WO2017038343A1 - In-vehicle control device - Google Patents
In-vehicle control device Download PDFInfo
- Publication number
- WO2017038343A1 WO2017038343A1 PCT/JP2016/072577 JP2016072577W WO2017038343A1 WO 2017038343 A1 WO2017038343 A1 WO 2017038343A1 JP 2016072577 W JP2016072577 W JP 2016072577W WO 2017038343 A1 WO2017038343 A1 WO 2017038343A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit board
- solder
- electronic component
- protective coating
- coating film
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
Definitions
- the present invention relates to an in-vehicle control device mounted on an automobile, and more particularly to an electronic control device having a protective coating film on a circuit board on which electronic components are mounted.
- an in-vehicle control device mounted on an automobile is usually configured to include a circuit board on which electronic parts such as semiconductor parts are mounted, and a housing that accommodates the circuit board.
- the electronic component for example, terminals of the electronic component are soldered and fixed to the wiring circuit pattern of the circuit board.
- the casing is generally composed of a base that fixes the circuit board and a cover that is assembled to the base so as to cover the circuit board.
- Patent Document 1 proposes a structure that is molded with a sealing resin in order to improve the reliability of the in-vehicle control device.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide an in-vehicle control device including a protective coating film that can improve the reliability of a solder connection portion of an electronic component mounted on a circuit board.
- an in-vehicle control device basically includes a circuit board on which electronic components are mounted, a base to which the circuit board is fixed, and the base so as to cover the circuit board. And a cover to be assembled.
- an electronic component mounted on the circuit board; and an in-vehicle control device provided with a protective coating film on a solder portion disposed on the electronic component and mounted on the wiring pattern of the circuit board.
- the film is formed of a protective coating material, and the protective coating material has a loss elastic modulus of 1.0 ⁇ 10 5 Pa or more at 125 ° C.
- a protective coating film can be provided over a wide area of a circuit board on which electronic components are mounted. Further, when a protective coating material having a loss elastic modulus at 125 ° C. of 1.0 ⁇ 10 5 Pa or more is applied and a protective coating film is formed, the solder that does not soften and melt at a high temperature during driving of an automobile and is generated in a solder fillet portion. Since the protective coating material does not enter the cracked portion, an on-vehicle control device including a protective coating film that can improve the reliability of the solder connection portion of the electronic component can be provided.
- the disassembled perspective view which shows the basic composition of embodiment of the vehicle-mounted control apparatus which concerns on this invention.
- Sectional drawing of a vehicle-mounted control apparatus Sectional drawing of the vehicle-mounted control apparatus of Example 1.
- Sectional drawing of the electronic component of Example 7. FIG. It is a figure showing the deformation
- FIG. 1 to FIG. 12 are diagrams for explaining embodiments (Examples 1 to 7) of the in-vehicle control device according to the present invention.
- the same reference numerals or related reference numerals are given to the parts in the.
- the thickness of each part is exaggerated in FIGS.
- FIG. 1 is an example of an exploded perspective view showing a main configuration of an in-vehicle control device (ECU; Electronic Control Unit).
- FIG. 2 is a cross-sectional view of the in-vehicle control device in FIG.
- the in-vehicle control device 1 includes a circuit board 12 on which electronic components 11 such as ICs and semiconductor elements are mounted on both upper and lower (front and back) surfaces by solder, and a housing in which the circuit board 12 is accommodated. It is comprised including the body 10.
- the housing 10 includes a base 13 to which the circuit board 12 is fixed and a box-like or lid-like cover 14 having an open lower surface that is assembled to the base 13 so as to cover the circuit board 12.
- a connector 15 for electrically connecting the circuit board 12 and the outside is attached to one end side in the longitudinal direction of the circuit board 12.
- the connector 15 includes a required number of pin terminals 15a and a housing 15b provided with a through hole 15c into which the pin terminals 15a are inserted by press fitting or the like.
- this connector 15 after the pin terminal 15 a is inserted into the through hole 15 c of the housing 15 b, the lower end portion of the pin terminal 15 a (connection joint portion 15 f) is connected and joined to the circuit board 12 by solder in a spot flow process or the like. .
- the base 13 has a substantially rectangular flat plate shape as a whole so as to close the lower surface opening of the cover 14.
- the base 13 includes a rectangular plate-shaped portion 13a, a rectangular frame-shaped portion 13b protruding from the rectangular plate-shaped portion 13a, and the circuit board 12 provided at the four corners of the rectangular frame-shaped portion 13b.
- the base part 13d used as a seat surface and the vehicle assembly fixing part 13e extended in the outer periphery of the rectangular plate-shaped part 13a are provided.
- the vehicle assembly fixing portion 13e is for assembling the vehicle-mounted control device 1 to the vehicle body, and is fixed by, for example, screwing bolts into a predetermined part of the vehicle body.
- the base 13 and the cover 14 constituting the housing 10 of the in-vehicle control device 1 are assembled with the circuit board 12 with the connector 15 attached therebetween. More specifically, the circuit board 12 is fixed by a set screw 17 as an example of a fastening member while being sandwiched between pedestals 13 d provided at four corners of the base 13 and the cover 14.
- the base 13 and the cover 14 constituting the housing 10 of the in-vehicle control device 1 are assembled with the circuit board 12 with the connector 15 attached therebetween. More specifically, the circuit board 12 is fixed by set screws 16 as an example of a fastening member while being sandwiched between pedestals 13 d provided at four corners of the base 13 and the cover 14.
- the base 13 and the cover 14 are manufactured by casting, pressing or cutting using a metal material or a resin material. More specifically, it is produced by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate.
- the cover 14 is provided with a connector window 14a so that the circuit board 12 can be supplied with power from the outside via the connector 15, or can be input / output with an external device.
- circuit board 12 For example, four electronic components 11 (three on the upper surface side and one on the lower surface side) are mounted on the circuit board 12, and the circuit wiring provided on the circuit board 12 is connected to each electronic component 11. In addition, it is also connected to the pin terminal 15 a of the connector 15.
- thermal via (through hole) 17 is provided in a portion of the circuit board 12 where the electronic component 11 is mounted.
- a thermal via 17 is provided below the electronic component 11 located at the center of the three electronic components 11 mounted on the upper surface side of the circuit board 12, and at the base 13 just below the thermal via 17.
- a rectangular convex portion 21 protrudes from the located portion, and a high thermal conductive layer 20 is interposed between the lower surface of the circuit board 12 and the upper surface of the rectangular convex portion 21 of the base 13 so as to be in contact with both.
- an adhesive, grease, a heat radiating sheet, or the like is used as the high thermal conductive layer 20.
- the electronic component 11 located on the right side of the three electronic fixtures 11 mounted on the upper surface side of the circuit board 12 is attached by being floated from the upper surface of the circuit board 12 by the terminals of the electronic components. A gap is formed between the electronic component 11 and the circuit board 12.
- protective coating films 30, 31, and 32 are formed on specific parts such as the inside of a circuit board or a connector pin.
- protective coating films 30 and 31 are formed (applied) on the surface on which the electronic component is mounted, and the base 13 and the cover 14 have predetermined dimensions.
- a protective coating film 32 is formed (applied) on the pin terminal 15a of the connector 15 in a portion from the connecting joint 15f on the circuit board 12 side to the connector housing 15b.
- the protective coating film is preferably directly coated on each substrate. For example, if a circuit board is provided with a heat dissipation coating film or a moistureproof coating film that improves heat dissipation, stress derived from the heat radiation coating film or the moistureproof coating film is applied to the solder connection portion of the electronic component, and the reliability is lowered.
- the coating 2 shows an example in which all the protective coating films 30, 31, and 32 are formed. From the viewpoint of improving reliability, it is preferable to provide a protective coating film on the plurality of surfaces described above, but not only on the entire surface of each base material, but a part of the electronic component, particularly around the solder connection portion of the electronic component Alternatively, the coating may be applied only to the surface. Thereby, reduction of the usage-amount of the coating material for coating can be aimed at.
- the material for forming the protective coating film is not particularly limited as long as the loss elastic modulus at 125 ° C. is 1.0 ⁇ 10 5 Pa or more or the storage elastic modulus is 1.1 ⁇ 10 6 Pa or more. Preferably it is.
- the loss elastic modulus is proportional to the viscosity of the material, a low loss elastic modulus results in a low viscosity, enters the cracked portion of the solder joint, and leads to plastic deformation of the material when the loss elastic modulus of the coating material reaches 0 Pa.
- a stress is generated in the solder that shrinks toward the inside of the crack of the solder at a low temperature.
- the thermoplastic resin A exists inside the crack, this stress concentrates on the crack tip of the solder and the crack progresses. Due to the progress of the crack, the thermoplastic resin A penetrates and a deformation occurs in which excess solder is pushed out to the outside of the terminal. By repeating this, the crack progress of the solder causes the disconnection of the solder connection portion, and the extruded solder grows, resulting in poor conduction between the terminals.
- the storage elastic modulus at 125 ° C. is 0 Pa, that is, when the thermoplastic resin A that softens and melts at 125 ° C. is applied, the thermoplastic resin A melts at a high temperature region of 125 ° C. and enters the cracked portion of the solder. Thereafter, when the temperature becomes low, the storage elastic modulus of the thermoplastic resin A increases to 8.3 ⁇ 10 8 .
- the storage elastic modulus represents the hardness of the material.
- the material becomes soft and enters the cracked portion of the solder connection portion.
- a stress is generated in the solder that shrinks toward the inside of the crack of the solder at a low temperature.
- the thermoplastic resin A exists inside the crack, this stress concentrates on the crack tip of the solder and the crack progresses. Due to the crack growth, a deformation occurs in which excess solder due to the penetration of the thermoplastic resin A is pushed out toward the outside of the terminal. By repeating this, the crack progress of the solder causes the disconnection of the solder connection portion, and the extruded solder grows, resulting in poor conduction between the terminals.
- the film thickness is preferably about 1 ⁇ m to 200 ⁇ m, more preferably from 10 ⁇ m on the flat part of the circuit board. If the thickness is 100 ⁇ m and the film thickness is more than 100 ⁇ m, stress derived from the coating film is applied to the solder connection portion of the electronic component, and the reliability may be lowered. If the thickness is less than 10 ⁇ m, the solder connection portion of the electronic component The protective function may be reduced.
- the organic resin conventionally known ones can be used, and are not particularly limited as long as the loss elastic modulus at 125 ° C. is 1.0 ⁇ 10 5 Pa or more or the storage elastic modulus is 1.1 ⁇ 10 6 Pa or more.
- examples thereof include resins and water-based emulsion resins. Synthetic resins include phenolic resin, alkyd resin, aminoalkyd resin, urea resin, silicon resin, melamine urea resin, epoxy resin, polyurethane resin, vinyl acetate resin, acrylic resin, chlorinated rubber resin, vinyl chloride resin, fluorine resin, etc. And is preferably an acrylic resin that is inexpensive.
- the water-based emulsion include silicon acrylic emulsion, urethane emulsion, and acrylic emulsion.
- the protective coating material for forming each protective coating film (30, 31, 32) may include a filler.
- the filler By including the filler, the loss elastic modulus at 125 ° C. is increased, and the solder connection reliability of the electronic component is improved.
- the storage elastic modulus at 125 ° C. becomes a high storage elastic modulus, and the solder connection reliability of the electronic component is improved.
- conventionally known fillers can be used and are not particularly limited, but boron nitride, aluminum nitride, aluminum oxide, magnesium oxide, titanium oxide, zirconia, iron oxide, copper oxide, nickel oxide, cobalt oxide, lithium oxide are not particularly limited.
- the protective coating material for forming the protective coating film should contain an insulating material such as ceramic powder or resin particles. Is preferred.
- the average particle diameter is not particularly limited, but is preferably 200 ⁇ m or less.
- the average particle diameter of the filler exceeds 200 ⁇ m, the particles fall off from the protective coating film, and the protective performance is deteriorated, and the strength of the protective coating film and the adhesion with the object to be coated may be reduced.
- a conventionally known material can be used for the shape of the filler, and it is not particularly limited. And a three-dimensional needle-like structure.
- the filling amount of the filler is not particularly limited, but the loss elastic modulus when the protective coating film is formed using the protective coating material containing the filler is preferably 1.0 ⁇ 10 5 Pa at 125 ° C. Alternatively, the storage modulus is preferably 1.1 ⁇ 10 6 Pa at 125 ° C.
- Examples of the solvent include water and organic solvents, and are not particularly limited. The selection of the solvent is optimally determined depending on the combination of the solvent and other materials such as a filler and a dispersing material, and it is desirable to select a suitable solvent.
- Examples of the organic solvent include ketone-based, alcohol-based and aromatic-based organic solvents. Specific examples include acetone, methyl ethyl ketone, cyclohexene, ethylene glycol, propylene glycol, methyl alcohol, isopropyl alcohol, butanol, benzene, toluene, xylene, ethyl acetate, and butyl acetate. These may be used alone or in combination.
- Protective coating material may further contain components as needed in addition to the above components.
- the component include a film forming aid, a plasticizer, a pigment, a silane coupling agent, and a viscosity modifier.
- a conventional thing can be used and it does not specifically limit.
- the method for applying the protective coating material is not particularly limited, and can be selected from commonly used application methods according to the purpose. Specific examples include brush coating, spray coating, roll coater coating, and immersion coating. In the method of drying and forming a coating film after applying the heat radiation material, methods such as natural drying, baking, and ultraviolet curing can be used, which are selected depending on the properties of the paint.
- thermo-mechanical properties of the protective coating film are determined by analyzing the binder resin using an analysis method such as IR (infrared spectroscopy) or GCMS (gas chromatographic analysis), and the cross section of the protective coating film is SEM-EDX (scanning electron microscope-energy). Particles are identified by elemental analysis such as dispersion X-ray analysis), each of them is blended, and the formed film is measured.
- an analysis method such as IR (infrared spectroscopy) or GCMS (gas chromatographic analysis)
- SEM-EDX scanning electron microscope-energy
- the loss elastic modulus is obtained by forming a film of the adjusted material at 100 ⁇ m, cutting the film-like sample into a length of 30 mm and a width of 0.5 mm to obtain a test piece, using a viscoelasticity measuring device, a frequency of 10 Hz, a measurement temperature range Measured at -40 ° C to 150 ° C at a heating rate of 2 ° C / min.
- the electronic component is mounted on the circuit board by solder. After the process of assembling the connector pin to the connector housing, the connector pin and the circuit board are joined by solder in a spot flow process or the like. After the electronic component and the connector are mounted on the circuit board, a protective coating material is applied and a protective coating film is provided.
- a coating method brush coating, spray coating, immersion coating, or the like is preferable, but electrostatic coating, curtain coating, electrodeposition coating, powder coating, or the like may be used depending on the object to be coated. In the method of drying and forming a coating film after applying the protective coating material, a method such as natural drying or baking is preferably used.
- the cover is manufactured by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate.
- the shape of the cover is such that the bottom surface is open and a connector portion window is provided.
- the base is manufactured by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate.
- the base is formed on a substantially flat plate so as to close the bottom opening of the cover.
- the film thickness of the protective coating film is about 1 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 100 ⁇ m. If the film thickness is too thicker than 200 ⁇ m, stress derived from the coating film is applied to the solder connection part of the electronic component, which may reduce the reliability. If the film thickness is less than 10 ⁇ m, the protective function of the solder connection part of the electronic component is deteriorated. There is a risk.
- protective coating films 30 and 31 are formed on the front and back surfaces of the circuit board 12 on which the electronic component 11 is mounted.
- Example 1 an acrylic resin having a loss elastic modulus at 125 ° C. of 3.9 ⁇ 10 5 Pa and a storage elastic modulus of 7.0 ⁇ 10 6 Pa is used for the protective coating films 30 and 31 and is applied to the circuit board by brushing. It was heated and dried at 160 ° C. for 60 minutes after 30 ° C. and coated so that the film thickness was 40 ⁇ m.
- the electronic component 11 is mounted on the circuit board, and the reliability of the solder connection portion is improved by forming a protective coating film on the electronic component, its terminal, the solder connection portion, and the circuit board. To do.
- Example 2 as shown in FIG. 5, protective coating films 30 and 31 are formed on the front and back surfaces of the circuit board 12 on which the electronic component 11 is mounted so as to cover the periphery of the electronic component. Thereby, the space between the electronic component and the terminal and the solder connection is filled with the protective coating material, and the reliability of the solder connection portion is further improved.
- a protective coating film is provided on the terminals and solder connection portions of the electronic component having the configuration of the first embodiment.
- a protective coating film is provided on the terminals and solder connection portions of the electronic component having the configuration of the second embodiment.
- Example 5 a protective coating film is provided only on the solder connection portion of the electronic component having the configuration of Example 1. As in the third, fourth, and fifth embodiments described above, it is not always necessary to cover all electronic components and terminals. Thereby, the usage-amount of a coating material can be reduced.
- protective coating films 30 and 31 are formed on the front and back surfaces of the circuit board 12 on which the electronic component 11 whose terminals are not taken out from the package of the electronic component is mounted. .
- Example 6 an acrylic resin having a loss elastic modulus at 125 ° C. of 3.9 ⁇ 10 5 MPa and a storage elastic modulus of 7.0 ⁇ 10 6 Pa was used for the protective coating films 30 and 31, and the circuit board was applied by brushing. It was heated and dried at 160 ° C. for 60 minutes after 30 ° C. and coated so that the film thickness was 40 ⁇ m. By forming a protective coating film on the connection part and the circuit board that have eaten the electronic component, the reliability of the solder connection part is improved.
- Example 7 as shown in FIG. 10, a protective coating film is provided on the solder connection portion having the structure of Example 6. It is not always necessary to cover all the electronic components, thereby reducing the amount of coating material used.
- the reliability of the solder joints was evaluated by applying each material to the evaluation board with a brush, placing the cured sample in a thermal shock tester, and performing 2000 cycles under the condition of ⁇ 40 ° C. to 125 ° C. for 1 cycle 60 minutes. . At the end of 2000 cycles, the X-ray fluoroscope and the cross section of the solder joint were observed using a scanning electron microscope. (Evaluation materials)
- Rate of occurrence of solder deformation Number of terminals in which solder deformation occurs in the direction between terminals with respect to all 46 terminals of the electronic component
- Solder deformation amount 2000 cycles when the distance between adjacent terminals at the initial stage of the thermal shock test is 100 Proportion of solder deformation spreading in the direction between terminals at the end (see Fig. 11)
- Solder crack growth Crack growth rate of solder when the cross section of the solder connection is observed (see Fig. 12)
- Example 1 shows the loss elastic moduli and storage elastic moduli of the comparative materials A, B, and C and the practical materials, the solder deformation occurrence rate, the solder deformation amount, and the solder crack propagation rate of the solder connection portion. From the results of Table 1, the protective coating film formed from a protective coating material having a loss elastic modulus of 1.0 ⁇ 10 5 Pa or higher or a storage elastic modulus of 1.1 ⁇ 10 6 Pa or higher at 125 ° C., which is the configuration of this example. The reliability of the in-vehicle control device is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
Abstract
Provided is an in-vehicle control device that is provided with a protection coating film enabling to improve reliability of a solder bonding section of an electronic component mounted on a circuit board. This in-vehicle control device is provided with: a circuit board; an electronic component mounted on the circuit board; a solder that brings the circuit board and a terminal of the electronic component into electrical contact with each other; and a coating film that protects at least a part of the circuit board. The protection coating film covers the terminal and the solder, and is formed of a material having a loss elastic modulus equal to or higher than 1.0×105 Pa at 125°C.
Description
本発明は、自動車に搭載される車載制御装置に係り、特に電子部品を実装した回路基板に保護コート膜を有した電子制御装置に関する。
The present invention relates to an in-vehicle control device mounted on an automobile, and more particularly to an electronic control device having a protective coating film on a circuit board on which electronic components are mounted.
従来、自動車に搭載される車載制御装置(ECU:Electronic Control Unit)は、通常、半導体部品等の電子部品が実装された回路基板と、この回路基板を収容する筺体とを含んで構成される。電子部品は、例えば電子部品の端子が、回路基板の配線回路パターンにはんだ付けされ、固定される。筺体は、回路基板を固定するベースと回路基板を覆うようにベースに組みつけられるカバーとからなるものが一般的である。
Conventionally, an in-vehicle control device (ECU: Electronic Control Unit) mounted on an automobile is usually configured to include a circuit board on which electronic parts such as semiconductor parts are mounted, and a housing that accommodates the circuit board. In the electronic component, for example, terminals of the electronic component are soldered and fixed to the wiring circuit pattern of the circuit board. The casing is generally composed of a base that fixes the circuit board and a cover that is assembled to the base so as to cover the circuit board.
このような車載制御装置において、近年、スペースの制約による小型化が要求されている。これに伴い回路基板の小型化が要求され、各電子部品の小型化が必要となっている。例えば、回路基板の表面に電子部品の端子を平面的に直接はんだ付け実装する表面実装形の電子部品パッケージは、端子がパッケージの二側面から取り出されるスモールアウトラインパッケージ(Small Outline Package;以下SOPとする)や端子がパッケージの四側面から取り出されるクワッドフラットパッケージ(Quad Flat Package;以下QFPとする)等においては、隣接する端子間の距離が1.27mm以下と狭小化されてきている。特許文献1では車載制御装置の信頼性を向上するために、封止樹脂によりモールドする構造が提案されている。
Such in-vehicle control devices have recently been required to be downsized due to space limitations. Accordingly, miniaturization of circuit boards is required, and miniaturization of each electronic component is required. For example, a surface mount type electronic component package in which terminals of an electronic component are directly soldered and mounted on the surface of a circuit board in a planar manner is a small outline package (hereinafter referred to as SOP) in which terminals are taken out from two sides of the package. In a quad flat package (hereinafter referred to as QFP) in which terminals are taken out from the four side surfaces of the package, the distance between adjacent terminals has been narrowed to 1.27 mm or less. Patent Document 1 proposes a structure that is molded with a sealing resin in order to improve the reliability of the in-vehicle control device.
近年、省資源の観点等からエンジンルームを高密度化にして小型化する社会的要望がある。車載制御装置においても、小型化が進められており、それに伴い基板面積や電子部品の小型化も進められている。従来の提案技術では、コネクタ整列板下に配列された電子部品を固定するはんだ部のクラックの発生を抑制する構造であったが、回路基板に実装された電子部品のはんだ接続部の信頼性は十分に確保できないおそれがある。また電子部品の小型化により電子部品の隣接する端子間の距離がさらに狭小化されているため、マイグレーションやウィスカが生じやすくなっている。また自動車駆動時の加熱冷却や環境温度の変化の繰り返しにより、電子部品のはんだ接続部に一定応力が負荷され、この応力によりはんだ中に亀裂が発生・進展することで不良が生じる。
In recent years, there is a social demand to reduce the size of the engine room by increasing the density from the viewpoint of resource saving. In-vehicle control devices are also being miniaturized, and accordingly, the board area and electronic components are also being miniaturized. The conventional proposed technology has a structure that suppresses the occurrence of cracks in the solder part that fixes the electronic components arranged under the connector alignment plate, but the reliability of the solder connection part of the electronic component mounted on the circuit board is There is a possibility that it cannot be secured sufficiently. Moreover, since the distance between adjacent terminals of the electronic component is further reduced due to the miniaturization of the electronic component, migration and whiskers are likely to occur. In addition, a constant stress is applied to the solder connection portion of the electronic component due to repeated heating / cooling and environmental temperature changes when the vehicle is driven, and this stress causes defects due to cracks occurring and spreading in the solder.
本発明は上記事情を鑑みてなされたものであり、回路基板に実装されている電子部品のはんだ接続部の信頼性向上を可能とする保護コーティング膜を備えた車載制御装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an in-vehicle control device including a protective coating film that can improve the reliability of a solder connection portion of an electronic component mounted on a circuit board. And
上記目的を達成すべく、本発明に係る車載制御装置は、基本的には、電子部品が実装された回路基板と、前記回路基板が固定されるベースと、前記回路基板を覆うように前記ベースに組みつけられるカバーと、を備える。
In order to achieve the above object, an in-vehicle control device according to the present invention basically includes a circuit board on which electronic components are mounted, a base to which the circuit board is fixed, and the base so as to cover the circuit board. And a cover to be assembled.
そして、前記回路基板に実装される電子部品と、前記電子部品に配置され、電子部品を回路基板の配線パターンに実装するためのはんだ部に保護コーティング膜を備えた車載制御装置において、前記保護コーティング膜は、保護コーティング材から形成され、前記保護コーティング材は125℃において損失弾性率が1.0×105Pa以上であることを特徴としている。
And an electronic component mounted on the circuit board; and an in-vehicle control device provided with a protective coating film on a solder portion disposed on the electronic component and mounted on the wiring pattern of the circuit board. The film is formed of a protective coating material, and the protective coating material has a loss elastic modulus of 1.0 × 10 5 Pa or more at 125 ° C.
本発明によれば、電子部品を実装した回路基板の広領域に保護コーティング膜を設けることができる。さらに125℃における損失弾性率が1.0×105Pa以上である保護コーティング材を塗布し、保護コーティング膜を形成した場合、自動車駆動時の高温で軟化及び溶融せず、はんだフィレット部に生じる、はんだの亀裂部に保護コーティング材が浸入しないため、電子部品のはんだ接続部の信頼性向上を可能とする保護コーティング膜を備えた車載制御装置を提供することができる。
According to the present invention, a protective coating film can be provided over a wide area of a circuit board on which electronic components are mounted. Further, when a protective coating material having a loss elastic modulus at 125 ° C. of 1.0 × 10 5 Pa or more is applied and a protective coating film is formed, the solder that does not soften and melt at a high temperature during driving of an automobile and is generated in a solder fillet portion. Since the protective coating material does not enter the cracked portion, an on-vehicle control device including a protective coating film that can improve the reliability of the solder connection portion of the electronic component can be provided.
上記した以外の、課題、構成、及び硬化は以下の実施形態により明らかにされる。
Other than the above, problems, configurations, and curing will be clarified by the following embodiments.
以下、本発明の実施形態について適宜図面をしながら説明する。
Hereinafter, embodiments of the present invention will be described with appropriate drawings.
図1~図12は、本発明に係る車載制御装置の実施形態(実施例1~7)の説明に供される図であり、各図において、同一構成部分、同一機能部分、あるいは、対応関係にある部分には共通の符号ないし関連した符号が付されている。なお、本発明を理解しやすくするため、図1~図12において、各部の厚み等(特に保護コーティング膜の膜厚)は誇張して描かれている。
FIG. 1 to FIG. 12 are diagrams for explaining embodiments (Examples 1 to 7) of the in-vehicle control device according to the present invention. The same reference numerals or related reference numerals are given to the parts in the. For easy understanding of the present invention, the thickness of each part (particularly the thickness of the protective coating film) is exaggerated in FIGS.
図1は、車載制御装置(ECU;Electronic Control Unit)の主要構成を示す分解斜視図の一例である。図2は図1における車載制御装置の断面図である。図1および図2に示すように、車載制御装置1はICや半導体素子等の電子部品11がはんだにより上下(表裏)両面に実装された回路基板12と、この回路基板12が収容される筐体10とを含んで構成されている。筐体10は、回路基板12が固定されるベース13と回路基板12を覆うようにベース13に組み付けられる下面が開口した箱状ないし蓋状のカバー14とからなっている。
FIG. 1 is an example of an exploded perspective view showing a main configuration of an in-vehicle control device (ECU; Electronic Control Unit). FIG. 2 is a cross-sectional view of the in-vehicle control device in FIG. As shown in FIGS. 1 and 2, the in-vehicle control device 1 includes a circuit board 12 on which electronic components 11 such as ICs and semiconductor elements are mounted on both upper and lower (front and back) surfaces by solder, and a housing in which the circuit board 12 is accommodated. It is comprised including the body 10. The housing 10 includes a base 13 to which the circuit board 12 is fixed and a box-like or lid-like cover 14 having an open lower surface that is assembled to the base 13 so as to cover the circuit board 12.
回路基板12の長手方向一端側には、回路基板12と外部とを電気的に接続するためのコネクタ15が取着されている。コネクタ15は、所要本数のピン端子15aと、ピン端子15aが圧入等により挿着される通し孔15cが設けられたハウジング15bとを備えている。このコネクタ15においては、ピン端子15aをハウジング15bの通し孔15cに挿着した後、ピン端子15aの下端部(連結接合部15f)が回路基板12にはんだによりスポットフロー工程等で連結接合される。
A connector 15 for electrically connecting the circuit board 12 and the outside is attached to one end side in the longitudinal direction of the circuit board 12. The connector 15 includes a required number of pin terminals 15a and a housing 15b provided with a through hole 15c into which the pin terminals 15a are inserted by press fitting or the like. In this connector 15, after the pin terminal 15 a is inserted into the through hole 15 c of the housing 15 b, the lower end portion of the pin terminal 15 a (connection joint portion 15 f) is connected and joined to the circuit board 12 by solder in a spot flow process or the like. .
ベース13は、カバー14の下面開口を閉鎖するように全体が概略矩形平板状とされている。詳しくは、ベース13は、矩形板状部13aと、この矩形板状部13a上に突設された矩形枠状部13bと、この矩形枠状部13bの四隅に設けられた、回路基板12の座面となる台座部13dと、矩形板状部13aの外周に延設された車両組付固定部13eと、を備えている。車両組付固定部13eは、車載制御装置1を車体ボディに組み付けるためのもので、例えば車体ボディの所定部位にボルト類を螺合させること等により固定されるようになっている。
The base 13 has a substantially rectangular flat plate shape as a whole so as to close the lower surface opening of the cover 14. Specifically, the base 13 includes a rectangular plate-shaped portion 13a, a rectangular frame-shaped portion 13b protruding from the rectangular plate-shaped portion 13a, and the circuit board 12 provided at the four corners of the rectangular frame-shaped portion 13b. The base part 13d used as a seat surface and the vehicle assembly fixing part 13e extended in the outer periphery of the rectangular plate-shaped part 13a are provided. The vehicle assembly fixing portion 13e is for assembling the vehicle-mounted control device 1 to the vehicle body, and is fixed by, for example, screwing bolts into a predetermined part of the vehicle body.
車載制御装置1の筺体10を構成するベース13とカバー14は、コネクタ15が取着された回路基板12を挟み込んで組み立てられている。より詳しくは、回路基板12は、ベース13の四隅に設けられた台座部13dとカバー14との間に挟持されつつ、締結部材の一例としての止めねじ17で固定されている。
The base 13 and the cover 14 constituting the housing 10 of the in-vehicle control device 1 are assembled with the circuit board 12 with the connector 15 attached therebetween. More specifically, the circuit board 12 is fixed by a set screw 17 as an example of a fastening member while being sandwiched between pedestals 13 d provided at four corners of the base 13 and the cover 14.
車載制御装置1の筺体10を構成するベース13とカバー14は、コネクタ15が取着された回路基板12を挟み込んで組み立てられている。より詳しくは、回路基板12は、ベース13の四隅に設けられた台座部13dとカバー14との間に挟持されつつ、締結部材の一例としての止めねじ16で固定されている。
The base 13 and the cover 14 constituting the housing 10 of the in-vehicle control device 1 are assembled with the circuit board 12 with the connector 15 attached therebetween. More specifically, the circuit board 12 is fixed by set screws 16 as an example of a fastening member while being sandwiched between pedestals 13 d provided at four corners of the base 13 and the cover 14.
ベース13とカバー14は、金属材料もしくは樹脂材料を用いた鋳造、プレス又は切削加工などにより製造される。より詳しくは、アルミニウム、マグネシウム、鉄などを主成分とする合金もしくはポリブチレンテレフタレートなどの樹脂材料を用いた鋳造、プレス又は切削加工などにより作製されている。
The base 13 and the cover 14 are manufactured by casting, pressing or cutting using a metal material or a resin material. More specifically, it is produced by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate.
なお、カバー14には、コネクタ15を介して回路基板12が外部から給電、もしくは外部装置との入、出力信号の授受が行えるようにコネクタ用窓14aが形成されている。
The cover 14 is provided with a connector window 14a so that the circuit board 12 can be supplied with power from the outside via the connector 15, or can be input / output with an external device.
回路基板12には、例えば4個の電子部品11(上面側に3個、下面側に1個)が実装されており、回路基板12に設けられた回路配線は、各電子部品11に接続されるとともに、コネクタ15のピン端子15aにも接続されている。
For example, four electronic components 11 (three on the upper surface side and one on the lower surface side) are mounted on the circuit board 12, and the circuit wiring provided on the circuit board 12 is connected to each electronic component 11. In addition, it is also connected to the pin terminal 15 a of the connector 15.
また、回路基板12における電子部品11が実装されている部分にはサーマルビア(スルーホール)17が設けられている。
Further, a thermal via (through hole) 17 is provided in a portion of the circuit board 12 where the electronic component 11 is mounted.
回路基板12の上面側に実装された3個の電子部品11のうちの中央に位置する電子部品11の下側には、サーマルビア17が設けられるとともに、ベース13における、サーマルビア17の真下に位置する部位には矩形凸部21が突設されており、回路基板12の下面とベース13の矩形凸部21上面との間には、両者に接触するように高熱伝導層20が介在せしめられている。高熱伝導層20としては、ここでは、接着剤、グリース、放熱シートなどが用いられている。
A thermal via 17 is provided below the electronic component 11 located at the center of the three electronic components 11 mounted on the upper surface side of the circuit board 12, and at the base 13 just below the thermal via 17. A rectangular convex portion 21 protrudes from the located portion, and a high thermal conductive layer 20 is interposed between the lower surface of the circuit board 12 and the upper surface of the rectangular convex portion 21 of the base 13 so as to be in contact with both. ing. Here, an adhesive, grease, a heat radiating sheet, or the like is used as the high thermal conductive layer 20.
また、回路基板12の上面側に実装された3個の電子備品11のうちの右側に位置する電子部品11(の本体部分)は、電子部品の端子により回路基板12の上面から浮かせられて取り付けられており、この電子部品11と回路基板12との間には隙間が形成されている。
In addition, the electronic component 11 (the main body portion) located on the right side of the three electronic fixtures 11 mounted on the upper surface side of the circuit board 12 is attached by being floated from the upper surface of the circuit board 12 by the terminals of the electronic components. A gap is formed between the electronic component 11 and the circuit board 12.
本実施形態の車載制御装置1においては、回路基板やコネクタピンの内側などの特定の部位に保護コーティング膜30、31、32が形成されている。
In the in-vehicle control device 1 of the present embodiment, protective coating films 30, 31, and 32 are formed on specific parts such as the inside of a circuit board or a connector pin.
この場合、回路基板12には、電子部品11及びコネクタ15が実装された後に、電子部品が実装された面に保護コーティング膜30、31が形成(塗布)され、ベース13及びカバー14が所定寸法形状に作製された後、また、コネクタ15のピン端子15aには、回路基板12側の連結接合部15fからコネクタハウジング15bまでの間の部分に保護コーティング膜32が形成(塗布)される。
In this case, after the electronic component 11 and the connector 15 are mounted on the circuit board 12, protective coating films 30 and 31 are formed (applied) on the surface on which the electronic component is mounted, and the base 13 and the cover 14 have predetermined dimensions. After being formed into a shape, a protective coating film 32 is formed (applied) on the pin terminal 15a of the connector 15 in a portion from the connecting joint 15f on the circuit board 12 side to the connector housing 15b.
塗布方法としては、ハケ塗布、吹付塗装、侵漬塗装等での塗布が好ましいが、塗布する対象物により、静電塗装、カーテン塗装、電着塗装、粉体塗装等でもよい。材料塗布後、乾燥させ塗膜化する方法において、好ましくは自然乾燥、焼付、紫外線硬化等の方法を用いる。この際、保護コーティング膜は、各基材に直接コーティングされることが好ましい。例えば、回路基板において、放熱性を向上する放熱コーティング膜や防湿コーティング膜を備えると、電子部品のはんだ接続部に熱放射コーティング膜や防湿コーティング膜由来の応力が加わり、信頼性が低下する。
Application methods such as brush coating, spray coating, and immersion coating are preferred, but electrostatic coating, curtain coating, electrodeposition coating, powder coating, etc. may be used depending on the object to be coated. In the method of drying and forming a coating film after applying the material, a method such as natural drying, baking, or ultraviolet curing is preferably used. At this time, the protective coating film is preferably directly coated on each substrate. For example, if a circuit board is provided with a heat dissipation coating film or a moistureproof coating film that improves heat dissipation, stress derived from the heat radiation coating film or the moistureproof coating film is applied to the solder connection portion of the electronic component, and the reliability is lowered.
なお、図2では保護コーティング膜30、31、32がすべて形成された例を示している。信頼性を向上する観点からは、上記した複数の面に保護コーティング膜を設けることが好ましいが、各基材面の全面に限らず、電子部品の一部、特に電子部品のはんだ接続部の周囲にのみコーティングする構成にしても良い。これにより、コーティングするための塗料使用量の低減を図ることができる。
2 shows an example in which all the protective coating films 30, 31, and 32 are formed. From the viewpoint of improving reliability, it is preferable to provide a protective coating film on the plurality of surfaces described above, but not only on the entire surface of each base material, but a part of the electronic component, particularly around the solder connection portion of the electronic component Alternatively, the coating may be applied only to the surface. Thereby, reduction of the usage-amount of the coating material for coating can be aimed at.
次に、本実施形態の保護コーティング膜(30、31、32)の具体的な構成について説明する。保護コーティング膜を形成する材料は、125℃における損失弾性率が1.0×105Pa以上または貯蔵弾性率が1.1×106Pa以上であれば特に限定されるわけではないが、有機樹脂を含んでいることが好ましい。
Next, a specific configuration of the protective coating film (30, 31, 32) of this embodiment will be described. The material for forming the protective coating film is not particularly limited as long as the loss elastic modulus at 125 ° C. is 1.0 × 10 5 Pa or more or the storage elastic modulus is 1.1 × 10 6 Pa or more. Preferably it is.
はんだ接続部の信頼性向上のメカニズムを示す。
Demonstrates the mechanism for improving the reliability of solder joints.
電子部品が実装された回路基板を、自動車の稼動時と同様の熱衝撃、例えば-40℃と125℃を与えると、はんだのフィレット部22aにはんだ亀裂が発生する。この回路基板に、125℃における損失弾性率が0Paつまり、125℃で軟化及び溶融してしまう熱可塑性樹脂Aを塗布した場合、高温領域125℃で熱可塑性樹脂Aは溶融し、はんだの亀裂部に浸入する。その後、低温になると熱可塑性樹脂Aは損失弾性率が4.0×107Pa、まで増加する。
When the circuit board on which the electronic component is mounted is subjected to the same thermal shock, for example, −40 ° C. and 125 ° C. as when the automobile is operated, a solder crack occurs in the solder fillet portion 22a. When the loss elastic modulus at 125 ° C. is applied to this circuit board, that is, when the thermoplastic resin A that softens and melts at 125 ° C. is applied, the thermoplastic resin A melts at a high temperature region of 125 ° C. and cracks in the solder Infiltrate. Thereafter, when the temperature becomes low, the loss elastic modulus of the thermoplastic resin A increases to 4.0 × 10 7 Pa.
損失弾性率とは材料の粘度に比例するため、低損失弾性率であると低粘度となり、はんだ接続部の亀裂部に入り込み、コーティング材の損失弾性率が0Paになると材料の塑性変形につながる。一方、はんだは低温時にはんだの亀裂内部方向に収縮する応力が生じる。しかし亀裂内部には熱可塑性樹脂Aが存在するため、この応力がはんだの亀裂先端部に集中し、亀裂が進展する。亀裂進展により、熱可塑性樹脂Aが浸入したことにより余分なはんだが端子の外側方向に押し出される変形が生じる。この繰り返しにより、はんだの亀裂進展がはんだ接続部の断線を引き起こし、押し出されたはんだが成長することで、端子間の導通不良が生じる。
Since the loss elastic modulus is proportional to the viscosity of the material, a low loss elastic modulus results in a low viscosity, enters the cracked portion of the solder joint, and leads to plastic deformation of the material when the loss elastic modulus of the coating material reaches 0 Pa. On the other hand, a stress is generated in the solder that shrinks toward the inside of the crack of the solder at a low temperature. However, since the thermoplastic resin A exists inside the crack, this stress concentrates on the crack tip of the solder and the crack progresses. Due to the progress of the crack, the thermoplastic resin A penetrates and a deformation occurs in which excess solder is pushed out to the outside of the terminal. By repeating this, the crack progress of the solder causes the disconnection of the solder connection portion, and the extruded solder grows, resulting in poor conduction between the terminals.
一方、125℃における損失弾性率が1.0×105Pa以上である保護コーティング材を塗布し、保護コーティング膜を形成した場合、125℃以下では溶融しないため、はんだの亀裂部には浸入しない。低温時ではんだが収縮しても、はんだ亀裂部への応力は小さいため、はんだ接続の信頼性が向上する。
On the other hand, when a protective coating material having a loss elastic modulus at 125 ° C. of 1.0 × 10 5 Pa or more is applied and a protective coating film is formed, since it does not melt at 125 ° C. or lower, it does not enter the cracked portion of the solder. Even if the solder shrinks at a low temperature, the stress on the solder crack is small, so the reliability of the solder connection is improved.
また貯蔵弾性率についても同様の議論ができる。125℃における貯蔵弾性率が0Paつまり、125℃で軟化及び溶融してしまう熱可塑性樹脂Aを塗布した場合、高温領域125℃で熱可塑性樹脂Aは溶融し、はんだの亀裂部に浸入する。その後、低温になると熱可塑性樹脂Aは貯蔵弾性率が8.3×108まで増加する。
The same argument can be made for storage modulus. The storage elastic modulus at 125 ° C. is 0 Pa, that is, when the thermoplastic resin A that softens and melts at 125 ° C. is applied, the thermoplastic resin A melts at a high temperature region of 125 ° C. and enters the cracked portion of the solder. Thereafter, when the temperature becomes low, the storage elastic modulus of the thermoplastic resin A increases to 8.3 × 10 8 .
貯蔵弾性率とは材料の硬さを表しており、低貯蔵弾性率であると材料が軟らかくなり、はんだ接続部の亀裂部に入り込む。一方、はんだは低温時にはんだの亀裂内部方向に収縮する応力が生じる。しかし亀裂内部には熱可塑性樹脂Aが存在するため、この応力がはんだの亀裂先端部に集中し、亀裂が進展する。亀裂進展により、熱可塑性樹脂Aが浸入したことによる余分なはんだが端子の外側方向に押し出される変形を生じる。この繰り返しにより、はんだの亀裂進展がはんだ接続部の断線を引き起こし、押し出されたはんだが成長することで、端子間の導通不良が生じる。
The storage elastic modulus represents the hardness of the material. When the storage elastic modulus is low, the material becomes soft and enters the cracked portion of the solder connection portion. On the other hand, a stress is generated in the solder that shrinks toward the inside of the crack of the solder at a low temperature. However, since the thermoplastic resin A exists inside the crack, this stress concentrates on the crack tip of the solder and the crack progresses. Due to the crack growth, a deformation occurs in which excess solder due to the penetration of the thermoplastic resin A is pushed out toward the outside of the terminal. By repeating this, the crack progress of the solder causes the disconnection of the solder connection portion, and the extruded solder grows, resulting in poor conduction between the terminals.
一方、125℃における貯蔵弾性率が1.1×106Pa以上である保護コーティング材を塗布し、保護コーティング膜を形成した場合、125℃以下では溶融しないため、はんだの亀裂部には浸入しない。低温時ではんだが収縮しても、はんだ亀裂部への応力は小さいため、はんだ接続部の信頼性が向上する。
On the other hand, when a protective coating material having a storage elastic modulus at 125 ° C. of 1.1 × 10 6 Pa or more is applied to form a protective coating film, it does not melt at 125 ° C. or lower, and therefore does not enter the cracked portion of the solder. Even if the solder shrinks at a low temperature, the stress on the solder crack portion is small, so the reliability of the solder connection portion is improved.
また、各保護コーティング膜(30、31、32)は、例えば回路基板に形成された場合、回路基板の平坦部において、その膜厚は好ましくは、約1μm~200μmとされ、より好ましくは10μmから100μmとされ、膜厚が100μmよりも厚すぎると、電子部品のはんだ接続部にコーティング膜由来の応力が加わり、信頼性が低下するおそれがあり、10μmより薄いと、電子部品のはんだ接続部の保護機能が低下するおそれがある。
Further, when each protective coating film (30, 31, 32) is formed on, for example, a circuit board, the film thickness is preferably about 1 μm to 200 μm, more preferably from 10 μm on the flat part of the circuit board. If the thickness is 100 μm and the film thickness is more than 100 μm, stress derived from the coating film is applied to the solder connection portion of the electronic component, and the reliability may be lowered. If the thickness is less than 10 μm, the solder connection portion of the electronic component The protective function may be reduced.
前記有機樹脂としては、従来公知のものを使用でき、125℃において損失弾性率が1.0×105Pa以上もしくは貯蔵弾性率が1.1×106Pa以上であれば特に限定されないが、一例として、合成樹脂や水系エマルション樹脂が挙げられる。合成樹脂としては、フェノール樹脂、アルキド樹脂、アミノアルキド樹脂、ユリア樹脂、シリコン樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ゴム系樹脂、塩化ビニル樹脂、フッ素樹脂等の合成樹脂であり、好ましくは安価であるアクリル樹脂である。また水系エマルションとしては、シリコンアクリルエマルション、ウレタンエマルション、アクリルエマルション等がある。
As the organic resin, conventionally known ones can be used, and are not particularly limited as long as the loss elastic modulus at 125 ° C. is 1.0 × 10 5 Pa or more or the storage elastic modulus is 1.1 × 10 6 Pa or more. Examples thereof include resins and water-based emulsion resins. Synthetic resins include phenolic resin, alkyd resin, aminoalkyd resin, urea resin, silicon resin, melamine urea resin, epoxy resin, polyurethane resin, vinyl acetate resin, acrylic resin, chlorinated rubber resin, vinyl chloride resin, fluorine resin, etc. And is preferably an acrylic resin that is inexpensive. Examples of the water-based emulsion include silicon acrylic emulsion, urethane emulsion, and acrylic emulsion.
また各保護コーティング膜(30、31、32)を形成する保護コーティング材は充填材を含んでも良い。充填材を含むことにより、125℃における損失弾性率が高損失弾性率化し、電子部品のはんだ接続信頼性が向上する。また125℃における貯蔵弾性率が高貯蔵弾性率化し、電子部品のはんだ接続信頼性が向上する。この場合、充填材としては従来公知なものが使用でき、特に限定されないが窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、ジルコニア、酸化鉄、酸化銅、酸化ニッケル、酸化コバルト、酸化リチウム、二酸化珪素等のセラミックス粒子や、銅、ニッケル、銀、鉄等の金属粉体や、炭素材料、樹脂粒子等が挙げられるが、車載制御装置の電子部品が実装された回路基板等の塗布対象物に絶縁性が必要な場合には、保護コーティング膜には絶縁性が求められるため、保護コーティング膜を形成する保護コーティング材にはセラミックス粉末や樹脂粒子等の絶縁性を有する材料を配合することが好適である。
Further, the protective coating material for forming each protective coating film (30, 31, 32) may include a filler. By including the filler, the loss elastic modulus at 125 ° C. is increased, and the solder connection reliability of the electronic component is improved. In addition, the storage elastic modulus at 125 ° C. becomes a high storage elastic modulus, and the solder connection reliability of the electronic component is improved. In this case, conventionally known fillers can be used and are not particularly limited, but boron nitride, aluminum nitride, aluminum oxide, magnesium oxide, titanium oxide, zirconia, iron oxide, copper oxide, nickel oxide, cobalt oxide, lithium oxide are not particularly limited. Examples include ceramic particles such as silicon dioxide, metal powders such as copper, nickel, silver, and iron, carbon materials, resin particles, etc., but application targets such as circuit boards on which electronic components of in-vehicle control devices are mounted When insulation is required for an object, since the insulation is required for the protective coating film, the protective coating material for forming the protective coating film should contain an insulating material such as ceramic powder or resin particles. Is preferred.
前記充填材を配合する場合、その平均粒子径は特に限定されるわけではないが、200μm以下が好ましい。充填材の平均粒子径が200μmを超えると保護コーティング膜から粒子が脱落し、保護性能が低下するとともに、保護コーティング膜の強度や被塗装体との密着力が低下するおそれがある。
When blending the filler, the average particle diameter is not particularly limited, but is preferably 200 μm or less. When the average particle diameter of the filler exceeds 200 μm, the particles fall off from the protective coating film, and the protective performance is deteriorated, and the strength of the protective coating film and the adhesion with the object to be coated may be reduced.
充填材の形状は、従来公知の材料を使用でき、特に限定されないが、球状、フレーク状、針状、直方体、立方体、四面体、六面体、多面体、チューブ状、核部から異なる4軸方向に伸びた三次元針状構造等が挙げられる。
A conventionally known material can be used for the shape of the filler, and it is not particularly limited. And a three-dimensional needle-like structure.
充填材の充填量は、特に限定されないが、充填材を含んだ保護コーティング材を用いて保護コーティング膜を形成した場合の損失弾性率が125℃において1.0×105Paであることが好ましい。もしくは貯蔵弾性率が125℃において1.1×106Paであることが好ましい。
The filling amount of the filler is not particularly limited, but the loss elastic modulus when the protective coating film is formed using the protective coating material containing the filler is preferably 1.0 × 10 5 Pa at 125 ° C. Alternatively, the storage modulus is preferably 1.1 × 10 6 Pa at 125 ° C.
溶媒としては、水及び有機溶剤が挙げられ、特に限定されない。溶媒の選定は、溶剤と充填材、分散材等のほかの材料との組み合わせにおいて最適に決められるものであり、適した溶剤を選定することが望ましい。有機溶剤としてはケトン系、アルコール系、芳香族系等の有機溶剤が上げられる。具体的には、アセトン、メチルエチルケトン、シクロヘキセン、エチレングリコール、プロピレングリコール、メチルアルコール、イソプロピルアルコール、ブタノール、ベンゼン、トルエン、キシレン、酢酸エチル、酢酸ブチル等が挙げられる。これらは1種類で用いても、複数併用してもよい。
Examples of the solvent include water and organic solvents, and are not particularly limited. The selection of the solvent is optimally determined depending on the combination of the solvent and other materials such as a filler and a dispersing material, and it is desirable to select a suitable solvent. Examples of the organic solvent include ketone-based, alcohol-based and aromatic-based organic solvents. Specific examples include acetone, methyl ethyl ketone, cyclohexene, ethylene glycol, propylene glycol, methyl alcohol, isopropyl alcohol, butanol, benzene, toluene, xylene, ethyl acetate, and butyl acetate. These may be used alone or in combination.
保護コーティング材は、上記成分の他に必要に応じて、さらに成分を加えてもよい。成分としては、造膜助剤、可塑剤、顔料、シランカップリング剤、粘度調整剤等が挙げられる。上記成分としては、従来のものが使用でき、特に限定されない。
Protective coating material may further contain components as needed in addition to the above components. Examples of the component include a film forming aid, a plasticizer, a pigment, a silane coupling agent, and a viscosity modifier. As said component, a conventional thing can be used and it does not specifically limit.
保護コーティング材の塗布方法としては特に限定されず、通常に用いられる塗布方法から、目的に応じて選択することが出来る。具体的には、ハケ塗布、吹付塗装、ロールコータ塗布、侵漬塗布等を挙げることが出来る。熱放射材料塗布後、乾燥させコーティング膜化する方法において、自然乾燥、焼付、紫外線硬化等の方法を用いることができ、塗料性状等によって選択される。
The method for applying the protective coating material is not particularly limited, and can be selected from commonly used application methods according to the purpose. Specific examples include brush coating, spray coating, roll coater coating, and immersion coating. In the method of drying and forming a coating film after applying the heat radiation material, methods such as natural drying, baking, and ultraviolet curing can be used, which are selected depending on the properties of the paint.
保護コーティング膜の熱機械特性はIR(赤外分光法)やGCMS(ガスクロマトグラフ分析法)等の分析方法によりバインダー樹脂を特定し、保護コーティング膜の断面をSEM-EDX(走査型電子顕微鏡-エネルギー分散型X線分析法)等の元素分析により粒子を特定し、それぞれを配合し、形成された膜を測定する。
The thermo-mechanical properties of the protective coating film are determined by analyzing the binder resin using an analysis method such as IR (infrared spectroscopy) or GCMS (gas chromatographic analysis), and the cross section of the protective coating film is SEM-EDX (scanning electron microscope-energy). Particles are identified by elemental analysis such as dispersion X-ray analysis), each of them is blended, and the formed film is measured.
損失弾性率は、調整した材料を100μmで成膜化し、フィルム状になったサンプルを長さ30mm、幅0.5mmに切断し試験片とし、粘弾性測定装置を用い、周波数10Hz、測定温度範囲-40℃~150℃、昇温速度2℃/minで測定する。
The loss elastic modulus is obtained by forming a film of the adjusted material at 100 μm, cutting the film-like sample into a length of 30 mm and a width of 0.5 mm to obtain a test piece, using a viscoelasticity measuring device, a frequency of 10 Hz, a measurement temperature range Measured at -40 ° C to 150 ° C at a heating rate of 2 ° C / min.
次に、車載制御装置の組み立て工程の一例を説明する。
電子部品ははんだにより、回路基板に実装される。コネクタピンをコネクタハウジングに組み付ける工程後、コネクタピンと回路基板がはんだによりスポットフロー工程等で接合される。電子部品及びコネクタが回路基板に実装された後に、保護コーティング材を塗布し、保護コーティング膜を備える。塗布方法としては、ハケ塗布、吹付塗装、侵漬塗装等での塗布が好ましいが、塗布する対象物により、静電塗装、カーテン塗装、電着塗装、粉体塗装等でもよい。保護コーティング材塗布後、乾燥させコーティング膜化する方法において、好ましくは自然乾燥、焼付等の方法を用いる。 Next, an example of an assembly process of the in-vehicle control device will be described.
The electronic component is mounted on the circuit board by solder. After the process of assembling the connector pin to the connector housing, the connector pin and the circuit board are joined by solder in a spot flow process or the like. After the electronic component and the connector are mounted on the circuit board, a protective coating material is applied and a protective coating film is provided. As a coating method, brush coating, spray coating, immersion coating, or the like is preferable, but electrostatic coating, curtain coating, electrodeposition coating, powder coating, or the like may be used depending on the object to be coated. In the method of drying and forming a coating film after applying the protective coating material, a method such as natural drying or baking is preferably used.
電子部品ははんだにより、回路基板に実装される。コネクタピンをコネクタハウジングに組み付ける工程後、コネクタピンと回路基板がはんだによりスポットフロー工程等で接合される。電子部品及びコネクタが回路基板に実装された後に、保護コーティング材を塗布し、保護コーティング膜を備える。塗布方法としては、ハケ塗布、吹付塗装、侵漬塗装等での塗布が好ましいが、塗布する対象物により、静電塗装、カーテン塗装、電着塗装、粉体塗装等でもよい。保護コーティング材塗布後、乾燥させコーティング膜化する方法において、好ましくは自然乾燥、焼付等の方法を用いる。 Next, an example of an assembly process of the in-vehicle control device will be described.
The electronic component is mounted on the circuit board by solder. After the process of assembling the connector pin to the connector housing, the connector pin and the circuit board are joined by solder in a spot flow process or the like. After the electronic component and the connector are mounted on the circuit board, a protective coating material is applied and a protective coating film is provided. As a coating method, brush coating, spray coating, immersion coating, or the like is preferable, but electrostatic coating, curtain coating, electrodeposition coating, powder coating, or the like may be used depending on the object to be coated. In the method of drying and forming a coating film after applying the protective coating material, a method such as natural drying or baking is preferably used.
カバーは、アルミニウム、マグネシウム、鉄などを主成分とする合金若しくはポリブチレンテレフタレートなどの樹脂材料を用いた鋳造、プレス又は切削加工などにより製造される。カバーの形状は底面が開口し、コネクタ部用窓が備えられている。
The cover is manufactured by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate. The shape of the cover is such that the bottom surface is open and a connector portion window is provided.
ベースは、アルミニウム、マグネシウム、鉄などを主成分とする合金若しくはポリブチレンテレフタレートなどの樹脂材料を用いた鋳造、プレス又は切削加工などにより製造される。ベースの形状はカバーの底面開口部を閉鎖するように略平板上に形成する。
The base is manufactured by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate. The base is formed on a substantially flat plate so as to close the bottom opening of the cover.
保護コーティング膜の膜厚は約1μm~200μmで、好ましくは膜厚が10μm~100μmである。膜厚が200μmよりも厚すぎると、電子部品のはんだ接続部にコーティング膜由来の応力が加わり、信頼性が低下するおそれがあり、10μmより薄いと、電子部品のはんだ接続部の保護機能が低下するおそれがある。
The film thickness of the protective coating film is about 1 μm to 200 μm, preferably 10 μm to 100 μm. If the film thickness is too thicker than 200 μm, stress derived from the coating film is applied to the solder connection part of the electronic component, which may reduce the reliability. If the film thickness is less than 10 μm, the protective function of the solder connection part of the electronic component is deteriorated. There is a risk.
次に、実施例1~6を順次詳細に説明する。
Next, Examples 1 to 6 will be sequentially described in detail.
実施例1は、図3に示される如くに、電子部品11が実装してある回路基板12の表裏面に保護コーティング膜30、31が形成されている。
In Example 1, as shown in FIG. 3, protective coating films 30 and 31 are formed on the front and back surfaces of the circuit board 12 on which the electronic component 11 is mounted.
実施例1において、保護コーティング膜30、31には、125℃における損失弾性率が3.9×105Pa、貯蔵弾性率が7.0×106Paのアクリル樹脂を用い、回路基板にハケ塗布で、80℃30分の後に160℃60分で加熱乾燥させ、膜厚が40μmになるように塗布した。
In Example 1, an acrylic resin having a loss elastic modulus at 125 ° C. of 3.9 × 10 5 Pa and a storage elastic modulus of 7.0 × 10 6 Pa is used for the protective coating films 30 and 31 and is applied to the circuit board by brushing. It was heated and dried at 160 ° C. for 60 minutes after 30 ° C. and coated so that the film thickness was 40 μm.
図4に示される如くに、電子部品11が回路基板に実装してあり、電子部品とその端子とはんだ接続部と回路基板に保護コーティング膜を形成することで、はんだ接続部の信頼性が向上する。
As shown in FIG. 4, the electronic component 11 is mounted on the circuit board, and the reliability of the solder connection portion is improved by forming a protective coating film on the electronic component, its terminal, the solder connection portion, and the circuit board. To do.
実施例2は、図5に示される如くに、電子部品11が実装してある回路基板12の表裏面に保護コーティング膜30、31が電子部品の周囲を覆うように形成されている。これにより、電子部品と端子およびはんだ接続に間が保護コーティング材で埋められ、さらにはんだ接続部の信頼性が向上する。
In Example 2, as shown in FIG. 5, protective coating films 30 and 31 are formed on the front and back surfaces of the circuit board 12 on which the electronic component 11 is mounted so as to cover the periphery of the electronic component. Thereby, the space between the electronic component and the terminal and the solder connection is filled with the protective coating material, and the reliability of the solder connection portion is further improved.
図6に示されるごとく、実施例3では実施例1の構成の電子部品の端子とはんだ接続部に保護コーティング膜を設ける。
As shown in FIG. 6, in the third embodiment, a protective coating film is provided on the terminals and solder connection portions of the electronic component having the configuration of the first embodiment.
図7に示されるごとく、実施例4では実施例2の構成の電子部品の端子とはんだ接続部に保護コーティング膜を設ける。
As shown in FIG. 7, in the fourth embodiment, a protective coating film is provided on the terminals and solder connection portions of the electronic component having the configuration of the second embodiment.
図8に示されるごとく、実施例5では実施例1の構成の電子部品のはんだ接続部にのみ保護コーティング膜を設ける。以上説明した実施例3,4,5のように、必ずしも電子部品及び端子を全て覆う必要はない。これによりコーティング材の使用量を削減することができる。
As shown in FIG. 8, in Example 5, a protective coating film is provided only on the solder connection portion of the electronic component having the configuration of Example 1. As in the third, fourth, and fifth embodiments described above, it is not always necessary to cover all electronic components and terminals. Thereby, the usage-amount of a coating material can be reduced.
実施例6は、図9に示される如くに、端子が電子部品のパッケージから取り出されていない電子部品11が実装してある回路基板12の表裏面に保護コーティング膜30、31が形成されている。
In Example 6, as shown in FIG. 9, protective coating films 30 and 31 are formed on the front and back surfaces of the circuit board 12 on which the electronic component 11 whose terminals are not taken out from the package of the electronic component is mounted. .
実施例6において、保護コーティング膜30、31には、125℃における損失弾性率が3.9×105MPa、貯蔵弾性率が7.0×106Paのアクリル樹脂を用い、回路基板にハケ塗布で、80℃30分の後に160℃60分で加熱乾燥させ、膜厚が40μmになるように塗布した。電子部品と食んだ接続部と回路基板に保護コーティング膜を形成することで、はんだ接続部の信頼性が向上する。
In Example 6, an acrylic resin having a loss elastic modulus at 125 ° C. of 3.9 × 10 5 MPa and a storage elastic modulus of 7.0 × 10 6 Pa was used for the protective coating films 30 and 31, and the circuit board was applied by brushing. It was heated and dried at 160 ° C. for 60 minutes after 30 ° C. and coated so that the film thickness was 40 μm. By forming a protective coating film on the connection part and the circuit board that have eaten the electronic component, the reliability of the solder connection part is improved.
実施例7は、図10に示される如くに、実施例6の構成のはんだ接続部に保護コーティング膜を設ける。必ずしも電子部品を全て覆う必要はなく、これによりコーティング材の使用量を削減することができる。
In Example 7, as shown in FIG. 10, a protective coating film is provided on the solder connection portion having the structure of Example 6. It is not always necessary to cover all the electronic components, thereby reducing the amount of coating material used.
(評価方法)
回路基板に鉛フリーはんだを塗布し、ガルウィング形端子(L字型)を有する電子部品を実装し、125℃時の損失弾性率と貯蔵弾性率が異なる保護コーティング膜を設けた場合に信頼性について以下に示す。 (Evaluation methods)
Reliability when a lead-free solder is applied to a circuit board, an electronic component with a gull-wing terminal (L-shaped) is mounted, and a protective coating film with different loss modulus and storage modulus at 125 ° C is provided. It is shown below.
回路基板に鉛フリーはんだを塗布し、ガルウィング形端子(L字型)を有する電子部品を実装し、125℃時の損失弾性率と貯蔵弾性率が異なる保護コーティング膜を設けた場合に信頼性について以下に示す。 (Evaluation methods)
Reliability when a lead-free solder is applied to a circuit board, an electronic component with a gull-wing terminal (L-shaped) is mounted, and a protective coating film with different loss modulus and storage modulus at 125 ° C is provided. It is shown below.
はんだ接続部の信頼性評価は評価用基板に各材料をハケで塗布し、硬化したサンプルを熱衝撃試験機にいれ、-40℃~125℃、1サイクル60分の条件下で2000サイクル実施した。2000サイクル終了時にX線透視装置と、はんだ接続部の断面を、走査型電子顕微鏡を用いて観察した。
(評価材料) The reliability of the solder joints was evaluated by applying each material to the evaluation board with a brush, placing the cured sample in a thermal shock tester, and performing 2000 cycles under the condition of −40 ° C. to 125 ° C. for 1 cycle 60 minutes. . At the end of 2000 cycles, the X-ray fluoroscope and the cross section of the solder joint were observed using a scanning electron microscope.
(Evaluation materials)
(評価材料) The reliability of the solder joints was evaluated by applying each material to the evaluation board with a brush, placing the cured sample in a thermal shock tester, and performing 2000 cycles under the condition of −40 ° C. to 125 ° C. for 1 cycle 60 minutes. . At the end of 2000 cycles, the X-ray fluoroscope and the cross section of the solder joint were observed using a scanning electron microscope.
(Evaluation materials)
(比較材料)
・熱可塑性樹脂A
・熱可塑性樹脂B
・熱可塑性樹脂C
(実施材料)
・熱可塑性樹脂B+ナノシリカ(粒径12μm)
・熱硬化性樹脂
・熱硬化性樹脂+ナノシリカ(粒径12μm)10W%含有
・熱硬化性樹脂+ナノシリカ(粒径12μm)5W%含有 (Comparative material)
・ Thermoplastic resin A
・ Thermoplastic resin B
・ Thermoplastic resin C
(Implementation material)
・ Thermoplastic resin B + nano silica (particle size 12μm)
・ Thermosetting resin ・ Thermosetting resin + nano silica (particle size 12μm) 10W%
・ Contains thermosetting resin + nano silica (particle size 12μm) 5W%
・熱可塑性樹脂A
・熱可塑性樹脂B
・熱可塑性樹脂C
(実施材料)
・熱可塑性樹脂B+ナノシリカ(粒径12μm)
・熱硬化性樹脂
・熱硬化性樹脂+ナノシリカ(粒径12μm)10W%含有
・熱硬化性樹脂+ナノシリカ(粒径12μm)5W%含有 (Comparative material)
・ Thermoplastic resin A
・ Thermoplastic resin B
・ Thermoplastic resin C
(Implementation material)
・ Thermoplastic resin B + nano silica (particle size 12μm)
・ Thermosetting resin ・ Thermosetting resin + nano silica (particle size 12μm) 10W%
・ Contains thermosetting resin + nano silica (particle size 12μm) 5W%
(評価項目)
はんだ変形発生割合:電子部品の全端子46本中に対し、端子間方向にはんだ変形が生じている端子本数
はんだ変形量:熱衝撃試験初期の隣接する端子間距離を100としたとき、2000サイクル終了時の端子間方向に広がるはんだ変形量の割合(図11参照)
はんだ亀裂進展:はんだ接続部の断面を観察したときの、はんだの亀裂進展率(図12参照) (Evaluation item)
Rate of occurrence of solder deformation: Number of terminals in which solder deformation occurs in the direction between terminals with respect to all 46 terminals of the electronic component Solder deformation amount: 2000 cycles when the distance between adjacent terminals at the initial stage of the thermal shock test is 100 Proportion of solder deformation spreading in the direction between terminals at the end (see Fig. 11)
Solder crack growth: Crack growth rate of solder when the cross section of the solder connection is observed (see Fig. 12)
はんだ変形発生割合:電子部品の全端子46本中に対し、端子間方向にはんだ変形が生じている端子本数
はんだ変形量:熱衝撃試験初期の隣接する端子間距離を100としたとき、2000サイクル終了時の端子間方向に広がるはんだ変形量の割合(図11参照)
はんだ亀裂進展:はんだ接続部の断面を観察したときの、はんだの亀裂進展率(図12参照) (Evaluation item)
Rate of occurrence of solder deformation: Number of terminals in which solder deformation occurs in the direction between terminals with respect to all 46 terminals of the electronic component Solder deformation amount: 2000 cycles when the distance between adjacent terminals at the initial stage of the thermal shock test is 100 Proportion of solder deformation spreading in the direction between terminals at the end (see Fig. 11)
Solder crack growth: Crack growth rate of solder when the cross section of the solder connection is observed (see Fig. 12)
実施例1に比較材料A、B、Cと実施材料の損失弾性率と貯蔵弾性率とはんだ接続部のはんだ変形発生割合、はんだ変形量、はんだ亀裂進展割合を示す。表1の結果から、本実施例の構成である、125℃において損失弾性率が1.0×105Pa以上もしくは貯蔵弾性率が1.1×106Pa以上である保護コーティング材から形成される保護コーティング膜を備えることで車載制御装置の信頼性が向上する。
Example 1 shows the loss elastic moduli and storage elastic moduli of the comparative materials A, B, and C and the practical materials, the solder deformation occurrence rate, the solder deformation amount, and the solder crack propagation rate of the solder connection portion. From the results of Table 1, the protective coating film formed from a protective coating material having a loss elastic modulus of 1.0 × 10 5 Pa or higher or a storage elastic modulus of 1.1 × 10 6 Pa or higher at 125 ° C., which is the configuration of this example. The reliability of the in-vehicle control device is improved.
1 車載制御装置
11 電子部品
12 回路基板
13 ベース
14 カバー
15 コネクタ
16 台座部
17 ネジ
18 車両搭載固定部
19 サーマルビア
22 はんだ
30、31、32 保護コーティング膜
41 コネクタピン DESCRIPTION OF SYMBOLS 1 In-vehicle control apparatus 11 Electronic component 12 Circuit board 13 Base 14 Cover 15 Connector 16 Base part 17 Screw 18 Vehicle mounting fixing part 19 Thermal via 22 Solder 30, 31, 32 Protective coating film 41 Connector pin
11 電子部品
12 回路基板
13 ベース
14 カバー
15 コネクタ
16 台座部
17 ネジ
18 車両搭載固定部
19 サーマルビア
22 はんだ
30、31、32 保護コーティング膜
41 コネクタピン DESCRIPTION OF SYMBOLS 1 In-
Claims (7)
- 回路基板と、
前記回路基板に実装される電子部品と、
前記電子部品の端子と前記回路基板とを電気的に接触させるはんだと、
前記回路基板の少なくとも一部を保護するコーディング膜と、を備えた車載制御装置において、
前記保護コーティング膜は、前記端子と前記はんだとを覆い、
125℃において損失弾性率が1.0×105Pa以上である材料からなることを特徴とする車載制御装置。 A circuit board;
Electronic components mounted on the circuit board;
Solder for electrically contacting the terminal of the electronic component and the circuit board;
In a vehicle-mounted control device comprising a coding film that protects at least a part of the circuit board,
The protective coating film covers the terminal and the solder,
A vehicle-mounted control device comprising a material having a loss elastic modulus of 1.0 × 10 5 Pa or more at 125 ° C. - 請求項1記載の車載制御装置において、
前記電子部品の一辺から複数の端子が延伸し、前記複数の端子がL型形状であることを特徴とする車載制御装置。 The in-vehicle control device according to claim 1,
A vehicle-mounted control device, wherein a plurality of terminals extend from one side of the electronic component, and the plurality of terminals are L-shaped. - 請求項1または2いずれか一項記載の車載制御装置において、
前記保護コーティング膜を形成する材料は、充填材を含み、
前記充填材により、前記保護コーティング膜の材料が125℃において損失弾性率が1.0×105Pa以上であることを特徴とする車載制御装置。 In the vehicle-mounted control apparatus as described in any one of Claim 1 or 2,
The material forming the protective coating film includes a filler,
The vehicle-mounted control device according to claim 1, wherein the protective coating film has a loss elastic modulus of 1.0 × 10 5 Pa or more at 125 ° C. due to the filler. - 回路基板と、
前記回路基板に実装される電子部品と、
前記電子部品の端子と前記回路基板とを電気的に接触させるはんだと、
前記回路基板の少なくとも一部を保護するコーディング膜と、を備えた車載制御装置において、
前記保護コーティング膜は、前記端子と前記はんだとを覆い、
125℃において貯蔵弾性率が1.1×106Pa以上である材料からなることを特徴とする車載制御装置。 A circuit board;
Electronic components mounted on the circuit board;
Solder for electrically contacting the terminal of the electronic component and the circuit board;
In a vehicle-mounted control device comprising a coding film that protects at least a part of the circuit board,
The protective coating film covers the terminal and the solder,
A vehicle-mounted control device comprising a material having a storage elastic modulus of 1.1 × 10 6 Pa or more at 125 ° C. - 請求項1から4いずれか一項記載の車載制御装置において、
前記保護コーティング膜の膜厚は、回路基板の平坦部で1μm~200μmとされていることを特徴とする請求項1から3の車載制御装置。 In the vehicle-mounted control apparatus as described in any one of Claim 1 to 4,
4. The in-vehicle control device according to claim 1, wherein the protective coating film has a thickness of 1 μm to 200 μm at a flat portion of the circuit board. - 請求項1から4いずれか一項記載車載制御装置において、
前記保護コーティング膜の膜厚は、回路基板の平坦部で20μm~100μmとされていることを特徴とする車載制御装置。 In the vehicle-mounted control apparatus as described in any one of Claim 1 to 4,
The in-vehicle control device according to claim 1, wherein the protective coating film has a thickness of 20 μm to 100 μm in a flat portion of the circuit board. - 請求項1または2いずれか一項記載の車載制御装置において、
前記車載電子部品は複数の端子を備え、
前記保護コーティング膜は前記複数の端子と、前記複数の端子と前記回路基板とを各々接続するはんだと、を覆うことを特徴とする車載制御装置。 In the vehicle-mounted control apparatus as described in any one of Claim 1 or 2,
The in-vehicle electronic component includes a plurality of terminals,
The on-vehicle control device characterized in that the protective coating film covers the plurality of terminals and solder that respectively connects the plurality of terminals and the circuit board.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-172457 | 2015-09-02 | ||
JP2015172457A JP2017050399A (en) | 2015-09-02 | 2015-09-02 | On-vehicle control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038343A1 true WO2017038343A1 (en) | 2017-03-09 |
Family
ID=58188823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072577 WO2017038343A1 (en) | 2015-09-02 | 2016-08-02 | In-vehicle control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017050399A (en) |
WO (1) | WO2017038343A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018179853A1 (en) * | 2017-03-30 | 2018-10-04 | 日立オートモティブシステムズ株式会社 | Vehicle-mounted control device |
WO2020116539A1 (en) | 2018-12-07 | 2020-06-11 | 積水化学工業株式会社 | Coating agent, and method for producing electronic component module using said coating agent |
WO2022191063A1 (en) | 2021-03-11 | 2022-09-15 | 積水化学工業株式会社 | Coating agent manufacturing kit, coating agent, and method for producing electronic substrate and electronic component module |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300184A (en) * | 1979-07-11 | 1981-11-10 | Johnson Controls, Inc. | Conformal coating for electrical circuit assemblies |
JPH05235243A (en) * | 1991-12-11 | 1993-09-10 | Internatl Business Mach Corp <Ibm> | Electronic package assembly and manufacture therefor |
DE19511487A1 (en) * | 1995-03-29 | 1996-10-02 | Bosch Gmbh Robert | Method of manufacturing a circuit board assembly |
JPH09111121A (en) * | 1995-09-29 | 1997-04-28 | Dow Corning Corp | Production of high-strength silicone resin/fluid alloy |
US5708056A (en) * | 1995-12-04 | 1998-01-13 | Delco Electronics Corporation | Hot melt epoxy encapsulation material |
JP2006303192A (en) * | 2005-04-20 | 2006-11-02 | Sumitomo Bakelite Co Ltd | Semiconductor device and method for reproducing chip |
JP2010262973A (en) * | 2009-04-30 | 2010-11-18 | Renesas Electronics Corp | Semiconductor device |
WO2015001667A1 (en) * | 2013-07-05 | 2015-01-08 | 日立オートモティブシステムズ株式会社 | Mounting substrate manufacturing method and mounting substrate |
-
2015
- 2015-09-02 JP JP2015172457A patent/JP2017050399A/en active Pending
-
2016
- 2016-08-02 WO PCT/JP2016/072577 patent/WO2017038343A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300184A (en) * | 1979-07-11 | 1981-11-10 | Johnson Controls, Inc. | Conformal coating for electrical circuit assemblies |
JPH05235243A (en) * | 1991-12-11 | 1993-09-10 | Internatl Business Mach Corp <Ibm> | Electronic package assembly and manufacture therefor |
DE19511487A1 (en) * | 1995-03-29 | 1996-10-02 | Bosch Gmbh Robert | Method of manufacturing a circuit board assembly |
JPH09111121A (en) * | 1995-09-29 | 1997-04-28 | Dow Corning Corp | Production of high-strength silicone resin/fluid alloy |
US5708056A (en) * | 1995-12-04 | 1998-01-13 | Delco Electronics Corporation | Hot melt epoxy encapsulation material |
JP2006303192A (en) * | 2005-04-20 | 2006-11-02 | Sumitomo Bakelite Co Ltd | Semiconductor device and method for reproducing chip |
JP2010262973A (en) * | 2009-04-30 | 2010-11-18 | Renesas Electronics Corp | Semiconductor device |
WO2015001667A1 (en) * | 2013-07-05 | 2015-01-08 | 日立オートモティブシステムズ株式会社 | Mounting substrate manufacturing method and mounting substrate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018179853A1 (en) * | 2017-03-30 | 2018-10-04 | 日立オートモティブシステムズ株式会社 | Vehicle-mounted control device |
JP2018170401A (en) * | 2017-03-30 | 2018-11-01 | 日立オートモティブシステムズ株式会社 | On-vehicle control device |
WO2020116539A1 (en) | 2018-12-07 | 2020-06-11 | 積水化学工業株式会社 | Coating agent, and method for producing electronic component module using said coating agent |
WO2022191063A1 (en) | 2021-03-11 | 2022-09-15 | 積水化学工業株式会社 | Coating agent manufacturing kit, coating agent, and method for producing electronic substrate and electronic component module |
Also Published As
Publication number | Publication date |
---|---|
JP2017050399A (en) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6271164B2 (en) | Box-type in-vehicle controller | |
WO2016051991A1 (en) | On-board control device | |
CN105451529B (en) | Electromagnetic shielding film, flexible printing wiring board and their manufacturing method | |
WO2017038343A1 (en) | In-vehicle control device | |
JP6431779B2 (en) | In-vehicle control device and method for manufacturing in-vehicle control device | |
KR102196833B1 (en) | Electromagnetic shielding sheet, printed circuit board having electromagnetic shielding structure | |
US6261680B1 (en) | Electronic assembly with charge-dissipating transparent conformal coating | |
KR20200118205A (en) | Conductive adhesive composition | |
WO2020090727A1 (en) | Electromagnetic wave shielding film, method of manufacturing shielded printed wiring board, and shielded printed wiring board | |
KR20090091762A (en) | Conductive paste | |
JP2009105117A (en) | Anisotropic conductive adhesive | |
JP2022069401A (en) | Pasty composition, high thermal conductivity material, and semiconductor device | |
JP6735248B2 (en) | In-vehicle control device | |
CN209964365U (en) | Waterproof functional precoating structure of electronic component | |
JP6484696B2 (en) | Box-type in-vehicle controller | |
KR20160106134A (en) | Connection method and assembly | |
CN205755047U (en) | The pcb board that a kind of thermal diffusivity is strong | |
US20150382479A1 (en) | Pre-applied conductive adhesive for emi shielding | |
TWI854159B (en) | Electromagnetic wave shielding film and shielding printed wiring board | |
US20170055374A1 (en) | Thermal material within a device | |
WO2022113923A1 (en) | Silver-containing paste, and joined body | |
KR20170075891A (en) | Chip adhesiveness structure and method using adhesive material of high heat radiating | |
JP2007115983A (en) | Wiring board | |
JP2002327166A (en) | Adhesive and electric device | |
JP2022083624A (en) | Silver-containing paste, and manufacturing method of bonded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16841375 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16841375 Country of ref document: EP Kind code of ref document: A1 |