WO2017033889A1 - 銀粉およびその製造方法、ならびに導電性ペースト - Google Patents
銀粉およびその製造方法、ならびに導電性ペースト Download PDFInfo
- Publication number
- WO2017033889A1 WO2017033889A1 PCT/JP2016/074383 JP2016074383W WO2017033889A1 WO 2017033889 A1 WO2017033889 A1 WO 2017033889A1 JP 2016074383 W JP2016074383 W JP 2016074383W WO 2017033889 A1 WO2017033889 A1 WO 2017033889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silver powder
- succinic anhydride
- succinic acid
- alkenyl succinic
- silver
- Prior art date
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 295
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- -1 alkenyl succinic anhydride Chemical compound 0.000 claims description 161
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 120
- 229940014800 succinic anhydride Drugs 0.000 claims description 119
- 239000001384 succinic acid Substances 0.000 claims description 76
- 229910052709 silver Inorganic materials 0.000 claims description 48
- 239000004332 silver Substances 0.000 claims description 48
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 39
- 239000003638 chemical reducing agent Substances 0.000 claims description 23
- 239000007864 aqueous solution Substances 0.000 claims description 20
- WVRNUXJQQFPNMN-VAWYXSNFSA-N 3-[(e)-dodec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCC\C=C\C1CC(=O)OC1=O WVRNUXJQQFPNMN-VAWYXSNFSA-N 0.000 claims description 17
- 238000004381 surface treatment Methods 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- FLISWPFVWWWNNP-BQYQJAHWSA-N dihydro-3-(1-octenyl)-2,5-furandione Chemical compound CCCCCC\C=C\C1CC(=O)OC1=O FLISWPFVWWWNNP-BQYQJAHWSA-N 0.000 claims description 13
- BNDWRWFZSMPKQP-UHFFFAOYSA-N 3-pentadec-1-enyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCCC=CC1CC(=O)OC1=O BNDWRWFZSMPKQP-UHFFFAOYSA-N 0.000 claims description 12
- URVNZJUYUMEJFZ-UHFFFAOYSA-N 3-tetradec-1-enyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCC=CC1CC(=O)OC1=O URVNZJUYUMEJFZ-UHFFFAOYSA-N 0.000 claims description 11
- GGQRKYMKYMRZTF-UHFFFAOYSA-N 2,2,3,3-tetrakis(prop-1-enyl)butanedioic acid Chemical compound CC=CC(C=CC)(C(O)=O)C(C=CC)(C=CC)C(O)=O GGQRKYMKYMRZTF-UHFFFAOYSA-N 0.000 claims description 8
- DXPLEDYRQHTBDJ-CCEZHUSRSA-N 2-[(E)-pentadec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-CCEZHUSRSA-N 0.000 claims description 8
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 claims description 8
- PFBBCIYIKJWDIN-BUHFOSPRSA-N 2-[(e)-tetradec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O PFBBCIYIKJWDIN-BUHFOSPRSA-N 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- KAYAKFYASWYOEB-UHFFFAOYSA-N 3-octadec-1-enyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCCCCCC=CC1CC(=O)OC1=O KAYAKFYASWYOEB-UHFFFAOYSA-N 0.000 claims description 5
- KCYQMQGPYWZZNJ-BQYQJAHWSA-N hydron;2-[(e)-oct-1-enyl]butanedioate Chemical compound CCCCCC\C=C\C(C(O)=O)CC(O)=O KCYQMQGPYWZZNJ-BQYQJAHWSA-N 0.000 claims description 5
- XACKAZKMZQZZDT-MDZDMXLPSA-N 2-[(e)-octadec-9-enyl]butanedioic acid Chemical compound CCCCCCCC\C=C\CCCCCCCCC(C(O)=O)CC(O)=O XACKAZKMZQZZDT-MDZDMXLPSA-N 0.000 claims description 4
- RSPWVGZWUBNLQU-FOCLMDBBSA-N 3-[(e)-hexadec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCCCCCC\C=C\C1CC(=O)OC1=O RSPWVGZWUBNLQU-FOCLMDBBSA-N 0.000 claims description 3
- AAHZZGHPCKJNNZ-UHFFFAOYSA-N Hexadecenylsuccinicacid Chemical compound CCCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O AAHZZGHPCKJNNZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 abstract description 4
- 150000008064 anhydrides Chemical class 0.000 abstract 1
- 238000004321 preservation Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 41
- 238000000034 method Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 22
- 239000000126 substance Substances 0.000 description 19
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 17
- 238000009826 distribution Methods 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 13
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 12
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 12
- 230000001186 cumulative effect Effects 0.000 description 12
- 239000012756 surface treatment agent Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- 230000002776 aggregation Effects 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 235000021355 Stearic acid Nutrition 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 9
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 239000008117 stearic acid Substances 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 238000004220 aggregation Methods 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 8
- 238000007639 printing Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 7
- 238000007650 screen-printing Methods 0.000 description 7
- 229910001961 silver nitrate Inorganic materials 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- 235000021314 Palmitic acid Nutrition 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- UODXCYZDMHPIJE-UHFFFAOYSA-N menthanol Chemical compound CC1CCC(C(C)(C)O)CC1 UODXCYZDMHPIJE-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 229960002317 succinimide Drugs 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KPAPHODVWOVUJL-UHFFFAOYSA-N 1-benzofuran;1h-indene Chemical compound C1=CC=C2CC=CC2=C1.C1=CC=C2OC=CC2=C1 KPAPHODVWOVUJL-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- HBNHCGDYYBMKJN-UHFFFAOYSA-N 2-(4-methylcyclohexyl)propan-2-yl acetate Chemical compound CC1CCC(C(C)(C)OC(C)=O)CC1 HBNHCGDYYBMKJN-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical class CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 101100261173 Arabidopsis thaliana TPS7 gene Proteins 0.000 description 1
- 241000557876 Centaurea cineraria Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- GLQOALGKMKUSBF-UHFFFAOYSA-N [amino(diphenyl)silyl]benzene Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(N)C1=CC=CC=C1 GLQOALGKMKUSBF-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940101006 anhydrous sodium sulfite Drugs 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 229960004279 formaldehyde Drugs 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
Definitions
- the present invention relates to silver powder, a method for producing the same, and a conductive paste.
- a conductive paste in which silver powder is dispersed in an organic component has been used to form electrodes and circuits such as electronic parts, electromagnetic wave shielding films, electromagnetic wave shielding materials, and the like.
- a silver powder having a carboxylic acid such as stearic acid or oleic acid on its surface has been proposed (for example, patents). Reference 1 and 2 etc.).
- the conductivity of the conductive film formed using a conductive paste containing silver powder having carboxylic acid such as stearic acid on the surface was not sufficient. Moreover, when the said succinic acid was used, it turned out that there exists a problem that the silver powder which has the said succinic acid on the surface does not fully adhere to the silver powder surface, or aggregates, and a lump is generated with time.
- the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention is capable of forming a conductive film having excellent conductivity, a silver powder having good storage stability without agglomeration and lump over time, a method for producing silver powder, and a conductive film using the silver powder. It aims at providing a sex paste.
- Means for solving the problems are as follows. That is, ⁇ 1> A silver powder having alkenyl succinic anhydride and / or alkenyl succinic acid on the surface. ⁇ 2> The alkenyl succinic anhydride and / or alkenyl succinic acid is tetrapropenyl succinic anhydride, tetradecenyl succinic anhydride, dodecenyl succinic anhydride, pentadecenyl succinic anhydride, octenyl succinic anhydride , Hexadecenyl succinic anhydride, octadecenyl succinic anhydride, tetrapropenyl succinic acid, tetradecenyl succinic acid, dodecenyl succinic acid, pentadecenyl succinic acid, octenyl succinic acid, hexadecenyl succinic acid,
- alkenyl succinic anhydride and / or alkenyl succinic acid having more than 12 carbon atoms in the molecule on the surface.
- the alkenyl succinic anhydride and / or alkenyl succinic acid having more than 12 carbon atoms in the molecule is tetrapropenyl succinic anhydride, tetradecenyl succinic anhydride, dodecenyl succinic anhydride, pentadecenyl.
- the silver powder according to ⁇ 3> which is at least one selected from succinic anhydride, tetrapropenyl succinic acid, tetradecenyl succinic acid, dodecenyl succinic acid, and pentadecenyl succinic acid.
- ⁇ 5> A silver powder characterized in that at least alkenyl succinic anhydride is contained in a component desorbed from the surface of the silver powder by heating the silver powder at 300 ° C. and analyzing it using a gas chromatography mass spectrometer. .
- ⁇ 6> A conductive paste comprising the silver powder according to any one of ⁇ 1> to ⁇ 5>.
- a method for producing silver powder comprising at least a step of performing a surface treatment using alkenyl succinic anhydride.
- the method for producing silver powder according to ⁇ 7> wherein the reducing agent is added to an aqueous solution containing silver to reduce and precipitate the silver powder, and then the surface treatment is performed by adding alkenyl succinic anhydride.
- a silver powder production method comprising at least a step of performing a surface treatment using alkenyl succinic acid.
- a method for producing silver powder characterized in that it comprises at least a step of adding a reducing agent to an aqueous solution containing silver to reduce and precipitate silver powder, followed by surface treatment by adding a metal salt of alkenyl succinic acid. is there.
- a conductive film having excellent conductivity can be formed, and production of silver powder and silver powder having good storage stability without agglomeration or lump over time A method and a conductive paste using the silver powder can be provided.
- FIG. 1 is an SEM photograph (10,000 times) of the silver powder produced in Example 1.
- FIG. FIG. 2 is an SEM photograph (10,000 times) of the silver powder produced in Example 2.
- FIG. 3 is an SEM photograph (10,000 times) of the silver powder produced in Comparative Example 1.
- 4 is a SEM photograph (10,000 times) of the silver powder produced in Comparative Example 2.
- FIG. 5 is a GC-MS analysis profile using a silver powder pyrolyzer in Example 1.
- the silver powder of the present invention has alkenyl succinic anhydride and / or alkenyl succinic acid on the surface, and further contains other components as necessary.
- the silver powder of the present invention has alkenyl succinic anhydride and / or alkenyl succinic acid having more than 12 carbon atoms in the molecule on the surface, and further contains other components as necessary.
- at least alkenyl succinic anhydride is contained in the component desorbed from the surface of the silver powder by heating the silver powder at 300 ° C. and analyzing it using a gas chromatography mass spectrometer.
- alkenyl succinic anhydride and / or alkenyl succinic acid on the surface of silver powder means that alkenyl succinic anhydride and / or alkenyl succinic acid is adsorbed or coated on the surface of silver powder by some method. It is meant to include the attached state, and it is sufficient that at least part of the surface of the silver powder has alkenyl succinic anhydride or alkenyl succinic acid, and the entire surface of the silver powder has alkenyl succinic anhydride and / or alkenyl. Succinic acid may be included, or a part of the surface of the silver powder may have alkenyl succinic anhydride and / or alkenyl succinic acid. The silver powder may have alkenyl succinic anhydride and / or alkenyl succinic acid.
- the silver powder is produced by a wet reduction method and has alkenyl succinic anhydride and / or alkenyl succinic acid on the surface, as will be described in detail in the silver powder production method described later.
- the alkenyl succinic anhydride is a succinic anhydride in which one of hydrogen atoms is substituted with an alkenyl group, and has a structure different from that of succinic anhydride (succinic anhydride).
- the succinic anhydride is an intramolecular dehydration condensate of succinic acid. When contacted with water, it is hydrolyzed to return to succinic acid and reacts with ammonia to form succinimide.
- the alkenyl succinic anhydride is a succinic anhydride having an alkenyl group (—C n H 2n-1 ) and is different from an alkyl group (—C n H 2n + 1 ) -substituted succinic acid. Since the succinic anhydride and the alkenyl succinic anhydride have different amounts of adhesion to the surface of the silver powder, there is a difference in the storage stability (aggregation and generation of lumps over time) of the silver powder.
- the alkenyl succinic anhydride is hydrolyzed to alkenyl succinic acid when contacted with water.
- succinic anhydride adheres to the surface of the silver powder, it becomes hydrophilic, and when the alkenyl succinic anhydride and / or alkenyl succinic acid adheres to the surface of the silver powder, it becomes hydrophobic.
- the alkenyl succinic anhydride is preferably a compound represented by the following general formula (1).
- R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 22 carbon atoms.
- R 1 is preferably a linear alkyl group having 5 to 13 carbon atoms, and more preferably 7 to 11 carbon atoms.
- R 2 is preferably a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
- the position of the double bond of an alkenyl group is not restricted to the said General formula (1), You may be a different position.
- alkenyl succinic anhydride a suitably synthesized product or a commercially available product may be used.
- the commercially available products include DSA and PDSA-DA manufactured by Sanyo Chemical Industries, Ltd .; Jamaicacid DDSA and Ricacid OSA manufactured by Shin Nippon Chemical Co., Ltd .; and products manufactured by Tokyo Chemical Industry Co., Ltd.
- the synthesis method for example, it can be synthesized by heating and stirring an olefin and maleic anhydride.
- the olefin include 1-octene, 1-decene, 1-dodecene, 1-tetradecene, internal isomerized olefins thereof, and mixtures thereof.
- the internal isomerized olefin is not an ⁇ -olefin (an olefin in which the position of the double bond is at the position connecting the 1st and 2nd carbons of the olefin), but the double bond is more carbon chain than the ⁇ -position by some method.
- alkenyl succinic anhydride those structural isomers may be sufficient, and the mixture of the branched chain isomer of an aliphatic chain may be sufficient.
- alkenyl succinic anhydride and / or alkenyl succinic acid examples include tetrapropenyl succinic anhydride, tetradecenyl succinic anhydride, dodecenyl succinic anhydride, pentadecenyl succinic anhydride, and octenyl succinic anhydride.
- numerator of the said alkenyl succinic anhydride and / or alkenyl succinic acid is larger than 12 from a viewpoint of storage stability and thermal decomposability.
- alkenyl succinic anhydride and / or alkenyl succinic acid having more than 12 carbon atoms in the molecule include tetrapropenyl succinic anhydride, tetradecenyl succinic anhydride, dodecenyl succinic anhydride, pentadecenyl.
- Examples thereof include succinic anhydride, tetrapropenyl succinic acid, tetradecenyl succinic acid, dodecenyl succinic acid, pentadecenyl succinic acid and the like.
- the carbon number in the molecule of the alkenyl succinic anhydride and / or alkenyl succinic acid is 12 or less, the storage stability is deteriorated and aggregation proceeds from the viewpoint of adsorption to the silver powder surface and steric hindrance.
- it was found in the process of making the present invention that although the storage stability is excellent as the number of carbon atoms in the fatty acid molecule increases, the thermal decomposition temperature rises and affects the sinterability.
- TPSA Tetrapropenyl succinic anhydride
- TDSA Tetradecenyl succinic anhydride
- DSA Dodecenyl succinic anhydride
- the alkenyl succinic acid can be easily synthesized by bringing the alkenyl succinic anhydride into contact with water for hydrolysis.
- the hydrolysis method is not particularly limited and may be appropriately selected depending on the purpose. For example, it may be mixed with pure water, mixed with an acidic or alkaline aqueous solution, alcohol, You may mix in the mixture of water-soluble organic solvents, such as acetone, and water. An emulsion in which the alkenyl succinic anhydride is dispersed in water may be used.
- the alkenyl succinic acid may be used as a metal salt.
- the metal salt of the alkenyl succinic acid may be appropriately synthesized by reacting an alkali metal or alkaline earth metal hydroxide with the alkenyl succinic acid and / or alkenyl succinic acid, or a commercially available product. May be.
- Examples of the commercially available products include products such as Latemul ASK (alkenyl succinic acid potassium salt) manufactured by Kao Corporation.
- alkenyl succinic anhydride and / or alkenyl succinic acid adheres to the surface of the silver powder indicates that, for example, silver powder having alkenyl succinic anhydride and / or alkenyl succinic acid on the surface is pyrolyzer (Frontier Lab Co., Ltd.). It can be desorbed from the surface of the silver powder by heating at 300 ° C. using a company-made EGA / Py3030D) and analyzed using a GC-MS (gas chromatograph mass spectrometer) or the like.
- the alkenyl succinic acid on the surface of the silver powder undergoes intramolecular dehydration condensation when heated, and is detected as an alkenyl succinic anhydride.
- the adhesion amount of the alkenyl succinic anhydride and / or alkenyl succinic acid to the surface of the silver powder is preferably 2.0% by mass or less, and is 0.01% by mass or more and 1.0% by mass or less with respect to the mass of silver. More preferably, it is 0.01 mass% or more and 0.8 mass% or less.
- a conductive material comprising a conductive paste containing silver powder having alkenyl succinic anhydride and / or alkenyl succinic acid on the surface
- the volume resistivity of the film may deteriorate.
- the adhesion amount of the alkenyl succinic anhydride and / or alkenyl succinic acid to the surface of the silver powder creates a calibration curve.
- the alkenyl succinic anhydride and / or alkenyl succinic acid on the surface of the silver powder is converted into a pyrolyzer (Frontier Lab. It can be extracted by using EGA / Py3030D) or an organic solvent and analyzed by GC-MS (Gas Chromatograph Mass Spectrometer).
- the component adhering to the surface of the silver powder is not limited to alkenyl succinic anhydride and / or alkenyl succinic acid, and may contain other components.
- the other components are not particularly limited and may be appropriately selected depending on the purpose.
- alkenyl succinic anhydride and / or fatty acid or fatty acid salt other than alkenyl succinic acid surfactant, organometallic compound , Chelating agents, polymer dispersing agents and the like.
- the method for producing silver powder of the present invention includes at least a step of performing a surface treatment using alkenyl succinic anhydride, and preferably, after reducing the silver powder to reduce precipitation by adding a reducing agent to an aqueous solution containing silver, the alkenyl succinic acid is added.
- the surface treatment is performed by adding an acid anhydride, a silver ion dispersion liquid preparation step, a silver reduction step, an alkenyl succinic anhydride surface treatment step, a silver dust washing step, It is preferable to include a drying step, and further include other steps as necessary.
- the method for producing silver powder of the present invention may include at least a step of performing a surface treatment by adding a reducing agent to an aqueous solution containing silver to reduce and precipitate the silver powder and then adding a metal salt of alkenyl succinic acid. it can.
- the step of preparing the silver ion dispersion is a step of preparing the silver ion dispersion.
- an aqueous reaction system containing silver ions an aqueous solution or slurry containing silver nitrate, a silver complex or a silver intermediate can be used.
- the aqueous solution containing the silver complex can be produced by adding aqueous ammonia or ammonium salt to an aqueous silver nitrate solution or a silver oxide suspension.
- a silver ammine complex aqueous solution obtained by adding ammonia water to a silver nitrate aqueous solution so that the silver powder has an appropriate particle size and a spherical shape. Since the coordination number of ammonia in the silver ammine complex is 2, 2 mol or more of ammonia is added per 1 mol of silver. Further, if the amount of ammonia added is too large, the complex becomes too stable and the reduction is difficult to proceed. Therefore, the amount of ammonia added is preferably 8 mol or less per mol of silver.
- a pH adjuster to the aqueous reaction system containing a silver ion.
- a general acid and a base can be used, For example, nitric acid, sodium hydroxide, etc. are mentioned.
- the silver reduction step is a step of reducing and precipitating silver with a reducing agent.
- the reducing agent include ascorbic acid, sulfite, alkanolamine, hydrogen peroxide, formic acid, ammonium formate, sodium formate, glyoxal, tartaric acid, sodium hypophosphite, sodium borohydride, hydroquinone, hydrazine, and hydrazine compounds. , Pyrogallol, glucose, gallic acid, formalin, anhydrous sodium sulfite, Rongalite and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, at least one selected from ascorbic acid, alkanolamine, sodium borohydride, hydroquinone, hydrazine and formalin is preferable, and hydrazine and formalin are particularly preferable.
- the content of the reducing agent is preferably 1 equivalent or more with respect to silver in order to increase the reaction yield of silver. Moreover, when using a reducing agent with weak reducing power, 2 equivalents or more are preferable with respect to silver, and 10 equivalents or more and 20 equivalents or less are more preferable.
- the addition method of the said reducing agent in order to prevent aggregation of silver powder, it is preferable to add at a speed
- the addition time of the reducing agent is as short as possible.
- the reducing agent may be added at a rate of 100 equivalents / minute or more, and the reaction is completed in a shorter time during the reduction. It is preferable to stir the reaction solution.
- the liquid temperature during the reduction reaction is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 15 ° C. or higher and 40 ° C. or lower.
- the spherical shape means that when silver powder is observed with a scanning electron microscope (SEM), the particle shape is spherical or substantially spherical, and the sphericity of 100 particles (sphericity: when observing particles with a SEM photograph)
- the silver powder having a ratio of (longest diameter part) / (shortest diameter part)) of 1.5 or less.
- the indefinite shape refers to a silver powder having a particle shape other than the spherical shape and having no specific particle shape characteristics such as a columnar shape and a prismatic shape when the silver powder is observed with an SEM photograph.
- the surface treatment step of alkenyl succinic anhydride is a step of surface treating silver powder with alkenyl succinic anhydride.
- a surface treatment may be performed using alkenyl succinic acid obtained by hydrolyzing the alkenyl succinic anhydride. Both alkenyl succinic anhydride and alkenyl succinic acid may be added.
- the alkenyl succinic anhydride may be added as an emulsion dispersed in water, or the alkenyl succinic acid may be added as a metal salt.
- the alkenyl succinic anhydride and / or alkenyl succinic acid can adhere to the surface of the silver powder by adding the alkenyl succinic anhydride.
- the surface treatment step is not limited to the above, and it may be added so that alkenyl succinic anhydride and / or alkenyl succinic acid is present in the aqueous solution during reduction precipitation, but it may be added after silver powder is reduced and precipitated. More preferred.
- the addition amount of the alkenyl succinic anhydride and / or alkenyl succinic acid is preferably 0.05% by mass or more and 2.0% by mass or less, and 0.1% by mass or more and 1.0% by mass with respect to the mass of the silver. The following is more preferable, and 0.1% by mass or more and 0.8% by mass or less is more preferable.
- alkenyl succinimide may be partially formed as a derivative of alkenyl succinic anhydride as a result.
- the silver powder collection and washing step is a step of collecting and washing the obtained silver powder. Since the obtained silver powder contains impurities, it is preferably washed. As a cleaning solvent used for the cleaning, pure water is preferable. There is no restriction
- the end point of the cleaning can be determined using the electrical conductivity of the water after the cleaning, and it is preferable to perform the cleaning until the electrical conductivity is 0.5 mS / m or less.
- the drying process of the silver powder is a process of drying the silver powder after the washing. Since the silver powder after washing contains a lot of moisture, it is necessary to remove the moisture before use. As the method for removing moisture, vacuum drying is preferable.
- the drying temperature is preferably 100 ° C. or lower. If too much heat is applied, silver powders are sintered at the time of drying, which is not preferable.
- the obtained silver powder can perform other processes, such as a dry crushing process and a classification process, as needed.
- the silver powder is put into an apparatus that can mechanically fluidize the silver powder, and the silver powder is mechanically collided with each other, whereby the surface of the silver powder is uneven or angular.
- the silver powder having alkenyl succinic anhydride and / or alkenyl succinic acid on the surface obtained by the method for producing silver powder of the present invention preferably has the following characteristics.
- the BET specific surface area of the silver powder can be measured by a BET one-point method by nitrogen adsorption using Macsorb HM-model 1210 (manufactured by MOUNTECH). In the measurement of the BET specific surface area, the deaeration conditions before the measurement were 60 ° C. and 10 minutes.
- BET specific surface area of the silver powder is preferably from 0.1 m 2 / g or more 5.0 m 2 / g or less, 0.3 m 2 / g or more 2.0 m 2 / g or less is more preferable. When the BET specific surface area is less than 0.1 m 2 / g, the size of the silver powder increases, and it may be difficult to draw fine wiring.
- the conductive paste When the BET specific surface area exceeds 5.0 m 2 / g, the conductive paste In this case, since the viscosity becomes too high, it is necessary to dilute and use the conductive paste. Since the silver concentration in the conductive paste is lowered, the wiring may be disconnected.
- the cumulative 50% particle size (D 50 ) in the volume-based particle size distribution measured by the laser diffraction particle size distribution measurement method of the silver powder is preferably 0.05 ⁇ m or more and 6.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 4.0 ⁇ m or less. preferable.
- 90% cumulative particle diameter (D 90) and the ratio of the D 50 for cumulative 10% particle diameter (D 10) [(D 90 -D 10) / D 50] is preferably 3.0 or less, 2.0 or less Is more preferable.
- the particle size distribution of the silver powder is too large, drawing of fine wiring may be difficult, and if it is too small, it is difficult to increase the silver concentration in the conductive paste. Moreover, it is preferable that the peak width of the particle size distribution is narrow, the variation of the particle size is small, and uniform silver powder.
- the particle size distribution of the silver powder can be measured by wet laser diffraction type particle size distribution measurement. That is, wet laser diffraction type particle size distribution measurement was performed by adding 0.1 g of silver powder to 40 mL of isopropyl alcohol and dispersing for 2 minutes with an ultrasonic homogenizer with a tip diameter of 20 mm. Measured using MICROTORAC MT3300EXII manufactured by company. Graph the measurement results and determine the frequency and accumulation of the particle size distribution of the silver powder. The cumulative 10% particle size is expressed as D 10 , the cumulative 50% particle size is expressed as D 50 , and the cumulative 90% particle size is expressed as D 90 .
- the conductive paste of the present invention contains the silver powder of the present invention and a polymer, and further contains other components as necessary. There is no restriction
- the polymer is not particularly limited and may be appropriately selected depending on the intended purpose.
- examples thereof include cellulose derivatives such as methyl cellulose and ethyl cellulose, acrylic resins, alkyd resins, polypropylene resins, polyurethane resins, rosin resins, terpene resins, phenols.
- Resin aliphatic petroleum resin, acrylic ester resin, xylene resin, coumarone indene resin, styrene resin, dicyclopentadiene resin, polybutene resin, polyether resin, urea resin, melamine resin, vinyl acetate resin, polyisobutyl resin, olefin
- examples thereof include thermoplastic elastomers (TPO) and epoxy resins. These may be used individually by 1 type and may use 2 or more types together. Among these, a cellulose derivative and an epoxy resin are preferable. There is no restriction
- the other components include a solvent, a surfactant, a glass frit, a dispersant, and a viscosity modifier.
- the solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
- examples thereof include ethyl carbitol, butyl carbitol, ethyl carbitol acetate, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, and diethylene glycol mono-n-ethyl ether acetate. These may be used individually by 1 type and may use 2 or more types together.
- the said silver powder of this invention can be produced by mixing using an ultrasonic dispersion, a disper, a three-roll mill, a ball mill, a bead mill, a biaxial kneader, a self-revolving stirrer and the like.
- the conductive paste of the present invention can be printed on a substrate by, for example, screen printing, offset printing, photolithography, or the like.
- the viscosity of the conductive paste is preferably 10 Pa ⁇ s or more and 1,000 Pa ⁇ s or less at 25 ° C.
- the viscosity of the conductive paste can be adjusted by the content of silver powder, the addition of a viscosity modifier and the type of solvent.
- the viscosity of the conductive paste can be measured, for example, using a viscometer 5XHBDV-IIIUC manufactured by BROOKFIELD at a cone spindle CP-52 and a paste temperature of 25 ° C.
- the volume resistivity of the conductive film using the conductive paste is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, and 5 ⁇ 10 ⁇ 5 ⁇ . More preferably, it is not more than cm, and more preferably not more than 1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
- the volume resistivity is 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, a conductive film having an extremely low volume resistivity can be realized.
- the conductivity of the conductive film may be insufficient.
- the thickness can be measured by calculating the thickness of the conductive film ⁇ the width of the conductive film ⁇ the length of the conductive film.
- the conductive paste of the present invention containing the silver powder of the present invention is directly on various substrates such as silicon wafers for solar cells, films for touch panels, glass for EL elements, or further on the substrates as necessary. It can apply
- the conductive film obtained using the conductive paste of the present invention is, for example, a collector electrode of a solar battery cell, an external electrode of a chip-type electronic component, an RFID, an electromagnetic wave shield, a vibrator adhesive, a membrane switch, electroluminescence, etc. It is suitably used for electrode or electrical wiring applications.
- Silver powder was produced as follows. Using the obtained silver powder, a conductive paste was prepared. Moreover, the said electrically conductive paste was apply
- the BET specific surface area of the silver powder was Macsorb HM-model 1210 (manufactured by MOUNTECH). He: 70%, N 2 : 30% carrier gas was used, 3 g of silver powder was put into the cell, and deaeration was performed at 60 ° C. for 10 minutes. After the measurement, measurement was performed by the BET one-point method.
- the particle size distribution of the silver powder is 2 by adding 0.1 g of silver powder to 40 mL of isopropyl alcohol using a laser diffraction / scattering particle size distribution measuring apparatus (MICROTORAC MT3300EXII, manufactured by Microtrack Bell Co., Ltd.) and using an ultrasonic homogenizer with a chip diameter of 20 mm. Samples were prepared by dispersing for minutes, and the particle size was measured in total reflection mode. Based on the volume-based cumulative distribution obtained by the measurement, the values of cumulative 10% particle size (D 10 ), cumulative 50% particle size (D 50 ), and cumulative 90% particle size (D 90 ) were determined.
- a laser diffraction / scattering particle size distribution measuring apparatus MICROTORAC MT3300EXII, manufactured by Microtrack Bell Co., Ltd.
- Example 1 Provide of silver powder- 3,600 g of a silver nitrate solution containing 52 g of silver was prepared, 160 g of a 28 mass ammonia aqueous solution (manufactured by Junsei Chemical Co., Ltd., reagent grade) was added to the silver nitrate solution, and 4 g of a 20 mass% sodium hydroxide aqueous solution was added. An aqueous reaction system containing silver ions was prepared, and the liquid temperature was 28 ° C.
- a 28 mass ammonia aqueous solution manufactured by Junsei Chemical Co., Ltd., reagent grade
- aqueous reaction system containing silver ions To the aqueous reaction system containing silver ions, 240 g of a 37 mass% formalin aqueous solution (manufactured by Nippon Kasei Co., Ltd.) was added as a reducing agent and stirred sufficiently to obtain a slurry containing silver particles. Next, 0.1 g of tetrapropenyl succinic anhydride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added as a surface treating agent to the slurry containing the silver particles, sufficiently agitated, and then aged. The aged slurry was filtered, washed with water, dried and crushed to obtain the silver powder of Example 1.
- formalin aqueous solution manufactured by Nippon Kasei Co., Ltd.
- Table 1 shows the measurement results of the BET specific surface area of the obtained silver powder, the tap density of the silver powder, the loss on ignition of the silver powder, and the particle size distribution (D 10 , D 50 , and D 90 ) of the silver powder.
- the tetrapropenyl succinic anhydride was detected, and it was found that tetrapropenyl succinic anhydride and / or tetrapropenyl succinic acid was adhered to the surface of the silver powder.
- FIG. 5 shows a profile extracted with a molecular weight / charge ratio (m / z) of 266.
- ⁇ Viscosity of conductive paste> The viscosity of the obtained conductive paste was measured using a viscometer 5XHBDV-IIIUC manufactured by BROOKFIELD at a cone spindle CP-52 and a paste temperature of 25 ° C. And 5 minutes at 1 rpm (shear rate a time of 2 sec -1), values were measured one minute at 5 rpm (shear rate 10 sec -1). The viscosity after 5 minutes of 1 rpm (shear rate 2 sec ⁇ 1 ) was adjusted to 150 Pa ⁇ s ⁇ 30 Pa ⁇ s by adding butyl carbitol acetate and diluting.
- a film of the produced conductive paste was formed on the Si substrate by screen printing.
- Screen printing conditions were as follows.
- -Printing device MT-320T manufactured by Microtech Plate: line width 500 ⁇ m, routing 37.5 mm, 250 mesh, wire diameter 23 ⁇ m ⁇
- Printing conditions Squeegee pressure 180Pa, printing speed 80mm / s, clearance 1.3mm
- the obtained film was heat-treated at 150 ° C. for 10 minutes using an air circulation dryer. Next, firing was performed at 820 ° C. for 32 seconds using a high-speed firing furnace. Thus, a conductive film was produced. Next, with respect to the obtained conductive film, the average thickness was measured as follows, and the volume resistivity was determined as follows. The results are shown in Table 3.
- ⁇ Average thickness of conductive film> Using the surface roughness meter (SE-30D, manufactured by Kosaka Laboratory Ltd.), measure the level difference between the part where the film is not printed and the part of the conductive film on the alumina substrate. Thus, the average thickness of the conductive film was measured.
- ⁇ Volume resistivity of conductive film> The resistance value at the position of the length (interval) of each conductive film was measured using a digital multimeter (manufactured by ADVANTEST, R6551). The volume of the conductive film was determined from the size (average thickness, width, length) of each conductive film, and the volume resistivity was determined from this volume and the measured resistance value.
- Example 2 is the same as Example 1 except that 0.1 g of tetrapropenyl succinic anhydride as a surface treating agent is changed to 0.1 g of tetradecenyl succinic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.). Similarly, silver powder and conductive paste were prepared and evaluated in the same manner. The results are shown in Tables 1 to 3. The SEM photograph (10,000 times) of the obtained silver powder of Example 2 is shown in FIG.
- Example 3 In Example 1, except that 0.1 g of tetrapropenyl succinic anhydride as a surface treatment agent was changed to 0.1 g of pentadecenyl succinic anhydride (manufactured by Sanyo Chemical Industries, Ltd., PDSA-DA), In the same manner as in Example 1, silver powder and a conductive paste were prepared and evaluated in the same manner. The results are shown in Tables 1 to 3. As a result of GC-MS analysis of silver powder, pentadecenyl succinic anhydride was detected, and it was found that pentadecenyl succinic anhydride and / or pentadecenyl succinic acid was attached to the silver powder surface. It was. The ignition loss of silver powder was 0.72%.
- Example 4 In Example 1, 0.1 g of tetrapropenyl succinic anhydride as a surface treating agent was changed to 0.1 g of dodecenyl succinic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Spaincid DDSA). Then, silver powder and conductive paste were prepared and evaluated in the same manner. The results are shown in Tables 1 to 3. As a result of GC-MS analysis of the silver powder, dodecenyl succinic anhydride was detected, and it was found that dodecenyl succinic anhydride and / or dodecenyl succinic acid was adhered to the surface of the silver powder. Moreover, the ignition loss of silver powder was 0.62%.
- Example 5 In Example 1, 0.1 g of tetrapropenyl succinic anhydride as the surface treatment agent was changed to 0.1 g of octenyl succinic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Spaincid OSA). Then, silver powder and conductive paste were prepared and evaluated in the same manner. The results are shown in Tables 1 to 3. As a result of GC-MS analysis of the silver powder, octenyl succinic anhydride was detected, and it was found that octenyl succinic anhydride and / or octenyl succinic acid was adhered to the surface of the silver powder. The ignition loss of silver powder was 0.57%.
- Example 1 (Comparative Example 1) In Example 1, except that 0.1 g of tetrapropenyl succinic anhydride as a surface treatment agent was changed to 0.1 g of succinic acid (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade), the same as in Example 1. Then, silver powder and conductive paste were prepared and evaluated in the same manner. The results are shown in Tables 1 to 3. The SEM photograph (10,000 times) of the obtained silver powder of Comparative Example 1 is shown in FIG. As a result of GC-MS analysis of silver powder, succinic acid was detected, and it was found that succinic acid was adhered to the surface of silver powder. The ignition loss of silver powder was 0.56%.
- Example 2 In Example 1, except that 0.1 g of tetrapropenyl succinic anhydride as a surface treatment agent was changed to 0.1 g of stearic acid (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade), the same as in Example 1. Then, silver powder and conductive paste were prepared and evaluated in the same manner. The results are shown in Tables 1 to 3. An SEM photograph (10,000 times) of the obtained silver powder of Comparative Example 2 is shown in FIG. As a result of GC-MS analysis of the silver powder, stearic acid was detected, and it was found that the stearic acid was attached to the surface of the silver powder. Moreover, the ignition loss of silver powder was 0.67%.
- Example 3 (Comparative Example 3)
- 0.1 g of tetrapropenyl succinic anhydride as a surface treatment agent was changed to 0.1 g of palmitic acid (made by Wako Pure Chemical Industries, Ltd., reagent grade), and the same as in Example 1.
- silver powder and conductive paste were prepared and evaluated in the same manner. The results are shown in Tables 1 to 3.
- palmitic acid was detected, and it was found that palmitic acid was attached to the surface of the silver powder.
- the ignition loss of silver powder was 0.75%.
- E indicates that the next numerical value is a “power index” with 10 as the base, and is an exponential function with 10 as the base. Indicates that the numerical value represented is multiplied by the numerical value before “E”. For example, “1.0E-06” indicates “1.0 ⁇ 10 ⁇ 6 ”.
- alkenyl succinic anhydride and / or alkenyl succinic acid is preferably adsorbed directly on the surface of silver.
- the silver powder of Example 1 was mixed with toluene and the presence or absence of the organic component eluted in toluene was investigated, alkenyl succinic anhydride and / or alkenyl succinic acid were not detected.
- the alkenyl succinic anhydride was detected by GC-MS using a pyrolyzer for the silver powder after the toluene treatment, the adsorption of silver in the silver powder of this example is not separated by toluene, but is not separated if heated. It turned out to be as strong as possible. Further, the silver powder has undergone a washing step, and alkenyl succinic anhydride and / or alkenyl succinic acid not adsorbed with silver is removed by washing water. When added at the time of paste production, it is considered that most of the alkenyl succinic anhydride and / or alkenyl succinic acid not adsorbed with silver is contained in the conductive paste. .
- Example 6 Prepare 3,200 g of silver nitrate solution containing 44 g of silver, add 100 g of 28 mass% ammonia aqueous solution (manufactured by Junsei Chemical Co., Ltd., reagent grade) to the silver nitrate solution, and add 16 g of 20 mass% sodium hydroxide aqueous solution. An aqueous reaction system containing silver ions was prepared, and the liquid temperature was 28 ° C.
- Table 4 shows the measurement results of the BET specific surface area of the obtained silver powder, the tap density of the silver powder, the loss on ignition of the silver powder, and the particle size distribution (D 10 , D 50 , and D 90 ) of the silver powder.
- tetrapropenyl succinic anhydride was detected. Therefore, it was found that tetrapropenyl succinic anhydride and / or tetrapropenyl succinic acid was adhered to the silver powder surface.
- the ignition loss of silver powder was 0.21%.
- Example 7 In Example 6, except that 0.17 g of tetrapropenyl succinic anhydride as a surface treatment agent was changed to 0.17 g of pentadecenyl succinic anhydride (manufactured by Sanyo Chemical Industries, Ltd., PDSA-DA), Silver powder was prepared in the same manner as in Example 6 and evaluated in the same manner. The results are shown in Table 4. As a result of GC-MS analysis of the silver powder, pentadecenyl succinic anhydride was detected. Therefore, it was found that pentadecenyl succinic anhydride and / or pentadecenyl succinic acid was adhered to the silver powder surface. Moreover, the ignition loss of silver powder was 0.27%.
- Example 8 In Example 6, except that 0.17 g of tetrapropenyl succinic anhydride as a surface treatment agent was changed to 0.17 g of dodecenyl succinic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Jamaicacid DDSA). A silver powder was prepared and evaluated in the same manner. The results are shown in Table 4. As a result of GC-MS analysis of the silver powder, dodecenyl succinic anhydride was detected. Therefore, it was found that dodecenyl succinic anhydride and / or dodecenyl succinic acid was adhered to the silver powder surface. The ignition loss of silver powder was 0.25%.
- Example 9 In Example 6, 0.17 g of tetrapropenyl succinic anhydride as the surface treatment agent was changed to 0.17 g of octenyl succinic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Spaincid OSA), and was the same as Example 6. A silver powder was prepared and evaluated in the same manner. The results are shown in Table 4. As a result of GC-MS analysis of the silver powder, octenyl succinic anhydride was detected. Therefore, it was found that octenyl succinic anhydride and / or octenyl succinic acid was adhered to the silver powder surface. The ignition loss of silver powder was 0.20%.
- Example 4 (Comparative Example 4) In Example 6, except that 0.17 g of tetrapropenyl succinic anhydride as a surface treating agent was changed to 0.17 g of succinic acid (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade), the same as Example 6. Silver powder was prepared and evaluated in the same manner. The results are shown in Table 4. As a result of GC-MS analysis of silver powder, succinic acid was detected, and it was found that succinic acid was adhered to the surface of silver powder. The ignition loss of silver powder was 0.06%.
- Example 5 (Comparative Example 5) In Example 6, except that 0.17 g of tetrapropenyl succinic anhydride as a surface treatment agent was changed to 0.17 g of stearic acid (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade), the same as in Example 6. Silver powder was prepared and evaluated in the same manner. The results are shown in Table 4. As a result of GC-MS analysis of the silver powder, stearic acid was detected, and it was found that the stearic acid was attached to the surface of the silver powder. The ignition loss of silver powder was 0.42%.
- Example 9 the cumulative 50% particle size (D 50 ) of the silver powder was larger and coarser due to aggregation than in Examples 6-8. Unlike Example 5, when the reducing agent is hydrazine and the silver powder has a small particle size, aggregation is considered to have occurred immediately. It has been found that octenyl succinic anhydride having 12 carbon atoms may be undesirable depending on the silver powder.
- a conductive paste was prepared as follows, and the viscosity of the conductive paste, the average thickness of the conductive film, The volume resistivity of the conductive film was evaluated. It should be noted that the viscosity was not adjusted to be in a specific range as in Examples 1 to 5 and Comparative Examples 1 to 3, but for Examples 6 to 8 and Comparative Examples 4 and 5, the viscosity was determined in the conductive paste having the same composition. The value was evaluated including.
- Viscosity of conductive paste The viscosity of the obtained conductive paste was measured using a viscometer 5XHBDV-IIIUC manufactured by BROOKFIELD at a cone spindle CP-52 and a paste temperature of 25 ° C. And 5 minutes at 1 rpm (shear rate a time of 2 sec -1), values were measured one minute at 5 rpm (shear rate 10 sec -1). The viscosity measurement results are shown in Table 5.
- a film of the produced conductive paste was formed on the Si substrate by screen printing.
- Screen printing conditions were as follows.
- -Printing device MT-320T manufactured by Microtech Plate: line width 500 ⁇ m, routing 37.5 mm, 250 mesh, wire diameter 23 ⁇ m ⁇
- Printing conditions Squeegee pressure 180Pa, printing speed 80mm / s, clearance 1.3mm
- the obtained film was heat-treated at 150 ° C. for 10 minutes using an air circulation dryer. Next, firing was performed at 820 ° C. for 32 seconds using a high-speed firing furnace. Thus, a conductive film was produced. Next, with respect to the obtained conductive film, the average thickness was measured as follows, and the volume resistivity was determined as follows. The results are shown in Table 6.
- ⁇ Average thickness of conductive film> Using the surface roughness meter (Surfcom 480B-12, manufactured by Tokyo Seimitsu Co., Ltd.), measure the level difference between the part where the film is not printed and the part of the conductive film on the Si substrate. Thus, the average thickness of the conductive film was measured.
- ⁇ Volume resistivity of conductive film> The resistance value at the position of the length (interval) of each conductive film was measured using a digital multimeter (manufactured by ADVANTEST, R6551). The volume of the conductive film was determined from the size (average thickness, width, length) of each conductive film, and the volume resistivity was determined from this volume and the measured resistance value.
- Examples 6 to 8 have a lower volume resistivity than Comparative Examples 4 and 5, and have excellent conductivity by having alkenyl succinic anhydride and / or alkenyl succinic acid on the surface. It was found that a conductive paste was obtained.
- ⁇ Storage stability test of silver powder> a storage stability test was performed as follows using the silver powder of Example 1, the silver powder of Example 5, and the silver powder of Comparative Example 1. The results are shown in Table 7.
- -Storage stability test- 5 g of each of the silver powder of Example 1, the silver powder of Example 5 and the silver powder of Comparative Example 1 were placed in a glass container and allowed to stand at room temperature (25 ° C.) for 2 months. The cumulative 50% particle size (D 50 ) before and after standing for 2 months was measured. In addition, the presence or absence of aggregation and lump generation after standing for 2 months was visually evaluated.
- Examples 1 and 5 which are silver powders having alkenyl succinic anhydride and / or alkenyl succinic acid on the surface, have better storage stability than Comparative Example 1 which is silver powder having succinic acid on the surface. I found it expensive. Further, when Example 1 (carbon number of tetrapropenyl succinic anhydride: 16) is compared with Example 5 (carbon number of octenyl succinic anhydride: 12), alkenyl succinic anhydride having a carbon number in the molecule larger than 12 is compared.
- the product and / or alkenyl succinic acid can further improve the storage stability as compared with alkenyl succinic anhydride and / or alkenyl succinic acid having 12 or less carbon atoms in the molecule.
- Example 10 In Example 1, 0.1 g of tetrapropenyl succinic anhydride as a surface treatment agent was added to alkenyl succinic acid potassium salt (trade name: Latemul ASK, structure not disclosed, solid content concentration: 28% by mass, manufactured by Kao Corporation). A silver powder and a conductive paste were produced in the same manner as in Example 1 except that the amount was changed to 0.5 g, and evaluated in the same manner. The results are shown in Table 8, Table 9, and Table 10.
- Example 10 was lower than that of Comparative Examples 1 to 3 as in Examples 1 to 5. From the above results, it was found that even when a metal salt of alkenyl succinic acid was used, a conductive paste having excellent conductivity was obtained without changing the printability.
- the conductive paste containing the silver powder of the present invention is further provided with a transparent conductive film directly on various substrates such as a silicon wafer for solar cells, a film for touch panel, glass for EL element, or the like, if necessary.
- a transparent conductive film directly on various substrates such as a silicon wafer for solar cells, a film for touch panel, glass for EL element, or the like, if necessary.
- the transparent conductive film it can be applied or printed to form a conductive coating film, for example, a collector electrode of a solar battery cell, an external electrode of a chip-type electronic component, RFID, an electromagnetic wave shield, a vibrator adhesive, It is suitably used for electrodes such as membrane switches and electroluminescence or electrical wiring.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
Abstract
Description
このような導電性ペースト用の銀粉として、凝集の発生が少なく、分散性に優れたものを得るため、ステアリン酸やオレイン酸等のカルボン酸を表面に有する銀粉が提案されている(例えば、特許文献1および2等参照)。
また、銀を含む水溶液に還元剤を添加して銀粉を還元析出させた後、コハク酸、アジピン酸等の多価カルボン酸を添加して表面処理を行う方法が提案されている(例えば、特許文献3参照)。
<1> アルケニルコハク酸無水物および/またはアルケニルコハク酸を表面に有することを特徴とする銀粉である。
<2> 前記アルケニルコハク酸無水物および/またはアルケニルコハク酸が、テトラプロペニルコハク酸無水物、テトラデセニルコハク酸無水物、ドデセニルコハク酸無水物、ペンタデセニルコハク酸無水物、オクテニルコハク酸無水物、ヘキサデセニルコハク酸無水物、オクタデセニルコハク酸無水物、テトラプロペニルコハク酸、テトラデセニルコハク酸、ドデセニルコハク酸、ペンタデセニルコハク酸、オクテニルコハク酸、ヘキサデセニルコハク酸、およびオクタデセニルコハク酸から選択される少なくとも1種である前記<1>に記載の銀粉である。
<3> 分子中炭素数が12より大きいアルケニルコハク酸無水物および/またはアルケニルコハク酸を表面に有することを特徴とする銀粉である。
<4> 前記分子中炭素数が12より大きいアルケニルコハク酸無水物および/またはアルケニルコハク酸が、テトラプロペニルコハク酸無水物、テトラデセニルコハク酸無水物、ドデセニルコハク酸無水物、ペンタデセニルコハク酸無水物、テトラプロペニルコハク酸、テトラデセニルコハク酸、ドデセニルコハク酸、およびペンタデセニルコハク酸から選択される少なくとも1種である前記<3>に記載の銀粉である。
<5> 銀粉を300℃で加熱してガスクロマト質量分析装置を用いて分析することにより、銀粉の表面より脱離した成分に少なくともアルケニルコハク酸無水物が含まれることを特徴とする銀粉である。
<6> 前記<1>から<5>のいずれかに記載の銀粉を含有することを特徴とする導電性ペーストである。
<7> アルケニルコハク酸無水物を用いて表面処理を行う工程を少なくとも含むことを特徴とする銀粉の製造方法である。
<8> 銀を含む水溶液に還元剤を添加して銀粉を還元析出させた後、アルケニルコハク酸無水物を添加して前記表面処理を行う前記<7>に記載の銀粉の製造方法である。
<9> アルケニルコハク酸を用いて表面処理を行う工程を少なくとも含むことを特徴とする銀粉の製造方法である。
<10> 銀を含む水溶液に還元剤を添加して銀粉を還元析出させた後、アルケニルコハク酸の金属塩を添加して表面処理を行う工程を少なくとも含むことを特徴とする銀粉の製造方法である。
本発明の銀粉は、アルケニルコハク酸無水物および/またはアルケニルコハク酸を表面に有してなり、さらに必要に応じてその他の成分を有してなる。
本発明の銀粉は、分子中炭素数が12より大きいアルケニルコハク酸無水物および/またはアルケニルコハク酸を表面に有してなり、さらに必要に応じてその他の成分を有してなる。
本発明の銀粉は、銀粉を300℃で加熱してガスクロマト質量分析装置を用いて分析することにより、銀粉の表面より脱離した成分に少なくともアルケニルコハク酸無水物が含まれる。
前記銀粉は、後述する銀粉の製造方法で詳細に説明するように、湿式還元法により製造され、表面にアルケニルコハク酸無水物および/またはアルケニルコハク酸を有する。
前記アルケニルコハク酸無水物は、水素原子の一つがアルケニル基により置換されたコハク酸無水物であり、コハク酸無水物(無水コハク酸)とは構造が異なる。前記コハク酸無水物は、コハク酸の分子内脱水縮合物であり、水と接触すると加水分解してコハク酸に戻り、アンモニアと反応してコハク酸イミドとなる。また、前記アルケニルコハク酸無水物は、アルケニル基(-CnH2n-1)を有するコハク酸無水物であり、アルキル基(-CnH2n+1)置換コハク酸と相違する。
前記コハク酸無水物と前記アルケニルコハク酸無水物とでは、銀粉表面への付着量が異なるため、銀粉の保存安定性(経時による凝集や塊の発生)に差が生じる。また、前記アルケニルコハク酸無水物は水と接触すると加水分解してアルケニルコハク酸となる。さらに、前記コハク酸無水物が銀粉表面に付着した場合には親水性となり、前記アルケニルコハク酸無水物および/またはアルケニルコハク酸が銀粉表面に付着した場合には疎水性となる。
R1は、炭素数5~13の直鎖アルキル基が好ましく、炭素数7~11がより好ましい。
R2は、水素原子、または炭素数1~3の直鎖アルキル基が好ましく、水素原子がより好ましい。
なお、アルケニル基の二重結合の位置は、前記一般式(1)に限られるものではなく、異なる位置であっても構わない。
前記合成方法としては、例えば、オレフィンとマレイン酸無水物を加熱攪拌することにより合成することができる。
前記オレフィンとしては、例えば、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、またはこれらの内部異性化オレフィン、あるいはこれらの混合物などが挙げられる。前記内部異性化オレフィンとは、α-オレフィン(二重結合の位置がオレフィンの1位と2位の炭素を結ぶ位置にあるオレフィン)ではなく、何らかの方法により二重結合がα-位より炭素鎖の内部に存在するオレフィンを意味する。
なお、前記アルケニルコハク酸無水物としては、それらの構造異性体でもよく、または、脂肪鎖の分岐鎖異性体の混合物でもよい。
前記分子中炭素数が12より大きいアルケニルコハク酸無水物および/またはアルケニルコハク酸としては、例えば、テトラプロペニルコハク酸無水物、テトラデセニルコハク酸無水物、ドデセニルコハク酸無水物、ペンタデセニルコハク酸無水物、テトラプロペニルコハク酸、テトラデセニルコハク酸、ドデセニルコハク酸、ペンタデセニルコハク酸などが挙げられる。前記アルケニルコハク酸無水物および/またはアルケニルコハク酸の分子中炭素数が12以下であると、銀粉表面への吸着と立体障害の観点から、保存安定性が悪化し凝集が進行してしまう。一方、脂肪酸分子中の炭素数が増えていくと保存安定性は優れるものの、熱分解温度が上昇し焼結性に影響を及ぼすことが本発明をなす過程でわかった。
前記アルケニルコハク酸無水物を水に分散させたエマルションとしてもよい。
前記アルケニルコハク酸無水物および/またはアルケニルコハク酸の銀粉表面への付着量は、銀の質量に対して、2.0質量%以下が好ましく、0.01質量%以上1.0質量%以下がより好ましく、0.01質量%以上0.8質量%以下がさらに好ましい。
前記アルケニルコハク酸無水物および/またはアルケニルコハク酸の付着量が、2.0質量%を超えると、アルケニルコハク酸無水物および/またはアルケニルコハク酸を表面に有する銀粉を含む導電性ペーストからなる導電膜の体積抵抗率が悪化してしまうことがある。
前記アルケニルコハク酸無水物および/またはアルケニルコハク酸の銀粉表面への付着量は、検量線を作成し、例えば、銀粉表面のアルケニルコハク酸無水物および/またはアルケニルコハク酸をパイロライザー(フロンティア・ラボ株式会社製のEGA/Py3030D)の使用または有機溶剤に抽出し、GC-MS(ガスクロマト質量分析計)により分析することができる。
前記銀粉の表面に付着する成分としては、アルケニルコハク酸無水物および/またはアルケニルコハク酸に限定されるわけではなく、その他の成分を含んでいてもよい。前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルケニルコハク酸無水物および/またはアルケニルコハク酸以外の脂肪酸や脂肪酸塩、界面活性剤、有機金属化合物、キレート剤、高分子分散剤などが挙げられる。
本発明の銀粉の製造方法は、アルケニルコハク酸無水物を用いて表面処理を行う工程を少なくとも含み、好ましくは、銀を含む水溶液に還元剤を添加して銀粉を還元析出させた後、アルケニルコハク酸無水物を添加して表面処理を行うものであり、銀イオン分散液の調液工程と、銀の還元工程と、アルケニルコハク酸無水物の表面処理工程と、銀粉の洗浄工程と、銀粉の乾燥工程とを含むことが好ましく、さらに必要に応じてその他の工程を含んでなる。また、前記アルケニルコハク酸無水物に替えてアルケニルコハク酸を用いて表面処理を行う工程とすることもできる。
また、本発明の銀粉の製造方法は、銀を含む水溶液に還元剤を添加して銀粉を還元析出させた後、アルケニルコハク酸の金属塩を添加して表面処理を行う工程を少なくとも含むこともできる。
前記銀イオン分散液の調液工程は、銀イオン分散液を調液する工程である。
銀イオンを含有する水性反応系としては、硝酸銀、銀錯体または銀中間体を含有する水溶液またはスラリーを使用することができる。
前記銀錯体を含有する水溶液は、硝酸銀水溶液または酸化銀懸濁液にアンモニア水またはアンモニウム塩を添加することにより生成することができる。これらの中でも、銀粉が適当な粒径と球状の形状を有するようにするためには、硝酸銀水溶液にアンモニア水を添加して得られる銀アンミン錯体水溶液を使用するのが好ましい。
前記銀アンミン錯体中におけるアンモニアの配位数は2であるため、銀1モル当たりアンモニア2モル以上を添加する。また、アンモニアの添加量が多過ぎると錯体が安定化し過ぎて還元が進み難くなるので、アンモニアの添加量は銀1モル当たりアンモニア8モル以下が好ましい。なお、還元剤の添加量を多くするなどの調整を行えば、アンモニアの添加量が8モルを超えても適当な粒径の球状銀粉を得ることは可能である。また、銀イオンを含有する水性反応系にpH調整剤を添加してもよい。前記pH調整剤としては、特に制限はなく、一般的な酸や塩基が使用することができ、例えば、硝酸、水酸化ナトリウムなどが挙げられる。
前記銀の還元工程は、還元剤により銀を還元析出する工程である。
前記還元剤としては、例えば、アスコルビン酸、亜硫酸塩、アルカノールアミン、過酸化水素水、ギ酸、ギ酸アンモニウム、ギ酸ナトリウム、グリオキサール、酒石酸、次亜燐酸ナトリウム、水素化硼素ナトリウム、ヒドロキノン、ヒドラジン、ヒドラジン化合物、ピロガロール、ぶどう糖、没食子酸、ホルマリン、無水亜硫酸ナトリウム、ロンガリットなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アスコルビン酸、アルカノールアミン、水素化硼素ナトリウム、ヒドロキノン、ヒドラジンおよびホルマリンから選択される少なくとも1種が好ましく、ヒドラジン、ホルマリンが特に好ましい。
前記還元剤の添加方法については、銀粉の凝集を防ぐために、1当量/分間以上の速さで添加することが好ましい。この理由は明確ではないが、前記還元剤を短時間で投入することで、銀粉の還元析出が一挙に生じて、短時間で還元反応が終了し、発生した核同士の凝集が生じ難いため、分散性が向上すると考えられる。したがって、還元剤の添加時間が短いほど好ましく、例えば、還元剤を100当量/分間以上の速さで添加してもよく、また、還元の際には、より短時間で反応が終了するように反応液を攪拌することが好ましい。また、還元反応時の液温は5℃以上80℃以下が好ましく、15℃以上40℃以下がより好ましい。
前記アルケニルコハク酸無水物の表面処理工程は、銀粉をアルケニルコハク酸無水物で表面処理する工程である。前記アルケニルコハク酸無水物の代わりに、アルケニルコハク酸無水物を加水分解するなどして得られたアルケニルコハク酸を用いて表面処理をする工程とすることもできる。アルケニルコハク酸無水物とアルケニルコハク酸の両方を添加してもよい。
前記アルケニルコハク酸無水物を水に分散させたエマルションとして添加してもよく、アルケニルコハク酸を金属塩として添加してもよい。
銀を含む水溶液に還元剤を添加して銀粉を還元析出させた後、前記アルケニルコハク酸無水物を添加することで銀粉表面にアルケニルコハク酸無水物および/またはアルケニルコハク酸を付着することができる。表面処理する工程は上記に限らず、還元析出中に水溶液にアルケニルコハク酸無水物および/またはアルケニルコハク酸が存在するように添加してもよいが、銀粉を還元析出させた後に添加することがより好ましい。
前記アルケニルコハク酸無水物および/またはアルケニルコハク酸の添加量は、前記銀の質量に対して0.05質量%以上2.0質量%以下が好ましく、0.1質量%以上1.0質量%以下がより好ましく、0.1質量%以上0.8質量%以下がさらに好ましい。なお、銀粉表面にアルケニルコハク酸無水物を付着させる過程において、結果的にアルケニルコハク酸無水物の誘導体としてアルケニルコハク酸イミドが部分的に生成する可能性もある。
前記銀粉の回収および洗浄工程は、得られた銀粉を回収し、洗浄する工程である。
得られた銀粉には、不純物が含有しているため洗浄することが好ましい。
前記洗浄に用いられる洗浄溶媒としては、純水が好適である。前記回収および洗浄の方式としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デカンテーションやフィルタープレスなどが挙げられる。前記洗浄の終点は、洗浄後の水の電気伝導度を用いて判断することができ、前記電気伝導度が0.5mS/m以下になるまで洗浄を実施するのが好適である。
前記銀粉の乾燥工程は、前記洗浄後の銀粉を乾燥する工程である。
洗浄後の銀粉は多くの水分を含有しているため、使用前に水分を除去する必要がある。
前記水分除去の方法としては、真空乾燥とするのが好適である。乾燥温度は100℃以下とするのが好適である。あまり熱をかけてしまうと乾燥の時点で銀粉同士が焼結してしまうため好ましくない。
得られた銀粉は、必要に応じて、乾式解砕工程や分級工程等のその他の工程を行うことができる。前記乾式解砕工程の代わりに、銀粉を機械的に流動化させることができる装置に銀粉を投入して、銀粉の粉同士を機械的に衝突させることによって、銀粉の表面の凹凸や角張った部分を滑らかにする表面平滑化処理を行ってもよい。また、解砕や平滑化処理の後に分級処理を行ってもよい。なお、乾燥、粉砕、および分級を行うことができる一体型の装置(例えば、株式会社ホソカワミクロン製のドライマイスタやミクロンドライヤなど)を用いて乾燥、粉砕、および分級を行ってもよい。
前記銀粉のBET比表面積は、Macsorb HM-model 1210(MOUNTECH社製)を用いて窒素吸着によるBET1点法で測定することができる。なお、前記BET比表面積の測定において、測定前の脱気条件は60℃、10分間とした。
前記銀粉のBET比表面積は、0.1m2/g以上5.0m2/g以下が好ましく、0.3m2/g以上2.0m2/g以下がより好ましい。前記BET比表面積が、0.1m2/g未満であると、銀粉のサイズが大きくなり、微細配線の描画が困難になることがあり、5.0m2/gを超えると、導電性ペーストにした際に粘度が高くなりすぎるために導電性ペーストを希釈して使用する必要があり、導電性ペースト中の銀濃度が低くなってしまうため配線が断線してしまうことがある。
前記銀粉のレーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)は、0.05μm以上6.0μm以下が好ましく、0.1μm以上4.0μm以下がより好ましい。
累積90%粒子径(D90)および累積10%粒子径(D10)に対する前記D50の比[(D90-D10)/D50]は、3.0以下が好ましく、2.0以下がより好ましい。
前記BET比表面積と同様に、銀粉の粒度分布が大きすぎると、微細配線の描画が困難になることがあり、小さすぎると、導電性ペースト中の銀濃度を上げることが困難となる。また、粒度分布のピーク幅が狭く、粒径のばらつきが少なく、揃った銀粉であることが好ましい。
前記銀粉の強熱減量は、特に制限はなく、目的に応じて適宜選択することができるが、0.02%以上1.00%以下が好ましい。
前記銀粉の強熱減量は、銀粉試料2gを秤量(w1)して磁性るつぼに入れ、800℃で恒量になるまで30分間強熱した後、冷却し、秤量(w2)することにより、次式から求めることができる。
強熱減量(%)=[(w1-w2)/w1]×100
本発明の導電性ペーストは、本発明の前記銀粉と、ポリマーとを含み、さらに必要に応じてその他の成分を含有してなる。
前記導電性ペーストにおける前記銀粉の含有量は、特に制限はなく、目的に応じて適宜選択することができる。
前記ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルセルロース、エチルセルロース等のセルロース誘導体、アクリル樹脂、アルキド樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ロジン樹脂、テルペン樹脂、フェノール樹脂、脂肪族石油樹脂、アクリル酸エステル樹脂、キシレン樹脂、クマロンインデン樹脂、スチレン樹脂、ジシクロペンタジエン樹脂、ポリブテン樹脂、ポリエーテル樹脂、ユリア樹脂、メラミン樹脂、酢酸ビニル樹脂、ポリイソブチル樹脂、オレフィン系熱可塑性エラストマー(TPO)、エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、セルロース誘導体、エポキシ樹脂が好ましい。
前記ポリマーの含有量は、特に制限はなく、目的に応じて適宜選択することができる。
前記その他の成分としては、例えば、溶剤、界面活性剤、ガラスフリット、分散剤、粘度調整剤などが挙げられる。
前記導電性ペーストの粘度は、銀粉の含有量、粘度調整剤の添加や溶剤の種類により調整することができる。前記導電性ペーストの粘度は、例えば、BROOKFIELD社製の粘度計5XHBDV-IIIUCを用い、コーンスピンドルCP-52、ペースト温度25℃で測定することができる。
前記導電膜の体積抵抗率は、例えば、デジタルマルチメーター(ADVANTEST社製、R6551)を用いて、導電膜の長手方向の2点間の抵抗値を測定し、体積抵抗率=抵抗値×導電膜の厚み×導電膜の幅÷導電膜の長さを算出することにより測定することができる。
本発明の導電性ペーストを用いて得られた導電膜は、例えば、太陽電池セルの集電電極、チップ型電子部品の外部電極、RFID、電磁波シールド、振動子接着、メンブレンスイッチ、エレクトロルミネセンス等の電極または電気配線用途に好適に用いられる。
前記銀粉のBET比表面積、銀粉のタップ密度、銀粉の強熱減量、ならびに銀粉の粒度分布(D10、D50、およびD90)の測定方法は、以下に示す通りである。
銀粉のBET比表面積は、Macsorb HM-model 1210(MOUNTECH社製)で、He:70%、N2:30%のキャリアガスを用い、銀粉3gをセルに入れて脱気を60℃で10分間行った後、BET1点法により測定を行った。
銀粉のタップ密度は、タップ密度測定装置(柴山科学株式会社製、カサ比重測定装置SS-DA-2)を使用し、銀粉15gを計量して、容器(20mL試験管)に入れ、落差20mmで1,000回タッピングし、タップ密度=試料重量(15g)/タッピング後の試料体積から算出した。
銀粉の粒度分布は、レーザー回折散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製、MICROTORAC MT3300EXII)を用いて、銀粉0.1gをイソプロピルアルコール40mLに加え、チップ径20mmの超音波ホモジナイザーにより2分間分散させて試料を準備し、全反射モードで粒径の測定を行った。測定により得た体積基準の累積分布により、累積10%粒径(D10)、累積50%粒径(D50)、および累積90%粒径(D90)の値を求めた。
銀粉の強熱減量は、銀粉試料2gを秤量(w1)して磁性るつぼに入れ、800℃で恒量になるまで30分間強熱した後、冷却し、秤量(w2)することにより、次式から求めた。
強熱減量(%)=[(w1-w2)/w1]×100
銀粉を、パイロライザー(フロンティア・ラボ株式会社製のEGA/Py3030D)を用いて300℃で加熱することで銀粉表面より脱離させ、GC-MS(ガスクロマト質量分析計、アジレントテクノロジー株式会社製の7890A/5975C)を用いて、銀粉表面の定性分析を行った。上記手法の場合、添加したアルケニルコハク酸無水物が、銀粉表面においてアルケニルコハク酸無水物の状態で存在してもアルケニルコハク酸の状態で存在しても、アルケニルコハク酸は加熱されることにより分子内脱水縮合が起こるため、どちらもアルケニルコハク酸無水物として検出される。
-銀粉の作製-
銀を52g含有する硝酸銀溶液を3,600g準備し、前記硝酸銀溶液に濃度28質量のアンモニア水溶液(純正化学株式会社製、試薬特級)を160g加え、20質量%の水酸化ナトリウム水溶液を4g加えた銀イオンを含有する水性反応系を調製し、液温を28℃とした。前記銀イオンを含有する水性反応系へ、還元剤として37質量%ホルマリン水溶液(日本化成株式会社製)240gを加え十分に撹拌し、銀粒子を含むスラリーを得た。
次に、得られた銀粒子を含むスラリーに対して、表面処理剤としてテトラプロペニルコハク酸無水物(東京化成工業株式会社製)0.1gを加え、十分に撹拌した後、熟成させた。前記熟成されたスラリーを濾過、水洗し、乾燥し解砕して、実施例1の銀粉を得た。
得られた実施例1の銀粉の走査型電子顕微鏡(SEM、日本電子工業株式会社製、JSM-6100)によるSEM写真(10,000倍)を図1に示した。得られた銀粉のBET比表面積、銀粉のタップ密度、銀粉の強熱減量、ならびに銀粉の粒度分布(D10、D50、およびD90)の測定結果を表1に示した。
銀粉のGC-MSによる分析の結果、前記テトラプロペニルコハク酸無水物が検出され、テトラプロペニルコハク酸無水物および/またはテトラプロペニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.57%であった。
ここで、実施例1における銀粉のパイロライザー(フロンティア・ラボ株式会社製のEGA/Py3030D)使用のGC-MS分析プロファイルを図5に示す。この図5は、分子量と電荷の比(m/z)が266のもので抽出したプロファイルである。
得られた銀粉90.4質量部に対して、エチルセルロース100cps(和光純薬工業株式会社製)0.8質量部、およびブチルカルビトールアセテート(和光純薬工業株式会社製)8.8質量部を加え、プロペラレス自公転式攪拌脱泡装置(シンキー株式会社製、AR-250)を用い、混合した後、3本ロールミル(EXAKT社製、EXAKT80S)を用いて、ロールギャップを徐々に狭めながら通過させて導電性ペーストを得た。
なお、得られた導電性ペーストの粘度を以下のようにして測定した。結果を表2に示した。
得られた導電性ペーストの粘度は、BROOKFIELD社製の粘度計5XHBDV-IIIUCを用い、コーンスピンドルCP-52、ペースト温度25℃で測定した。
1rpm(ずり速度2sec-1)で5分間と、5rpm(ずり速度10sec-1)で1分間との値を測定した。
なお、ブチルカルビトールアセテートを加えて希釈することによって1rpm(ずり速度2sec-1)の5分間後の粘度を150Pa・s±30Pa・sに調整した。
・印刷装置:マイクロテック社製 MT-320T
・版:線幅500μm、引き回し37.5mm、250メッシュ、線径23μm
・印刷条件:スキージ圧180Pa、印刷速度80mm/s、クリアランス1.3mm
次に、得られた導電膜について、以下のようにして、平均厚みを測定し、以下のようにして体積抵抗率を求めた。結果を表3に示した。
得られた導電膜を、表面粗さ計(株式会社小坂研究所製、SE-30D)を用いて、アルミナ基板上で膜を印刷していない部分と導電膜の部分との段差を測定することにより、導電膜の平均厚みを測定した。
デジタルマルチメーター(ADVANTEST社製、R6551)を用いて、各導電膜の長さ(間隔)の位置の抵抗値を測定した。各導電膜のサイズ(平均厚み、幅、長さ)より、導電膜の体積を求め、この体積と測定した抵抗値から、体積抵抗率を求めた。
実施例1において、表面処理剤としてのテトラプロペニルコハク酸無水物0.1gを、テトラデセニルコハク酸無水物(東京化成工業株式会社製)0.1gに変えた以外は、実施例1と同様にして、銀粉および導電性ペーストを作製し、同様にして評価を行った。結果を表1から表3に示した。得られた実施例2の銀粉のSEM写真(10,000倍)を図2に示した。
銀粉のGC-MSによる分析の結果、前記テトラデセニルコハク酸無水物が検出され、テトラデセニルコハク酸無水物および/またはテトラデセニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.63%であった。
実施例1において、表面処理剤としてのテトラプロペニルコハク酸無水物0.1gを、ペンタデセニルコハク酸無水物(三洋化成工業株式会社製、PDSA-DA)0.1gに変えた以外は、実施例1と同様にして、銀粉および導電性ペーストを作製し、同様にして評価を行った。結果を表1から表3に示した。
銀粉のGC-MSによる分析の結果、ペンタデセニルコハク酸無水物が検出され、ペンタデセニルコハク酸無水物および/またはペンタデセニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.72%であった。
実施例1において、表面処理剤としてのテトラプロペニルコハク酸無水物0.1gを、ドデセニルコハク酸無水物(新日本理化株式会社製、リカシッドDDSA)0.1gに変えた以外は、実施例1と同様にして、銀粉および導電性ペーストを作製し、同様にして評価を行った。結果を表1から表3に示した。
銀粉のGC-MSによる分析の結果、ドデセニルコハク酸無水物が検出され、ドデセニルコハク酸無水物および/またはドデセニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.62%であった。
実施例1において、表面処理剤としてのテトラプロペニルコハク酸無水物0.1gを、オクテニルコハク酸無水物(新日本理化株式会社製、リカシッドOSA)0.1gに変えた以外は、実施例1と同様にして、銀粉および導電性ペーストを作製し、同様にして評価を行った。結果を表1から表3に示した。
銀粉のGC-MSによる分析の結果、オクテニルコハク酸無水物が検出され、オクテニルコハク酸無水物および/またはオクテニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.57%であった。
実施例1において、表面処理剤としてのテトラプロペニルコハク酸無水物0.1gを、コハク酸(和光純薬工業株式会社製、試薬特級)0.1gに変えた以外は、実施例1と同様にして、銀粉および導電性ペーストを作製し、同様にして評価を行った。結果を表1から表3に示した。得られた比較例1の銀粉のSEM写真(10,000倍)を図3に示した。
銀粉のGC-MSによる分析の結果、コハク酸が検出され、コハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.56%であった。
実施例1において、表面処理剤としてのテトラプロペニルコハク酸無水物0.1gを、ステアリン酸(和光純薬工業株式会社製、試薬特級)0.1gに変えた以外は、実施例1と同様にして、銀粉および導電性ペーストを作製し、同様にして評価を行った。結果を表1から表3に示した。得られた比較例2の銀粉のSEM写真(10,000倍)を図4に示した。
銀粉のGC-MSによる分析の結果、ステアリン酸が検出され、ステアリン酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.67%であった。
実施例1において、表面処理剤としてのテトラプロペニルコハク酸無水物0.1gを、パルミチン酸(和光純薬工業株式会社製、試薬特級)0.1gに変えた以外は、実施例1と同様にして、銀粉および導電性ペーストを作製し、同様にして評価を行った。結果を表1から表3に示した。
銀粉のGC-MSによる分析の結果、パルミチン酸が検出され、パルミチン酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.75%であった。
なお、実施例1の銀粉をトルエンに混合して、トルエンに溶出した有機成分の有無を調べたが、アルケニルコハク酸無水物および/またはアルケニルコハク酸は検出されなかった。トルエン処理後の銀粉についてパイロライザーを用いたGC-MSによりアルケニルコハク酸無水物が検出されたことから、本実施例の銀粉における銀との吸着はトルエンでは分離せず、加熱しなれば分離しないくらいに強固なものであることがわかった。
また、銀粉は洗浄工程を経ており、銀と吸着していないアルケニルコハク酸無水物および/またはアルケニルコハク酸は洗浄水により除去される。ペースト製造時に添加した場合は、銀と吸着していないアルケニルコハク酸無水物および/またはアルケニルコハク酸のほとんどが導電性ペースト中に含まれると考えられることから、上記粘度の違いが生じると考えられる。
銀を44g含有する硝酸銀溶液を3,200g準備し、前記硝酸銀溶液に濃度28質量%のアンモニア水溶液(純正化学株式会社製、試薬特級)を100g加え、20質量%の水酸化ナトリウム水溶液を16g加えた銀イオンを含有する水性反応系を調製し、液温を28℃とした。前記銀イオンを含有する水性反応系に、還元剤として80質量%ヒドラジン水溶液(大塚化学株式会社製)10gを加え十分に撹拌し、銀粒子を含むスラリーを得た。
次に、得られた銀粒子を含むスラリーに対して、表面処理剤としてテトラプロペニルコハク酸無水物(東京化成工業株式会社製)0.17gを加え、十分に撹拌した後、熟成させた。前記熟成されたスラリーを濾過、水洗し、乾燥し解砕して、実施例6の銀粉を得た。
得られた銀粉のBET比表面積、銀粉のタップ密度、銀粉の強熱減量、ならびに銀粉の粒度分布(D10、D50、およびD90)の測定結果を表4に示した。
銀粉のGC-MSによる分析の結果、テトラプロペニルコハク酸無水物が検出された。よって、テトラプロペニルコハク酸無水物および/またはテトラプロペニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.21%であった。
実施例6において、表面処理剤としてのテトラプロペニルコハク酸無水物0.17gを、ペンタデセニルコハク酸無水物(三洋化成工業株式会社製、PDSA-DA)0.17gに変えた以外は、実施例6と同様にして銀粉を作製し、同様に評価した。結果を表4に示した。
銀粉のGC-MSによる分析の結果、ペンタデセニルコハク酸無水物が検出された。よって、ペンタデセニルコハク酸無水物および/またはペンタデセニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.27%であった。
実施例6において、表面処理剤としてのテトラプロペニルコハク酸無水物0.17gを、ドデセニルコハク酸無水物(新日本理化株式会社製、リカシッドDDSA)0.17gに変えた以外は、実施例6と同様にして銀粉を作製し、同様に評価した。結果を表4に示した。
銀粉のGC-MSによる分析の結果、ドデセニルコハク酸無水物が検出された。よって、ドデセニルコハク酸無水物および/またはドデセニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.25%であった。
実施例6において、表面処理剤としてのテトラプロペニルコハク酸無水物0.17gを、オクテニルコハク酸無水物(新日本理化株式会社製、リカシッドOSA)0.17gに変えた以外は、実施例6と同様にして銀粉を作製し、同様に評価した。結果を表4に示した。
銀粉のGC-MSによる分析の結果、オクテニルコハク酸無水物が検出された。よって、オクテニルコハク酸無水物および/またはオクテニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.20%であった。
実施例6において、表面処理剤としてのテトラプロペニルコハク酸無水物0.17gを、コハク酸(和光純薬工業株式会社製、試薬特級)0.17gに変えた以外は、実施例6と同様にして銀粉を作製し、同様に評価した。結果を表4に示した。
銀粉のGC-MSによる分析の結果、コハク酸が検出され、コハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.06%であった。
実施例6において、表面処理剤としてのテトラプロペニルコハク酸無水物0.17gを、ステアリン酸(和光純薬工業株式会社製、試薬特級)0.17gに変えた以外は、実施例6と同様にして銀粉を作製し、同様に評価した。結果を表4に示した。
銀粉のGC-MSによる分析の結果、ステアリン酸が検出され、ステアリン酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.42%であった。
得られた銀粉86.3質量部に対して、エチルセルロース100cps(和光純薬工業株式会社製)0.8質量部、およびブチルカルビトールアセテート(和光純薬工業株式会社製)12.9質量部を加え、プロペラレス自公転式攪拌脱泡装置(シンキー株式会社製、AR-250)を用い、混合した後、3本ロールミル(EXAKT社製、EXAKT80S)を用いて、ロールギャップを徐々に狭めながら通過させて導電性ペーストを得た。
得られた導電性ペーストの粘度は、BROOKFIELD社製の粘度計5XHBDV-IIIUCを用い、コーンスピンドルCP-52、ペースト温度25℃で測定した。
1rpm(ずり速度2sec-1)で5分間と、5rpm(ずり速度10sec-1)で1分間との値を測定した。粘度の測定結果を表5に示した。
・印刷装置:マイクロテック社製 MT-320T
・版:線幅500μm、引き回し37.5mm、250メッシュ、線径23μm
・印刷条件:スキージ圧180Pa、印刷速度80mm/s、クリアランス1.3mm
次に、得られた導電膜について、以下のようにして、平均厚みを測定し、以下のようにして体積抵抗率を求めた。結果を表6に示した。
得られた導電膜を、表面粗さ計(株式会社東京精密製、サーフコム480B-12)を用いて、Si基板上で膜を印刷していない部分と導電膜の部分との段差を測定することにより、導電膜の平均厚みを測定した。
デジタルマルチメーター(ADVANTEST社製、R6551)を用いて、各導電膜の長さ(間隔)の位置の抵抗値を測定した。各導電膜のサイズ(平均厚み、幅、長さ)より、導電膜の体積を求め、この体積と測定した抵抗値から、体積抵抗率を求めた。
次に、前記実施例1の銀粉、前記実施例5の銀粉、および前記比較例1の銀粉を用いて、以下のようにして、保存安定性試験を行った。結果を表7に示した。
-保存安定性試験-
前記実施例1の銀粉と、前記実施例5の銀粉と、前記比較例1の銀粉とを、それぞれ5gを、ガラス製容器に入れ、室温(25℃)で2ヶ月間放置した。2ヶ月間放置前後における累積50%粒径(D50)を測定した。また、2ヶ月間放置後における凝集および塊の発生の有無を目視で評価した。
実施例1において、表面処理剤としてのテトラプロペニルコハク酸無水物0.1gを、アルケニルコハク酸カリウム塩(花王株式会社製、商品名:ラテムルASK、構造非開示、固形分濃度28質量%)0.5gに変えた以外は、実施例1と同様にして、銀粉および導電性ペーストを作製し、同様にして評価を行った。結果を表8、表9、および表10に示した。
銀粉のGC-MSによる分析の結果、オクタデセニルコハク酸無水物が検出され、オクタデセニルコハク酸無水物および/またはオクタデセニルコハク酸が銀粉表面に付着していることがわかった。また、銀粉の強熱減量は0.53%であった。
Claims (10)
- アルケニルコハク酸無水物および/またはアルケニルコハク酸を表面に有することを特徴とする銀粉。
- 前記アルケニルコハク酸無水物および/またはアルケニルコハク酸が、テトラプロペニルコハク酸無水物、テトラデセニルコハク酸無水物、ドデセニルコハク酸無水物、ペンタデセニルコハク酸無水物、オクテニルコハク酸無水物、ヘキサデセニルコハク酸無水物、オクタデセニルコハク酸無水物、テトラプロペニルコハク酸、テトラデセニルコハク酸、ドデセニルコハク酸、ペンタデセニルコハク酸、オクテニルコハク酸、ヘキサデセニルコハク酸、およびオクタデセニルコハク酸から選択される少なくとも1種である請求項1に記載の銀粉。
- 分子中炭素数が12より大きいアルケニルコハク酸無水物および/またはアルケニルコハク酸を表面に有することを特徴とする銀粉。
- 前記分子中炭素数が12より大きいアルケニルコハク酸無水物および/またはアルケニルコハク酸が、テトラプロペニルコハク酸無水物、テトラデセニルコハク酸無水物、ドデセニルコハク酸無水物、ペンタデセニルコハク酸無水物、テトラプロペニルコハク酸、テトラデセニルコハク酸、ドデセニルコハク酸、およびペンタデセニルコハク酸から選択される少なくとも1種である請求項3に記載の銀粉。
- 銀粉を300℃で加熱してガスクロマト質量分析装置を用いて分析することにより、銀粉の表面より脱離した成分に少なくともアルケニルコハク酸無水物が含まれることを特徴とする銀粉。
- 請求項1から5のいずれかに記載の銀粉を含有することを特徴とする導電性ペースト。
- アルケニルコハク酸無水物を用いて表面処理を行う工程を少なくとも含むことを特徴とする銀粉の製造方法。
- 銀を含む水溶液に還元剤を添加して銀粉を還元析出させた後、アルケニルコハク酸無水物を添加して前記表面処理を行う請求項7に記載の銀粉の製造方法。
- アルケニルコハク酸を用いて表面処理を行う工程を少なくとも含むことを特徴とする銀粉の製造方法。
- 銀を含む水溶液に還元剤を添加して銀粉を還元析出させた後、アルケニルコハク酸の金属塩を添加して表面処理を行う工程を少なくとも含むことを特徴とする銀粉の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/754,467 US10381124B2 (en) | 2015-08-24 | 2016-08-22 | Silver powder, manufacturing method therefor, and conductive paste |
KR1020187008048A KR102425099B1 (ko) | 2015-08-24 | 2016-08-22 | 은 분말 및 그 제조 방법, 그리고 도전성 페이스트 |
CN201680048725.5A CN107921530B (zh) | 2015-08-24 | 2016-08-22 | 银粉及其制造方法和导电浆料 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015165136 | 2015-08-24 | ||
JP2015-165136 | 2015-08-24 | ||
JP2016161556A JP6239067B2 (ja) | 2015-08-24 | 2016-08-19 | 銀粉およびその製造方法、ならびに導電性ペースト |
JP2016-161556 | 2016-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017033889A1 true WO2017033889A1 (ja) | 2017-03-02 |
Family
ID=58101128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/074383 WO2017033889A1 (ja) | 2015-08-24 | 2016-08-22 | 銀粉およびその製造方法、ならびに導電性ペースト |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017033889A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019065221A1 (ja) * | 2017-09-27 | 2019-04-04 | 京セラ株式会社 | ペースト組成物、半導体装置及び電気・電子部品 |
US20220134423A1 (en) * | 2019-06-19 | 2022-05-05 | Nantong T-Sun New Energy Co., Ltd. | Low temperature-sintering rear silver paste for all-aluminum back surface field crystalline silicon solar cell |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010072999A2 (en) * | 2008-12-23 | 2010-07-01 | Oxonica Materials Limited | Sinter process |
JP2010257958A (ja) * | 2009-03-31 | 2010-11-11 | Dic Corp | 導電性ペースト組成物およびその製造方法 |
JP2011046992A (ja) * | 2009-08-26 | 2011-03-10 | Sanyo Chem Ind Ltd | 銅微粒子及びその製造方法 |
JP2015054975A (ja) * | 2013-09-10 | 2015-03-23 | 住友金属鉱山株式会社 | 銀粉及びその製造方法 |
JP2015124252A (ja) * | 2013-12-25 | 2015-07-06 | 株式会社ノリタケカンパニーリミテド | 加熱硬化型導電性ペースト |
JP2016119255A (ja) * | 2014-12-22 | 2016-06-30 | 株式会社ノリタケカンパニーリミテド | 加熱硬化型導電性ペースト |
-
2016
- 2016-08-22 WO PCT/JP2016/074383 patent/WO2017033889A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010072999A2 (en) * | 2008-12-23 | 2010-07-01 | Oxonica Materials Limited | Sinter process |
JP2010257958A (ja) * | 2009-03-31 | 2010-11-11 | Dic Corp | 導電性ペースト組成物およびその製造方法 |
JP2011046992A (ja) * | 2009-08-26 | 2011-03-10 | Sanyo Chem Ind Ltd | 銅微粒子及びその製造方法 |
JP2015054975A (ja) * | 2013-09-10 | 2015-03-23 | 住友金属鉱山株式会社 | 銀粉及びその製造方法 |
JP2015124252A (ja) * | 2013-12-25 | 2015-07-06 | 株式会社ノリタケカンパニーリミテド | 加熱硬化型導電性ペースト |
JP2016119255A (ja) * | 2014-12-22 | 2016-06-30 | 株式会社ノリタケカンパニーリミテド | 加熱硬化型導電性ペースト |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019065221A1 (ja) * | 2017-09-27 | 2019-04-04 | 京セラ株式会社 | ペースト組成物、半導体装置及び電気・電子部品 |
US20220134423A1 (en) * | 2019-06-19 | 2022-05-05 | Nantong T-Sun New Energy Co., Ltd. | Low temperature-sintering rear silver paste for all-aluminum back surface field crystalline silicon solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6423508B2 (ja) | 銀粉の製造方法 | |
JP6029719B2 (ja) | 銀粉及びその製造方法、並びに導電性ペースト | |
JP6029720B2 (ja) | 銀粉及びその製造方法、並びに導電性ペースト | |
TWI709627B (zh) | 導電糊以及導電膜 | |
JP6282616B2 (ja) | 銀粉およびその製造方法 | |
JP6096261B2 (ja) | 銀粉及びその製造方法、並びに親水性導電ペースト | |
JP6796448B2 (ja) | 導電性ペーストおよびその製造方法、ならびに太陽電池セル | |
JP6226944B2 (ja) | 銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペースト | |
JP6389091B2 (ja) | 銀被覆銅粉及びその製造方法、並びに導電性ペースト | |
JPWO2016204105A1 (ja) | 金属ナノ微粒子製造用組成物 | |
JP6167060B2 (ja) | フレーク状銅粉及びその製造方法 | |
WO2017033889A1 (ja) | 銀粉およびその製造方法、ならびに導電性ペースト | |
WO2017057201A1 (ja) | 導電性ペースト及び導電膜 | |
WO2016052362A1 (ja) | 銀粉及びその製造方法、並びに親水性導電ペースト | |
JP2017002409A (ja) | 銀粉及びその製造方法 | |
WO2019009146A1 (ja) | 導電性ペースト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839236 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15754467 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187008048 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16839236 Country of ref document: EP Kind code of ref document: A1 |