WO2017030208A1 - 防音構造、ルーバ及び防音壁 - Google Patents
防音構造、ルーバ及び防音壁 Download PDFInfo
- Publication number
- WO2017030208A1 WO2017030208A1 PCT/JP2016/074427 JP2016074427W WO2017030208A1 WO 2017030208 A1 WO2017030208 A1 WO 2017030208A1 JP 2016074427 W JP2016074427 W JP 2016074427W WO 2017030208 A1 WO2017030208 A1 WO 2017030208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soundproof
- film
- cell
- cells
- frame
- Prior art date
Links
- 239000012528 membrane Substances 0.000 claims description 89
- 230000002093 peripheral effect Effects 0.000 claims description 20
- 239000011358 absorbing material Substances 0.000 claims description 16
- 238000012937 correction Methods 0.000 claims description 14
- 238000009826 distribution Methods 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 abstract description 39
- 239000010408 film Substances 0.000 description 425
- 238000010521 absorption reaction Methods 0.000 description 130
- 230000005540 biological transmission Effects 0.000 description 87
- 239000000463 material Substances 0.000 description 70
- 238000009413 insulation Methods 0.000 description 64
- 229920002799 BoPET Polymers 0.000 description 60
- 238000005259 measurement Methods 0.000 description 41
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 38
- 238000000034 method Methods 0.000 description 22
- 229910052782 aluminium Inorganic materials 0.000 description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- 238000005192 partition Methods 0.000 description 16
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 description 14
- 239000005020 polyethylene terephthalate Substances 0.000 description 14
- 239000000428 dust Substances 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 12
- -1 polyethylene terephthalate Polymers 0.000 description 11
- 230000035699 permeability Effects 0.000 description 10
- 238000009423 ventilation Methods 0.000 description 10
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 239000003063 flame retardant Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000002390 adhesive tape Substances 0.000 description 6
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- 239000006096 absorbing agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 239000011152 fibreglass Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229920002284 Cellulose triacetate Polymers 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 229930182556 Polyacetal Natural products 0.000 description 3
- 239000004697 Polyetherimide Substances 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920001230 polyarylate Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920001601 polyetherimide Polymers 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 1
- 229920006353 Acrylite® Polymers 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010255 response to auditory stimulus Effects 0.000 description 1
- 229920002631 room-temperature vulcanizate silicone Polymers 0.000 description 1
- 229920006298 saran Polymers 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/99—Room acoustics, i.e. forms of, or arrangements in, rooms for influencing or directing sound
- E04B1/994—Acoustical surfaces with adjustment mechanisms
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B2001/8457—Solid slabs or blocks
- E04B2001/8476—Solid slabs or blocks with acoustical cavities, with or without acoustical filling
- E04B2001/848—Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
Definitions
- the present invention relates to a soundproof structure, a louver having the soundproof structure, and a soundproof wall. More specifically, the present invention relates to a soundproof cell in which a frame and a film fixed to the frame are formed. The present invention relates to a soundproof structure for selectively and strongly shielding a target frequency sound, a louver having the soundproof structure, and a soundproof wall.
- the sound insulation material shields sound better as the mass is heavier. Therefore, the sound insulation material itself becomes larger and heavier in order to obtain a good sound insulation effect.
- many of the conventional soundproof structures have a drawback that they are large and heavy because sound is insulated by the mass of the structure, and it is difficult to shield at a low frequency.
- seat or a film is reported (refer patent document 1, 2 and 3).
- Such a sound insulation structure is lighter than a conventional sound insulation member and can obtain a high shielding performance at a specific frequency.
- the sound insulation frequency can be controlled by changing the shape of the frame, the rigidity of the film, and the mass of the weight.
- Patent Document 1 discloses a sound absorber that includes a frame body having a through-opening and a sound-absorbing material that covers one of the through-openings, and the storage elastic modulus of the sound-absorbing material is in a specific range.
- the storage elastic modulus of the sound absorbing material means a component stored inside the energy generated in the sound absorbing material due to sound absorption.
- a material having a low specific gravity such as a resin is preferable as a frame from the viewpoint of weight reduction (see paragraph [0019]), and an acrylic resin is used in the examples (see paragraph [0030]).
- thermoplastic resin can be used as the sound absorbing material (see paragraph [0022]), and in the examples, by using a sound absorbing material in which the blended material is a resin or a mixture of resin and filler (paragraphs [0030] to [0034]), an advanced sound absorbing effect can be achieved in the low frequency region without increasing the size of the sound absorber.
- Patent Document 2 discloses an acoustically transparent two-dimensional rigid frame divided into a plurality of individual cells, a sheet of flexible material fixed to the rigid frame, a plurality of weights, A plurality of individual cells are roughly two-dimensional cells, and each weight is fixed to a sheet of flexible material so that each cell is provided with a weight.
- a plurality of individual cells are roughly two-dimensional cells, and each weight is fixed to a sheet of flexible material so that each cell is provided with a weight.
- An acoustic attenuation structure (claims 1 and 12). And 15, see FIG. 5, column 4, etc.).
- Patent Document 3 discloses a film material (film-like sound absorption) that is partitioned by a partition wall serving as a frame, is closed by a rear wall (rigid wall) made of a plate-like member, and covers the opening of a cavity whose front forms an opening. 20% of the dimension of the surface of the film-like sound absorbing material from the fixed end of the peripheral edge of the opening, which is the region where the displacement of the film material by the sound wave is least likely to occur.
- a sound absorber in which a resonance hole for Helmholtz resonance is formed in an inner region (corner portion) is disclosed. In this sound absorber, the cavity is closed except for the resonance holes. This sound absorber has both a sound absorbing action by membrane vibration and a sound absorbing action by Helmholtz resonance.
- An object of the present invention is to overcome the above-mentioned problems of the prior art, in which the film surface of the soundproof cell is inclined with respect to the direction of sound incidence and attached to the opening member, so that a large soundproofing is achieved even in a high aperture ratio state.
- a soundproof structure that can exhibit the effect, can remove noise without additional work of ducts and tubes, and can maintain high air permeability, and a louver having the same. And providing a sound barrier.
- the soundproof structure of the first aspect of the present invention has at least one soundproof cell including a frame having a hole and a film fixed to the frame so as to cover the hole.
- the soundproofing structure has a soundproofing structure, and the soundproofing cell is disposed in an opening member having an opening with the membrane surface of the film inclined with respect to the opening cross section of the opening member and a region serving as a vent hole through which gas passes. It is characterized by that.
- the louver according to the second aspect of the present invention has the soundproof structure according to the first aspect.
- the soundproof wall according to the third aspect of the present invention has the soundproof structure according to the first aspect.
- the soundproof cell is disposed within the opening end correction distance from the opening end of the opening member.
- the soundproof cell is preferably smaller than the wavelength of the first natural vibration frequency of the membrane.
- the first natural vibration frequency is preferably included in the range of 10 Hz to 100,000 Hz.
- the soundproof cell is disposed at a position where the sound pressure formed by the sound wave having the first natural vibration frequency of the soundproof cell on the opening member is high.
- the soundproof cell is disposed at an antinode of the sound pressure distribution of the standing wave formed by the sound wave having the first natural vibration frequency of the soundproof cell on the opening member.
- the soundproof structure may have a plurality of the soundproof cells.
- the plurality of soundproof cells there are two or more types of soundproofing cells having different first natural vibration frequencies, and two or more types of soundproofing cells having different first natural vibration frequencies correspond to the respective soundproofing cells. It is preferable that the sound wave of one natural vibration frequency is disposed at a position where the sound pressure formed on the opening member is high. Further, among the plurality of soundproof cells, there are two or more types of soundproof cells having different first natural vibration frequencies, and each of the two or more types of soundproof cells having different first natural vibration frequencies corresponds to each soundproof cell.
- the sound wave having the first natural vibration frequency is arranged at the antinode position of the sound pressure distribution of the standing wave formed on the opening member.
- the plurality of soundproof cells there are two or more soundproof cells having the same first natural vibration frequency, and the two or more soundproof cells are arranged on the same circumference of the inner peripheral wall of the opening member. Preferably it is.
- One or more types of soundproof cells having a vibration frequency are arranged so as to be in series with one of the two or more soundproof cells having the same first natural vibration frequency in the direction of the central axis of the opening member. More preferably.
- the plurality of soundproof cells there are two or more soundproof cells having the same first natural vibration frequency, and the two or more soundproof cells are arranged in series in the central axis direction of the opening member. It is preferable.
- the hole part has penetrated and the film
- the weight is arrange
- the membrane preferably has a through hole.
- a sound absorbing material is disposed in the hole of the frame.
- the soundproof cell is preferably a member that can be detached from the opening member.
- an opening member is a cylindrical body and a soundproof cell is arrange
- an opening member has an opening formed in the area
- the film surface of the soundproof cell is inclined with respect to the sound incident direction and is attached to the opening member, a large soundproofing effect can be exhibited even in a state having a high aperture ratio. In this case, noise can be removed and high air permeability can be maintained without additional processing of ducts and tubes.
- FIG. 2 is a schematic cross-sectional view taken along line II of the soundproof structure shown in FIG. 1. It is typical sectional drawing of the soundproof cell shown in FIG. It is a perspective view which shows typically an example of the soundproof structure which concerns on Embodiment 2 of this invention.
- FIG. 5 is a schematic cross-sectional view taken along line II-II of the soundproof structure shown in FIG. It is a perspective view which shows typically an example of the soundproof structure which concerns on Embodiment 3 of this invention.
- FIG. 7 is a schematic cross-sectional view taken along line III-III of the soundproof structure shown in FIG. 6.
- FIG. 8 is a schematic cross-sectional view taken along line IV-IV of the soundproof structure shown in FIG. It is a perspective view which shows typically an example of the soundproof structure which concerns on Embodiment 5 of this invention.
- FIG. 11 is a schematic cross-sectional view taken along line VV of the soundproof structure shown in FIG. 10. It is a graph which shows the sound absorption characteristic represented by the absorption factor with respect to the frequency of the soundproof structure shown in FIG. It is a graph which shows the sound insulation characteristic represented by the transmission loss with respect to the frequency of the soundproof structure shown in FIG.
- FIG. 43B is a schematic cross-sectional view taken along line VI-VI of the soundproof structure shown in FIG. 43A. It is a graph which shows the sound insulation characteristic of the soundproof cell from which the number of soundproof structures shown to FIG. 43A and 43B differs. It is a graph which shows the absorption characteristic of the soundproof cell from which the number of soundproof structures shown to FIG. 43A and 43B differs. It is typical sectional drawing of an example of the soundproof structure concerning Embodiment 8 of this invention. It is a graph which shows the shielding characteristic of the soundproof structure shown in FIG.
- FIG. 48B is a schematic sectional view taken along line VII-VII of the soundproof structure shown in FIG. 48A. It is a graph which shows the absorption characteristic of the soundproof cell from which the number of sound structures shown to FIG. 48A and FIG. 48B differs. It is typical sectional drawing of an example of the soundproof structure concerning Embodiment 10 of this invention.
- FIG. 50B is a schematic sectional view taken along line VIII-VIII of the soundproof structure shown in FIG. 50A. It is a graph which shows the absorption characteristic of the soundproof cell from which the number of sound structures shown to FIG. 50A and 50B differs.
- FIG. 57B is a side view of the soundproof cell unit shown in FIG. 57A. It is a perspective view which shows typically an example of the soundproof structure which concerns on Embodiment 15 of this invention. It is a perspective view which shows typically an example of the soundproof louver used for the soundproof structure which concerns on Embodiment 15 of this invention.
- FIG. 60 is a diagram schematically showing an example of a soundproof cell unit used in the soundproof louver according to FIG. 59.
- FIG. 60 is a diagram schematically showing an example of a soundproof cell unit used in the soundproof louver according to FIG. 59.
- FIG. 66 is a graph showing the sound absorption characteristics of the soundproof cell unit (configurations 1 to 3) shown in FIG. 66 is a graph showing the sound absorption / absorption characteristics of the soundproof cell unit (configurations 4 to 6) shown in FIG. It is a cross-sectional schematic diagram of an example of a soundproof member having a soundproof structure of the present invention. It is a cross-sectional schematic diagram of another example of the soundproof member having the soundproof structure of the present invention.
- FIG. 73 is a schematic cross-sectional view of an example of a removal state of the soundproof member shown in FIG. 72 from the wall. It is a top view which shows attachment / detachment of the unit unit cell in another example of the soundproof member with the soundproof structure of this invention.
- FIG. 77 is a side view of the soundproof cell shown in FIG. 76. It is a top view of an example of the soundproof cell of the soundproof structure of this invention.
- FIG. 79 is a schematic cross-sectional view taken along line AA of the soundproof cell shown in FIG. 78. It is a top view of other examples of a soundproof member with a soundproof structure of the present invention.
- FIG. 81 is a schematic cross-sectional view of the soundproofing member shown in FIG. 80 taken along line BB.
- FIG. 81 is a schematic cross-sectional view taken along the line CC of the soundproof member shown in FIG.
- FIG. 1 is a perspective view schematically showing an example of a soundproof structure according to Embodiment 1 of the present invention.
- 2 is a schematic cross-sectional view taken along line II of the soundproof structure shown in FIG. 1
- FIG. 3 is a schematic cross-sectional view of the soundproof cell shown in FIG.
- a soundproof structure 10 according to the first embodiment shown in FIG. 1 has a soundproofing having a frame 14 having a through hole 12 and a vibrating film 16 fixed to the frame 14 so as to cover one side of the hole 12.
- the cell 18 is placed in an aluminum tube 22 (the opening 22a thereof) which is an opening member of the present invention, and the membrane surface of the membrane 16 is set at a predetermined angle with respect to an opening cross section 22b (see FIG. 14 described later) of the tube 22.
- ⁇ 90 ° in the example shown in FIG. 2
- the tube body 22 is an opening member formed in a region of an object that blocks the passage of gas, but the tube wall of the tube body 22 separates an object that blocks the passage of gas, for example, two spaces.
- a wall of an object or the like is formed, and the inside of the tube body 22 forms an opening 22a formed in a partial region of the object that blocks passage of gas.
- the opening member preferably has an opening formed in the region of the object that blocks the passage of gas, and is preferably provided on a wall that separates the two spaces.
- an object that has a region where an opening is formed and blocks the passage of gas refers to a member that separates the two spaces, a wall, and the like, and the member refers to a member such as a tubular body or a cylindrical body.
- a fixed wall constituting a structure of a building such as a house, building, factory, etc.
- a fixed wall such as a fixed partition (partition) arranged in the room of the building and partitioning the room
- a building A movable wall such as a movable partition (partition) that is arranged in the room and partitions the room.
- the opening member of the present invention may be a tube body such as a duct or a cylinder, or may be a wall itself having an opening for attaching a ventilation hole such as a louver or a louver, a window, or the like. It may be an attachment frame such as a window frame to be attached.
- the shape of the opening of the opening member of the present invention is a cross-sectional shape and is circular in the illustrated example, but in the present invention, if the soundproof cell, that is, the soundproof cell unit can be arranged in the opening, it is not particularly limited.
- the soundproof cell that is, the soundproof cell unit can be arranged in the opening, it is not particularly limited.
- other quadrangles such as a square, rectangle, rhombus, or parallelogram, a triangle such as a regular triangle, an isosceles triangle, or a right triangle, a polygon including a regular polygon such as a regular pentagon, or a regular hexagon, or an ellipse
- the shape or the like may be used, or the shape may be indefinite.
- the material of the opening member of the present invention is not particularly limited, and metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, and alloys thereof, acrylic resin, poly Resin materials such as methyl methacrylate, polycarbonate, polyamideide, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, triacetyl cellulose, carbon fiber reinforced Plastic (CFRP: Carbon Fiber Reinforced Plastics), carbon fiber, and glass fiber reinforced plastics (GFRP), as well as building walls. Over door, mention may be made of the wall material and the like of the mortar and the like.
- CFRP Carbon Fiber Reinforced Plastics
- GFRP glass fiber reinforced plastics
- the frame 14 of the soundproof cell 18 is configured by a portion surrounding the hole 12.
- the frame 14 is formed so as to surround the through hole 12 in an annular shape, and is used to fix and support the film 16 so as to cover one side of the hole 12.
- the film 16 fixed to the frame 14 It becomes a node of membrane vibration. Therefore, the frame 14 is higher in rigidity than the film 16. Specifically, it is preferable that both the mass and the rigidity per unit area are high.
- the frame 14 is preferably a closed and continuous shape that can fix the film 16 so that the entire circumference of the film 16 can be suppressed.
- the present invention is not limited to this, and the frame 14 is not limited to this.
- the role of the frame 14 is to fix and support the membrane 16 to control the membrane vibration. Therefore, even if the frame 14 has a small cut or an unbonded portion, the effect can be obtained. Demonstrate.
- the shape of the hole 12 of the frame 14 is a planar shape and is a square in the illustrated example. However, in the present invention, the shape is not particularly limited.
- Regular triangles isosceles triangles, triangles such as right triangles, polygons including regular polygons such as regular pentagons, regular hexagons, circles, ellipses, etc. good.
- the film 16 is fixed to the frame 14 so as to cover the hole 12 at at least one end of the opened hole 12.
- both ends of the hole 12 of the frame 14 are not closed, and both are open to the outside, but only one end of the hole 12 is external. And the other end may be closed. In this case, the film 16 covering the hole 12 is fixed only to one end of the opened hole 12.
- Size L 1 of the hole 12 of such a frame 14 is not particularly limited, soundproofing object to be applied to the opening member is soundproof soundproof structure 10 of the present invention, for example, a copying machine, a blower, an air conditioning Equipment, ventilation fans, pumps, generators, ducts, industrial equipment such as various types of manufacturing equipment that emits sound, such as coating machines, rotating machines, conveyors, transportation equipment such as automobiles, trains, and aircraft, What is necessary is just to set according to general household devices, such as a refrigerator, a washing machine, a dryer, a television, a copy machine, a microwave oven, a game machine, an air conditioner, a fan, PC, a vacuum cleaner, an air cleaner.
- the soundproof structure 10 itself can be used like a partition to be used for the purpose of blocking sounds from a plurality of noise sources.
- the size L 1 of the frame 14 may be selected from the frequency of the noise of interest.
- the soundproof cell 18 composed of the frame 14 and the film 16 is preferably smaller than the wavelength of the first natural frequency of the film 16, and therefore, the soundproof cell 18 is made smaller than the wavelength of the first natural frequency. the, it is preferable to reduce the size L 1 of the frame 14 for.
- the size L 1 of the hole 12 is not particularly limited, but is preferably, for example, 0.5 mm to 300 mm, more preferably 1 mm to 100 mm, and most preferably 10 mm to 50 mm. .
- the width L 4 and the thickness (thickness) L 2 of the frame 14 are not particularly limited as long as the film 16 can be fixed and the film 16 can be reliably supported. It can be set accordingly.
- the width L 4 of the frame 14 is preferably 0.5 mm to 20 mm and more preferably 0.7 mm to 10 mm when the size L 1 of the hole 12 is 0.5 mm to 50 mm. It is preferably 1 mm to 5 mm.
- the width L 4 of the frame 14 is preferably 1 mm to 100 mm, more preferably 3 mm to 50 mm, more preferably 5 mm to 5 mm when the size L 1 of the hole 12 is more than 50 mm and 300 mm or less. Most preferably, it is 20 mm.
- the thickness L 2 of the frame 14, i.e. holes 12 is preferably 0.5 mm ⁇ 200 mm, more preferably 0.7 mm ⁇ 100 mm, and most preferably from 1 mm ⁇ 50 mm.
- the size L 1 of the frame 14 is set to the first value of the film 16 fixed to the soundproof cell 18.
- the size is preferably equal to or smaller than the wavelength of one natural vibration frequency.
- Size L 1 of the frame 14 of the soundproof cell 18 (hole portions 12) if the following sizes wavelength of the first natural frequency of the membrane 16, it takes a small sound pressure intensity unevenness to the film surface of the film 16 Therefore, it becomes difficult to induce the vibration mode of the film, which is difficult to control the sound. That is, the soundproof cell 18 can acquire high acoustic controllability.
- the size L 1 of the frame 14 (hole portions 12)
- the wavelength of the first natural vibration frequency of the film 16 fixed to the soundproof cell 18 is ⁇ , it is preferably ⁇ / 2 or less, more preferably ⁇ / 4 or less, and ⁇ / 8 or less. Most preferably it is.
- the material of the frame 14 is not particularly limited as long as the material can support the film 16, has strength suitable for application to the above-described soundproofing object, and is resistant to the soundproofing environment of the soundproofing object. It can be selected according to the object and its soundproof environment.
- metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, and alloys thereof, acrylic resin, polymethyl methacrylate, polycarbonate, polyamideid, Resin materials such as polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, triacetylcellulose, carbon fiber reinforced plastic (CFRP), carbon fiber, and Examples thereof include glass fiber reinforced plastic (GFRP). Further, these materials may be used in combination as the material of the frame 14.
- CFRP carbon fiber reinforced plastic
- GFRP glass fiber reinforced plastic
- a conventionally known sound absorbing material may be disposed in the hole 12 of the frame 14.
- the sound absorbing material is not particularly limited, and various known sound absorbing materials such as urethane plates and nonwoven fabrics can be used.
- a known sound absorbing material in combination with or together with the soundproof structure of the present invention, both the effects of the soundproof structure of the present invention and the effects of the known sound absorbing material are obtained. Obtainable.
- the film 16 is fixed to the frame 14 so as to cover the hole 12 inside the frame 14, and absorbs or reflects sound wave energy by vibrating the film in response to sound waves from the outside. And soundproofing.
- the membrane 16 since the membrane 16 needs to vibrate with the frame 14 as a node, the membrane 16 is fixed to the frame 14 so as to be surely suppressed, becomes an antinode of the membrane vibration, and absorbs or reflects sound wave energy to provide soundproofing.
- the membrane 16 is preferably made of a flexible elastic material. Therefore, the shape of the membrane 16 is in the form of a hole 12 of the frame 14 shown in FIG. 3, also, the size of the film 16 may be that the size L 1 of the frame 14 (hole portions 12).
- the thickness of the film 16 is not particularly limited as long as the film can vibrate in order to absorb sound wave energy to prevent sound.
- the film 16 is thick in order to obtain the natural vibration mode on the high frequency side, and on the low frequency side. In order to obtain a thin film, it is preferable to make it thin.
- the thickness L 3 of the film 16 shown in FIG. 3 can be set according to the size L 1 of the hole 12, that is, the size of the film 16.
- the thickness L 3 of the membrane 16 is preferably 0.001 mm (1 ⁇ m) to 5 mm when the size L 1 of the hole 12 is 0.5 mm to 50 mm, preferably 0.005 mm (5 ⁇ m) to 2 mm is more preferable, and 0.01 mm (10 ⁇ m) to 1 mm is most preferable.
- the thickness L 3 of the membrane 16 is preferably 0.01 mm (10 ⁇ m) to 20 mm when the size L 1 of the hole 12 is more than 50 mm and not more than 300 mm, and preferably 0.02 mm (20 ⁇ m). More preferably, it is ⁇ 10 mm, and most preferably 0.05 mm (50 ⁇ m) to 5 mm.
- the thickness of the film 16 is preferably expressed as an average thickness when the thickness of one film 16 is different.
- the film 16 fixed to the frame 14 of the soundproof cell 18 has a first natural vibration frequency which is a frequency of the lowest natural vibration mode that can be induced in the structure of the soundproof cell 18.
- the membrane 16 fixed to the frame 14 of the soundproof cell 18 has the smallest transmission loss of the membrane with respect to the sound field incident substantially perpendicularly to the membrane 16 which is the frequency of the lowest natural vibration mode. It has a resonance frequency having a low-order absorption peak, that is, a first natural vibration frequency. That is, in the present invention, at the first natural vibration frequency of the membrane 16, sound is transmitted and the absorption peak has the lowest frequency. In the present invention, this resonance frequency is determined by the soundproof cell unit 20 including the frame 14 and the film 16.
- the resonance frequency of the membrane 16 in the structure composed of the frame 14 and the membrane 16, that is, the membrane 16 fixed so as to be restrained by the frame 14, is that the sound wave is transmitted through the frequency at the place where the sound wave shakes most, and the lowest.
- the first natural vibration frequency is determined by the soundproof cell 18 including the frame 14 and the film 16.
- the first natural vibration frequency determined in this way is referred to as a first natural vibration frequency of the membrane.
- the first natural vibration frequency of the membrane 16 fixed to the frame 14 (for example, the boundary between the frequency region according to the rigidity law and the frequency region according to the mass side is the lowest first resonance frequency) is detected by human sound waves. It is preferably 10 Hz to 100000 Hz corresponding to the frequency range, more preferably 20 Hz to 20000 Hz, which is the audible range of human sound waves, still more preferably 40 Hz to 16000 Hz, and most preferably 100 Hz to 12000 Hz. preferable.
- the resonance frequency of the film 16 in the structure composed of the frame 14 and the film 16, for example, the first natural vibration frequency is the geometric form of the frame 14 of the soundproof cell 18, for example, the frame 14.
- the rigidity of the membrane 16 of the soundproof cell 18, for example, the thickness and flexibility of the membrane 16 and the volume of the space behind the membrane for example, as a parameter characterizing the natural vibration mode of the film 16, in the case of the film 16 of the same material, the ratio of the thickness (t) of the film 16 to the square of the size (R) of the hole 12, for example, positive In the case of a quadrangle, the ratio [R 2 / t] to the size of one side can be used.
- the natural vibration mode has the same frequency, that is, the same resonance frequency. Become. That is, by setting the ratio [R 2 / t] to a constant value, the scaling rule is established and an appropriate size can be selected.
- the Young's modulus of the film 16 is not particularly limited as long as the film 16 has elasticity capable of vibrating the film in order to absorb or reflect sound wave energy to prevent sound. It is preferable to make it large to obtain the high frequency side and to make it small to obtain the low frequency side.
- the Young's modulus of the film 16 can be set according to the size of the frame 14 (hole 12), that is, the size of the film.
- the Young's modulus of the film 16 is preferably 1000 Pa to 3000 GPa, more preferably 10,000 Pa to 2000 GPa, and most preferably 1 MPa to 1000 GPa.
- the density of the film 16 is not particularly limited as long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound, and for example, 5 kg / m 3 to 30000 kg / m 3. is preferably, more preferably 10kg / m 3 ⁇ 20000kg / m 3, most preferably 100kg / m 3 ⁇ 10000kg / m 3.
- the film 16 When the material of the film 16 is a film-like material or a foil-like material, the film 16 has strength suitable for application to the above-described soundproofing object, and is resistant to the soundproofing environment of the soundproofing object. As long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound, it is not particularly limited and can be selected according to the soundproof object and its soundproof environment.
- the material of the film 16 includes polyethylene terephthalate (PET), polyimide, polymethyl methacrylate, polycarbonate, acrylic (PMMA), polyamideide, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone.
- the film 16 is fixed to the frame 14 so as to cover the opening on at least one side of the hole 12 of the frame 14. That is, the film 16 may be fixed to the frame 14 so as to cover the opening on one side, the other side, or both sides of the hole 12 of the frame 14.
- the method of fixing the film 16 to the frame 14 is not particularly limited, and any method may be used as long as the film 16 can be fixed to the frame 14 so as to be a node of membrane vibration.
- a method using an adhesive or a physical And a method using a typical fixture In the method using an adhesive, the adhesive is applied on the surface surrounding the hole 12 of the frame 14, the film 16 is placed thereon, and the film 16 is fixed to the frame 14 with the adhesive.
- adhesives examples include epoxy adhesives (Araldite (registered trademark) (manufactured by Nichiban Co., Ltd.)), cyanoacrylate adhesives (Aron Alpha (registered trademark) (manufactured by Toagosei Co., Ltd.), etc.), acrylic adhesives, etc. Can be mentioned.
- a film 16 disposed so as to cover the hole 12 of the frame 14 is sandwiched between the frame 14 and a fixing member such as a rod, and the fixing member is fixed with a screw or a screw.
- the method of fixing to the frame 14 using a tool etc. can be mentioned.
- the soundproof cell 18 according to the first embodiment has a structure in which the frame 14 and the film 16 are configured as separate bodies and the film 16 is fixed to the frame 14. And the frame 14 may be integrated.
- the soundproof cell 18 of the present embodiment is configured as described above.
- the opening ratio of the soundproof structure 10 is preferably 10% or more, more preferably 25% or more, and further preferably 50% or more. Details of the “aperture ratio” will be described later. Further, the inclination angle ⁇ of the film surface of the film 16 with respect to the opening cross section 22b of the tubular body 22 is preferably 20 degrees or more, more preferably 45 degrees or more, and further preferably 80 degrees or more from the viewpoint of air permeability. . Details of the inclination angle ⁇ for inclining the film surface of the film 16 with respect to the opening cross section 22b of the tube body 22 will also be described later.
- the soundproof cell 18 is arranged in a position where the sound pressure generated by the sound wave of the first natural vibration frequency of the soundproof cell 18 in the tubular body 22 is high in the tubular body 22 which is an opening member.
- the sound wave of the first natural vibration frequency of the soundproof cell 18 is preferably arranged within ⁇ ⁇ / 4 from the position of the antinode of the sound pressure distribution of the standing wave formed in the tubular body 22, It is more preferable that it is arranged within / 6, it is more preferred that it is arranged within ⁇ ⁇ / 8, and it is most preferred that it is arranged at the antinode position of the sound pressure distribution of the standing wave.
- the soundproof cell 18 is separated from the object.
- the soundproof cell 18 is preferably disposed within ⁇ / 4 of the sound wave having the first natural vibration frequency, more preferably within ⁇ / 6, and most preferably within ⁇ / 8. .
- the soundproof cell 18 is preferably disposed within the ⁇ / 4 opening end correction distance ⁇ ⁇ / 4 of the sound wave of the first natural vibration frequency of the soundproof cell 18 from the open end, and ⁇ / 4 ⁇ opening end correction distance ⁇ ⁇ . Is more preferably within / 6, and most preferably within ⁇ / 4 ⁇ opening edge correction distance ⁇ ⁇ / 8.
- the soundproof structure 10 according to Embodiment 1 of the present invention is basically configured as described above.
- one soundproof cell 18 composed of one frame 14 having one hole 12 and one film 16 is arranged in the tube body 22 (the opening 22a thereof).
- the present invention is not limited to this, and a plurality of soundproof cells 18 may be arranged in the tube body 22.
- FIG. 4 is a perspective view schematically showing an example of a soundproof structure according to Embodiment 2 of the present invention.
- FIG. 5 is a schematic cross-sectional view taken along line II-II of the soundproof structure shown in FIG.
- a soundproof structure 10A according to the second embodiment shown in FIGS. 4 and 5 includes a frame 14 having a through hole 12, and a vibrating membrane 16 fixed to the frame 14 so as to cover one side of the hole 12.
- a plurality of soundproof cells 18A (18) having a number of the soundproof cell units 20 arranged in a row are provided as openings of the aluminum tube 22 (opening member of the present invention).
- the soundproof structure 10A according to the second embodiment shown in FIGS. 4 and 5 has one soundproof cell 18 arranged in the tube body 22 and the soundproof structure 10 according to the first embodiment shown in FIGS.
- the same components are denoted by the same reference numerals. The description is omitted.
- the plurality of soundproof cells 18A may be the same as or different from the soundproof cells 18 of the first embodiment, but have the same configuration. Therefore, the description is omitted.
- the soundproof cell unit 20 of the soundproof structure 10A shown in FIGS. 4 and 5 is composed of six soundproof cells 18A, but the present invention is not limited to this, and is composed of a plurality of soundproof cells 18A. Any number of the soundproof cells 18A may be used.
- a plurality of (six) holes 12 are provided in a rectangular and rod-shaped frame member 15 having a constant thickness, and the frame 14 of each soundproof cell 18A is It is constituted by a portion surrounding the hole 12.
- the plurality of frames 14 are configured as a frame, preferably a single frame, arranged so as to be two-dimensionally connected. Composed. 4 and 5, the plurality of frames 14 are arranged in a line, but the present invention is not limited to this and may be arranged two-dimensionally.
- the average size of the holes 12 may be used as the size of the holes 12. That is, the size L 1 of the frame 14 (hole portions 12) is such if it contains different sizes in each frame 14, preferably represents an average size.
- the width L 4 and the thickness L 2 of the frame 14 are preferably represented by an average width and an average thickness, respectively, when different widths and thicknesses are included in each frame 14.
- the number of the frames 14 of the soundproof cell unit 20 according to the second embodiment is not particularly limited, and may be set according to the above-described soundproof object of the soundproof structure 10A of the present invention.
- the number of the holes 12 in the frame 14 may be set according to the size of the hole 12.
- the number of frames 14 is preferably 1 to 10000, more preferably 2 to 5000, and most preferably 4 to 1000 when shielding the noise in the device.
- shielding refers to shielding by reflection and / or absorption.
- the size of a device is determined with respect to the size of a general device, in order to make the size of one soundproof cell 18A suitable for the noise frequency and volume, a plurality of soundproofing devices are used. This is because it is often necessary to shield with a frame body in which the cells 18A are combined. On the other hand, if the number of the soundproof cells 18A is excessively increased, the overall weight of the frame 14 may increase. On the other hand, in a structure like a partition with no restriction on the size, the number of frames 14 can be freely selected according to the required overall size.
- the number of frames 14 of the soundproof cell unit 20 of the present embodiment can be referred to as the number of soundproof cells 18A.
- the material of the frame member 15 the same material as the material of the frame 14 of the first embodiment can be used.
- a material of the frame 14 that is, a material of the rod-shaped soundproof frame member 15, a plurality of materials of the frame 14 described in the first embodiment may be used in combination.
- the six films 16 are fixed so as to cover the respective holes 12 of the plural (six) frames 14, but as shown in FIG. It may be fixed so as to cover each hole 12 of a plurality (six) of frames 14 by a sheet-like film body 17, or each film 16 may be fixed so as to cover the holes 12 of each frame 14. May be. That is, the plurality of films 16 may be constituted by a single sheet-like film body 17 that covers the plurality of frames 14, or may cover the holes 12 of each frame 14. .
- the thickness of the film 16 is preferably expressed as an average thickness when different thicknesses are included in each film 16.
- the film 16 is fixed to the frame 14 so as to cover the opening on at least one side of the hole 12 of the frame 14.
- the film 16 may be fixed to the frame 14 so as to cover the opening on one side, the other side, or both sides of the hole 12 of the frame 14.
- all the films 16 may be provided on the same side of the holes 12 of the plurality of frames 14 of the soundproof cell unit 20, or some of the films 16 may be a part of the holes of the plurality of frames 14.
- a part of the film 16 may be provided on one side of the frame 12, and the remaining film 16 may be provided on the other side of the remaining part of the holes 12 of the plurality of frames 14.
- 14 holes 12 may be mixed with films provided on one side, the other side, and both sides.
- the soundproof cell 18A of the second embodiment has a structure in which the film 16 is fixed to each of the plurality of frames 14 or a structure in which the plurality of frames 14 are covered with a single sheet-like film body 17, but this is not limitative.
- a structure in which the film 16 or the film body 17 made of the same material and the frame 14 are integrated may be used.
- the film 16 fixed to the frame 14 of the soundproof cell 18 is the first natural vibration mode frequency that can be induced in the structure of the soundproof cell 18. It has a natural vibration frequency.
- the first natural vibration frequency is determined by the soundproof cell unit 20 in which a plurality of soundproof cells 18A including the frame 14 and the film 16 are arranged.
- the first natural vibration frequency determined in this way is the first natural vibration frequency of the membrane as described above.
- the resonance frequency of the film 16 in the structure composed of the frame 14 and the film 16 for example, the first natural vibration frequency is the geometric form of the frame 14 of the plurality of soundproof cells 18A, For example, it can be determined by the shape and size (size) of the frame 14 and the rigidity of the film of the plurality of soundproof cells, for example, the thickness and flexibility of the film and the volume of the space behind the film.
- the soundproof structure 10A according to the second embodiment of the present invention is configured as described above.
- the soundproof structure 10 according to the first embodiment and the soundproof structure 10A according to the second embodiment use the soundproof cells 18 and 18A in which the film 16 covers only one end face of the hole 12, respectively, but is not limited thereto.
- a soundproof cell in which both end faces of the hole 12 are covered with the film 16 may be used.
- FIG. 6 is a perspective view schematically showing an example of a soundproof structure according to Embodiment 3 of the present invention.
- 7 is a schematic cross-sectional view taken along line III-III of the soundproof structure shown in FIG.
- the soundproof structure 10B of the third embodiment shown in FIGS. 6 and 7 includes a frame 14 having a through hole 12 and a vibrating film 16 (16a) fixed to the frame 14 so as to cover both surfaces of the hole 12. And 16b), the film 16 of the film 16 is inclined with respect to the opening cross section 22b of the tube 22 in the aluminum tube 22 (the opening 22a) of the aluminum which is the opening member of the present invention.
- the tube 22 has a structure in which an opening 22a in the tube body 22 is provided with a region serving as a ventilation hole through which gas passes.
- the soundproof structure 10B of the third embodiment shown in FIGS. 6 and 7 is the same as that of the first embodiment shown in FIG. 1 except that the same film 16 (16a and 16b) is fixed to both surfaces of the hole 12 of the frame 14. Since it has the same configuration as that of the soundproof structure 10, the same components are denoted by the same reference numerals, and the description thereof is omitted. Since the films 16a and 16b of the soundproof cell 18B of the third embodiment have the same configuration as the film 16 of the soundproof cell 18 of the first embodiment, the description thereof is omitted.
- the first natural vibration frequency of the soundproof structure 10B is determined by the soundproof cell 18B including the frame 14 and the films 16a and 16b, and thus determined 2 Since the first natural vibration frequencies of the two films 16a and 16b are the same, the same first natural vibration frequency is referred to as the first natural vibration frequency of the film.
- the soundproof structure 10B of Embodiment 3 of the present invention is configured as described above.
- the same film 16 (16a and 16b) is used on both surfaces of the hole 12 of the frame 14, but the films 16a and 16b.
- the film rigidity and / or the soundproof characteristics are changed, and the first characteristic of the two films
- a soundproof structure having a different vibration frequency may be used.
- the soundproof structure 10B according to the modified example of the present embodiment has different first natural vibration frequencies of the two films, but the lower first natural vibration frequency is used as the first natural vibration frequency that represents the soundproof structure 10B. Also good.
- FIG. 8 is a perspective view schematically showing an example of a soundproof structure according to Embodiment 4 of the present invention.
- 8 is a schematic cross-sectional view taken along line IV-IV of the soundproof structure shown in FIG.
- the soundproof structure 10C according to the fourth embodiment shown in FIGS. 8 and 9 includes a frame 14 having a through hole 12 and a vibrating membrane 16 (16a) fixed to the frame 14 so as to cover both surfaces of the hole 12.
- 16b in the example shown in FIGS. 8 and 9, six soundproof cell units 20C arranged in a row are connected to an aluminum tube 22 (opening member of the present invention).
- the membrane surface of the membrane 16 is inclined with respect to the opening cross section 22b of the tubular body 22, and the opening 22a in the tubular body 22 is provided with a region serving as a vent hole through which gas passes.
- the same film 16 (16a and 16b) is fixed on both surfaces of the hole 12 of the frame 14 as a plurality of soundproof cells 18C of the soundproof cell unit 20C.
- 6 and 7 has the same configuration as the soundproof structure 10A of the second embodiment shown in FIGS. 4 and 5 except that the soundproof cell B of the soundproof structure 10B of the third embodiment shown in FIGS. Therefore, the same components are denoted by the same reference numerals, and the description thereof is omitted.
- the soundproof cell unit 20C of the fourth embodiment has the same configuration as the soundproof cell unit 20 of the second embodiment, except that the soundproof cell film is different on one side or both sides.
- the same sheet-like film body 17 (17a and 17b) is attached to both surfaces of the soundproof structure 10A of the second embodiment shown in FIG. It has the same structure except that the membrane 16 (16a and 16b) is fixed. Therefore, the films 16a and 16b of the soundproof cell 18C of the fourth embodiment have the same configuration as the films 16a and 16b of the soundproof cell 18B of the second embodiment. Therefore, individual descriptions of these components are omitted.
- the plurality of soundproof cells 18C may be provided with the film 16 all on the same side of the holes 12 of the plurality of frames 14, or may be a part of the holes of the plurality of frames 14.
- the film 16 may be provided on one side of the frame 12, 16 may be provided on the other side of the remaining holes 12 of the plurality of frames 14, and one of the holes 12 of the frame 14 may be provided.
- membrane provided in the side, the other side, and both sides may be mixed.
- the first natural vibration frequency of the soundproof structure 10B is determined by the soundproof cell 18B composed of the frame 14 and the membranes 16a and 16b. Since the determined first natural vibration frequency of the two films 16a and 16b is the same, the same first natural vibration frequency is referred to as the first natural vibration frequency of the film.
- the soundproof structure 10C of the fourth embodiment is configured as described above.
- FIG. 10 is a perspective view schematically showing an example of a soundproof structure according to Embodiment 5 of the present invention.
- FIG. 11 is a schematic cross-sectional view taken along line VV of the soundproof structure shown in FIG.
- sheet-like film bodies 17c and 17d having different thicknesses are attached to both surfaces of the hole 12 of the frame 14, and the films 16c having different thicknesses are respectively attached.
- 8D and 9D except that a plurality of, for example, six soundproof cells 18D to which 16d are fixed are used, and the soundproof structure 10C of the fourth embodiment shown in FIGS. 8 and 9 is used. Therefore, other detailed explanation is omitted.
- the soundproof cell unit 20D of the soundproof structure 10D of the fifth embodiment can have a soundproof structure in which the first natural vibration frequencies of the two films 16c and 16d are different.
- the soundproof structure 10D of the fifth embodiment has first natural vibration frequencies different from each other of the two films 16c and 16d, but the first natural vibration frequency of the lower order is represented by the first natural vibration frequency representing the soundproof structure 10B. It is also good.
- the soundproof structure 10D according to the fifth embodiment of the present invention is configured as described above.
- the soundproof structure 10D of the fifth embodiment shown in FIG. 10 has two films 16 (16c and 16d) of the same material having different film thickness on both surfaces of the hole 12 of the frame 14, that is, two films by changing the film thickness.
- the films having different first natural vibration frequencies (resonance frequencies) 16c and 16d are fixed, but the film stiffness is changed by changing the film material, or the size, width, thickness, and frame of the frame 14 are changed.
- the soundproof characteristics of the soundproof cell 18D can be changed, and a soundproof structure in which the first natural vibration frequencies (resonance frequencies) of the two films are different can be obtained.
- the soundproof cells 18 and 18A to 18D shown in the first to fifth embodiments are composed of a hexahedral frame 14 having one hole 12 having two openings.
- the present invention is not limited to this.
- a soundproof cell having holes with 3 to 6 openings in the face frame 14 may be used.
- the soundproof cell having holes having 3 to 6 openings in the hexahedron frame 14 it may further include 3 to 6 films for fixing the 3 to 6 faces.
- the soundproof structure 10 shown in the first embodiment has not only a high sound absorption effect by the soundproof cell 18, but also a sound radiated from the film of the soundproof cell 18, a sound passing through the tubular body 22, that is, a sound transmitted through the soundproof cell 18. Has the effect of causing interference and high reflection, so that a high transmission loss can be obtained.
- the soundproof structure single-sided PET 50 ⁇ m / 100 ⁇ m / 188 ⁇ m
- FIGS. 20B and 20D at the second natural vibration frequency (2000 to 4000 Hz).
- the sound absorption rate (sound absorption rate) shown in FIG. 20F is 50% (corresponding to transmission loss of 3 dB) or less, and the transmission loss shown in FIGS. 20A, 20C and 20E is 5 to 25 dB.
- a big value has come out. This is presumably because the sound radiated from the film of the soundproof cell 18 interferes with the sound transmitted through the soundproof cell 18 to cause high reflection. Details of FIGS. 20A to 20F will be described later.
- FIG. 12A is a graph showing the sound absorption characteristics of the soundproof structure 10A of the second embodiment
- FIG. 12B is a graph showing the sound insulation characteristics of the soundproof structure 10A of the second embodiment.
- the absorption peak of the sound wave in which the three absorptance peaks (maximum) appears from the low frequency side
- FIG. 12B the low frequency From the side
- the sound absorption structure 10A of the second embodiment has a peak (maximum) sound absorption (absorption rate) at the three absorption peak frequencies, the sound of a certain frequency band centered on each absorption peak frequency is selectively soundproofed.
- the shielding (transmission loss) has a peak (maximum) at the three shielding peak frequencies, it is possible to selectively prevent sound in a certain frequency band centered on each shielding peak frequency. .
- the absorptance and transmission loss (dB) in the soundproof structure 10A of Embodiment 2 were measured as follows.
- the acoustic characteristics were measured by a transfer function method using four microphones 32 in an aluminum acoustic tube (tube body 22). This method conforms to “ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method”.
- an aluminum tube 22 was used as the same measurement principle as that of WinZac manufactured by Nittobo Acoustic Engineering Co., Ltd.
- a cylindrical box 36 containing a speaker 34 was placed inside the tube 22, and the tube 22 of the box 36 was placed.
- a sound with a predetermined sound pressure was output from the speaker 34 and measured with four microphones 32. With this method, sound transmission loss can be measured in a wide spectral band.
- the soundproof cell unit 20 of the second embodiment is disposed at a predetermined measurement site of the tube body 22 serving as an acoustic tube with the film surface of the film 16 (17) of the soundproof cell 18A (18) inclined, and the soundproof structure of the second embodiment. 10A was configured, and the sound absorption rate and transmission loss were measured in the range of 100 Hz to 4000 Hz.
- the soundproof structure 10 ⁇ / b> A of the second embodiment of the present invention used for acoustic measurement has a soundproof cell unit 20 covering the film surface of the film 16 in a tube 22 made of aluminum having a diameter of 4 cm. It is arranged to be inclined with respect to the opening cross section 22b (see FIG. 14).
- the soundproof cell unit 20 has a 250 ⁇ m PET film to be a film 16 fixed to one side of a hole 12 of an acrylic frame 14 having a thickness of 12 mm provided with six 20 mm square through holes 12 by a double-sided adhesive tape. Has been. It has a configuration in which six soundproof cells are connected.
- the height of the soundproof cell unit 20 and the height of the frame 14 (that is, L 1 + L 4 ⁇ 2 in FIG. 3) are 35 mm.
- the soundproof structure 10A of the second embodiment as shown in FIG. 12A, it can be seen that there are absorption peaks at about 1776 Hz, about 2688 Hz, and about 3524 Hz. Further, as shown in FIG.
- the aperture ratio of the soundproof structure of the present invention is defined by the following formula (1).
- the aperture ratio defined by the following formula (1) is about 67%.
- Opening ratio (%) ⁇ 1 ⁇ (cross-sectional area of soundproof cell unit in opening cross section / opening cross-sectional area) ⁇ ⁇ 100 ...
- the aperture ratio (%) is expressed by the product of the opening dimension A ′ and the width dimension W ′ between the upper mounting portion 25a and the uppermost inclined portion 26 in the gallery 24 shown in FIGS. 15A and 15B.
- Opening ratio (%) ⁇ (A ′ + 7 ⁇ B ′ + C ′) ⁇ W ′ / (h ⁇ w) ⁇ ⁇ 100 (2)
- the above equation (2) is given by the following equation (3).
- Opening ratio (%) ⁇ (A ′ + 7 ⁇ B ′ + C ′) / h ⁇ ⁇ 100 (3)
- the soundproof cell 18A of the soundproof cell unit 20 (hereinafter simply represented by the soundproof cell 18) is formed in the membrane 16 (in FIG. 14).
- the film surface of the sheet-like film body 17) is disposed so as to be inclined at a predetermined inclination angle ⁇ with respect to the opening cross section 22b of the tube body 22.
- the gap formed between the membrane surface of the inclined soundproof cell 18 shown in FIG. 14 (sheet-like film body 17) and the tube wall of the tube body 22 is a gas formed in the opening 22a of the tube body 22. It becomes a vent hole that can pass through.
- the opening ratio of the vent is preferably 10% or more, more preferably 25% or more, and further preferably 50% or more.
- the reason why the aperture ratio of the air holes is preferably 10% or more is that the aperture ratio of a commercially available soundproof member having air permeability (Air Tooth (registered trademark)) is about 6%. This is because high soundproofing performance can be exhibited even at an aperture ratio of two digits or more which is not found in the conventional (commercially available product).
- the reason why the opening ratio of the air holes is preferably 25% or more is that the soundproof structure of the present invention can exhibit high soundproofing performance even at an opening ratio of 25% to 30% of a standard sash or gutter. It is.
- the reason why the opening ratio of the air holes is preferably 50% or more is that the soundproof structure of the present invention can exhibit high soundproofing performance even at an opening ratio of 50 to 80% of a highly breathable sash or gutter. It is.
- the inclination angle ⁇ is preferably 20 degrees or more, more preferably 45 degrees or more, and further preferably 80 degrees or more from the viewpoint of air permeability.
- the reason why the inclination angle ⁇ is preferably 20 degrees or more is that when the device cross section (film surface of the film 16) of the soundproof cell 18 of the soundproof cell unit 20 is equal to the opening cross section 22b, the inclination angle ⁇ is 20 °.
- the reason why the inclination angle ⁇ is more preferably 45 degrees or more is that the standard sash and louver angles in consideration of the air permeability are about 45 degrees.
- the reason why 80 degrees or more is more preferable is that the influence of the constant pressure applied to the film 16 by the wind can be suppressed to a minimum, and the change in the soundproofing characteristics can be suppressed even when the wind speed increases. Further, as shown in FIG. 16, when the angle is 80 degrees or more, the wind speed is not reduced and the ventilation capacity is highest.
- the wind speed with respect to the inclination angle of the disk corresponding to the film surface shown in FIG. 16 is measured by the flow velocity measuring system shown in FIGS. 18A and 18B.
- a disk 27 corresponding to the sheet-like film body 17 constituting the film 16 is disposed inside the tube body 22 at an inclination angle ⁇ , and the tube body 22 is opened.
- a sending machine 28 is arranged on one opening end side of 22a, an anemometer 30 is arranged on the other opening end, and air is sent from the sending machine 28 at a predetermined wind speed, and the anemometer 30 measures the wind speed.
- the gap formed between the disk 27 and the tube wall of the tube body 22 is increased, and the air holes are also increased, so that the wind speed is increased.
- the vent hole is also maximum and the wind speed is maximum (1.68 m / s). Therefore, in the graph shown in FIG. 16, the wind speed on the vertical axis indicates that the inclination angle ⁇ is 90 degrees. This is standardized by the wind speed.
- the dependency of the sound insulation performance of the soundproof structure shown in FIG. 17 on the inclination angle of the film surface is, as shown in FIG. 19, the soundproof cell 18 of the soundproof cell unit 20 of the soundproof structure 10A of the second embodiment, that is, the embodiment. It can be obtained by measuring the transmission loss by changing the inclination angle ⁇ of the film surface of the film 16 fixed to one surface of the hole 12 of the frame 14 of the soundproof cell 10 of one soundproof structure 10 with respect to the sound wave traveling direction. it can.
- the soundproof cell constituting the soundproof cell unit 20 of the second embodiment that is, the film surface of the soundproof cell 18 of the soundproof structure 10 of the first embodiment is directed in the traveling direction of the sound wave indicated by the arrow.
- the transmission loss was measured by the measurement system shown in FIG. FIG. 22 shows the sound wave incident angle dependence of the sound insulation characteristics (transmission loss) of the sound insulation cell of the sound insulation structure 10 of Embodiment 1 obtained.
- the measured soundproof cell 18 has the same configuration as the soundproof cell 18 in the soundproof cell unit 20 of the second embodiment, but penetrates a 20 mm cubic block (frame member 15) made of vinyl chloride with a size of 16 ⁇ 16 mm.
- a PET film having a thickness of 100 ⁇ m is fixed as a film 16 on one side of the frame 14 in which the hole 12 is formed with a double-sided adhesive tape.
- the soundproof cell transmission loss
- the soundproof cell 18 was measured while the soundproof cell 18 was tilted with respect to the opening cross section 22b of the tubular body 22 in the tubular body 22 which is an acoustic tube, and the sound wave incident angle was changed.
- the shielding peak frequency on the high frequency side is as low as about 3465, about 3243, and about 3100 Hz. It turns out that it becomes frequency.
- the shielding peak frequency can be adjusted by inclining the film surface of the film 16 with respect to the opening cross section 22b.
- the soundproof structure 10B shown in the third embodiment has not only a high sound absorption effect by the soundproof cell 18B, but also a sound radiated from the film of the soundproof cell 18B and a sound passing through the tubular body 22, that is, soundproofing. Since there is an effect that the sound transmitted through the cell 18B interferes and causes high reflection, a high transmission loss can be obtained. Also, the soundproof structure of the modification of the third embodiment has the same effect as the soundproof structure 10B of the third embodiment.
- the soundproof structure (double-sided PET 50 ⁇ m) having the same structure as the soundproof structure 10B shown in Embodiment 3 has a sound absorption rate of about 45% (corresponding to a transmission loss of 2 dB) in the vicinity of about 1500 Hz, as shown in FIG. 34A. Nevertheless, the transmission loss shown in FIG. 34B has a high value of 4 to 5 dB. Details of FIGS. 34A and 34B will be described later. Further, the soundproof structure (PET 50 ⁇ m + acrylic 2 mm) having the same structure as the soundproof structure shown in the modification of the third embodiment also has a sound absorption rate of 50% (equivalent to a transmission loss of 2 dB) in the vicinity of about 1100 Hz, as shown in FIG. 34A. Despite the degree, the transmission loss shown in FIG. 34B has a high value of 7 dB. This is presumably because the sound radiated from the film of the soundproof cell 18 interferes with the sound transmitted through the soundproof cell 18 to cause high reflection.
- FIG. 23A shows a sound absorption characteristic of the soundproof structure 10C of the fourth embodiment shown in FIG. 8, and FIG. 23B shows a graph showing the sound insulation characteristic of the soundproof structure 10C of the fourth embodiment.
- the soundproof cell unit 20C of the soundproof structure 10C according to the fourth embodiment shown in FIG. 8 is the same as the soundproof cell unit 20A of the soundproof structure 10A of the second embodiment, but a 250 ⁇ m thick PET film is formed on both surfaces of the frame 14. It is fixed with a double-sided adhesive tape to form films 16a and 16b.
- FIG. 23A and FIG. 23B show the results of measuring the absorptance and transmission loss with the measurement system shown in FIG.
- the PET film is bonded to both sides of the frame 14 to form the films 16a and 16b, whereby the absorption peak can be lowered, and this is preferable compared to the second embodiment. Further, it is preferable to close both surfaces with the PET film films 16a and 16b because dust can be prevented from entering the hole 12 of the frame 14.
- a PET film film 16 (16a and 16b) having a thickness of 188 ⁇ m is provided on both sides of a frame 14 having five holes 12 each having a 25 mm square penetrating in the same structure as the soundproof cell unit 20C of the fourth embodiment.
- a soundproof cell unit 20C composed of five soundproof cells 18C fixed to the inside is arranged in a tube body 22 which is an acoustic tube having an inner diameter of 8 cm and a diameter of 4 cm to constitute another embodiment of the soundproof structure 10C. Results of measuring the loss with the measurement system shown in FIG. 13 are shown in FIGS. 24A and 24B. As shown in FIGS.
- the aperture ratio according to the above equation (1) is 91% for an 8 cm acoustic tube and 66% for a 4 cm acoustic tube, but as much as 91%. Despite the rate, as much as 45% can be absorbed at about 1570 Hz.
- a PET film film 16 (16a and 16b) having a thickness of 188 ⁇ m is formed on both sides of a frame 14 having a width of 150 mm, in which five 25 mm square through holes 12 are perforated in two rows.
- FIG. 25 shows a loss amount (dB) (20 ⁇ log (sound pressure when there is no cell unit 20C / sound pressure when there is a cell unit 20C)) when the soundproof cell unit 20C is inserted.
- dB loss amount
- the frame 14 having a frame size of 16 mm and a frame thickness of 20 mm has a film thickness.
- a soundproof cell 18B having 188 ⁇ m PET film films 16 (16a and 16b) fixed on both sides thereof is inserted into a tube 22 serving as an acoustic tube having an inner diameter of 4 cm, and an aluminum plate having a thickness of 5 cm.
- the relationship between the distance D of the soundproof cell 18B from the wall 38 and the sound absorption rate of the soundproof cell 18B is shown in the dot plot of FIG. Note that the solid line shown in FIG. 28 is the sound pressure distribution of the standing wave formed in the tubular body 22 by the sound wave of about 1785 Hz which is the first natural vibration frequency of the film fixed to the soundproof cell 18B. Since the wall 38 is the fixed end of the sound wave, the sound pressure of the wall surface of the wall 38 is maximum, that is, the antinode of the standing wave, and the sound pressure at the position ⁇ / 4 away from the wall surface of the wall 38 is minimum, that is, constant. It becomes a node of standing waves.
- a PET film film 16c having a film thickness of 50 ⁇ m is formed on a frame 14 having a frame size of 16 mm and a frame thickness of 20 mm in the same configuration as that of one soundproof cell 18D constituting the soundproof unit cell 20D of the modification of the fifth embodiment.
- a soundproof cell 18D fixed on one side and having an acrylic plate (film) 16d having a thickness of 2 mm fixed on the other side is inserted into a tube 22 serving as an acoustic tube having an inner diameter of 4 cm.
- the speaker 34 was arranged on the end face of the tube body 22, a predetermined sound pressure was output, and the soundproof performance (transmission loss) was measured with one microphone 32 arranged on the opening side.
- the measurement of the transmission loss of the soundproof cell 18D was performed by changing the distance D from the open end of the soundproof cell 18D.
- the transmission loss was calculated from the sound pressure ratio between when the soundproof cell 18D was arranged in the tubular body 22 and when it was not arranged.
- the relationship between the distance D between the soundproof cell 18D and the open end of the tubular body 22 and the transmission loss at the transmission loss peak frequency of about 1135 Hz of the soundproof cell 18D is shown in the dot plot of FIG. Note that the solid line shown in FIG. 30 is the sound pressure distribution of the standing wave formed in the tubular body 22 by the sound wave having the first natural vibration frequency of 1135 Hz of the film of the soundproof cell 18D. Unlike the case of the tubular body 22 having a fixed end shown in FIG. 27, the end face of the tubular body 22 shown in FIG. 29 is open, and this end face becomes a free end of sound waves.
- the pressure is minimum, that is, a node of a standing wave
- the sound pressure at a position away from the end face of the tube 22 by ⁇ / 4 is maximum, that is, an antinode of the standing wave.
- the peak of the standing wave and the peak of the transmission loss plot in FIG. 30 are shifted by about 15 mm. This is because the end of the standing wave is about 12 mm outside the open end.
- the soundproof cell is arranged at a position where the sound pressure is high (standing wave antinode) in the tubular body 22 which is an opening member, a high transmission loss with a high sound absorption rate is obtained. It was found that As shown in the results of FIG. 30, when the open end of the tubular body 22 becomes the free end of the sound wave, the standing wave end shifts to the outside of the open end of the tubular body 22. It is preferable to arrange the soundproof cell at a position where the distance (opening end correction distance) between the end of the opening and the opening end is adjusted. That is, as shown in the result of FIG.
- the wall 38 serves as a fixed end of the sound wave.
- the sound wave is disposed within the ⁇ / 4 opening end correction distance ⁇ ⁇ / 4 of the sound wave of the first natural vibration frequency of the soundproof cell from the open end, and within the ⁇ / 4 opening end correction distance ⁇ ⁇ / 6. Is more preferable, and it is most preferable that it is disposed within the ⁇ / 4 ⁇ opening end correction distance ⁇ ⁇ / 8.
- FIG. 31 shows the progress of sound waves indicated by arrows on the film surface of one soundproof cell 18C constituting the soundproof unit cell 20C of the fourth embodiment, that is, the soundproof cell 18B of the soundproof structure 10B of the third embodiment.
- the absorptance was measured with the measurement system shown in FIG. 13 while inclining at a predetermined inclination angle with respect to the direction, and the dependence of the sound absorption characteristics (absorption rate) on the sound wave incident angle was determined.
- FIG. 32 shows the sound wave incident angle dependence of the sound absorption characteristics (absorption rate) of the soundproof cell 18B of the soundproof structure 10B of the third embodiment obtained.
- the measured soundproof cell 18B is made of a PET film having a thickness of 100 ⁇ m on both sides of a frame 14 in which a hole 12 of 16 ⁇ 16 mm is formed in a 20 mm cubic block (frame member 15) made of vinyl chloride.
- the membrane 16 (16a and 16b) is fixed with a double-sided adhesive tape.
- the soundproof cell 18B is placed in a tube 22 which is an acoustic tube, and the film surface of the film 16 (16a and 16b) is tilted with respect to the opening cross section 22b of the tube 22 to change the sound incident angle (absorption rate). ) was measured.
- Embodiments 3 and 4 are preferable when sound that randomly propagates through the tube 22 (other than plane waves) or sound waves of various incident angles such as louvers are soundproofed.
- FIG. 33A A graph showing the sound absorption characteristics of the soundproof structure 10C of the fourth embodiment shown in FIG. 8 and the soundproof structure 10D of the fifth embodiment shown in FIG. 10 is shown in FIG. 33A, and a graph showing the sound insulation characteristics is shown in FIG. 33B.
- the two soundproof structures 10C of the fourth embodiment in which PET films having a thickness of 250 ⁇ m and 100 ⁇ m are fixed as the films 16 (16a and 16b) on both surfaces of the frame 14 of the soundproof cell 18C of the soundproof structure 10C of the fourth embodiment, respectively.
- FIG. 33A and FIG. 33B show the results of measuring the absorption rate and transmission loss of two soundproof structures 10D with the measurement system shown in FIG.
- both the absorption rate and the transmission loss are absorption and shielding peaks in each of the two soundproof structures 10C of the fourth embodiment configured only by PET films having both sides of 250 ⁇ m and 100 ⁇ m. There is a slight frequency shift, but the spectrum is overlapped. As described above, it is preferable to change the vibration condition with the soundproof cell 18C as in the soundproof cell 18D because it is possible to widen the band.
- the soundproof structure 10C of the fourth embodiment of the PET film alone of 250 ⁇ m and 100 ⁇ m there were two or one absorption / shielding peak, but 250 ⁇ m as in the soundproof structure 10D of the fifth embodiment. It can be seen that there are three absorption / shielding peaks by combining a 100 ⁇ m PET film.
- Embodiment 5 by using PET films having different film thicknesses as the film 16, an absorption spectrum in which the absorption rates of the respective films overlap can be obtained.
- Such different resonance frequencies can be obtained not only by the film thickness but also by changing the film rigidity depending on the film material and the frame size.
- the film 16a is a PET film having a thickness of 50 ⁇ m
- the film 16b is an acrylic plate having a thickness of 2 mm
- the resonance frequencies of the two films 16 are greatly different, that is, the soundproofing of the modification of the third embodiment.
- FIG. 34A and FIG. 34B show the results of measuring the absorptance and transmission loss of the cell using the measurement system shown in FIG.
- the absorption peak and transmission loss peak (about 1455 Hz) on the low frequency side when the film 16 is a PET film having a thickness of 50 ⁇ m on both sides are two.
- the resonance frequencies of the two films 16 are greatly different (when a PET film having a thickness of 50 ⁇ m and an acrylic plate having a thickness of 2 mm are used, that is, in the case of the modification of the third embodiment), the frequency is shifted to about 1120 Hz. I understand that.
- the film 16 of the soundproof cell 18B is a PET film on both sides, the thickness of the film 16 on both sides is variously changed, and the absorption rate is measured with the measurement system shown in FIG.
- the film 16d of the soundproof cell 18B is an acrylic plate having a thickness of 2 mm, the thickness of the PET film of the film 16c is variously changed, and the absorption rate is measured by the measurement system shown in FIG. Shown in FIG. 36 shows the relationship between the absorption peak frequency on the low frequency side and the thickness of the PET film.
- the structures in which the resonance frequencies of the two films 16 are different as in the modified example of the third embodiment, the fifth embodiment, and the modified example of the fifth embodiment have the absorption peak frequency without increasing the frame size. It can be seen that it is preferable to lower the frequency.
- the film 16 of the soundproof cell 18B is a PET film on both sides, and the transmission loss (dB) is measured by the measurement system shown in FIG. 13 by changing the thickness of the film 16 in various ways.
- FIG. 37 shows a transmission loss (dB) in a modification of the third embodiment, in which the film 16a of the soundproof cell 18B is an acrylic plate having a thickness of 2 mm, and the thickness of the PET film of the film 16b is variously changed.
- the results measured with the measurement system are shown in FIG.
- FIG. 39 shows the relationship between the transmission loss (dB) at the shielding peak of each soundproof structure and the film thickness ( ⁇ m) of the PET film.
- the shielding peak is generated on the lower frequency side as the thickness of the film 16 is thinner.
- the shielding peak of the third embodiment in which the films 16 on both sides have the same configuration has a larger value than that of the modification of the third embodiment in which the resonance frequencies of the two films 16 are different. I understand. That is, it can be seen that a large transmission loss can be obtained. From these results, it can be seen that the soundproof structure 10B of the third embodiment in which the films 16 on both sides have the same configuration is preferable for obtaining a large transmission loss effect.
- FIG. 40 shows a soundproof structure in which the film 16c of the soundproof cell 18D is a 125 ⁇ m thick PET film, the film 16d is a 2 mm thick acrylic plate, the film 16c is a 50 ⁇ m thick PET film, and the film 16d is a 2 mm thick acrylic plate.
- FIG. 13 shows the results of measuring the absorption rate of the soundproof structure and the soundproof structure in which the film 16c is a PET film having a thickness of 50 ⁇ m and the film 16d is a PET film having a thickness of 125 ⁇ m.
- FIG. 40 shows a soundproof structure in which the film 16c of the soundproof cell 18D is a 125 ⁇ m thick PET film, the film 16d is a 2 mm thick acrylic plate, the film 16c is a 50 ⁇ m thick PET film, and the film 16d is a 2 mm thick acrylic plate.
- FIG. 13 shows the results of measuring the absorption rate of the soundproof structure and the soundproof structure in which the film 16c is
- FIG. 41 shows a soundproof structure in which the film 16c of the soundproof cell 18D is a PET film having a thickness of 100 ⁇ m, the film 16d is an acrylic plate having a thickness of 2 mm, and the film 16c is a PET film having a thickness of 50 ⁇ m, and the film 16d has a thickness of 2 mm.
- FIG. 13 shows the results of measuring the absorption rate of each of the soundproof structure using an acrylic plate and the soundproof structure using the film 16c as a 50 ⁇ m thick PET film and the film 16d as a 100 ⁇ m thick PET film.
- the absorption peak frequency of a soundproof structure having a PET film having a thickness of 50 ⁇ m and an acrylic plate having a thickness of 2 mm is about 1115 Hz
- the absorption peak of the soundproof structure having a PET film having a thickness of 125 ⁇ m and an acrylic plate having a thickness of 2 mm is about 1620 Hz
- the soundproof structure having a PET film with a thickness of 50 ⁇ m and a PET film with a thickness of 125 ⁇ m has a peak of about 1115 Hz lowered to about 1000 Hz, and a peak of about 1620 Hz increased to about 1665 Hz.
- the soundproof structure having a PET film having a thickness of 50 ⁇ m and an acrylic plate having a thickness of 2 mm has an absorption peak frequency of about 1115 Hz
- the soundproof structure having a PET film having a thickness of 100 ⁇ m and an acrylic plate having a thickness of 2 mm has an absorption peak frequency of about 1115 Hz
- the soundproof structure having a PET film having a thickness of 100 ⁇ m and an acrylic plate having a thickness of 2 mm has an absorption peak frequency of about 1115 Hz
- the soundproof structure having a PET film having a thickness of 100 ⁇ m is reduced to an absorption peak frequency of about 1115 Hz to about 875 Hz, and a peak of about 1415 Hz is obtained. It can be seen that the frequency is increased to about 1500 Hz. Also, from FIGS.
- the absorption peak frequency shift is more in the soundproof structure having the PET film having the thickness of 50 ⁇ m and the PET film having the thickness of 100 ⁇ m than in the soundproof structure having the PET film having the thickness of 50 ⁇ m and the PET film having the thickness of 125 ⁇ m. You can see that the amount is large. From these results, when the soundproof cell has two films 16 having different resonance frequencies, the closer the resonance frequency of the two films 16 is, the larger the shift amount of the absorption peak frequency becomes, and the lower the frequency. This is preferable.
- the soundproof cell 18 or 18B or the soundproof cell unit 20, 20C, or 20D including the plurality of soundproof cells 18, 18A, 18C, or 18D is provided in the tube body 22.
- the present invention is not limited to this, and a plurality of soundproof cells or a plurality of soundproof cell units may be disposed in the tube body 22.
- FIG. 42 is a schematic cross-sectional view showing an example of a soundproof structure according to Embodiment 6 of the present invention.
- the soundproof structure 10E of the sixth embodiment shown in FIG. 42 has the same configuration as that of the soundproof cell 18C of the third embodiment shown in FIG. 7, that is, can be vibrated fixed to the frame 14 so as to cover both surfaces of the hole 12.
- a film 16 (16a and 16b, and 16a 'and 16b') a structure in which two soundproof cell 18E having (18E 1 and 18E 2) is disposed in the tube 22.
- Two soundproof cell 18E (18E 1 and 18E 2), the first natural frequency of the film are different.
- FIG. 42 shows the sound pressure distribution of a standing wave waves first natural frequency of the soundproof cell 18E 1 is formed in the tube 22, a thin line, soundproof cell 18E 2 of sound waves of the first natural vibration frequency showing the sound pressure distribution of a standing wave to be formed in the tube 22.
- soundproof cell 18E 1 and 18E 2 soundproof structure 10E of the sixth embodiment is arranged such that in series to the central axis of the tube 22, respectively, corresponding to each soundproofing cell
- the sound wave having the first natural vibration frequency is arranged at the position of the antinode of the standing wave formed in the tube body 22.
- soundproof cell 18E 1 is disposed at a position of the standing wave antinodes sound waves of the first natural frequency of the soundproof cell 18E 1 is formed in the tube 22, soundproof cell 18E 2 soundproofed cells A sound wave having a first natural vibration frequency of 18E 2 is arranged at the antinode of the standing wave formed in the tube body 22.
- a soundproof cell 18E 1 and 18E 2 respectively, by arranging the sound pressure is greater position (antinode of the standing wave), excellent soundproofing effect (sound absorption coefficient and Transmission loss).
- soundproof cell 18E 1 and 18E 2 are predetermined range from the open end of the tube 22, i.e. the sound pressure is greater position (standing wave If it is arranged in the above-mentioned predetermined range centering on the position of the antinode), an excellent soundproofing effect can be obtained.
- FIG. 43A is a schematic cross-sectional view showing an example of a soundproof structure according to Embodiment 7 of the present invention
- FIG. 43B is a schematic cross-sectional view taken along the line VI-VI of the soundproof structure of FIG. 43A.
- the soundproof structure 10F of the present embodiment shown in FIGS. 43A and 43B has the same configuration as the soundproof cell of the modified example of the third embodiment on the same circumference of the inner peripheral wall of the tubular body 22 having an inner diameter of 8 cm.
- a plurality of (four) soundproof cells 18F (18F 1 to 18F 4 ) having different first natural vibration frequencies of the two films 16 (16c and 16d) respectively covering the openings of the holes 12 are arranged to face each other.
- the soundproof cell 18F is formed by fixing a film 16c of a PET film having a thickness of 50 ⁇ m on one side to a frame 14 having a frame size of 16 mm and a thickness of 20 mm, and an acrylic plate 16d having a thickness of 2 mm fixed to the other side.
- the plurality of soundproof cells 18F (18F 1 to 18F 4 ) have substantially the same first membrane vibration frequency.
- the result of measuring the transmission loss with the measurement system shown in FIG. FIG. 45 shows the results of measuring the absorption rate with the measurement system shown in FIG.
- the transmission loss increases as the number of soundproof cells 18F arranged in the tubular body 22 increases.
- the sound absorption rate remains at about 50%.
- the soundproof structure 10F of Embodiment 7 can obtain the effect of high transmission loss.
- the plurality (four) of the soundproofing cells 18F (18F 1 to 18F 4 ) of the soundproofing structure 10F according to the seventh embodiment have a sound pressure generated in the tubular body 22 by the sound wave having the first natural vibration frequency of the soundproofing cell 18F. It is preferably arranged at a high position, and in particular, it is preferably arranged at the position of the antinode of the standing wave formed by the sound wave of the first natural vibration frequency of the soundproof cell 18F on the tube body 22. This is because a higher soundproofing effect (transmission loss) can be obtained. Specifically, as described based on the results according to FIGS. 28 and 30, if the soundproof cell 18F is disposed within a predetermined range from the open end of the tubular body 22, an excellent soundproof effect (transmission loss) is obtained. Can be earned.
- each of the soundproof cells 18F 1 to 18F 4 may have a plurality of soundproof cells arranged in series in the central axis direction of the tubular body 22. Further, the number of the soundproof cells 18F 1 to 18F 4 arranged in series in the central axis direction of the tubular body 22 may be the same or different.
- the plurality of soundproof cells arranged in series in the central axis direction of the tubular body 22 may be soundproof cell units in which the soundproof cells are spaced apart from each other, or the soundproof cells are closely connected to each other.
- the arranged soundproof cell unit may be used.
- the central axis of the plurality of soundproof cells or soundproof cell units arranged in series in the central axis direction of the tube body 22 (the central axis of the length in the central axis direction of the tube body 22) is the soundproof cell 18F.
- the sound wave having the first natural vibration frequency is arranged so as to come to the position of the antinode of the standing wave formed in the tubular body 22.
- the length of the plurality of soundproof cells 18F and soundproof cell units arranged in series in the central axis direction of the tube body 22, that is, the number of the soundproof cells 18F arranged in a line is the direction of the central axis of the tube body 22.
- the size at which both ends of the plurality of soundproof cells 18F or soundproof cell units arranged in series are not too far from the position of the antinode of the standing wave formed by the sound wave of the first natural vibration frequency of the membrane of the soundproof cell 18F on the tube body 22. (Number) is preferred.
- the soundproof structure 10F of the present embodiment shown in FIGS. 43A and 43B is arranged such that a plurality (four) of soundproof cells 18F (18F 1 to 18F 4 ) face each other. What is necessary is just to arrange
- FIG. 46 is a schematic cross-sectional view showing an example of a soundproof structure according to Embodiment 8 of the present invention.
- a plurality of soundproof cells 18F having the first natural vibration frequency of substantially the same film are arranged on the same circumference of the inner peripheral wall of the tubular body 22, but FIG. As shown, a plurality of soundproof cells having different first natural vibration frequencies can be further arranged in the tube body 22.
- Soundproof structure 10G of the present embodiment shown in FIG. 46 the inner diameter 8cm place from the end of the tube 22 (the distance from the open end) inner peripheral surface on the D 1, as in Embodiment 7 shown in FIG.
- soundproof cell 18G 1 of a plurality are opposed to each other, on the inner peripheral surface end portion from (the open end) of the predetermined position D 2 of the tube 22, a plurality (for example, is arranged so as soundproof cell 18G '1 of a plurality (e.g., four) of different first natural frequency are opposed to each other and soundproofed cells 18G 1 four).
- a plurality of soundproof cells 18G 1 and 18G '1, i.e., one soundproofed cells 18G 1 and one soundproof cell 18G' 1 are disposed so as to be in series in the direction of the central axis of the tube 22.
- soundproof cell 18G 1 and G '1 of a plurality (four) are respectively disposed at positions of the standing wave antinode sound waves of the first natural oscillation frequency corresponding to the respective soundproof cell is formed in the tube 22 ing.
- soundproof cell 18G 1 a plurality of (four) are on the same circumference of the inner peripheral wall of the tube 22
- sound waves of the first natural frequency of the soundproof cell 18G 1 is formed in the tube 22 is disposed at a position of antinode of the standing wave
- soundproof cell 18G plurality (four) '1 on the same circumference of the inner peripheral wall of the tube 22
- a plurality soundproof cells 18G in (4)' of 1 second A sound wave having one natural vibration frequency is disposed at the antinode of the standing wave formed in the tube body 22.
- Soundproofing cell 18G 1 is the frame size 16 mm, film 16c of the frame 14 to a film thickness 100 ⁇ m thick PET film 20mm frame is fixed on one side, in which an acrylic plate having a thickness of 2mm is fixed to the other surface There, soundproof cell 18G 1 a plurality of (four) has a first natural vibration frequency of approximately same film, soundproof cell 18G '1 is the frame size 16 mm, film thickness on the frame 14 of the thickness of the frame 20mm film 16c of 50 ⁇ m PET film 'is fixed to one side, which acrylic plate 16 having a thickness of 2mm is fixed to the other surface, soundproof cell 18G plurality (four)' 1, soundproof cell 18G 1 The first natural vibration frequency of the substantially same film is different from the first film.
- a predetermined range from the open end of the soundproof cells 18G 1 and G '1 is the tube 22, i.e.
- soundproof cell 18G '1 of a plurality soundproof cells 18G 1 and a plurality of (four) (4) are arranged on the same circumference of the inner circumferential wall
- each soundproof cell can further have a plurality of soundproof cells arranged in series in the central axis direction.
- Opening edge correction distance is preferably within ⁇ ⁇ / 4, more preferably within ⁇ / 4 ⁇ Opening edge correction distance ⁇ ⁇ / 6, and more preferably ⁇ / 4 ⁇ Opening edge correction distance ⁇ ⁇ It is more preferable to arrange it within / 8, and most preferable to arrange at the position of the antinode of the standing wave.
- FIG. 29 a speaker is placed on one end of the tube 22 of the soundproof structure 10G of Embodiment 8, and a single microphone is placed on the open side to provide soundproofing.
- the result of measuring the transmission loss of the structure 10G is shown in FIG.
- “D 1 ” shown in FIG. 46 is 36 mm from the open end of the tube body 22, that is, standing waves by sound waves of the first natural vibration frequency of the soundproof cell 18 G 1 from the open end of the tube body 22.
- “D 2 ” is 51 mm from the open end of the tube 22, that is, an antinode of a standing wave formed in the tube 22 by the sound wave of the first natural vibration frequency of the soundproof cell 18 G ′ 1 . Indicates the position.
- the first natural frequency of the soundproof cell 18G 1 is about 1450 Hz
- the first natural frequency of the sound insulation cell 18G '1 used were those of about 1150Hz.
- each soundproof cell by arranging each soundproof cell at the position of the antinode of the standing wave formed by the sound wave of the first natural vibration frequency of each soundproof cell in the tubular body 22, transmission loss corresponding to each soundproof cell is obtained. It can be seen that In more detail, shielding peak at 1455Hz corresponding to soundproof cell 18G 1 (1), and, it can be seen that shield peak at 1162Hz corresponding to soundproof cell 18G '1 (2) occurs.
- the soundproof structure 10G of the eighth embodiment can be preferably used when the length of the opening member is limited.
- soundproof structure 10G of the present embodiment 8 shown in FIG. 46 has been used two of the plurality of sound-insulating cell 18G 1 and 18G '1 having different first natural frequency, not limited thereto, the first specific It is also possible to use a plurality of three or more types of soundproof cells having different vibration frequencies. Further, in the soundproof structure 10G of the present embodiment shown in FIG.
- both soundproof cell 18G '1 of a plurality soundproof cells 18G 1 and a plurality of (four) (4), respectively, of the inner peripheral wall of the tube 22 It is disposed on the same circumference, without being limited thereto, a plurality of soundproof cells 18G 1 of at least one kind be arranged on the same circumference of the inner peripheral wall of the tube 22, the other plurality Soundproofing cell 18G 2 may not be arranged on the same circumference of the inner peripheral wall of the tube 22.
- soundproof cell 18G 1 and 18G '1 a plurality of (four), respectively, are disposed on the same circumference of the inner peripheral wall of the tube 22 , similarly to embodiment 7, the soundproof cells 18G 1 and 18G '1, respectively, in series along the central axis of the tube 22 a plurality of soundproofing cells may be arranged.
- soundproof structure 10G of this embodiment shown FIG. 46 a plurality soundproof cells 18G 1 and a plurality of soundproofing cells 18G '1 of (4), respectively, are disposed so as to face each other, the tubular body What is necessary is just to arrange
- FIG. 48A is a schematic cross-sectional view showing an example of a soundproof structure according to Embodiment 9 of the present invention
- FIG. 43B is a schematic cross-sectional view taken along the line VII-VII of the soundproof structure of FIG. 48A.
- the soundproof structure 10H of the present embodiment shown in FIGS. 48A and 48B has the same configuration as that of the soundproof cell of the modified example of the fifth embodiment.
- 16d) are provided with a soundproof cell unit 20H in which a plurality (four) of soundproof cells 18H (18H 1 to 18H 4 ) are arranged in series, and the soundproof cell units 20H are arranged in series.
- the soundproof cells 18H (18H 1 to 18H 4 ) are arranged in series in the central axis direction of the tube body 22 (hereinafter referred to as “series arrangement”).
- the structure (frame size, frame thickness, frame material, film thickness, and film material) of the soundproof cell 18H is the same as that of the soundproof cell 18F of the seventh embodiment.
- the number of soundproof cells 18H arranged in series in the tube 22 is variously changed to 1 to 4 and the sound absorption coefficient is measured by the measurement system shown in FIG. Show.
- the number of soundproof cells 18H arranged in series in the tube 22 that is, the number of soundproof cells 18H constituting the soundproof cell unit 20H is increased, the absorption rate is greatly increased. I understand.
- the absorptivity of the soundproof structure (acrylic 2 mm + PET) having the same film structure as the soundproof structure of the modification of the third embodiment in which one soundproof cell is arranged in the tubular body 22 is It can be seen that even if the film thickness of PET is changed, it does not exceed 50%. Also, it can be seen that the sound absorption rate of the soundproof structure 10F of the seventh embodiment shown in FIG. 45 is about 50% even when the number of the soundproof cells 18F arranged in parallel in the tube body 22 is increased. This is because the resonance structure is arranged as described in Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model, J. Acoust. Soc. Am.
- the two soundproof cells 18H are simply arranged in series in the central axis direction of the tube body 22 in the tube body 22, It can be seen that the sound absorption rate exceeds 50%. According to such a soundproof structure 10H of the ninth embodiment, an effect of a high sound absorption rate can be obtained.
- the soundproof cell unit 20H of the soundproof structure 10H of the ninth embodiment has a central axis (that is, a central axis of the length in the central axis direction of the tube body 22) of sound waves having the first natural vibration frequency of the soundproof cell 18H.
- a central axis that is, a central axis of the length in the central axis direction of the tube body 22
- the sound wave of the first natural vibration frequency of the soundproof cell 18H is formed on the antinode of the standing wave formed on the tube body 22. It is preferable to arrange so as to come to a position. Specifically, as described based on the results according to FIGS.
- the central axis of the soundproof cell unit 20H is disposed within a predetermined range from the open end of the tubular body 22, an excellent soundproofing effect is obtained. (Absorption rate and transmission loss) can be obtained.
- the length of the soundproof cell unit 20H that is, the number of the soundproof cells 18H arranged in a line is set so that both ends of the soundproof cell unit 20H are first in the film of the soundproof cell 18H.
- the size (number) of the sound wave having the natural vibration frequency is preferably not too far from the position of the antinode of the standing wave formed in the tube body 22.
- the plurality of soundproof cells 18H (18H 1 to 18H 4 ) according to the ninth embodiment shown in FIGS. 48A and 48B are arranged in a line, but are limited to this as long as they are arranged in series in the central axis direction.
- the soundproof cell 18H may be misaligned.
- the soundproof structure 10H of the ninth embodiment shown in FIGS. 48A and 48B includes one soundproof cell unit, but is not limited to this, and the soundproof structure of the present invention includes two or more soundproof cells. You may have a unit. Specifically, a plurality (four) of soundproof cells 18H (18H 1 to 18H 4 ) having films 16 (16c and 16d) of different thicknesses fixed on both surfaces of the hole 12 of the frame 14 are arranged in series.
- the two or more soundproof cell units 20H each include a plurality of soundproof cells 18H (18H 1 to 18H 4 ) arranged in series in the direction of the central axis of the tube body 22. A soundproof structure arranged in series may be used. Further, in the ninth embodiment shown in FIG.
- the soundproof cell unit 20H is used, but if a plurality of soundproof cells 18H 1 to 18H 4 are arranged in series in the central axis direction of the tubular body 22, However, it is possible to use a plurality of cells in which adjacent soundproof cells are separated from each other.
- FIG. 50A is a schematic cross-sectional view showing an example of a soundproof structure according to Embodiment 10 of the present invention
- FIG. 50B is a schematic cross-sectional view taken along line VIII-VIII of the soundproof structure of FIG. 50A.
- the soundproof structure 10I of this embodiment shown in FIGS. 50A and 50B has the same configuration as that of the soundproof cell of the modified example of the fifth embodiment, and films 16 (16c and 16d) having different thicknesses on both surfaces of the hole 12 of the frame 14.
- a soundproof cell 18I 1 formed by arranging in series a plurality of are fixed (e.g., four) of smaller size than soundproof cell 18I 1 soundproof cell unit 20I 2, i.e., the soundproof cell unit comprises a first natural frequency is two different soundproof cell unit of the membrane due to the difference in size, two soundproof cell units 20I 1 and 20I 2, respectively, a plurality of soundproof cells 18I (18I 1 and 18I 2) is Arranged so as to be in series in the central axis direction of the tubular body 22, and disposed on the inner peripheral wall of the tubular body 22 so that the soundproof cells having different first natural frequencies face each other. Has been.
- the soundproof structure 10I of this embodiment can arrange a plurality of soundproof cells on the opening cross section of the opening member, and also provide a plurality of soundproof cells in the longitudinal direction of the opening member. Therefore, it is possible to obtain a high transmission loss effect and a high absorption rate effect over a plurality of frequency bands or a wide frequency band.
- FIG. 50A and FIG. 50B two types of soundproof cell units having different first natural vibration frequencies due to the difference in size of the soundproof cell units are used.
- soundproof structure 10I embodiment 10 is the same frame size and material, different thicknesses first natural frequency is two different types by the membrane is fixed to the frame 14 of the soundproof cell units 20I 1 and 20I 2 disposed within the tube 22, the results of the sound absorption coefficient by variously changing the respective number from 1 to 4 soundproofing cell units 20I 1 and 20I 2 was measured by the measurement system shown in FIG. 13 is shown in FIG. 51.
- soundproof cells 18I 1 and 18I 2 constituting the soundproof cell unit 20I 1 and 20I 2 were used, except the film thickness of the PET, soundproof cell 18F and similar structure (frame size 16mm embodiment 7, the frame
- the frame 14 having a thickness of 20 mm has a structure in which an acrylic plate having a thickness of 2 mm is fixed to one side and PET is fixed to the other side), and one side of the frame 14 of the soundproof cell 18I 1 has a thickness of 50 ⁇ m.
- PET was fixed, and 75 ⁇ m PET was fixed to one side of the soundproof cell 18I 2 . As shown in FIG.
- each of the two types of soundproof cell units 20I 1 and 20I 2 has a central axis (that is, a central axis of the length in the central axis direction of the tubular body 22). It is preferable that the sound wave of the first natural vibration frequency corresponding to (18I 1 and 18I 2 ) is disposed at a position where the sound pressure formed in the tubular body 22 is high, and in particular, each soundproof cell 18I (18I 1 And the sound wave having the first natural vibration frequency corresponding to 18I 2 ) is preferably disposed at the position of the antinode of the standing wave formed in the tube body 22.
- soundproof cell unit 20I 1 has its central axis is arranged to come to the position of the standing wave antinode sound waves of the first natural frequency of the soundproof cell 18I 1 is formed in the tube 22
- soundproof cell unit 20I 2 comes to the position of a plurality (four) of soundproof cell 18G '2 of the standing wave antinodes sound waves of the first natural frequency is formed in the tube 22 It is preferable that they are arranged.
- the soundproof structure 10I of the present embodiment is more than the soundproof structure 10F of the seventh embodiment in which the plurality of soundproof cells 18F are disposed only at the antinodes of the standing wave.
- a high soundproofing effect (absorption rate) can be obtained.
- the soundproof cell units 20I 1 and 20I 2 are used. However, if a plurality of soundproof cells are arranged in series in the central axis direction of the tubular body 22, however, it is also possible to use a plurality of cells in which adjacent soundproof cells are separated from each other.
- the plurality of soundproof cells 18I according to the tenth embodiment shown in FIG. 50A are arranged in a row, but are not limited to this as long as they are arranged in series in the central axis direction, and the soundproof cells 18I are not aligned. There may be.
- FIG. 52 is a perspective view schematically showing one example of the soundproof structure according to Embodiment 11 of the present invention.
- a soundproof structure 10J of the present embodiment shown in FIG. 52 includes a frame 14 having a through hole 12, a film 16 (16a and 16b) fixed to the frame 14 so as to cover both surfaces of the hole 12, and a film 16
- a plurality of soundproof cells 18J each having a weight 40 bonded and fixed to each of (16a and 16b), six soundproof cell units 20J arranged in a row in the illustrated example, are made of an aluminum tube as an opening member of the present invention.
- the membrane surface of the membrane 16 is inclined with respect to the opening cross section 22b of the tube body 22, and a region serving as a vent hole through which gas passes is provided in the opening 22a in the tube body 22. It has an arranged structure (see FIG. 14).
- the soundproof structure 10J of the present embodiment shown in FIG. 52 has weights 40 on the soundproof structure 10C of the fourth embodiment shown in FIG. 8 and the films 16 (16a and 16b) fixed to both surfaces of the hole 12 of the frame 14, respectively. Since it has the same configuration except that it is bonded and fixed, description of the same configuration is omitted.
- the weight 40 is bonded and fixed to the film 16 (16a and 16b), respectively, so that the soundproof structures 10 and 10A to 10I of the first to tenth embodiments are used. Compared to a soundproof structure without a weight, it is provided to improve controllability of sound insulation performance. That is, the weight 40 can control the frequency and the sound insulation property of the first sound insulation peak by changing its weight.
- the weight 40 is fixed to both the films 16a and 16b, but the present invention is not limited to this, and may be fixed to only one of them.
- the films 16a and 16b are fixed to both surfaces of the frame 14, but may be fixed to only one of them.
- the weight 40 is fixed to the film 16. is there.
- the shape of the weight 40 is not limited to the circular shape in the illustrated example, and may be the various shapes described above, similar to the shape of the hole 12 of the frame 14, and thus the shape of the film 16. Preferably they are the same.
- the size of the weight 40 is not particularly limited, but needs to be smaller than the size of the film 16 which is the size of the hole 12. Accordingly, the size of the weight 40 is preferably 0.01 mm to 25 mm, more preferably 0.05 mm to 10 mm when the size R of the hole 12 is 0.5 mm to 50 mm, more preferably 0.05 mm to 10 mm. Most preferably, it is 1 mm to 5 mm. Further, the thickness of the weight 40 is not particularly limited, and may be set as appropriate according to the necessary weight and the size of the weight 40. For example, the thickness of the weight 40 is preferably 0.01 mm to 10 mm, more preferably 0.1 mm to 5 mm, and most preferably 0.5 mm to 2 mm.
- the size and / or thickness of the weight 40 is preferably expressed as an average size and / or an average thickness when different sizes and / or thicknesses are included in the plurality of films 16.
- the material of the weight 40 is not particularly limited as long as it has a required size and a required weight, and the various materials described above can be used similarly to the material of the frame 14 and the film 16.
- the material of the film 16 may be the same or different.
- the soundproof cell 18 according to the first embodiment has a structure in which the weight 40 is fixed to the film 16 fixed to the frame 14, but is not limited thereto, and the film 16, the frame 14, and the weight 40 made of the same material are used. May be an integrated structure.
- the structure in which the weight is fixed to the film of the soundproof structure of the present embodiment is one soundproof cell 18 of the soundproof structure 10 of the first embodiment and one soundproof structure of the soundproof structure 10B of the third embodiment.
- the present invention can be applied to the cell 18B, the plurality of soundproof cells 18A of the soundproof structure 10 of the second embodiment, and the soundproof cells 18C to 18I of the soundproof structures 10D to 10I of the fifth to tenth embodiments. is there.
- the soundproof cell unit 20J of the soundproof structure 10J of the present embodiment shown in FIG. 52 is the same as the structure of the soundproof structure 10C of the fourth embodiment, but a 100 ⁇ m-thick PET film as a film 16 is bonded on both sides of the frame 14 It is fixed with tape. Further, a stainless steel weight 40 of 55 mg is fixed to the center of the PET film membranes 16 (16a and 16b) on both sides of the frame 14 of the soundproof cell 18J by a double-sided adhesive tape.
- the soundproof structure 10J of the eleventh embodiment has the same configuration as the soundproof structure 10J, but differs in that the weight is not fixed to the film 16 (16a and 16b) (corresponding to the soundproof structure 10C of the fourth embodiment).
- FIG. 53A and 53B show the results of measuring the absorption rate and transmission loss with the measurement system shown in FIG.
- the absorption rate shown in FIG. 53A two absorption peaks of about 1772 Hz and about 3170 Hz when there is no weight are shifted to the low frequency side of about 993 Hz and about 2672 Hz by fixing the weight 40 to the film 16. You can see that Therefore, this embodiment is preferable for performing low-frequency sound absorption.
- a sound insulation peak of 35 dB can be obtained by arranging the weight 40 on the film 16.
- the soundproof structure 10J shown in FIG. 52 since the soundproof cells 18J are arranged in series in the central axis direction of the tubular body 22, an absorption rate of 50% or more is obtained as shown in FIG. It can also be seen that the (absorption rate) is high.
- FIG. 54 is a perspective view schematically showing one example of the soundproof structure according to Embodiment 5 of the present invention.
- a soundproof structure 10K of the present embodiment shown in FIG. 54 includes a frame 14 having a through hole 12, a film 16 (16 a and 16 b) fixed to the frame 14 so as to cover both surfaces of the hole 12,
- a plurality of soundproof cells 18K having through holes 42 perforated in the membrane 16a, and six soundproof cell units 20K arranged in a row in the illustrated example, are made of an aluminum tube 22 (opening member of the present invention).
- the soundproof structure 10K of the present embodiment shown in FIG. 54 has a through hole 42 in one film 16a of the soundproof structure 10C of the fourth embodiment shown in FIG. 8 and the film 16 fixed to both surfaces of the hole 12 of the frame 14. Since it has the same configuration except for the perforated points, the description of the same configuration is omitted.
- the through hole 42 is formed in the film 16a, so that the soundproof structure 10 and 10A to 10I of the first to the tenth embodiments are compared with the soundproof structure having no through hole, as shown in FIGS. Controllability of the sound insulation performance can be improved. That is, the through-hole 42 can control the frequency and the sound insulation property of the first sound insulation peak by changing the diameter thereof. Further, the soundproof structure 10K of the twelfth embodiment does not need to add the weight 40 unlike the soundproof structure 10J of the eleventh embodiment, and thus can be a lighter soundproof structure. In the soundproof cell unit 20K, the through hole 42 is perforated only in the film 16a.
- the present invention is not limited to this, and the perforated hole 42 may be perforated only in the film 16b, or both of the films 16a and 16b. It may be formed.
- the films 16a and 16b are fixed to both surfaces of the frame 14, but may be fixed to only one of them.
- the through-hole 42 is formed in the film 16. It is. In the following description, when it is not necessary to specifically explain the film 16a in which the through hole 42 is formed, the film 16 is represented.
- the shape of the through hole 42 is not limited to the circular shape shown in FIG. 54, and can be the various shapes described above, similar to the shape of the hole 12 of the frame 14, and thus the shape of the film 16.
- the shape is preferably the same.
- the positions where the through holes 42 are provided in the film 16 corresponding to the holes 12 may be in or between the soundproof cells 18D or the films 16 in all the through holes 42, or at least some of the through holes. 42 may be drilled at any position other than the center. That is, simply by changing the drilling position of the through hole 42, the sound insulation characteristics of the soundproof structure 10K and the soundproof cell unit 20K of the present invention do not change.
- the through-hole 42 is preferably perforated in a region within a range of more than 20% of the dimension of the surface of the membrane 16 from the fixed end of the peripheral portion of the hole 12. Most preferably, it is provided.
- one through hole 42 may be provided in one film 16 as shown in FIG. 54, or a plurality (two or more) may be provided in one film 16.
- the number of through-holes 42 provided in one film 16 may be changed to control the frequency and sound insulation of the first sound insulation peak.
- the equivalent circle diameter may be obtained from the total area of the plurality of through holes 42 and used as a size corresponding to one through hole.
- the area ratio of the total area of the plurality of through holes 42 and the area of the film 16 corresponding to the hole 12 is obtained, and the area ratio of the through holes 42, that is, the opening ratio represents the size of the through holes 42. May be.
- the sound insulation characteristics of the soundproof structure 10K and the soundproof cell unit 20K of the present invention are the sound insulation characteristics corresponding to the total area of the plurality of through holes 42, that is, The corresponding sound insulation peak is shown at the corresponding sound insulation peak frequency. Therefore, the total area of the plurality of through holes 42 in one soundproof cell 18K (or film 16) is equal to the area of the through hole 42 having only one in another soundproof cell 18K (or film 16).
- the present invention is not limited to this.
- the aperture ratio of the through holes 42 in the soundproof cell 18K (the area ratio of the through holes 42 to the area of the film 16 covering the hole 12 (the ratio of the total area of all the through holes 42)) is the same, Since the same soundproof cell unit 20K is obtained by the single through hole 42 and the plurality of through holes 42, soundproof structures of various frequency bands can be produced even if the size is fixed to a certain through hole 42.
- the aperture ratio (area ratio) of the through-hole 42 in the soundproof cell 18K is not particularly limited, and may be set according to the sound insulation frequency band to be selectively insulated, but 0.000001 % To 50% is preferable, 0.00001% to 20% is more preferable, and 0.0001% to 10% is preferable.
- the soundproof cell unit 20K of the present embodiment preferably has a plurality of through holes 42 of the same size in one soundproof cell 18D from the viewpoint of manufacturability.
- the through hole 42 is preferably drilled by a processing method that absorbs energy, for example, laser processing, or is preferably drilled by a mechanical processing method by physical contact, for example, punching or needle processing. . Therefore, if a plurality of through holes 42 in one soundproof cell 18K or one or a plurality of through holes 42 in all soundproof cells 18D have the same size, holes are formed by laser processing, punching, or needle processing. When drilling, it is possible to continuously drill holes without changing the setting of the processing apparatus and the processing strength.
- the size (size) of the through hole 42 in the soundproof cell 18K (or film 16) may be different for each soundproof cell 18K (or film 16).
- the size of the through-hole 42 may be any size as long as it can be appropriately drilled by the above-described processing method, and is not particularly limited. However, the through-hole 42 needs to be smaller than the size of the film 16 that is the size of the hole 12. However, the size of the through-hole 42 is, on the lower limit side, from the viewpoint of manufacturing suitability such as laser processing accuracy such as laser aperture accuracy, processing accuracy such as punching processing or needle processing, and ease of processing. It is preferable that it is 100 micrometers or more. Since the upper limit value of the size of these through holes 42 needs to be smaller than the size of the frame 14, the size of the frame 14 is usually on the order of mm, and the size of the through hole 42 is set to the order of several hundred ⁇ m.
- the upper limit value of the size of the through hole 42 does not exceed the size of the frame 14, but if it exceeds, the upper limit value of the size of the through hole 42 is set to be equal to or smaller than the size of the frame 14. That's fine.
- the size of the through hole 42 is preferably expressed as an average size when different sizes are included in the plurality of films 16.
- the structure in which the through-hole is provided in the film of the soundproof structure of the present embodiment has one soundproof cell 18 of the soundproof structure 10 of the first embodiment and one of the soundproof structure 10B of the third embodiment.
- the present invention can be applied to the soundproof cell 18B, the plurality of soundproof cells 18A of the soundproof structure 10 of the second embodiment, and the soundproof cells 18C to 18I of the soundproof structures 10D to 10I of the fifth to tenth embodiments. It is.
- the soundproof cell unit 20K of the soundproof structure 10K of this embodiment shown in FIG. 54 is the same as the structure of the soundproof structure 10C of Embodiment 4, but a PET film having a thickness of 100 ⁇ m is adhered to both surfaces of the frame 14 as a film 16 on both surfaces. It is fixed with tape. Further, a through hole 42 having a diameter of 2 mm is formed in the center of the PET film film 16a on one side of the frame 14 of the soundproof cell 18K. Absorption between the soundproof structure 10K of the twelfth embodiment and the soundproof structure (corresponding to the soundproof structure 10C of the fourth embodiment) which has the same configuration as the soundproof structure 10K but differs in that the through-hole 42 is not formed in the film 16a.
- FIG. 55A and FIG. 55B show the measurement results of the spectrum of the rate and the transmission loss in the measurement system shown in FIG.
- the absorption rate shown in FIG. 55A the absorption at the valleys (2625 Hz) between the absorption peaks is larger and the absorption on the high frequency side (3000 Hz to 4000 Hz) is higher than when there is no through hole.
- the soundproof structure of the twelfth embodiment is preferable for wideband sound absorption.
- the transmission loss shown in FIG. 55B the sound insulation peak on the low frequency side of 1915 Hz increases. For this reason, the soundproof structure of the twelfth embodiment is preferable for low frequency sound insulation.
- FIG. 56 is a perspective view schematically showing one example of the soundproof structure according to Embodiment 13 of the present invention.
- a soundproof structure 10L of the thirteenth embodiment shown in FIG. 56 includes a plurality of soundproof cells 18 in the illustrated example, and a soundproof cell unit comprising a disk-shaped soundproof frame member 19 having a diameter smaller than the inner diameter of the tube body 22.
- 20L is rotatably arranged in the tube body 22 so that the inclination of the tube body 22 with respect to the opening cross section can be changed, so that the opening ratio of the air holes can be adjusted. That is, the inclination angle of the film surface of the soundproof cell 18 with respect to the opening cross section can be adjusted.
- the method of disposing the soundproof cell unit 20L in the tube 22 so as to be rotatable is not particularly limited, and a conventionally known disposition method and support method can be used.
- a rod-shaped support shaft 19a extending on an extension line on both sides of one diameter of the disk-shaped soundproof frame member 19 of the soundproof cell unit 20L is attached, and a bearing or a bearing hole is provided on the tube wall of one inner diameter of the tube body 22.
- the rod-like support shaft 19a of the disk-shaped soundproof frame member 19 can be rotatably supported by a bearing on the tube wall of the tube body 22 or a bearing hole.
- any of the soundproof cells 18 and 18A to 18K of the first to twelfth embodiments may be used.
- FIGS. 57A and 57B are a front view and a side view, respectively, schematically showing an example of a soundproof cell unit used in the soundproof structure according to Embodiment 14 of the present invention.
- the soundproof cell unit 20M shown in FIGS. 57A and 57B includes a plurality of soundproof cells 18 each having a frame 14 having a through hole 12 and a film 16 fixed to the frame 14 so as to cover both surfaces of the hole 12.
- four rectangular parallelepiped soundproof cell units 20M arranged in a row, two annular support frame bodies 44 arranged at both ends of the soundproof cell unit 20M, and 4 at both ends of the square shape of the soundproof cell unit 20M.
- the soundproof cell unit 20M of the fourteenth embodiment can be easily arranged in the pipe body and can be easily removed by having the above-described configuration.
- the soundproof cell unit used in the soundproof cell unit 20M and the soundproof cell included in the soundproof cell unit 20M include the soundproof cell unit 20 of the above-described Embodiments 2, 4, 5, 9 to 12, and 20C, 20D and 20H to 20K, and the soundproof cell 18, Any of 18D and 18AH to 18DK may be used.
- the soundproof structure of the present invention is not limited to the one in which the soundproof cell unit is arranged in the pipe body as in the above-described plurality of soundproof structures, and the present invention shown in FIG.
- the four soundproof cell units 20N according to the fifteenth embodiment are arranged in parallel in the opening 56a of the opening member 56 disposed on the wall 54 of the house 52 and used as the soundproof louver 58. can do.
- the soundproof cell unit 20N used in the soundproof structure 50 of the fifteenth embodiment is a flat soundproof cell unit in which seven soundproof cells 18 are arranged in two rows in FIG.
- the number of soundproof cells 18 may be any number, and may be one-dimensional or two-dimensional arrangement.
- the soundproof cell unit 20N used in the soundproof structure 50 of the fifteenth embodiment is arranged so that the film surface of the soundproof cell 18 is perpendicular to the opening 56a, but the angle is not restrictive. And can be adjusted according to the desired transmission loss peak and the aperture ratio (air permeability).
- the soundproof cell units used in the soundproof cell unit 20N and the soundproof cells included in the soundproof cell unit 20N include the soundproof cell units 2, 4, 5, 9-12, and 20C, 20D, 20H-20K, and the soundproof cells 18, 18A. Any of ⁇ 18K may be used.
- FIG. 59 the transmission loss of a soundproof louver 58A in which a plurality of soundproof cell units 20N are arranged in parallel was measured.
- soundproof cell units 20 N was used soundproof cell units 20 N 2 shown in soundproof cell unit 20 N 1 or FIG. 60B shows Figure 60A.
- Soundproofing cell unit 20 N 1 the width (vertical) 50 mm ⁇ length acrylic plate (horizontal) 300 mm ⁇ thickness 20 mm, the through-hole 12N 1 of 40mm angle 6 ((vertical) 1 ⁇ (horizontal) 6) provided, which PET film having a thickness of 250 ⁇ m on both sides of the through hole 12N 1 is fixed by double-sided adhesive tape, soundproof cell unit 20 N 2 has a through hole 12N 2 of 20mm square 20 (vertical 2 ⁇ (horizontal) 10) except with is the same as the configuration of the soundproof cell unit 20 N 1.
- FIG. 29 shows the result of measuring the transmission loss of the arranged soundproof structure soundproof cell unit 20 N 1 or 20 N 2 in the sound tube (tube) in FIG. 61.
- the solid line shows the transmission loss of soundproof structure in which the soundproof cell units 20 N 1 to the acoustic tube
- the dashed line shows the transmission loss of soundproof structure in which the soundproof cell units 20 N 2 in the acoustic tube.
- Figures 61 in the case of soundproofing structure using soundproof cell units 20 N 1 having a through-hole 12N 1 of 40mm square, it has a high transmission loss peak at about 820Hz, soundproof cell unit having a through hole 12N 2 of 20mm square It can be seen that the soundproof structure using 20N 2 has a high transmission loss peak at about 2000 Hz.
- the transmission loss of the soundproof louver 58A was measured by the measurement system shown in FIG.
- the speaker 34 was housed in an acrylic box (300 mm square cube) 52 having one surface opened, and a soundproof louver 58A was disposed on the opening surface.
- a white noise sound was output from the speaker 34, and a sound flowing from the opening was detected by one microphone 32.
- the transmission loss was calculated from the ratio of the sound pressure detected when the soundproof louver 58A was disposed to the sound pressure detected when the soundproof louver 58A was not disposed in the opening of the acrylic box 52.
- the film surface of the film fixed to the soundproof cell unit 20N 1 or 20N 2 disposed in the soundproof louver 58A is disposed so as to be perpendicular to the opening surface of the acrylic box 52.
- FIGS. 63A and 63B The number six soundproof cell units 20 N 1 or 20 N 2 (aperture ratio 60%), seven (aperture ratio 53%), and eight soundproof louvers 58A arranged in parallel is changed to (aperture ratio 47%)
- FIGS. 63A and 63B The results of measuring the transmission loss are shown in FIGS. 63A and 63B.
- FIG. 63A in the case of soundproofing louvers 58A using soundproof cell units 20 N 1 having a through-hole 12N 1 of 40mm square, results in high transmission loss peak (1) in the vicinity of 850 Hz, as shown in FIG. 63B , in the case of soundproofing louvers 58A using soundproof cell units 20 N 2 having a through hole 12N 2 of 20mm square, it can be seen that high transmission loss peak to 2080Hz (2) occurs.
- These transmission loss peak, respectively, that have occurred in the vicinity of the frequency of transmission loss peak occurs in the soundproof structure in which the soundproof cell units 20 N 1 or 20 N 2
- the transmission loss peak shown in FIG. 63A or 63B is not due to the structure of the soundproof louver, but the soundproof cell provided in the soundproof louver. It can be seen that this is the shielding by vibration of the membrane fixed to the unit 20N 1 or 20N 2 .
- the soundproof structure of the present invention is a soundproof wall disposed in a space 61 such as a house, a building, or a room such as a factory as in the soundproof structure 60 according to the sixteenth embodiment of the present invention shown in FIG.
- the soundproof partition 62 can be used.
- a room such as a house, a building, and a factory including the space 61 corresponds to the opening member
- the soundproof wall or the soundproof partition (partition) is a fixed wall or fixed in the space 61, for example, the floor. It may be a partition, or may be a movable wall or a movable partition that can move in the space 61, for example, on the floor.
- the soundproofing partition 62 shown in FIG. 64 is obtained by arranging four soundproofing cell units 20O of the ninth embodiment in parallel in the opening 64a of the partition frame 64 having an opening cross section. Also in the soundproof structure 60 of the sixteenth embodiment, the soundproof cell unit 20O can be used as in the soundproof structure 50 of the fifteenth embodiment.
- FIG. 65 is a cross-sectional view schematically showing an example of a soundproof cell unit used in the soundproof structure according to Embodiment 17 of the present invention.
- a soundproof cell unit 20P shown in FIG. 65 is configured by arranging two soundproof cells 18P having two films 16 having different resonance frequencies and having the same configuration as the soundproof cell 18D of the fifth embodiment.
- Each of the cells 18P has a structure in which a through-opening 66 communicating with the film back space, that is, the space in the hole 12, is formed.
- the film 16c of one soundproof cell 18P is a 75 ⁇ m thick PET film
- the film 16d is an acrylic plate having a thickness of 2 mm
- the film 16c of the other soundproof cell 18P is 50 ⁇ m thick.
- the PET film and the film 16b are acrylic plates having a thickness of 2 mm
- a 1 cm square through-opening 66 is provided in the frame 14 forming the film back space of both soundproof cells 18P, and the film backspace of both soundproof cells 18P is communicated.
- FIG. 36 shows the result of measuring the absorption rate (hereinafter referred to as “configuration 1”).
- the film 16c of one soundproof cell 18P is a PET film having a thickness of 50 ⁇ m
- the film 16d is an acrylic plate having a thickness of 2 mm
- the film 16c of the other soundproof cell 18P is an acrylic plate having a thickness of 2 mm
- the film 16d is formed.
- a configuration in which a 2 mm thick acrylic plate is used, and a 1 cm square through-opening 66 is provided in the frame 14 forming the membrane back space of both soundproof cells 18P so that the film backspace of both soundproof cells 18P communicates hereinafter referred to as “Configuration 2”).
- the film 16c of one soundproof cell 18B is a 75 ⁇ m thick PET film
- the film 16d is a 2 mm thick acrylic plate
- the film 16c of the other soundproof cell 18P is a 2 mm thick acrylic plate
- the film 16d is thick.
- a 2-mm acrylic plate is used, and a 1 cm square through-opening 66 is provided in the frame 14 that forms the membrane back space of both soundproof cells 18P.
- FIG. 66 shows the result of measuring the absorptance with the measurement system shown in FIG. 13 for each of the configurations in which the surface space is communicated (hereinafter referred to as “configuration 3”).
- the soundproof cells having different film thicknesses share the film back space, so that the frequency shift of the absorption peak occurs, and the absorption peak frequency on the low frequency side shifts to the lower frequency side, which is preferable.
- FIG. 67 shows the results of measurement using the measurement system shown in FIG.
- the waveform of the absorptance of the configuration 4 in which the thickness of the film 16 of each soundproof cell 18P is different is shown in FIG. It can be seen that only the absorption peaks of the configurations 5 and 6 having different thicknesses overlap each other, and no frequency shift occurs.
- the film is preferably flame retardant.
- the film include Lumirror (registered trademark) non-halogen flame retardant type ZV series (manufactured by Toray Industries, Inc.), Teijin Tetron (registered trademark) UF (manufactured by Teijin Limited), and / or flame retardant, which are flame retardant PET films.
- the frame is also preferably a flame retardant material, such as a metal such as aluminum, an inorganic material such as a semi-rack, a glass material, a flame retardant polycarbonate (for example, PCMUPY 610 (manufactured by Takiron)), and / or slightly difficult.
- flame retardant plastics such as flammable acrylic (for example, Acrylite (registered trademark) FR1 (manufactured by Mitsubishi Rayon Co., Ltd.)).
- the method of fixing the film to the frame includes a flame-retardant adhesive (ThreeBond 1537 series (manufactured by ThreeBond)), a soldering method, or a mechanical fixing method such as sandwiching and fixing the film between two frames. preferable.
- the material constituting the structural member is preferably heat resistant, particularly low heat shrinkable.
- Teijin Tetron (registered trademark) film SLA manufactured by Teijin DuPont
- PEN film Teonex registered trademark
- Lumirror registered trademark
- a metal film such as aluminum having a smaller coefficient of thermal expansion than the plastic material.
- the frame is made of a heat-resistant plastic such as polyimide resin (TECASINT4111 (manufactured by Enzinger Japan)) and / or glass fiber reinforced resin (TECAPEEKGF30 (manufactured by Enzinger Japan)), and / or aluminum. It is preferable to use an inorganic material such as a metal or ceramic, or a glass material.
- the adhesive is also a heat-resistant adhesive (TB3732 (manufactured by ThreeBond), a super heat-resistant one-component shrinkable RTV silicone adhesive sealant (manufactured by Momentive Performance Materials Japan), and / or a heat-resistant inorganic adhesive Aron. Ceramic (registered trademark) (manufactured by Toa Gosei Co., Ltd.) is preferably used.
- TB3732 manufactured by ThreeBond
- Ceramic registered trademark
- the amount of expansion and contraction can be reduced by setting the thickness to 1 ⁇ m or less.
- the membrane is a special polyolefin film (Art Ply (registered trademark) (manufactured by Mitsubishi Plastics)), an acrylic resin film (acrylic (manufactured by Mitsubishi Rayon)), and / or a Scotch film (trademark) (manufactured by 3M).
- the frame material is preferably made of a plastic having high weather resistance such as polyvinyl chloride or polymethylmethacryl (acrylic), a metal such as aluminum, an inorganic material such as ceramic, and / or a glass material.
- a plastic having high weather resistance such as polyvinyl chloride or polymethylmethacryl (acrylic), a metal such as aluminum, an inorganic material such as ceramic, and / or a glass material.
- an adhesive having high weather resistance such as epoxy resin and / or Dreiflex (manufactured by Repair Care International).
- the moisture resistance it is preferable to appropriately select a film, a frame, and an adhesive having high moisture resistance. In terms of water absorption and chemical resistance, it is preferable to select an appropriate film, frame, and adhesive as appropriate.
- a fluororesin film (Dynock Film (trademark) (manufactured by 3M)) and / or a hydrophilic film (Miraclean (manufactured by Lifeguard)), RIVEX (manufactured by Riken Technos), and / or SH2CLHF (manufactured by 3M) )
- Miraclean manufactured by Lifeguard
- RIVEX manufactured by Riken Technos
- SH2CLHF manufactured by 3M
- the use of a photocatalytic film (Laclean (manufactured by Kimoto)) can also prevent the film from being soiled. The same effect can be obtained by applying a spray containing these conductive, hydrophilic and / or photocatalytic properties and / or a spray containing a fluorine compound to the film.
- a cover on the film In addition to using a special film as described above, it is possible to prevent contamination by providing a cover on the film.
- a thin film material such as Saran Wrap (registered trademark)
- the soundproof structure 10K having the through-hole 42 serving as a ventilation hole in the film 16 as shown in FIG. 54 the soundproof members 70a and 70b shown in FIG. 68 and FIG.
- the cover 72 provided in the above is provided with a hole 73 so that wind and dust do not directly hit the film 16.
- the dust can be removed by emitting a sound having a resonance frequency of the film and strongly vibrating the film. The same effect can be obtained by using a blower or wiping.
- Wind pressure When the strong wind hits the film, the film is pushed and the resonance frequency may change. Therefore, the influence of wind can be suppressed by covering the membrane with a nonwoven fabric, urethane, and / or a film.
- the cover 72 provided on the film 16 is also provided with a hole 73 so that the wind does not directly hit the film 16.
- the film surface is not parallel to the sound traveling direction (vector). It is preferable to provide a wind prevention frame 74 on the upper portion of the film 16 to prevent the wind W from directly hitting the film 16 because it may be suppressed and affect vibration. Furthermore, in the soundproofing member 70d using the soundproofing structure of the present invention, the wind W is applied to the side of the soundproofing member in order to suppress the influence (wind pressure and wind noise on the film) caused by the turbulent flow caused by blocking the wind W on the side of the soundproofing member. It is preferable to provide a rectifying mechanism 75 such as a rectifying plate or the like.
- [Combination of unit cells] 1, 4, 6, 8, 10, 42, 43, 46, 48, 49, 52, 56, 58, and 64 of the soundproof structure 10, 10A, 10B, 10C, 10D, 10E, 10F of the present invention, 10G, 10H, 10J, 10L, 50, and 60 are configured by a single frame member in which a plurality of frames 14 such as the frame member 15 or the disk-shaped soundproof frame member 19 are continuous.
- the soundproof cell as a unit unit cell having one frame and one film attached thereto, or having a through-hole formed in the one frame, one film and the film. May be.
- the soundproofing member having the soundproofing structure of the present invention does not necessarily need to be configured by one continuous frame, and has a frame structure and a film structure attached thereto as a unit unit cell, or one frame. It may be a soundproof cell having a structure and a single membrane structure and a hole structure formed in the membrane structure, and such unit unit cells are used independently or a plurality of unit unit cells are used in combination. You can also.
- a magic tape registered trademark
- a magnet a magnet
- a button a suction cup, and / or an uneven part
- the unit unit cell may be combined. It is also possible to connect a plurality of unit unit cells.
- a desorption mechanism comprising a magnetic material, Velcro (registered trademark), button, sucker, etc. is attached to the soundproof member. It is preferable.
- the attachment / detachment mechanism 76 is attached to the bottom surface of the outer frame 14 of the frame member of the soundproof member (soundproof cell unit) 70e, and the attachment / detachment mechanism 76 attached to the soundproof member 70e is attached to the opening member 22.
- the soundproofing member 70e may be attached to the wall 78, or the attachment / detachment mechanism 76 attached to the soundproofing member 70e is removed from the side surface of the opening member 22 as shown in FIG. 70e may be detached from the side surface of the opening member 22.
- 71c are preferably attached to each of the soundproof cells 71a, 71b, 71c with a detaching mechanism 80 such as a magnetic material, Velcro (registered trademark), button, sucker or the like.
- a detaching mechanism 80 such as a magnetic material, Velcro (registered trademark), button, sucker or the like.
- the soundproof cell 71d is provided with a convex portion 82a
- the soundproof cell 71e is provided with a concave portion 82b
- the convex portion 82a and the concave portion 82b are engaged with each other.
- the soundproof cell 71d and the soundproof cell 71e may be detached.
- one soundproof cell may be provided with both convex portions and concave portions.
- the soundproof cell may be attached and detached by combining the above-described detaching mechanism 80 shown in FIG. 74 and the concavo-convex portion, convex portion 82a and concave portion 82b shown in FIG.
- FIGS. 80 to 82 by changing or combining the thickness of the in-plane frame, high rigidity can be secured and the weight can be reduced.
- FIG. 80 As in the soundproof member 92 having the soundproof structure of the present invention shown in FIG. 80, as shown in FIG. 81, which is a cross-sectional schematic view of the soundproof member 92 shown in FIG.
- the frame members 98a on both outer sides and the center of the frame body 98 composed of a plurality of 94 frames 96 are made thicker than the other frame members 98b.
- FIG. 80 As shown in FIG. 80, as shown in FIG. 81, which is a cross-sectional schematic view of the soundproof member 92 shown in FIG.
- the frame members 98a on both outer sides and the center of the frame body 98 composed of a plurality of 94 frames 96 are made thicker than the other frame members 98b.
- each soundproof cell shown in FIGS. 68 to 82 is not provided with a through hole, but the present invention is not limited to this, as in the soundproof cell unit 20K of the embodiment shown in FIG. Of course, the through hole 42 may be provided.
- the soundproof structure of the present invention can be used as the following soundproof member.
- Soundproof material for building materials Soundproof material used for building materials
- Sound-proofing material for air-conditioning equipment Sound-proofing material installed in ventilation openings, air-conditioning ducts, etc.
- Soundproof member for external opening Soundproof member installed in the window of the room to prevent noise from inside or outside the room
- Soundproof member for ceiling Soundproof member that is installed on the ceiling in the room and controls the sound in the room
- Soundproof member for floor Soundproof member that is installed on the floor and controls the sound in the room
- Soundproof member for internal openings Soundproof member installed at indoor doors and bran parts to prevent noise from each room
- Soundproof material for toilets Installed in the toilet or door (indoor / outdoor), to prevent noise from the toilet
- Soundproof material for balcony Soundproof material installed on the balcony to prevent noise from your own balcony or the adjacent balcony
- Indoor sound-adjusting member Sound-proofing member for controlling the sound of the room
- Simple soundproof room material Soundproof material that can be easily assembled and moved easily.
- Soundproof room members for pets Soundproof members that surround pet rooms and prevent noise
- Amusement facilities Game center, sports center, concert hall, soundproofing materials installed in movie theaters
- Soundproof member for temporary enclosure for construction site Soundproof member to prevent noise leakage around the construction site
- Soundproof member for tunnel Soundproof member that is installed in the tunnel and prevents noise leaking inside and outside the tunnel can be mentioned.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Building Environments (AREA)
Abstract
孔部を持つ枠と、孔部を覆うように枠に固定された膜と、を備える防音セルを少なくとも1つ有する防音構造であって、開口を有する開口部材に、開口部材の開口断面に対して膜の膜面を傾け、開口部材に気体が通過する通気孔となる領域を設けた状態で防音セルを配置したことにより、音の入射方向に対して防音セルの膜面を傾けて開口部材に取り付けて、高い開口率の状態でも、大きな防音効果を発揮することができ、防音セルの取付に際し、ダクトや筒を追加工することなく、騒音を除去することができ、かつ高い通気性を維持することができる防音構造、これを有するルーバ、及び防音壁を提供する。
Description
本発明は、防音構造、これを有するルーバ、及び防音壁に係り、詳しくは、枠と、枠に固定された膜とが形成された防音セルが1つ、または2次元的に配置された複数からなり、ターゲットとなる周波数の音を選択的に強く遮蔽するための防音構造、これを有するルーバ、及び防音壁に関する。
一般的な遮音材は、質量が重ければ重いほど音を良く遮蔽するために、良好な遮音効果を得るために、遮音材自体が大きく重くなってしまう。一方、特に、低周波成分の音を遮蔽することは困難である。一般に、この領域は、質量則と呼ばれ周波数が2倍になると遮蔽が6dB大きくなることが知られている。
このように、従来の防音構造の多くは、構造の質量で遮音を行っていたために大きく重くなりまた低周波の遮蔽が困難という欠点があった。
これに対し、シートやフィルムに枠を張り合わせることで部材の剛性を高めた防音構造が報告されている(特許文献1、2及び3参照)。このような遮音構造は、従来の遮音部材に比べ軽量かつ特定の周波数において高い遮蔽性能を得ることができる。また、枠の形状や膜の剛性、錘の質量を変えることで、遮音周波数を制御することが可能である。
このように、従来の防音構造の多くは、構造の質量で遮音を行っていたために大きく重くなりまた低周波の遮蔽が困難という欠点があった。
これに対し、シートやフィルムに枠を張り合わせることで部材の剛性を高めた防音構造が報告されている(特許文献1、2及び3参照)。このような遮音構造は、従来の遮音部材に比べ軽量かつ特定の周波数において高い遮蔽性能を得ることができる。また、枠の形状や膜の剛性、錘の質量を変えることで、遮音周波数を制御することが可能である。
特許文献1においては、貫通開口が形成された枠体と、該貫通開口の一方の開口を覆う吸音材を有し、吸音材の貯蔵弾性率が特定の範囲である吸音体が開示されている(要約、請求項1、段落[0005]~[0007]、[0034]等参照)。なお、吸音材の貯蔵弾性率は、吸音により吸音材に生じたエネルギのうち内部に保存する成分を意味する。
特許文献1では、枠体としては軽量化の点からは樹脂などの比重の低い材料が好ましいとされ(段落[0019]参照)、実施例ではアクリル樹脂が用いられ(段落[0030]参照)、吸音材としては熱可塑性樹脂を用いることができるとされ(段落[0022]参照)、実施例では配合の材料を樹脂又は樹脂とフィラーの混合物とする吸音材を用いることにより(段落[0030]~[0034]参照)、吸音体の大型化を招くことなく、低周波領域において高度な吸音効果を達成することができるとしている。
特許文献1では、枠体としては軽量化の点からは樹脂などの比重の低い材料が好ましいとされ(段落[0019]参照)、実施例ではアクリル樹脂が用いられ(段落[0030]参照)、吸音材としては熱可塑性樹脂を用いることができるとされ(段落[0022]参照)、実施例では配合の材料を樹脂又は樹脂とフィラーの混合物とする吸音材を用いることにより(段落[0030]~[0034]参照)、吸音体の大型化を招くことなく、低周波領域において高度な吸音効果を達成することができるとしている。
また、特許文献2には、複数の個々のセルに分割された、音響的に透過性のある2次元の剛性フレームと、剛性フレームに固定されたフレキシブルな材料のシートと、複数の錘と、を具備する音響減衰パネルであって、複数の個々のセルは、大体2次元セルであり、各錘は、各セルにそれぞれ錘が設けられるようにフレキシブルな材料のシートに固定され、音響減衰パネルの共鳴周波数は、個々の各セルの2次元形状、フレキシブルな材料の柔軟性、及びその上の各錘によって定義される音響減衰パネル、及び音響減衰構造が開示されている(請求項1、12、及び15、図5、第4欄等参照)。
また、特許文献3は、枠となる区画壁で仕切られ、板状部材による後壁(剛壁)で閉じられ、前部が開口部を形成する空洞の開口部を覆う膜材(膜状吸音材)が被せられ、その上から押さえ板が載せられ、膜材の音波による変位が最も生じにくい領域である開口部の周縁部の固定端から膜状吸音材の面の寸法の20%の範囲内の領域(隅部分)にヘルムホルツ共鳴用の共鳴穴が形成された吸音体を開示している。この吸音体においては、共鳴穴を除いて、空洞は閉塞されている。この吸音体は、膜振動による吸音作用とヘルムホルツ共鳴による吸音作用を併せて奏する。
また、特許文献3は、枠となる区画壁で仕切られ、板状部材による後壁(剛壁)で閉じられ、前部が開口部を形成する空洞の開口部を覆う膜材(膜状吸音材)が被せられ、その上から押さえ板が載せられ、膜材の音波による変位が最も生じにくい領域である開口部の周縁部の固定端から膜状吸音材の面の寸法の20%の範囲内の領域(隅部分)にヘルムホルツ共鳴用の共鳴穴が形成された吸音体を開示している。この吸音体においては、共鳴穴を除いて、空洞は閉塞されている。この吸音体は、膜振動による吸音作用とヘルムホルツ共鳴による吸音作用を併せて奏する。
ところで、従来のダクトや筒等を用いた防音においては、通気性を維持したまま、騒音を除去するためには、ダクトに穴を開けたり、ダクトや筒の太さを途中で変化させるなどの追加工をする必要があるという問題があった。
また、特許文献1、2及び3に開示のデバイスは、これまで音波の入射方向に対し垂直に開口を塞ぐようにデバイスを配置し、防音機能を誘起しているため、通気性を維持することができなかった。
また、特許文献1、2及び3に開示のデバイスは、これまで音波の入射方向に対し垂直に開口を塞ぐようにデバイスを配置し、防音機能を誘起しているため、通気性を維持することができなかった。
本発明の目的は、上記従来技術の問題点を克服するものであって、音の入射方向に対して防音セルの膜面を傾けて開口部材に取り付けて、高い開口率の状態でも、大きな防音効果を発揮することができ、防音セルの取付に際し、ダクトや筒を追加工することなく、騒音を除去することができ、かつ高い通気性を維持することができる防音構造、これを有するルーバ、及び防音壁を提供することにある。
上記目的を達成するために、本発明の第1の態様の防音構造は、孔部を持つ枠と、孔部を覆うように枠に固定された膜と、を備える防音セルを少なくとも1つ有する防音構造であって、開口を有する開口部材に、開口部材の開口断面に対して膜の膜面を傾け、開口部材に気体が通過する通気孔となる領域を設けた状態で防音セルを配置したことを特徴とする。
また、上記目的を達成するために、本発明の第2の態様のルーバは、上記第1の態様の防音構造を有することを特徴とする。
また、上記目的を達成するために、本発明の第3の態様の防音壁は、上記第1の態様の防音構造を有することを特徴とする。
また、上記目的を達成するために、本発明の第2の態様のルーバは、上記第1の態様の防音構造を有することを特徴とする。
また、上記目的を達成するために、本発明の第3の態様の防音壁は、上記第1の態様の防音構造を有することを特徴とする。
ここで、防音セルは、開口部材の開口端から開口端補正距離以内に配置されていることが好ましい。
また、防音セルは、膜の第1固有振動周波数の波長よりも小さいことが好ましい。
また、第1固有振動周波数は、10Hz~100000Hzの範囲内に含まれることが好ましい。
また、防音セルは、防音セルの第1固有振動周波数の音波が開口部材に形成する音圧が高い位置に配置されていることが好ましい。
また、防音セルは、防音セルの第1固有振動周波数の音波が開口部材に形成する定在波の音圧分布の腹の位置に配置されていることが好ましい。
また、防音セルは、膜の第1固有振動周波数の波長よりも小さいことが好ましい。
また、第1固有振動周波数は、10Hz~100000Hzの範囲内に含まれることが好ましい。
また、防音セルは、防音セルの第1固有振動周波数の音波が開口部材に形成する音圧が高い位置に配置されていることが好ましい。
また、防音セルは、防音セルの第1固有振動周波数の音波が開口部材に形成する定在波の音圧分布の腹の位置に配置されていることが好ましい。
また、防音構造は、複数の前記防音セルを有していてもよい。
複数の防音セルの中には、第1固有振動周波数が異なる2種以上の防音セルが存在し、第1固有振動周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する第1固有振動周波数の音波が開口部材に形成する音圧が高い位置に配置されていることが好ましい。
また、複数の防音セルの中には、第1固有振動周波数が異なる2種以上の防音セルが存在し、第1固有振動周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する第1固有振動周波数の音波が開口部材に形成する定在波の音圧分布の腹の位置に配置されていることが好ましい。
また、複数の防音セルの中には、同一の第1固有振動周波数を有する2以上の防音セルが存在し、2以上の防音セルは、開口部材の内周壁の同一円周上に配置されていることが好ましい。
さらに、複数の防音セルの中には、さらに、2以上の防音セルの同一の第1固有振動周波数と、異なる第1固有振動周波数を有する1種以上の防音セルが存在し、異なる第1固有振動周波数を有する1種以上の防音セルは、同一の前記第1固有振動周波数を有する2以上の防音セルの中の1つの防音セルと、開口部材の中心軸方向に直列になるように配置されていることがより好ましい。
複数の防音セルの中には、同一の第1固有振動周波数を有する2以上の防音セルが存在し、2以上の防音セルは、開口部材の中心軸方向に直列になるように配置されていることが好ましい。
さらに、複数の防音セルの中には、さらに、2以上の防音セルの同一の第1固有振動周波数と、異なる第1固有振動周波数を有する1種以上の防音セルが存在し、第1固有振動周波数が異なる1種以上の防音セルは、開口部材の中心軸方向に直列に配置されていることがより好ましい。
複数の防音セルの中には、第1固有振動周波数が異なる2種以上の防音セルが存在し、第1固有振動周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する第1固有振動周波数の音波が開口部材に形成する音圧が高い位置に配置されていることが好ましい。
また、複数の防音セルの中には、第1固有振動周波数が異なる2種以上の防音セルが存在し、第1固有振動周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する第1固有振動周波数の音波が開口部材に形成する定在波の音圧分布の腹の位置に配置されていることが好ましい。
また、複数の防音セルの中には、同一の第1固有振動周波数を有する2以上の防音セルが存在し、2以上の防音セルは、開口部材の内周壁の同一円周上に配置されていることが好ましい。
さらに、複数の防音セルの中には、さらに、2以上の防音セルの同一の第1固有振動周波数と、異なる第1固有振動周波数を有する1種以上の防音セルが存在し、異なる第1固有振動周波数を有する1種以上の防音セルは、同一の前記第1固有振動周波数を有する2以上の防音セルの中の1つの防音セルと、開口部材の中心軸方向に直列になるように配置されていることがより好ましい。
複数の防音セルの中には、同一の第1固有振動周波数を有する2以上の防音セルが存在し、2以上の防音セルは、開口部材の中心軸方向に直列になるように配置されていることが好ましい。
さらに、複数の防音セルの中には、さらに、2以上の防音セルの同一の第1固有振動周波数と、異なる第1固有振動周波数を有する1種以上の防音セルが存在し、第1固有振動周波数が異なる1種以上の防音セルは、開口部材の中心軸方向に直列に配置されていることがより好ましい。
また、孔部は、貫通しており、孔部の両端面に膜が固定されていることが好ましい。
また、孔部は、貫通しており、孔部の両端面に膜が固定され、前記両面膜のそれぞれの第1固有振動周波数が異なることが好ましい。
また、互いに隣接する防音セルの膜の背面空間を連通する貫通孔を有することが好ましい。
また、孔部は、貫通しており、孔部の両端面に膜が固定され、前記両面膜のそれぞれの第1固有振動周波数が異なることが好ましい。
また、互いに隣接する防音セルの膜の背面空間を連通する貫通孔を有することが好ましい。
また、膜に、錘が配置されていることが好ましい。
また、膜は、貫通孔を有することが好ましい。
また、更に、枠の孔部内に吸音材が配置されていることが好ましい。
また、更に、防音セルの膜面の開口断面に対する傾斜角度を調整可能とする機構を設けたことが好ましい。
また、防音セルは、開口部材に取外し可能な部材であることが好ましい。
また、開口部材は、筒状体であり、筒状体内に防音セルが配置されることが好ましい。
また、開口部材は、気体の通過を遮断する物体の領域内に形成される開口を有することが好ましく、2つの空間を隔てる壁に設けられることが好ましい。
また、膜は、貫通孔を有することが好ましい。
また、更に、枠の孔部内に吸音材が配置されていることが好ましい。
また、更に、防音セルの膜面の開口断面に対する傾斜角度を調整可能とする機構を設けたことが好ましい。
また、防音セルは、開口部材に取外し可能な部材であることが好ましい。
また、開口部材は、筒状体であり、筒状体内に防音セルが配置されることが好ましい。
また、開口部材は、気体の通過を遮断する物体の領域内に形成される開口を有することが好ましく、2つの空間を隔てる壁に設けられることが好ましい。
本発明によれば、音の入射方向に対して防音セルの膜面が傾けて開口部材に取り付けても、高い開口率を有した状態でも大きな防音効果を発揮することができ、防音セルの取付に際し、ダクトや筒を追加工することなく、騒音を除去することができ、かつ高い通気性を維持することができる。
以下に、本発明に係る防音構造、これを有するルーバ、及び防音壁を添付の図面に示す好適実施形態を参照して詳細に説明する。
まず、本発明に係る防音構造について説明する。
まず、本発明に係る防音構造について説明する。
(実施形態1)
図1は、本発明の実施形態1に係る防音構造の一例を模式的に示す斜視図である。図2は、図1に示す防音構造のI-I線で切断した模式的な断面図であり、図3は、図1に示す防音セルの模式的な断面図である。
図1は、本発明の実施形態1に係る防音構造の一例を模式的に示す斜視図である。図2は、図1に示す防音構造のI-I線で切断した模式的な断面図であり、図3は、図1に示す防音セルの模式的な断面図である。
図1に示す本実施形態1の防音構造10は、貫通する孔部12を持つ枠14と、孔部12の片面を覆うように枠14に固定された振動可能な膜16と、を持つ防音セル18を、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22b(後述する図14参照)に対して膜16の膜面を所定角度(図14に示す例では角度θ、図2に示す例ではθ=90°)傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する。
ここで、管体22は、気体の通過を遮断する物体の領域内に形成される開口部材であるが、管体22の管壁は、気体の通過を遮断する物体、例えば2つの空間を隔てる物体等の壁を構成し、管体22の内部は、気体の通過を遮断する物体の一部の領域に形成された開口22aを構成する。
ここで、管体22は、気体の通過を遮断する物体の領域内に形成される開口部材であるが、管体22の管壁は、気体の通過を遮断する物体、例えば2つの空間を隔てる物体等の壁を構成し、管体22の内部は、気体の通過を遮断する物体の一部の領域に形成された開口22aを構成する。
なお、本発明において、開口部材は、気体の通過を遮断する物体の領域内に形成される開口を有することが好ましく、2つの空間を隔てる壁に設けられることが好ましい。
ここで、開口が形成される領域を持ち、気体の通過を遮断する物体とは、2つの空間を隔てる部材、及び壁等を言い、部材としては、管体、筒状体等の部材を言い、壁としては、例えば、家、ビル、工場等の建造物の構造体を構成する固定壁、建造物の部屋内に配置され、部屋内を仕切る固定間仕切り(パーティション)等の固定壁、建造物の部屋内に配置され、部屋内を仕切る可動間仕切り(パーティション)等の可動壁等を言う。
本発明の開口部材は、ダクト等の管体、筒体であっても良いし、ルーバ、ガラリ等の換気孔、窓等を取り付けるための開口を持つ壁自体であっても良いし、壁に取り付けられる窓枠等の取付枠等であっても良い。
ここで、開口が形成される領域を持ち、気体の通過を遮断する物体とは、2つの空間を隔てる部材、及び壁等を言い、部材としては、管体、筒状体等の部材を言い、壁としては、例えば、家、ビル、工場等の建造物の構造体を構成する固定壁、建造物の部屋内に配置され、部屋内を仕切る固定間仕切り(パーティション)等の固定壁、建造物の部屋内に配置され、部屋内を仕切る可動間仕切り(パーティション)等の可動壁等を言う。
本発明の開口部材は、ダクト等の管体、筒体であっても良いし、ルーバ、ガラリ等の換気孔、窓等を取り付けるための開口を持つ壁自体であっても良いし、壁に取り付けられる窓枠等の取付枠等であっても良い。
なお、本発明の開口部材の開口の形状は、断面形状で、図示例では円形であるが、本発明においては、防音セル、即ち防音セルユニットを開口内に配置できれば、特に制限的ではなく、例えば、正方形、長方形、ひし形、又は平行四辺形等の他の四角形、正三角形、2等辺三角形、又は直角三角形等の三角形、正五角形、又は正六角形等の正多角形を含む多角形、若しくは楕円形等であっても良いし、不定形であっても良い。
また、本発明の開口部材の材料としては、特に制限的ではなく、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、これらの合金等の金属材料、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース等の樹脂材料、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)、カーボンファイバ、及びガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)、建造物の壁材と同様なコンクリート、モルタル等の壁材等を挙げることができる。
また、本発明の開口部材の材料としては、特に制限的ではなく、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、これらの合金等の金属材料、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース等の樹脂材料、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)、カーボンファイバ、及びガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)、建造物の壁材と同様なコンクリート、モルタル等の壁材等を挙げることができる。
防音セル18の枠14は、孔部12を囲む部分によって構成される。
枠14は、貫通する孔部12を環状に囲むように形成され、孔部12の片面を覆うように膜16を固定し、かつ支持するためのもので、この枠14に固定された膜16の膜振動の節となるものである。したがって、枠14は、膜16に比べて、剛性が高く、具体的には、単位面積当たりの質量及び剛性は、共に高いことが好ましい。
枠14は、貫通する孔部12を環状に囲むように形成され、孔部12の片面を覆うように膜16を固定し、かつ支持するためのもので、この枠14に固定された膜16の膜振動の節となるものである。したがって、枠14は、膜16に比べて、剛性が高く、具体的には、単位面積当たりの質量及び剛性は、共に高いことが好ましい。
なお、枠14は、膜16の全周を抑えることができるように膜16を固定できる閉じた連続した形状であることが好ましいが、本発明は、これに限定されず、枠14が、これに固定された膜16の膜振動の節となるものであれば、一部が切断され、不連続な形状であっても良い。即ち、枠14の役割は、膜16を固定し支持して膜振動を制御することにあるため、枠14に小さな切れ目が入っていても、接着していない部位が存在していても効果を発揮する。
また、枠14の孔部12の形状は、平面形状で、図示例では正方形であるが、本発明においては、特に制限的ではなく、例えば、長方形、ひし形、又は平行四辺形等の他の四角形、正三角形、2等辺三角形、又は直角三角形等の三角形、正五角形、又は正六角形等の正多角形を含む多角形、若しくは円形、楕円形等であっても良いし、不定形であっても良い。なお、枠14の孔部12の両側の端部は、共に閉塞されておらず、共にそのまま外部に開放されている。この開放された孔部12の少なくとも一方の端部に孔部12を覆うように膜16が枠14に固定される。
図1及び図2では、枠14の孔部12は、その両側の端部が、共に閉塞されておらず、共にそのまま外部に開放されているが、孔部12の片方の端部のみが外部に開放され、もう片方の端部が閉塞されていてもよい。この場合には、孔部12を覆う膜16は、開放された孔部12の一方の端部にのみ固定される。
また、枠14の孔部12の形状は、平面形状で、図示例では正方形であるが、本発明においては、特に制限的ではなく、例えば、長方形、ひし形、又は平行四辺形等の他の四角形、正三角形、2等辺三角形、又は直角三角形等の三角形、正五角形、又は正六角形等の正多角形を含む多角形、若しくは円形、楕円形等であっても良いし、不定形であっても良い。なお、枠14の孔部12の両側の端部は、共に閉塞されておらず、共にそのまま外部に開放されている。この開放された孔部12の少なくとも一方の端部に孔部12を覆うように膜16が枠14に固定される。
図1及び図2では、枠14の孔部12は、その両側の端部が、共に閉塞されておらず、共にそのまま外部に開放されているが、孔部12の片方の端部のみが外部に開放され、もう片方の端部が閉塞されていてもよい。この場合には、孔部12を覆う膜16は、開放された孔部12の一方の端部にのみ固定される。
また、枠14のサイズは、平面視のサイズ、すなわち、図3のL1であり、その孔部12のサイズとして定義できるので、以下では、孔部12のサイズL1とするが、円形または正方形のような正多角形の場合には、その中心を通る対向する辺間の距離、又は円相当直径と定義することができ、多角形、楕円又は不定形の場合には、円相当直径と定義することができる。本発明において、円相当直径及び半径とは、それぞれ面積の等しい円に換算した時の直径及び半径である。
このような枠14の孔部12のサイズL1は、特に制限的ではなく、本発明の防音構造10の開口部材が防音のために適用される防音対象物、例えば、複写機、送風機、空調機器、換気扇、ポンプ類、発電機、ダクト、その他にも塗布機や回転機、搬送機など音を発するさまざまな種類の製造機器等の産業用機器、自動車、電車、航空機等の輸送用機器、冷蔵庫、洗濯機、乾燥機、テレビジョン、コピー機、電子レンジ、ゲーム機、エアコン、扇風機、PC、掃除機、空気清浄機等の一般家庭用機器などに応じて設定すればよい。
また、この防音構造10自体をパーティションのように用いて、複数の騒音源からの音を遮る用途に用いることもできる。この場合も、枠14のサイズL1は対象となる騒音の周波数から選択することができる。
また、この防音構造10自体をパーティションのように用いて、複数の騒音源からの音を遮る用途に用いることもできる。この場合も、枠14のサイズL1は対象となる騒音の周波数から選択することができる。
なお、枠14及び膜16からなる防音セル18は、膜16の第1固有振動数の波長よりも小さくすることが好ましく、そのため、すなわち防音セル18を第1固有振動数の波長よりも小さくするためには、枠14のサイズL1を小さくすることが好ましい。
例えば、孔部12のサイズL1は、特に制限的ではないが、例えば、0.5mm~300mmであることが好ましく、1mm~100mmであることがより好ましく、10mm~50mmであることが最も好ましい。
例えば、孔部12のサイズL1は、特に制限的ではないが、例えば、0.5mm~300mmであることが好ましく、1mm~100mmであることがより好ましく、10mm~50mmであることが最も好ましい。
なお、枠14の幅L4及び厚さ(厚み)L2も、膜16を固定することができ、膜16を確実に支持できれば、特に制限的ではないが、例えば、孔部12のサイズに応じて設定することができる。
例えば、枠14の幅L4は、孔部12のサイズL1が、0.5mm~50mmの場合には、0.5mm~20mmであることが好ましく、0.7mm~10mmであることがより好ましく、1mm~5mmであることが最も好ましい。
また、枠14の幅L4は、孔部12のサイズL1が、50mm超、300mm以下の場合には、1mm~100mmであることが好ましく、3mm~50mmであることがより好ましく、5mm~20mmであることが最も好ましい。
なお、枠14の幅L4が、枠14のサイズL1に対して比率が大きくなりすぎると、全体に占める枠14の部分の面積率が大きくなり、デバイス(防音セル18)が重くなる懸念がある。一方、上記比率が小さくなりすぎると、その枠14部分において接着剤などによって膜16を強く固定することが難しくなってくる。
また、枠14、即ち孔部12の厚さL2は、0.5mm~200mmであることが好ましく、0.7mm~100mmであることがより好ましく、1mm~50mmであることが最も好ましい。
例えば、枠14の幅L4は、孔部12のサイズL1が、0.5mm~50mmの場合には、0.5mm~20mmであることが好ましく、0.7mm~10mmであることがより好ましく、1mm~5mmであることが最も好ましい。
また、枠14の幅L4は、孔部12のサイズL1が、50mm超、300mm以下の場合には、1mm~100mmであることが好ましく、3mm~50mmであることがより好ましく、5mm~20mmであることが最も好ましい。
なお、枠14の幅L4が、枠14のサイズL1に対して比率が大きくなりすぎると、全体に占める枠14の部分の面積率が大きくなり、デバイス(防音セル18)が重くなる懸念がある。一方、上記比率が小さくなりすぎると、その枠14部分において接着剤などによって膜16を強く固定することが難しくなってくる。
また、枠14、即ち孔部12の厚さL2は、0.5mm~200mmであることが好ましく、0.7mm~100mmであることがより好ましく、1mm~50mmであることが最も好ましい。
また、防音セル18は、膜16の第1固有振動数の波長よりも小さくすることが好ましいので、枠14(孔部12)のサイズL1は、防音セル18に固定された膜16の第1固有振動周波数の波長以下のサイズであることが好ましい。
防音セル18の枠14(孔部12)のサイズL1が、膜16の第1固有振動周波数の波長以下のサイズであれば、膜16の膜面に強度ムラの小さい音圧がかかることになるため、音響の制御が困難な膜の振動モードが誘起されにくくなる。つまり、防音セル18は、高い音響制御性を獲得することができる。
強度ムラがより小さい音圧を膜16の膜面にかけるためには、すなわち、膜16の膜面にかかる音圧をより均一にするには、枠14(孔部12)のサイズL1は、防音セル18に固定された膜16の第1固有振動周波数の波長をλとするとき、λ/2以下であることが好ましく、λ/4以下であることがより好ましく、λ/8以下であることが最も好ましい。
防音セル18の枠14(孔部12)のサイズL1が、膜16の第1固有振動周波数の波長以下のサイズであれば、膜16の膜面に強度ムラの小さい音圧がかかることになるため、音響の制御が困難な膜の振動モードが誘起されにくくなる。つまり、防音セル18は、高い音響制御性を獲得することができる。
強度ムラがより小さい音圧を膜16の膜面にかけるためには、すなわち、膜16の膜面にかかる音圧をより均一にするには、枠14(孔部12)のサイズL1は、防音セル18に固定された膜16の第1固有振動周波数の波長をλとするとき、λ/2以下であることが好ましく、λ/4以下であることがより好ましく、λ/8以下であることが最も好ましい。
枠14の材料は、膜16を支持でき、上述した防音対象物に適用する際に適した強度を持ち、防音対象物の防音環境に対して耐性があれば、特に制限的ではなく、防音対象物及びその防音環境に応じて選択することができる。例えば、枠14の材料としては、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、これらの合金等の金属材料、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース等の樹脂材料、炭素繊維強化プラスチック(CFRP)、カーボンファイバ、及びガラス繊維強化プラスチック(GFRP)等を挙げることができる。
また、枠14の材料としてこれらの複数種の材料を組み合わせて用いてもよい。
また、枠14の材料としてこれらの複数種の材料を組み合わせて用いてもよい。
また、枠14の孔部12内には、従来公知の吸音材を配置してもよい。
吸音材を配置することで、吸音材による吸音効果により、遮音特性をより向上できる。
吸音材としては、特に限定はなく、ウレタン板、不織布等の種々の公知の吸音材が利用可能である。
また、本発明の防音構造10を、ウレタン板、不織布等の種々の公知の吸音材と一緒に、ダクト等の管体22を含む開口部材に入れていても良い。
以上のように、本発明の防音構造内に、又は防音構造と共に、公知の吸音材を組み合わせて用いることにより、本発明の防音構造による効果と、公知の吸音材による効果との両方の効果を得ることができる。
吸音材を配置することで、吸音材による吸音効果により、遮音特性をより向上できる。
吸音材としては、特に限定はなく、ウレタン板、不織布等の種々の公知の吸音材が利用可能である。
また、本発明の防音構造10を、ウレタン板、不織布等の種々の公知の吸音材と一緒に、ダクト等の管体22を含む開口部材に入れていても良い。
以上のように、本発明の防音構造内に、又は防音構造と共に、公知の吸音材を組み合わせて用いることにより、本発明の防音構造による効果と、公知の吸音材による効果との両方の効果を得ることができる。
膜16は、枠14の内部の孔部12を覆うように枠14に抑えられるように固定されるもので、外部からの音波に対応して膜振動することにより音波のエネルギを吸収、もしくは反射して防音するものである。
ところで、膜16は、枠14を節として膜振動する必要があるので、枠14に確実に抑えられるように固定され、膜振動の腹となり、音波のエネルギを吸収して、もしくは反射して防音する必要がある。このため、膜16は、可撓性のある弾性材料製であることが好ましい。
このため、膜16の形状は、図3に示す枠14の孔部12の形状であり、また、膜16のサイズは、枠14(孔部12)のサイズL1であるということができる。
ところで、膜16は、枠14を節として膜振動する必要があるので、枠14に確実に抑えられるように固定され、膜振動の腹となり、音波のエネルギを吸収して、もしくは反射して防音する必要がある。このため、膜16は、可撓性のある弾性材料製であることが好ましい。
このため、膜16の形状は、図3に示す枠14の孔部12の形状であり、また、膜16のサイズは、枠14(孔部12)のサイズL1であるということができる。
また、膜16の厚さは、音波のエネルギを吸収して防音するために膜振動することができれば、特に制限的ではないが、固有振動モードを高周波側に得るためには厚く、低周波側に得るためには薄くすることが好ましい。例えば、図3に示す膜16の厚さL3は、本発明では、孔部12のサイズL1、即ち膜16のサイズに応じて設定することができる。
例えば、膜16の厚さL3は、孔部12のサイズL1が0.5mm~50mmの場合には、0.001mm(1μm)~5mmであることが好ましく、0.005mm(5μm)~2mmであることがより好ましく、0.01mm(10μm)~1mmであることが最も好ましい。
また、膜16の厚さL3は、孔部12のサイズL1が、50mm超、300mm以下の場合には、0.01mm(10μm)~20mmであることが好ましく、0.02mm(20μm)~10mmであることがより好ましく、0.05mm(50μm)~5mmであることが最も好ましい。
なお、膜16の厚さは、1つの膜16で厚さが異なる場合などは、平均厚さで表すことが好ましい。
例えば、膜16の厚さL3は、孔部12のサイズL1が0.5mm~50mmの場合には、0.001mm(1μm)~5mmであることが好ましく、0.005mm(5μm)~2mmであることがより好ましく、0.01mm(10μm)~1mmであることが最も好ましい。
また、膜16の厚さL3は、孔部12のサイズL1が、50mm超、300mm以下の場合には、0.01mm(10μm)~20mmであることが好ましく、0.02mm(20μm)~10mmであることがより好ましく、0.05mm(50μm)~5mmであることが最も好ましい。
なお、膜16の厚さは、1つの膜16で厚さが異なる場合などは、平均厚さで表すことが好ましい。
ここで、防音セル18の枠14に固定された膜16は、防音セル18の構造において、誘起可能な最も低次の固有振動モードの周波数である第1固有振動周波数を持つものである。
例えば、防音セル18の枠14に固定された膜16は、最も低次の固有振動モードの周波数である、膜16に略垂直に入射する音場に対し、膜の透過損失が最小となり、最も低次の吸収ピークを有する共振周波数、即ち第1固有振動周波数を持つものである。即ち、本発明では、膜16の第1固有振動周波数においては、音を透過させ、最も低次の周波数の吸収ピークを有する。本発明においては、この共振周波数は、枠14および膜16からなる防音セルユニット20によって決まる。
即ち、枠14および膜16からなる構造における、即ち枠14に抑えられるように固定された膜16の共振周波数は、音波が膜振動を最も揺らすところで、音波はその周波数で大きく透過し、最も低次の周波数の吸収ピークを有する固有振動モードの周波数である。
また、本発明においては、第1固有振動周波数は、枠14及び膜16からなる防音セル18によって決まる。本発明では、このようにして決まる第1固有振動周波数を膜の第1固有振動周波数という。
例えば、防音セル18の枠14に固定された膜16は、最も低次の固有振動モードの周波数である、膜16に略垂直に入射する音場に対し、膜の透過損失が最小となり、最も低次の吸収ピークを有する共振周波数、即ち第1固有振動周波数を持つものである。即ち、本発明では、膜16の第1固有振動周波数においては、音を透過させ、最も低次の周波数の吸収ピークを有する。本発明においては、この共振周波数は、枠14および膜16からなる防音セルユニット20によって決まる。
即ち、枠14および膜16からなる構造における、即ち枠14に抑えられるように固定された膜16の共振周波数は、音波が膜振動を最も揺らすところで、音波はその周波数で大きく透過し、最も低次の周波数の吸収ピークを有する固有振動モードの周波数である。
また、本発明においては、第1固有振動周波数は、枠14及び膜16からなる防音セル18によって決まる。本発明では、このようにして決まる第1固有振動周波数を膜の第1固有振動周波数という。
枠14に固定された膜16の第1固有振動周波数(例えば、剛性則に従う周波数領域と、質量側に従う周波数領域の境界が最も低次の第1共振周波数となる)は、人間の音波の感知域に相当する10Hz~100000Hzであることが好ましく、人間の音波の可聴域である20Hz~20000Hzであることがより好ましく、40Hz~16000Hzであることが更により好ましく、100Hz~12000Hzであることが最も好ましい。
ここで、本実施形態の防音セル18において、枠14及び膜16からなる構造における膜16の共振周波数、例えば第1固有振動周波数は、防音セル18の枠14の幾何学的形態、例えば枠14の形状及び寸法(サイズ)と、防音セル18の膜16の剛性、例えば膜16の厚さ及び可撓性と膜背後空間の体積によって定めることができる。
例えば、膜16の固有振動モードを特徴づけるパラメータとしては、同種材料の膜16の場合は、膜16の厚み(t)と孔部12のサイズ(R)の2乗との比、例えば、正四角形の場合には一辺の大きさとの比[R2/t]を用いることができ、この比[R2/t]が等しい場合には、上記固有振動モードが同じ周波数、即ち同じ共振周波数となる。即ち、比[R2/t]を一定値にすることにより、スケール則が成立し、適切なサイズを選択することができる。
例えば、膜16の固有振動モードを特徴づけるパラメータとしては、同種材料の膜16の場合は、膜16の厚み(t)と孔部12のサイズ(R)の2乗との比、例えば、正四角形の場合には一辺の大きさとの比[R2/t]を用いることができ、この比[R2/t]が等しい場合には、上記固有振動モードが同じ周波数、即ち同じ共振周波数となる。即ち、比[R2/t]を一定値にすることにより、スケール則が成立し、適切なサイズを選択することができる。
また、膜16のヤング率は、膜16が音波のエネルギを吸収、もしくは反射して防音するために膜振動することができる弾性を有していれば、特に制限的ではないが、固有振動モードを高周波側に得るためには大きく、低周波側に得るためには小さくすることが好ましい。例えば、膜16のヤング率は、本発明では、枠14(孔部12)のサイズ、即ち膜のサイズに応じて設定することができる。
例えば、膜16のヤング率は、1000Pa~3000GPaであることが好ましく、10000Pa~2000GPaであることがより好ましく、1MPa~1000GPaであることが最も好ましい。
例えば、膜16のヤング率は、1000Pa~3000GPaであることが好ましく、10000Pa~2000GPaであることがより好ましく、1MPa~1000GPaであることが最も好ましい。
また、膜16の密度も、音波のエネルギを吸収、もしくは反射して防音するために膜振動することができるものであれば、特に制限的ではなく、例えば、5kg/m3~30000kg/m3であることが好ましく、10kg/m3~20000kg/m3であることがより好ましく、100kg/m3~10000kg/m3であることが最も好ましい。
膜16の材料は、膜状材料、又は箔状材料にした際に、上述した防音対象物に適用する際に適した強度を持ち、防音対象物の防音環境に対して耐性があり、膜16が音波のエネルギを吸収、もしくは反射して防音するために膜振動することができるものであれば、特に制限的ではなく、防音対象物及びその防音環境などに応じて選択することができる。例えば、膜16の材料としては、ポリエチレンテレフタレート(PET)、ポリイミド、ポリメタクリル酸メチル、ポリカーボネート、アクリル(PMMA)、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース、ポリ塩化ビニリデン、低密度ポリエチレン、高密度ポリエチレン、芳香族ポリアミド、シリコーン樹脂、エチレンエチルアクリレート、酢酸ビニル共重合体、ポリエチレン、塩素化ポリエチレン、ポリ塩化ビニル、ポリメチルペンテン、ポリブテン等の膜状にできる樹脂材料、アルミニウム、クロム、チタン、ステンレス、ニッケル、スズ、ニオブ、タンタル、モリブデン、ジルコニウム、金、銀、白金、パラジウム、鉄、銅、パーマロイ等の箔状にできる金属材料、紙、セルロースなどその他繊維状の膜になる材質、不織布、ナノサイズのファイバーを含むフィルム、薄く加工したウレタンやシンサレートなどのポーラス材料、薄膜構造に加工したカーボン材料など、薄い構造を形成できる材質または構造等を挙げることができる。
また、膜16は、枠14の孔部12の少なくとも一方の側の開口を覆うように枠14に固定される。即ち、膜16は、枠14の孔部12の一方の側、又は他方の側、もしくは両側の開口を覆うように枠14に固定されていても良い。
枠14への膜16の固定方法は、特に制限的ではなく、膜16を枠14に膜振動の節となるように固定できればどのようなものでも良く、例えば、接着剤を用いる方法、又は物理的な固定具を用いる方法などを挙げることができる。
接着剤を用いる方法は、接着剤を枠14の孔部12を囲む表面上に接着剤を塗布し、その上に膜16載置し、膜16を接着剤で枠14に固定する。接着剤としては、例えば、エポキシ系接着剤(アラルダイト(登録商標)(ニチバン社製)等)、シアノアクリレート系接着剤(アロンアルフア(登録商標)(東亜合成社製)など)、アクリル系接着剤等を挙げることができる。
物理的な固定具を用いる方法としては、枠14の孔部12を覆うように配置された膜16を枠14と棒等の固定部材との間に挟み、固定部材をネジやビス等の固定具を用いて枠14に固定する方法等を挙げることができる。
なお、本実施形態1の防音セル18は、枠14と膜16とを別体として構成し、膜16を枠14に固定した構造であるが、これに限定されず、同じ材料からなる膜16と枠14が一体化した構造であっても良い。
本実施形態の防音セル18は、以上のように構成される。
枠14への膜16の固定方法は、特に制限的ではなく、膜16を枠14に膜振動の節となるように固定できればどのようなものでも良く、例えば、接着剤を用いる方法、又は物理的な固定具を用いる方法などを挙げることができる。
接着剤を用いる方法は、接着剤を枠14の孔部12を囲む表面上に接着剤を塗布し、その上に膜16載置し、膜16を接着剤で枠14に固定する。接着剤としては、例えば、エポキシ系接着剤(アラルダイト(登録商標)(ニチバン社製)等)、シアノアクリレート系接着剤(アロンアルフア(登録商標)(東亜合成社製)など)、アクリル系接着剤等を挙げることができる。
物理的な固定具を用いる方法としては、枠14の孔部12を覆うように配置された膜16を枠14と棒等の固定部材との間に挟み、固定部材をネジやビス等の固定具を用いて枠14に固定する方法等を挙げることができる。
なお、本実施形態1の防音セル18は、枠14と膜16とを別体として構成し、膜16を枠14に固定した構造であるが、これに限定されず、同じ材料からなる膜16と枠14が一体化した構造であっても良い。
本実施形態の防音セル18は、以上のように構成される。
防音構造10の開口率は、10%以上が好ましく、25%以上がより好ましく、50%以上がさらに好ましい。「開口率」の詳細については後述する。
また、管体22の開口断面22bに対する膜16の膜面の傾斜角度θは、通気性の点からは、20度以上であることが好ましく、45度以上がより好ましく、80度以上がさらに好ましい。管体22の開口断面22bに対して膜16の膜面を傾ける傾斜角度θの詳細についても後述する。
また、管体22の開口断面22bに対する膜16の膜面の傾斜角度θは、通気性の点からは、20度以上であることが好ましく、45度以上がより好ましく、80度以上がさらに好ましい。管体22の開口断面22bに対して膜16の膜面を傾ける傾斜角度θの詳細についても後述する。
防音セル18は、開口部材である管体22内において、防音セル18の第1固有振動周波数の音波が管体22に形成する音圧が高い位置に配置される。具体的には、防音セル18の第1固有振動周波数の音波が管体22に形成する定在波の音圧分布の腹の位置から±λ/4以内に配置されることが好ましく、±λ/6以内に配置されることがより好ましく、±λ/8以内に配置されることがさらに好ましく、定在波の音圧分布の腹の位置に配置されていることが最も好ましい。
また、例えば、管体22が、その開放端に壁やカバー等の物体が配置された筒やダクトである場合、すなわち、物体が音波の固定端となる場合は、防音セル18が、物体から、防音セル18の第1固有振動周波数の音波のλ/4以内に配置されることが好ましく、λ/6以内に配置されることがより好ましく、λ/8以内に配置されることが最も好ましい。
一方、管体22が、その開放端に壁やカバー等の物体が何も配置されていない筒やダクトである場合、すなわち、管体の開放端が音波の自由端となる場合は、防音セル18が、開放端から、防音セル18の第1固有振動周波数の音波のλ/4-開口端補正距離±λ/4以内に配置されることが好ましく、λ/4-開口端補正距離±λ/6以内に配置されることがより好ましく、λ/4-開口端補正距離±λ/8以内に配置されることが最も好ましい。
このように、防音セルを管体内の所定の配置することは後で詳述する。
本発明の実施形態1の防音構造10は、基本的に以上のように構成される。
一方、管体22が、その開放端に壁やカバー等の物体が何も配置されていない筒やダクトである場合、すなわち、管体の開放端が音波の自由端となる場合は、防音セル18が、開放端から、防音セル18の第1固有振動周波数の音波のλ/4-開口端補正距離±λ/4以内に配置されることが好ましく、λ/4-開口端補正距離±λ/6以内に配置されることがより好ましく、λ/4-開口端補正距離±λ/8以内に配置されることが最も好ましい。
このように、防音セルを管体内の所定の配置することは後で詳述する。
本発明の実施形態1の防音構造10は、基本的に以上のように構成される。
上述した実施形態1の防音構造10は、1つの孔部12を持つ1つの枠14と、1つの膜16とからなる1個の防音セル18を、管体22(の開口22a)内に配置したものであるが、本発明は、これに限定されず、複数個の防音セル18を、管体22内に配置したものであっても良い。
(実施形態2)
図4は、本発明の実施形態2に係る防音構造の一例を模式的に示す斜視図である。図5は、図4に示す防音構造のII-II線で切断した模式的な断面図である。
図4及び図5に示す本実施形態2の防音構造10Aは、貫通する孔部12を持つ枠14と、孔部12の片面を覆うように枠14に固定された振動可能な膜16と、を持つ防音セル18A(18)が複数、図4及び図5に示す例では、一列に6個配置された防音セルユニット20を、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する。
なお、図4及び図5に示す本実施形態2の防音構造10Aは、図1及び図2に示す本実施形態1の防音構造10と、管体22内に配置される防音セル18が1個であるのに対し、防音セル18と同一構成の防音セル18Aの数が異なり、複数である以外は、同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その説明は省略する。なお、本実施形態2においては、複数の防音セル18Aは、上記実施形態1の防音セル18と同じ防音セルであっても良いし、異なっていても良いが、同一の構成を有するものであるので、その説明は省略する。
図4及び図5に示す防音構造10Aの防音セルユニット20は、6個の防音セル18Aによって構成されるものであるが、本発明はこれに限定されず、複数個の防音セル18Aによって構成されるものであれば、何個の防音セル18Aによって構成されるものであっても良い。
図4は、本発明の実施形態2に係る防音構造の一例を模式的に示す斜視図である。図5は、図4に示す防音構造のII-II線で切断した模式的な断面図である。
図4及び図5に示す本実施形態2の防音構造10Aは、貫通する孔部12を持つ枠14と、孔部12の片面を覆うように枠14に固定された振動可能な膜16と、を持つ防音セル18A(18)が複数、図4及び図5に示す例では、一列に6個配置された防音セルユニット20を、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する。
なお、図4及び図5に示す本実施形態2の防音構造10Aは、図1及び図2に示す本実施形態1の防音構造10と、管体22内に配置される防音セル18が1個であるのに対し、防音セル18と同一構成の防音セル18Aの数が異なり、複数である以外は、同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その説明は省略する。なお、本実施形態2においては、複数の防音セル18Aは、上記実施形態1の防音セル18と同じ防音セルであっても良いし、異なっていても良いが、同一の構成を有するものであるので、その説明は省略する。
図4及び図5に示す防音構造10Aの防音セルユニット20は、6個の防音セル18Aによって構成されるものであるが、本発明はこれに限定されず、複数個の防音セル18Aによって構成されるものであれば、何個の防音セル18Aによって構成されるものであっても良い。
本実施形態2の防音セルユニット20は、一定の厚みの四角形状且つ棒形状の枠部材15に複数(6個)の孔部12が設けられており、各防音セル18Aの枠14は、各孔部12を囲む部分によって構成される。
なお、図4及び図5に示す例では、複数の枠14は、2次元的に繋がるように配置された枠体、好ましくは1つの枠体として構成され、この枠体は、枠部材15によって構成される。
図4及び5においては、複数の枠14は、一列に配置されているが、本発明はこれに限定されず、2次元的に配置されるものであっても良い。
なお、本実施形態2の防音セルユニット20において、枠14の孔部12のサイズL1は、全ての孔部12おいて、一定であっても良いが、異なるサイズ(形状が異なる場合も含む)の枠が含まれていても良く、この場合には、孔部12のサイズとして、孔部12の平均サイズを用いればよい。即ち、枠14(孔部12)のサイズL1は、各枠14で異なるサイズが含まれる場合などは、平均サイズで表すことが好ましい。
また、枠14の幅L4及び厚さL2は、各枠14で異なる幅及び厚さが含まれる場合などは、それぞれ平均幅及び平均厚さで表すことが好ましい。
なお、図4及び図5に示す例では、複数の枠14は、2次元的に繋がるように配置された枠体、好ましくは1つの枠体として構成され、この枠体は、枠部材15によって構成される。
図4及び5においては、複数の枠14は、一列に配置されているが、本発明はこれに限定されず、2次元的に配置されるものであっても良い。
なお、本実施形態2の防音セルユニット20において、枠14の孔部12のサイズL1は、全ての孔部12おいて、一定であっても良いが、異なるサイズ(形状が異なる場合も含む)の枠が含まれていても良く、この場合には、孔部12のサイズとして、孔部12の平均サイズを用いればよい。即ち、枠14(孔部12)のサイズL1は、各枠14で異なるサイズが含まれる場合などは、平均サイズで表すことが好ましい。
また、枠14の幅L4及び厚さL2は、各枠14で異なる幅及び厚さが含まれる場合などは、それぞれ平均幅及び平均厚さで表すことが好ましい。
本実施形態2の防音セルユニット20の枠14の数、即ち、孔部12の数も、特に制限的ではなく、本発明の防音構造10Aの上述した防音対象物に応じて設定すればよい。もしくは、上述した孔部12のサイズは、上述した防音対象物に応じて設定されているので、枠14の孔部12の数は、孔部12のサイズに応じて設定すればよい。
例えば、枠14の数は、機器内騒音を遮蔽する場合には、1個~10000個であることが好ましく、2~5000であることがより好ましく、4~1000であることが最も好ましい。なお、ここでの「遮蔽」とは、反射及び/または吸収による遮蔽のことをいう。
例えば、枠14の数は、機器内騒音を遮蔽する場合には、1個~10000個であることが好ましく、2~5000であることがより好ましく、4~1000であることが最も好ましい。なお、ここでの「遮蔽」とは、反射及び/または吸収による遮蔽のことをいう。
これは、一般の機器の大きさに対しては、機器のサイズが決まっているために、1つの防音セル18Aのサイズを騒音の周波数及び音量に適したサイズとするためには、複数の防音セル18Aを組み合わせた枠体で遮蔽する必要があることが多く、また、一方で防音セル18Aを増やしすぎることで枠14の重量分全体重量が大きくなることがあるためである。一方で、大きさに制約のないパーティションのような構造では、必要とされる全体の大きさに合わせて枠14の個数を自由に選ぶことができる。
なお、1つの防音セル18Aは、1つの枠14を構成単位とするので、本実施形態の防音セルユニット20の枠14の数は、防音セル18Aの数ということができる。
枠部材15の材料としては、実施形態1の枠14の材料と同様な材料を用いることができる。なお、枠14の材料、即ち棒状防音枠部材15の材料として、実施形態1において説明した枠14の材料の複数種を組み合わせて用いてもよい。
なお、1つの防音セル18Aは、1つの枠14を構成単位とするので、本実施形態の防音セルユニット20の枠14の数は、防音セル18Aの数ということができる。
枠部材15の材料としては、実施形態1の枠14の材料と同様な材料を用いることができる。なお、枠14の材料、即ち棒状防音枠部材15の材料として、実施形態1において説明した枠14の材料の複数種を組み合わせて用いてもよい。
なお、複数、図4に示す例では6つの膜16は、それぞれ複数(6つ)の枠14の各孔部12を覆うように固定されるものであるが、図4に示すように、1枚のシート状の膜体17によって複数(6つ)の枠14の各孔部12を覆うように固定されていても良いし、各膜16が各枠14の孔部12を覆うように固定されていても良い。即ち、複数の膜16は、複数の枠14を覆う1枚のシート状の膜体17によって構成されるものであっても良いし、各枠14の孔部12を覆うものであっても良い。
なお、膜16の厚さは、各膜16で異なる厚さが含まれる場合などは、平均厚さで表すことが好ましい。
また、膜16は、枠14の孔部12の少なくとも一方の側の開口を覆うように枠14に固定される。即ち、膜16は、枠14の孔部12の一方の側、又は他方の側、もしくは両側の開口を覆うように枠14に固定されていても良い。
ここで、防音セルユニット20の複数の枠14の孔部12の同じ側に全ての膜16が設けられていても良いし、一部の膜16が、複数の枠14の一部の孔部12の一方の側に一部の膜16が設けられ、複数の枠14の残りの一部の孔部12の他方の側には残りの膜16が設けられていても良いし、更に、枠14の孔部12一方の側、他方の側、及び両側に設けられた膜が混在していても良い。
また、本実施形態2の防音セル18Aは、膜16をそれぞれ複数の枠14に固定した構造または、複数の枠14を1枚のシート状の膜体17で覆う構造であるが、これに限定されず、同じ材料からなる膜16または膜体17と枠14が一体化した構造であっても良い。
なお、膜16の厚さは、各膜16で異なる厚さが含まれる場合などは、平均厚さで表すことが好ましい。
また、膜16は、枠14の孔部12の少なくとも一方の側の開口を覆うように枠14に固定される。即ち、膜16は、枠14の孔部12の一方の側、又は他方の側、もしくは両側の開口を覆うように枠14に固定されていても良い。
ここで、防音セルユニット20の複数の枠14の孔部12の同じ側に全ての膜16が設けられていても良いし、一部の膜16が、複数の枠14の一部の孔部12の一方の側に一部の膜16が設けられ、複数の枠14の残りの一部の孔部12の他方の側には残りの膜16が設けられていても良いし、更に、枠14の孔部12一方の側、他方の側、及び両側に設けられた膜が混在していても良い。
また、本実施形態2の防音セル18Aは、膜16をそれぞれ複数の枠14に固定した構造または、複数の枠14を1枚のシート状の膜体17で覆う構造であるが、これに限定されず、同じ材料からなる膜16または膜体17と枠14が一体化した構造であっても良い。
実施形態1の防音構造10で説明したように、防音セル18の枠14に固定された膜16は、防音セル18の構造において、誘起可能な最も低次の固有振動モードの周波数である第1固有振動周波数を持つものである。本実施形態2においては、この第1固有振動周波数は、枠14及び膜16からなる防音セル18Aを複数個配置した防音セルユニット20によって決まる。本発明で、このようにして決まる第1固有振動周波数を膜の第1固有振動周波数ということは上述した通りである。
ここで、本実施形態の防音セルユニット20において、枠14及び膜16からなる構造における膜16の共振周波数、例えば第1固有振動周波数は、複数の防音セル18Aの枠14の幾何学的形態、例えば枠14の形状及び寸法(サイズ)と、複数の防音セルの膜の剛性、例えば膜の厚さ及び可撓性と膜背後空間の体積によって定めることができる。
本発明の実施形態2の防音構造10Aは、以上のように構成される。
本発明の実施形態2の防音構造10Aは、以上のように構成される。
上述した実施形態1の防音構造10及び実施形態2の防音構造10Aは、それぞれ膜16が孔部12の片方の端面のみを覆う防音セル18及び18Aを用いるものであるが、これに限定されず、孔部12の両方の端面が膜16によって覆われている防音セルを用いるものであっても良い。
(実施形態3)
図6は、本発明の実施形態3に係る防音構造の一例を模式的に示す斜視図である。図7は、図6に示す防音構造のIII-III線で切断した模式的な断面図である。
図6及び図7に示す本実施形態3の防音構造10Bは、貫通する孔部12を持つ枠14と、孔部12の両面を覆うように枠14に固定された振動可能な膜16(16a及び16b)と、を持つ防音セル18Bを、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する。
図6及び図7に示す本実施形態3の防音構造10Bは、枠14の孔部12の両面に同じ膜16(16a及び16b)が固定されている以外は、図1に示す実施形態1の防音構造10と同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その説明は省略する。なお、本実施形態3の防音セル18Bの膜16a及び16bは、上記実施形態1の防音セル18の膜16と同一の構成を有するものであるので、その説明は省略する。
本実施形態3においても、本実施形態1及び2と同様に、防音構造10Bの第1固有振動周波数は、枠14と膜16a及び16bとからなる防音セル18Bによって決まり、このようにして決まる2つの膜16a及び16bの第1固有振動周波数は同じとなるので、この同一の第1固有振動周波数を膜の第1固有振動周波数という。
本発明の実施形態3の防音構造10Bは、以上のように構成される。
図6は、本発明の実施形態3に係る防音構造の一例を模式的に示す斜視図である。図7は、図6に示す防音構造のIII-III線で切断した模式的な断面図である。
図6及び図7に示す本実施形態3の防音構造10Bは、貫通する孔部12を持つ枠14と、孔部12の両面を覆うように枠14に固定された振動可能な膜16(16a及び16b)と、を持つ防音セル18Bを、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する。
図6及び図7に示す本実施形態3の防音構造10Bは、枠14の孔部12の両面に同じ膜16(16a及び16b)が固定されている以外は、図1に示す実施形態1の防音構造10と同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その説明は省略する。なお、本実施形態3の防音セル18Bの膜16a及び16bは、上記実施形態1の防音セル18の膜16と同一の構成を有するものであるので、その説明は省略する。
本実施形態3においても、本実施形態1及び2と同様に、防音構造10Bの第1固有振動周波数は、枠14と膜16a及び16bとからなる防音セル18Bによって決まり、このようにして決まる2つの膜16a及び16bの第1固有振動周波数は同じとなるので、この同一の第1固有振動周波数を膜の第1固有振動周波数という。
本発明の実施形態3の防音構造10Bは、以上のように構成される。
(実施形態3の変形例)
図6及び図7に示す本実施形態3の防音構造10Bの防音セル18Bにおいては、枠14の孔部12の両面に同じ膜16(16a及び16b)が用いられているが、膜16a及び16bとして、膜厚、及び膜材質、並びに枠14のサイズ、幅、厚さ、及び枠材質の少なくとも1つを変化させることにより膜剛性及び/又は防音特性を変化させ、2つの膜の第1固有振動周波数が異なる構成とした防音構造とすることもできる。
本実施形態の変形例の防音構造10Bは、2つの膜の異なる第1固有振動周波数を持つが、より低次の第1固有振動周波数を、本防音構造10Bを代表する第1固有振動周波数としても良い。
図6及び図7に示す本実施形態3の防音構造10Bの防音セル18Bにおいては、枠14の孔部12の両面に同じ膜16(16a及び16b)が用いられているが、膜16a及び16bとして、膜厚、及び膜材質、並びに枠14のサイズ、幅、厚さ、及び枠材質の少なくとも1つを変化させることにより膜剛性及び/又は防音特性を変化させ、2つの膜の第1固有振動周波数が異なる構成とした防音構造とすることもできる。
本実施形態の変形例の防音構造10Bは、2つの膜の異なる第1固有振動周波数を持つが、より低次の第1固有振動周波数を、本防音構造10Bを代表する第1固有振動周波数としても良い。
(実施形態4)
図8は、本発明の実施形態4に係る防音構造の一例を模式的に示す斜視図である。図8は、図9に示す防音構造のIV-IV線で切断した模式的な断面図である。
図8及び図9に示す本実施形態4の防音構造10Cは、貫通する孔部12を持つ枠14と、孔部12の両面を覆うように枠14に固定された振動可能な膜16(16a及び16b)と、を持つ防音セル18Cが複数、図8及び図9に示す例では、一列に6個配置された防音セルユニット20Cを、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する。
図8は、本発明の実施形態4に係る防音構造の一例を模式的に示す斜視図である。図8は、図9に示す防音構造のIV-IV線で切断した模式的な断面図である。
図8及び図9に示す本実施形態4の防音構造10Cは、貫通する孔部12を持つ枠14と、孔部12の両面を覆うように枠14に固定された振動可能な膜16(16a及び16b)と、を持つ防音セル18Cが複数、図8及び図9に示す例では、一列に6個配置された防音セルユニット20Cを、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する。
なお、図8及び図9に示す本実施形態4の防音構造10Cは、防音セルユニット20Cの複数の防音セル18Cとして、枠14の孔部12の両面に同じ膜16(16a及び16b)が固定されている図6及び図7に示す本実施形態3の防音構造10Bの防音セルBを用いている以外は、図4及び図5に示す本実施形態2の防音構造10Aと同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その説明は省略する。なお、本実施形態4の防音セルユニット20Cは、本実施形態2の防音セルユニット20と、防音セルの膜が片面か又は両面かで異なる以外は、同一の構成を有するものである。
図8及び図9に示す本実施形態の防音構造10Cは、図4に示す実施形態2の防音構造10Aと枠14の孔部12の両面に同じシート状膜体17(17a及び17b)が貼り付けられて膜16(16a及び16b)が固定されている以外は、同様の構成を有するものである。したがって、本実施形態4の防音セル18Cの膜16a及び16bは、上記実施形態2の防音セル18Bの膜16a及び16bと同一の構成を有するものである。
よって、これらの構成要素の個々の説明は省略する。
なお、防音セルユニット20Cにおいては、複数の防音セル18Cで、複数の枠14の孔部12の同じ側に全て膜16が設けられていても良いし、複数の枠14の一部の孔部12の一方の側に膜16が設けられ、複数の枠14の残りの一部の孔部12の他方の側に16が設けられていても良いし、更に、枠14の孔部12一方の側、他方の側、及び両側に設けられた膜が混在していても良い。
本実施形態4においても、本実施形態1、2及び3と同様に、防音構造10Bの第1固有振動周波数は、枠14と膜16a及び16bとからなる防音セル18Bによって決まり、このようにして決まる2つの膜16a及び16bの第1固有振動周波数は同じとなるので、この同一の第1固有振動周波数を膜の第1固有振動周波数という。
実施形態4の防音構造10Cは、以上のように構成される。
図8及び図9に示す本実施形態の防音構造10Cは、図4に示す実施形態2の防音構造10Aと枠14の孔部12の両面に同じシート状膜体17(17a及び17b)が貼り付けられて膜16(16a及び16b)が固定されている以外は、同様の構成を有するものである。したがって、本実施形態4の防音セル18Cの膜16a及び16bは、上記実施形態2の防音セル18Bの膜16a及び16bと同一の構成を有するものである。
よって、これらの構成要素の個々の説明は省略する。
なお、防音セルユニット20Cにおいては、複数の防音セル18Cで、複数の枠14の孔部12の同じ側に全て膜16が設けられていても良いし、複数の枠14の一部の孔部12の一方の側に膜16が設けられ、複数の枠14の残りの一部の孔部12の他方の側に16が設けられていても良いし、更に、枠14の孔部12一方の側、他方の側、及び両側に設けられた膜が混在していても良い。
本実施形態4においても、本実施形態1、2及び3と同様に、防音構造10Bの第1固有振動周波数は、枠14と膜16a及び16bとからなる防音セル18Bによって決まり、このようにして決まる2つの膜16a及び16bの第1固有振動周波数は同じとなるので、この同一の第1固有振動周波数を膜の第1固有振動周波数という。
実施形態4の防音構造10Cは、以上のように構成される。
(実施形態5)
図10は、本発明の実施形態5に係る防音構造の一例を模式的に示す斜視図である。図11は、図10に示す防音構造のV-V線で切断した模式的な断面図である。
図10及び図11に示す本実施形態5の防音構造10Dは、枠14の孔部12の両面に異なる厚さのシート状膜体17c及び17dが貼り付けられて、それぞれ異なる厚さの膜16c及び16dが固定されている防音セル18Dが複数個、例えば6個配置された防音セルユニット20Dを用いている以外は、図8及び9に示す実施形態4の防音構造10Cと同様の構成を有するので、その他の詳細な説明は省略する。
本実施形態5の防音構造10Dの防音セルユニット20Dは、2つの膜16c及び16dの第1固有振動周波数が異なる構成とした防音構造とすることができる。
本実施形態5の防音構造10Dは、2つの膜の16c及び16d異なる第1固有振動周波数を持つが、より低次の第1固有振動周波数を、本防音構造10Bを代表する第1固有振動周波数としても良い。
本発明の実施形態5の防音構造10Dは、以上のように構成される。
図10は、本発明の実施形態5に係る防音構造の一例を模式的に示す斜視図である。図11は、図10に示す防音構造のV-V線で切断した模式的な断面図である。
図10及び図11に示す本実施形態5の防音構造10Dは、枠14の孔部12の両面に異なる厚さのシート状膜体17c及び17dが貼り付けられて、それぞれ異なる厚さの膜16c及び16dが固定されている防音セル18Dが複数個、例えば6個配置された防音セルユニット20Dを用いている以外は、図8及び9に示す実施形態4の防音構造10Cと同様の構成を有するので、その他の詳細な説明は省略する。
本実施形態5の防音構造10Dの防音セルユニット20Dは、2つの膜16c及び16dの第1固有振動周波数が異なる構成とした防音構造とすることができる。
本実施形態5の防音構造10Dは、2つの膜の16c及び16d異なる第1固有振動周波数を持つが、より低次の第1固有振動周波数を、本防音構造10Bを代表する第1固有振動周波数としても良い。
本発明の実施形態5の防音構造10Dは、以上のように構成される。
(実施形態5の変形例)
図10に示す本実施形態5の防音構造10Dは、枠14の孔部12の両面に膜厚が異なる同じ材質の膜16(16c及び16d)、すなわち、膜厚を変えることにより、2つの膜16c及び16dの第1固有振動周波数(共振周波数)が異なる膜が固定されているが、膜材質を変えて膜剛性を変化させることにより、又は、枠14のサイズ、幅、厚さ、及び枠材質の少なくとも1つを変化させることにより、防音セル18Dの防音特性を変化させ、2つの膜の第1固有振動周波数(共鳴周波数)を異なる構成とした防音構造とすることもできる。
図10に示す本実施形態5の防音構造10Dは、枠14の孔部12の両面に膜厚が異なる同じ材質の膜16(16c及び16d)、すなわち、膜厚を変えることにより、2つの膜16c及び16dの第1固有振動周波数(共振周波数)が異なる膜が固定されているが、膜材質を変えて膜剛性を変化させることにより、又は、枠14のサイズ、幅、厚さ、及び枠材質の少なくとも1つを変化させることにより、防音セル18Dの防音特性を変化させ、2つの膜の第1固有振動周波数(共鳴周波数)を異なる構成とした防音構造とすることもできる。
なお、実施形態1~5に示される防音セル18、18A~18Dは、2つの開口を有する孔部12を1つ有する6面体の枠14からなるものであるが、これに限定されず、6面体の枠14において、3~6の開口を持つ孔部を有する防音セルであっても良い。また、6面体の枠14に3~6の開口を持つ孔部を有する防音セルの場合は、3面~6面を固定する3~6の膜をさらに有していても良い。
<実施形態1~5の効果>
実施形態1~5に示す防音構造であれば、ダクトや筒等の開口部材において、音の入射方向に対して防音セルの膜面を傾けて配置しても、高い開口率、すなわち、通気性を有しつつ、高い防音効果を得ることができる。
実施形態1~5に示す防音構造であれば、ダクトや筒等の開口部材において、音の入射方向に対して防音セルの膜面を傾けて配置しても、高い開口率、すなわち、通気性を有しつつ、高い防音効果を得ることができる。
<実施形態1の効果>
実施形態1に示す防音構造10は、防音セル18による高い吸音効果だけでなく、防音セル18の膜から放射された音と、管体22を通り抜ける音、すなわち、防音セル18を透過する音とが干渉し高い反射を生じる効果を有するため、高い透過損失も得ることができる。
図20A~図20Fにおいて、実施形態1に示す防音構造10と同様の構成である防音構造(片面PET50μm/100μm/188μm)は、第2固有振動周波数(2000~4000Hz)において、図20B、図20D及び図20Fに示される音の吸収率(吸音率)が50%(透過損失3dBに相当)以下であるにもかかわらず、図20A、20C及び20Eに示される透過損失が5~25dBという非常に大きな値が出ている。これは、防音セル18の膜から放射された音と、防音セル18を透過する音とが干渉し高い反射が生じているためであると考えられる。
図20A~図20Fの詳細は、後述する。
実施形態1に示す防音構造10は、防音セル18による高い吸音効果だけでなく、防音セル18の膜から放射された音と、管体22を通り抜ける音、すなわち、防音セル18を透過する音とが干渉し高い反射を生じる効果を有するため、高い透過損失も得ることができる。
図20A~図20Fにおいて、実施形態1に示す防音構造10と同様の構成である防音構造(片面PET50μm/100μm/188μm)は、第2固有振動周波数(2000~4000Hz)において、図20B、図20D及び図20Fに示される音の吸収率(吸音率)が50%(透過損失3dBに相当)以下であるにもかかわらず、図20A、20C及び20Eに示される透過損失が5~25dBという非常に大きな値が出ている。これは、防音セル18の膜から放射された音と、防音セル18を透過する音とが干渉し高い反射が生じているためであると考えられる。
図20A~図20Fの詳細は、後述する。
<実施形態2の効果>
図12Aは、実施形態2の防音構造10Aの吸音特性を示すグラフであり、図12Bは、実施形態2の防音構造10Aの遮音特性を示すグラフである。
実施形態2の防音構造10Aでは、図12Aに示すように、低周波側から3つの吸収率がピーク(極大)となる音波の吸収のピークが現れ、また、図12Bに示すように、低周波側から3つの透過損失がピーク(極大)となる音波の遮蔽のピークが現れる。
したがって、実施形態2の防音構造10Aは、3つの吸収ピーク周波数において吸音(吸収率)がピーク(極大)となるため、各吸収ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができ、また、3つの遮蔽ピーク周波数において遮蔽(透過損失)がピーク(極大)となるため、各遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができる。
図12Aは、実施形態2の防音構造10Aの吸音特性を示すグラフであり、図12Bは、実施形態2の防音構造10Aの遮音特性を示すグラフである。
実施形態2の防音構造10Aでは、図12Aに示すように、低周波側から3つの吸収率がピーク(極大)となる音波の吸収のピークが現れ、また、図12Bに示すように、低周波側から3つの透過損失がピーク(極大)となる音波の遮蔽のピークが現れる。
したがって、実施形態2の防音構造10Aは、3つの吸収ピーク周波数において吸音(吸収率)がピーク(極大)となるため、各吸収ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができ、また、3つの遮蔽ピーク周波数において遮蔽(透過損失)がピーク(極大)となるため、各遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができる。
なお、図12A及び図12Bに示す音響特性の測定において、実施形態2の防音構造10Aにおける吸収率及び透過損失(dB)は以下のように測定した。
音響特性は、図13に示すように、アルミニウム製音響管(管体22)に4つのマイクロフォン32を用いて伝達関数法による測定を行った。この手法は「ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method」に従うものである。音響管としては、例えば日東紡音響エンジニアリング株式会社製のWinZacと同一の測定原理であるものとして、アルミニウム製の管体22を用いた。管体22の内部にスピーカ34を収納した円筒状の函体36を配置し、函体36の管体22を載置した。スピーカ34から所定音圧の音を出力し、4本のマイクロフォン32で測定した。この方法で広いスペクトル帯域において音響透過損失を測定することができる。実施形態2の防音セルユニット20を音響管となる管体22の所定測定部位に防音セル18A(18)の膜16(17)の膜面を傾斜させて配置して、実施形態2の防音構造10Aを構成し、100Hz~4000Hzの範囲で音響吸収率と透過損失測定を行った。
音響特性は、図13に示すように、アルミニウム製音響管(管体22)に4つのマイクロフォン32を用いて伝達関数法による測定を行った。この手法は「ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method」に従うものである。音響管としては、例えば日東紡音響エンジニアリング株式会社製のWinZacと同一の測定原理であるものとして、アルミニウム製の管体22を用いた。管体22の内部にスピーカ34を収納した円筒状の函体36を配置し、函体36の管体22を載置した。スピーカ34から所定音圧の音を出力し、4本のマイクロフォン32で測定した。この方法で広いスペクトル帯域において音響透過損失を測定することができる。実施形態2の防音セルユニット20を音響管となる管体22の所定測定部位に防音セル18A(18)の膜16(17)の膜面を傾斜させて配置して、実施形態2の防音構造10Aを構成し、100Hz~4000Hzの範囲で音響吸収率と透過損失測定を行った。
図12A及び図12Bに、図4に示す防音構造10Aの周波数に対する吸収率で表される吸音特性、並びに周波数に対する透過損失で表される遮音特性を示す。
音響測定に用いた本発明の実施形態2の防音構造10Aは、図4に示すように、直径4cmのアルミニウム製の管体22内に、防音セルユニット20が膜16の膜面を管体22の開口断面22bに対して傾斜させて配置されているものである(図14参照)。防音セルユニット20は、20mm角の6つの貫通する孔部12が設けられた厚み12mmのアクリル製の枠14の孔部12の片面に、膜16となる250μmのPETフィルムが両面接着テープにより固定されている。防音セルが6つ連なった構成となっている。防音セルユニット20の高さ、枠14の高さ(すなわち、図3のL1+L4×2)は35mmである。
なお、本実施形態2の防音構造10Aにおいては、図12Aに示すように、約1776Hz、約2688Hz、及び約3524Hzにおいて吸収ピークがあることが分る。また、図12Bに示すように、約2669Hz、約3298Hz、及び約4000Hzに遮蔽ピークが存在していることが分かる。
このように高い開口率を有した状態でも、PETフィルム製の膜16が音波に対し振動し、特定の周波数に対し高い吸収性や遮蔽性をもたらすことが可能である。
音響測定に用いた本発明の実施形態2の防音構造10Aは、図4に示すように、直径4cmのアルミニウム製の管体22内に、防音セルユニット20が膜16の膜面を管体22の開口断面22bに対して傾斜させて配置されているものである(図14参照)。防音セルユニット20は、20mm角の6つの貫通する孔部12が設けられた厚み12mmのアクリル製の枠14の孔部12の片面に、膜16となる250μmのPETフィルムが両面接着テープにより固定されている。防音セルが6つ連なった構成となっている。防音セルユニット20の高さ、枠14の高さ(すなわち、図3のL1+L4×2)は35mmである。
なお、本実施形態2の防音構造10Aにおいては、図12Aに示すように、約1776Hz、約2688Hz、及び約3524Hzにおいて吸収ピークがあることが分る。また、図12Bに示すように、約2669Hz、約3298Hz、及び約4000Hzに遮蔽ピークが存在していることが分かる。
このように高い開口率を有した状態でも、PETフィルム製の膜16が音波に対し振動し、特定の周波数に対し高い吸収性や遮蔽性をもたらすことが可能である。
なお、本発明の防音構造の開口率は、下記式(1)で定義されるものであり、実施形態2の防音構造10Aにおいては、下記式(1)で定義される開口率は約67%となっており、高い通気性または通風性を得ることができるものである。
開口率(%)={1-(開口断面における防音セルユニットの断面積/開口断面積)}
×100…(1)
なお、開口率(%)は、図15A及び図15Bに示すガラリ24において、上側の取付部25aと最上部の傾斜部26との間の開口寸法A’と幅寸法W’との積で表される射影面積A’×W’と、下側の取付部25bと最下部の傾斜部26との間の開口寸法C’と幅寸法W’との積である射影面積C’×W’と、並列する複数、図15A及び図15Bでは8つの傾斜部26の隣接する傾斜部26間の全面積7×B’×W’を足し合わせた通気孔面積、即ち開口面積(A’+7×B’+C’)×W’を、高さ方向の取付部寸法hと幅方向の取付部寸法wとの積で表される取付面積、即ち開口断面積(h×w)で割ったものとして、下記式(2)のように定義される。
開口率(%)={(A’+7×B’+C’)×W’/(h×w)}×100…(2)
なお、幅寸法W’ が幅方向の取付部寸法wに等しい場合には、上記式(2)は、下記式(3)で与えられる。
開口率(%)={(A’+7×B’+C’)/h}×100 …(3)
開口率(%)={1-(開口断面における防音セルユニットの断面積/開口断面積)}
×100…(1)
なお、開口率(%)は、図15A及び図15Bに示すガラリ24において、上側の取付部25aと最上部の傾斜部26との間の開口寸法A’と幅寸法W’との積で表される射影面積A’×W’と、下側の取付部25bと最下部の傾斜部26との間の開口寸法C’と幅寸法W’との積である射影面積C’×W’と、並列する複数、図15A及び図15Bでは8つの傾斜部26の隣接する傾斜部26間の全面積7×B’×W’を足し合わせた通気孔面積、即ち開口面積(A’+7×B’+C’)×W’を、高さ方向の取付部寸法hと幅方向の取付部寸法wとの積で表される取付面積、即ち開口断面積(h×w)で割ったものとして、下記式(2)のように定義される。
開口率(%)={(A’+7×B’+C’)×W’/(h×w)}×100…(2)
なお、幅寸法W’ が幅方向の取付部寸法wに等しい場合には、上記式(2)は、下記式(3)で与えられる。
開口率(%)={(A’+7×B’+C’)/h}×100 …(3)
実施形態2の防音構造10Aにおいては、図14に示すように、開口部材である管体22内に、防音セルユニット20の防音セル18A(以下、単に防音セル18で代表する)が膜16(シート状膜体17)の膜面を管体22の開口断面22bに対して所定の傾斜角度θで傾斜させて配置されている。なお、図14に示す傾斜した防音セル18の膜16(シート状膜体17)の膜面と管体22の管壁との間にできる隙間は、管体22の開口22aに形成される気体の通過が可能な通気孔となる。
本発明においては、この通気孔の開口率は、10%以上が好ましく、25%以上がより好ましく、50%以上がさらに好ましい。
ここで、通気孔の開口率が、10%以上が好ましい理由は、市販の通気性を有する防音部材(エアトース(登録商標))の開口率が6%程度であるが、本発明の防音構造は、従来(市販品)にない2桁以上の開口率においても、高い防音性性能を発揮できるからである。
また、通気孔の開口率が、25%以上が好ましい理由は、本発明の防音構造は、標準的なサッシやガラリの25%~30%の開口率においても、高い防音性性能を発揮できるからである。
また、通気孔の開口率が、50%以上が好ましい理由は、本発明の防音構造は、高通気性のサッシやガラリの50~80%の開口率においても、高い防音性性能を発揮できるからである。
本発明においては、この通気孔の開口率は、10%以上が好ましく、25%以上がより好ましく、50%以上がさらに好ましい。
ここで、通気孔の開口率が、10%以上が好ましい理由は、市販の通気性を有する防音部材(エアトース(登録商標))の開口率が6%程度であるが、本発明の防音構造は、従来(市販品)にない2桁以上の開口率においても、高い防音性性能を発揮できるからである。
また、通気孔の開口率が、25%以上が好ましい理由は、本発明の防音構造は、標準的なサッシやガラリの25%~30%の開口率においても、高い防音性性能を発揮できるからである。
また、通気孔の開口率が、50%以上が好ましい理由は、本発明の防音構造は、高通気性のサッシやガラリの50~80%の開口率においても、高い防音性性能を発揮できるからである。
また、本発明においては、この傾斜角度θは、通気性の点からは、20度以上であることが好ましく、45度以上がより好ましく、80度以上がさらに好ましい。
ここで、傾斜角度θが20度以上であることが好ましい理由は、防音セルユニット20の防音セル18のデバイス断面(膜16の膜面)が開口断面22bと等しい場合、傾斜角度θを20°以上傾けることで、10%以上の好ましい開口率を得ることができ、また、図16に示すように、傾斜角度θを90°傾けた時の風速に対し、10%以上の風速を得ることができるからである。
また、傾斜角度θが20度~45度では、低周波の第1振動モードの遮音ピークが、存在しており、図17に示すように、最大遮音(θ=0°)に対して、10%以上の遮音性能を維持可能であり、好ましいからである。
また、傾斜角度θが45度以上であることがより好ましい理由は、通風性を考慮した標準的なサッシ及びガラリの角度が約45度程度であるためである。
また、80度以上が更に好ましい理由は、風による、膜16にかかる定圧力の影響を最小限に抑制でき、風速が大きくなっても防音特性の変化を抑制できるからである。また、図16に示すように、80度以上では、風速の減少がなくなり、最も通気能力が高い状態となるからである。
ここで、傾斜角度θが20度以上であることが好ましい理由は、防音セルユニット20の防音セル18のデバイス断面(膜16の膜面)が開口断面22bと等しい場合、傾斜角度θを20°以上傾けることで、10%以上の好ましい開口率を得ることができ、また、図16に示すように、傾斜角度θを90°傾けた時の風速に対し、10%以上の風速を得ることができるからである。
また、傾斜角度θが20度~45度では、低周波の第1振動モードの遮音ピークが、存在しており、図17に示すように、最大遮音(θ=0°)に対して、10%以上の遮音性能を維持可能であり、好ましいからである。
また、傾斜角度θが45度以上であることがより好ましい理由は、通風性を考慮した標準的なサッシ及びガラリの角度が約45度程度であるためである。
また、80度以上が更に好ましい理由は、風による、膜16にかかる定圧力の影響を最小限に抑制でき、風速が大きくなっても防音特性の変化を抑制できるからである。また、図16に示すように、80度以上では、風速の減少がなくなり、最も通気能力が高い状態となるからである。
ここで、図16に示す膜面相当の円板の傾斜角度に対する風速は、図18A及び図18Bに示す流速測定系によって測定される。
図18A及び図18Bに示す流速測定系では、管体22の内部に、膜16を構成するシート状膜体17に相当する円板27を傾斜角度θで傾けて配置し、管体22の開口22aの一方の開口端側に送付機28を配置し、他方の開口端に風速計30を配置して、送付機28から所定風速で送風し、風速計30で、風速を測定する。
傾斜角度θを大きくしていくと、円板27と管体22の管壁との間にできる隙間は大きくなり、通気孔も大きくなるので、風速は大きくなる。傾斜角度θが90度になると、通気孔も最大となり、風速は最大(1.68m/s)となるので、図16に示すグラフでは、縦軸の風速は、傾斜角度θが90度の時の風速で規格化したもので示す。また、円板27の直径、又は開口率によって風速の角度依存性は大きく異なってくるが、本発明では、減衰率が最も高いと考えられる条件(円板断面=開口断面、円板27の直径=管体22の内径)で評価している。
図18A及び図18Bに示す流速測定系では、管体22の内部に、膜16を構成するシート状膜体17に相当する円板27を傾斜角度θで傾けて配置し、管体22の開口22aの一方の開口端側に送付機28を配置し、他方の開口端に風速計30を配置して、送付機28から所定風速で送風し、風速計30で、風速を測定する。
傾斜角度θを大きくしていくと、円板27と管体22の管壁との間にできる隙間は大きくなり、通気孔も大きくなるので、風速は大きくなる。傾斜角度θが90度になると、通気孔も最大となり、風速は最大(1.68m/s)となるので、図16に示すグラフでは、縦軸の風速は、傾斜角度θが90度の時の風速で規格化したもので示す。また、円板27の直径、又は開口率によって風速の角度依存性は大きく異なってくるが、本発明では、減衰率が最も高いと考えられる条件(円板断面=開口断面、円板27の直径=管体22の内径)で評価している。
次に、図17に示す防音構造の遮音性能の膜面の傾斜角度依存性は、図19に示すように、実施形態2の防音構造10Aの防音セルユニット20の防音セル18、すなわち、実施形態1の防音構造10の防音セル18の枠14の孔部12の片面に固定された膜16の膜面の音波の進行方向に対する傾斜角度θを変化させて透過損失を測定することにより得ることができる。
このような方法で、膜16として、50μm、100μm、及び188μmの3種の厚みの異なるPETフィルムを用いた防音セル18について、それぞれ傾斜角度θを0度~90度の範囲で変化させながら、図13に示す測定系により、透過損失を測定した結果を図20A、図20C及び図20Eに示し、吸収率を測定した結果を図20B、図20D及び図20Fに示す。
図20A、図20C及び図20Eに示す透過損失を測定結果から、図17に示す第1振動モード遮音性能の角度依存性のグラフを得ることができる。図17の縦軸の遮音性能は、0度の時の透過損失で規格化したものである。
図17に示すように、傾斜角度θが45度以下であれば、低周波遮音に有利な第1振動モードの遮音性能を最大遮音(θ=0°)に対して10%以上維持できることが分かる。
このような方法で、膜16として、50μm、100μm、及び188μmの3種の厚みの異なるPETフィルムを用いた防音セル18について、それぞれ傾斜角度θを0度~90度の範囲で変化させながら、図13に示す測定系により、透過損失を測定した結果を図20A、図20C及び図20Eに示し、吸収率を測定した結果を図20B、図20D及び図20Fに示す。
図20A、図20C及び図20Eに示す透過損失を測定結果から、図17に示す第1振動モード遮音性能の角度依存性のグラフを得ることができる。図17の縦軸の遮音性能は、0度の時の透過損失で規格化したものである。
図17に示すように、傾斜角度θが45度以下であれば、低周波遮音に有利な第1振動モードの遮音性能を最大遮音(θ=0°)に対して10%以上維持できることが分かる。
また、図21に示すように、実施形態2の防音セルユニット20を構成する1つの防音セル、すなわち、実施形態1の防音構造10の防音セル18の膜面を矢印で示す音波の進行方向に対して所定傾斜角度傾斜させながら図13に示す測定系により透過損失を測定して、遮音特性(透過損失)の音波入射角度依存性を求めた。
図22に、得られた実施形態1の防音構造10の防音セルの遮音特性(透過損失)の音波入射角度依存性を示す。
測定を行った防音セル18は、実施形態2の防音セルユニット20内の防音セル18と同様の構成であるが、塩化ビニルからなる20mmの立方体ブロック(枠部材15)に16×16mmの貫通する孔部12が形成された枠14の片面に、膜16として厚さ100μmのPETフィルムが両面接着テープにより固定されている。この防音セル18を音響管である管体22内で、膜16の膜面を管体22の開口断面22bに対し傾けて、音波入射角度を変化させながら防音性能(透過損失)を測定した。防音セル18の膜16の膜面に対する音波の入射角度を90度、45度、及び0度と変化させていくと、高周波側の遮蔽ピーク周波数が、約3465、約3243、及び約3100Hzと低周波化していくことがわかる。
このように、膜16の膜面を開口断面22bに対し傾けることで、遮蔽ピーク周波数を調整することができることが分かる。
図22に、得られた実施形態1の防音構造10の防音セルの遮音特性(透過損失)の音波入射角度依存性を示す。
測定を行った防音セル18は、実施形態2の防音セルユニット20内の防音セル18と同様の構成であるが、塩化ビニルからなる20mmの立方体ブロック(枠部材15)に16×16mmの貫通する孔部12が形成された枠14の片面に、膜16として厚さ100μmのPETフィルムが両面接着テープにより固定されている。この防音セル18を音響管である管体22内で、膜16の膜面を管体22の開口断面22bに対し傾けて、音波入射角度を変化させながら防音性能(透過損失)を測定した。防音セル18の膜16の膜面に対する音波の入射角度を90度、45度、及び0度と変化させていくと、高周波側の遮蔽ピーク周波数が、約3465、約3243、及び約3100Hzと低周波化していくことがわかる。
このように、膜16の膜面を開口断面22bに対し傾けることで、遮蔽ピーク周波数を調整することができることが分かる。
<実施形態3の効果>
実施形態3に示す防音構造10Bも、実施形態1と同様に、防音セル18Bによる高い吸音効果だけでなく、防音セル18Bの膜から放射された音と、管体22を通り抜ける音、すなわち、防音セル18Bを透過する音とが干渉し高い反射を生じる効果を有するため、高い透過損失も得ることができる。
また、実施形態3の変形例の防音構造においても、実施形態3の防音構造10Bと同様の効果を有する。
実施形態3に示す防音構造10Bも、実施形態1と同様に、防音セル18Bによる高い吸音効果だけでなく、防音セル18Bの膜から放射された音と、管体22を通り抜ける音、すなわち、防音セル18Bを透過する音とが干渉し高い反射を生じる効果を有するため、高い透過損失も得ることができる。
また、実施形態3の変形例の防音構造においても、実施形態3の防音構造10Bと同様の効果を有する。
実施形態3に示す防音構造10Bと同様の構成である防音構造(両面PET50μm)は、図34Aに示されるように、約1500Hz付近において、吸音率が45%(透過損失2dBに相当)程度あるにもかかわらず、図34Bに示される透過損失は、4~5dBという高い値が出ている。図34A及び図34Bの詳細は、後述する。
また、実施形態3の変形例に示す防音構造と同様の構成である防音構造(PET50μm+アクリル2mm)も、図34Aに示されるように、約1100Hz付近において、吸音率が50%(透過損失2dB相当)程度あるにもかかわらず、図34Bに示される透過損失は、7dBという高い値が出ている。
これは、防音セル18の膜から放射された音と、防音セル18を透過する音とが干渉し高い反射が生じるためであると考えられる。
また、実施形態3の変形例に示す防音構造と同様の構成である防音構造(PET50μm+アクリル2mm)も、図34Aに示されるように、約1100Hz付近において、吸音率が50%(透過損失2dB相当)程度あるにもかかわらず、図34Bに示される透過損失は、7dBという高い値が出ている。
これは、防音セル18の膜から放射された音と、防音セル18を透過する音とが干渉し高い反射が生じるためであると考えられる。
<実施形態4の効果>
図8に示す実施形態4の防音構造10Cの吸音特性を示すグラフを図23Aに示し、実施形態4の防音構造10Cの遮音特性を示すグラフを図23Bに示す。
図8に示す本実施形態4に係る防音構造10Cの防音セルユニット20Cは、実施形態2の防音構造10Aの防音セルユニット20Aの構成と同様であるが、枠14の両面に厚さ250μmPETフィルムが両面接着テープにより固定され、膜16a及び16bとなっている。
防音セルユニット20Cの枠14の厚みを6mm、9mm、及び12mmに変化させた時の吸収率及び透過損失を図13に示す測定系で測定した結果を図23A及び図23Bに示す。図12A及び図12Bに示される実施形態2の結果に比べて、低周波側に非常に高い吸収ピーク(約1143Hz、及び約2150Hz)が存在する。また、枠14の厚みを増すことにより、低周波側のピーク(約1143Hz)の吸収が増加することがわかる。一方、遮音特性としては、約1143Hz、約2196Hzに遮蔽ピークがあり、枠14の厚みを増していくことにより、透過損失も増大していくことがわかる。
このように、枠14の両面にPETフィルムを貼り合わせて、膜16a及び16bを形成することで、吸収ピークを低周波化することが可能であり、実施形態2に比べても好ましい。また、両面をPETフィルムの膜16a及び16bで閉じることにより、枠14の孔部12へのゴミの侵入を防ぐことができるので好ましい。
図8に示す実施形態4の防音構造10Cの吸音特性を示すグラフを図23Aに示し、実施形態4の防音構造10Cの遮音特性を示すグラフを図23Bに示す。
図8に示す本実施形態4に係る防音構造10Cの防音セルユニット20Cは、実施形態2の防音構造10Aの防音セルユニット20Aの構成と同様であるが、枠14の両面に厚さ250μmPETフィルムが両面接着テープにより固定され、膜16a及び16bとなっている。
防音セルユニット20Cの枠14の厚みを6mm、9mm、及び12mmに変化させた時の吸収率及び透過損失を図13に示す測定系で測定した結果を図23A及び図23Bに示す。図12A及び図12Bに示される実施形態2の結果に比べて、低周波側に非常に高い吸収ピーク(約1143Hz、及び約2150Hz)が存在する。また、枠14の厚みを増すことにより、低周波側のピーク(約1143Hz)の吸収が増加することがわかる。一方、遮音特性としては、約1143Hz、約2196Hzに遮蔽ピークがあり、枠14の厚みを増していくことにより、透過損失も増大していくことがわかる。
このように、枠14の両面にPETフィルムを貼り合わせて、膜16a及び16bを形成することで、吸収ピークを低周波化することが可能であり、実施形態2に比べても好ましい。また、両面をPETフィルムの膜16a及び16bで閉じることにより、枠14の孔部12へのゴミの侵入を防ぐことができるので好ましい。
次に、実施形態4の防音セルユニット20Cと同様の構造で、25mm角の貫通する孔部12が5つ穿孔された枠14に厚みが188μmのPETフィルムの膜16(16a及び16b)が両面に固定された5つの防音セル18Cからなる防音セルユニット20Cを、内径8cm及び4cmの音響管となる管体22内に配置して防音構造10Cの他の実施例を構成し、吸収率及び透過損失を図13に示す測定系で測定した結果を図24A及び図24Bに示す。
図24A及び図24Bに示すように、音響管の内径が大きくなるにつれ、吸収率及び透過損失が小さくなることが分かる。但し、枠14の厚みは12mm、高さは36mmであるため、上記式(1)による開口率は、8cmの音響管で91%、4cmの音響管で66%となるが、91%もの開口率にもかかわらず、約1570Hzにおいて、45%もの吸音が可能となっている。
図24A及び図24Bに示すように、音響管の内径が大きくなるにつれ、吸収率及び透過損失が小さくなることが分かる。但し、枠14の厚みは12mm、高さは36mmであるため、上記式(1)による開口率は、8cmの音響管で91%、4cmの音響管で66%となるが、91%もの開口率にもかかわらず、約1570Hzにおいて、45%もの吸音が可能となっている。
実施形態4と同様の構成で、25mm角の貫通する孔部12が5つ2列に穿孔された、幅150mmの枠14に厚みが188μmのPETフィルムの膜16(16a及び16b)が両面に固定された防音セルユニット20Cを、図25に示すように、内径8cmの管体22に挿入した時の防音性能を測定した。図26に防音セルユニット20Cを挿入していった時の損失量(dB)(20×log(セルユニット20Cがない時の音圧/セルユニット20Cがある時の音圧))を示す。
図26に示すように、防音セル18Cが2つ分(デバイス挿入量D=50mm)挿入されただけで、20dB近くの防音ができていることが分かる。さらに、管体22から出した状態(D≧0mm)でも5dBの防音性能があることが分かる。
開口端補正の距離だけ、音場の定在波の腹が管体22の開口22aの外側に、はみ出しており、管体22の外であっても防音性能を有することができている。なお、円筒形の管体22の場合の開口端補正距離は、大凡0.61×管半径で与えられ、本実験例においては、約24mmである。
図26に示すように、防音セル18Cが2つ分(デバイス挿入量D=50mm)挿入されただけで、20dB近くの防音ができていることが分かる。さらに、管体22から出した状態(D≧0mm)でも5dBの防音性能があることが分かる。
開口端補正の距離だけ、音場の定在波の腹が管体22の開口22aの外側に、はみ出しており、管体22の外であっても防音性能を有することができている。なお、円筒形の管体22の場合の開口端補正距離は、大凡0.61×管半径で与えられ、本実験例においては、約24mmである。
次に、実施形態4の防音ユニットセル20Cを構成する1つの防音セル18C、すなわち、実施形態3と同様の防音セル18Bの構成で、枠サイズ16mm、枠の厚み20mmの枠14に膜厚が188μmのPETフィルムの膜16(16a及び16b)が両面に固定された防音セル18Bを、図27に示すように、内径4cmの音響管となる管体22内に挿入し、5cm厚みのアルミ板を壁38として管体22の端面に配置し、管体22の開口部側から所定の音圧を出力し、2本のマイクロフォン32で防音性能(吸収率)を測定した。また、このような防音セル18Bの吸収率の測定は、防音セル18Bと壁38との距離Dを変化させてそれぞれ行った。
防音セル18Bの壁38からの距離Dと、防音セル18Bの吸音率との関係を図28の点プロットに示す。
なお、図28に示される実線は、防音セル18Bに固定された膜の第1固有振動周波数である約1785Hzの音波により管体22に形成される定在波の音圧分布である。壁38が音波の固定端となるため、壁38の壁面の音圧が最大、すなわち、定在波の腹となり、壁38の壁面からλ/4離れた位置の音圧が最少、すなわち、定在波の節となる。
なお、図28に示される実線は、防音セル18Bに固定された膜の第1固有振動周波数である約1785Hzの音波により管体22に形成される定在波の音圧分布である。壁38が音波の固定端となるため、壁38の壁面の音圧が最大、すなわち、定在波の腹となり、壁38の壁面からλ/4離れた位置の音圧が最少、すなわち、定在波の節となる。
図28から、開口部材である管体22内において、防音セル18Bを音圧が大きい位置(定在波の腹)に配置した場合に吸音率が高くなり、防音セル18Bを音圧が小さい位置(定在波の節)に配置した場合に吸音率が低くなることが分かる。
つまり、防音セル18Bが、防音セル18Bの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されると、大きな吸音効果を得ることができることが分かる。
つまり、防音セル18Bが、防音セル18Bの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されると、大きな吸音効果を得ることができることが分かる。
また、実施形態5の変形例の防音ユニットセル20Dを構成する1つの防音セル18Dと同様の構成で、枠サイズ16mm、枠の厚み20mmの枠14に膜厚が50μmのPETフィルムの膜16cが片面に固定され、膜厚2mmのアクリル板(膜)16dがもう一方の片面に固定された防音セル18Dを、図29に示すように、内径4cmの音響管となる管体22内に挿入し、スピーカ34を管体22の端面に配置し、所定の音圧を出力し、開口部側に配置した1本のマイクロフォン32で防音性能(透過損失)を測定した。また、このような防音セル18Dの透過損失の測定は、防音セル18Dの開放端からの距離Dを変化させてそれぞれ行った。透過損失は、防音セル18Dが管体22内に配置されている時と、配置されていない場合との音圧比から算出した。
防音セル18Dと管体22の開放端との距離Dと、防音セル18Dの透過損失ピーク周波数約1135Hzにおける透過損失との関係を図30の点プロットに示す。
なお、図30中に示される実線は、防音セル18Dの膜の第1固有振動周波数1135Hzの音波が管体22に形成する定在波の音圧分布である。図27に示す固定端を有する管体22の場合と異なり、図29に示す管体22の端面は開放されているため、この端面は音波の自由端となるため、管体22の端面の音圧が最少、すなわち、定在波の節となり、管体22の端面からλ/4離れた位置の音圧が最大、すなわち、定在波の腹となる。
ただし、図30における定在波のピークと透過損失プロットのピークが15mm程度シフトしている。これは、定在波の端が約12mm開口端の外側にあるためである。
なお、図30中に示される実線は、防音セル18Dの膜の第1固有振動周波数1135Hzの音波が管体22に形成する定在波の音圧分布である。図27に示す固定端を有する管体22の場合と異なり、図29に示す管体22の端面は開放されているため、この端面は音波の自由端となるため、管体22の端面の音圧が最少、すなわち、定在波の節となり、管体22の端面からλ/4離れた位置の音圧が最大、すなわち、定在波の腹となる。
ただし、図30における定在波のピークと透過損失プロットのピークが15mm程度シフトしている。これは、定在波の端が約12mm開口端の外側にあるためである。
図30から、開口部材である管体22内において、防音セル18Dを音圧が大きい位置(定在波の腹)に配置した場合に透過損失が高くなり、防音セル18Dを音圧が小さい位置(定在波の節)に配置した場合に透過損失が低くなることが分かる。
つまり、開口部材である管体22内において、防音セル18Dが、防音セル18Dの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されると、大きな透過損失を得ることができることが分かる。
つまり、開口部材である管体22内において、防音セル18Dが、防音セル18Dの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されると、大きな透過損失を得ることができることが分かる。
また、上述した図28及び図30の結果から、開口部材である管体22内において、防音セルを音圧が大きい位置(定在波の腹)に配置すれば、高い吸音率ともに高い透過損失を獲得できることが見出された。なお、図30の結果に示されるように、管体22の開放端が音波の自由端となる場合は、定在波の端が管体22の開口端の外側にシフトするため、定在波の端と開口端との距離(開口端補正距離)を調節した位置に防音セルを配置することが好ましい。
すなわち、上述した図28の結果が示すように、管体22の一端面に壁38が配置された防音構造の場合、壁38が音波の固定端となるため、防音セルが、物体(壁38)から、防音セル18の第1固有振動周波数の音波のλ/4以内に配置されることが好ましく、λ/6以内に配置されることがより好ましく、λ/8以内に配置されることが最も好ましい。
一方、図30の結果が示すように、管体22が、その開放端に壁38が配置されていない場合、すなわち、管体22の開放端が音波の自由端となる場合は、防音セルが、開放端から、防音セルの第1固有振動周波数の音波のλ/4-開口端補正距離±λ/4以内に配置されることが好ましく、λ/4-開口端補正距離±λ/6以内に配置されることがより好ましく、λ/4-開口端補正距離±λ/8以内に配置されることが最も好ましい。
すなわち、上述した図28の結果が示すように、管体22の一端面に壁38が配置された防音構造の場合、壁38が音波の固定端となるため、防音セルが、物体(壁38)から、防音セル18の第1固有振動周波数の音波のλ/4以内に配置されることが好ましく、λ/6以内に配置されることがより好ましく、λ/8以内に配置されることが最も好ましい。
一方、図30の結果が示すように、管体22が、その開放端に壁38が配置されていない場合、すなわち、管体22の開放端が音波の自由端となる場合は、防音セルが、開放端から、防音セルの第1固有振動周波数の音波のλ/4-開口端補正距離±λ/4以内に配置されることが好ましく、λ/4-開口端補正距離±λ/6以内に配置されることがより好ましく、λ/4-開口端補正距離±λ/8以内に配置されることが最も好ましい。
次に、図31に示すように、実施形態4の防音ユニットセル20Cを構成する1つの防音セル18C、すなわち、実施形態3の防音構造10Bの防音セル18Bの膜面を矢印で示す音波の進行方向に対して所定傾斜角度傾斜させながら、図13に示す測定系で吸収率を測定して、吸音特性(吸収率)の音波入射角度依存性を求めた。
図32に、得られた実施形態3の防音構造10Bの防音セル18Bの吸音特性(吸収率)の音波入射角度依存性を示す。
測定を行った防音セル18Bは、塩化ビニルからなる20mmの立方体ブロック(枠部材15)に16×16mmの貫通する孔部12が形成された枠14の両面に、厚さ100μmのPETフィルムからなる膜16(16a及び16b)が両面接着テープにより固定されている。この防音セル18Bを音響管である管体22内で、膜16(16a及び16b)の膜面を管体22の開口断面22bに対し傾けて、音波入射角度を変化させながら防音性能(吸収率)を測定した。防音セル18Bの膜16の膜面に対する音波の入射角度を90度、45度、及び0度と変化させていった場合でも、2339Hzの吸収ピーク周波数は、ほとんど変化しないことがわかる。
管体22内をランダムに伝搬する(平面波以外の)音、又はルーバなどいろいろな入射角度の音波を防音する場合は、実施形態3及び4の防音構造が好ましい。
図32に、得られた実施形態3の防音構造10Bの防音セル18Bの吸音特性(吸収率)の音波入射角度依存性を示す。
測定を行った防音セル18Bは、塩化ビニルからなる20mmの立方体ブロック(枠部材15)に16×16mmの貫通する孔部12が形成された枠14の両面に、厚さ100μmのPETフィルムからなる膜16(16a及び16b)が両面接着テープにより固定されている。この防音セル18Bを音響管である管体22内で、膜16(16a及び16b)の膜面を管体22の開口断面22bに対し傾けて、音波入射角度を変化させながら防音性能(吸収率)を測定した。防音セル18Bの膜16の膜面に対する音波の入射角度を90度、45度、及び0度と変化させていった場合でも、2339Hzの吸収ピーク周波数は、ほとんど変化しないことがわかる。
管体22内をランダムに伝搬する(平面波以外の)音、又はルーバなどいろいろな入射角度の音波を防音する場合は、実施形態3及び4の防音構造が好ましい。
<実施形態5の効果>
図8に示す実施形態4の防音構造10Cと図10に示す実施形態5の防音構造10Dの吸音特性を示すグラフを図33Aに示し、遮音特性を示すグラフを図33Bに示す。
実施形態4の防音構造10Cの防音セル18Cの枠14の両面に、膜16(16a及び16b)として、厚さ250μm及び100μmのPETフィルムがそれぞれ固定された実施形態4の2つの防音構造10Cと、実施形態5の防音構造10Dの防音セル18Dの枠14の片面(1面)に厚さ100μmの膜16cが固定され、もう片面(2面)に厚さ250μmの膜16dが固定された1つの防音構造10Dの吸収率及び透過損失を図13に示す測定系で測定した結果を図33A及び図33Bに示す。
図8に示す実施形態4の防音構造10Cと図10に示す実施形態5の防音構造10Dの吸音特性を示すグラフを図33Aに示し、遮音特性を示すグラフを図33Bに示す。
実施形態4の防音構造10Cの防音セル18Cの枠14の両面に、膜16(16a及び16b)として、厚さ250μm及び100μmのPETフィルムがそれぞれ固定された実施形態4の2つの防音構造10Cと、実施形態5の防音構造10Dの防音セル18Dの枠14の片面(1面)に厚さ100μmの膜16cが固定され、もう片面(2面)に厚さ250μmの膜16dが固定された1つの防音構造10Dの吸収率及び透過損失を図13に示す測定系で測定した結果を図33A及び図33Bに示す。
実施形態5の防音構造10Dでは、吸収率及び透過損失の両方が、両面が250μmと100μmとのPETフィルムのみで構成される2つの実施形態4の防音構造10Cのそれぞれにおける吸収及び遮蔽ピークが、若干の周波数シフトがあるが、重なり合ったスペクトルとなっている。
このように、防音セル18Dのように、防音セル18Cと振動条件を変えることにより、広帯域化することが可能となり好ましい。
なお、250μm及び100μmのPETフィルム単体の実施形態4の防音構造10Cの場合には、吸収/遮蔽ピークが2つまたは1つであったのが、実施形態5の防音構造10Dのように、250μm及び100μmのPETフィルムを組合せることで、3つの吸収/遮蔽ピークとなっていることが分かる。
このように、防音セル18Dのように、防音セル18Cと振動条件を変えることにより、広帯域化することが可能となり好ましい。
なお、250μm及び100μmのPETフィルム単体の実施形態4の防音構造10Cの場合には、吸収/遮蔽ピークが2つまたは1つであったのが、実施形態5の防音構造10Dのように、250μm及び100μmのPETフィルムを組合せることで、3つの吸収/遮蔽ピークとなっていることが分かる。
このような実施形態5では、膜16として異なる膜厚のPETフィルムを用いることで、それぞれの膜における吸収率が重なり合った吸収スペクトルを得ることができる。このような異なる共鳴周波数は、膜厚だけでなく、膜材質や枠のサイズにより、膜剛性を変化させることで得られる。
一例として、防音セル18Dにおいて、膜16aを厚み50μmのPETフィルムとし、膜16bを厚み2mmのアクリル板とし、2つの膜16の共鳴周波数が大きく異なる構成、すなわち、実施形態3の変形例の防音セルとして、吸収率及び透過損失を図13に示す測定系で測定した結果を図34A及び図34Bに示す。
一例として、防音セル18Dにおいて、膜16aを厚み50μmのPETフィルムとし、膜16bを厚み2mmのアクリル板とし、2つの膜16の共鳴周波数が大きく異なる構成、すなわち、実施形態3の変形例の防音セルとして、吸収率及び透過損失を図13に示す測定系で測定した結果を図34A及び図34Bに示す。
図34A及び図34Bに示すように、膜16を両側とも厚み50μmのPETフィルムとした場合(すなわち、実施形態3の場合)における低周波側の吸収ピーク及び透過損失ピーク(約1455Hz)が、二つの膜16の共鳴周波数を大きく異ならせた場合(厚み50μmのPETフィルム+厚み2mmのアクリル板とした場合、すなわち、実施形態3の変形例の場合)には、約1120Hzに低周波シフトしていることがわかる。
実施形態3の両側の膜16を同じ構成とした場合には、同じ膜共鳴周波数の膜振動により、膜背面の閉空間に対称となる音圧力分布が生じている状態と考えられる。これに対して、実施形態3の変形例の2つの膜16の共鳴周波数を異ならせた場合には、閉空間の音響コンプライアンスが、大きくなり、低周波化したものと考えられる。
実施形態3の両側の膜16を同じ構成とした場合には、同じ膜共鳴周波数の膜振動により、膜背面の閉空間に対称となる音圧力分布が生じている状態と考えられる。これに対して、実施形態3の変形例の2つの膜16の共鳴周波数を異ならせた場合には、閉空間の音響コンプライアンスが、大きくなり、低周波化したものと考えられる。
また、実施形態3において、防音セル18Bの膜16を両側ともPETフィルムとし、両側の膜16の厚みを種々変更して吸収率を図13に示す測定系で測定した結果を図35Aに示し、実施形態3の変形例において、防音セル18Bの膜16dを厚み2mmのアクリル板とし、膜16cのPETフィルムの厚みを種々変更して吸収率を図13に示す測定系で測定した結果を図35Bに示す。
また、図36に、低周波側の吸収ピーク周波数とPETフィルムの厚みとの関係を示す。
また、図36に、低周波側の吸収ピーク周波数とPETフィルムの厚みとの関係を示す。
図36から、2つの構造ともに、膜16の厚みが薄いほど吸収率の低周波側のピーク周波数が低周波数化していることがわかる。
また、図35Bから、2つの膜16の共鳴周波数を異ならせた実施形態3の変形例のほうが、膜16の厚みを薄くした場合の吸収ピーク周波数の低周波化の変化量が大きくなっていることがわかる。
また、図35Aから、両側の膜16を同じ構成とした実施形態3では、PETフィルムの厚みが38μmの場合に、吸収ピーク周波数が高くなっている。これは、高次モードが誘起されたためであると考えられる。
これらの結果から、実施形態3の変形例、実施形態5、実施形態5の変形例のように2つの膜16の共鳴周波数を異ならせた構造は、枠サイズを大きくすることなく、吸収ピーク周波数を低周波化するのに好ましいことがわかる。
また、図35Bから、2つの膜16の共鳴周波数を異ならせた実施形態3の変形例のほうが、膜16の厚みを薄くした場合の吸収ピーク周波数の低周波化の変化量が大きくなっていることがわかる。
また、図35Aから、両側の膜16を同じ構成とした実施形態3では、PETフィルムの厚みが38μmの場合に、吸収ピーク周波数が高くなっている。これは、高次モードが誘起されたためであると考えられる。
これらの結果から、実施形態3の変形例、実施形態5、実施形態5の変形例のように2つの膜16の共鳴周波数を異ならせた構造は、枠サイズを大きくすることなく、吸収ピーク周波数を低周波化するのに好ましいことがわかる。
次に、実施形態3の防音構造10Bにおいて、防音セル18Bの膜16を両側ともPETフィルムとし、膜16の厚みを種々変更して透過損失(dB)を図13に示す測定系で測定した結果を図37に示し、実施形態3の変形例において、防音セル18Bの膜16aを厚み2mmのアクリル板とし、膜16bのPETフィルムの厚みを種々変更して透過損失(dB)を図13に示す測定系で測定した結果を図38に示す。
また、図39に、各防音構造の遮蔽ピークにおける透過損失(dB)とPETフィルムの膜厚(μm)との関係を示す。
また、図39に、各防音構造の遮蔽ピークにおける透過損失(dB)とPETフィルムの膜厚(μm)との関係を示す。
図39から、2つの構造ともに、膜16の厚みが薄いほど遮蔽ピークが低周波数側に生じていることがわかる。
また、図37及び38から、両側の膜16を同じ構成とした実施形態3の遮蔽ピークほうが、2つの膜16の共鳴周波数を異ならせた実施形態3の変形例のよりも大きな値を有することがわかる。すなわち、大きな透過損失が得られることがわかる。
これらの結果から、両側の膜16を同じ構成とした実施形態3の防音構造10Bは、大きな透過損失の効果を獲得するのに好ましいことがわかる。
また、図37及び38から、両側の膜16を同じ構成とした実施形態3の遮蔽ピークほうが、2つの膜16の共鳴周波数を異ならせた実施形態3の変形例のよりも大きな値を有することがわかる。すなわち、大きな透過損失が得られることがわかる。
これらの結果から、両側の膜16を同じ構成とした実施形態3の防音構造10Bは、大きな透過損失の効果を獲得するのに好ましいことがわかる。
これは、膜の膜振動により再放射される音波と防音セルの膜上を通る音波が干渉し高い反射を生じるため、2つの膜16の共鳴周波数が異なる実施形態3の変形例の防音構造よりも、2つの膜16の共鳴周波数が同一の実施形態3のほうが再反射される音量が大きくなり、反射が高まったためと考えられる。
したがって、実施形態3や4のように、両面に同一の膜を備える防音セルの膜面を増やせば増やすほど高い透過損失を得られることが分かる。
したがって、実施形態3や4のように、両面に同一の膜を備える防音セルの膜面を増やせば増やすほど高い透過損失を得られることが分かる。
次に、実施形態5において、共鳴周波数が近い2枚の膜16が枠14に貼られた構成の吸音特性について詳細を示す。
図40に、防音セル18Dの膜16cを厚み125μmのPETフィルムとし、膜16dを厚み2mmのアクリル板とした防音構造と、膜16cを厚み50μmのPETフィルムとし、膜16dを厚み2mmのアクリル板とした防音構造と、膜16cを厚み50μmのPETフィルムとし、膜16dを厚み125μmのPETフィルムとした防音構造それぞれの吸収率を図13に示す測定系で測定した結果を示す。また、図41に、防音セル18Dの膜16cを厚み100μmのPETフィルムとし、膜16dを厚み2mmのアクリル板とした防音構造と、膜16cを厚み50μmのPETフィルムとし、膜16dを厚み2mmのアクリル板とした防音構造と、膜16cを厚み50μmのPETフィルムとし、膜16dを厚み100μmのPETフィルムとした防音構造それぞれの吸収率を図13に示す測定系で測定した結果を示す。
図40に、防音セル18Dの膜16cを厚み125μmのPETフィルムとし、膜16dを厚み2mmのアクリル板とした防音構造と、膜16cを厚み50μmのPETフィルムとし、膜16dを厚み2mmのアクリル板とした防音構造と、膜16cを厚み50μmのPETフィルムとし、膜16dを厚み125μmのPETフィルムとした防音構造それぞれの吸収率を図13に示す測定系で測定した結果を示す。また、図41に、防音セル18Dの膜16cを厚み100μmのPETフィルムとし、膜16dを厚み2mmのアクリル板とした防音構造と、膜16cを厚み50μmのPETフィルムとし、膜16dを厚み2mmのアクリル板とした防音構造と、膜16cを厚み50μmのPETフィルムとし、膜16dを厚み100μmのPETフィルムとした防音構造それぞれの吸収率を図13に示す測定系で測定した結果を示す。
図40に示すように、厚み50μmのPETフィルムと厚み2mmのアクリル板を有する防音構造の吸収ピーク周波数が約1115Hzであり、厚み125μmのPETフィルムと厚み2mmのアクリル板を有する防音構造の吸収ピーク周波数が約1620Hzであるのに対して、厚み50μmのPETフィルムと厚み125μmのPETフィルムを有する防音構造は、約1115Hzのピークが約1000Hzに低周波化し、約1620Hzのピークが約1665Hzに高周波化していることがわかる。
同様に、図41に示すように、厚み50μmのPETフィルムと厚み2mmのアクリル板を有する防音構造の吸収ピーク周波数が約1115Hzであり、厚み100μmのPETフィルムと厚み2mmのアクリル板を有する防音構造の吸収ピーク周波数が約1415Hzであるのに対して、厚み50μmのPETフィルムと厚み100μmのPETフィルムを有する防音構造は、約1115Hzの吸収ピーク周波数が約875Hzに低周波化し、約1415Hzのピークが約1500Hzに高周波化していることがわかる。
また、図40及び図41から、厚み50μmのPETフィルムと厚み125μmのPETフィルムを有する防音構造よりも、厚み50μmのPETフィルムと厚み100μmのPETフィルムを有する防音構造のほうが、吸収ピーク周波数のシフト量が大きいことがわかる。
これらの結果から、防音セルが共鳴周波数が異なる2つの膜16を有する場合には、2つの膜16の共鳴振動数が近いほど吸収ピーク周波数のシフト量が大きくなり、より低周波化することができ好ましい。
また、図40及び図41から、厚み50μmのPETフィルムと厚み125μmのPETフィルムを有する防音構造よりも、厚み50μmのPETフィルムと厚み100μmのPETフィルムを有する防音構造のほうが、吸収ピーク周波数のシフト量が大きいことがわかる。
これらの結果から、防音セルが共鳴周波数が異なる2つの膜16を有する場合には、2つの膜16の共鳴振動数が近いほど吸収ピーク周波数のシフト量が大きくなり、より低周波化することができ好ましい。
実施形態1~5の防音構造では、管体22内に、防音セル18、又は18B、もしくは、複数の防音セル18、18A、18C、又は18Dから構成される防音セルユニット20、20C,又は20Dが1つだけ配置されているが、これに限定されず、管体22内に、複数の防音セルまたは複数の防音セルユニットを配置することもできる。
(実施形態6)
図42は、本発明の実施形態6に係る防音構造の一例を示す模式的断面図である。
図42に示す本実施形態6の防音構造10Eは、図7に示す実施形態3の防音セル18Cと同様の構成、すなわち、孔部12の両面を覆うように枠14に固定された振動可能な膜16(16a及び16b、並びに16a’及び16b’)を有する2種類の防音セル18E(18E1及び18E2)が管体22内に配置されている構成を有する。2種類の防音セル18E(18E1及び18E2)は、膜の第1固有振動周波数が異なるものである。
なお、図42の管体22内に示される太線は、防音セル18E1の第1固有振動周波数の音波が管体22に形成する定在波の音圧分布を示し、細線は、防音セル18E2の第1固有振動周波数の音波が管体22に形成する定在波の音圧分布を示す。
図42に示すように、本実施形態6の防音構造10Eの防音セル18E1及び18E2は、管体22の中心軸方向に直列になるように配置されており、それぞれ、各防音セルに対応する第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されている。具体的に言えば、防音セル18E1は、防音セル18E1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置され、防音セル18E2は、防音セル18E2の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されている。
図42は、本発明の実施形態6に係る防音構造の一例を示す模式的断面図である。
図42に示す本実施形態6の防音構造10Eは、図7に示す実施形態3の防音セル18Cと同様の構成、すなわち、孔部12の両面を覆うように枠14に固定された振動可能な膜16(16a及び16b、並びに16a’及び16b’)を有する2種類の防音セル18E(18E1及び18E2)が管体22内に配置されている構成を有する。2種類の防音セル18E(18E1及び18E2)は、膜の第1固有振動周波数が異なるものである。
なお、図42の管体22内に示される太線は、防音セル18E1の第1固有振動周波数の音波が管体22に形成する定在波の音圧分布を示し、細線は、防音セル18E2の第1固有振動周波数の音波が管体22に形成する定在波の音圧分布を示す。
図42に示すように、本実施形態6の防音構造10Eの防音セル18E1及び18E2は、管体22の中心軸方向に直列になるように配置されており、それぞれ、各防音セルに対応する第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されている。具体的に言えば、防音セル18E1は、防音セル18E1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置され、防音セル18E2は、防音セル18E2の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されている。
このように、開口部材である管体22内において、防音セル18E1及び18E2を、それぞれ、音圧が大きい位置(定在波の腹)に配置すれば、優れた防音効果(吸音率及び透過損失)を獲得できる。具体的には、図28及び30に係る結果に基づいて説明したように、防音セル18E1及び18E2が、管体22の開放端から所定の範囲、即ち音圧が大きい位置(定在波の腹の位置)を中心とする上述した所定の範囲に配置されていれば、優れた防音効果を得ることができる。
このように、管体22内に膜の第1固有振動周波数の異なる複数の防音セルを配置した本実施形態の防音構造によれば、複数の帯域または広帯域において、高い吸音効果及び遮蔽効果を獲得することができる。
なお、図42では、管体22内に2種類の防音セルが示されているが、本発明はこれに限定されず、管体22内に2種類以上の防音セルを配置したものであってもよい。
なお、図42では、管体22内に2種類の防音セルが示されているが、本発明はこれに限定されず、管体22内に2種類以上の防音セルを配置したものであってもよい。
(実施形態7)
図43Aは、本発明の実施形態7に係る防音構造の一例を示す模式的断面図であり、図43Bは、図43Aの防音構造のVI-VI線で切断した模式的断面図である。
図43A及び図43Bに示す本実施形態の防音構造10Fは、内径8cmの管体22の内周壁の同一円周上に、実施形態3の変形例の防音セルと同様の構成で、枠14の孔部12の開口をそれぞれ覆う2枚の膜16(16c及び16d)の第1固有振動周波数が異なる複数(4つ)の防音セル18F(18F1~18F4)が互いに対向するように配置されている(以下、これを、「並列配置」という)。
防音セル18Fは、枠サイズ16mm、枠の厚み20mmの枠14に膜厚が50μmのPETフィルムの膜16cが片面に固定され、膜厚2mmのアクリル板16dがもう片面に固定されているものであり、複数の防音セル18F(18F1~18F4)は、ほぼ同一の膜の第1固有振動周波数を有する。
図43Aは、本発明の実施形態7に係る防音構造の一例を示す模式的断面図であり、図43Bは、図43Aの防音構造のVI-VI線で切断した模式的断面図である。
図43A及び図43Bに示す本実施形態の防音構造10Fは、内径8cmの管体22の内周壁の同一円周上に、実施形態3の変形例の防音セルと同様の構成で、枠14の孔部12の開口をそれぞれ覆う2枚の膜16(16c及び16d)の第1固有振動周波数が異なる複数(4つ)の防音セル18F(18F1~18F4)が互いに対向するように配置されている(以下、これを、「並列配置」という)。
防音セル18Fは、枠サイズ16mm、枠の厚み20mmの枠14に膜厚が50μmのPETフィルムの膜16cが片面に固定され、膜厚2mmのアクリル板16dがもう片面に固定されているものであり、複数の防音セル18F(18F1~18F4)は、ほぼ同一の膜の第1固有振動周波数を有する。
実施形態7の防音構造10Fにおいて、管体22内に配置される防音セル18Fの個数を1~4個に種々変更して透過損失を図13に示す測定系で測定した結果を図44に示し、吸収率を図13に示す測定系で測定した結果を図45に示す。
図44に示すように、管体22内に配置する防音セル18Fの数が増えるにつれて、透過損失が増加することが分かる。その一方で、図45に示すように、管体22内に配置する防音セル18Fの数を増やしたとしても、吸音率は50%程度に留まることが分かる。
図44に示すように、管体22内に配置する防音セル18Fの数が増えるにつれて、透過損失が増加することが分かる。その一方で、図45に示すように、管体22内に配置する防音セル18Fの数を増やしたとしても、吸音率は50%程度に留まることが分かる。
このように、実施形態7の防音構造10Fは、高い透過損失の効果を得ることができる。
また、本実施形態7の防音構造10Fの複数(4つ)の防音セル18F(18F1~18F4)は、防音セル18Fの第1固有振動周波数の音波が管体22に形成する音圧が高い位置に配置されていることが好ましく、特に、防音セル18Fの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置することが好ましい。より高い防音効果(透過損失)を得ることができるからである。
具体的には、図28及び30に係る結果に基づいて説明したように、防音セル18Fが管体22の開放端から所定の範囲に配置されていれば、優れた防音効果(透過損失)を獲得することができる。
また、本実施形態7の防音構造10Fの複数(4つ)の防音セル18F(18F1~18F4)は、防音セル18Fの第1固有振動周波数の音波が管体22に形成する音圧が高い位置に配置されていることが好ましく、特に、防音セル18Fの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置することが好ましい。より高い防音効果(透過損失)を得ることができるからである。
具体的には、図28及び30に係る結果に基づいて説明したように、防音セル18Fが管体22の開放端から所定の範囲に配置されていれば、優れた防音効果(透過損失)を獲得することができる。
また、図43A及び図43Bに示す本実施形態の防音構造10Fでは、複数(4つ)の防音セル18F(18F1~18F4)が、管体22の内周壁の同一円周上に配置されているが、各防音セル18F1~18F4は、それぞれ、管体22の中心軸方向に直列に複数の防音セルが配置されていてもよい。また、管体22の中心軸方向に直列に配置される各防音セル18F1~18F4の個数は、同じであっても、それぞれ異なっていても良い。また、管体22の中心軸方向に直列に配置される複数の防音セルは、各防音セルが離間して配置された防音セルユニットであっても良いし、防音セルが密着して繋がるように配置された防音セルユニットであっても良い。
このような場合、管体22の中心軸方向に直列に配置された複数の防音セルまたは防音セルユニットの中心軸(管体22の中心軸方向の長さの中心軸)は、防音セル18Fの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置されることが好ましい。
また、管体22の中心軸方向に直列に配置される複数の防音セル18Fや防音セルユニットの長さ、すなわち、一列に配列される防音セル18Fの個数は、管体22の中心軸方向に直列に配置される複数の防音セル18Fまたは防音セルユニットの両端が、防音セル18Fの膜の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置から離れすぎないサイズ(個数)であることが好ましい。
このような場合、管体22の中心軸方向に直列に配置された複数の防音セルまたは防音セルユニットの中心軸(管体22の中心軸方向の長さの中心軸)は、防音セル18Fの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置されることが好ましい。
また、管体22の中心軸方向に直列に配置される複数の防音セル18Fや防音セルユニットの長さ、すなわち、一列に配列される防音セル18Fの個数は、管体22の中心軸方向に直列に配置される複数の防音セル18Fまたは防音セルユニットの両端が、防音セル18Fの膜の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置から離れすぎないサイズ(個数)であることが好ましい。
なお、図43A及び図43Bに示す本実施形態の防音構造10Fは、複数(4つ)の防音セル18F(18F1~18F4)が互いに対向するように配置されているが、管体の内周壁の同一円周上に配置されていればよい。
また、このような防音構造10Fは、開口部材の内周壁の同一円周上に、複数の防音セルを配置する構成のため、開口部材の長さが限定的な場合に特に好ましく使用することができる。
また、このような防音構造10Fは、開口部材の内周壁の同一円周上に、複数の防音セルを配置する構成のため、開口部材の長さが限定的な場合に特に好ましく使用することができる。
(実施形態8)
図46は、本発明の実施形態8に係る防音構造の一例を示す模式的断面図である。
実施形態7の防音構造10Fは、管体22の内周壁の同一円周上に、ほぼ同一の膜の第1固有振動周波数を有する複数の防音セル18Fを配置したものであるが、図46に示すように、管体22内に、異なる第1固有振動周波数を有する複数の防音セルを更に配置することができる。
図46に示す本実施形態の防音構造10Gは、内径8cmの管体22の端部から所定の位置(開放端からの距離)D1の内周面上に、図43に示す実施形態7と同様に、複数(例えば4つ)の防音セル18G1が互いに対向するように配置されるとともに、管体22の端部(開放端)から所定の位置D2の内周面上に、複数(例えば4つ)の防音セル18G1とは異なる第1固有振動数を有する複数(例えば4つ)の防音セル18G'1が互いに対向するように配置されている。また、複数の防音セル18G1及び18G'1、すなわち、1つの防音セル18G1と1つの防音セル18G'1は、管体22の中心軸方向に直列になるように配置されている。
また、複数(4つ)の防音セル18G1及びG'1は、それぞれ、各防音セルに対応する第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されている。具体的に言えば、複数(4つ)の防音セル18G1は、管体22の内周壁の同一円周上に、防音セル18G1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置され、複数(4つ)の防音セル18G'1は、管体22の内周壁の同一円周上に、複数(4つ)の防音セル18G'1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されている。
図46は、本発明の実施形態8に係る防音構造の一例を示す模式的断面図である。
実施形態7の防音構造10Fは、管体22の内周壁の同一円周上に、ほぼ同一の膜の第1固有振動周波数を有する複数の防音セル18Fを配置したものであるが、図46に示すように、管体22内に、異なる第1固有振動周波数を有する複数の防音セルを更に配置することができる。
図46に示す本実施形態の防音構造10Gは、内径8cmの管体22の端部から所定の位置(開放端からの距離)D1の内周面上に、図43に示す実施形態7と同様に、複数(例えば4つ)の防音セル18G1が互いに対向するように配置されるとともに、管体22の端部(開放端)から所定の位置D2の内周面上に、複数(例えば4つ)の防音セル18G1とは異なる第1固有振動数を有する複数(例えば4つ)の防音セル18G'1が互いに対向するように配置されている。また、複数の防音セル18G1及び18G'1、すなわち、1つの防音セル18G1と1つの防音セル18G'1は、管体22の中心軸方向に直列になるように配置されている。
また、複数(4つ)の防音セル18G1及びG'1は、それぞれ、各防音セルに対応する第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されている。具体的に言えば、複数(4つ)の防音セル18G1は、管体22の内周壁の同一円周上に、防音セル18G1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置され、複数(4つ)の防音セル18G'1は、管体22の内周壁の同一円周上に、複数(4つ)の防音セル18G'1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置されている。
防音セル18G1は、枠サイズ16mm、枠の厚み20mmの枠14に膜厚が100μmのPETフィルムの膜16cが片面に固定され、膜厚2mmのアクリル板がもう片面に固定されているものであり、複数(4つ)の防音セル18G1は、ほぼ同一の膜の第1固有振動周波数を有し、防音セル18G'1は、枠サイズ16mm、枠の厚み20mmの枠14に膜厚が50μmのPETフィルムの膜16c’が片面に固定され、膜厚2mmのアクリル板16がもう片面に固定されているものであり、複数(4つ)の防音セル18G'1は、防音セル18G1とは異なる、ほぼ同一の膜の第1固有振動周波数を有している。
複数(4つ)の防音セル18G1及びG'1は、それぞれ、各防音セルに対応する第1固有振動周波数の音波が管体22に形成する音圧が高い位置に配置されていることが好ましく、特に、各防音セルに対応する第1固有振動周波数の音波による定在波の腹の位置に配置されていることが好ましい。このように防音セル18G1及びG'1を配置することにより、優れた防音効果(透過損失)を獲得することができる。具体的には、図28及び30に係る結果に基づいて説明したように、防音セル18G1及びG'1が管体22の開放端から所定の範囲、即ち音圧が大きい位置(定在波の腹の位置)を中心とする所定の範囲に配置されていれば、優れた防音効果を獲得することができる。
なお、図46に示す本実施形態の防音構造10Gでは、複数(4つ)の防音セル18G1と複数(4つ)の防音セル18G'1が、内周壁の同一円周上にそれぞれ配置されているが、各防音セルは、さらに、中心軸方向に直列に複数の防音セルを配置させることもできる。
図46に示す本実施形態8の防音構造10Gは、管体22の開放端が自由端となるため、各防音セルに対応する第1固有振動周波数の音波による定在波の腹の位置からλ/4-開口端補正距離±λ/4以内に配置することが好ましく、λ/4-開口端補正距離±λ/6以内に配置することがより好ましく、λ/4-開口端補正距離±λ/8以内に配置することがさらに好ましく、定常波の腹の位置に配置することが最も好ましい。
このように複数の防音セル18G1及び18G'1をそれぞれ管体22内に配置することにより、本実施形態の防音構造10Gは、複数の周波数帯域、または、広い周波数帯域に渡り、高い透過損失の効果を得ることができる。
なお、図46に示す本実施形態の防音構造10Gでは、複数(4つ)の防音セル18G1と複数(4つ)の防音セル18G'1が、内周壁の同一円周上にそれぞれ配置されているが、各防音セルは、さらに、中心軸方向に直列に複数の防音セルを配置させることもできる。
図46に示す本実施形態8の防音構造10Gは、管体22の開放端が自由端となるため、各防音セルに対応する第1固有振動周波数の音波による定在波の腹の位置からλ/4-開口端補正距離±λ/4以内に配置することが好ましく、λ/4-開口端補正距離±λ/6以内に配置することがより好ましく、λ/4-開口端補正距離±λ/8以内に配置することがさらに好ましく、定常波の腹の位置に配置することが最も好ましい。
このように複数の防音セル18G1及び18G'1をそれぞれ管体22内に配置することにより、本実施形態の防音構造10Gは、複数の周波数帯域、または、広い周波数帯域に渡り、高い透過損失の効果を得ることができる。
図29に示す透過損失の測定方法と同様に、実施形態8の防音構造10Gの管体22の一方の端部にスピーカを配置し、開放部側に1本のマイクロフォンを載置して、防音構造10Gの透過損失を測定した結果を図47に示す。
なお、この測定において、図46に示す「D1」は、管体22の開放端から36mm、すなわち、管体22の開放端から防音セル18G1の第1固有振動周波数の音波による定在波の腹までの距離を示し、「D2」は、管体22の開放端から51mm、すなわち、防音セル18G'1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置を示す。また、防音セル18G1の第1固有振動周波数は約1450Hz、防音セル18G'1の第1固有振動周波数は、約1150Hzのものを使用した。
なお、この測定において、図46に示す「D1」は、管体22の開放端から36mm、すなわち、管体22の開放端から防音セル18G1の第1固有振動周波数の音波による定在波の腹までの距離を示し、「D2」は、管体22の開放端から51mm、すなわち、防音セル18G'1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置を示す。また、防音セル18G1の第1固有振動周波数は約1450Hz、防音セル18G'1の第1固有振動周波数は、約1150Hzのものを使用した。
図47から、各防音セルを、それぞれの防音セルの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に配置することにより、それぞれの防音セルに対応した透過損失を得られることが分かる。より詳述すれば、防音セル18G1に応じた1455Hzにおける遮蔽ピーク(1)、及び、防音セル18G'1に応じた1162Hzにおける遮蔽ピーク(2)が生じていることが分かる。
このような実施形態8の防音構造10Gも、実施形態7の防音構造10Fと同様に、開口部材の長さが限定的な場合に好ましく使用することができる。
なお、図46に示す本実施形態8の防音構造10Gでは、第1固有振動周波数の異なる2種の複数の防音セル18G1及び18G'1を使用したが、これに限定されず、第1固有振動周波数の異なる3種以上の複数の防音セルを使用することもできる。
また、図46に示す本実施形態の防音構造10Gでは、複数(4つ)の防音セル18G1と複数(4つ)の防音セル18G'1はいずれも、それぞれ、管体22の内周壁の同一円周上に配置されているが、これに限定されず、少なくとも1種の複数の防音セル18G1が管体22の内周壁の同一円周上に配置されていれば、その他の複数の防音セル18G2は、管体22の内周壁の同一円周上に配置されていなくても良い。
なお、図46に示す本実施形態8の防音構造10Gでは、第1固有振動周波数の異なる2種の複数の防音セル18G1及び18G'1を使用したが、これに限定されず、第1固有振動周波数の異なる3種以上の複数の防音セルを使用することもできる。
また、図46に示す本実施形態の防音構造10Gでは、複数(4つ)の防音セル18G1と複数(4つ)の防音セル18G'1はいずれも、それぞれ、管体22の内周壁の同一円周上に配置されているが、これに限定されず、少なくとも1種の複数の防音セル18G1が管体22の内周壁の同一円周上に配置されていれば、その他の複数の防音セル18G2は、管体22の内周壁の同一円周上に配置されていなくても良い。
また、図46に示す本実施形態の防音構造10Gでは、複数(4つ)の防音セル18G1及び18G'1が、それぞれ、管体22の内周壁の同一円周上に配置されているが、実施形態7と同様に、各防音セル18G1及び18G'1は、それぞれ、管体22の中心軸方向に直列に複数の防音セルが配置されていてもよい。
なお、図46示す本実施形態の防音構造10Gは、複数(4つ)の防音セル18G1及び複数の防音セル18G'1は、それぞれ、互いに対向するように配置されているが、管体の内周壁の同一円周上に配置されていればよい。
(実施形態9)
図48Aは、本発明の実施形態9に係る防音構造の一例を示す模式的断面図であり、図43Bは、図48Aの防音構造のVII-VII線で切断した模式的断面図である。
図48A及び図48Bに示す本実施形態の防音構造10Hは、実施形態5の変形例の防音セルと同様の構成で、枠14の孔部12の両面に異なる厚さ及び材質の膜16(16c及び16d)が固定された複数(4つ)の防音セル18H(18H1~18H4)を直列に配置されてなる防音セルユニット20Hを備え、その防音セルユニット20Hは、直列に配置された複数の防音セル18H(18H1~18H4)が管体22の中心軸方向に直列となるように配置されている(以下、これを、「直列配置」という)。防音セル18Hの構成(枠サイズ、枠の厚み、枠の材質、膜厚、及び膜の材質)は、実施形態7の防音セル18Fと同様のものである。
図48Aは、本発明の実施形態9に係る防音構造の一例を示す模式的断面図であり、図43Bは、図48Aの防音構造のVII-VII線で切断した模式的断面図である。
図48A及び図48Bに示す本実施形態の防音構造10Hは、実施形態5の変形例の防音セルと同様の構成で、枠14の孔部12の両面に異なる厚さ及び材質の膜16(16c及び16d)が固定された複数(4つ)の防音セル18H(18H1~18H4)を直列に配置されてなる防音セルユニット20Hを備え、その防音セルユニット20Hは、直列に配置された複数の防音セル18H(18H1~18H4)が管体22の中心軸方向に直列となるように配置されている(以下、これを、「直列配置」という)。防音セル18Hの構成(枠サイズ、枠の厚み、枠の材質、膜厚、及び膜の材質)は、実施形態7の防音セル18Fと同様のものである。
実施形態9の防音構造10Hにおいて、管体22内に直列配置される防音セル18Hの個数を1~4個に種々変更して吸音率を図13に示す測定系で測定した結果を図49に示す。
図49に示されるように、管体22内に直列配置する防音セル18Hの個数、すなわち、防音セルユニット20Hを構成する防音セル18Hの個数が増加するのに伴い、吸収率が大きく増加することが分かる。
図49に示されるように、管体22内に直列配置する防音セル18Hの個数、すなわち、防音セルユニット20Hを構成する防音セル18Hの個数が増加するのに伴い、吸収率が大きく増加することが分かる。
ところで、図35Bに示すように、管体22内に配置される防音セルが1つである実施形態3の変形例の防音構造と同様の膜構成である防音構造(アクリル2mm+PET)の吸収率は、PETの膜厚を変化させても50%を上回らないことが分かる。
また、図45に示す実施形態7の防音構造10Fの吸音率も、管体22内に並列配置される防音セル18Fの個数が増加しても吸収率は50%程度であることが分かる。これは、Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials:plate model, J. Acoust. Soc. Am. 136(6), 2926-2934頁 (2014) においても説明されているように、共鳴構造が配置された波長よりもはるかに狭い境界面では、速度連続条件により、50%以上の吸収率が得られないと考えられる。また、本理論によれば、1つの防音セルのみならず、実施形態7の防音構造10Fのように、複数の防音セルを開口部材(管体)の内周壁の同一円周上に配置したとしても、50%以上の吸収率が得ることはできないと考えられる。
また、図45に示す実施形態7の防音構造10Fの吸音率も、管体22内に並列配置される防音セル18Fの個数が増加しても吸収率は50%程度であることが分かる。これは、Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials:plate model, J. Acoust. Soc. Am. 136(6), 2926-2934頁 (2014) においても説明されているように、共鳴構造が配置された波長よりもはるかに狭い境界面では、速度連続条件により、50%以上の吸収率が得られないと考えられる。また、本理論によれば、1つの防音セルのみならず、実施形態7の防音構造10Fのように、複数の防音セルを開口部材(管体)の内周壁の同一円周上に配置したとしても、50%以上の吸収率が得ることはできないと考えられる。
これに対し、図49に示すように、本実施形態9の防音構造10Hの場合は、2つの防音セル18Hを管体22内に、管体22の中心軸方向に直列に配置するだけで、吸音率が50%を上回っていることが分かる。
このような本実施形態9の防音構造10Hによれば、高い吸音率の効果を得ることができる。
このような本実施形態9の防音構造10Hによれば、高い吸音率の効果を得ることができる。
また、本実施形態9の防音構造10Hの防音セルユニット20Hは、その中心軸(すなわち、管体22の中心軸方向の長さの中心軸)が、防音セル18Hの第1固有振動周波数の音波が管体22に形成する音圧が高い位置に来るように配置されていることが好ましく、特に、防音セル18Hの第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置することが好ましい。具体的には、図28及び30に係る結果に基づいて説明したように、防音セルユニット20Hの中心軸が、管体22の開放端から所定の範囲に配置されていれば、優れた防音効果(吸収率及び透過損失)を獲得することができる。
また、高い吸音率の効果を得るために、防音セルユニット20Hの長さ、すなわち、一列に配列される防音セル18Hの個数は、防音セルユニット20Hの両端が、防音セル18Hの膜の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置から離れすぎないサイズ(個数)であることが好ましい。
なお、図48A及び図48Bに示す本実施形態9の複数の防音セル18H(18H1~18H4)は一列に配置されているが、中心軸方向に直列に配置されていれば、これに限定されず、防音セル18Hの配置にズレがあってもよい。
また、高い吸音率の効果を得るために、防音セルユニット20Hの長さ、すなわち、一列に配列される防音セル18Hの個数は、防音セルユニット20Hの両端が、防音セル18Hの膜の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置から離れすぎないサイズ(個数)であることが好ましい。
なお、図48A及び図48Bに示す本実施形態9の複数の防音セル18H(18H1~18H4)は一列に配置されているが、中心軸方向に直列に配置されていれば、これに限定されず、防音セル18Hの配置にズレがあってもよい。
なお、図48A及び図48Bに示す本実施形態9の防音構造10Hは、防音セルユニットを1つ備えるものであるが、これに限定されず、本発明の防音構造は、2個以上の防音セルユニットを有していても良い。
具体的には、枠14の孔部12の両面に異なる厚さの膜16(16c及び16d)が固定された複数(4つ)の防音セル18H(18H1~18H4)を直列に配置してなる防音セルユニット20Hを2個以上備え、その2個以上の防音セルユニット20Hは、それぞれ、直列に配置された複数の防音セル18H(18H1~18H4)が管体22の中心軸方向に直列に配置される防音構造でも良い。
また、図48に示す本実施形態9では、防音セルユニット20Hを使用しているが、複数の防音セル18H1~18H4が管体22の中心軸方向に直列に配置されていれば、これに限定されず、隣接する防音セルが離間した複数のセルを使用することもできる。
具体的には、枠14の孔部12の両面に異なる厚さの膜16(16c及び16d)が固定された複数(4つ)の防音セル18H(18H1~18H4)を直列に配置してなる防音セルユニット20Hを2個以上備え、その2個以上の防音セルユニット20Hは、それぞれ、直列に配置された複数の防音セル18H(18H1~18H4)が管体22の中心軸方向に直列に配置される防音構造でも良い。
また、図48に示す本実施形態9では、防音セルユニット20Hを使用しているが、複数の防音セル18H1~18H4が管体22の中心軸方向に直列に配置されていれば、これに限定されず、隣接する防音セルが離間した複数のセルを使用することもできる。
(実施形態10)
図50Aは、本発明の実施形態10に係る防音構造の一例を示す模式的断面図であり、図50Bは、図50Aの防音構造のVIII-VIII線で切断した模式的断面図である。
図50A及び図50Bに示す本実施形態の防音構造10Iは、実施形態5の変形例の防音セルと同様の構成で、枠14の孔部12の両面に異なる厚さの膜16(16c及び16d)が固定された複数(例えば4つ)の防音セル18I1を直列に配置してなる防音セルユニット20I1と、防音セル18I1より小さなサイズの防音セルユニット20I2、すなわち、防音セルユニットのサイズの違いにより膜の第1固有振動周波数が異なる2種類の防音セルユニットを備え、2種類の防音セルユニット20I1及び20I2は、それぞれ、複数の防音セル18I(18I1及び18I2)が管体22の中心軸方向に直列となるように配置され、且つ、管体22の内周壁に、第1固有振動数が異なる防音セルが互いに対向するように配置されている。
このように2種類の防音セルユニットを配置することにより、本実施形態の防音構造10Iは、開口部材の開口断面に複数の防音セルを配置できるとともに、開口部材の長手方向にも複数の防音セルを配置することができるので、複数の周波数帯域、または、広い周波数帯域に渡り、高い透過損失の効果を得ることができるとともに、高い吸収率の効果も得ることができる。
図50Aは、本発明の実施形態10に係る防音構造の一例を示す模式的断面図であり、図50Bは、図50Aの防音構造のVIII-VIII線で切断した模式的断面図である。
図50A及び図50Bに示す本実施形態の防音構造10Iは、実施形態5の変形例の防音セルと同様の構成で、枠14の孔部12の両面に異なる厚さの膜16(16c及び16d)が固定された複数(例えば4つ)の防音セル18I1を直列に配置してなる防音セルユニット20I1と、防音セル18I1より小さなサイズの防音セルユニット20I2、すなわち、防音セルユニットのサイズの違いにより膜の第1固有振動周波数が異なる2種類の防音セルユニットを備え、2種類の防音セルユニット20I1及び20I2は、それぞれ、複数の防音セル18I(18I1及び18I2)が管体22の中心軸方向に直列となるように配置され、且つ、管体22の内周壁に、第1固有振動数が異なる防音セルが互いに対向するように配置されている。
このように2種類の防音セルユニットを配置することにより、本実施形態の防音構造10Iは、開口部材の開口断面に複数の防音セルを配置できるとともに、開口部材の長手方向にも複数の防音セルを配置することができるので、複数の周波数帯域、または、広い周波数帯域に渡り、高い透過損失の効果を得ることができるとともに、高い吸収率の効果も得ることができる。
なお、図50A及び図50Bにおいては、防音セルユニットのサイズの違いにより第1固有振動周波数が異なる2種類の防音セルユニットを使用しているが、本実施形態10は、2つの防音セルユニットの膜の第1固有振動周波数が異なっていれば特に限定されず、枠に固定する膜の厚さや材質によって、第1固有振動周波数が異なる2種類の防音セルユニットを使用することもできる。
実施形態10の防音構造10Iにおいて、同じ枠サイズ及び材質であるが、異なる膜厚の膜を枠14に固定することにより第1固有振動周波数が異なる2種類の防音セルユニット20I1及び20I2を管体22内に配置し、防音セルユニット20I1及び20I2の各個数を1~4個に種々変更して吸音率を図13に示す測定系で測定した結果を図51に示す。ここで使用した防音セルユニット20I1及び20I2を構成する防音セル18I1及び18I2の構成は、PETの膜厚を除き、実施形態7の防音セル18Fと同様の構成(枠サイズ16mm、枠の厚み20mmの枠14に、膜厚2mmのアクリル板が片方に固定され、もう片面にPETが固定されている構成)を有し、防音セル18I1の枠14の片方には、膜厚50μmのPETが固定され、防音セル18I2の片方には、75μmPETが固定された。
図51に示されるように、防音セルユニット20I1及び20I2の各個数が増加するのに伴い、複数の吸収ピークが生じたり、吸音率が大きく増加したりすることが分かる。より詳述すれば、1つの防音セルユニット20I1及び1つの防音セル20I2しか配置されていない場合は、1つの吸収ピークしか確認されず、また、その吸音率も30%程度に留まるが、防音セルユニット20I1及び18I2の各個数が2~4個である場合は、2つの吸収ピークが生じていることが分かる。また、防音セルユニット20I1及び20I2の各個数が増加するにつれて、各吸収ピークにおける吸音率が増加することも分かる。
なお、上記実施形態10においては、2種類の防音セルユニットを使用したが、これに限定されず、2種類上の防音セルユニットを使用することもできる。
なお、実施形態9と同様に、2種類の防音セルユニット20I1及び20I2は、それぞれ、その中心軸(すなわち、管体22の中心軸方向の長さの中心軸)が、各防音セル18I(18I1及び18I2)に対応する第1固有振動周波数の音波が管体22に形成する音圧が高い位置に来るように配置されていることが好ましく、特に、各防音セル18I(18I1及び18I2)に対応する第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置されていることが好ましい。具体的に言えば、防音セルユニット20I1は、その中心軸が、防音セル18I1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置され、防音セルユニット20I2は、その中心軸が、複数(4つ)の防音セル18G'2の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置されていることが好ましい。
このように2種類の防音セルユニットを配置することにより、本実施形態の防音構造10Iは、定在波の腹の位置のみに複数の防音セル18Fを配置した本実施形態7の防音構造10Fよりも高い防音効果(吸収率)を得ることができる。
図51に示されるように、防音セルユニット20I1及び20I2の各個数が増加するのに伴い、複数の吸収ピークが生じたり、吸音率が大きく増加したりすることが分かる。より詳述すれば、1つの防音セルユニット20I1及び1つの防音セル20I2しか配置されていない場合は、1つの吸収ピークしか確認されず、また、その吸音率も30%程度に留まるが、防音セルユニット20I1及び18I2の各個数が2~4個である場合は、2つの吸収ピークが生じていることが分かる。また、防音セルユニット20I1及び20I2の各個数が増加するにつれて、各吸収ピークにおける吸音率が増加することも分かる。
なお、上記実施形態10においては、2種類の防音セルユニットを使用したが、これに限定されず、2種類上の防音セルユニットを使用することもできる。
なお、実施形態9と同様に、2種類の防音セルユニット20I1及び20I2は、それぞれ、その中心軸(すなわち、管体22の中心軸方向の長さの中心軸)が、各防音セル18I(18I1及び18I2)に対応する第1固有振動周波数の音波が管体22に形成する音圧が高い位置に来るように配置されていることが好ましく、特に、各防音セル18I(18I1及び18I2)に対応する第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置されていることが好ましい。具体的に言えば、防音セルユニット20I1は、その中心軸が、防音セル18I1の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置され、防音セルユニット20I2は、その中心軸が、複数(4つ)の防音セル18G'2の第1固有振動周波数の音波が管体22に形成する定在波の腹の位置に来るように配置されていることが好ましい。
このように2種類の防音セルユニットを配置することにより、本実施形態の防音構造10Iは、定在波の腹の位置のみに複数の防音セル18Fを配置した本実施形態7の防音構造10Fよりも高い防音効果(吸収率)を得ることができる。
なお、図50Aに示す本実施形態10では、防音セルユニット20I1及び20I2を使用しているが、複数の防音セルを管体22の中心軸方向に直列に配置したものであれば、これに限定されず、隣接する防音セルが離間した複数のセルをも使用することもできる。
また、図50Aに示す本実施形態10の複数の防音セル18Iは一列に配置されているが、中心軸方向に直列に配置されていれば、これに限定されず、防音セル18Iの配置にズレがあってもよい。
また、図50Aに示す本実施形態10の複数の防音セル18Iは一列に配置されているが、中心軸方向に直列に配置されていれば、これに限定されず、防音セル18Iの配置にズレがあってもよい。
(実施形態11)
図52は、本発明の実施形態11に係る防音構造の一実施例を模式的に示す斜視図である。
図52に示す本実施形態の防音構造10Jは、貫通する孔部12を持つ枠14と、孔部12の両面を覆うように枠14に固定された膜16(16a及び16b)と、膜16(16a及び16b)にそれぞれ接着固定された錘40と、を持つ防音セル18Jが複数、図示例では一列に6個配置された防音セルユニット20Jを、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する(図14参照)。
図52に示す本実施形態の防音構造10Jは、図8に示す実施形態4の防音構造10Cと枠14の孔部12の両面に固定されている膜16(16a及び16b)にそれぞれ錘40が接着固定されている点を除いて、同一の構成を有するものであるので、同一の構成についての説明を省略する。
図52は、本発明の実施形態11に係る防音構造の一実施例を模式的に示す斜視図である。
図52に示す本実施形態の防音構造10Jは、貫通する孔部12を持つ枠14と、孔部12の両面を覆うように枠14に固定された膜16(16a及び16b)と、膜16(16a及び16b)にそれぞれ接着固定された錘40と、を持つ防音セル18Jが複数、図示例では一列に6個配置された防音セルユニット20Jを、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する(図14参照)。
図52に示す本実施形態の防音構造10Jは、図8に示す実施形態4の防音構造10Cと枠14の孔部12の両面に固定されている膜16(16a及び16b)にそれぞれ錘40が接着固定されている点を除いて、同一の構成を有するものであるので、同一の構成についての説明を省略する。
本実施形態の防音構造10Jの防音セルユニット20Jでは、錘40を、膜16(16a及び16b)にそれぞれ接着固定することにより、上記実施形態1~10の防音構造10及び10A~10Iのように、錘の無い防音構造に比べて、遮音性能の制御性を高めるために設けられるものである。
即ち、錘40は、その重さを変えることで、第1遮音ピークの周波数及び遮音性を制御することができる。
なお、防音セルユニット20Jでは、錘40は、膜16a及び16bの両方に固定されているが、本発明はこれに限定されず、いずれか一方のみに固定されるものであっても良い。また、膜16a及び16bは、枠14の両面に固定されているが、いずれか一方のみに固定されていても良いが、その膜16には、錘40が固定されているのは、勿論である。
錘40の形状は、図示例の円形に限定されず、枠14の孔部12の形状、したがって膜16の形状と同様に、上述した種々の形状とすることができるが、膜16の形状と同じであるのが好ましい。
即ち、錘40は、その重さを変えることで、第1遮音ピークの周波数及び遮音性を制御することができる。
なお、防音セルユニット20Jでは、錘40は、膜16a及び16bの両方に固定されているが、本発明はこれに限定されず、いずれか一方のみに固定されるものであっても良い。また、膜16a及び16bは、枠14の両面に固定されているが、いずれか一方のみに固定されていても良いが、その膜16には、錘40が固定されているのは、勿論である。
錘40の形状は、図示例の円形に限定されず、枠14の孔部12の形状、したがって膜16の形状と同様に、上述した種々の形状とすることができるが、膜16の形状と同じであるのが好ましい。
また、錘40のサイズも、特に制限的ではないが、孔部12のサイズである膜16のサイズより小さい必要がある。したがって、錘40のサイズは、孔部12のサイズRが0.5mm~50mmの場合には、0.01mm~25mmであることが好ましく、0.05mm~10mmであることがより好ましく、0.1mm~5mmであることが最も好ましい。
また、錘40の厚さも、特に制限的ではなく、必要な重さ及び錘40のサイズに応じて適宜設定すれば良い。例えば、錘40の厚さは、0.01mm~10mmであることが好ましく、0.1mm~5mmであることがより好ましく、0.5mm~2mmであることが最も好ましい。
なお、錘40のサイズ及び/または厚さは、複数の膜16において異なるサイズ及び/または厚さが含まれる場合などは、平均サイズ及び/または平均厚さで表すことが好ましい。
錘40の材料は、必要なサイズで必要な重さがあれば、特に制限的ではなく、枠14及び膜16の材料と同様に、上述した種々の材料を用いることができるが、枠14及び膜16の材料と同じであっても、異なる材料であっても良い。
また、本実施形態1の防音セル18は、枠14に固定された膜16に錘40を固定した構造であるが、これに限定されず、同じ材料からなる膜16と枠14と錘40とが一体化した構造であっても良い。
また、本実施形態の防音構造の膜に錘が固定されている構成は、上記実施形態1の防音構造10の1個の防音セル18、及び上記実施形態3の防音構造10Bの1個の防音セル18Bにも、上記実施形態2の防音構造10の複数個の防音セル18A、及び上記実施形態5~10の防音構造10D~10Iの各防音セル18C~18Iにも適用可能なことは勿論である。
また、錘40の厚さも、特に制限的ではなく、必要な重さ及び錘40のサイズに応じて適宜設定すれば良い。例えば、錘40の厚さは、0.01mm~10mmであることが好ましく、0.1mm~5mmであることがより好ましく、0.5mm~2mmであることが最も好ましい。
なお、錘40のサイズ及び/または厚さは、複数の膜16において異なるサイズ及び/または厚さが含まれる場合などは、平均サイズ及び/または平均厚さで表すことが好ましい。
錘40の材料は、必要なサイズで必要な重さがあれば、特に制限的ではなく、枠14及び膜16の材料と同様に、上述した種々の材料を用いることができるが、枠14及び膜16の材料と同じであっても、異なる材料であっても良い。
また、本実施形態1の防音セル18は、枠14に固定された膜16に錘40を固定した構造であるが、これに限定されず、同じ材料からなる膜16と枠14と錘40とが一体化した構造であっても良い。
また、本実施形態の防音構造の膜に錘が固定されている構成は、上記実施形態1の防音構造10の1個の防音セル18、及び上記実施形態3の防音構造10Bの1個の防音セル18Bにも、上記実施形態2の防音構造10の複数個の防音セル18A、及び上記実施形態5~10の防音構造10D~10Iの各防音セル18C~18Iにも適用可能なことは勿論である。
図52に示す本実施形態の防音構造10Jの防音セルユニット20Jでは、実施形態4の防音構造10Cの構成と同様であるが、枠14の両面に膜16として厚さ100μmのPETフィルムが両面接着テープにより固定されている。更に、防音セル18Jの枠14の両面のPETフィルムの膜16(16a及び16b)の中央にそれぞれ55mgのステンレスの錘40が両面接着テープにより固定されている。
本実施形態11の防音構造10Jと、この防音構造10Jと同様構成を有するが、膜16(16a及び16b)に錘が固定されていない点で異なる防音構造(実施形態4の防音構造10C相当)との吸収率及び透過損失を図13に示す測定系で測定した結果を図53A及び図53Bに示す。
図53Aに示す吸収率においては、錘がない時の2つの吸収ピーク約1772Hz、及び約3170Hzが、錘40を膜16に配置固定することにより、約993Hz、及び約2672Hzの低周波側にシフトしていることがわかる。したがって、低周波の吸音を行うには、本実施形態が好ましい。また、図53Bに示す遮音に関しては、錘40を膜16に配置することにより、35dBもの遮音ピークを得ることができる。
なお、図52に示す防音構造10Jは、防音セル18Jが管体22の中心軸方向に直列に配置されているので、図53Aに示すように、50%以上の吸収率が得られ、防音効果(吸収率)が高いことも分かる。
本実施形態11の防音構造10Jと、この防音構造10Jと同様構成を有するが、膜16(16a及び16b)に錘が固定されていない点で異なる防音構造(実施形態4の防音構造10C相当)との吸収率及び透過損失を図13に示す測定系で測定した結果を図53A及び図53Bに示す。
図53Aに示す吸収率においては、錘がない時の2つの吸収ピーク約1772Hz、及び約3170Hzが、錘40を膜16に配置固定することにより、約993Hz、及び約2672Hzの低周波側にシフトしていることがわかる。したがって、低周波の吸音を行うには、本実施形態が好ましい。また、図53Bに示す遮音に関しては、錘40を膜16に配置することにより、35dBもの遮音ピークを得ることができる。
なお、図52に示す防音構造10Jは、防音セル18Jが管体22の中心軸方向に直列に配置されているので、図53Aに示すように、50%以上の吸収率が得られ、防音効果(吸収率)が高いことも分かる。
(実施形態12)
図54は、本発明の実施形態5に係る防音構造の一実施例を模式的に示す斜視図である。
図54に示す本実施形態の防音構造10Kは、貫通する孔部12を持つ枠14と、孔部12の両面を覆うように枠14に固定された膜16(16a及び16b)と、一方の膜16aに穿孔された貫通孔42と、を持つ防音セル18Kが複数、図示例では一列に6個配置された防音セルユニット20Kを、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する(図14参照)。
図54に示す本実施形態の防音構造10Kは、図8に示す実施形態4の防音構造10Cと枠14の孔部12の両面に固定されている膜16の一方の膜16aに貫通孔42が穿孔されている点を除いて、同一の構成を有するものであるので、同一の構成についての説明を省略する。
図54は、本発明の実施形態5に係る防音構造の一実施例を模式的に示す斜視図である。
図54に示す本実施形態の防音構造10Kは、貫通する孔部12を持つ枠14と、孔部12の両面を覆うように枠14に固定された膜16(16a及び16b)と、一方の膜16aに穿孔された貫通孔42と、を持つ防音セル18Kが複数、図示例では一列に6個配置された防音セルユニット20Kを、本発明の開口部材であるアルミニウム製の管体22(の開口22a)内に、管体22の開口断面22bに対して膜16の膜面を傾け、管体22内の開口22aに気体が通過する通気孔となる領域を設けた状態で配置した構造を有する(図14参照)。
図54に示す本実施形態の防音構造10Kは、図8に示す実施形態4の防音構造10Cと枠14の孔部12の両面に固定されている膜16の一方の膜16aに貫通孔42が穿孔されている点を除いて、同一の構成を有するものであるので、同一の構成についての説明を省略する。
本実施形態の防音構造10Kでは、貫通孔42が、膜16aに形成されることにより、実施形態1~10の防音構造10及び10A~10Iのように、貫通孔の無い防音構造に比べて、遮音性能の制御性を高めることができる。
即ち、貫通孔42は、その径を変えることで、第1遮音ピークの周波数及び遮音性を制御することができる。
また、本実施形態12の防音構造10Kは、実施形態11の防音構造10Jのように、錘40を付加する必要がないため、より軽量な防音構造とすることができる。
なお、防音セルユニット20Kでは、貫通孔42は、膜16aのみに穿孔されているが、本発明はこれに限定されず、膜16bのみに穿孔されていても良いし、膜16a及び16bの両方に形成されていても良い。また、膜16a及び16bは、枠14の両面に固定されているが、いずれか一方のみに固定されていても良いが、その膜16には、貫通孔42が形成されているのは、勿論である。
以下の説明では、貫通孔42が形成される膜16aを特別に説明する必要がない場合には、膜16で代表させる。
即ち、貫通孔42は、その径を変えることで、第1遮音ピークの周波数及び遮音性を制御することができる。
また、本実施形態12の防音構造10Kは、実施形態11の防音構造10Jのように、錘40を付加する必要がないため、より軽量な防音構造とすることができる。
なお、防音セルユニット20Kでは、貫通孔42は、膜16aのみに穿孔されているが、本発明はこれに限定されず、膜16bのみに穿孔されていても良いし、膜16a及び16bの両方に形成されていても良い。また、膜16a及び16bは、枠14の両面に固定されているが、いずれか一方のみに固定されていても良いが、その膜16には、貫通孔42が形成されているのは、勿論である。
以下の説明では、貫通孔42が形成される膜16aを特別に説明する必要がない場合には、膜16で代表させる。
貫通孔42の形状は、図54に示す円形に限定されず、枠14の孔部12の形状、したがって膜16の形状と同様に、上述した種々の形状とすることができるが、膜16の形状と同じであるのが好ましい。
また、孔部12に相当する膜16内に貫通孔42を設ける位置は、全ての貫通孔42において防音セル18D又は膜16の間中または中央であっても良いし、少なくとも一部の貫通孔42が中央でないどのような位置に穿孔されていても良い。即ち、単に、貫通孔42の穿孔位置が変わっただけでは、本発明の防音構造10K及び防音セルユニット20Kの遮音特性は変化しないからである。
しかしながら、本発明では、貫通孔42は、孔部12の周縁部の固定端から膜16の面の寸法の20%超離れた範囲内の領域に穿孔されていることが好ましく、膜16の中心に設けられていることが最も好ましい。
なお、本実施形態においては、貫通孔42は、1つの膜16に、図54に示すように、1個設けられていても良いが、複数個(2個以上)設けられていても良い。貫通孔42の径を変える代わりに、1つの膜16に設けられる貫通孔42の個数を変えて、第1遮音ピークの周波数及び遮音性を制御するようにしても良い。
また、孔部12に相当する膜16内に貫通孔42を設ける位置は、全ての貫通孔42において防音セル18D又は膜16の間中または中央であっても良いし、少なくとも一部の貫通孔42が中央でないどのような位置に穿孔されていても良い。即ち、単に、貫通孔42の穿孔位置が変わっただけでは、本発明の防音構造10K及び防音セルユニット20Kの遮音特性は変化しないからである。
しかしながら、本発明では、貫通孔42は、孔部12の周縁部の固定端から膜16の面の寸法の20%超離れた範囲内の領域に穿孔されていることが好ましく、膜16の中心に設けられていることが最も好ましい。
なお、本実施形態においては、貫通孔42は、1つの膜16に、図54に示すように、1個設けられていても良いが、複数個(2個以上)設けられていても良い。貫通孔42の径を変える代わりに、1つの膜16に設けられる貫通孔42の個数を変えて、第1遮音ピークの周波数及び遮音性を制御するようにしても良い。
なお、1つの膜16に複数個の貫通孔42が設けられる場合には、複数個の貫通孔42の合計面積から円相当径を求め、1つの貫通孔に相当するサイズとして用いても良いし、あるいは、複数個の貫通孔42の合計面積と孔部12に相当する膜16の面積との面積率を求めて、貫通孔42の面積率、即ち開口率で、貫通孔42のサイズを表わしても良い。
1個の防音セル18K内に複数の貫通孔42がある時は、本発明の防音構造10K及び防音セルユニット20Kの遮音特性は、複数の貫通孔42の合計面積に対応した遮音特性、即ち、対応する遮音ピーク周波数において対応する遮音ピークを示す。したがって、1個の防音セル18K(又は膜16)内にある複数の貫通孔42の合計面積が、他の防音セル18K(又は膜16)内に1個のみ有する貫通孔42の面積に等しいことが好ましいが、本発明はこれに限定されない。
なお、防音セル18K内の貫通孔42の開口率(孔部12を覆う膜16の面積に対する貫通孔42の面積率(全ての貫通孔42の合計面積の割合))が同一の場合には、単一貫通孔42と複数貫通孔42で同様の防音セルユニット20Kが得られるため、ある貫通孔42のサイズに固定しても様々な周波数帯の防音構造を作製することができる。
なお、防音セル18K内の貫通孔42の開口率(孔部12を覆う膜16の面積に対する貫通孔42の面積率(全ての貫通孔42の合計面積の割合))が同一の場合には、単一貫通孔42と複数貫通孔42で同様の防音セルユニット20Kが得られるため、ある貫通孔42のサイズに固定しても様々な周波数帯の防音構造を作製することができる。
本実施形態においては、防音セル18K内の貫通孔42の開口率(面積率)は、特に制限的ではなく、選択的に遮音するべき遮音周波数帯域に応じて設定すれば良いが、0.000001%~50%であるのが好ましく、0.00001%~20%であるのがより好ましく、0.0001%~10%であるのが好ましい。貫通孔42の開口率を上記範囲に設定することにより、選択的に遮音するべき遮音周波数帯域の中心となる遮音ピーク周波数及び遮音ピークの透過損失を決定することができる。
本実施形態の防音セルユニット20Kは、製造適性の点からは、1つの防音セル18D内には、同一サイズの貫通孔42を複数個有することが好ましい。即ち、各防音セル18Dの膜16には、同一サイズの複数の貫通孔42を穿孔することが好ましい。
更に、防音セルユニット20Dでは、全ての防音セル18Kの1つの貫通孔42を同一サイズの穴とすることが好ましい。
本実施形態の防音セルユニット20Kは、製造適性の点からは、1つの防音セル18D内には、同一サイズの貫通孔42を複数個有することが好ましい。即ち、各防音セル18Dの膜16には、同一サイズの複数の貫通孔42を穿孔することが好ましい。
更に、防音セルユニット20Dでは、全ての防音セル18Kの1つの貫通孔42を同一サイズの穴とすることが好ましい。
本発明においては、貫通孔42は、エネルギを吸収する加工方法、例えばレーザ加工によって穿孔されることが好ましく、または物理的接触による機械加工方法、例えばパンチング、または針加工によって穿孔されることが好ましい。
このため、1つの防音セル18K内の複数の貫通孔42、または、全ての防音セル18D内の1個又は複数個の貫通孔42を同一サイズとすると、レーザ加工、パンチング、または針加工で穴をあける場合に、加工装置の設定や加工強度を変えることなく連続して穴をあけることができる。
このため、1つの防音セル18K内の複数の貫通孔42、または、全ての防音セル18D内の1個又は複数個の貫通孔42を同一サイズとすると、レーザ加工、パンチング、または針加工で穴をあける場合に、加工装置の設定や加工強度を変えることなく連続して穴をあけることができる。
また、本発明の防音構造10においては、防音セル18K(又は膜16)内の貫通孔42のサイズ(大きさ)は、各防音セル18K(又は膜16)毎に異なっていても良い。
貫通孔42のサイズは、上述した加工方法で適切に穿孔できれば、どのようなサイズでも良く、特に限定されないが、孔部12のサイズである膜16のサイズより小さい必要がある。
しかしながら、貫通孔42のサイズは、その下限側では、レーザの絞りの精度等のレーザ加工の加工精度、又はパンチング加工もしくは針加工などの加工精度や加工の容易性などの製造適性の点から、100μm以上であることが好ましい。
なお、これらの貫通孔42のサイズの上限値は、枠14のサイズより小さい必要があるので、通常、枠14のサイズはmmオーダであり、貫通孔42のサイズを数百μmオーダに設定しておけば、貫通孔42のサイズの上限値は、枠14のサイズを超えることはないが、もし、超えた場合には、貫通孔42のサイズの上限値を枠14のサイズ以下に設定すればよい。
なお、貫通孔42のサイズは、複数の膜16において異なるサイズが含まれる場合などは、平均サイズで表すことが好ましい。
また、本実施形態の防音構造の膜に貫通孔が設けられている構成は、上記実施形態1の防音構造10の1個の防音セル18、及び上記実施形態3の防音構造10Bの1個の防音セル18Bにも、上記実施形態2の防音構造10の複数個の防音セル18A、及び上記実施形態5~10の防音構造10D~10Iの各防音セル18C~18Iにも適用可能なことは勿論である。
しかしながら、貫通孔42のサイズは、その下限側では、レーザの絞りの精度等のレーザ加工の加工精度、又はパンチング加工もしくは針加工などの加工精度や加工の容易性などの製造適性の点から、100μm以上であることが好ましい。
なお、これらの貫通孔42のサイズの上限値は、枠14のサイズより小さい必要があるので、通常、枠14のサイズはmmオーダであり、貫通孔42のサイズを数百μmオーダに設定しておけば、貫通孔42のサイズの上限値は、枠14のサイズを超えることはないが、もし、超えた場合には、貫通孔42のサイズの上限値を枠14のサイズ以下に設定すればよい。
なお、貫通孔42のサイズは、複数の膜16において異なるサイズが含まれる場合などは、平均サイズで表すことが好ましい。
また、本実施形態の防音構造の膜に貫通孔が設けられている構成は、上記実施形態1の防音構造10の1個の防音セル18、及び上記実施形態3の防音構造10Bの1個の防音セル18Bにも、上記実施形態2の防音構造10の複数個の防音セル18A、及び上記実施形態5~10の防音構造10D~10Iの各防音セル18C~18Iにも適用可能なことは勿論である。
図54に示す本実施形態の防音構造10Kの防音セルユニット20Kでは、実施形態4の防音構造10Cの構成と同様であるが、枠14の両面に膜16として厚さ100μmのPETフィルムが両面接着テープにより固定されている。更に、防音セル18Kの枠14の片面のPETフィルムの膜16aの中央に直径2mmの貫通孔42が形成されている。
本実施形態12の防音構造10Kと、この防音構造10Kと同様構成を有するが、膜16aに貫通孔42が形成されていない点で異なる防音構造(実施形態4の防音構造10C相当)との吸収率及び透過損失のスペクトルを測定した結果を図13に示す測定系で図55A及び図55Bに示す。
図55Aに示す吸収率に関しては、貫通孔がない時よりも、吸収ピーク間の谷(2625Hz)の吸収が大きくなっていること、及び高周波数側(3000Hz~4000Hz)での吸収が高まっていることがわかる。そのため、広帯域吸音においては、本実施形態12の防音構造が好ましい。
また、図55Bに示す透過損失においては、1915Hzの低周波側の遮音ピークが増大している。このため、低周波遮音においては、本実施形態12の防音構造が好ましい。
本実施形態12の防音構造10Kと、この防音構造10Kと同様構成を有するが、膜16aに貫通孔42が形成されていない点で異なる防音構造(実施形態4の防音構造10C相当)との吸収率及び透過損失のスペクトルを測定した結果を図13に示す測定系で図55A及び図55Bに示す。
図55Aに示す吸収率に関しては、貫通孔がない時よりも、吸収ピーク間の谷(2625Hz)の吸収が大きくなっていること、及び高周波数側(3000Hz~4000Hz)での吸収が高まっていることがわかる。そのため、広帯域吸音においては、本実施形態12の防音構造が好ましい。
また、図55Bに示す透過損失においては、1915Hzの低周波側の遮音ピークが増大している。このため、低周波遮音においては、本実施形態12の防音構造が好ましい。
(実施形態13)
図56は、本発明の実施形態13に係る防音構造の一実施例を模式的に示す斜視図である。
図56に示す本実施形態13の防音構造10Lは、複数、図示例では6個の防音セル18を備え、管体22の内径より小さい直径を有する円板状防音枠部材19からなる防音セルユニット20Lを管体22内に回転可能に配置して、管体22の開口断面に対する傾きを変更できるようにして、通気孔の開口率を調整可能とするものである。すなわち、防音セル18の膜面の、開口断面に対する傾斜角度を調整可能とするものである。
防音セルユニット20Lを管体22内に回転可能に配置する方法は、特に制限的ではなく、従来公知の配置方法及び支持方法を用いることができる。例えば、防音セルユニット20Lの円板状防音枠部材19の1つの直径の両側の延長線上に延びる棒状支持軸19aを取り付け、管体22の1つの内径の管壁に軸受、又は軸受孔を設け、円板状防音枠部材19の棒状支持軸19aを管体22の管壁の軸受、又は軸受孔によって回転可能に支持することができる。
防音セルユニット20Lが有する防音セルとしては、上記実施形態1~12の防音セル18、及び18A~18Kのいずれを用いても良い。
図56は、本発明の実施形態13に係る防音構造の一実施例を模式的に示す斜視図である。
図56に示す本実施形態13の防音構造10Lは、複数、図示例では6個の防音セル18を備え、管体22の内径より小さい直径を有する円板状防音枠部材19からなる防音セルユニット20Lを管体22内に回転可能に配置して、管体22の開口断面に対する傾きを変更できるようにして、通気孔の開口率を調整可能とするものである。すなわち、防音セル18の膜面の、開口断面に対する傾斜角度を調整可能とするものである。
防音セルユニット20Lを管体22内に回転可能に配置する方法は、特に制限的ではなく、従来公知の配置方法及び支持方法を用いることができる。例えば、防音セルユニット20Lの円板状防音枠部材19の1つの直径の両側の延長線上に延びる棒状支持軸19aを取り付け、管体22の1つの内径の管壁に軸受、又は軸受孔を設け、円板状防音枠部材19の棒状支持軸19aを管体22の管壁の軸受、又は軸受孔によって回転可能に支持することができる。
防音セルユニット20Lが有する防音セルとしては、上記実施形態1~12の防音セル18、及び18A~18Kのいずれを用いても良い。
(実施形態14)
図57A及び図57Bは、それぞれ本発明の実施形態14に係る防音構造に用いられる防音セルユニットの一実施例を模式的に示す正面図及び側面図である。
図57A及び図57Bに示す防音セルユニット20Mは、貫通する孔部12を持つ枠14、及び孔部12の両面を覆うように枠14に固定された膜16を有する防音セル18が複数、図示例では一列に4個配置された直方体形状の防音セルユニット20Mと、防音セルユニット20Mの両端に配置される2つの円環状支持枠体44と、防音セルユニット20Mの4角形状の両端の4隅をそれぞれ円環状支持枠体44の内周面に固定する各4本の線状支持部材46とを有する。
本実施形態14の防音セルユニット20Mは、以上のような構成を有することにより、管体内に容易に配置することができるし、容易に取り外すことができる。
防音セルユニット20Mに用いられる防音セルユニット及びそれが有する防音セルとしては、上記実施形態2、4、5、9~12の防音セルユニット20、及び20C、20D及び20H~20K及び防音セル18、18D及び18AH~18DKのいずれを用いても良い。
図57A及び図57Bは、それぞれ本発明の実施形態14に係る防音構造に用いられる防音セルユニットの一実施例を模式的に示す正面図及び側面図である。
図57A及び図57Bに示す防音セルユニット20Mは、貫通する孔部12を持つ枠14、及び孔部12の両面を覆うように枠14に固定された膜16を有する防音セル18が複数、図示例では一列に4個配置された直方体形状の防音セルユニット20Mと、防音セルユニット20Mの両端に配置される2つの円環状支持枠体44と、防音セルユニット20Mの4角形状の両端の4隅をそれぞれ円環状支持枠体44の内周面に固定する各4本の線状支持部材46とを有する。
本実施形態14の防音セルユニット20Mは、以上のような構成を有することにより、管体内に容易に配置することができるし、容易に取り外すことができる。
防音セルユニット20Mに用いられる防音セルユニット及びそれが有する防音セルとしては、上記実施形態2、4、5、9~12の防音セルユニット20、及び20C、20D及び20H~20K及び防音セル18、18D及び18AH~18DKのいずれを用いても良い。
(実施形態15)
なお、本発明の防音構造は、上述した複数の防音構造のように、管体内に防音セルユニットを配置するものに限定されず、管体内以外にも、例えば、図58に示す本発明の実施形態15に係る防音構造50のように、住宅52の壁54に配置された開口部材56の開口56a内に本実施形態15の防音セルユニット20Nを4つ並列に配置し、防音ルーバ58として使用することができる。
本実施形態15の防音構造50に用いられる防音セルユニット20Nは、図58では、7個の防音セル18を2列に配置した平板状の防音セルユニットであるが、防音セル18の数、その配置方法は特に制限的ではなく、防音セル18の数はいくつでも良いし、1次元又は2次元配置のいずれでも良い。
本実施形態15の防音構造50に用いられる防音セルユニット20Nは、図示例では、防音セル18の膜面が開口56aに対する角度が垂直になるように配置されているが、その角度は制限的ではなく、所望する透過損失ピークや、開口率(通風性)に応じて調整することができる。
また、防音セルユニット20Nに用いられる防音セルユニット及びそれが有する防音セルとしては、2、4、5、9~12の防音セルユニット20、及び20C、20D及び20H~20K及び防音セル18、18A~18Kのいずれを用いても良い。
なお、本発明の防音構造は、上述した複数の防音構造のように、管体内に防音セルユニットを配置するものに限定されず、管体内以外にも、例えば、図58に示す本発明の実施形態15に係る防音構造50のように、住宅52の壁54に配置された開口部材56の開口56a内に本実施形態15の防音セルユニット20Nを4つ並列に配置し、防音ルーバ58として使用することができる。
本実施形態15の防音構造50に用いられる防音セルユニット20Nは、図58では、7個の防音セル18を2列に配置した平板状の防音セルユニットであるが、防音セル18の数、その配置方法は特に制限的ではなく、防音セル18の数はいくつでも良いし、1次元又は2次元配置のいずれでも良い。
本実施形態15の防音構造50に用いられる防音セルユニット20Nは、図示例では、防音セル18の膜面が開口56aに対する角度が垂直になるように配置されているが、その角度は制限的ではなく、所望する透過損失ピークや、開口率(通風性)に応じて調整することができる。
また、防音セルユニット20Nに用いられる防音セルユニット及びそれが有する防音セルとしては、2、4、5、9~12の防音セルユニット20、及び20C、20D及び20H~20K及び防音セル18、18A~18Kのいずれを用いても良い。
このような構造の一例として、図59に示すように、複数の防音セルユニット20Nを並列に配置した防音ルーバ58Aの透過損失の測定を行った。
防音セルユニット20Nとして、図60A示す防音セルユニット20N1または図60Bに示す防音セルユニット20N2を使用した。防音セルユニット20N1は、幅(縦)50mm×長さ(横)300mm×厚み20mmのアクリル板に、40mm角の貫通孔12N1を6個((縦)1個×(横)6個)備え、貫通孔12N1の両面に膜厚250μmのPETフィルムが両面接着テープにより固定されたものであり、防音セルユニット20N2は、20mm角の貫通孔12N2を20個((縦)2個×(横)10個)備える以外は、防音セルユニット20N1の構成と同様である。
防音セルユニット20Nとして、図60A示す防音セルユニット20N1または図60Bに示す防音セルユニット20N2を使用した。防音セルユニット20N1は、幅(縦)50mm×長さ(横)300mm×厚み20mmのアクリル板に、40mm角の貫通孔12N1を6個((縦)1個×(横)6個)備え、貫通孔12N1の両面に膜厚250μmのPETフィルムが両面接着テープにより固定されたものであり、防音セルユニット20N2は、20mm角の貫通孔12N2を20個((縦)2個×(横)10個)備える以外は、防音セルユニット20N1の構成と同様である。
図29に示す測定系と同様に、音響管(管体)内に防音セルユニット20N1または20N2の配置した防音構造の透過損失を測定した結果を図61に示す。実線は、音響管内に防音セルユニット20N1を配置した防音構造の透過損失を示し、破線は、音響管内に防音セルユニット20N2を配置した防音構造の透過損失を示す。
図61から、40mm角の貫通孔12N1を有する防音セルユニット20N1を使用した防音構造の場合は、約820Hzに高い透過損失ピークを有し、20mm角の貫通孔12N2を有する防音セルユニット20N2を使用した防音構造の場合は、約2000Hzに高い透過損失ピークを有することが分かる。
図61から、40mm角の貫通孔12N1を有する防音セルユニット20N1を使用した防音構造の場合は、約820Hzに高い透過損失ピークを有し、20mm角の貫通孔12N2を有する防音セルユニット20N2を使用した防音構造の場合は、約2000Hzに高い透過損失ピークを有することが分かる。
防音ルーバ58Aの透過損失の測定は、図62に示す測定系により測定した。
1面が開口されたアクリルボックス(300mm角立方)52内にスピーカ34を収納し、開口面には防音ルーバ58Aを配置した。スピーカ34からホワイトノイズ音を出力し、開口から流れる音を1本のマイクロフォン32で検出した。透過損失は、アクリルボックス52の開口に防音ルーバ58Aが配置されていない時に検出された音圧に対する防音ルーバ58Aが配置された時に検出された音圧の割合から算出した。
なお、防音ルーバ58Aに配置される防音セルユニット20N1または20N2に固定された膜の膜面は、アクリルボックス52の開口面に対し垂直になるように配置される。
1面が開口されたアクリルボックス(300mm角立方)52内にスピーカ34を収納し、開口面には防音ルーバ58Aを配置した。スピーカ34からホワイトノイズ音を出力し、開口から流れる音を1本のマイクロフォン32で検出した。透過損失は、アクリルボックス52の開口に防音ルーバ58Aが配置されていない時に検出された音圧に対する防音ルーバ58Aが配置された時に検出された音圧の割合から算出した。
なお、防音ルーバ58Aに配置される防音セルユニット20N1または20N2に固定された膜の膜面は、アクリルボックス52の開口面に対し垂直になるように配置される。
防音セルユニット20N1または20N2の数を6本(開口率60%)、7本(開口率53%)、及び8本(開口率47%)に変化させて並列に配置した防音ルーバ58Aの透過損失を測定した結果を図63A及び図63Bに示す。
図63Aに示すように、40mm角の貫通孔12N1を有する防音セルユニット20N1を使用した防音ルーバ58Aの場合は、850Hz付近に高い透過損失ピーク(1)を生じ、図63Bに示すように、20mm角の貫通孔12N2を有する防音セルユニット20N2を使用した防音ルーバ58Aの場合は、2080Hzに高い透過損失ピーク(2)が生じることが分かる。また、これらの透過損失ピークは、それぞれ、図61に示す音響管(管体)内に防音セルユニット20N1または20N2を配置した防音構造において透過損失ピークが生じる周波数の近傍に生じていることが分かる。
図63Aに示すように、40mm角の貫通孔12N1を有する防音セルユニット20N1を使用した防音ルーバ58Aの場合は、850Hz付近に高い透過損失ピーク(1)を生じ、図63Bに示すように、20mm角の貫通孔12N2を有する防音セルユニット20N2を使用した防音ルーバ58Aの場合は、2080Hzに高い透過損失ピーク(2)が生じることが分かる。また、これらの透過損失ピークは、それぞれ、図61に示す音響管(管体)内に防音セルユニット20N1または20N2を配置した防音構造において透過損失ピークが生じる周波数の近傍に生じていることが分かる。
また、図63A及び図63Bから、防音ルーバ58Aに配置される防音セルユニット20Nの数が増えるにつれて、すなわち、開口率が下がるにつれて、透過損失ピークが高くなることが分かる。
また、図61に示す音響管内に防音セルユニット20N1または20N2を配置した防音構造の透過損失のスペクトルと、図63Aまたは図63Bに示す防音セルユニット20N1または20N2を使用した防音ルーバの透過損失のスペクトルは、透過損失ピークの高さ以外、同様の変化を示すことから、図63Aまたは図63Bに示される透過損失ピークは、防音ルーバの構造によるものではなく、防音ルーバが備える防音セルユニット20N1または20N2に固定された膜の振動による遮蔽であることが分かる。
また、図61に示す音響管内に防音セルユニット20N1または20N2を配置した防音構造の透過損失のスペクトルと、図63Aまたは図63Bに示す防音セルユニット20N1または20N2を使用した防音ルーバの透過損失のスペクトルは、透過損失ピークの高さ以外、同様の変化を示すことから、図63Aまたは図63Bに示される透過損失ピークは、防音ルーバの構造によるものではなく、防音ルーバが備える防音セルユニット20N1または20N2に固定された膜の振動による遮蔽であることが分かる。
(実施形態16)
また、本発明の防音構造は、例えば、図64に示す本発明の実施形態16に係る防音構造60のように、住宅、ビル、及び工場などの部屋などの空間61内に配置される防音壁、又は防音パーティション62として使用することもできる。ここで、空間61を備える住宅、ビル、及び工場などの部屋などが開口部材に相当し、防音壁、又は防音パーティション(間仕切り)は、空間61内、例えば床に固定される固定壁、又は固定パーティションであっても良いし、空間61内、例えば床の上を移動可能な可動壁、又は可動パーティションであっても良い。
図64に示す防音パーティション62は、開口断面となるパーティションの枠体64の開口64a内に本実施形態9の防音セルユニット20Oを4つ並列に配置したものである。
本実施形態16の防音構造60においても、上記実施形態15の防音構造50と同様に、防音セルユニット20Oを用いることができる。
また、本発明の防音構造は、例えば、図64に示す本発明の実施形態16に係る防音構造60のように、住宅、ビル、及び工場などの部屋などの空間61内に配置される防音壁、又は防音パーティション62として使用することもできる。ここで、空間61を備える住宅、ビル、及び工場などの部屋などが開口部材に相当し、防音壁、又は防音パーティション(間仕切り)は、空間61内、例えば床に固定される固定壁、又は固定パーティションであっても良いし、空間61内、例えば床の上を移動可能な可動壁、又は可動パーティションであっても良い。
図64に示す防音パーティション62は、開口断面となるパーティションの枠体64の開口64a内に本実施形態9の防音セルユニット20Oを4つ並列に配置したものである。
本実施形態16の防音構造60においても、上記実施形態15の防音構造50と同様に、防音セルユニット20Oを用いることができる。
(実施形態17)
図65は、本発明の実施形態17に係る防音構造に用いる防音セルユニットの一例を模式的に示す断面図である。図65に示す防音セルユニット20Pは、実施形態5の防音セル18Dと同様の構成である、共鳴周波数の異なる2つの膜16を有する防音セル18Pが2つ配列されたものであり、2つの防音セル18Pそれぞれの膜背面空間、すなわち、孔部12内の空間を連通する貫通開口66が形成された構造を有する。
図65は、本発明の実施形態17に係る防音構造に用いる防音セルユニットの一例を模式的に示す断面図である。図65に示す防音セルユニット20Pは、実施形態5の防音セル18Dと同様の構成である、共鳴周波数の異なる2つの膜16を有する防音セル18Pが2つ配列されたものであり、2つの防音セル18Pそれぞれの膜背面空間、すなわち、孔部12内の空間を連通する貫通開口66が形成された構造を有する。
このような構造の防音セルユニット20Pの一例として、一方の防音セル18Pの膜16cを厚み75μmのPETフィルム、膜16dを厚み2mmのアクリル板とし、他方の防音セル18Pの膜16cを厚み50μmのPETフィルム、膜16bを厚み2mmのアクリル板とし、両防音セル18Pの膜背面空間を形成する枠14に1cm角の貫通開口66を設けて、両防音セル18Pの膜背面空間を連通させた構成(以下、「構成1」という)として、吸収率を測定した結果を図36に示す。
また、他の例として、一方の防音セル18Pの膜16cを厚み50μmのPETフィルム、膜16dを厚み2mmのアクリル板とし、他方の防音セル18Pの膜16cを厚み2mmのアクリル板、膜16dを厚み2mmのアクリル板とし、両防音セル18Pの膜背面空間を形成する枠14に1cm角の貫通開口66を設けて、両防音セル18Pの膜背面空間を連通させた構成(以下、「構成2」という)、ならびに、一方の防音セル18Bの膜16cを厚み75μmのPETフィルム、膜16dを厚み2mmのアクリル板とし、他方の防音セル18Pの膜16cを厚み2mmのアクリル板、膜16dを厚み2mmのアクリル板とし、両防音セル18Pの膜背面空間を形成する枠14に1cm角の貫通開口66を設けて、両防音セル18Pの膜背面空間を連通させた構成(以下、「構成3」という)それぞれについて、吸収率を図13に示す測定系で測定した結果を図66に示す。
また、他の例として、一方の防音セル18Pの膜16cを厚み50μmのPETフィルム、膜16dを厚み2mmのアクリル板とし、他方の防音セル18Pの膜16cを厚み2mmのアクリル板、膜16dを厚み2mmのアクリル板とし、両防音セル18Pの膜背面空間を形成する枠14に1cm角の貫通開口66を設けて、両防音セル18Pの膜背面空間を連通させた構成(以下、「構成2」という)、ならびに、一方の防音セル18Bの膜16cを厚み75μmのPETフィルム、膜16dを厚み2mmのアクリル板とし、他方の防音セル18Pの膜16cを厚み2mmのアクリル板、膜16dを厚み2mmのアクリル板とし、両防音セル18Pの膜背面空間を形成する枠14に1cm角の貫通開口66を設けて、両防音セル18Pの膜背面空間を連通させた構成(以下、「構成3」という)それぞれについて、吸収率を図13に示す測定系で測定した結果を図66に示す。
図66に示すように、膜厚みの異なる防音セルが膜背面空間を共有することにより、吸収ピークの周波数シフトが生じ、低周波数側における吸収ピーク周波数はより低周波側へとシフトするため好ましい。
また、両防音セル18Pの膜背面空間を連通する貫通開口66を形成しない構成とした以外は、それぞれ上記の構成1~構成3と同様の構成とした構成4~6について、吸収率を図13に示す測定系で測定した結果を図67に示す。
図67に示すように、両防音セル18Pの膜背面空間を連通する貫通開口66が無い場合には、各防音セル18Pの膜16の厚みを異ならせた構成4の吸収率の波形は、膜厚の異なる構成5及び構成6それぞれの吸収ピークが重なり合った状態となるのみで、周波数シフトは生じないことがわかる。
図67に示すように、両防音セル18Pの膜背面空間を連通する貫通開口66が無い場合には、各防音セル18Pの膜16の厚みを異ならせた構成4の吸収率の波形は、膜厚の異なる構成5及び構成6それぞれの吸収ピークが重なり合った状態となるのみで、周波数シフトは生じないことがわかる。
以下に、本発明の防音構造を持つ防音部材に組合せることができる構造部材の物性、又は特性について説明する。
[難燃性]
建材や機器内防音材として本発明の防音構造を持つ防音部材を使用する場合、難燃性であることが求められる。
そのため、膜は、難燃性のものが好ましい。膜としては、例えば難燃性のPETフィルムであるルミラー(登録商標)非ハロゲン難燃タイプZVシリーズ(東レ社製)、テイジンテトロン(登録商標)UF(帝人社製)、及び/又は難燃性ポリエステル系フィルムであるダイアラミー(登録商標)(三菱樹脂社製)等を用いればよい。
また、枠も、難燃性の材質であることが好ましく、アルミニウム等の金属、セミラックなどの無機材料、ガラス材料、難燃性ポリカーボネート(例えば、PCMUPY610(タキロン社製))、及び/又はや難燃性アクリル(例えば、アクリライト(登録商標)FR1(三菱レイヨン社製))などの難燃性プラスチックなどが挙げられる。
さらに、膜を枠に固定する方法も、難燃性接着剤(スリーボンド1537シリーズ(スリーボンド社製))、半田による接着方法、又は2つの枠で膜を挟み固定するなどの機械的な固定方法が好ましい。
[難燃性]
建材や機器内防音材として本発明の防音構造を持つ防音部材を使用する場合、難燃性であることが求められる。
そのため、膜は、難燃性のものが好ましい。膜としては、例えば難燃性のPETフィルムであるルミラー(登録商標)非ハロゲン難燃タイプZVシリーズ(東レ社製)、テイジンテトロン(登録商標)UF(帝人社製)、及び/又は難燃性ポリエステル系フィルムであるダイアラミー(登録商標)(三菱樹脂社製)等を用いればよい。
また、枠も、難燃性の材質であることが好ましく、アルミニウム等の金属、セミラックなどの無機材料、ガラス材料、難燃性ポリカーボネート(例えば、PCMUPY610(タキロン社製))、及び/又はや難燃性アクリル(例えば、アクリライト(登録商標)FR1(三菱レイヨン社製))などの難燃性プラスチックなどが挙げられる。
さらに、膜を枠に固定する方法も、難燃性接着剤(スリーボンド1537シリーズ(スリーボンド社製))、半田による接着方法、又は2つの枠で膜を挟み固定するなどの機械的な固定方法が好ましい。
[耐熱性]
環境温度変化にともなう、本発明の防音構造の構造部材の膨張伸縮により防音特性が変化してしまう懸念があるため、この構造部材を構成する材質は、耐熱性、特に低熱収縮のものが好ましい。
膜は、例えばテイジンテトロン(登録商標)フィルム SLA(帝人デュポン社製)、PENフィルム テオネックス(登録商標)(帝人デュポン社製)、及び/又はルミラー(登録商標)オフアニール低収縮タイプ(東レ社製)などを使用することが好ましい。また、一般にプラスチック材料よりも熱膨張率の小さいアルミニウム等の金属膜を用いることも好ましい。
また、枠は、ポリイミド樹脂(TECASINT4111(エンズィンガージャパン社製))、及び/又はガラス繊維強化樹脂(TECAPEEKGF30(エンズィンガージャパン社製))などの耐熱プラスチックを用いること、及び/又はアルミニウム等の金属、又はセラミック等の無機材料やガラス材料を用いることが好ましい。
さらに、接着剤も、耐熱接着剤(TB3732(スリーボンド社製)、超耐熱1成分収縮型RTVシリコーン接着シール材(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、及び/又は耐熱性無機接着剤アロンセラミック(登録商標)(東亜合成社製)など)を用いることが好ましい。これら接着を膜または枠に塗布する際は、1μm以下の厚みにすることで、膨張収縮量を低減できることが好ましい。
環境温度変化にともなう、本発明の防音構造の構造部材の膨張伸縮により防音特性が変化してしまう懸念があるため、この構造部材を構成する材質は、耐熱性、特に低熱収縮のものが好ましい。
膜は、例えばテイジンテトロン(登録商標)フィルム SLA(帝人デュポン社製)、PENフィルム テオネックス(登録商標)(帝人デュポン社製)、及び/又はルミラー(登録商標)オフアニール低収縮タイプ(東レ社製)などを使用することが好ましい。また、一般にプラスチック材料よりも熱膨張率の小さいアルミニウム等の金属膜を用いることも好ましい。
また、枠は、ポリイミド樹脂(TECASINT4111(エンズィンガージャパン社製))、及び/又はガラス繊維強化樹脂(TECAPEEKGF30(エンズィンガージャパン社製))などの耐熱プラスチックを用いること、及び/又はアルミニウム等の金属、又はセラミック等の無機材料やガラス材料を用いることが好ましい。
さらに、接着剤も、耐熱接着剤(TB3732(スリーボンド社製)、超耐熱1成分収縮型RTVシリコーン接着シール材(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、及び/又は耐熱性無機接着剤アロンセラミック(登録商標)(東亜合成社製)など)を用いることが好ましい。これら接着を膜または枠に塗布する際は、1μm以下の厚みにすることで、膨張収縮量を低減できることが好ましい。
[耐候・耐光性]
屋外や光が差す場所に本発明の防音構造を持つ防音部材が配置された場合、構造部材の耐侯性が問題となる。
そのため、膜は、特殊ポリオレフィンフィルム(アートプライ(登録商標)(三菱樹脂社製))、アクリル樹脂フィルム(アクリプレン(三菱レイヨン社製))、及び/又はスコッチカルフィルム(商標)(3M社製)等の耐侯性フィルムを用いることが好ましい。
また、枠材は、ポリ塩化ビニル、ポリメチルメタクリル(アクリル)などの耐侯性が高いプラスチックやアルミニウム等の金属、セラミック等の無機材料、及び/又はガラス材料を用いることが好ましい。
さらに、接着剤も、エポキシ樹脂系のもの、及び/又はドライフレックス(リペアケアインターナショナル社製)などの耐侯性の高い接着剤を用いることが好ましい。
耐湿性についても、高い耐湿性を有する膜、枠、及び接着剤を適宜選択することが好ましい。吸水性、耐薬品性に関しても適切な膜、枠、及び接着剤を適宜選択することが好ましい。
屋外や光が差す場所に本発明の防音構造を持つ防音部材が配置された場合、構造部材の耐侯性が問題となる。
そのため、膜は、特殊ポリオレフィンフィルム(アートプライ(登録商標)(三菱樹脂社製))、アクリル樹脂フィルム(アクリプレン(三菱レイヨン社製))、及び/又はスコッチカルフィルム(商標)(3M社製)等の耐侯性フィルムを用いることが好ましい。
また、枠材は、ポリ塩化ビニル、ポリメチルメタクリル(アクリル)などの耐侯性が高いプラスチックやアルミニウム等の金属、セラミック等の無機材料、及び/又はガラス材料を用いることが好ましい。
さらに、接着剤も、エポキシ樹脂系のもの、及び/又はドライフレックス(リペアケアインターナショナル社製)などの耐侯性の高い接着剤を用いることが好ましい。
耐湿性についても、高い耐湿性を有する膜、枠、及び接着剤を適宜選択することが好ましい。吸水性、耐薬品性に関しても適切な膜、枠、及び接着剤を適宜選択することが好ましい。
[ゴミ]
長期間の使用においては、膜表面にゴミが付着し、本発明の防音構造の防音特性に影響を与える可能性がある。そのため、ゴミの付着を防ぐ、または付着したゴミ取り除くことが好ましい。
ゴミを防ぐ方法として、ゴミが付着し難い材質の膜を用いることが好ましい。例えば、導電性フィルム(フレクリア(登録商標)(TDK社製)、及び/又はNCF(長岡産業社製))などを用いることで、膜が帯電しないことで、帯電によるゴミの付着を防ぐことができる。また、フッ素樹脂フィルム(ダイノックフィルム(商標)(3M社製))、及び/又は親水性フィルム(ミラクリーン(ライフガード社製)、RIVEX(リケンテクノス社製)、及び/又はSH2CLHF(3M社製))を用いることでも、ゴミの付着を抑制できる。さらに、光触媒フィルム(ラクリーン(きもと社製))を用いることでも、膜の汚れを防ぐことができる。これらの導電性、親水性、及び/又は光触媒性を有するスプレー、及び/又はフッ素化合物を含むスプレーを膜に塗布することでも同様の効果を得ることができる。
長期間の使用においては、膜表面にゴミが付着し、本発明の防音構造の防音特性に影響を与える可能性がある。そのため、ゴミの付着を防ぐ、または付着したゴミ取り除くことが好ましい。
ゴミを防ぐ方法として、ゴミが付着し難い材質の膜を用いることが好ましい。例えば、導電性フィルム(フレクリア(登録商標)(TDK社製)、及び/又はNCF(長岡産業社製))などを用いることで、膜が帯電しないことで、帯電によるゴミの付着を防ぐことができる。また、フッ素樹脂フィルム(ダイノックフィルム(商標)(3M社製))、及び/又は親水性フィルム(ミラクリーン(ライフガード社製)、RIVEX(リケンテクノス社製)、及び/又はSH2CLHF(3M社製))を用いることでも、ゴミの付着を抑制できる。さらに、光触媒フィルム(ラクリーン(きもと社製))を用いることでも、膜の汚れを防ぐことができる。これらの導電性、親水性、及び/又は光触媒性を有するスプレー、及び/又はフッ素化合物を含むスプレーを膜に塗布することでも同様の効果を得ることができる。
上述したような特殊な膜を使用する以外に、膜上にカバーを設けることでも汚れを防ぐことが可能である。カバーとしては、薄い膜材料(サランラップ(登録商標)など)、ゴミを通さない大きさの網目を有するメッシュ、不織布、ウレタン、エアロゲル、ポーラス状のフィルム等を用いることができる。
また、図54に示すような膜16に通気孔となる貫通孔42を有する防音構造10Kの場合には、図68、及び図69にそれぞれ示す防音部材70a、及び70bのように、膜16上に設けられたカバー72にも孔73を空けて、膜16上に直接風やゴミが当たらないように、配置することが好ましい。
付着したゴミを取り除く方法としては、膜の共鳴周波数の音を放射し、膜を強く振動させることで、ゴミを取り除くことができる。また、ブロワー、又はふき取りを用いても同様の効果を得ることができる。
また、図54に示すような膜16に通気孔となる貫通孔42を有する防音構造10Kの場合には、図68、及び図69にそれぞれ示す防音部材70a、及び70bのように、膜16上に設けられたカバー72にも孔73を空けて、膜16上に直接風やゴミが当たらないように、配置することが好ましい。
付着したゴミを取り除く方法としては、膜の共鳴周波数の音を放射し、膜を強く振動させることで、ゴミを取り除くことができる。また、ブロワー、又はふき取りを用いても同様の効果を得ることができる。
[風圧]
強い風が膜に当たることで、膜が押された状態となり、共鳴周波数が変化する可能性がある。そのため、膜上に、不織布、ウレタン、及び/又はフィルムなどでカバーすることで、風の影響を抑制することができる。図54に示すような膜16に貫通孔42を有する防音構造10Kの場合には、上記のゴミの場合と同様に、図68、及び図69にそれぞれ示す防音部材70a、及び70bのように、膜16上に設けられたカバー72にも孔73を空けて、膜16上に直接風が当たらないように、配置することが好ましい。
また、膜が音波に対して傾斜している本発明の防音構造を用いる防音部材70cにおいては、膜面が音の進行方向(ベクトル)に対して平行ではない状態となるので、風が膜を抑え、振動に影響を与える恐れがあることから、直接風Wが膜16に当たるのを防ぐ風防止枠74を膜16の上部に設けることが好ましい。
さらに、本発明の防音構造を用いる防音部材70dでは、防音部材側面で風Wをさえぎることによる乱流の発生による影響(膜への風圧、風切り音)を抑制するため、防音部材側面に風Wを整流する整流板等の整流機構75を設けることが好ましい。
強い風が膜に当たることで、膜が押された状態となり、共鳴周波数が変化する可能性がある。そのため、膜上に、不織布、ウレタン、及び/又はフィルムなどでカバーすることで、風の影響を抑制することができる。図54に示すような膜16に貫通孔42を有する防音構造10Kの場合には、上記のゴミの場合と同様に、図68、及び図69にそれぞれ示す防音部材70a、及び70bのように、膜16上に設けられたカバー72にも孔73を空けて、膜16上に直接風が当たらないように、配置することが好ましい。
また、膜が音波に対して傾斜している本発明の防音構造を用いる防音部材70cにおいては、膜面が音の進行方向(ベクトル)に対して平行ではない状態となるので、風が膜を抑え、振動に影響を与える恐れがあることから、直接風Wが膜16に当たるのを防ぐ風防止枠74を膜16の上部に設けることが好ましい。
さらに、本発明の防音構造を用いる防音部材70dでは、防音部材側面で風Wをさえぎることによる乱流の発生による影響(膜への風圧、風切り音)を抑制するため、防音部材側面に風Wを整流する整流板等の整流機構75を設けることが好ましい。
[ユニットセルの組合せ]
図1、4、6、8、10、42、43、46、48、49、52、56、58、及び64に示す本発明の防音構造10、10A、10B、10C、10D、10E、10F、10G、10H、10J、10L、50、及び60は、枠部材15、又は円板状防音枠部材19等の複数の枠14が連続した1つの枠部材によって構成されているが、本発明はこれに限定されず、1つの枠とそれに取り付けられた1枚の膜とを持つ、又はこの1つの枠と1枚の膜と膜に形成された貫通孔を持つ単位ユニットセルとしての防音セルであっても良い。即ち、本発明の防音構造を有する防音部材は、必ずしも1つの連続した枠体によって構成されている必要はなく、単位ユニットセルとして枠構造とそれに取り付けられた膜構造とを持つ、又は1つの枠構造と1つの膜構造と膜構造に形成された孔構造を持つ防音セルであっても良く、このような単位ユニットセルを独立に使用する、もしくは複数の単位ユニットセルを連結させて使用することもできる。
複数の単位ユニットセルの連結の方法としては、後述するが、枠体部にマジックテープ(登録商標)、磁石、ボタン、吸盤、及び/又は凹凸部を取り付けて組み合わせてもよいし、テープなどを用いて複数の単位ユニットセルを連結させることもできる。
図1、4、6、8、10、42、43、46、48、49、52、56、58、及び64に示す本発明の防音構造10、10A、10B、10C、10D、10E、10F、10G、10H、10J、10L、50、及び60は、枠部材15、又は円板状防音枠部材19等の複数の枠14が連続した1つの枠部材によって構成されているが、本発明はこれに限定されず、1つの枠とそれに取り付けられた1枚の膜とを持つ、又はこの1つの枠と1枚の膜と膜に形成された貫通孔を持つ単位ユニットセルとしての防音セルであっても良い。即ち、本発明の防音構造を有する防音部材は、必ずしも1つの連続した枠体によって構成されている必要はなく、単位ユニットセルとして枠構造とそれに取り付けられた膜構造とを持つ、又は1つの枠構造と1つの膜構造と膜構造に形成された孔構造を持つ防音セルであっても良く、このような単位ユニットセルを独立に使用する、もしくは複数の単位ユニットセルを連結させて使用することもできる。
複数の単位ユニットセルの連結の方法としては、後述するが、枠体部にマジックテープ(登録商標)、磁石、ボタン、吸盤、及び/又は凹凸部を取り付けて組み合わせてもよいし、テープなどを用いて複数の単位ユニットセルを連結させることもできる。
[配置]
本発明の防音構造を有する防音部材を壁等に簡易に取り付け、又はり取外しできるようにするため、防音部材に磁性体、マジックテープ(登録商標)、ボタン、吸盤などからなる脱着機構が取り付けられていることが好ましい。例えば、図72に示すように、防音部材(防音セルユニット)70eの枠部材の外側の枠14の底面に脱着機構76を取付けて置き、防音部材70eに取り付けられた脱着機構76を開口部材22の側面に取付けて、防音部材70eを壁78に取り付けるようにしても良いし、図73に示すように、防音部材70eに取り付けられた脱着機構76を開口部材22の側面から取り外して、防音部材70eを開口部材22の側面から離脱させるようにしても良い。
本発明の防音構造を有する防音部材を壁等に簡易に取り付け、又はり取外しできるようにするため、防音部材に磁性体、マジックテープ(登録商標)、ボタン、吸盤などからなる脱着機構が取り付けられていることが好ましい。例えば、図72に示すように、防音部材(防音セルユニット)70eの枠部材の外側の枠14の底面に脱着機構76を取付けて置き、防音部材70eに取り付けられた脱着機構76を開口部材22の側面に取付けて、防音部材70eを壁78に取り付けるようにしても良いし、図73に示すように、防音部材70eに取り付けられた脱着機構76を開口部材22の側面から取り外して、防音部材70eを開口部材22の側面から離脱させるようにしても良い。
また、共鳴周波数の異なる各防音セル、例えば図74に示すように、防音セル71a、71b、及び71cをそれぞれ組合せて、防音部材70fの防音特性を調整する際に、容易に防音セル71a、71b、及び71cを組み合わせられるように、各防音セル71a、71b、及び71cに磁性体、マジックテープ(登録商標)、ボタン、吸盤などの脱着機構80が取り付けられていることが好ましい。
また、防音セルに凹凸部を設け、例えば図75に示すように、防音セル71dに凸部82aを設け、かつ防音セル71eに凹部82bを設け、それらの凸部82aと凹部82bとをかみ合わせで防音セル71dと防音セル71eとの脱着を行ってもよい。複数の防音セルを組み合わせることができれば、1つの防音セルに凸部及び凹部の両方を設けても良い。
更に、上述した図74に示す脱着機構80と、図75に示す凹凸部、凸部82a及び凹部82bとを組み合わせて防音セルの着脱を行うようにしても良い。
また、防音セルに凹凸部を設け、例えば図75に示すように、防音セル71dに凸部82aを設け、かつ防音セル71eに凹部82bを設け、それらの凸部82aと凹部82bとをかみ合わせで防音セル71dと防音セル71eとの脱着を行ってもよい。複数の防音セルを組み合わせることができれば、1つの防音セルに凸部及び凹部の両方を設けても良い。
更に、上述した図74に示す脱着機構80と、図75に示す凹凸部、凸部82a及び凹部82bとを組み合わせて防音セルの着脱を行うようにしても良い。
[枠機械強度]
本発明の防音構造を有する防音部材のサイズが大きくなるにつれ、枠が振動しやすくなり、膜振動に対し固定端としての機能が低下する。そのため、枠の厚みを増して枠剛性を高めることが好ましい。しかし、枠の厚みを増すと防音部材の質量が増し、軽量である本防音部材の利点が低下していく。
そのため、高い剛性を維持したまま質量の増加を低減するために、枠に孔や溝を形成することが好ましい。例えば、図76に示す防音セル84の枠86に対して、図77に側面図として示すようにトラス構造を用いることで、又は図78に示す防音セル88の枠90dに対して、図79にA-A線矢視図として示すようにラーメン構造を用いることで、高い剛性かつ軽量を両立することができる。
本発明の防音構造を有する防音部材のサイズが大きくなるにつれ、枠が振動しやすくなり、膜振動に対し固定端としての機能が低下する。そのため、枠の厚みを増して枠剛性を高めることが好ましい。しかし、枠の厚みを増すと防音部材の質量が増し、軽量である本防音部材の利点が低下していく。
そのため、高い剛性を維持したまま質量の増加を低減するために、枠に孔や溝を形成することが好ましい。例えば、図76に示す防音セル84の枠86に対して、図77に側面図として示すようにトラス構造を用いることで、又は図78に示す防音セル88の枠90dに対して、図79にA-A線矢視図として示すようにラーメン構造を用いることで、高い剛性かつ軽量を両立することができる。
また、例えば、図80~図82に示すように、面内の枠厚みを変える、又は組合せることで、高剛性を確保し、軽量化を図ることもできる。図80に示す本発明の防音構造を有する防音部材92のように、図80に示す防音部材92をB-B線で切断した断面模式図である図81に示すように、36個の防音セル94の複数の枠96からなる枠体98の両外側、及び中央の枠材98aを、その他の部分の枠材98bより厚みを厚くする、図示例では2倍以上厚くする。B-B線と直交するC-C線で切断した断面模式図である図82に示すように、直交する方向においても、同様に、枠体98の両外側、及び中央の枠材98aを、その他の部分の枠材98bより厚みを厚くする、図示例では2倍以上厚くする。
こうすることにより、高剛性化と軽量化を両立することができる。
なお、上述した図68~82に示す各防音セルの膜16には、貫通孔が穿孔されていないが、本発明はこれに限定されず、図54に示す実施例の防音セルユニット20Kのように、貫通孔42を有していても良いのは勿論である。
こうすることにより、高剛性化と軽量化を両立することができる。
なお、上述した図68~82に示す各防音セルの膜16には、貫通孔が穿孔されていないが、本発明はこれに限定されず、図54に示す実施例の防音セルユニット20Kのように、貫通孔42を有していても良いのは勿論である。
本発明の防音構造は、以下のような防音部材として使用することができる。
例えば、本発明の防音構造を持つ防音部材としては、
建材用防音部材:建材用として使用する防音部材、
空気調和設備用防音部材:換気口、空調用ダクトなどに設置し、外部からの騒音を防ぐ防音部材、
外部開口部用防音部材:部屋の窓に設置し、室内又は室外からの騒音を防ぐ防音部材、
天井用防音部材:室内の天井に設置され、室内の音響を制御する防音部材、
床用防音部材:床に設置され、室内の音響を制御する防音部材、
内部開口部用防音部材:室内のドア、ふすまの部分に設置され、各部屋からの騒音を防ぐ防音部材、
トイレ用防音部材:トイレ内またはドア(室内外)部に設置、トイレからの騒音を防ぐ防音部材、
バルコニー用防音部材:バルコニーに設置し、自分のバルコニーまたは隣のバルコニーからの騒音を防ぐ防音部材、
室内調音用部材:部屋の音響を制御するための防音部材、
簡易防音室部材:簡易に組み立て可能で、移動も簡易な防音部材、
ペット用防音室部材:ペットの部屋を囲い、騒音を防ぐ防音部材、
アミューズメント施設:ゲームセンター、スポーツセンター、コンサートホール、映画館に設置される防音部材、
工事現場用仮囲い用の防音部材:工事現場を多い周囲に騒音の漏れを防ぐ防音部材、
トンネル用の防音部材:トンネル内に設置し、トンネル内部及び外部に漏れる騒音を防ぐ防音部材、等を挙げることができる。
例えば、本発明の防音構造を持つ防音部材としては、
建材用防音部材:建材用として使用する防音部材、
空気調和設備用防音部材:換気口、空調用ダクトなどに設置し、外部からの騒音を防ぐ防音部材、
外部開口部用防音部材:部屋の窓に設置し、室内又は室外からの騒音を防ぐ防音部材、
天井用防音部材:室内の天井に設置され、室内の音響を制御する防音部材、
床用防音部材:床に設置され、室内の音響を制御する防音部材、
内部開口部用防音部材:室内のドア、ふすまの部分に設置され、各部屋からの騒音を防ぐ防音部材、
トイレ用防音部材:トイレ内またはドア(室内外)部に設置、トイレからの騒音を防ぐ防音部材、
バルコニー用防音部材:バルコニーに設置し、自分のバルコニーまたは隣のバルコニーからの騒音を防ぐ防音部材、
室内調音用部材:部屋の音響を制御するための防音部材、
簡易防音室部材:簡易に組み立て可能で、移動も簡易な防音部材、
ペット用防音室部材:ペットの部屋を囲い、騒音を防ぐ防音部材、
アミューズメント施設:ゲームセンター、スポーツセンター、コンサートホール、映画館に設置される防音部材、
工事現場用仮囲い用の防音部材:工事現場を多い周囲に騒音の漏れを防ぐ防音部材、
トンネル用の防音部材:トンネル内に設置し、トンネル内部及び外部に漏れる騒音を防ぐ防音部材、等を挙げることができる。
以上、本発明の防音構造についての種々の実施形態及び実施例を挙げて詳細に説明したが、本発明は、これらの実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。
10、10A、10B、10C、10D、10E、10F、10G、10H、10I、10J、10K、10L、50、60 防音構造
12 孔部
14、86、90、96 枠
15 枠部材
16、16a、16b、16c、16d 膜
17、17a、17b シート状膜体
18、18A、18B、18C、18D、18E、18F、18G、18H、18I、18J,18K、18L、71a、71b、71c、71d、71e、84、88、94 防音セル
19 円板状防音枠部材
20、20C、20D、20H、20I、20J、20K 防音セルユニット
22 管体
22a、56a、64a 開口
22b 開口断面
24 ガラリ
25a、25b 取付部
26 傾斜部
27 円板
32 マイクロフォン
34 スピーカ
36 函体
38 壁
40 錘
42 貫通孔
44 円環状支持枠体
46 線状支持部材
52 住宅
54 壁
56 開口部材
58 防音ルーバ
61 空間
62 防音パーティション
64 枠体(開口断面)
66 貫通開口
70a、70b、70c、70d、70e、70f、92 防音部材
72 カバー
73 孔
74 風防止枠
75 整流機構
76、80 脱着機構
82a 凸部
82b 凹部
98 枠体
98a、98b 枠材
12 孔部
14、86、90、96 枠
15 枠部材
16、16a、16b、16c、16d 膜
17、17a、17b シート状膜体
18、18A、18B、18C、18D、18E、18F、18G、18H、18I、18J,18K、18L、71a、71b、71c、71d、71e、84、88、94 防音セル
19 円板状防音枠部材
20、20C、20D、20H、20I、20J、20K 防音セルユニット
22 管体
22a、56a、64a 開口
22b 開口断面
24 ガラリ
25a、25b 取付部
26 傾斜部
27 円板
32 マイクロフォン
34 スピーカ
36 函体
38 壁
40 錘
42 貫通孔
44 円環状支持枠体
46 線状支持部材
52 住宅
54 壁
56 開口部材
58 防音ルーバ
61 空間
62 防音パーティション
64 枠体(開口断面)
66 貫通開口
70a、70b、70c、70d、70e、70f、92 防音部材
72 カバー
73 孔
74 風防止枠
75 整流機構
76、80 脱着機構
82a 凸部
82b 凹部
98 枠体
98a、98b 枠材
Claims (24)
- 孔部を持つ枠と、前記孔部を覆うように前記枠に固定された膜と、を備える防音セルを少なくとも1つ有する防音構造であって、
開口を有する開口部材に、前記開口部材の開口断面に対して前記膜の膜面を傾け、前記開口部材に前記気体が通過する通気孔となる領域を設けた状態で前記防音セルを配置したことを特徴とする防音構造。 - 前記防音セルは、前記開口部材の開口端から開口端補正距離以内に配置されている請求項1に記載の防音構造。
- 前記防音セルは、膜の第1固有振動周波数の波長よりも小さい請求項1又は2に記載の防音構造。
- 前記第1固有振動周波数は、10Hz~100000Hzの範囲内に含まれる請求項3に記載の防音構造。
- 前記防音セルは、前記防音セルの第1固有振動周波数の音波が前記開口部材に形成する音圧が高い位置に配置されている請求項1~4のいずれかに記載の防音構造。
- 前記防音セルは、前記防音セルの第1固有振動周波数の音波が前記開口部材に形成する定在波の音圧分布の腹の位置に配置されている請求項1~5のいずれかに記載の防音構造。
- 前記防音構造は、複数の前記防音セルを有する請求項1~6のいずれかに記載の防音構造。
- 前記複数の防音セルの中には、第1固有振動周波数が異なる2種以上の防音セルが存在し、
前記第1固有振動周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する前記第1固有振動周波数の音波が前記開口部材に形成する音圧が高い位置に配置されている請求項7に記載の防音構造。 - 前記複数の防音セルの中には、第1固有振動周波数が異なる2種以上の防音セルが存在し、
前記第1固有振動周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する前記第1固有振動周波数の音波が前記開口部材に形成する定在波の音圧分布の腹の位置に配置されている請求項7又は8に記載の防音構造。 - 前記複数の防音セルの中には、同一の第1固有振動周波数を有する2以上の防音セルが存在し、
前記2以上の防音セルは、前記開口部材の内周壁の同一円周上に配置されている請求項7に記載の防音構造。 - 前記複数の防音セルの中には、さらに、前記2以上の防音セルの同一の前記第1固有振動周波数と、異なる前記第1固有振動周波数を有する1種以上の防音セルが存在し、
異なる前記第1固有振動周波数を有する1種以上の防音セルは、同一の前記第1固有振動周波数を有する2以上の防音セルの中の1つの防音セルと、前記開口部材の中心軸方向に直列に配置されている請求項10に記載の防音構造。 - 前記複数の防音セルの中には、同一の第1固有振動周波数を有する2以上の防音セルが存在し、
前記2以上の防音セルは、前記開口部材の中心軸方向に直列に配置されている請求項7~9いずれかに記載の防音構造。 - 前記複数の防音セルの中には、さらに、前記2以上の防音セルの同一の前記第1固有振動周波数と、異なる前記第1固有振動周波数を有する1種以上の防音セルが存在し、
前記第1固有振動周波数が異なる1種以上の防音セルは、前記開口部材の中心軸方向に直列に配置されている請求項12に記載の防音構造。 - 前記孔部は、貫通しており、前記孔部の両端面に前記膜が固定されている請求項1~13いずれか1項に記載の防音構造。
- 前記孔部は、貫通しており、前記孔部の両端面に前記膜が固定され、
前記両面膜のそれぞれの第1固有振動周波数が異なることを特徴とする請求項1~14のいずれかに記載の防音構造。 - 互いに隣接する前記防音セルの前記膜の背面空間を連通する貫通孔を有する請求項1~15のいずれか1項に記載の防音構造。
- 前記膜に、錘が配置されている請求項1~16いずれか1項に記載の防音構造。
- 前記膜は、貫通孔を有する請求項1~17いずれか1項に記載の防音構造。
- 更に、前記枠の前記孔部内に吸音材が配置されている請求項1~18いずれか1項に記載の防音構造。
- 更に、前記防音セルの前記膜面の前記開口断面に対する傾斜角度を調整可能とする機構を設けた請求項1~19のいずれか1項に記載の防音構造。
- 前記防音セルは、前記開口部材に対し取外し可能な部材である請求項1~20のいずれか1項に記載の防音構造。
- 前記開口部材は、筒状体であり、該筒状体内に前記防音セルが配置される請求項1~21いずれか1項に記載の防音構造。
- 請求項1~21いずれか1項に記載の防音構造を有するルーバ。
- 請求項1~21いずれか1項に記載の防音構造を有する防音壁。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017535587A JP6574840B2 (ja) | 2015-08-20 | 2016-08-22 | 防音構造、ルーバ及び防音壁 |
EP16837197.9A EP3340236B1 (en) | 2015-08-20 | 2016-08-22 | Soundproof structure, louver, and soundproof wall |
CN201680040778.2A CN107851431B (zh) | 2015-08-20 | 2016-08-22 | 隔音结构、百叶窗以及隔音壁 |
US15/848,680 US10971129B2 (en) | 2015-08-20 | 2017-12-20 | Soundproof structure, louver, and soundproof wall |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015163227 | 2015-08-20 | ||
JP2015-163227 | 2015-08-20 | ||
JP2016-012625 | 2016-01-26 | ||
JP2016012625 | 2016-01-26 | ||
JP2016090743 | 2016-04-28 | ||
JP2016-090743 | 2016-04-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/848,680 Continuation US10971129B2 (en) | 2015-08-20 | 2017-12-20 | Soundproof structure, louver, and soundproof wall |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017030208A1 true WO2017030208A1 (ja) | 2017-02-23 |
Family
ID=58052070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/074427 WO2017030208A1 (ja) | 2015-08-20 | 2016-08-22 | 防音構造、ルーバ及び防音壁 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10971129B2 (ja) |
EP (1) | EP3340236B1 (ja) |
JP (1) | JP6574840B2 (ja) |
CN (1) | CN107851431B (ja) |
WO (1) | WO2017030208A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181143A1 (ja) | 2017-03-28 | 2018-10-04 | 富士フイルム株式会社 | 防音構造 |
JP2019217065A (ja) * | 2018-06-21 | 2019-12-26 | 学校法人 関西大学 | 微小共鳴体及び微小共鳴装置 |
JP2020064238A (ja) * | 2018-10-19 | 2020-04-23 | 富士フイルム株式会社 | 音源収容体 |
CN111164671A (zh) * | 2017-10-03 | 2020-05-15 | 富士胶片株式会社 | 消声管状结构体 |
JPWO2019082300A1 (ja) * | 2017-10-25 | 2020-10-22 | 三菱電機株式会社 | 冷凍サイクル装置用ユニット、冷凍サイクル装置及び電気機器 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018147105A1 (ja) * | 2017-02-08 | 2018-08-16 | 富士フイルム株式会社 | 防音構造体および開口構造体 |
WO2019203089A1 (ja) * | 2018-04-18 | 2019-10-24 | 富士フイルム株式会社 | 防音構造体 |
EP3869498B1 (en) * | 2018-10-19 | 2024-10-23 | FUJIFILM Corporation | Acoustic system |
JP7342615B2 (ja) * | 2019-10-28 | 2023-09-12 | マツダ株式会社 | 車両の消音構造 |
US11545128B2 (en) * | 2019-11-11 | 2023-01-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Acoustic structure for sound absorption and improved sound transmission loss |
US11776522B2 (en) * | 2020-11-12 | 2023-10-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Sound isolating wall assembly having at least one acoustic scatterer |
US11776521B2 (en) * | 2020-12-11 | 2023-10-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Sound absorbing structure having one or more acoustic scatterers attached to or forming a vehicle structure |
CN113421566B (zh) * | 2021-08-20 | 2021-11-12 | 航天科工通信技术研究院有限责任公司 | 基于风噪用便携式语音减噪装置 |
CN115798447B (zh) * | 2023-01-04 | 2023-06-23 | 山东世卓泽坤节能环保科技有限公司 | 基于智能吸隔声板的噪音监管系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63153592A (ja) * | 1986-04-24 | 1988-06-25 | 松下電工株式会社 | 消音装置 |
JP2000088331A (ja) * | 1998-09-18 | 2000-03-31 | Suzuki Motor Corp | ダクトの構造 |
JP2000257789A (ja) * | 1999-03-05 | 2000-09-19 | Taikisha Ltd | 消音装置 |
JP2005250474A (ja) * | 2004-03-05 | 2005-09-15 | Rsm Technologies Ltd | 音響減衰構造 |
JP2008025473A (ja) * | 2006-07-21 | 2008-02-07 | Denso Corp | 騒音低減装置 |
JP2008151070A (ja) * | 2006-12-19 | 2008-07-03 | Inoac Corp | 車両用ダクトの製造方法 |
JP2010069976A (ja) * | 2008-09-17 | 2010-04-02 | Inoac Corp | 衝撃吸収吸音材 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2352470A1 (de) * | 1973-10-19 | 1975-04-30 | Schmidt Hans Guenter | Schalldaemmkulisse fuer lueftungs- und klimatechnische systeme |
DE3935350A1 (de) * | 1989-10-24 | 1991-04-25 | Ulrich Grajecki Gmbh & Co Dipl | Lueftungsoeffnung in schalldaemmender ausfuehrung |
FI95747B (fi) * | 1991-01-17 | 1995-11-30 | Valmet Paper Machinery Inc | Matalien taajuuksien äänenvaimennin paperitehtaiden ilmakanaviin |
JPH0850489A (ja) * | 1994-08-05 | 1996-02-20 | Nissan Motor Co Ltd | 吸音構造体 |
GB0016149D0 (en) * | 2000-06-30 | 2000-08-23 | Short Brothers Plc | A noise attenuation panel |
JP2002123259A (ja) * | 2000-10-13 | 2002-04-26 | Nippon Sheet Glass Environment Amenity Co Ltd | 防音パネル |
WO2003076736A1 (en) * | 2002-03-14 | 2003-09-18 | Wienerberger Bricks N.V. | Acoustic construction element |
CA2578532C (en) | 2004-05-07 | 2014-02-18 | Silenceair International Pty Limited | A ventilation device and frame system |
CN1981098B (zh) * | 2004-05-07 | 2010-12-01 | 赛伦斯艾尔国际公司 | 通风装置和框架系统 |
JPWO2006123505A1 (ja) * | 2005-05-19 | 2008-12-25 | 共和産業株式会社 | 車両用サンバイザ |
JP4832245B2 (ja) | 2006-10-13 | 2011-12-07 | リケンテクノス株式会社 | 吸音体 |
JP5056385B2 (ja) | 2007-12-05 | 2012-10-24 | ヤマハ株式会社 | 吸音体 |
KR101328226B1 (ko) * | 2008-10-22 | 2013-11-14 | 엘지전자 주식회사 | 밀폐형 압축기의 흡입머플러 |
US8813708B2 (en) * | 2009-12-10 | 2014-08-26 | Mann+Hummel Gmbh | Air pillow flow guidance and acoustic countermeasure system for an air intake tract |
CN101812957B (zh) * | 2010-02-01 | 2013-02-06 | 郭德炳 | 隔音通风窗 |
US9076429B2 (en) * | 2011-01-31 | 2015-07-07 | Wayne State University | Acoustic metamaterials |
CN103975385B (zh) * | 2011-10-06 | 2018-04-10 | Hrl实验室有限责任公司 | 高带宽抗共振膜 |
JP2013088794A (ja) * | 2011-10-24 | 2013-05-13 | Inoac Corp | 制音構造体 |
US8869933B1 (en) * | 2013-07-29 | 2014-10-28 | The Boeing Company | Acoustic barrier support structure |
FR3009122B1 (fr) * | 2013-07-29 | 2017-12-15 | Boeing Co | Barriere et absorbeur acoustiques hybrides |
CN106687674A (zh) * | 2014-09-03 | 2017-05-17 | 通用电气公司 | 用于涡轮系统的声处理组件 |
JP6450003B2 (ja) * | 2015-06-22 | 2019-01-09 | 富士フイルム株式会社 | 防音構造 |
WO2017033798A1 (ja) * | 2015-08-21 | 2017-03-02 | 富士フイルム株式会社 | 防音構造 |
EP3438967B1 (en) * | 2016-03-29 | 2021-04-21 | FUJIFILM Corporation | Soundproofing structure, opening structure, cylindrical structure, window member, and partition member |
US10119269B2 (en) * | 2016-07-11 | 2018-11-06 | Jayvic, Inc. | Variable acoustic assembly and method of use |
JPWO2018147129A1 (ja) * | 2017-02-10 | 2019-11-07 | 富士フイルム株式会社 | 防音部材 |
-
2016
- 2016-08-22 WO PCT/JP2016/074427 patent/WO2017030208A1/ja active Application Filing
- 2016-08-22 JP JP2017535587A patent/JP6574840B2/ja active Active
- 2016-08-22 CN CN201680040778.2A patent/CN107851431B/zh active Active
- 2016-08-22 EP EP16837197.9A patent/EP3340236B1/en active Active
-
2017
- 2017-12-20 US US15/848,680 patent/US10971129B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63153592A (ja) * | 1986-04-24 | 1988-06-25 | 松下電工株式会社 | 消音装置 |
JP2000088331A (ja) * | 1998-09-18 | 2000-03-31 | Suzuki Motor Corp | ダクトの構造 |
JP2000257789A (ja) * | 1999-03-05 | 2000-09-19 | Taikisha Ltd | 消音装置 |
JP2005250474A (ja) * | 2004-03-05 | 2005-09-15 | Rsm Technologies Ltd | 音響減衰構造 |
JP2008025473A (ja) * | 2006-07-21 | 2008-02-07 | Denso Corp | 騒音低減装置 |
JP2008151070A (ja) * | 2006-12-19 | 2008-07-03 | Inoac Corp | 車両用ダクトの製造方法 |
JP2010069976A (ja) * | 2008-09-17 | 2010-04-02 | Inoac Corp | 衝撃吸収吸音材 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181143A1 (ja) | 2017-03-28 | 2018-10-04 | 富士フイルム株式会社 | 防音構造 |
CN110249383A (zh) * | 2017-03-28 | 2019-09-17 | 富士胶片株式会社 | 隔音结构 |
JPWO2018181143A1 (ja) * | 2017-03-28 | 2019-11-14 | 富士フイルム株式会社 | 防音構造 |
EP3605526A4 (en) * | 2017-03-28 | 2020-04-08 | FUJIFILM Corporation | SOUND INSULATING STRUCTURE |
CN111164671A (zh) * | 2017-10-03 | 2020-05-15 | 富士胶片株式会社 | 消声管状结构体 |
JPWO2019069908A1 (ja) * | 2017-10-03 | 2020-10-22 | 富士フイルム株式会社 | 消音管状構造体 |
US11536411B2 (en) | 2017-10-03 | 2022-12-27 | Fujifilm Corporation | Silencing tubular structure body |
CN111164671B (zh) * | 2017-10-03 | 2023-09-01 | 富士胶片株式会社 | 消声管状结构体 |
JPWO2019082300A1 (ja) * | 2017-10-25 | 2020-10-22 | 三菱電機株式会社 | 冷凍サイクル装置用ユニット、冷凍サイクル装置及び電気機器 |
JP2019217065A (ja) * | 2018-06-21 | 2019-12-26 | 学校法人 関西大学 | 微小共鳴体及び微小共鳴装置 |
JP2020064238A (ja) * | 2018-10-19 | 2020-04-23 | 富士フイルム株式会社 | 音源収容体 |
JP7092635B2 (ja) | 2018-10-19 | 2022-06-28 | 富士フイルム株式会社 | 音源収容体 |
Also Published As
Publication number | Publication date |
---|---|
EP3340236A4 (en) | 2018-11-14 |
US20180114517A1 (en) | 2018-04-26 |
JP6574840B2 (ja) | 2019-09-18 |
EP3340236B1 (en) | 2020-04-08 |
CN107851431A (zh) | 2018-03-27 |
EP3340236A1 (en) | 2018-06-27 |
JPWO2017030208A1 (ja) | 2018-05-31 |
US10971129B2 (en) | 2021-04-06 |
CN107851431B (zh) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6574840B2 (ja) | 防音構造、ルーバ及び防音壁 | |
JP6570633B2 (ja) | 防音構造、及び防音構造の製造方法 | |
JP6434619B2 (ja) | 防音構造、ルーバーおよびパーティション | |
JP6450003B2 (ja) | 防音構造 | |
US10923095B2 (en) | Soundproof structure | |
US10923094B2 (en) | Soundproof structure | |
JP6621537B2 (ja) | 防音構造体 | |
US10902835B2 (en) | Soundproof structure | |
JP6592620B2 (ja) | 防音構造体および開口構造体 | |
WO2019181614A1 (ja) | 防音セル、及びこれを用いる防音構造 | |
JP6585321B2 (ja) | 防音構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16837197 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2017535587 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016837197 Country of ref document: EP |