、加熱した純水に溶解させ、ビス(ノナフルオロブタンスルホニル)イミドリチウム5.40gを純水に溶解させたものを加えた。加熱還流を1時間行い、冷却後ジクロルメタンで抽出を行った。有機層を純水でAgNO3試験が陰性になるまで洗浄を行い、無水硫酸ナトリウムで乾燥後溶媒を除去した。100℃で真空乾燥を24時間行い、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N,N-ジメチルテトラデシルアンモニウム7.90gの無色の液体を得た。収率97.5%。
A solution prepared by dissolving 3.50 g of N, N-dimethyl-N-3′hydroxypropyltetradecylammonium bromide in heated pure water and dissolving 5.40 g of bis (nonafluorobutanesulfonyl) imide lithium in pure water. added. The mixture was heated to reflux for 1 hour, cooled and extracted with dichloromethane. The organic layer was washed with pure water until the AgNO 3 test was negative, dried over anhydrous sodium sulfate, and then the solvent was removed. Vacuum drying was performed at 100 ° C. for 24 hours to obtain 7.90 g of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N, N-dimethyltetradecylammonium colorless liquid. Yield 97.5%.
生成物のFTIR吸収とその帰属を以下に示す。
1075cm-1にSNSの対称伸縮振動、1140cm-1にSO2結合の対称伸縮振動、1199及び1237cm-1にCF2の対称伸縮振動、1354cm-1にSO2結合の逆対称伸縮振動、1470cm-1にCH2の変角振動、2858cm-1にCH2の対称伸縮振動、2929cm-1にCH2の逆対称伸縮振動、3549cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SNS at 1075 cm −1 , symmetrical stretching vibration of SO 2 bond at 1140 cm −1 , symmetrical stretching vibration of CF 2 at 1199 and 1237 cm −1 , reverse symmetrical stretching vibration of SO 2 bond at 1354 cm −1 , 1470 cm − 1. CH 2 deformation vibration, 2858 cm −1 CH 2 symmetrical stretching vibration, 2929 cm −1 CH 2 inverse symmetric stretching vibration, and 3549 cm −1 OH stretching vibration were observed.
1075cm-1にSNSの対称伸縮振動、1140cm-1にSO2結合の対称伸縮振動、1199及び1237cm-1にCF2の対称伸縮振動、1354cm-1にSO2結合の逆対称伸縮振動、1470cm-1にCH2の変角振動、2858cm-1にCH2の対称伸縮振動、2929cm-1にCH2の逆対称伸縮振動、3549cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SNS at 1075 cm −1 , symmetrical stretching vibration of SO 2 bond at 1140 cm −1 , symmetrical stretching vibration of CF 2 at 1199 and 1237 cm −1 , reverse symmetrical stretching vibration of SO 2 bond at 1354 cm −1 , 1470 cm − 1. CH 2 deformation vibration, 2858 cm −1 CH 2 symmetrical stretching vibration, 2929 cm −1 CH 2 inverse symmetric stretching vibration, and 3549 cm −1 OH stretching vibration were observed.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.842(t/J=6.8Hz,3H), 1.170-1.320(m,22H), 1.610-1.710(m,2H), 1.867-1.937(m,2H), 2.538(brs,1H), 2.993(s,6H), 3.149-3.192(m,2H), 3.351-3.392(m,2H), 3.665(t/J=5.4Hz,2H)
13C-NMR(CDCl3,δppm);14.003, 22.628, 25.454, 26.097, 28.990, 29.297, 29.364, 29.527, 29.585, 29.613, 31.865, 50.705, 58.266, 62.358, 64.887 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.842 (t / J = 6.8 Hz, 3H), 1.170-1.320 (m, 22H), 1.610-1.710 (m, 2H) ), 1.867- 1.937 (m, 2H), 2.538 (brs, 1H), 2.993 (s, 6H), 3.149-3.192 (m, 2H), 3.351 3.392 (m, 2H), 3.665 (t / J = 5.4 Hz, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.003, 22.628, 25.454, 26.097, 28.990, 29.297, 29.364, 29.527, 29.585, 29.613 , 31.865, 50.705, 58.266, 62.358, 64.887
1H-NMR(CDCl3,δppm);0.842(t/J=6.8Hz,3H), 1.170-1.320(m,22H), 1.610-1.710(m,2H), 1.867-1.937(m,2H), 2.538(brs,1H), 2.993(s,6H), 3.149-3.192(m,2H), 3.351-3.392(m,2H), 3.665(t/J=5.4Hz,2H)
13C-NMR(CDCl3,δppm);14.003, 22.628, 25.454, 26.097, 28.990, 29.297, 29.364, 29.527, 29.585, 29.613, 31.865, 50.705, 58.266, 62.358, 64.887 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.842 (t / J = 6.8 Hz, 3H), 1.170-1.320 (m, 22H), 1.610-1.710 (m, 2H) ), 1.867- 1.937 (m, 2H), 2.538 (brs, 1H), 2.993 (s, 6H), 3.149-3.192 (m, 2H), 3.351 3.392 (m, 2H), 3.665 (t / J = 5.4 Hz, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.003, 22.628, 25.454, 26.097, 28.990, 29.297, 29.364, 29.527, 29.585, 29.613 , 31.865, 50.705, 58.266, 62.358, 64.887
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium.
It should be noted that pKa of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium as the base of the conjugate base [bis (nonafluorobutanesulfonyl) imide] in acetonitrile Is 0.0.
なお、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium.
It should be noted that pKa of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium as the base of the conjugate base [bis (nonafluorobutanesulfonyl) imide] in acetonitrile Is 0.0.
(実施例10A)
<ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルオクタデシルアンモニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルオクタデシルアンモニウムの合成は、以下のスキームにしたがって行った。
(Example 10A)
<Synthesis of bis (nonafluorobutanesulfonyl) imide-N-3'hydroxypropyl-N, N-dimethyloctadecylammonium>
The synthesis of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyloctadecylammonium was performed according to the following scheme.
<ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルオクタデシルアンモニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルオクタデシルアンモニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonafluorobutanesulfonyl) imide-N-3'hydroxypropyl-N, N-dimethyloctadecylammonium>
The synthesis of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyloctadecylammonium was performed according to the following scheme.
N,N-ジメチルオクタデシルアミン8.71gと3-ブロモプロパノール4.19gを密閉したフラスコに入れ、120℃で2時間反応させた。常温に戻して析出した結晶を酢酸エチルとエタノールの混合溶媒から再結晶を行い、N-3’ヒドロキシプロピル-N,N-ジメチルオクタデシルアンモニウムブロミド11.28gを得た。収率88.2%。
N, N-dimethyloctadecylamine 8.71 g and 3-bromopropanol 4.19 g were placed in a closed flask and reacted at 120 ° C. for 2 hours. Crystals precipitated after returning to room temperature were recrystallized from a mixed solvent of ethyl acetate and ethanol to obtain 11.28 g of N-3'hydroxypropyl-N, N-dimethyloctadecylammonium bromide. Yield 88.2%.
生成物のFTIR吸収とその帰属を以下に示す。
1472cm-1にCH2の変角振動、2851cm-1にCH2の対称伸縮振動、2918cm-1にCH2の逆対称伸縮振動、3296cm-1水酸基の伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Deformation vibration of CH 2 in 1472cm -1, symmetric stretching vibration of CH 2 in 2851cm -1, antisymmetric stretching vibration of CH 2 in 2918cm -1, the stretching vibration of 3296Cm -1 hydroxyl seen.
1472cm-1にCH2の変角振動、2851cm-1にCH2の対称伸縮振動、2918cm-1にCH2の逆対称伸縮振動、3296cm-1水酸基の伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Deformation vibration of CH 2 in 1472cm -1, symmetric stretching vibration of CH 2 in 2851cm -1, antisymmetric stretching vibration of CH 2 in 2918cm -1, the stretching vibration of 3296Cm -1 hydroxyl seen.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.844(t/J=7.4Hz,3H), 1.170-1.400(m,30H), 1.670-1.760(m,2H), 2.008-2.077(m,2H), 3.277(s,6H), 3.350-3.420(m,2H) 3.700-3.790(m,4H)
13C-NMR(CDCl3,δppm);14.080, 22.656, 22.800, 25.962, 26.298, 29.192, 29.326, 29.393, 29.460, 29.633, 29.671, 31.884, 51.222, 58.208, 62.722, 64.657 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.844 (t / J = 7.4 Hz, 3H), 1.170-1.400 (m, 30H), 1.670-1.760 (m, 2H) ), 2.008-2.077 (m, 2H), 3.277 (s, 6H), 3.350-3.420 (m, 2H) 3.700-3.790 (m, 4H)
13 C-NMR (CDCl 3 , δ ppm); 14.080, 22.656, 22.800, 25.962, 26.298, 29.192, 29.326, 29.393, 29.460, 29.633 , 29.671, 31.84, 51.222, 58.208, 62.722, 64.657
1H-NMR(CDCl3,δppm);0.844(t/J=7.4Hz,3H), 1.170-1.400(m,30H), 1.670-1.760(m,2H), 2.008-2.077(m,2H), 3.277(s,6H), 3.350-3.420(m,2H) 3.700-3.790(m,4H)
13C-NMR(CDCl3,δppm);14.080, 22.656, 22.800, 25.962, 26.298, 29.192, 29.326, 29.393, 29.460, 29.633, 29.671, 31.884, 51.222, 58.208, 62.722, 64.657 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.844 (t / J = 7.4 Hz, 3H), 1.170-1.400 (m, 30H), 1.670-1.760 (m, 2H) ), 2.008-2.077 (m, 2H), 3.277 (s, 6H), 3.350-3.420 (m, 2H) 3.700-3.790 (m, 4H)
13 C-NMR (CDCl 3 , δ ppm); 14.080, 22.656, 22.800, 25.962, 26.298, 29.192, 29.326, 29.393, 29.460, 29.633 , 29.671, 31.84, 51.222, 58.208, 62.722, 64.657
これらのスペクトルから、生成物がN-3’ヒドロキシプロピル-N,N-ジメチルオクタデシルアンモニウムブロミドであることが同定された。
From these spectra, it was identified that the product was N-3 ′ hydroxypropyl-N, N-dimethyloctadecyl ammonium bromide.
N,N-ジメチル-N-3’ヒドロキシプロピルオクタデシルアンモニウムブロミド3.16gを、加熱した純水に溶解させ、リチウムビス(ノナフルオロブタンスルホニル)イミド4.51gを純水に溶解させたものを加えた。加熱還流を1時間行い、冷却後ジクロルメタンで抽出を行った。有機層を純水でAgNO3試験が陰性になるまで洗浄を行い、無水硫酸ナトリウムで乾燥後溶媒を除去した。100℃で真空乾燥を60時間行い、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N,N-ジメチルオクタデシルアンモニウム6.59gの無色の液体を得た。収率97.1%。
3.16 g of N, N-dimethyl-N-3′hydroxypropyloctadecylammonium bromide was dissolved in heated pure water, and 4.51 g of lithium bis (nonafluorobutanesulfonyl) imide was dissolved in pure water. It was. The mixture was heated to reflux for 1 hour, cooled and extracted with dichloromethane. The organic layer was washed with pure water until the AgNO 3 test was negative, dried over anhydrous sodium sulfate, and then the solvent was removed. Vacuum drying was performed at 100 ° C. for 60 hours to obtain 6.59 g of a bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N, N-dimethyloctadecylammonium colorless liquid. Yield 97.1%.
生成物のFTIR吸収とその帰属を以下に示す。
1076cm-1にSNSの対称伸縮振動、1140cm-1にSO2結合の対称伸縮振動、1200及び1237cm-1にCF2の対称伸縮振動、1354cm-1にSO2結合の逆対称伸縮振動、1469cm-1にCH2の変角振動、2856cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3551cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetrical stretching vibration of SNS at 1076 cm −1 , symmetrical stretching vibration of SO 2 bond at 1140 cm −1 , symmetrical stretching vibration of CF 2 at 1200 and 1237 cm −1 , reverse symmetrical stretching vibration of SO 2 bond at 1354 cm −1 , 1469 cm − 1. CH 2 deformation vibration, 2856 cm −1 symmetric CH 2 stretching vibration, 2927 cm −1 CH 2 reverse symmetric stretching vibration, and 3551 cm −1 OH stretching vibration were observed.
1076cm-1にSNSの対称伸縮振動、1140cm-1にSO2結合の対称伸縮振動、1200及び1237cm-1にCF2の対称伸縮振動、1354cm-1にSO2結合の逆対称伸縮振動、1469cm-1にCH2の変角振動、2856cm-1にCH2の対称伸縮振動、2927cm-1にCH2の逆対称伸縮振動、3551cm-1にOHの伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetrical stretching vibration of SNS at 1076 cm −1 , symmetrical stretching vibration of SO 2 bond at 1140 cm −1 , symmetrical stretching vibration of CF 2 at 1200 and 1237 cm −1 , reverse symmetrical stretching vibration of SO 2 bond at 1354 cm −1 , 1469 cm − 1. CH 2 deformation vibration, 2856 cm −1 symmetric CH 2 stretching vibration, 2927 cm −1 CH 2 reverse symmetric stretching vibration, and 3551 cm −1 OH stretching vibration were observed.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.854(t/J=7.0Hz,3H), 1.180-1.340(m,30H), 1.630-1.730(m,2H),1.895-1.963(m,2H), 3.026(s,6H), 3.166-3.209(m,2H), 3.396-3.437(m,2H), 3.700(t/J=6.6Hz,2H)
13C-NMR(CDCl3,δppm);14.089, 22.666, 25.483, 26.010, 29.019, 29.307, 29.345, 29.393, 29.556, 29.680, 31.904, 50.858, 58.323, 62.482, 64.935 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.854 (t / J = 7.0 Hz, 3H), 1.180-1.340 (m, 30H), 1.630-1.730 (m, 2H) ), 1.895-1.963 (m, 2H), 3.026 (s, 6H), 3.166-3.209 (m, 2H), 3.396-3.437 (m, 2H), 3.700 (t / J = 6.6 Hz, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.089, 22.666, 25.483, 26.010, 29.019, 29.307, 29.345, 29.393, 29.556, 29.680 , 31.904, 50.858, 58.323, 62.482, 64.935
1H-NMR(CDCl3,δppm);0.854(t/J=7.0Hz,3H), 1.180-1.340(m,30H), 1.630-1.730(m,2H),1.895-1.963(m,2H), 3.026(s,6H), 3.166-3.209(m,2H), 3.396-3.437(m,2H), 3.700(t/J=6.6Hz,2H)
13C-NMR(CDCl3,δppm);14.089, 22.666, 25.483, 26.010, 29.019, 29.307, 29.345, 29.393, 29.556, 29.680, 31.904, 50.858, 58.323, 62.482, 64.935 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.854 (t / J = 7.0 Hz, 3H), 1.180-1.340 (m, 30H), 1.630-1.730 (m, 2H) ), 1.895-1.963 (m, 2H), 3.026 (s, 6H), 3.166-3.209 (m, 2H), 3.396-3.437 (m, 2H), 3.700 (t / J = 6.6 Hz, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.089, 22.666, 25.483, 26.010, 29.019, 29.307, 29.345, 29.393, 29.556, 29.680 , 31.904, 50.858, 58.323, 62.482, 64.935
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N,N-ジメチルオクタデシルアンモニウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N,N-ジメチルオクタデシルアンモニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N, N-dimethyloctadecylammonium.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N, N-dimethyloctadecylammonium, is , 0.0.
なお、ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N,N-ジメチルオクタデシルアンモニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N, N-dimethyloctadecylammonium.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N, N-dimethyloctadecylammonium, is , 0.0.
(比較例1A)
<ノナフルオロブタンスルホン酸-1-オクタデシルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸-1-オクタデシルイミダゾリウムについては、下記スキームによって合成した。
(Comparative Example 1A)
<Synthesis of nonafluorobutanesulfonic acid-1-octadecylimidazolium>
Nonafluorobutanesulfonic acid-1-octadecylimidazolium was synthesized according to the following scheme.
<ノナフルオロブタンスルホン酸-1-オクタデシルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸-1-オクタデシルイミダゾリウムについては、下記スキームによって合成した。
<Synthesis of nonafluorobutanesulfonic acid-1-octadecylimidazolium>
Nonafluorobutanesulfonic acid-1-octadecylimidazolium was synthesized according to the following scheme.
実施例1Aで合成した1-オクタデシルイミダゾール3.27gを、エタノール50mLに溶解させ、これにノナフルオロブタンスルホン酸3.05gのエタノール溶液を徐々に滴下しながら加え、滴下終了後30分間攪拌させた後に1時間加熱還流させた。溶媒を除去後、エタノール/n-ヘキサンの混合溶媒を用いて再結晶を行い、無色のノナフルオロブタンスルホン酸-1-オクタデシルイミダゾリウムを得た。収率95%。
3.27 g of 1-octadecylimidazole synthesized in Example 1A was dissolved in 50 mL of ethanol, and an ethanol solution of 3.05 g of nonafluorobutanesulfonic acid was gradually added dropwise thereto, followed by stirring for 30 minutes after completion of the addition. Thereafter, the mixture was heated to reflux for 1 hour. After removing the solvent, recrystallization was performed using a mixed solvent of ethanol / n-hexane to obtain colorless nonafluorobutanesulfonic acid-1-octadecylimidazolium. Yield 95%.
生成物のFTIRスペクトルの帰属を以下に示した。
1134cm-1にSO2の対称伸縮振動、1355cm-1にSO2結合の逆対称伸縮振動、1246cm-1にCF2の対称伸縮振動、1470cm-1にCH結合の変角振動、2852cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3158cm-1にイミダゾール環のCH結合の伸縮振動が見られた。 The assignment of the FTIR spectrum of the product is shown below.
1134 cm −1 is SO 2 symmetric stretching vibration, 1355 cm −1 is SO 2 bond antisymmetric stretching vibration, 1246 cm −1 is CF 2 symmetric stretching vibration, 1470 cm −1 is CH bond bending vibration, 2852 cm −1 symmetric stretching vibration of CH 2, antisymmetric stretching vibration of CH 2 in 2920 cm -1, the stretching vibration of CH bond of the imidazole ring to 3158cm -1 were observed.
1134cm-1にSO2の対称伸縮振動、1355cm-1にSO2結合の逆対称伸縮振動、1246cm-1にCF2の対称伸縮振動、1470cm-1にCH結合の変角振動、2852cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3158cm-1にイミダゾール環のCH結合の伸縮振動が見られた。 The assignment of the FTIR spectrum of the product is shown below.
1134 cm −1 is SO 2 symmetric stretching vibration, 1355 cm −1 is SO 2 bond antisymmetric stretching vibration, 1246 cm −1 is CF 2 symmetric stretching vibration, 1470 cm −1 is CH bond bending vibration, 2852 cm −1 symmetric stretching vibration of CH 2, antisymmetric stretching vibration of CH 2 in 2920 cm -1, the stretching vibration of CH bond of the imidazole ring to 3158cm -1 were observed.
また、生成物の、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示した。
1H-NMR(CDCl3,δppm);0.847(t,3H,J=7.2Hz), 1.222-1.282(m,30H), 1.790-1.890(m,2H), 4.181(t/J=7.2Hz,2H), 7.189(dd/J=1.8Hz,3.8Hz,1H), 7.444(dd/J=1.8Hz,3.8Hz,1H), 8.866(d/J=1.8Hz,3.8Hz,1H), 13.200(brs,1H)
13C-NMR(CDCl3,δppm);14.055, 22.648, 26.113, 28.875, 29.272, 29.318, 29.440, 30.142, 31.882, 49.847, 122.500, 122.851, 135.015 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform of the product is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.847 (t, 3H, J = 7.2 Hz), 1.222-1.282 (m, 30H), 1.790-1.890 (m, 2H) ), 4.181 (t / J = 7.2 Hz, 2H), 7.189 (dd / J = 1.8 Hz, 3.8 Hz, 1H), 7.444 (dd / J = 1.8 Hz, 3.H). 8Hz, 1H), 8.866 (d / J = 1.8Hz, 3.8Hz, 1H), 13.200 (brs, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.055, 22.648, 26.113, 28.875, 29.272, 29.318, 29.440, 30.142, 31.882, 49.847 , 122.500, 122.851, 135.015
1H-NMR(CDCl3,δppm);0.847(t,3H,J=7.2Hz), 1.222-1.282(m,30H), 1.790-1.890(m,2H), 4.181(t/J=7.2Hz,2H), 7.189(dd/J=1.8Hz,3.8Hz,1H), 7.444(dd/J=1.8Hz,3.8Hz,1H), 8.866(d/J=1.8Hz,3.8Hz,1H), 13.200(brs,1H)
13C-NMR(CDCl3,δppm);14.055, 22.648, 26.113, 28.875, 29.272, 29.318, 29.440, 30.142, 31.882, 49.847, 122.500, 122.851, 135.015 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform of the product is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.847 (t, 3H, J = 7.2 Hz), 1.222-1.282 (m, 30H), 1.790-1.890 (m, 2H) ), 4.181 (t / J = 7.2 Hz, 2H), 7.189 (dd / J = 1.8 Hz, 3.8 Hz, 1H), 7.444 (dd / J = 1.8 Hz, 3.H). 8Hz, 1H), 8.866 (d / J = 1.8Hz, 3.8Hz, 1H), 13.200 (brs, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.055, 22.648, 26.113, 28.875, 29.272, 29.318, 29.440, 30.142, 31.882, 49.847 , 122.500, 122.851, 135.015
以上から、ノナフルオロブタンスルホン酸-1-オクタデシルイミダゾリウムが合成されていることが確認できた。
From the above, it was confirmed that nonafluorobutanesulfonic acid-1-octadecylimidazolium was synthesized.
(比較例2A)
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの合成>
比較のために、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの合成を、以下のスキームにしたがって行った。
(Comparative Example 2A)
<Synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium>
For comparison, synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium was performed according to the following scheme.
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの合成>
比較のために、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの合成を、以下のスキームにしたがって行った。
<Synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium>
For comparison, synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium was performed according to the following scheme.
実施例1Aで合成した1-オクタデシルイミダゾール10.7gとブロモブタン6.03gとをアセトニトリル中に溶解させ、加熱還流を5時間行った。溶媒を除去後、n-ヘキサンとエタノールとの混合溶媒から再結晶を行い、1-ブチル-3-オクタデシルイミダゾリウムブロミドを得た。このブロミド4.57gをエタノールに溶解させ、そこへ、カリウムヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド3.31gのエタノール溶液を添加し、撹拌すると無色の沈殿が発生した。この溶液を1時間加熱還流させ、冷却後に溶媒を除去した。これにジクロルメタンを加えて溶解する部分を濾過して、その有機層を純水でAgNO3試験が陰性になるまで洗浄した。乾燥させ、n-ヘキサンとエタノールとの混合溶媒から再結晶を行い、無色の結晶ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウム6.00gを得た。収率90%。
10.7-octadecylimidazole synthesized in Example 1A and 6.03 g of bromobutane were dissolved in acetonitrile, and heated to reflux for 5 hours. After removing the solvent, recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 1-butyl-3-octadecylimidazolium bromide. 4.57 g of this bromide was dissolved in ethanol, and an ethanol solution of 3.31 g of potassium hexafluorocyclopropane-1,3-bis (sulfonyl) imide was added thereto and stirred to produce a colorless precipitate. This solution was heated to reflux for 1 hour, and the solvent was removed after cooling. The portion dissolved by adding dichloromethane was filtered, and the organic layer was washed with pure water until the AgNO 3 test was negative. Dry and recrystallize from a mixed solvent of n-hexane and ethanol to obtain colorless crystalline hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium 6.00 g Got. Yield 90%.
生成物のFTIR吸収とその帰属を以下に示す。
1091cm-1にSO2の対称伸縮振動、1161cm-1にCF2の対称伸縮振動、1356cm-1にSO2結合の逆対称伸縮振動、1470cm-1にCH結合の変角振動、1560cm-1にイミダゾール特有の伸縮振動、2850cm-1にCH2の対称伸縮振動、2919cm-1にCH2の逆対称伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 to 1091cm -1, symmetric stretching vibration of CF 2 to 1161cm -1, antisymmetric stretching vibration of SO 2 bind to 1356cm -1, deformation vibration of CH bond to 1470 cm -1, the 1560 cm -1 A stretching vibration peculiar to imidazole, a symmetrical stretching vibration of CH 2 at 2850 cm −1, and an antisymmetric stretching vibration of CH 2 at 2919 cm −1 were observed.
1091cm-1にSO2の対称伸縮振動、1161cm-1にCF2の対称伸縮振動、1356cm-1にSO2結合の逆対称伸縮振動、1470cm-1にCH結合の変角振動、1560cm-1にイミダゾール特有の伸縮振動、2850cm-1にCH2の対称伸縮振動、2919cm-1にCH2の逆対称伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 to 1091cm -1, symmetric stretching vibration of CF 2 to 1161cm -1, antisymmetric stretching vibration of SO 2 bind to 1356cm -1, deformation vibration of CH bond to 1470 cm -1, the 1560 cm -1 A stretching vibration peculiar to imidazole, a symmetrical stretching vibration of CH 2 at 2850 cm −1, and an antisymmetric stretching vibration of CH 2 at 2919 cm −1 were observed.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークとその帰属について、以下に示す。
1H-NMR(CDCl3,δppm);0.850(t,3H,J=7.2Hz), 0.941(t,3H,J=7.2Hz), 1.170-1.410(m,32H), 1.835(quint,4H,J=7.2Hz), 4.160(m,4H), 7.267(d,1H,J=2.1Hz), 7.294(d,1H,J=2.1Hz), 8.749(s,1H)
13C-NMR(CDCl3,δppm);13.254, 14.085, 19.351, 22.663, 26.113, 28.853, 29.303, 29.333, 29.448, 29.570, 29.631, 29.677, 30.127, 31.898, 32.004, 49.977, 50.244, 122.179, 122.263, 135.473 In addition, proton ( 1 H) NMR and carbon ( 13 C) NMR peaks in deuterated chloroform and their attribution are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.850 (t, 3H, J = 7.2 Hz), 0.941 (t, 3H, J = 7.2 Hz), 1.170-1.410 (m , 32H), 1.835 (quant, 4H, J = 7.2 Hz), 4.160 (m, 4H), 7.267 (d, 1H, J = 2.1 Hz), 7.294 (d, 1H) , J = 2.1 Hz), 8.749 (s, 1H)
13 C-NMR (CDCl 3 , δ ppm); 13.254, 14.085, 19.351, 22.663, 26.113, 28.853, 29.303, 29.333, 29.448, 29.570 , 29.631, 29.677, 30.127, 31.898, 32.004, 49.977, 50.244, 122.179, 122.263, 135.473.
1H-NMR(CDCl3,δppm);0.850(t,3H,J=7.2Hz), 0.941(t,3H,J=7.2Hz), 1.170-1.410(m,32H), 1.835(quint,4H,J=7.2Hz), 4.160(m,4H), 7.267(d,1H,J=2.1Hz), 7.294(d,1H,J=2.1Hz), 8.749(s,1H)
13C-NMR(CDCl3,δppm);13.254, 14.085, 19.351, 22.663, 26.113, 28.853, 29.303, 29.333, 29.448, 29.570, 29.631, 29.677, 30.127, 31.898, 32.004, 49.977, 50.244, 122.179, 122.263, 135.473 In addition, proton ( 1 H) NMR and carbon ( 13 C) NMR peaks in deuterated chloroform and their attribution are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.850 (t, 3H, J = 7.2 Hz), 0.941 (t, 3H, J = 7.2 Hz), 1.170-1.410 (m , 32H), 1.835 (quant, 4H, J = 7.2 Hz), 4.160 (m, 4H), 7.267 (d, 1H, J = 2.1 Hz), 7.294 (d, 1H) , J = 2.1 Hz), 8.749 (s, 1H)
13 C-NMR (CDCl 3 , δ ppm); 13.254, 14.085, 19.351, 22.663, 26.113, 28.853, 29.303, 29.333, 29.448, 29.570 , 29.631, 29.677, 30.127, 31.898, 32.004, 49.977, 50.244, 122.179, 122.263, 135.473.
これらのスペクトルから、生成物がヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムであることが同定された。
なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。 From these spectra, the product was identified as hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium.
Hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium, a base acid of a conjugate base [hexafluorocyclopropane-1,3-bis (sulfonyl) The pKa of the imide] in acetonitrile is -0.8.
なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。 From these spectra, the product was identified as hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium.
Hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium, a base acid of a conjugate base [hexafluorocyclopropane-1,3-bis (sulfonyl) The pKa of the imide] in acetonitrile is -0.8.
(比較例3A)
<ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
比較のために、ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成を、以下のスキームにしたがって行った。
(Comparative Example 3A)
<Synthesis of Heptadecafluorooctanesulfonate-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
For comparison, heptadecafluorooctane sulfonate-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme.
<ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
比較のために、ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of Heptadecafluorooctanesulfonate-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
For comparison, heptadecafluorooctane sulfonate-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme.
実施例4Aで合成した6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン4.04gのエタノール溶液にヘプタデカフルオロオクタンスルホン酸5.00gを加え、常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ、水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去した。n-ヘキサンとエタノールの混合溶媒から再結晶を行い、ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムを7.86g得た。収率86.9%
To an ethanol solution of 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene synthesized in Example 4A (4.04 g) was added 5.00 g of heptadecafluorooctanesulfonic acid, and the mixture was stirred at room temperature for 1 hour. Thereafter, heating under reflux was performed for 1 hour. After removing the solvent, it was dissolved in dichloromethane and washed thoroughly with water. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed. Recrystallization from a mixed solvent of n-hexane and ethanol gave 7.86 g of heptadecafluorooctanesulfonic acid-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium. Yield 86.9%
生成物のFTIR吸収とその帰属を以下に示す。
1055cm-1にSO2の対称伸縮振動、1252cm-1にCF2の対称伸縮振動、1368cm-1にSO2結合の逆対称伸縮振動、1467cm-1にCH2の変角振動、1643cm-1にC=Nの伸縮振動、2851cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3296cm-1にNH伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 to 1055cm -1, symmetric stretching vibration of CF 2 to 1252cm -1, antisymmetric stretching vibration of SO 2 bind to 1368cm -1, bending vibration of CH 2 in 1467cm -1, to 1643cm -1 stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2851cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, is NH stretching vibration 3296cm -1 were observed.
1055cm-1にSO2の対称伸縮振動、1252cm-1にCF2の対称伸縮振動、1368cm-1にSO2結合の逆対称伸縮振動、1467cm-1にCH2の変角振動、1643cm-1にC=Nの伸縮振動、2851cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3296cm-1にNH伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 to 1055cm -1, symmetric stretching vibration of CF 2 to 1252cm -1, antisymmetric stretching vibration of SO 2 bind to 1368cm -1, bending vibration of CH 2 in 1467cm -1, to 1643cm -1 stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2851cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, is NH stretching vibration 3296cm -1 were observed.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.843(t,3H,J=6.6Hz), 1.205-1.287(m,32H), 1.544-1.800(m,8H), 1.975-2.033(m,2H), 2.792-2.816(m,1H), 3.440-3.559(m,6H), 8.713(brs,1H)
13C-NMR(CDCl3,δppm);14.024, 19.336, 22.633, 25.121, 26.311, 27.181, 28.311, 29.028, 29.303, 29.425, 29.532, 29.608, 29.654, 31.882, 38.491, 43.375, 49.725, 53.785, 168.029 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.843 (t, 3H, J = 6.6 Hz), 1.205-1.287 (m, 32H), 1.544-1.800 (m, 8H) ), 1.975-2.033 (m, 2H), 2.792-2.816 (m, 1H), 3.440-3.559 (m, 6H), 8.713 (brs, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.024, 19.336, 22.633, 25.121, 26.311, 27.181, 28.311, 29.028, 29.303, 29.425 , 29.532, 29.608, 29.654, 31.882, 38.491, 43.375, 49.725, 53.785, 168.029
1H-NMR(CDCl3,δppm);0.843(t,3H,J=6.6Hz), 1.205-1.287(m,32H), 1.544-1.800(m,8H), 1.975-2.033(m,2H), 2.792-2.816(m,1H), 3.440-3.559(m,6H), 8.713(brs,1H)
13C-NMR(CDCl3,δppm);14.024, 19.336, 22.633, 25.121, 26.311, 27.181, 28.311, 29.028, 29.303, 29.425, 29.532, 29.608, 29.654, 31.882, 38.491, 43.375, 49.725, 53.785, 168.029 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.843 (t, 3H, J = 6.6 Hz), 1.205-1.287 (m, 32H), 1.544-1.800 (m, 8H) ), 1.975-2.033 (m, 2H), 2.792-2.816 (m, 1H), 3.440-3.559 (m, 6H), 8.713 (brs, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.024, 19.336, 22.633, 25.121, 26.311, 27.181, 28.311, 29.028, 29.303, 29.425 , 29.532, 29.608, 29.654, 31.882, 38.491, 43.375, 49.725, 53.785, 168.029
これらのスペクトルから、生成物がヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
なお、ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸〔ヘプタデカフルオロオクタンスルホン酸〕のアセトニトリル中でのpKaは、0.7である。 These spectra identified the product as hepadecafluorooctane sulfonate-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
It should be noted that heptadecafluorooctanesulfonic acid-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium is a base acid of the conjugate base [heptadecafluorooctanesulfonic acid] in acetonitrile. pKa is 0.7.
なお、ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸〔ヘプタデカフルオロオクタンスルホン酸〕のアセトニトリル中でのpKaは、0.7である。 These spectra identified the product as hepadecafluorooctane sulfonate-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
It should be noted that heptadecafluorooctanesulfonic acid-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium is a base acid of the conjugate base [heptadecafluorooctanesulfonic acid] in acetonitrile. pKa is 0.7.
(比較例4A)
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
比較のために、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成を、以下のスキームにしたがって行った。
(Comparative Example 4A)
<Synthesis of Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
For comparison, hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme. It was.
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成>
比較のために、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
For comparison, hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium was synthesized according to the following scheme. It was.
実施例4Aで合成した6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン2.18gのエタノール溶液にヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド3.00gを加え、常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ、水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去した。90℃で真空乾燥を3日間行い、無色の結晶ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムを4.86g得た。収率93.8%
6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene synthesized in Example 4A was added to an ethanol solution of 2.18 g of hexafluorocyclopropane-1,3-bis (sulfonyl) imide (3.00 g). After stirring at room temperature for 1 hour, the mixture was heated to reflux for 1 hour. After removing the solvent, it was dissolved in dichloromethane and washed thoroughly with water. The organic layer was dried over anhydrous sodium sulfate, and then the solvent was removed. Vacuum drying at 90 ° C. for 3 days gave 4 colorless crystals of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium. .86 g was obtained. Yield 93.8%
生成物のFTIR吸収とその帰属を以下に示す。
1042cm-1にSNSの逆対称伸縮振動、1091cm-1にSO2の対称伸縮振動、1164cm-1にCF2の対称伸縮振動、1360cm-1にSO2結合の逆対称伸縮振動、1633cm-1にC=Nの伸縮振動、2848cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3387cm-1にNH伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Antisymmetric stretching vibration of SNS to 1042cm -1, symmetric stretching vibration of SO 2 to 1091cm -1, symmetric stretching vibration of CF 2 to 1164cm -1, antisymmetric stretching vibration of SO 2 binding to 1360 cm -1, the 1633 cm -1 stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2848cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, is NH stretching vibration 3387cm -1 were observed.
1042cm-1にSNSの逆対称伸縮振動、1091cm-1にSO2の対称伸縮振動、1164cm-1にCF2の対称伸縮振動、1360cm-1にSO2結合の逆対称伸縮振動、1633cm-1にC=Nの伸縮振動、2848cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3387cm-1にNH伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Antisymmetric stretching vibration of SNS to 1042cm -1, symmetric stretching vibration of SO 2 to 1091cm -1, symmetric stretching vibration of CF 2 to 1164cm -1, antisymmetric stretching vibration of SO 2 binding to 1360 cm -1, the 1633 cm -1 stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2848cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, is NH stretching vibration 3387cm -1 were observed.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.869(t,3H,J=6.6Hz), 1.170-1.340(m,32H), 1.441-1.555(m,2H), 1.600-1.750(m,4H), 1.772-1.832(m,2H), 1.941-2.101(m,2H), 2.670-2.780(m,1H), 3.413(t/J=6.6Hz,2H), 3.508(t/J=6.6Hz,2Hz), 3.550-3.652(m,2H)
13C-NMR(CDCl3,δppm);14.055, 19.260, 22.633, 26.052, 27.090, 28.524, 29.120, 29.226, 29.318, 29.364, 29.486, 29.578, 29.608, 29.669, 31.867, 38.690, 43.177, 49.511, 53.861, 167.922 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.869 (t, 3H, J = 6.6 Hz), 1.170-1.340 (m, 32H), 1.441-1.555 (m, 2H) ), 1.600-1.750 (m, 4H), 1.772-1.833 (m, 2H), 1.94-2.101 (m, 2H), 2.670-2.780 (m) , 1H), 3.413 (t / J = 6.6 Hz, 2H), 3.508 (t / J = 6.6 Hz, 2 Hz), 3.550-3.652 (m, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.055, 19.260, 22.633, 26.052, 27.090, 28.524, 29.120, 29.226, 29.318, 29.364 , 29.486, 29.578, 29.608, 29.669, 31.867, 38.690, 43.177, 49.511, 53.861, 167.922
1H-NMR(CDCl3,δppm);0.869(t,3H,J=6.6Hz), 1.170-1.340(m,32H), 1.441-1.555(m,2H), 1.600-1.750(m,4H), 1.772-1.832(m,2H), 1.941-2.101(m,2H), 2.670-2.780(m,1H), 3.413(t/J=6.6Hz,2H), 3.508(t/J=6.6Hz,2Hz), 3.550-3.652(m,2H)
13C-NMR(CDCl3,δppm);14.055, 19.260, 22.633, 26.052, 27.090, 28.524, 29.120, 29.226, 29.318, 29.364, 29.486, 29.578, 29.608, 29.669, 31.867, 38.690, 43.177, 49.511, 53.861, 167.922 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.869 (t, 3H, J = 6.6 Hz), 1.170-1.340 (m, 32H), 1.441-1.555 (m, 2H) ), 1.600-1.750 (m, 4H), 1.772-1.833 (m, 2H), 1.94-2.101 (m, 2H), 2.670-2.780 (m) , 1H), 3.413 (t / J = 6.6 Hz, 2H), 3.508 (t / J = 6.6 Hz, 2 Hz), 3.550-3.652 (m, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.055, 19.260, 22.633, 26.052, 27.090, 28.524, 29.120, 29.226, 29.318, 29.364 , 29.486, 29.578, 29.608, 29.669, 31.867, 38.690, 43.177, 49.511, 53.861, 167.922
これらのスペクトルから、生成物がヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムであることが同定された。
なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。 These spectra identified the product as hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium. .
The hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium acid that is the base of the conjugate base [hexafluorocyclopropane -1,3-bis (sulfonyl) imide] in acetonitrile is -0.8.
なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。 These spectra identified the product as hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium. .
The hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium acid that is the base of the conjugate base [hexafluorocyclopropane -1,3-bis (sulfonyl) imide] in acetonitrile is -0.8.
(比較例5A)
<ペンタデカフルオロオクタン酸オクタデシルアンモニウムの合成>
比較のために、ペンタデカフルオロオクタン酸オクタデシルアンモニウムの合成を、以下のスキームにしたがって行った。
(Comparative Example 5A)
<Synthesis of octadecylammonium pentadecafluorooctanoate>
For comparison, synthesis of octadecyl ammonium pentadecafluorooctanoate was performed according to the following scheme.
<ペンタデカフルオロオクタン酸オクタデシルアンモニウムの合成>
比較のために、ペンタデカフルオロオクタン酸オクタデシルアンモニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of octadecylammonium pentadecafluorooctanoate>
For comparison, synthesis of octadecyl ammonium pentadecafluorooctanoate was performed according to the following scheme.
ペンタデカフルオロオクタン酸4.14gとオクタデシルアミン2.69gをエタノール中に加え、加熱還流を1時間行った。溶媒を除去後にn-ヘキサンとエタノールの混合溶媒から再結晶を行い、6.23gの無色板状結晶を得た。収率92.0%。
4.14 g of pentadecafluorooctanoic acid and 2.69 g of octadecylamine were added to ethanol and refluxed with heating for 1 hour. After removing the solvent, recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 6.23 g of colorless plate crystals. Yield 92.0%.
生成物のFTIR吸収とその帰属を以下に示す。
1141cm-1、1201cm-1、及び1232cm-1にCF2の対称伸縮振動、1473cm-1にCH2の変角振動、1677cm-1にC=Oの伸縮振動、2851cm-1にCH2の対称伸縮振動、2918cm-1にCH2の逆対称伸縮振動、3000-3325cm-1にNH4 +伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1141cm -1, 1201cm -1, and the symmetric stretching vibration of CF 2 to 1232cm -1, bending vibration of CH 2 in 1473cm -1, stretching vibration of C = O to 1677cm -1, to 2851cm -1 in CH 2 symmetric stretching vibration, antisymmetric stretching vibration of CH 2 in 2918cm -1, NH 4 + stretching vibration was observed at 3000-3325cm -1.
1141cm-1、1201cm-1、及び1232cm-1にCF2の対称伸縮振動、1473cm-1にCH2の変角振動、1677cm-1にC=Oの伸縮振動、2851cm-1にCH2の対称伸縮振動、2918cm-1にCH2の逆対称伸縮振動、3000-3325cm-1にNH4 +伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
1141cm -1, 1201cm -1, and the symmetric stretching vibration of CF 2 to 1232cm -1, bending vibration of CH 2 in 1473cm -1, stretching vibration of C = O to 1677cm -1, to 2851cm -1 in CH 2 symmetric stretching vibration, antisymmetric stretching vibration of CH 2 in 2918cm -1, NH 4 + stretching vibration was observed at 3000-3325cm -1.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CD3OD,δppm);0.890(t/J=6.6Hz,3H), 1.214-1.408(m,30H), 1.590-1.690(m,2H), 2.896(t/J=7.5Hz,2H), 4.891(brs)
13C-NMR(CD3OD,δppm);14.444, 23.740, 27.464, 28.578, 30.242, 30.486, 30.516, 30.669, 30.791, 33.081, 40.758 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CD 3 OD, δ ppm); 0.890 (t / J = 6.6 Hz, 3H), 1.214-1.408 (m, 30H), 1.590-1.690 (m, 2H), 2.896 (t / J = 7.5 Hz, 2H), 4.891 (brs)
13 C-NMR (CD 3 OD, δ ppm); 14.444, 23.740, 27.464, 28.578, 30.242, 30.486, 30.516, 30.669, 30.791, 33. 081, 40.758
1H-NMR(CD3OD,δppm);0.890(t/J=6.6Hz,3H), 1.214-1.408(m,30H), 1.590-1.690(m,2H), 2.896(t/J=7.5Hz,2H), 4.891(brs)
13C-NMR(CD3OD,δppm);14.444, 23.740, 27.464, 28.578, 30.242, 30.486, 30.516, 30.669, 30.791, 33.081, 40.758 In addition, the peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 H-NMR (CD 3 OD, δ ppm); 0.890 (t / J = 6.6 Hz, 3H), 1.214-1.408 (m, 30H), 1.590-1.690 (m, 2H), 2.896 (t / J = 7.5 Hz, 2H), 4.891 (brs)
13 C-NMR (CD 3 OD, δ ppm); 14.444, 23.740, 27.464, 28.578, 30.242, 30.486, 30.516, 30.669, 30.791, 33. 081, 40.758
これらのスペクトルから、生成物がペンタデカフルオロオクタン酸オクタデシルアンモニウムであることが同定された。
なお、ペンタデカフルオロオクタン酸オクタデシルアンモニウムにおける共役塩基の元となる酸〔ペンタデカフルオロオクタン酸〕のアセトニトリル中でのpKaは、12.7である。 From these spectra, the product was identified as octadecyl ammonium pentadecafluorooctanoate.
In addition, pKa in acetonitrile of the acid [pentadecafluorooctanoic acid] which becomes the base of the conjugate base in octadecylammonium pentadecafluorooctanoate is 12.7.
なお、ペンタデカフルオロオクタン酸オクタデシルアンモニウムにおける共役塩基の元となる酸〔ペンタデカフルオロオクタン酸〕のアセトニトリル中でのpKaは、12.7である。 From these spectra, the product was identified as octadecyl ammonium pentadecafluorooctanoate.
In addition, pKa in acetonitrile of the acid [pentadecafluorooctanoic acid] which becomes the base of the conjugate base in octadecylammonium pentadecafluorooctanoate is 12.7.
(比較例6A)
<ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムについては、下記スキームによって合成した。
(Comparative Example 6A)
<Synthesis of nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium>
Nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium was synthesized according to the following scheme.
<ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムについては、下記スキームによって合成した。
<Synthesis of nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium>
Nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium was synthesized according to the following scheme.
実施例8Aで合成した1-オクタデシル-2-ヘプタデシルイミダゾール4.45gをエタノールに溶解させ、そこへ、ノナフルオロブタンスルホン酸2.40gをエタノールに溶解させたものを徐々に滴下しながら加えた。滴下終了後30分間攪拌後、1時間加熱還流した。溶媒を除去後、エタノール/n-ヘキサンの混合溶媒を用いて再結晶を行い、無色のノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾール塩6.43gを得た。収率93.9%。
4.45 g of 1-octadecyl-2-heptadecylimidazole synthesized in Example 8A was dissolved in ethanol, and 2.40 g of nonafluorobutanesulfonic acid dissolved in ethanol was gradually added dropwise thereto. . After completion of dropping, the mixture was stirred for 30 minutes and then heated to reflux for 1 hour. After removing the solvent, recrystallization was performed using a mixed solvent of ethanol / n-hexane to obtain 6.43 g of colorless nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazole salt. Yield 93.9%.
生成物のFTIRスペクトルの帰属を以下に示した。
1135cm-1にSO2の対称伸縮振動、1279cm-1にCF2の対称伸縮振動、1357cm-1にSO2結合の逆対称伸縮振動、1472cm-1にCH2の変角振動、2851cm-1にCH2の対称伸縮振動、2918cm-1にCH2の逆対称伸縮振動、3152cm-1にNH+伸縮振動が見られた。 The assignment of the FTIR spectrum of the product is shown below.
1135 cm −1 is a symmetric stretching vibration of SO 2 , 1279 cm −1 is a symmetric stretching vibration of CF 2 , 1357 cm −1 is a reverse symmetric stretching vibration of SO 2 bond, 1472 cm −1 is a CH 2 variable angle vibration, and 2851 cm −1 . symmetric stretching vibration of CH 2, antisymmetric stretching vibration of CH 2 in 2918cm -1, is NH + stretching vibration 3152cm -1 were observed.
1135cm-1にSO2の対称伸縮振動、1279cm-1にCF2の対称伸縮振動、1357cm-1にSO2結合の逆対称伸縮振動、1472cm-1にCH2の変角振動、2851cm-1にCH2の対称伸縮振動、2918cm-1にCH2の逆対称伸縮振動、3152cm-1にNH+伸縮振動が見られた。 The assignment of the FTIR spectrum of the product is shown below.
1135 cm −1 is a symmetric stretching vibration of SO 2 , 1279 cm −1 is a symmetric stretching vibration of CF 2 , 1357 cm −1 is a reverse symmetric stretching vibration of SO 2 bond, 1472 cm −1 is a CH 2 variable angle vibration, and 2851 cm −1 . symmetric stretching vibration of CH 2, antisymmetric stretching vibration of CH 2 in 2918cm -1, is NH + stretching vibration 3152cm -1 were observed.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CDCl3,δppm);0.848(t/J=6.8Hz,6H), 1.171-1.307(m,58H), 1.702-1.817(m,4H), 2.908(t/J=7.5Hz,2H), 4.003(t/J=7.5Hz,2H), 7.139(t/J=2.0Hz,1H), 7.255(t/J=2.0Hz,1H), 13.285(brs,1H)
13C-NMR(CDCl3,δppm);14.055, 22.648, 24.602, 26.326, 27.196, 28.952, 28.998, 29.333, 29.455, 29.516, 29.562, 29.669, 30.051, 31.882, 47.725, 118.928, 120.866, 144.149 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.848 (t / J = 6.8 Hz, 6H), 1.171-1.307 (m, 58H), 1.702-1.817 (m, 4H) ), 2.908 (t / J = 7.5 Hz, 2H), 4.003 (t / J = 7.5 Hz, 2H), 7.139 (t / J = 2.0 Hz, 1H), 7.255. (T / J = 2.0Hz, 1H), 13.285 (brs, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.055, 22.648, 24.602, 26.326, 27.196, 28.952, 28.998, 29.333, 29.455, 29.516 , 29.562, 29.669, 30.051, 31.882, 47.725, 118.928, 120.866, 144.149.
1H-NMR(CDCl3,δppm);0.848(t/J=6.8Hz,6H), 1.171-1.307(m,58H), 1.702-1.817(m,4H), 2.908(t/J=7.5Hz,2H), 4.003(t/J=7.5Hz,2H), 7.139(t/J=2.0Hz,1H), 7.255(t/J=2.0Hz,1H), 13.285(brs,1H)
13C-NMR(CDCl3,δppm);14.055, 22.648, 24.602, 26.326, 27.196, 28.952, 28.998, 29.333, 29.455, 29.516, 29.562, 29.669, 30.051, 31.882, 47.725, 118.928, 120.866, 144.149 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 of the obtained compound is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.848 (t / J = 6.8 Hz, 6H), 1.171-1.307 (m, 58H), 1.702-1.817 (m, 4H) ), 2.908 (t / J = 7.5 Hz, 2H), 4.003 (t / J = 7.5 Hz, 2H), 7.139 (t / J = 2.0 Hz, 1H), 7.255. (T / J = 2.0Hz, 1H), 13.285 (brs, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.055, 22.648, 24.602, 26.326, 27.196, 28.952, 28.998, 29.333, 29.455, 29.516 , 29.562, 29.669, 30.051, 31.882, 47.725, 118.928, 120.866, 144.149.
以上より、ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムが合成されていることが確認できた。
なお、ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムにおける共役塩基の元となる酸〔ノナフルオロブタンスルホン酸〕のアセトニトリル中でのpKaは、0.7である。 From the above, it was confirmed that nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium was synthesized.
The pKa in acetonitrile of the acid [nonafluorobutanesulfonic acid], which is the base of the conjugate base in the 1-octadecyl-2-heptadecylimidazolium nonafluorobutanesulfonate, is 0.7.
なお、ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムにおける共役塩基の元となる酸〔ノナフルオロブタンスルホン酸〕のアセトニトリル中でのpKaは、0.7である。 From the above, it was confirmed that nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium was synthesized.
The pKa in acetonitrile of the acid [nonafluorobutanesulfonic acid], which is the base of the conjugate base in the 1-octadecyl-2-heptadecylimidazolium nonafluorobutanesulfonate, is 0.7.
(比較例7A)
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムの合成>
比較のために、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムの合成を、以下のスキームにしたがって行った。
(Comparative Example 7A)
<Synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium>
For comparison, hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium was synthesized according to the following scheme.
<ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムの合成>
比較のために、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムの合成を、以下のスキームにしたがって行った。
<Synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium>
For comparison, hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium was synthesized according to the following scheme.
実施例8Aで合成した1-オクタデシル-2-ヘプタデシルイミダゾール3.46gをエタノールに溶解させ、そこへ、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド1.82gをエタノールに溶解させたものを徐々に滴下しながら加えた。滴下終了後30分間攪拌後、1時間加熱還流した。溶媒を除去後、エタノール/n-ヘキサンの混合溶媒を用いて再結晶を行い、無色のヘキサフルオロシクロプロパン-1,3-ジスルホニルイミド-1-オクタデシル-2-ヘプタデシルイミダゾリウム5.05gを得た。収率96%。
3.46 g of 1-octadecyl-2-heptadecylimidazole synthesized in Example 8A was dissolved in ethanol, and 1.82 g of hexafluorocyclopropane-1,3-bis (sulfonyl) imide was dissolved therein. Things were added slowly dropwise. After completion of dropping, the mixture was stirred for 30 minutes and then heated to reflux for 1 hour. After removing the solvent, recrystallization was performed using a mixed solvent of ethanol / n-hexane to obtain 5.05 g of colorless hexafluorocyclopropane-1,3-disulfonylimide-1-octadecyl-2-heptadecylimidazolium. Obtained. Yield 96%.
生成物のFTIRスペクトルの帰属を以下に示した。
1086cm-1にSO2の対称伸縮振動、1164cm-1にCF2の対称伸縮振動、1364cm-1にSO2結合の逆対称伸縮振動、1469cm-1にC=N結合の対称伸縮振動、2851cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3162及び3289cm-1にNH結合の伸縮振動が見られた。 The assignment of the FTIR spectrum of the product is shown below.
1086 cm −1 is a symmetrical stretching vibration of SO 2 , 1164 cm −1 is a symmetrical stretching vibration of CF 2 , 1364 cm −1 is an anti symmetric stretching vibration of SO 2 bond, 1469 cm −1 is a symmetric stretching vibration of C = N bond, 2851 cm − 1 symmetric stretching vibration of CH 2, antisymmetric stretching vibration of CH 2 in 2920 cm -1, in 3162 and 3289cm -1 are stretching vibration of NH bond were observed.
1086cm-1にSO2の対称伸縮振動、1164cm-1にCF2の対称伸縮振動、1364cm-1にSO2結合の逆対称伸縮振動、1469cm-1にC=N結合の対称伸縮振動、2851cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動、3162及び3289cm-1にNH結合の伸縮振動が見られた。 The assignment of the FTIR spectrum of the product is shown below.
1086 cm −1 is a symmetrical stretching vibration of SO 2 , 1164 cm −1 is a symmetrical stretching vibration of CF 2 , 1364 cm −1 is an anti symmetric stretching vibration of SO 2 bond, 1469 cm −1 is a symmetric stretching vibration of C = N bond, 2851 cm − 1 symmetric stretching vibration of CH 2, antisymmetric stretching vibration of CH 2 in 2920 cm -1, in 3162 and 3289cm -1 are stretching vibration of NH bond were observed.
また、生成物の、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示した。
1H-NMR(CDCl3,δppm);0.853(t,6H,J=6.8Hz), 1.182-1.323(m,58H), 1.652‐1.833(m,4H), 2.913(t,2H,J=7.5Hz), 4.007(t,2H,J=7.5Hz), 7.126(t,1H,J=1.6Hz), 7.274(t,1H,J=1.6Hz), 11.820(brs,1H)
13C-NMR(CDCl3,δppm);14.065, 22.658, 24.566, 26.321, 27.420, 28.931, 29.297, 29.326, 29.450, 29.496, 29.557, 29.633, 29.679, 30.015, 31.892, 47.888, 119.044, 120.891, 147.159 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform of the product is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.853 (t, 6H, J = 6.8 Hz), 1.182-1.323 (m, 58H), 1.652-1.833 (m, 4H) ), 2.913 (t, 2H, J = 7.5 Hz), 4.007 (t, 2H, J = 7.5 Hz), 7.126 (t, 1H, J = 1.6 Hz), 7.274 (T, 1H, J = 1.6 Hz), 11.820 (brs, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.065, 22.658, 24.666, 26.321, 27.420, 28.931, 29.297, 29.326, 29.450, 29.496 , 29.557, 29.633, 29.679, 30.015, 31.892, 47.888, 119.044, 120.891, 147.159
1H-NMR(CDCl3,δppm);0.853(t,6H,J=6.8Hz), 1.182-1.323(m,58H), 1.652‐1.833(m,4H), 2.913(t,2H,J=7.5Hz), 4.007(t,2H,J=7.5Hz), 7.126(t,1H,J=1.6Hz), 7.274(t,1H,J=1.6Hz), 11.820(brs,1H)
13C-NMR(CDCl3,δppm);14.065, 22.658, 24.566, 26.321, 27.420, 28.931, 29.297, 29.326, 29.450, 29.496, 29.557, 29.633, 29.679, 30.015, 31.892, 47.888, 119.044, 120.891, 147.159 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform of the product is shown below.
1 H-NMR (CDCl 3 , δ ppm); 0.853 (t, 6H, J = 6.8 Hz), 1.182-1.323 (m, 58H), 1.652-1.833 (m, 4H) ), 2.913 (t, 2H, J = 7.5 Hz), 4.007 (t, 2H, J = 7.5 Hz), 7.126 (t, 1H, J = 1.6 Hz), 7.274 (T, 1H, J = 1.6 Hz), 11.820 (brs, 1H)
13 C-NMR (CDCl 3 , δ ppm); 14.065, 22.658, 24.666, 26.321, 27.420, 28.931, 29.297, 29.326, 29.450, 29.496 , 29.557, 29.633, 29.679, 30.015, 31.892, 47.888, 119.044, 120.891, 147.159
これらのスペクトルから、生成物がヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムであることが同定された。
なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。 From these spectra, the product was identified as hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium.
Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium, a base acid of a conjugate base [hexafluorocyclopropane-1,3-bis (sulfonyl) imide PKa in acetonitrile is -0.8.
なお、ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、-0.8である。 From these spectra, the product was identified as hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium.
Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium, a base acid of a conjugate base [hexafluorocyclopropane-1,3-bis (sulfonyl) imide PKa in acetonitrile is -0.8.
(比較例8A)
<ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムの合成>
比較のために、ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムの合成を、以下のスキームにしたがって行った。
(Comparative Example 8A)
<Synthesis of bis (nonafluorobutanesulfonyl) imide-octadecylammonium>
For comparison, the synthesis of bis (nonafluorobutanesulfonyl) imide-octadecylammonium was performed according to the following scheme.
<ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムの合成>
比較のために、ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of bis (nonafluorobutanesulfonyl) imide-octadecylammonium>
For comparison, the synthesis of bis (nonafluorobutanesulfonyl) imide-octadecylammonium was performed according to the following scheme.
オクタデシルアミンをエタノールに溶解させ、等モル量のビス(ノナフルオロブタンスルホニル)イミドのエタノール溶液を加えた。加熱還流を1時間行い、冷却後に溶媒を除去した。残留物をジクロルメタンで抽出し、有機層を水で十分に洗浄した。無水硫酸ナトリウムで乾燥後に溶媒を除去して、n-ヘキサンとエタノールの混合溶媒から再結晶を行い、ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムの無色結晶を得る。収率91.1%。
Octadecylamine was dissolved in ethanol, and an equimolar amount of an ethanol solution of bis (nonafluorobutanesulfonyl) imide was added. Heating under reflux was performed for 1 hour, and the solvent was removed after cooling. The residue was extracted with dichloromethane and the organic layer was washed thoroughly with water. After drying over anhydrous sodium sulfate, the solvent is removed and recrystallization is performed from a mixed solvent of n-hexane and ethanol to obtain colorless crystals of bis (nonafluorobutanesulfonyl) imide-octadecylammonium. Yield 91.1%.
生成物のFTIR吸収とその帰属を以下に示す。
1031cm-1にSNS結合の逆対称伸縮振動、1088cm-1にSO2結合の対称伸縮振動、1141及び1200cm-1にCF2の対称伸縮振動、1355cm-1にSO2結合の逆対称伸縮振動、1473cm-1にCH2の変角振動、1616cm-1にNH3 +の変角振動、2856cm-1にCH2の対称伸縮振動、2926cm-1にCH2の逆対称伸縮振動、3248cm-1にNH3 +伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Antisymmetric stretching vibration of SNS coupled to 1031cm -1, symmetric stretching vibration of SO 2 bind to 1088cm -1, 1141 and symmetric stretching vibration of 1200 cm -1 in CF 2, antisymmetric stretching vibration of SO 2 binding to 1355 cm -1, 1473 cm −1 is CH 2 bending vibration, 1616 cm −1 is NH 3 + bending vibration, 2856 cm −1 is CH 2 symmetric stretching vibration, 2926 cm −1 is CH 2 antisymmetric stretching vibration, 3248 cm −1 NH 3 + stretching vibration was observed.
1031cm-1にSNS結合の逆対称伸縮振動、1088cm-1にSO2結合の対称伸縮振動、1141及び1200cm-1にCF2の対称伸縮振動、1355cm-1にSO2結合の逆対称伸縮振動、1473cm-1にCH2の変角振動、1616cm-1にNH3 +の変角振動、2856cm-1にCH2の対称伸縮振動、2926cm-1にCH2の逆対称伸縮振動、3248cm-1にNH3 +伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Antisymmetric stretching vibration of SNS coupled to 1031cm -1, symmetric stretching vibration of SO 2 bind to 1088cm -1, 1141 and symmetric stretching vibration of 1200 cm -1 in CF 2, antisymmetric stretching vibration of SO 2 binding to 1355 cm -1, 1473 cm −1 is CH 2 bending vibration, 1616 cm −1 is NH 3 + bending vibration, 2856 cm −1 is CH 2 symmetric stretching vibration, 2926 cm −1 is CH 2 antisymmetric stretching vibration, 3248 cm −1 NH 3 + stretching vibration was observed.
得られた化合物の重メタノール(CD3OD)中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CD3OD,δppm);0.889(t/J=6.8Hz,3H), 1.225-1.400(m,30H), 1.635(quint/J=7.5Hz,2H), 2.896(d/J=7.5Hz,2H), 4.867(brs,3H)
13C-NMR(CD3OD,δppm);14.414, 23.709, 27.403, 28.563, 30.196, 30.471, 30.623, 30.776, 33.065, 40.819 The proton ( 1 H) NMR and carbon ( 13 C) NMR peaks in deuterated methanol (CD 3 OD) of the obtained compound are shown below.
1 H-NMR (CD 3 OD, δ ppm); 0.889 (t / J = 6.8 Hz, 3H), 1.225-1.400 (m, 30H), 1.635 (quint / J = 7. 5Hz, 2H), 2.896 (d / J = 7.5Hz, 2H), 4.867 (brs, 3H)
13 C-NMR (CD 3 OD, δ ppm); 14.414, 23.709, 27.403, 28.563, 30.196, 30.471, 30.623, 30.766, 33.065, 40. 819
1H-NMR(CD3OD,δppm);0.889(t/J=6.8Hz,3H), 1.225-1.400(m,30H), 1.635(quint/J=7.5Hz,2H), 2.896(d/J=7.5Hz,2H), 4.867(brs,3H)
13C-NMR(CD3OD,δppm);14.414, 23.709, 27.403, 28.563, 30.196, 30.471, 30.623, 30.776, 33.065, 40.819 The proton ( 1 H) NMR and carbon ( 13 C) NMR peaks in deuterated methanol (CD 3 OD) of the obtained compound are shown below.
1 H-NMR (CD 3 OD, δ ppm); 0.889 (t / J = 6.8 Hz, 3H), 1.225-1.400 (m, 30H), 1.635 (quint / J = 7. 5Hz, 2H), 2.896 (d / J = 7.5Hz, 2H), 4.867 (brs, 3H)
13 C-NMR (CD 3 OD, δ ppm); 14.414, 23.709, 27.403, 28.563, 30.196, 30.471, 30.623, 30.766, 33.065, 40. 819
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-octadecylammonium.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide-octadecylammonium, is 0.0.
なお、ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。 From these spectra, the product was identified as bis (nonafluorobutanesulfonyl) imide-octadecylammonium.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the base of the conjugate base in bis (nonafluorobutanesulfonyl) imide-octadecylammonium, is 0.0.
(比較例9A)
<ノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムの合成>
比較のために、ノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムの合成を、以下のスキームにしたがって行った。
(Comparative Example 9A)
<Synthesis of nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecyl ammonium>
For comparison, nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecyl ammonium was synthesized according to the following scheme.
<ノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムの合成>
比較のために、ノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecyl ammonium>
For comparison, nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecyl ammonium was synthesized according to the following scheme.
トリメチルオクタデシルアンモニウムブロミド5.51gを水に溶解させ、4.61gのノナフルオロブタンスルホン酸リチウムの水溶液を加えた。加熱還流を1時間行い、冷却後に析出した沈殿物をジクロルメタンで抽出し、水で洗浄液がAgNO3試験で陰性になるまで十分に洗浄し、有機層を無水硫酸ナトリウムで乾燥後に溶媒を除去して8.14gのノナフルオロブタンスルホン酸-トリメチルオクタデシルアンモニウムの無色結晶を得た。収率94.8%。n‐ヘキサンとエタノールの混合溶媒から再結晶を行った。
5.51 g of trimethyloctadecyl ammonium bromide was dissolved in water, and 4.61 g of an aqueous solution of lithium nonafluorobutanesulfonate was added. Heating under reflux is performed for 1 hour, the precipitate deposited after cooling is extracted with dichloromethane, washed thoroughly with water until the washing solution becomes negative in the AgNO 3 test, the organic layer is dried over anhydrous sodium sulfate, and then the solvent is removed. 8.14 g of nonafluorobutanesulfonic acid-trimethyloctadecyl ammonium colorless crystals were obtained. Yield 94.8%. Recrystallization was performed from a mixed solvent of n-hexane and ethanol.
生成物のFTIR吸収とその帰属を以下に示す。
1133cm-1にSO2結合の対称伸縮振動、1263cm-1にCF2の対称伸縮振動、1353cm-1にSO2結合の逆対称伸縮振動、1485cm-1にCH2の変角振動、2852cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 bind to 1133cm -1, symmetric stretching vibration of CF 2 to 1263cm -1, antisymmetric stretching vibration of SO 2 bind to 1353cm -1, bending vibration of CH 2 in 1485cm -1, 2852cm -1 symmetric stretching vibration of CH 2, the antisymmetric stretching vibration of CH 2 in the 2920 cm -1 was observed in.
1133cm-1にSO2結合の対称伸縮振動、1263cm-1にCF2の対称伸縮振動、1353cm-1にSO2結合の逆対称伸縮振動、1485cm-1にCH2の変角振動、2852cm-1にCH2の対称伸縮振動、2920cm-1にCH2の逆対称伸縮振動が見られた。 The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 bind to 1133cm -1, symmetric stretching vibration of CF 2 to 1263cm -1, antisymmetric stretching vibration of SO 2 bind to 1353cm -1, bending vibration of CH 2 in 1485cm -1, 2852cm -1 symmetric stretching vibration of CH 2, the antisymmetric stretching vibration of CH 2 in the 2920 cm -1 was observed in.
得られた化合物のCD3OD中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H-NMR(CD3OD,δppm);0.851(t/J=6.8Hz,3H), 1.170-1.340(m,30H), 1.640‐1.730(m,2H), 3.181(s,9H), 3.291-3.334(m,2H)
13C-NMR(CDCl3,δppm);14.089, 22.666, 23.068, 25.972, 29.067, 29.316, 29.335, 29.412, 29.565, 29.680, 31.904, 53.043, 66.996 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CD 3 OD of the obtained compound is shown below.
1 H-NMR (CD 3 OD, δ ppm); 0.851 (t / J = 6.8 Hz, 3H), 1.170-1.340 (m, 30H), 1.640-1.730 (m, 2H), 3.181 (s, 9H), 3.291-3.334 (m, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.089, 22.666, 23.068, 25.972, 29.067, 29.316, 29.335, 29.412, 29.565, 29.680 , 31.904, 53.043, 66.996
1H-NMR(CD3OD,δppm);0.851(t/J=6.8Hz,3H), 1.170-1.340(m,30H), 1.640‐1.730(m,2H), 3.181(s,9H), 3.291-3.334(m,2H)
13C-NMR(CDCl3,δppm);14.089, 22.666, 23.068, 25.972, 29.067, 29.316, 29.335, 29.412, 29.565, 29.680, 31.904, 53.043, 66.996 The peak of proton ( 1 H) NMR and carbon ( 13 C) NMR in CD 3 OD of the obtained compound is shown below.
1 H-NMR (CD 3 OD, δ ppm); 0.851 (t / J = 6.8 Hz, 3H), 1.170-1.340 (m, 30H), 1.640-1.730 (m, 2H), 3.181 (s, 9H), 3.291-3.334 (m, 2H)
13 C-NMR (CDCl 3 , δ ppm); 14.089, 22.666, 23.068, 25.972, 29.067, 29.316, 29.335, 29.412, 29.565, 29.680 , 31.904, 53.043, 66.996
これらのスペクトルから、生成物がノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムであることが同定された。
なお、ノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。 From these spectra, the product was identified as nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecyl ammonium.
The pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecylammonium is 0.7.
なお、ノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。 From these spectra, the product was identified as nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecyl ammonium.
The pKa in acetonitrile of the acid (nonafluorobutanesulfonic acid) that is the base of the conjugate base in nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecylammonium is 0.7.
上記実施例及び比較例で合成したイオン液体を以下にまとめた。
The ionic liquids synthesized in the above examples and comparative examples are summarized below.
(実施例1B~実施例5B、及び比較例1B~比較例5B、比較例10B、比較例11B)
<フッ素系溶媒への溶解性測定結果>
各実施例、各比較例で合成したイオン液体、及びZ-DOL、Z-TETRAOLに対して、フッ素系溶媒として三井・デュポン フロロケミカル株式会社社製バートレルXF〔CF3(CHF)2CF2CF3〕を用いて溶解性試験を行った。
所定質量のバートレルXFに対してイオン液体、及びZ-DOL、Z-TETRAOLをそれぞれ加え、超音波を5分間照射した後に1日間放置し、その溶解性を目視で確認した。
具体的には、バートレルXF(25℃)100質量部に対して、1.0質量部、0.5質量部、0.1質量部それぞれのイオン液体、及びZ-DOL、Z-TETRAOLを加え、超音波を5分間照射した後に1日間放置したのちに、その溶解性を目視で確認し、以下の評価基準で評価した。 (Examples 1B to 5B, and Comparative Examples 1B to 5B, Comparative Example 10B, and Comparative Example 11B)
<Measurement results of solubility in fluorine-based solvents>
Vertrel XF [CF 3 (CHF) 2 CF 2 CF manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.] as a fluorinated solvent for the ionic liquids synthesized in each Example and each Comparative Example, and Z-DOL and Z-TETRAOL 3 ] was used to conduct a solubility test.
An ionic liquid, Z-DOL and Z-TETRAOL were added to a predetermined mass of Bertrell XF, respectively, irradiated with ultrasonic waves for 5 minutes, and allowed to stand for 1 day, and its solubility was visually confirmed.
Specifically, 1.0 parts by weight, 0.5 parts by weight, and 0.1 parts by weight of ionic liquid, and Z-DOL and Z-TETRAOL are added to 100 parts by weight of Bertrell XF (25 ° C.). After being left for 1 day after being irradiated with ultrasonic waves for 5 minutes, its solubility was visually confirmed and evaluated according to the following evaluation criteria.
<フッ素系溶媒への溶解性測定結果>
各実施例、各比較例で合成したイオン液体、及びZ-DOL、Z-TETRAOLに対して、フッ素系溶媒として三井・デュポン フロロケミカル株式会社社製バートレルXF〔CF3(CHF)2CF2CF3〕を用いて溶解性試験を行った。
所定質量のバートレルXFに対してイオン液体、及びZ-DOL、Z-TETRAOLをそれぞれ加え、超音波を5分間照射した後に1日間放置し、その溶解性を目視で確認した。
具体的には、バートレルXF(25℃)100質量部に対して、1.0質量部、0.5質量部、0.1質量部それぞれのイオン液体、及びZ-DOL、Z-TETRAOLを加え、超音波を5分間照射した後に1日間放置したのちに、その溶解性を目視で確認し、以下の評価基準で評価した。 (Examples 1B to 5B, and Comparative Examples 1B to 5B, Comparative Example 10B, and Comparative Example 11B)
<Measurement results of solubility in fluorine-based solvents>
Vertrel XF [CF 3 (CHF) 2 CF 2 CF manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.] as a fluorinated solvent for the ionic liquids synthesized in each Example and each Comparative Example, and Z-DOL and Z-TETRAOL 3 ] was used to conduct a solubility test.
An ionic liquid, Z-DOL and Z-TETRAOL were added to a predetermined mass of Bertrell XF, respectively, irradiated with ultrasonic waves for 5 minutes, and allowed to stand for 1 day, and its solubility was visually confirmed.
Specifically, 1.0 parts by weight, 0.5 parts by weight, and 0.1 parts by weight of ionic liquid, and Z-DOL and Z-TETRAOL are added to 100 parts by weight of Bertrell XF (25 ° C.). After being left for 1 day after being irradiated with ultrasonic waves for 5 minutes, its solubility was visually confirmed and evaluated according to the following evaluation criteria.
なお、目視で確認し、透明である場合を溶解していると判断した。また、不透明である又は不溶分が見られる場合を溶解していない(不溶)と判断した。
結果を表2に示す。
〔評価基準〕
・0.5質量%以上:
0.5質量部の添加で溶解している。
・0.1質量%以上0.5質量%未満:
0.5質量部の添加では不溶であるが、0.1質量部の添加では溶解している。
・0.1質量%未満:
0.5質量部、及び0.1質量部のいずれの添加でも不溶である。 In addition, it confirmed visually and judged that it was melt | dissolving when it was transparent. Moreover, it was judged that it was not melt | dissolved (insoluble) when it is opaque or an insoluble part is seen.
The results are shown in Table 2.
〔Evaluation criteria〕
・ 0.5% by mass or more:
It dissolves by addition of 0.5 part by mass.
・ 0.1 mass% or more and less than 0.5 mass%:
The addition of 0.5 part by mass is insoluble, but the addition of 0.1 part by mass dissolves.
-Less than 0.1% by mass:
Any addition of 0.5 parts by mass and 0.1 parts by mass is insoluble.
結果を表2に示す。
〔評価基準〕
・0.5質量%以上:
0.5質量部の添加で溶解している。
・0.1質量%以上0.5質量%未満:
0.5質量部の添加では不溶であるが、0.1質量部の添加では溶解している。
・0.1質量%未満:
0.5質量部、及び0.1質量部のいずれの添加でも不溶である。 In addition, it confirmed visually and judged that it was melt | dissolving when it was transparent. Moreover, it was judged that it was not melt | dissolved (insoluble) when it is opaque or an insoluble part is seen.
The results are shown in Table 2.
〔Evaluation criteria〕
・ 0.5% by mass or more:
It dissolves by addition of 0.5 part by mass.
・ 0.1 mass% or more and less than 0.5 mass%:
The addition of 0.5 part by mass is insoluble, but the addition of 0.1 part by mass dissolves.
-Less than 0.1% by mass:
Any addition of 0.5 parts by mass and 0.1 parts by mass is insoluble.
実施例1Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%未満であった。
実施例2Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
実施例3Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例4Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
実施例5Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。 The solubility of the ionic liquid of Example 1A in the fluorinated solvent was less than 0.1% by mass.
The solubility of the ionic liquid of Example 2A in the fluorine-based solvent was 0.1% by mass or more and less than 0.5% by mass.
The solubility of the ionic liquid of Example 3A in the fluorine-based solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 4A in the fluorinated solvent was 0.1% by mass or more and less than 0.5% by mass.
The solubility of the ionic liquid of Example 5A in the fluorine-based solvent was 0.1% by mass or more and less than 0.5% by mass.
実施例2Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
実施例3Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例4Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
実施例5Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。 The solubility of the ionic liquid of Example 1A in the fluorinated solvent was less than 0.1% by mass.
The solubility of the ionic liquid of Example 2A in the fluorine-based solvent was 0.1% by mass or more and less than 0.5% by mass.
The solubility of the ionic liquid of Example 3A in the fluorine-based solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 4A in the fluorinated solvent was 0.1% by mass or more and less than 0.5% by mass.
The solubility of the ionic liquid of Example 5A in the fluorine-based solvent was 0.1% by mass or more and less than 0.5% by mass.
比較例1A~比較例5Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%未満であった。
Z-DOL、Z-TETRAOLのフッ素系溶媒への溶解性は0.5質量%以上であった。 The solubility of the ionic liquids of Comparative Examples 1A to 5A in the fluorine-based solvent was less than 0.1% by mass.
The solubility of Z-DOL and Z-TETRAOL in a fluorine-based solvent was 0.5% by mass or more.
Z-DOL、Z-TETRAOLのフッ素系溶媒への溶解性は0.5質量%以上であった。 The solubility of the ionic liquids of Comparative Examples 1A to 5A in the fluorine-based solvent was less than 0.1% by mass.
The solubility of Z-DOL and Z-TETRAOL in a fluorine-based solvent was 0.5% by mass or more.
これからわかるように、実施例で用いたイオン液体は、フッ素系溶媒であるバートレルXFに対しての溶解性が改善していることが分かる。実施例2A~5Aの化合物はハードディスク用途としての生産に用いるには十分である。
As can be seen, it can be seen that the ionic liquids used in the examples have improved solubility in the fluorinated solvent Bartrel XF. The compounds of Examples 2A-5A are sufficient for use in production for hard disk applications.
イミダゾール系イオン液体は、比較例1B及び比較例2Bからわかるように、バートレルへの溶解性は低いが、水酸基を導入された実施例2Bでは溶解性が改良されていることが分かる。つまり分子設計手法として水酸基を導入することがバートレルへの溶解性に対して有効であることが分かる。
As can be seen from Comparative Example 1B and Comparative Example 2B, the imidazole-based ionic liquid has low solubility in Vertrel, but it can be seen that Example 2B into which hydroxyl groups have been introduced has improved solubility. That is, it can be seen that introduction of a hydroxyl group as a molecular design method is effective for solubility in vertell.
ピロリジン骨格を持つイオン液体は、アニオンとしてビス(ノナフルオロブタンスルホニル)イミドを持つ実施例3Aで、この中で最も高い溶解性を示した。
また、同じオクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン骨格を持つ場合でも、比較例3B及び4Bではバートレルへの溶解性は低いが、実施例4B及び5Bでは改善されている。 The ionic liquid having a pyrrolidine skeleton exhibited the highest solubility in Example 3A having bis (nonafluorobutanesulfonyl) imide as an anion.
Even in the case of having the same octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene skeleton, Comparative Examples 3B and 4B have low solubility in Vertrel but are improved in Examples 4B and 5B. ing.
また、同じオクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン骨格を持つ場合でも、比較例3B及び4Bではバートレルへの溶解性は低いが、実施例4B及び5Bでは改善されている。 The ionic liquid having a pyrrolidine skeleton exhibited the highest solubility in Example 3A having bis (nonafluorobutanesulfonyl) imide as an anion.
Even in the case of having the same octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene skeleton, Comparative Examples 3B and 4B have low solubility in Vertrel but are improved in Examples 4B and 5B. ing.
本発明者らの検討結果から、イオン液体に対して水酸基を導入することによりフッ素系溶媒への溶解性が改善することが分かった。またアニオンとしてビス(ノナフルオロブタンスルホニル)イミドを持つものはノナフルオロブタンスルホン酸よりも溶解性は総じて高い。
From the examination results of the present inventors, it was found that the solubility in a fluorinated solvent is improved by introducing a hydroxyl group into the ionic liquid. Those having bis (nonafluorobutanesulfonyl) imide as anions generally have higher solubility than nonafluorobutanesulfonic acid.
(実施例6B~実施例10B、及び比較例6B~比較例11B)
<溶媒への溶解性測定結果>
各実施例、各比較例で合成したイオン液体、及びZ-DOL、Z-TETRAOL)に対して、フッ素系溶媒として三井・デュポン フロロケミカル株式会社社製バートレルXF〔CF3(CHF)2CF2CF3〕、並びに純正化学社製試薬特級のn-ヘキサン及びエタノールを用いて溶解性試験を行った。
所定質量のバートレルXF、n-ヘキサン、あるいはエタノールに対してイオン液体を加え、超音波を5分間照射した後に1日間放置し、その溶解性を目視で確認した。
具体的には、バートレルXF(25℃)100質量部に対して、0.2質量部のイオン液体を加え、超音波を5分間照射した後に1日間放置したのちに、その溶解性を目視で確認し、以下の評価基準で評価した。n-ヘキサン及びエタノールの場合には、同様に25℃において、100質量部に対して、0.5質量部のイオン液体を加え、同様に超音波を5分間照射した後に1日間放置したのちに、その溶解性を目視で確認し、以下の評価基準で評価した。 (Example 6B to Example 10B and Comparative Example 6B to Comparative Example 11B)
<Solubility measurement results in solvent>
Vertrel XF [CF 3 (CHF) 2 CF 2 manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.] as a fluorinated solvent for the ionic liquids synthesized in the examples and comparative examples, and Z-DOL and Z-TETRAOL) CF 3 ], and a reagent-grade n-hexane and ethanol manufactured by Junsei Chemical Co., Ltd. were used for the solubility test.
An ionic liquid was added to a predetermined mass of Bertrell XF, n-hexane, or ethanol, and the mixture was allowed to stand for 1 day after being irradiated with ultrasonic waves for 5 minutes, and its solubility was visually confirmed.
Specifically, 0.2 parts by mass of an ionic liquid is added to 100 parts by mass of Bertrell XF (25 ° C.), irradiated with ultrasonic waves for 5 minutes, and left for 1 day, and then its solubility is visually checked. Confirmed and evaluated according to the following evaluation criteria. In the case of n-hexane and ethanol, similarly, at 25 ° C., after adding 0.5 parts by mass of ionic liquid to 100 parts by mass, similarly, after irradiating with ultrasonic waves for 5 minutes, The solubility was visually confirmed and evaluated according to the following evaluation criteria.
<溶媒への溶解性測定結果>
各実施例、各比較例で合成したイオン液体、及びZ-DOL、Z-TETRAOL)に対して、フッ素系溶媒として三井・デュポン フロロケミカル株式会社社製バートレルXF〔CF3(CHF)2CF2CF3〕、並びに純正化学社製試薬特級のn-ヘキサン及びエタノールを用いて溶解性試験を行った。
所定質量のバートレルXF、n-ヘキサン、あるいはエタノールに対してイオン液体を加え、超音波を5分間照射した後に1日間放置し、その溶解性を目視で確認した。
具体的には、バートレルXF(25℃)100質量部に対して、0.2質量部のイオン液体を加え、超音波を5分間照射した後に1日間放置したのちに、その溶解性を目視で確認し、以下の評価基準で評価した。n-ヘキサン及びエタノールの場合には、同様に25℃において、100質量部に対して、0.5質量部のイオン液体を加え、同様に超音波を5分間照射した後に1日間放置したのちに、その溶解性を目視で確認し、以下の評価基準で評価した。 (Example 6B to Example 10B and Comparative Example 6B to Comparative Example 11B)
<Solubility measurement results in solvent>
Vertrel XF [CF 3 (CHF) 2 CF 2 manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.] as a fluorinated solvent for the ionic liquids synthesized in the examples and comparative examples, and Z-DOL and Z-TETRAOL) CF 3 ], and a reagent-grade n-hexane and ethanol manufactured by Junsei Chemical Co., Ltd. were used for the solubility test.
An ionic liquid was added to a predetermined mass of Bertrell XF, n-hexane, or ethanol, and the mixture was allowed to stand for 1 day after being irradiated with ultrasonic waves for 5 minutes, and its solubility was visually confirmed.
Specifically, 0.2 parts by mass of an ionic liquid is added to 100 parts by mass of Bertrell XF (25 ° C.), irradiated with ultrasonic waves for 5 minutes, and left for 1 day, and then its solubility is visually checked. Confirmed and evaluated according to the following evaluation criteria. In the case of n-hexane and ethanol, similarly, at 25 ° C., after adding 0.5 parts by mass of ionic liquid to 100 parts by mass, similarly, after irradiating with ultrasonic waves for 5 minutes, The solubility was visually confirmed and evaluated according to the following evaluation criteria.
なお、目視で確認し、透明である場合を溶解していると判断した。また、不透明である又は不溶分が見られる場合を溶解していない(不溶)と判断した。
結果を表2-2に示す。
〔評価基準〕
<<バートレルXF>>
・0.2質量%以上:
0.2質量部の添加で溶解している。
・0.2質量%未満:
0.2質量部の添加では不溶である。 In addition, it confirmed visually and judged that it was melt | dissolving when it was transparent. Moreover, it was judged that it was not melt | dissolved (insoluble) when it is opaque or an insoluble part is seen.
The results are shown in Table 2-2.
〔Evaluation criteria〕
<< Bertrel XF >>
・ 0.2% by mass or more:
It dissolves by addition of 0.2 part by mass.
-Less than 0.2% by mass:
The addition of 0.2 part by mass is insoluble.
結果を表2-2に示す。
〔評価基準〕
<<バートレルXF>>
・0.2質量%以上:
0.2質量部の添加で溶解している。
・0.2質量%未満:
0.2質量部の添加では不溶である。 In addition, it confirmed visually and judged that it was melt | dissolving when it was transparent. Moreover, it was judged that it was not melt | dissolved (insoluble) when it is opaque or an insoluble part is seen.
The results are shown in Table 2-2.
〔Evaluation criteria〕
<< Bertrel XF >>
・ 0.2% by mass or more:
It dissolves by addition of 0.2 part by mass.
-Less than 0.2% by mass:
The addition of 0.2 part by mass is insoluble.
<<n-ヘキサン及びエタノール>>
・0.5質量%以上:
0.5質量部の添加で溶解している。
・0.5質量%未満:
0.5質量部の添加では不溶である。 << n-hexane and ethanol >>
・ 0.5% by mass or more:
It dissolves by addition of 0.5 part by mass.
-Less than 0.5% by mass:
The addition of 0.5 part by mass is insoluble.
・0.5質量%以上:
0.5質量部の添加で溶解している。
・0.5質量%未満:
0.5質量部の添加では不溶である。 << n-hexane and ethanol >>
・ 0.5% by mass or more:
It dissolves by addition of 0.5 part by mass.
-Less than 0.5% by mass:
The addition of 0.5 part by mass is insoluble.
実施例6Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。
実施例7Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。
実施例8Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。
実施例9Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。
実施例10Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。 The solubility of the ionic liquid of Example 6A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
The solubility of the ionic liquid of Example 7A in a fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
The solubility of the ionic liquid of Example 8A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
The solubility of the ionic liquid of Example 9A in a fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
The solubility of the ionic liquid of Example 10A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
実施例7Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。
実施例8Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。
実施例9Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。
実施例10Aのイオン液体のフッ素系溶媒への溶解性は0.2質量%以上、n-ヘキサンへの溶解性は0.5質量%以上、エタノールへの溶解性は0.5質量%以上であった。 The solubility of the ionic liquid of Example 6A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
The solubility of the ionic liquid of Example 7A in a fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
The solubility of the ionic liquid of Example 8A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
The solubility of the ionic liquid of Example 9A in a fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
The solubility of the ionic liquid of Example 10A in the fluorine-based solvent is 0.2% by mass or more, the solubility in n-hexane is 0.5% by mass or more, and the solubility in ethanol is 0.5% by mass or more. there were.
比較例6A~比較例9Aのイオン液体のエタノールへの溶解性は0.5質量%以上であったが、フッ素系溶媒への溶解性は0.2質量%未満であり、n-ヘキサンへの溶解性は0.5質量%未満であった。比較例5Aのイオン液体はフッ素系溶媒への溶解性は0.2質量%未満であったが、n-ヘキサン、エタノールへの溶解性は0.5質量%以上であった。Z-DOL、Z-TETRAOLのフッ素系溶媒への溶解性は0.2質量%以上であったが、n-ヘキサン、エタノールへの溶解性は0.5質量%未満であった。
Although the solubility of the ionic liquids of Comparative Examples 6A to 9A in ethanol was 0.5% by mass or more, the solubility in a fluorine-based solvent was less than 0.2% by mass, and the solubility in n-hexane The solubility was less than 0.5% by mass. The ionic liquid of Comparative Example 5A had a solubility in a fluorine-based solvent of less than 0.2% by mass, but the solubility in n-hexane and ethanol was 0.5% by mass or more. The solubility of Z-DOL and Z-TETRAOL in a fluorine-based solvent was 0.2% by mass or more, but the solubility in n-hexane and ethanol was less than 0.5% by mass.
これからわかるように、同じ極性が高いスルホン酸塩でありながら、比較例で示したスルホン酸塩を原料としたイオン液体ではフッ素系及び炭化水素系溶媒への溶解性が悪いのに対して、実施例のスルホン酸塩イオン液体では溶解性が大きく改善されていることが分かる。ヘキサンに溶解することは潤滑剤として広く使用されている材料が長鎖脂肪酸あるいはそのエステルであることを考慮すると、その相溶性から添加剤としての効果を発揮できることを意味している。またフッ素系溶媒であるバートレルXFに対して溶解するので、マイクロマシンやハードディスク用途としての生産に用いるには十分である。パーフルオロポリエーテル骨格を持つ比較例10Bと11Bはフッ素溶媒への溶解性は高いが、炭化水素系溶媒あるいはアルコールへの溶解性は低いので用途が限られる。
As can be seen, the ionic liquid using the sulfonate shown in the comparative example as a raw material has poor solubility in fluorine and hydrocarbon solvents, although it is a sulfonate having the same polarity. It can be seen that the solubility of the example sulfonate ionic liquid is greatly improved. Taking into account that the material widely used as a lubricant is a long-chain fatty acid or an ester thereof, dissolving in hexane means that the effect as an additive can be exhibited from the compatibility. Further, since it dissolves in the fluoric solvent Vertrel XF, it is sufficient for use in production as a micromachine or a hard disk. Comparative Examples 10B and 11B having a perfluoropolyether skeleton have high solubility in a fluorine solvent, but their use is limited because of their low solubility in hydrocarbon solvents or alcohols.
一般的に溶解性に関しては分子構造の影響については非常に複雑であり、予想することが難しい。しかし本発明者らの検討結果から、イミダゾール系イオン液体は、比較例6B及び比較例7Bからわかるように長鎖のアルキル鎖を持つイミダゾール系イオン液体ではバートレルやn‐ヘキサンへの溶解性が低いが、水酸基を導入された実施例6B及び7Bでは溶解性が改良されていることが分かる。
Generally, regarding the solubility, the influence of the molecular structure is very complicated and difficult to predict. However, from the examination results of the present inventors, the imidazole ionic liquid is low in solubility in bartrel or n-hexane in the imidazole ionic liquid having a long alkyl chain, as can be seen from Comparative Example 6B and Comparative Example 7B. However, it can be seen that the solubility was improved in Examples 6B and 7B into which a hydroxyl group was introduced.
またアンモニウム系潤滑剤でも、比較例8B及び比較例9Bからわかるようにスルホン酸塩やスルホイミド塩で溶解性が悪いが、これも水酸基の導入により溶解性が改善されることが分かる。つまり分子設計手法として水酸基を導入することがバートレルやn-ヘキサンへの溶解性に対して有効であることが分かる。
Also, as can be seen from Comparative Example 8B and Comparative Example 9B, ammonium-based lubricants have poor solubility with sulfonates or sulfoimide salts, but it is also found that the solubility is improved by the introduction of hydroxyl groups. That is, it can be seen that introduction of a hydroxyl group as a molecular design method is effective for solubility in Vertrel or n-hexane.
本発明者らの検討結果から、イオン液体に対して水酸基を導入することによりフッ素系や炭化水素系溶媒への溶解性が改善することが分かった。またアニオンとしてビス(ノナフルオロブタンスルホニル)イミドを持つものはノナフルオロブタンスルホン酸よりも溶解性は総じて高い。
From the examination results of the present inventors, it was found that the solubility in a fluorine-based or hydrocarbon-based solvent is improved by introducing a hydroxyl group into the ionic liquid. Those having bis (nonafluorobutanesulfonyl) imide as anions generally have higher solubility than nonafluorobutanesulfonic acid.
(実施例1C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ307.7℃、357.2℃、388.2℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ-DOL(比較例10C)と比較すると140℃以上、またZ-TETRAOL(比較例11C)と比較しても60℃以上高いことが分かる。 (Example 1C)
<Thermal stability measurement result>
The 5%, 10% and 20% weight loss temperatures of nonafluorobutanesulfonic acid 1-3′hydroxylpropyl-3-octadecylimidazolium are 307.7 ° C., 357.2 ° C. and 388.2 ° C., respectively. Compared with a commercially available perfluoropolyether Z-DOL (Comparative Example 10C), which is generally known as a lubricant for magnetic recording media, shown as a comparative example, 140 ° C. or higher, and Z-TETRAOL (Comparative Example 11C) ) And 60 ° C. or higher.
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ307.7℃、357.2℃、388.2℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ-DOL(比較例10C)と比較すると140℃以上、またZ-TETRAOL(比較例11C)と比較しても60℃以上高いことが分かる。 (Example 1C)
<Thermal stability measurement result>
The 5%, 10% and 20% weight loss temperatures of nonafluorobutanesulfonic acid 1-3′hydroxylpropyl-3-octadecylimidazolium are 307.7 ° C., 357.2 ° C. and 388.2 ° C., respectively. Compared with a commercially available perfluoropolyether Z-DOL (Comparative Example 10C), which is generally known as a lubricant for magnetic recording media, shown as a comparative example, 140 ° C. or higher, and Z-TETRAOL (Comparative Example 11C) ) And 60 ° C. or higher.
(実施例2C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ327.7℃、361.7℃、389.3℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ150℃、90℃以上熱安定性が改善されていることが分かる。 (Example 2C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium are 327.7 ° C., 361.7 ° C., and 389.3 ° C., respectively. there were. It can be seen that the thermal stability is improved by 150 ° C. and 90 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド1-3’ヒドロキシルプロピル-3-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ327.7℃、361.7℃、389.3℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ150℃、90℃以上熱安定性が改善されていることが分かる。 (Example 2C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide 1-3′hydroxylpropyl-3-octadecylimidazolium are 327.7 ° C., 361.7 ° C., and 389.3 ° C., respectively. there were. It can be seen that the thermal stability is improved by 150 ° C. and 90 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(実施例3C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ349.8℃、370.8℃、387.6℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ160℃、100℃以上熱安定性が改善されていることが分かる。 (Example 3C)
<Thermal stability measurement result>
The 5%, 10% and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium were 349.8 ° C., 370.8 ° C. and 387.6 respectively. ° C. Even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C), it can be seen that the thermal stability is improved by 160 ° C. and 100 ° C. or more, respectively.
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシルプロピル-N-オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ349.8℃、370.8℃、387.6℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ160℃、100℃以上熱安定性が改善されていることが分かる。 (Example 3C)
<Thermal stability measurement result>
The 5%, 10% and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxylpropyl-N-octadecylpyrrolidinium were 349.8 ° C., 370.8 ° C. and 387.6 respectively. ° C. Even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C), it can be seen that the thermal stability is improved by 160 ° C. and 100 ° C. or more, respectively.
(実施例4C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ325.0℃、356.5℃、390.1℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ160℃、85℃以上熱安定性が改善されていることが分かる。 (Example 4C)
<Thermal stability measurement result>
Nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium 5%, 10%, 20% It was 0.0 degreeC, 356.5 degreeC, and 390.1 degreeC. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ325.0℃、356.5℃、390.1℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ160℃、85℃以上熱安定性が改善されていることが分かる。 (Example 4C)
<Thermal stability measurement result>
Nonafluorobutanesulfonic acid-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium 5%, 10%, 20% It was 0.0 degreeC, 356.5 degreeC, and 390.1 degreeC. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(実施例5C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ326.2℃、360.8℃、387.7℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ160℃、85℃以上熱安定性が改善されていることが分かる。 (Example 5C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium are The temperature was 326.2 ° C., 360.8 ° C., and 387.7 ° C., respectively. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-6-オクタデシル-8-3’-ヒドロキシルプロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ326.2℃、360.8℃、387.7℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ160℃、85℃以上熱安定性が改善されていることが分かる。 (Example 5C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-8-3′-hydroxylpropyl-1,8-diazabicyclo [5.4.0] -7-undecenium are The temperature was 326.2 ° C., 360.8 ° C., and 387.7 ° C., respectively. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(実施例6C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシプロピルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ335.4℃、368.6℃、396.2℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ-DOL(比較例10C)と比較すると170℃以上、またZ-TETRAOL(比較例11C)と比較しても90℃以上高いことが分かる。 (Example 6C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of 1-dodecyl-2-undecyl-3-'hydroxypropylimidazolium nonafluorobutanesulfonate were 335.4 ° C, 368.6 ° C, 396.2 ° C, respectively. Compared to a commercially available perfluoropolyether Z-DOL (Comparative Example 10C), which is generally known as a lubricant for magnetic recording media, shown as a comparative example, is 170 ° C. or higher, and Z-TETRAOL Even if it compares with (Comparative Example 11C), it turns out that it is 90 degreeC or more higher.
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-1-ドデシル-2-ウンデシル-3-3’ヒドロキシプロピルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ335.4℃、368.6℃、396.2℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ-DOL(比較例10C)と比較すると170℃以上、またZ-TETRAOL(比較例11C)と比較しても90℃以上高いことが分かる。 (Example 6C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of 1-dodecyl-2-undecyl-3-'hydroxypropylimidazolium nonafluorobutanesulfonate were 335.4 ° C, 368.6 ° C, 396.2 ° C, respectively. Compared to a commercially available perfluoropolyether Z-DOL (Comparative Example 10C), which is generally known as a lubricant for magnetic recording media, shown as a comparative example, is 170 ° C. or higher, and Z-TETRAOL Even if it compares with (Comparative Example 11C), it turns out that it is 90 degreeC or more higher.
(実施例7C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルオクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ350.9℃、373.7℃、394.8℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ170℃、110℃以上熱安定性が改善されていることが分かる。 (Example 7C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-'hydroxylpropyloctadecylimidazolium were 350.9 ° C and 373.7 ° C, respectively. It was 394.8 degreeC. Even when compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C), it can be seen that the thermal stability is improved by 170 ° C. and 110 ° C. or more, respectively.
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-1-ドデシル-2-ウンデシル-3-3’ヒドロキシルプロピルオクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ350.9℃、373.7℃、394.8℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ170℃、110℃以上熱安定性が改善されていることが分かる。 (Example 7C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imido-1-dodecyl-2-undecyl-3-'hydroxylpropyloctadecylimidazolium were 350.9 ° C and 373.7 ° C, respectively. It was 394.8 degreeC. Even when compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C), it can be seen that the thermal stability is improved by 170 ° C. and 110 ° C. or more, respectively.
(実施例8C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-1-3’ヒドロキシプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ327.8℃、364.3℃、398.8℃℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ160℃、85℃以上熱安定性が改善されていることが分かる。 (Example 8C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-1- 3'hydroxypropyl-2-heptadecyl-3-octadecylimidazolium are 327.8 ° C, 364.3 ° C, respectively. The temperature was 398.8 ° C. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-1-3’ヒドロキシプロピル-2-ヘプタデシル-3-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ327.8℃、364.3℃、398.8℃℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ160℃、85℃以上熱安定性が改善されていることが分かる。 (Example 8C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-1- 3'hydroxypropyl-2-heptadecyl-3-octadecylimidazolium are 327.8 ° C, 364.3 ° C, respectively. The temperature was 398.8 ° C. It can be seen that the thermal stability is improved by 160 ° C. and 85 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(実施例9C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ340.0℃、359.0℃、375.0℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ145℃、90℃以上熱安定性が改善されていることが分かる。 (Example 9C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium were 340.0 ° C., 359.0 ° C., 375 respectively. 0 ° C. It can be seen that the thermal stability is improved at 145 ° C. and 90 ° C. or more, respectively, as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルテトラデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ340.0℃、359.0℃、375.0℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ145℃、90℃以上熱安定性が改善されていることが分かる。 (Example 9C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyltetradecylammonium were 340.0 ° C., 359.0 ° C., 375 respectively. 0 ° C. It can be seen that the thermal stability is improved at 145 ° C. and 90 ° C. or more, respectively, as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(実施例10C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルオクタデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ336.5℃、359.4℃、376.6℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ150℃、90℃以上熱安定性が改善されていることが分かる。 (Example 10C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyloctadecylammonium were 336.5 ° C., 359.4 ° C., and 376. It was 6 ° C. It can be seen that the thermal stability is improved by 150 ° C. and 90 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-N-3’ヒドロキシプロピル-N,N-ジメチルオクタデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ336.5℃、359.4℃、376.6℃であった。市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、それぞれ150℃、90℃以上熱安定性が改善されていることが分かる。 (Example 10C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-N-3′hydroxypropyl-N, N-dimethyloctadecylammonium were 336.5 ° C., 359.4 ° C., and 376. It was 6 ° C. It can be seen that the thermal stability is improved by 150 ° C. and 90 ° C. or more, respectively, as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例1C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-1-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ349.3℃、375.0℃、397.5℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 1C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of nonafluorobutanesulfonic acid-1-octadecylimidazolium were 349.3 ° C., 375.0 ° C., and 397.5 ° C., respectively. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-1-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ349.3℃、375.0℃、397.5℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 1C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of nonafluorobutanesulfonic acid-1-octadecylimidazolium were 349.3 ° C., 375.0 ° C., and 397.5 ° C., respectively. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例2C)
<熱安定性測定結果>
ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ347.2℃、367.0℃、387.8℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 2C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium are 347.2 ° C. and 367.0 ° C., respectively. 387.8 ° C. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-ブチル-3-n-オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ347.2℃、367.0℃、387.8℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 2C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of hexafluorocyclopropane-1,3-bis (sulfonyl) imido-1-butyl-3-n-octadecylimidazolium are 347.2 ° C. and 367.0 ° C., respectively. 387.8 ° C. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例3C)
<熱安定性測定結果>
ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ361.9℃、382.7℃、403.5℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 3C)
<Thermal stability measurement result>
The 5%, 10% and 20% weight loss temperatures of 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium heptadecafluorooctane sulfonate are 361.9 ° C. and 382.7 respectively. And 403.5 ° C. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ヘプタデカフルオロオクタンスルホン酸-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ361.9℃、382.7℃、403.5℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 3C)
<Thermal stability measurement result>
The 5%, 10% and 20% weight loss temperatures of 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium heptadecafluorooctane sulfonate are 361.9 ° C. and 382.7 respectively. And 403.5 ° C. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例4C)
<熱安定性測定結果>
ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ346.3℃、384.1℃、414.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 4C)
<Thermal stability measurement result>
Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium 5%, 10%, 20% It was 346.3 degreeC, 384.1 degreeC, and 414.0 degreeC. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-6-オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ346.3℃、384.1℃、414.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 4C)
<Thermal stability measurement result>
Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium 5%, 10%, 20% It was 346.3 degreeC, 384.1 degreeC, and 414.0 degreeC. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例5C)
<熱安定性測定結果>
ペンタデカフルオロオクタン酸オクタデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ206.9℃、215.8℃、223.4℃であった。イオン液体ではあるが、酸のpKaが10よりも大きいためにイオン間の結合力が弱く、熱安定性に欠ける結果となっている。この比較例の場合にはイオン液体ではあるが市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例7C)と比較しても、熱安定性は大きくは改善していない。 (Comparative Example 5C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of octadecylammonium pentadecafluorooctanoate were 206.9 ° C., 215.8 ° C., and 223.4 ° C., respectively. Although it is an ionic liquid, since the pKa of the acid is larger than 10, the binding force between ions is weak, resulting in lack of thermal stability. In the case of this comparative example, although it is an ionic liquid, the thermal stability is greatly improved as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 7C). Not.
<熱安定性測定結果>
ペンタデカフルオロオクタン酸オクタデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ206.9℃、215.8℃、223.4℃であった。イオン液体ではあるが、酸のpKaが10よりも大きいためにイオン間の結合力が弱く、熱安定性に欠ける結果となっている。この比較例の場合にはイオン液体ではあるが市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例7C)と比較しても、熱安定性は大きくは改善していない。 (Comparative Example 5C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of octadecylammonium pentadecafluorooctanoate were 206.9 ° C., 215.8 ° C., and 223.4 ° C., respectively. Although it is an ionic liquid, since the pKa of the acid is larger than 10, the binding force between ions is weak, resulting in lack of thermal stability. In the case of this comparative example, although it is an ionic liquid, the thermal stability is greatly improved as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 7C). Not.
(比較例6C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ338.2℃、365.9℃、390.1℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 6C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium were 338.2 ° C., 365.9 ° C., and 390.1 ° C., respectively. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-1-オクタデシル-2-ヘプタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ338.2℃、365.9℃、390.1℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 6C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of nonafluorobutanesulfonic acid-1-octadecyl-2-heptadecylimidazolium were 338.2 ° C., 365.9 ° C., and 390.1 ° C., respectively. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例7C)
<熱安定性測定結果>
ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ303.7℃、366.4℃、405.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 7C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium are 303.7 ° C., 366.4 ° C., respectively. It was 405.0 ° C. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ヘキサフルオロシクロプロパン-1,3-ビス(スルホニル)イミド-1-オクタデシル-2-ヘプタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ303.7℃、366.4℃、405.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 7C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-1-octadecyl-2-heptadecylimidazolium are 303.7 ° C., 366.4 ° C., respectively. It was 405.0 ° C. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例8C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ311.8℃、329.8℃、348.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 8C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-octadecylammonium were 311.8 ° C., 329.8 ° C., and 348.0 ° C., respectively. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド-オクタデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ311.8℃、329.8℃、348.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 8C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-octadecylammonium were 311.8 ° C., 329.8 ° C., and 348.0 ° C., respectively. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例9C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ340.5℃、356.2℃、371.9℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 9C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecylammonium were 340.5 ° C., 356.2 ° C., and 371.9 ° C., respectively. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
<熱安定性測定結果>
ノナフルオロブタンスルホン酸-N,N,N-トリメチルオクタデシルアンモニウムの5%、10%、20%重量減少温度は、それぞれ340.5℃、356.2℃、371.9℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ-DOL(比較例10C)やZ-TETRAOL(比較例11C)と比較しても、熱安定性は高い。 (Comparative Example 9C)
<Thermal stability measurement result>
The 5%, 10%, and 20% weight loss temperatures of nonafluorobutanesulfonic acid-N, N, N-trimethyloctadecylammonium were 340.5 ° C., 356.2 ° C., and 371.9 ° C., respectively. Since it is an ionic liquid, its thermal stability is high as compared with commercially available perfluoropolyether Z-DOL (Comparative Example 10C) and Z-TETRAOL (Comparative Example 11C).
(比較例10C)
<熱安定性測定結果>
比較例10Cとして、末端に水酸基をもつ分子量約2000の市販品のパーフルオロポリエーテルZ-DOLの測定を行った結果、5%、10%、20%重量減少温度は、それぞれ165.0℃、197.0℃、226.0℃であり、重量減少は蒸発に起因している。 (Comparative Example 10C)
<Thermal stability measurement result>
As a comparative example 10C, a commercially available perfluoropolyether Z-DOL having a hydroxyl group at the terminal and having a molecular weight of about 2000 was measured. As a result, the 5%, 10%, and 20% weight loss temperatures were 165.0 ° C., 197.0 ° C., 226.0 ° C. The weight loss is attributed to evaporation.
<熱安定性測定結果>
比較例10Cとして、末端に水酸基をもつ分子量約2000の市販品のパーフルオロポリエーテルZ-DOLの測定を行った結果、5%、10%、20%重量減少温度は、それぞれ165.0℃、197.0℃、226.0℃であり、重量減少は蒸発に起因している。 (Comparative Example 10C)
<Thermal stability measurement result>
As a comparative example 10C, a commercially available perfluoropolyether Z-DOL having a hydroxyl group at the terminal and having a molecular weight of about 2000 was measured. As a result, the 5%, 10%, and 20% weight loss temperatures were 165.0 ° C., 197.0 ° C., 226.0 ° C. The weight loss is attributed to evaporation.
(比較例11C)
<熱安定性測定結果>
市販品で磁気記録媒体用潤滑剤として一般的に使用されている、末端に水酸基を複数個持つ分子量約2000のパーフルオロポリエーテル(Z-TETRAOL)を、比較例11Cの潤滑剤として用いた。Z-TETRAOLの5%、10%、20%重量減少温度は、それぞれ240.0℃、261.0℃、282.0℃であり、Z-DOL同様に重量減少は蒸発に起因している。 (Comparative Example 11C)
<Thermal stability measurement result>
Perfluoropolyether (Z-TETRAOL) having a molecular weight of about 2000 and having a plurality of hydroxyl groups at the terminals, which is a commercially available product and is generally used as a lubricant for magnetic recording media, was used as the lubricant of Comparative Example 11C. The 5%, 10%, and 20% weight loss temperatures of Z-TETRAOL are 240.0 ° C., 261.0 ° C., and 282.0 ° C., respectively. Like Z-DOL, the weight loss is caused by evaporation.
<熱安定性測定結果>
市販品で磁気記録媒体用潤滑剤として一般的に使用されている、末端に水酸基を複数個持つ分子量約2000のパーフルオロポリエーテル(Z-TETRAOL)を、比較例11Cの潤滑剤として用いた。Z-TETRAOLの5%、10%、20%重量減少温度は、それぞれ240.0℃、261.0℃、282.0℃であり、Z-DOL同様に重量減少は蒸発に起因している。 (Comparative Example 11C)
<Thermal stability measurement result>
Perfluoropolyether (Z-TETRAOL) having a molecular weight of about 2000 and having a plurality of hydroxyl groups at the terminals, which is a commercially available product and is generally used as a lubricant for magnetic recording media, was used as the lubricant of Comparative Example 11C. The 5%, 10%, and 20% weight loss temperatures of Z-TETRAOL are 240.0 ° C., 261.0 ° C., and 282.0 ° C., respectively. Like Z-DOL, the weight loss is caused by evaporation.
実施例1C~実施例10C、比較例1C~比較例11Cの結果を、融点とともに、表3にまとめた。
The results of Examples 1C to 10C and Comparative Examples 1C to 11C are summarized in Table 3 together with the melting points.
このようにイオン液体系の潤滑剤は、比較例5Cを除けば、比較例10C及び11Cの市販品のパーフルオロポリエーテルと比較して熱安定性に圧倒的に優れていることが分かる。
熱安定性についてのイオン液体の中での比較であるが、イミダゾール系イオン液体については実施例1C及び2C、比較例2C及び3Cで比較される。水酸基が導入された実施例では比較例と比較して5%及び10%重量減少温度は低いが20%の重量減少温度はほぼ同等で、十分な熱安定性を持つものと考えられる。
水酸基が導入されたピロリジン系イオン液体もイミダゾール系イオン液体とほぼ同様の熱安定性を示す。
オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン構造を持つものについては、実施例3C及び4C、比較例3C及び4Cから比較できる。この場合も同様に20℃~430℃程度比較例のほうが重量減少温度は高い。しかし、オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン構造を持つイオン液体は重量減少温度がかなり高く、20%の重量減少温度は390℃に近く、十分な熱安定性を持つものと考えられる。
また、実施例6C~10Cでは、比較例6C~9Cと比較して重量減少温度は大きくは変わらず、ほぼ同等であり、十分な熱安定性を持つものと考えられる。 Thus, it can be seen that the ionic liquid lubricant is overwhelmingly superior in thermal stability as compared with the commercially available perfluoropolyethers of Comparative Examples 10C and 11C, except for Comparative Example 5C.
Although it is a comparison in the ionic liquid about thermal stability, it compares in Example 1C and 2C and Comparative Example 2C and 3C about an imidazole type | system | group ionic liquid. In Examples into which hydroxyl groups were introduced, the weight loss temperatures of 5% and 10% were lower than those of the Comparative Examples, but the weight loss temperatures of 20% were almost the same, and it is considered that they had sufficient thermal stability.
The pyrrolidine ionic liquid into which the hydroxyl group is introduced also exhibits almost the same thermal stability as the imidazole ionic liquid.
Examples having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure can be compared from Examples 3C and 4C and Comparative Examples 3C and 4C. In this case as well, the weight reduction temperature is higher in the comparative example of about 20 ° C to 430 ° C. However, an ionic liquid having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure has a considerably high weight loss temperature, and the 20% weight loss temperature is close to 390 ° C., so that it has sufficient thermal stability. It is considered to have
Further, in Examples 6C to 10C, the weight reduction temperature does not change much compared with Comparative Examples 6C to 9C, and is almost the same, and is considered to have sufficient thermal stability.
熱安定性についてのイオン液体の中での比較であるが、イミダゾール系イオン液体については実施例1C及び2C、比較例2C及び3Cで比較される。水酸基が導入された実施例では比較例と比較して5%及び10%重量減少温度は低いが20%の重量減少温度はほぼ同等で、十分な熱安定性を持つものと考えられる。
水酸基が導入されたピロリジン系イオン液体もイミダゾール系イオン液体とほぼ同様の熱安定性を示す。
オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン構造を持つものについては、実施例3C及び4C、比較例3C及び4Cから比較できる。この場合も同様に20℃~430℃程度比較例のほうが重量減少温度は高い。しかし、オクタデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン構造を持つイオン液体は重量減少温度がかなり高く、20%の重量減少温度は390℃に近く、十分な熱安定性を持つものと考えられる。
また、実施例6C~10Cでは、比較例6C~9Cと比較して重量減少温度は大きくは変わらず、ほぼ同等であり、十分な熱安定性を持つものと考えられる。 Thus, it can be seen that the ionic liquid lubricant is overwhelmingly superior in thermal stability as compared with the commercially available perfluoropolyethers of Comparative Examples 10C and 11C, except for Comparative Example 5C.
Although it is a comparison in the ionic liquid about thermal stability, it compares in Example 1C and 2C and Comparative Example 2C and 3C about an imidazole type | system | group ionic liquid. In Examples into which hydroxyl groups were introduced, the weight loss temperatures of 5% and 10% were lower than those of the Comparative Examples, but the weight loss temperatures of 20% were almost the same, and it is considered that they had sufficient thermal stability.
The pyrrolidine ionic liquid into which the hydroxyl group is introduced also exhibits almost the same thermal stability as the imidazole ionic liquid.
Examples having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure can be compared from Examples 3C and 4C and Comparative Examples 3C and 4C. In this case as well, the weight reduction temperature is higher in the comparative example of about 20 ° C to 430 ° C. However, an ionic liquid having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure has a considerably high weight loss temperature, and the 20% weight loss temperature is close to 390 ° C., so that it has sufficient thermal stability. It is considered to have
Further, in Examples 6C to 10C, the weight reduction temperature does not change much compared with Comparative Examples 6C to 9C, and is almost the same, and is considered to have sufficient thermal stability.
融点に関しては、水酸基の導入により大きな低減効果がある。つまり比較例で示したイオン液体は長鎖のアルキル基を持つために25℃では固体である。しかしビス(ノナフルオロブタンスルホニル)イミドを共役塩基として持つ、水酸基が導入されたイオン液体はすべて室温で液体である。また実施例1Aのスルホン酸を共役塩基として持つイミダゾールの場合も比較例と比べると融点が低くなっている。潤滑剤で融点が低いと言うことは、ハードディスク以外にもそのアプリケーションを大きく拡大することができる点で有利になる。例えば高温押し出し・高温鍛造加工などにおいて液体型潤滑剤による生産高効率化を実現することが期待できる(非特許文献:トライボロジー学会2014春、プロシーディングス)。
As for the melting point, there is a great reduction effect by introducing a hydroxyl group. That is, the ionic liquid shown in the comparative example is a solid at 25 ° C. because it has a long-chain alkyl group. However, all ionic liquids having a hydroxyl group introduced and having bis (nonafluorobutanesulfonyl) imide as a conjugate base are liquid at room temperature. In the case of imidazole having the sulfonic acid of Example 1A as a conjugate base, the melting point is lower than that of the comparative example. The low melting point of the lubricant is advantageous in that the application can be greatly expanded in addition to the hard disk. For example, it can be expected that high-efficiency production with a liquid-type lubricant is realized in high-temperature extrusion / high-temperature forging (Non-Patent Document: Tribology Society 2014 Spring, Proceedings).
(実施例1D~実施例10D、並びに比較例1D~比較例4D、及び比較例6D~9D)
<ディスク耐久性試験>
実施例1A~実施例10A、並びに比較例1A~比較例4A、及び比較例6A~9Aのそれぞれのイオン液体を含有する潤滑剤を塗布して、磁気ディスクを作製した。表4に示すように、磁気ディスクのCSS測定は、50,000回を超え、加熱試験後のCSS測定も50,000回を超え、優れた耐久性を示した。 (Examples 1D to 10D and Comparative Examples 1D to 4D and Comparative Examples 6D to 9D)
<Disk durability test>
Lubricants containing the respective ionic liquids of Examples 1A to 10A, Comparative Examples 1A to 4A, and Comparative Examples 6A to 9A were applied to produce magnetic disks. As shown in Table 4, the CSS measurement of the magnetic disk exceeded 50,000 times, and the CSS measurement after the heating test exceeded 50,000 times, indicating excellent durability.
<ディスク耐久性試験>
実施例1A~実施例10A、並びに比較例1A~比較例4A、及び比較例6A~9Aのそれぞれのイオン液体を含有する潤滑剤を塗布して、磁気ディスクを作製した。表4に示すように、磁気ディスクのCSS測定は、50,000回を超え、加熱試験後のCSS測定も50,000回を超え、優れた耐久性を示した。 (Examples 1D to 10D and Comparative Examples 1D to 4D and Comparative Examples 6D to 9D)
<Disk durability test>
Lubricants containing the respective ionic liquids of Examples 1A to 10A, Comparative Examples 1A to 4A, and Comparative Examples 6A to 9A were applied to produce magnetic disks. As shown in Table 4, the CSS measurement of the magnetic disk exceeded 50,000 times, and the CSS measurement after the heating test exceeded 50,000 times, indicating excellent durability.
(比較例5D)
<ディスク耐久性試験>
ペンタデカフルオロオクタン酸オクタデシルアンモニウムを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表4に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は891回であり、加熱試験により耐久性が悪化した。ペンタデカフルオロオクタン酸オクタデシルアンモニウムは比較例5Cに示したように、イオン液体ではあるが、酸のpKaが10よりも大きいためにイオン間の結合力が弱く熱安定性が低下し、加熱試験後の特性が悪化したものと考えられる。 (Comparative Example 5D)
<Disk durability test>
The magnetic disk described above was produced using a lubricant containing octadecylammonium pentadecafluorooctanoate. As shown in Table 4, although the CSS measurement of the magnetic disk exceeded 50,000 times, the CSS measurement after the heating test was 891 times, and the durability deteriorated by the heating test. As shown in Comparative Example 5C, octadecylammonium pentadecafluorooctanoate is an ionic liquid. However, since the pKa of the acid is larger than 10, the bond strength between ions is weak and the thermal stability is lowered. It is thought that the characteristics of
<ディスク耐久性試験>
ペンタデカフルオロオクタン酸オクタデシルアンモニウムを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表4に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は891回であり、加熱試験により耐久性が悪化した。ペンタデカフルオロオクタン酸オクタデシルアンモニウムは比較例5Cに示したように、イオン液体ではあるが、酸のpKaが10よりも大きいためにイオン間の結合力が弱く熱安定性が低下し、加熱試験後の特性が悪化したものと考えられる。 (Comparative Example 5D)
<Disk durability test>
The magnetic disk described above was produced using a lubricant containing octadecylammonium pentadecafluorooctanoate. As shown in Table 4, although the CSS measurement of the magnetic disk exceeded 50,000 times, the CSS measurement after the heating test was 891 times, and the durability deteriorated by the heating test. As shown in Comparative Example 5C, octadecylammonium pentadecafluorooctanoate is an ionic liquid. However, since the pKa of the acid is larger than 10, the bond strength between ions is weak and the thermal stability is lowered. It is thought that the characteristics of
(比較例10D)
<ディスク耐久性試験>
Z-DOLを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表4に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は12,000回であり、加熱試験により耐久性が悪化した。 (Comparative Example 10D)
<Disk durability test>
The magnetic disk described above was produced using a lubricant containing Z-DOL. As shown in Table 4, although the CSS measurement of the magnetic disk exceeded 50,000 times, the CSS measurement after the heating test was 12,000 times, and the durability deteriorated due to the heating test.
<ディスク耐久性試験>
Z-DOLを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表4に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は12,000回であり、加熱試験により耐久性が悪化した。 (Comparative Example 10D)
<Disk durability test>
The magnetic disk described above was produced using a lubricant containing Z-DOL. As shown in Table 4, although the CSS measurement of the magnetic disk exceeded 50,000 times, the CSS measurement after the heating test was 12,000 times, and the durability deteriorated due to the heating test.
(比較例11D)
<ディスク耐久性試験>
Z-TETRAOLを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表4に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は36,000回であり、加熱試験により耐久性が悪化した。 (Comparative Example 11D)
<Disk durability test>
The magnetic disk described above was manufactured using a lubricant containing Z-TETRAOL. As shown in Table 4, although the CSS measurement of the magnetic disk exceeded 50,000 times, the CSS measurement after the heating test was 36,000 times, and the durability deteriorated by the heating test.
<ディスク耐久性試験>
Z-TETRAOLを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表4に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は36,000回であり、加熱試験により耐久性が悪化した。 (Comparative Example 11D)
<Disk durability test>
The magnetic disk described above was manufactured using a lubricant containing Z-TETRAOL. As shown in Table 4, although the CSS measurement of the magnetic disk exceeded 50,000 times, the CSS measurement after the heating test was 36,000 times, and the durability deteriorated by the heating test.
実施例1D~実施例10D、及び比較例1D~比較例11Dの結果を、表4にまとめた。
Table 4 summarizes the results of Example 1D to Example 10D and Comparative Example 1D to Comparative Example 11D.
(実施例1E~実施例10E、比較例1E~比較例11E)
実施例1A~10Aのイオン液体、比較例1A~9Aのイオン液体、Z-DOL、及びZ-Tetraolをそれぞれ含有する潤滑剤を用いて、前述の磁気テープを作製した後に、以下の測定を行った。
・100回のシャトル走行後の磁気テープの摩擦係数
温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
・スチル耐久試験
温度-5℃の環境下、又は温度40℃、相対湿度30%環境下
・シャトル耐久試験
温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
・加熱試験後の100回のシャトル走行後の磁気テープの摩擦係数
温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
・加熱試験後のスチル耐久試験
温度-5℃の環境下、又は温度40℃、相対湿度30%環境下
・加熱試験後のシャトル耐久試験
温度-5℃の環境下、又は温度40℃、相対湿度90%環境下 (Example 1E to Example 10E, Comparative Example 1E to Comparative Example 11E)
After the magnetic tapes described above were prepared using the ionic liquids of Examples 1A to 10A, the ionic liquids of Comparative Examples 1A to 9A, Z-DOL, and Z-Tetraol, the following measurements were performed. It was.
・ Friction coefficient of magnetic tape after 100 times of shuttle operation Temperature -5 ℃ or 40 ℃, relative humidity 90% ・ Still endurance test -5 ℃ or 40 ℃ relative Under 30% humidity environment ・ Shuttle endurance test -5 ° C environment or 40 ° C temperature, 90% relative humidity environment ・ Coefficient of friction of magnetic tape after 100 shuttle runs after heating test Environment ortemperature 40 ° C, relative humidity 90% • Still durability test after heating test Temperature −5 ° C environment or temperature 40 ° C, relative humidity 30% environment • Shuttle durability test after heating test Temperature Under an environment of -5 ° C or under a temperature of 40 ° C and relative humidity of 90%
実施例1A~10Aのイオン液体、比較例1A~9Aのイオン液体、Z-DOL、及びZ-Tetraolをそれぞれ含有する潤滑剤を用いて、前述の磁気テープを作製した後に、以下の測定を行った。
・100回のシャトル走行後の磁気テープの摩擦係数
温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
・スチル耐久試験
温度-5℃の環境下、又は温度40℃、相対湿度30%環境下
・シャトル耐久試験
温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
・加熱試験後の100回のシャトル走行後の磁気テープの摩擦係数
温度-5℃の環境下、又は温度40℃、相対湿度90%環境下
・加熱試験後のスチル耐久試験
温度-5℃の環境下、又は温度40℃、相対湿度30%環境下
・加熱試験後のシャトル耐久試験
温度-5℃の環境下、又は温度40℃、相対湿度90%環境下 (Example 1E to Example 10E, Comparative Example 1E to Comparative Example 11E)
After the magnetic tapes described above were prepared using the ionic liquids of Examples 1A to 10A, the ionic liquids of Comparative Examples 1A to 9A, Z-DOL, and Z-Tetraol, the following measurements were performed. It was.
・ Friction coefficient of magnetic tape after 100 times of shuttle operation Temperature -5 ℃ or 40 ℃, relative humidity 90% ・ Still endurance test -5 ℃ or 40 ℃ relative Under 30% humidity environment ・ Shuttle endurance test -5 ° C environment or 40 ° C temperature, 90% relative humidity environment ・ Coefficient of friction of magnetic tape after 100 shuttle runs after heating test Environment or
実施例1E~10E、及び比較例1E~11Eの結果を、表5-1及び表5-2にまとめる。
The results of Examples 1E to 10E and Comparative Examples 1E to 11E are summarized in Table 5-1 and Table 5-2.
表中、スチル耐久性の「>60」は、60分超であることを表す。
表中、シャトル耐久性の「>200」は、200回超であることを表す。 In the table, “> 60” in the still durability means that it is longer than 60 minutes.
In the table, “> 200” of shuttle durability indicates that it exceeds 200 times.
表中、シャトル耐久性の「>200」は、200回超であることを表す。 In the table, “> 60” in the still durability means that it is longer than 60 minutes.
In the table, “> 200” of shuttle durability indicates that it exceeds 200 times.
以下のことが確認できた。
実施例1A~実施例10Aのそれぞれのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。
比較例1A~比較例4A及び比較例6A~9Aのそれぞれのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。この比較例潤滑剤はイオン液体であるゆえに加熱試験後にも優れた磁気テープ耐久性を示した。
比較例5Aのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。この比較例潤滑剤は加熱試験後に磁気テープ耐久性が大きく劣化した。
Z-DOLを塗布した磁気テープは、スチル耐久性、及びシャトル耐久性の劣化が大きいことが分かった。
Z-Tetraolを塗布した磁気テープは、スチル耐久性、及びシャトル耐久性の劣化が大きいことが分かった。 The following could be confirmed.
It was found that the magnetic tape coated with the lubricant containing the ionic liquids of Examples 1A to 10A had excellent friction characteristics, still durability, and shuttle durability.
It was found that the magnetic tape coated with the lubricant containing the ionic liquids of Comparative Examples 1A to 4A and Comparative Examples 6A to 9A had excellent friction characteristics, still durability, and shuttle durability. Since this comparative lubricant was an ionic liquid, it exhibited excellent magnetic tape durability even after the heating test.
The magnetic tape coated with the lubricant containing the ionic liquid of Comparative Example 5A was found to have excellent friction characteristics, still durability, and shuttle durability. This comparative example lubricant greatly deteriorated in durability of the magnetic tape after the heating test.
It was found that the magnetic tape coated with Z-DOL was greatly deteriorated in still durability and shuttle durability.
It was found that the magnetic tape coated with Z-Tetraol has a large deterioration in still durability and shuttle durability.
実施例1A~実施例10Aのそれぞれのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。
比較例1A~比較例4A及び比較例6A~9Aのそれぞれのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。この比較例潤滑剤はイオン液体であるゆえに加熱試験後にも優れた磁気テープ耐久性を示した。
比較例5Aのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。この比較例潤滑剤は加熱試験後に磁気テープ耐久性が大きく劣化した。
Z-DOLを塗布した磁気テープは、スチル耐久性、及びシャトル耐久性の劣化が大きいことが分かった。
Z-Tetraolを塗布した磁気テープは、スチル耐久性、及びシャトル耐久性の劣化が大きいことが分かった。 The following could be confirmed.
It was found that the magnetic tape coated with the lubricant containing the ionic liquids of Examples 1A to 10A had excellent friction characteristics, still durability, and shuttle durability.
It was found that the magnetic tape coated with the lubricant containing the ionic liquids of Comparative Examples 1A to 4A and Comparative Examples 6A to 9A had excellent friction characteristics, still durability, and shuttle durability. Since this comparative lubricant was an ionic liquid, it exhibited excellent magnetic tape durability even after the heating test.
The magnetic tape coated with the lubricant containing the ionic liquid of Comparative Example 5A was found to have excellent friction characteristics, still durability, and shuttle durability. This comparative example lubricant greatly deteriorated in durability of the magnetic tape after the heating test.
It was found that the magnetic tape coated with Z-DOL was greatly deteriorated in still durability and shuttle durability.
It was found that the magnetic tape coated with Z-Tetraol has a large deterioration in still durability and shuttle durability.
表5-1及び表5-2から、共役塩基と、共役酸とを有するイオン液体を含有し、前記共役酸が、炭素数が6以上の直鎖状の炭化水素基及び水酸基を含む基を有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であるイオン液体系潤滑剤を用いることにより、優れた耐熱性、並びに磁気テープ、及び磁気ディスクにおける耐久性を得られることが分かった。更には、耐熱性及び磁気記録媒体の耐久性に優れるばかりでなく、その中にはフッ素系溶媒であるバートレルにも溶解するものもあるので、特にハードディスクの応用を考えたときに製造プロセスの上でも問題はない。
以上の説明からも明らかなように、共役塩基と、共役酸とを有するイオン液体を含有し、前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を及び水酸基を含む基を有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であるイオン液体系潤滑剤は、分解温度及び5%、10%、20%重量減少温度が高く熱安定性に優れる。また高温条件下においても従来のパーフルオロポリエーテルと比較しても優れた潤滑性を保つことができ、また、長期に亘って潤滑性を保つことができる。したがって、このイオン液体を含有する潤滑剤を用いた磁気記録媒体は、非常に優れた走行性、耐摩耗性、及び耐久性を得ることができる。 From Table 5-1 and Table 5-2, an ionic liquid having a conjugated base and a conjugated acid is contained, and the conjugated acid is a group containing a linear hydrocarbon group having 6 or more carbon atoms and a hydroxyl group. By using an ionic liquid lubricant having a pKa in acetonitrile of the base acid of the conjugate base of 10 or less, excellent heat resistance and durability in magnetic tape and magnetic disk are obtained. I found out that Furthermore, not only is the heat resistance and durability of the magnetic recording medium excellent, but some of them also dissolve in the vertebral solvent bartrel, so when considering the application of hard disks in particular, the manufacturing process can be improved. But there is no problem.
As is clear from the above description, it contains an ionic liquid having a conjugate base and a conjugate acid, and the conjugate acid includes a linear hydrocarbon group having 6 or more carbon atoms and a group containing a hydroxyl group. The ionic liquid lubricant having pKa in acetonitrile of 10 or less of the acid that is the base of the conjugate base has a high decomposition temperature, 5%, 10%, and 20% weight loss temperature, and is thermally stable. Excellent. In addition, excellent lubricity can be maintained even under high temperature conditions as compared with conventional perfluoropolyethers, and lubricity can be maintained over a long period of time. Therefore, the magnetic recording medium using the lubricant containing the ionic liquid can obtain very excellent running performance, wear resistance, and durability.
以上の説明からも明らかなように、共役塩基と、共役酸とを有するイオン液体を含有し、前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を及び水酸基を含む基を有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であるイオン液体系潤滑剤は、分解温度及び5%、10%、20%重量減少温度が高く熱安定性に優れる。また高温条件下においても従来のパーフルオロポリエーテルと比較しても優れた潤滑性を保つことができ、また、長期に亘って潤滑性を保つことができる。したがって、このイオン液体を含有する潤滑剤を用いた磁気記録媒体は、非常に優れた走行性、耐摩耗性、及び耐久性を得ることができる。 From Table 5-1 and Table 5-2, an ionic liquid having a conjugated base and a conjugated acid is contained, and the conjugated acid is a group containing a linear hydrocarbon group having 6 or more carbon atoms and a hydroxyl group. By using an ionic liquid lubricant having a pKa in acetonitrile of the base acid of the conjugate base of 10 or less, excellent heat resistance and durability in magnetic tape and magnetic disk are obtained. I found out that Furthermore, not only is the heat resistance and durability of the magnetic recording medium excellent, but some of them also dissolve in the vertebral solvent bartrel, so when considering the application of hard disks in particular, the manufacturing process can be improved. But there is no problem.
As is clear from the above description, it contains an ionic liquid having a conjugate base and a conjugate acid, and the conjugate acid includes a linear hydrocarbon group having 6 or more carbon atoms and a group containing a hydroxyl group. The ionic liquid lubricant having pKa in acetonitrile of 10 or less of the acid that is the base of the conjugate base has a high decomposition temperature, 5%, 10%, and 20% weight loss temperature, and is thermally stable. Excellent. In addition, excellent lubricity can be maintained even under high temperature conditions as compared with conventional perfluoropolyethers, and lubricity can be maintained over a long period of time. Therefore, the magnetic recording medium using the lubricant containing the ionic liquid can obtain very excellent running performance, wear resistance, and durability.
11 基板
12 下地層
13 磁性層
14 カーボン保護層
15 潤滑剤層
21 基板
22 磁性層
23 カーボン保護層
24 潤滑剤層
25 バックコート層 DESCRIPTION OFSYMBOLS 11 Substrate 12 Underlayer 13 Magnetic layer 14 Carbon protective layer 15 Lubricant layer 21 Substrate 22 Magnetic layer 23 Carbon protective layer 24 Lubricant layer 25 Backcoat layer
12 下地層
13 磁性層
14 カーボン保護層
15 潤滑剤層
21 基板
22 磁性層
23 カーボン保護層
24 潤滑剤層
25 バックコート層 DESCRIPTION OF
Claims (7)
- 共役塩基と、共役酸とを有するイオン液体を含有し、
前記共役酸が、水酸基を含む基、及び炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であることを特徴とする潤滑剤。 Containing an ionic liquid having a conjugate base and a conjugate acid,
The conjugate acid has a group containing a hydroxyl group and a group containing a linear hydrocarbon group having 6 or more carbon atoms;
Lubricant characterized in that the pKa in acetonitrile of the acid which is the base of the conjugate base is 10 or less. - 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、及び下記一般式(D)のいずれかで表される請求項1に記載の潤滑剤。
ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。 The lubricant according to claim 1, wherein the conjugate acid is represented by any one of the following general formula (A), the following general formula (B), the following general formula (C), and the following general formula (D).
However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, the general formula (D), R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more. - 前記共役塩基が、下記一般式(X)、及び下記一般式(Y)のいずれかで表される請求項1から2のいずれかに記載の潤滑剤。
ただし、前記一般式(Y)中、lは、1以上12以下の整数を表す。 The lubricant according to any one of claims 1 to 2, wherein the conjugate base is represented by any one of the following general formula (X) and the following general formula (Y).
However, in said general formula (Y), l represents the integer of 1-12. - 非磁性支持体と、前記非磁性支持体上に磁性層と、前記磁性層上に請求項1から3のいずれかに記載の潤滑剤とを有することを特徴とする磁気記録媒体。 A magnetic recording medium comprising: a nonmagnetic support; a magnetic layer on the nonmagnetic support; and the lubricant according to any one of claims 1 to 3 on the magnetic layer.
- 共役塩基と、共役酸とを有し、
前記共役酸が、水酸基を含む基、及び炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であることを特徴とするイオン液体。 Having a conjugate base and a conjugate acid,
The conjugate acid has a group containing a hydroxyl group and a group containing a linear hydrocarbon group having 6 or more carbon atoms;
An ionic liquid, wherein an acid serving as a base of the conjugate base has a pKa in acetonitrile of 10 or less. - 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、及び下記一般式(D)のいずれかで表される請求項5に記載のイオン液体。
ただし、前記一般式(B)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(C)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上の整数を表す。
ただし、前記一般式(D)中、Rは、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R1、及びR2は、それぞれ独立して、水素原子、及び炭化水素基のいずれかを表し、nは、1以上の整数を表す。 The ionic liquid according to claim 5, wherein the conjugate acid is represented by any one of the following general formula (A), the following general formula (B), the following general formula (C), and the following general formula (D).
However, in said general formula (B), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, in said general formula (C), R represents group containing a C6 or more linear hydrocarbon group, and n represents an integer greater than or equal to 1.
However, the general formula (D), R represents a group containing a straight chain hydrocarbon group having 6 or more carbon atoms, R 1, and R 2 are each independently a hydrogen atom, and hydrocarbon Represents one of hydrogen groups, and n represents an integer of 1 or more. - 前記共役塩基が、下記一般式(X)、及び下記一般式(Y)のいずれかで表される請求項5から6のいずれかに記載のイオン液体。
ただし、前記一般式(X)中、lは、1以上12以下の整数を表す。
ただし、前記一般式(Y)中、lは、1以上12以下の整数を表す。 The ionic liquid according to any one of claims 5 to 6, wherein the conjugate base is represented by any one of the following general formula (X) and the following general formula (Y).
However, in said general formula (X), l represents an integer of 1-12.
However, in said general formula (Y), l represents the integer of 1-12.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17753033.4A EP3418351A4 (en) | 2016-02-15 | 2017-02-07 | Ionic liquid, lubricant, and magnetic recording medium |
US16/077,622 US20190051326A1 (en) | 2016-02-15 | 2017-02-07 | Ionic Liquid, Lubricant, and Magnetic Recording Medium |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016026086 | 2016-02-15 | ||
JP2016-026086 | 2016-02-15 | ||
JP2016057813 | 2016-03-23 | ||
JP2016-057813 | 2016-03-23 | ||
JP2016-099590 | 2016-05-18 | ||
JP2016099590A JP6663793B2 (en) | 2016-02-15 | 2016-05-18 | Ionic liquid, lubricant and magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017141775A1 true WO2017141775A1 (en) | 2017-08-24 |
Family
ID=59625858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004451 WO2017141775A1 (en) | 2016-02-15 | 2017-02-07 | Ionic liquid, lubricant, and magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017141775A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018186040A1 (en) * | 2017-04-04 | 2018-10-11 | デクセリアルズ株式会社 | Ionic liquid, lubricant for magnetic recording medium and magnetic recording medium |
JP2018178079A (en) * | 2017-04-04 | 2018-11-15 | デクセリアルズ株式会社 | Ionic liquid, lubricant for magnetic recording medium, and magnetic recording medium |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140174320A1 (en) * | 2012-12-05 | 2014-06-26 | Taiwan Textile Research Institute | Ionic liquid and viscose composition |
WO2014104342A1 (en) * | 2012-12-28 | 2014-07-03 | デクセリアルズ株式会社 | Ionic liquid, lubricating agent, and magnetic recording medium |
JP2014131975A (en) * | 2012-12-05 | 2014-07-17 | Miyoshi Oil & Fat Co Ltd | Hydrophilic room-temperature ionic liquid and use thereof |
WO2015182321A1 (en) * | 2014-05-29 | 2015-12-03 | デクセリアルズ株式会社 | Ionic liquid, lubricant, and magnetic recording medium |
WO2015182320A1 (en) * | 2014-05-29 | 2015-12-03 | デクセリアルズ株式会社 | Ionic liquid, lubricant, and magnetic recording medium |
WO2015194294A1 (en) * | 2014-06-19 | 2015-12-23 | デクセリアルズ株式会社 | Ionic liquid, lubricant, and magnetic recording medium |
WO2015194293A1 (en) * | 2014-06-19 | 2015-12-23 | デクセリアルズ株式会社 | Ionic liquid, lubricant, and magnetic recording medium |
JP2016006704A (en) * | 2014-06-20 | 2016-01-14 | デクセリアルズ株式会社 | Lubricant for magnetic recording medium and magnetic recording medium |
JP2016009509A (en) * | 2014-06-24 | 2016-01-18 | デクセリアルズ株式会社 | Lubricant for magnetic recording medium, and magnetic recording medium |
JP2016017101A (en) * | 2014-07-04 | 2016-02-01 | オイレス工業株式会社 | Lubricant, sliding member and sliding mechanism |
-
2017
- 2017-02-07 WO PCT/JP2017/004451 patent/WO2017141775A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140174320A1 (en) * | 2012-12-05 | 2014-06-26 | Taiwan Textile Research Institute | Ionic liquid and viscose composition |
JP2014131975A (en) * | 2012-12-05 | 2014-07-17 | Miyoshi Oil & Fat Co Ltd | Hydrophilic room-temperature ionic liquid and use thereof |
WO2014104342A1 (en) * | 2012-12-28 | 2014-07-03 | デクセリアルズ株式会社 | Ionic liquid, lubricating agent, and magnetic recording medium |
WO2015182321A1 (en) * | 2014-05-29 | 2015-12-03 | デクセリアルズ株式会社 | Ionic liquid, lubricant, and magnetic recording medium |
WO2015182320A1 (en) * | 2014-05-29 | 2015-12-03 | デクセリアルズ株式会社 | Ionic liquid, lubricant, and magnetic recording medium |
WO2015194294A1 (en) * | 2014-06-19 | 2015-12-23 | デクセリアルズ株式会社 | Ionic liquid, lubricant, and magnetic recording medium |
WO2015194293A1 (en) * | 2014-06-19 | 2015-12-23 | デクセリアルズ株式会社 | Ionic liquid, lubricant, and magnetic recording medium |
JP2016006704A (en) * | 2014-06-20 | 2016-01-14 | デクセリアルズ株式会社 | Lubricant for magnetic recording medium and magnetic recording medium |
JP2016009509A (en) * | 2014-06-24 | 2016-01-18 | デクセリアルズ株式会社 | Lubricant for magnetic recording medium, and magnetic recording medium |
JP2016017101A (en) * | 2014-07-04 | 2016-02-01 | オイレス工業株式会社 | Lubricant, sliding member and sliding mechanism |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018186040A1 (en) * | 2017-04-04 | 2018-10-11 | デクセリアルズ株式会社 | Ionic liquid, lubricant for magnetic recording medium and magnetic recording medium |
JP2018178079A (en) * | 2017-04-04 | 2018-11-15 | デクセリアルズ株式会社 | Ionic liquid, lubricant for magnetic recording medium, and magnetic recording medium |
JP7033949B2 (en) | 2017-04-04 | 2022-03-11 | デクセリアルズ株式会社 | Ionic liquids, lubricants for magnetic recording media, and magnetic recording media |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10184092B2 (en) | Ionic liquid, lubricant, and magnetic recording medium | |
JP6294158B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
JP6374708B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
US20200216773A1 (en) | Ionic Liquid, Lubricant, and Magnetic Recording Medium | |
JP6862254B2 (en) | Ionic liquids, lubricants and magnetic recording media | |
JP6305845B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
WO2017141775A1 (en) | Ionic liquid, lubricant, and magnetic recording medium | |
JP6663793B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
JP6576656B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
JP6780965B2 (en) | Lubricant and magnetic recording medium | |
JP6702778B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
WO2017030122A1 (en) | Ionic liquid, lubricant, and magnetic recording medium | |
WO2017022788A1 (en) | Ionic liquid, lubricant, and magnetic recording medium | |
JP6780945B2 (en) | Ionic liquids, lubricants and magnetic recording media | |
JP6702816B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
WO2016121439A1 (en) | Ionic liquid, lubricant, and magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17753033 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017753033 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017753033 Country of ref document: EP Effective date: 20180917 |