Nothing Special   »   [go: up one dir, main page]

WO2017026253A1 - 電極の製造方法及び蓄電デバイスの製造方法 - Google Patents

電極の製造方法及び蓄電デバイスの製造方法 Download PDF

Info

Publication number
WO2017026253A1
WO2017026253A1 PCT/JP2016/071635 JP2016071635W WO2017026253A1 WO 2017026253 A1 WO2017026253 A1 WO 2017026253A1 JP 2016071635 W JP2016071635 W JP 2016071635W WO 2017026253 A1 WO2017026253 A1 WO 2017026253A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic solvent
negative electrode
alkali metal
active material
Prior art date
Application number
PCT/JP2016/071635
Other languages
English (en)
French (fr)
Inventor
直井 雅也
相田 一成
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2017534160A priority Critical patent/JP6730284B2/ja
Publication of WO2017026253A1 publication Critical patent/WO2017026253A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an electrode manufacturing method and an electricity storage device manufacturing method.
  • a process in which an alkali metal is previously occluded in an electrode active material is employed for various purposes.
  • a process in which an alkali metal is previously occluded in an electrode active material is employed for various purposes.
  • lithium pre-doping is performed to lower the negative electrode potential and increase the energy density.
  • a method of pre-doping the negative electrode active material in the cell using a current collector having a through hole has become the mainstream (see, for example, Patent Document 1).
  • pre-doping is performed to reduce the irreversible capacity of the negative electrode.
  • a method of pre-doping the negative electrode active material before assembling the battery is employed (see, for example, Patent Documents 2 and 3).
  • Patent Document 4 a method of pre-doping sodium into the negative electrode before assembling the electricity storage device is employed.
  • Patent Document 5 it is proposed to use a fibrous carbon material in which lithium ions are occluded for the negative electrode in order to suppress the decomposition of the electrolytic solution on the negative electrode during the initial charging of the secondary battery. .
  • a fibrous carbon material is brought into contact with n-butyllithium in a non-aqueous solvent, thereby allowing the fibrous carbon material to occlude lithium ions.
  • One aspect of the present disclosure is a method for manufacturing an electrode in which an alkali metal is occluded in an active material before assembling a battery or a capacitor. In one aspect of the present disclosure, it is desirable to provide a method for manufacturing an electrode that is excellent in mass productivity. .
  • One embodiment of the present disclosure is a method for manufacturing an electrode constituting a capacitor or battery, and is assembled in a solution in which an alkali metal salt is dissolved in an organic solvent (hereinafter referred to as a pre-dope solution) before the capacitor or battery is assembled.
  • the organic solvent contains a specific organic solvent that is at least one selected from the group consisting of a compound having three or more ether bonds, a ⁇ -diketone, and a ⁇ -ketoester.
  • the alkali metal can be occluded in the active material at a high temperature, and thus the occlusion speed of the alkali metal can be increased. Furthermore, since the solvent can be prevented from volatilizing from the pre-dope solution, the exhaust equipment can be omitted or simplified when mass-producing the electrode storing the alkali metal. Moreover, management of the pre-dope solution becomes easy. Therefore, the electrode manufacturing method according to one aspect of the present disclosure is excellent in mass productivity.
  • the electrode manufacturing method of the present disclosure includes a step of occluding an alkali metal in an active material in a solution in which an alkali metal salt is dissolved in an organic solvent (hereinafter referred to as a pre-dope solution).
  • the electrode manufactured by the electrode manufacturing method of the present disclosure may be a positive electrode or a negative electrode.
  • the method for producing an electrode of the present disclosure when a positive electrode is produced, an alkali metal is occluded in the positive electrode active material, and when a negative electrode is produced, an alkali metal is occluded in the negative electrode active material.
  • the active material is not particularly limited as long as it is an electrode active material applicable to a battery or a capacitor using insertion / extraction of alkali metal ions, and may be a negative electrode active material or a positive electrode active material. It may be.
  • the negative electrode active material is not particularly limited, and examples thereof include carbon materials, metals or metalloids that can be alloyed with lithium, and materials containing these oxides.
  • the carbon material include graphite, graphitizable carbon, non-graphitizable carbon, and composite carbon material in which graphite particles are coated with pitch or resin carbide.
  • the metal or metalloid capable of being alloyed with lithium or a material containing these oxides include materials described in JP-A-2005-123175 and JP-A-2006-107795.
  • Examples of the metal or semimetal that can be alloyed with lithium include Si and Sn.
  • Examples of the positive electrode active material include alkali metal transition metal composite oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, sodium cobalt oxide, sodium nickel oxide, and sodium manganese oxide. .
  • Either the positive electrode active material or the negative electrode active material may be composed of a single material, or may be a mixture of two or more materials.
  • the manufacturing method of the electrode of this indication is suitable when making a negative electrode active material occlude alkali metal, and it is especially preferred that a negative electrode active material is a material containing carbon material, Si, or its oxide.
  • the particle size of the carbon material is reduced, an electricity storage device having a low internal resistance can be obtained, but there may be a problem.
  • the problem is, for example, a problem that the irreversible capacity increases or a problem that the amount of gas generated when the power storage device is held in a charged state increases.
  • the electrode manufacturing method of the present disclosure By using the electrode manufacturing method of the present disclosure, such a problem can be suppressed even when a carbon material having a 50% volume cumulative diameter D50 of 0.1 to 10 ⁇ m is used as the active material.
  • the 50% volume cumulative diameter D50 is a value measured by a laser diffraction / scattering method.
  • the irreversible capacity generally tends to increase. If the manufacturing method of the electrode of this indication is used, this tendency can be controlled.
  • the organic solvent in the pre-dope solution is at least one selected from the group consisting of a compound having three or more ether bonds, a ⁇ -diketone, and a ⁇ -ketoester (hereinafter referred to as a specific organic solvent). ).
  • the active material can occlude the alkali metal at a high temperature. Thereby, the occlusion speed of the alkali metal can be increased. Furthermore, since the solvent can be prevented from volatilizing from the pre-dope solution, the exhaust equipment can be omitted or simplified when mass-producing the electrode storing the alkali metal. Moreover, management of the pre-dope solution becomes easy.
  • the compound having three or more ether bonds may be a chain compound or a cyclic compound (for example, crown ether), but is preferably a chain compound.
  • the chain compound include polyalkylene glycol dialkyl ether, and more specifically, diethylene glycol dimethyl ether (diglyme), diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether (triglyme), triethylene glycol butyl methyl ether, Examples include polyethylene glycol dialkyl ethers such as tetraethylene glycol dimethyl ether (tetraglyme); polypropylene glycol dialkyl ethers such as dipropylene glycol dimethyl ether. Of these, polyethylene glycol dialkyl ether is preferred.
  • the compound which has 4 or more ether bonds is preferable from the point which can raise the density
  • Compounds are preferred.
  • Examples of the ⁇ -diketone include acetylacetone, 5-methyl-2,4-hexanedione, and 2,6-dimethyl-3,5-heptanedione.
  • Examples of the ⁇ -ketoester include alkyl acetoacetates such as methyl acetoacetate, ethyl acetoacetate, n-propyl acetoacetate, and isopropyl acetoacetate.
  • the specific organic solvent a compound having three or more ether bonds is preferable from the viewpoint of enhancing a desired effect.
  • the boiling point at 1 atm of the specific organic solvent is preferably 100 to 300 ° C. from the viewpoint of enhancing the desired effect.
  • the specific organic solvent may be composed of a single component or a mixed solvent of two or more components.
  • the pre-dope solution may contain an organic solvent other than the specific organic solvent.
  • an aprotic organic solvent is preferable.
  • the aprotic organic solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like.
  • the organic solvent other than the specific organic solvent may be composed of a single component or a mixed solvent of two or more components.
  • the mass ratio of the specific organic solvent to the total amount of the organic solvent in the pre-dope solution is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass or more from the viewpoint of enhancing a desired effect.
  • the pre-dope solution in the step of occluding an alkali metal in the active material, is preferably heated, the temperature of the pre-dope solution is preferably 40 to 110 ° C., and 50 to 100 It is particularly preferable that the temperature is set to ° C.
  • the temperature of the pre-dope solution is set within the above range, safety is ensured and occlusion of alkali metal proceeds efficiently.
  • the heating of the pre-dope solution may be heating the pre-dope solution in a state mixed with the active material, or may be heating the pre-dope solution in a state separated from the active material.
  • the alkali metal salt dissolved in the pre-dope solution is preferably a lithium salt or a sodium salt.
  • the anion moiety constituting the alkali metal salt include phosphorus anions having a fluoro group such as PF 6 ⁇ , PF 3 (C 2 F 5 ) 3 ⁇ , PF 3 (CF 3 ) 3 ⁇ , and the like; BF 4 ⁇ , Boron anions having a fluoro group or a cyano group such as BF 2 (CF) 2 ⁇ , BF 3 (CF 3 ) ⁇ , B (CN) 4 —, etc .; N (FSO 2 ) 2 ⁇ , N (CF 3 SO 2 ) 2 -, N (C 2 F 5 SO 2) 2 - sulfonyl imide anion having a fluoro group such as; CF 3 SO 3 - is an organic sulfonate anion having a fluoro group and the like.
  • a sulf
  • the concentration of the alkali metal salt in the pre-dope solution is preferably 10 to 50 mol%, particularly preferably relative to the specific organic solvent, when the specific organic solvent is a compound having three ether bonds, ⁇ -diketone or ⁇ -ketoester. Is 40 to 50 mol%. Further, when the specific organic solvent is a compound having four or more ether bonds, it is preferably 50 to 100 mol%, particularly preferably 80 to 100 mol%, based on the specific organic solvent. If it is within this range, the desired effect can be enhanced.
  • the pre-dope solution further contains additives such as vinylene carbonate, vinyl ethylene carbonate, 1-fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethyl sulfone. Can do.
  • additives such as vinylene carbonate, vinyl ethylene carbonate, 1-fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethyl sulfone. Can do.
  • the step of occluding the alkali metal in the active material in the pre-dope solution is not particularly limited, and examples thereof include the following doping step A and doping step B.
  • the occlusion amount of the alkali metal is preferably 70 to 95% with respect to the theoretical capacity of the negative electrode active material when lithium is stored in the negative electrode active material of the lithium ion capacitor. Further, when the lithium is occluded in the negative electrode active material of the lithium ion secondary battery, the alkali metal occlusion amount is preferably 10 to 30% with respect to the theoretical capacity of the negative electrode active material.
  • a layer containing an active material before occluding an alkali metal (hereinafter referred to as a precursor layer) is formed on a current collector.
  • the precursor layer and the current collector are combined into an electrode precursor.
  • This electrode precursor is brought into electrochemical contact with an alkali metal source in a pre-dope solution. At this time, an alkali metal is occluded in the active material contained in the precursor layer, and the electrode precursor becomes an electrode.
  • the doping step A is used, after the doping step A, the manufactured electrode is used as it is (without passing through a step of forming a layer containing an active material on the current collector) as an electrode of a battery or a capacitor. Can do.
  • the active material is reversibly applied after the doping step A.
  • the produced electrode can be used as an electrode of a battery or a capacitor.
  • the precursor layer can be prepared, for example, by preparing a slurry containing an active material before occluding an alkali metal, a binder, and the like, applying the slurry on a current collector, and drying the slurry.
  • binder examples include rubber-based binders such as styrene-butadiene rubber (SBR) and NBR; fluorine-based resins such as polytetrafluoroethylene and polyvinylidene fluoride; polypropylene, polyethylene, disclosed in JP2009-246137A Fluorine-modified (meth) acrylic binder as described above.
  • rubber-based binders such as styrene-butadiene rubber (SBR) and NBR
  • fluorine-based resins such as polytetrafluoroethylene and polyvinylidene fluoride
  • polypropylene polyethylene, disclosed in JP2009-246137A Fluorine-modified (meth) acrylic binder as described above.
  • the slurry may contain other components in addition to the active material and the binder.
  • other components include a conductive agent and a thickener.
  • the conductive agent include carbon black, graphite, vapor grown carbon fiber, and metal powder.
  • the thickener include carboxymethyl cellulose, its Na salt or ammonium salt, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • the thickness of the precursor layer is not particularly limited, but is, for example, 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the current collector for example, a metal foil such as copper, nickel, and stainless steel is preferable. Further, the current collector may be one in which a conductive layer mainly composed of a carbon material is formed on the metal foil.
  • the thickness of the current collector can be, for example, 5 to 50 ⁇ m.
  • the form of the alkali metal supply source is not particularly limited.
  • an alkali metal plate, an alkali metal alloy plate, or the like can be used as the alkali metal supply source. These thicknesses can be set to 0.03 to 3 mm, for example.
  • the alkali metal supply source is preferably disposed on the conductive substrate.
  • the conductive substrate may be porous. Examples of the material of the conductive substrate include copper, stainless steel, nickel, and the like.
  • Examples of the method of bringing the electrode precursor and the alkali metal supply source into electrochemical contact include a method of short-circuiting the electrode precursor and the alkali metal supply source in a pre-dope solution containing an alkali metal salt, Examples thereof include a method in which a direct current is passed between the electrode precursor and the alkali metal supply source in a pre-dope solution containing a salt.
  • the current collector is used as one terminal and the conductive substrate on which the alkali metal supply source is arranged is the other.
  • a terminal there is a method in which both terminals are electrically connected by a conductor such as a metal wire to cause a short circuit.
  • the short-circuiting time can be appropriately set according to the area, thickness, and the like of the precursor layer, and can be, for example, 1 to 1000 hours, preferably 5 to 500 hours.
  • a method of passing a direct current between the electrode precursor and the alkali metal supply source in the pre-dope solution containing the alkali metal salt for example, a positive terminal of a direct current stabilized power source is used, and an alkali metal supply source is used.
  • a method of connecting a conductive base material arranged and connecting a negative terminal of a direct current stabilized power source to a current collector to energize The current at the time of energization can be appropriately set according to the area, thickness, etc. of the precursor layer.
  • C is a charge / discharge coefficient
  • a current value for charging or discharging the storage battery in one hour is represented as “1C”.
  • Doping process B In the pre-dope solution, the active material itself is brought into contact with an alkali metal supply source to cause the active material to occlude the alkali metal.
  • an alkali metal supply source for example, the method described in JP2012-209195A can be referred to.
  • the method described in the publication includes a mixture containing at least one solvent selected from the group consisting of ethylene carbonate, propylene carbonate, diethyl carbonate, and dimethyl carbonate, a lithium salt, metallic lithium, and an active material.
  • a specific organic solvent may be used instead of ethylene carbonate.
  • the lithium salt is composed of LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiC 4 BO 8 , (C 2 F 5 SO 2 ) 2 NLi, and (FSO 2 ) 2 NLi. At least one selected from the group can be mentioned. Among them, it is preferable to use (FSO 2 ) 2 NLi.
  • the metal lithium lithium metal powder coated with Li 2 CO 3 or lithium metal foil can be used.
  • the electrode active material and the metallic lithium can be brought into electrical contact by applying ultrasonic vibration to the mixture.
  • An electrode can be manufactured by preparing a slurry containing an active material after occlusion of an alkali metal and a binder and the like by the doping step B, applying the slurry on a current collector, and drying the slurry.
  • the electrode includes an active material layer containing the active material, the binder, and the like, and a current collector.
  • the thickness of the active material layer is not particularly limited, but is, for example, 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the binder include the same binders as those contained in the slurry used in the dope step A.
  • the slurry may contain other components in addition to the active material and the binder. Examples of other components include the same components as those contained in the slurry used in the dope step A.
  • the material, thickness, etc. of the current collector can also be the same as the current collector used in the doping step A.
  • the electrode manufacturing method of the present disclosure is suitable for manufacturing a negative electrode included in an alkali ion type capacitor or battery, and more suitable for manufacturing a negative electrode included in an alkali ion type capacitor or secondary battery. It is particularly suitable for the production of a negative electrode provided in an ion secondary battery.
  • the density of the active material layer is preferably 1.50 to 2.00 g / cc, particularly preferably 1.60. To 1.90 g / cc.
  • the density of the active material layer is preferably 0.50 to 1.50 g / cc, particularly preferably 0.70. ⁇ 1.20 g / cc.
  • Capacitor corresponds to an electricity storage device.
  • the capacitor includes a positive electrode, a negative electrode, and an electrolyte.
  • a negative electrode can be manufactured by the manufacturing method of the electrode of this indication.
  • the capacitor is not particularly limited as long as it is a capacitor using insertion / extraction of alkali metal ions, and examples thereof include a lithium ion capacitor and a sodium ion capacitor. Among these, a lithium ion capacitor is preferable.
  • the basic configuration of the positive electrode constituting the capacitor of the present disclosure is the same as the configuration of the electrode described in the above-mentioned “electrode manufacturing method”, but it is preferable to use activated carbon as the positive electrode active material.
  • the form of the electrolyte constituting the capacitor of the present disclosure is usually a liquid electrolyte.
  • the basic configuration of the electrolytic solution is the same as the configuration of the pre-dope solution described in the above “electrode manufacturing method”, but from the viewpoint of the cost and the electrochemical characteristics of the cell at a low temperature of 0 ° C. or lower, the organic solvent is It is preferable to use an organic solvent other than the specific organic solvent.
  • the concentration of alkali metal ions (alkali metal salt) is preferably 0.1 mol / L or more, more preferably in the range of 0.5 to 1.5 mol / L.
  • the electrolyte may have a gel or solid form for the purpose of preventing leakage.
  • the capacitor of the present disclosure can include a separator for suppressing physical contact between the positive electrode and the negative electrode.
  • a separator the nonwoven fabric or porous film which uses a cellulose rayon, polyethylene, a polypropylene, polyamide, polyester, a polyimide etc. as a raw material can be mentioned, for example.
  • the capacitor for example, three or more plate-like constitutional units composed of a positive electrode and a negative electrode and a separator interposed therebetween are laminated to form a laminated body, and the laminated body is enclosed in an exterior film.
  • a stacked cell may be mentioned.
  • a capacitor structure for example, a band-shaped structural unit composed of a positive electrode and a negative electrode, and a separator interposed therebetween is wound to form a multilayer body, and the multilayer body is stored in a rectangular or cylindrical container.
  • the wound type cell etc. which were made are mentioned.
  • the capacitor of the present disclosure can be manufactured, for example, by forming a basic structure including at least a negative electrode and a positive electrode and injecting an electrolyte into the basic structure.
  • FIG. 1 shows an example of the configuration of the capacitor 1.
  • the capacitor 1 is a multilayer storage device.
  • the capacitor 1 includes an electrode unit 3, an outer container 5, and an electrolyte 7.
  • the electrode unit 3 is a stacked electrode unit having a structure in which a plurality of units in which the positive electrode 9 and the negative electrode 11 are stacked via the separator 13 are further stacked.
  • a film-like lithium ion supply source 15 is laminated on each of the upper and lower surfaces of the electrode unit 3.
  • the outer container 5 accommodates the electrode unit 3.
  • the electrolyte 7 is filled in the outer container 5.
  • the positive electrode 9 extends toward one end of the outer container 5 and is connected to the positive electrode terminal 17.
  • the positive electrode terminal 17 is fixed to the exterior container 5 by a connecting member 19.
  • the negative electrode 11 extends toward the end of the outer container 5 opposite to the one, and is connected to the negative electrode terminal 21.
  • the battery described later can also have the configuration shown in FIG. 1, for example.
  • the battery of the present disclosure corresponds to an electricity storage device.
  • the battery includes a positive electrode, a negative electrode, and an electrolyte.
  • a negative electrode can be manufactured by the manufacturing method of the electrode of this indication.
  • the battery is not particularly limited as long as it uses insertion / extraction of alkali metal ions, and may be a primary battery or a secondary battery. Examples of the battery include a lithium ion secondary battery, a sodium ion secondary battery, and an air battery. Among these, a lithium ion secondary battery is preferable.
  • the basic configuration of the positive electrode constituting the battery of the present disclosure is the same as the configuration of the electrode described in the above-mentioned “electrode manufacturing method”, but as the positive electrode active material, in addition to those already exemplified, a nitroxy radical compound Organic active materials such as oxygen and oxygen can also be used.
  • the configuration of the electrolyte constituting the battery of the present disclosure and the configuration of the battery itself are the same as those described in the above “capacitor”.
  • the battery of the present disclosure can be manufactured, for example, by forming a basic structure including at least a negative electrode and a positive electrode and injecting an electrolyte into the basic structure.
  • the precursor layer was formed by preparing a slurry containing the above components, applying the slurry onto a current collector, and drying the slurry.
  • the graphite contained in the precursor layer is in a state before occluding the alkali metal.
  • the current collector and the precursor layer formed thereon are collectively referred to as a negative electrode precursor below.
  • the pre-dope solution was injected into the flat cell.
  • the pre-dope solution is a solution obtained by mixing equimolar amounts of LiN (FSO 2 ) 2 and triglyme.
  • the pre-dope solution is an example of a solution in which an alkali metal salt is dissolved in an organic solvent.
  • the obtained flat cell was connected to a charge / discharge tester. Moreover, the flat cell was installed in the 80 degreeC thermostat, and left still for 2 hours. Thereafter, the battery was charged with a constant current of 1C. The charging time was set such that the lithium occlusion rate was 76% with respect to the theoretical capacity of graphite (372 mAh / g).
  • a negative electrode including a current collector and a layer containing a negative electrode active material occluded with lithium (a negative electrode active material layer) formed thereon was obtained.
  • the potential of the obtained negative electrode with respect to the lithium reference electrode was 0.088V.
  • the discharge capacity of the negative electrode when discharged using lithium metal as a counter electrode was 1.04 mAh.
  • Example 2 A negative electrode was produced in the same manner as in Example 1 except that the current value during charging was changed from 1 C to 50 C.
  • the potential of the obtained negative electrode with respect to the lithium reference electrode was 0.087V.
  • the discharge capacity of the negative electrode when discharged using lithium metal as a counter electrode was 1.02 mAh.
  • Example 3 A negative electrode was produced in the same manner as in Example 1 except that the temperature of the thermostatic chamber was changed from 80 ° C to 25 ° C. The potential of the obtained negative electrode with respect to the lithium reference electrode was 0.084V. Moreover, the discharge capacity of the negative electrode when discharged using lithium metal as a counter electrode was 1.10 mAh.
  • Example 4 A negative electrode was produced in the same manner as in Example 1 except that the same amount of tetraglyme was used instead of triglyme.
  • the potential of the obtained negative electrode with respect to the lithium reference electrode was 0.087V.
  • the discharge capacity of the negative electrode when discharged using lithium metal as a counter electrode was 1.04 mAh.
  • Example 5 A negative electrode was produced in the same manner as in Example 1 except that the same amount of tetraglyme was used instead of triglyme and the current value during charging was changed from 1C to 10C.
  • the potential of the obtained negative electrode with respect to the lithium reference electrode was 0.087V.
  • the discharge capacity of the negative electrode when discharged using lithium metal as a counter electrode was 1.01 mAh.
  • Example 1 A flat cell was prepared basically in the same manner as in Example 1. However, the pre-dope solution to be injected into the flat cell contains 1.2 M LiPF 6 and also contains a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate as an organic solvent. The volume ratio of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate is 30:40:30.
  • the obtained flat cell was connected to a charge / discharge tester. Moreover, the flat cell was installed in the 80 degreeC thermostat, and left still for 2 hours. Then, the negative electrode was manufactured by charging similarly to Example 1. The potential of the obtained negative electrode with respect to the lithium reference electrode was 0.095V. Moreover, the discharge capacity of the negative electrode when discharged using lithium metal as a counter electrode was 0.49 mAh.
  • Comparative Example 2 Except for changing the current value during charging from 1 C to 50 C, an attempt was made to manufacture the negative electrode in the same manner as in Comparative Example 1, but during the charging, the negative electrode potential dropped below the measurement limit and lithium could be occluded. lost. When the cell was disassembled and the surface of the negative electrode was observed, white lithium metal deposition was observed on the negative electrode.
  • Comparative Example 3 A negative electrode was produced in the same manner as in Comparative Example 1 except that the temperature of the thermostatic chamber was changed from 80 ° C to 25 ° C. The potential of the obtained negative electrode with respect to the lithium reference electrode was 0.084V. Moreover, the discharge capacity of the negative electrode when discharged using lithium metal as a counter electrode was 1.10 mAh.
  • Comparative Example 4 Except for changing the current value during charging from 1 C to 50 C, an attempt was made to manufacture the negative electrode in the same manner as in Comparative Example 3, but during the charging, the negative electrode potential dropped below the measurement limit and lithium could be occluded. lost. When the cell was disassembled and the surface of the negative electrode was observed, white lithium metal deposition was observed on the negative electrode. If the current value at the time of charging was low (1C), lithium could be occluded, but lithium could not be occluded at high rate (50C).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本開示の一局面のキャパシタ又は電池を構成する電極の製造方法は、キャパシタ又は電池を組み立てる前に、アルカリ金属塩が有機溶媒に溶解した溶液中で活物質にアルカリ金属を吸蔵させる工程を含む。前記有機溶媒が、3個以上のエーテル結合を有する化合物、β-ジケトン及びβ-ケトエステルよりなる群から選ばれる少なくとも1種である特定有機溶媒を含有する。

Description

電極の製造方法及び蓄電デバイスの製造方法 関連出願の相互参照
 本国際出願は、2015年8月7日に日本国特許庁に出願された日本国特許出願第2015-157162号に基づく優先権を主張するものであり、日本国特許出願第2015-157162号の全内容を本国際出願に参照により援用する。
  本開示は、電極の製造方法及び蓄電デバイスの製造方法に関する。
 近年、電子機器の小型化・軽量化は目覚ましく、それに伴い、当該電子機器の駆動用電源として用いられる電池に対しても小型化・軽量化の要求が一層高まっている。
 このような小型化・軽量化の要求を満足するために、リチウムイオン二次電池に代表される非水電解質二次電池が開発されている。また、高エネルギー密度特性及び高出力特性を必要とする用途に対応する蓄電デバイスとして、リチウムイオンキャパシタが知られている。更に、リチウムより低コストで資源的に豊富なナトリウムを用いたナトリウムイオン型の電池やキャパシタも知られている。
 このような電池やキャパシタにおいては、様々な目的のために、予めアルカリ金属を電極活物質に吸蔵させるプロセス(一般にプレドープと呼ばれている)が採用されている。例えば、リチウムイオンキャパシタでは、負極電位を下げエネルギー密度を高めるためにリチウムのプレドープが行われる。この場合、貫通孔を有する集電体を利用してセル内で負極活物質にプレドープを行う方法が主流となっている(例えば、特許文献1参照)。
 また、リチウムイオン二次電池では、負極の不可逆容量を低減させるためにプレドープが行われる。この場合、上記方法の他、電池を組み立てる前に負極活物質にプレドープを行う方法が採用されている(例えば、特許文献2、3参照)。
 さらに、ナトリウムイオン型の蓄電デバイスを作製するにあたっても、蓄電デバイスを組み立てる前に負極にナトリウムをプレドープする方法が採用されている(特許文献4)。
 また、特許文献5では、二次電池の初期充電時における負極上での電解液の分解を抑制するために、リチウムイオンが吸蔵された繊維状炭素材料を負極に使用することが提案されている。特許文献5では、非水溶媒中で繊維状炭素材料をn-ブチルリチウムに接触させることで、繊維状炭素材料にリチウムイオンを吸蔵させる。
特開2007-67105号公報 特開平7-235330号公報 特開平9-293499号公報 特開2012-69894号公報 特開2000-156222号公報
 貫通孔を有する集電体を利用する方法においては、集電体に規則的で微細な貫通孔を設ける必要があるため、キャパシタや電池の製造コストが非常に高くなるという問題がある。一方、キャパシタや電池を組み立てる前にプレドープを行う方法においては、貫通孔を有する集電体を用いる必要はないが、ドープ速度を速くすることができない等の理由から量産には適さないという問題がある。
 本開示の一局面は、電池又はキャパシタを組み立てる前にアルカリ金属を活物質に吸蔵させる電極の製造方法であり、本開示の一局面では、量産性に優れる電極の製造方法を提供することが望ましい。
  本開示の一態様は、キャパシタ又は電池を構成する電極の製造方法であって、キャパシタ又は電池を組み立てる前に、アルカリ金属塩が有機溶媒に溶解した溶液(以下、プレドープ溶液とする)中で活物質にアルカリ金属を吸蔵させる工程を含む。前記有機溶媒は、3個以上のエーテル結合を有する化合物、β-ジケトン及びβ-ケトエステルよりなる群から選ばれる少なくとも1種である特定有機溶媒を含有する。
  本開示の一局面の電極の製造方法によれば、高温下で活物質にアルカリ金属を吸蔵させることができるため、アルカリ金属の吸蔵速度を高めることができる。更に、プレドープ溶液から溶媒が揮発することを抑えることができるため、アルカリ金属を吸蔵させた電極を量産する場合に、排気設備を省略するか、簡易化することができる。また、プレドープ溶液の管理が容易になる。したがって、本開示の一局面の電極の製造方法は、量産性に優れる。
キャパシタの構成を表す断面図である。
1・・・キャパシタ、3・・・電極ユニット、5・・・外装容器、7・・・電解質、9・・・正極電極、11・・・負極電極、13・・・セパレータ、15・・・リチウムイオン供給源、17・・・正極電極端子、19・・・接続部材、21・・・負極電極端子
  本開示の実施形態を説明する。
  1.電極の製造方法
  本開示の電極の製造方法は、アルカリ金属塩が有機溶媒に溶解した溶液(以下、プレドープ溶液とする)中で、活物質にアルカリ金属を吸蔵させる工程を含む。
  本開示の電極の製造方法により製造する電極は、正極であってもよいし、負極であってもよい。本開示の電極の製造方法は、正極を製造する場合は、正極活物質にアルカリ金属を吸蔵させ、負極を製造する場合は、負極活物質にアルカリ金属を吸蔵させる。
 上記活物質は、アルカリ金属イオンの挿入/脱離を利用する電池又はキャパシタに適用可能な電極活物質であれば特に限定されるものではなく、負極活物質であってもよいし、正極活物質であってもよい。
 負極活物質は、特に限定されるものではないが、例えば、炭素材料、リチウムと合金化が可能な金属若しくは半金属又はこれらの酸化物を含む材料等が挙げられる。炭素材料として、例えば、黒鉛、易黒鉛化炭素、難黒鉛化炭素、黒鉛粒子をピッチや樹脂の炭化物で被覆した複合炭素材料等が挙げられる。リチウムと合金化が可能な金属若しくは半金属又はこれらの酸化物を含む材料としては、特開2005-123175号公報、特開2006-107795号公報に記載の材料が挙げられる。リチウムと合金化が可能な金属若しくは半金属として、例えば、Si、Sn等が挙げられる。
 正極活物質としては、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、ナトリウムコバルト酸化物、ナトリウムニッケル酸化物、ナトリウムマンガン酸化物等のアルカリ金属遷移金属複合酸化物等が挙げられる。
  正極活物質、及び負極活物質のいずれにおいても、単一の物質から成るものであってもよいし、2種以上の物質を混合して成るものであってもよい。本開示の電極の製造方法は、負極活物質にアルカリ金属を吸蔵させる場合に適しており、特に、負極活物質が炭素材料又はSi若しくはその酸化物を含む材料であることが好ましい。
 一般的に、活物質として炭素材料を用いる場合、炭素材料の粒子径が小さくなると、内部抵抗の低い蓄電デバイスが得られるが、問題が生じることがある。その問題とは、例えば、不可逆容量が大きくなるという問題や、蓄電デバイスを充電状態で保持した際に発生するガスの量が多くなる等の問題である。本開示の電極の製造方法を使用すれば、活物質として50%体積累積径D50が0.1~10μmの炭素材料を用いる場合であっても、かかる問題を抑制することができる。なお、50%体積累積径D50は、レーザー回折・散乱法により測定される値である。
 また、活物質としてSi又はその酸化物を含む材料を用いる場合も、一般的に不可逆容量が大きくなる傾向にある。本開示の電極の製造方法を使用すれば、かかる傾向を抑制することができる。
  活物質に吸蔵させるアルカリ金属としては、リチウム又はナトリウムが好ましく、特にリチウムが好ましい。
  本開示の電極の製造方法において、プレドープ溶液における有機溶媒は、3個以上のエーテル結合を有する化合物、β-ジケトン及びβ-ケトエステルよりなる群から選ばれる少なくとも1種(以下、特定有機溶媒とする)を含有する。
 有機溶媒が特定有機溶媒を含有することにより、高温下で活物質にアルカリ金属を吸蔵させることができる。そのことにより、アルカリ金属の吸蔵速度を高めることができる。更に、プレドープ溶液から溶媒が揮発することを抑えることができるため、アルカリ金属を吸蔵させた電極を量産する場合に、排気設備を省略するか、簡易化することができる。また、プレドープ溶液の管理が容易になる。
 かかる効果(以下、所望の効果とする)が得られる理由は、特定有機溶媒が有するエーテル酸素やカルボニル酸素がアルカリ金属イオンと強く相互作用するためであると考えられる。
 上記3個以上のエーテル結合を有する化合物は、鎖状の化合物であっても環状の化合物(例えば、クラウンエーテル)であってもよいが、好ましくは鎖状の化合物である。鎖状の化合物としては、例えば、ポリアルキレングリコールジアルキルエーテルが挙げられ、より具体的には、ジエチレングリコールジメチルエーテル(ジグライム)、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル(トリグライム)、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル(テトラグライム)等のポリエチレングリコールジアルキルエーテル;ジプロピレングリコールジメチルエーテル等のポリプロピレングリコールジアルキルエーテルが挙げられる。中でもポリエチレングリコールジアルキルエーテルが好ましい。
  また、3個以上のエーテル結合を有する化合物としては、アルカリ金属塩の濃度を高めることができる点から、4個以上のエーテル結合を有する化合物が好ましく、特に4個又は5個のエーテル結合を有する化合物が好ましい。
 また、上記β-ジケトンとしては、例えば、アセチルアセトン、5-メチル-2,4-ヘキサンジオン、2,6-ジメチル-3,5-ヘプタンジオンが挙げられる。また、上記β-ケトエステルとしては、例えば、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸n-プロピル、アセト酢酸イソプロピル等のアセト酢酸アルキルが挙げられる。
 特定有機溶媒としては、所望の効果を高める点から、3個以上のエーテル結合を有する化合物が好ましい。また、特定有機溶媒の1気圧での沸点は、所望の効果を高める点から、好ましくは100~300℃である。特定有機溶媒は、単一の成分から成るものであってもよいし、2種以上の成分の混合溶媒であってもよい。
 本開示の電極の製造方法において、プレドープ溶液は、特定有機溶媒以外の有機溶媒を含有してもよい。特定有機溶媒以外の有機溶媒としては、非プロトン性の有機溶媒が好ましい。非プロトン性の有機溶媒として、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。
 特定有機溶媒以外の有機溶媒は、単一の成分から成るものであってもよいし、2種以上の成分の混合溶媒であってもよい。
 プレドープ溶液における有機溶媒の全量に対する特定有機溶媒の質量比は、所望の効果を高める点から、好ましくは50質量%以上、さらに好ましくは70質量%以上、特に好ましくは90質量%以上である。
 また、本開示の電極の製造方法においては、活物質にアルカリ金属を吸蔵させる工程において、プレドープ溶液を加熱することが好ましく、プレドープ溶液の温度を40~110℃とすることが好ましく、50~100℃とすることが特に好ましい。プレドープ溶液の温度を上記の範囲内とした場合、安全性が確保されると共にアルカリ金属の吸蔵が効率よく進行する。
 プレドープ溶液を加熱するとは、活物質と混合された状態にあるプレドープ溶液を加熱することであってもよいし、活物質と分離された状態にあるプレドープ溶液を加熱することであってもよい。
 上記プレドープ溶液に溶解しているアルカリ金属塩は、好ましくはリチウム塩又はナトリウム塩である。アルカリ金属塩を構成するアニオン部としては、例えば、PF 、PF(C 、PF(CF 、等のフルオロ基を有するリンアニオン;BF 、BF (CF) 、BF(CF、B(CN) 等のフルオロ基又はシアノ基を有するホウ素アニオン;N(FSO 、N(CFSO 、N(CSO 等のフルオロ基を有するスルホニルイミドアニオン;CFSO 等のフルオロ基を有する有機スルホン酸アニオンが挙げられる。中でも、所望の効果を高める点から、フルオロ基を有するスルホニルイミドアニオンが好ましい。
 プレドープ溶液におけるアルカリ金属塩の濃度は、特定有機溶媒が3個のエーテル結合を有する化合物、β-ジケトン又はβ-ケトエステルである場合、特定有機溶媒に対して好ましくは10~50モル%、特に好ましくは40~50モル%である。また、特定有機溶媒が4個以上のエーテル結合を有する化合物である場合、特定有機溶媒に対して好ましくは50~100モル%、特に好ましくは80~100モル%である。この範囲内である場合、所望の効果を高めることができる。
 プレドープ溶液は、更に、ビニレンカーボネート、ビニルエチレンカーボネート、1-フルオロエチレンカーボネート、1-(トリフルオロメチル)エチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の添加剤を含有することができる。
 プレドープ溶液中で活物質にアルカリ金属を吸蔵させる工程は、特に限定されるものではないが、例えば、以下のドープ工程Aと、ドープ工程Bとが挙げられる。なお、アルカリ金属の吸蔵量は、リチウムイオンキャパシタの負極活物質にリチウムを吸蔵させる場合、負極活物質の理論容量に対して好ましくは70~95%である。また、アルカリ金属の吸蔵量は、リチウムイオン二次電池の負極活物質にリチウムを吸蔵させる場合、負極活物質の理論容量に対して好ましくは10~30%である。
  (ドープ工程A)
 まず、アルカリ金属を吸蔵させる前の活物質を含む層(以下、前駆体層とする)を集電体上に形成する。前駆体層と集電体とを併せて電極前駆体とする。この電極前駆体を、プレドープ溶液中でアルカリ金属供給源と電気化学的に接触させる。このとき、前駆体層に含まれる活物質にアルカリ金属が吸蔵され、電極前駆体は電極となる。
 ドープ工程Aを用いれば、そのドープ工程Aの後、製造された電極をそのまま(集電体上に活物質を含む層を形成する工程等を経ることなく)、電池又はキャパシタの電極として用いることができる。
 また、不可逆容量を低減させる目的あるいは充放電の際の電解液の分解を抑制する目的のために本開示の電極の製造方法を使用する場合は、ドープ工程Aの後、活物質に可逆的に吸蔵されたアルカリ金属の一部又は全部をアルカリ金属イオンとして脱離させる工程を更に行った後、製造した電極を電池又はキャパシタの電極として用いることもできる。
 上記前駆体層は、例えば、アルカリ金属を吸蔵する前の活物質及びバインダー等を含有するスラリーを調製し、このスラリーを集電体上に塗布し、乾燥させることにより作製できる。
 上記バインダーとしては、例えば、スチレン-ブタジエンゴム(SBR)、NBR等のゴム系バインダー;ポリ四フッ化エチレン、ポリフッ化ビニリデン等のフッ素系樹脂;ポリプロピレン、ポリエチレン、特開2009-246137号公報に開示されているようなフッ素変性(メタ)アクリル系バインダー等が挙げられる。
 上記スラリーは、活物質及びバインダーに加えて、その他の成分を含んでいてもよい。その他の成分としては、例えば、導電剤、増粘剤が挙げられる。導電剤としては、例えば、カーボンブラック、黒鉛、気相成長炭素繊維、金属粉末等が挙げられる。増粘剤としては、例えば、カルボキシルメチルセルロース、そのNa塩又はアンモニウム塩、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
 上記前駆体層の厚さは、特に限定されるものではないが、例えば、5~500μm、好ましくは10~200μm、特に好ましくは10~100μmである。
 上記集電体としては、例えば、銅、ニッケル、ステンレス等の金属箔が好ましい。また、集電体は、上記金属箔上に炭素材料を主成分とする導電層が形成されたものであってもよい。集電体の厚みは、例えば、5~50μmとすることができる。
 上記アルカリ金属供給源の形態は特に限定されず、例えば、アルカリ金属板、アルカリ金属の合金板等をアルカリ金属供給源とすることができる。これらの厚さは、例えば、0.03~3mmとすることができる。アルカリ金属供給源は、導電性基材上に配置されていることが好ましい。導電性基材は多孔質であってもよい。導電性基材の材質としては、例えば、銅、ステンレス、ニッケル等が挙げられる。
 上記電極前駆体と上記アルカリ金属供給源とを電気化学的に接触させる方法としては、例えば、アルカリ金属塩を含有するプレドープ溶液中で電極前駆体とアルカリ金属供給源とを短絡させる方法、アルカリ金属塩を含有するプレドープ溶液中で電極前駆体とアルカリ金属供給源との間に直流電流を通電する方法が挙げられる。
 アルカリ金属塩を含有するプレドープ溶液中で電極前駆体とアルカリ金属供給源とを短絡させる方法としては、例えば、集電体を一方の端子とし、アルカリ金属供給源を配置した導電性基材を他方の端子として、両端子間を金属線等の導電体で電気的に接続し、短絡を生じさせる方法がある。短絡させる時間は、前駆体層の面積、厚さ等に応じて適宜設定することができ、例えば、1~1000時間、好ましくは5~500時間とすることができる。
 また、アルカリ金属塩を含有するプレドープ溶液中で、電極前駆体とアルカリ金属供給源との間に直流電流を通電する方法としては、例えば、直流安定化電源のプラス端子を、アルカリ金属供給源を配置した導電性基材に接続し、直流安定化電源のマイナス端子を集電体に接続して通電する方法がある。通電する際の電流は、前駆体層の面積、厚さ等に応じて適宜設定することができる。
 本開示の電極の製造方法を使用すれば、5C以上の定電流、更には10C以上の定電流で高速通電した場合であっても、アルカリ金属の析出等の問題を抑制し、活物質にアルカリ金属を吸蔵させることができる。ここで、「C」は、充放電係数であり、蓄電池を1時間で充電あるいは放電させる電流値を「1C」と表している。
 (ドープ工程B)
 プレドープ溶液中で、活物質そのものをアルカリ金属供給源と接触させて、活物質にアルカリ金属を吸蔵させる。その具体的な方法は、例えば、特開2012-209195号公報記載の方法を参考にすることができる。
 同公報記載の方法は、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びジメチルカーボネートからなる群より選択される少なくとも一種の溶媒と、リチウム塩と、金属リチウムと、活物質とを含む混合物中で、上記活物質と上記金属リチウムとを電気的に接触させることにより、上記活物質にリチウムを吸蔵させる方法である。この方法において、エチレンカーボネート等に代えて特定有機溶媒を使用すればよい。
  同公報記載の方法において、上記リチウム塩としては、LiBF、LiPF、LiClO、LiAsF、LiCBO、(CSONLi、及び(FSONLiからなる群より選択される少なくとも一種が挙げられる。その中でも(FSONLiを使用することが好ましい。また、上記金属リチウムとして、LiCOにより被覆されたリチウム金属粉末、又はリチウム金属箔を用いることができる。
 同公報記載の方法において、吸蔵のとき、上記混合物に超音波振動を加えることにより、上記電極活物質と上記金属リチウムとを電気的に接触させることができる。
 ドープ工程Bによりアルカリ金属を吸蔵した後の活物質及びバインダー等を含有するスラリーを調製し、このスラリーを集電体上に塗布し、乾燥させることにより、電極を製造することができる。この電極は、上記活物質、及び上記バインダー等を含有する活物質層と、集電体とを含む。
 上記活物質層の厚さは、特に限定されるものではないが、例えば、5~500μm、好ましくは10~200μm、特に好ましくは10~100μmである。
 上記バインダーとしては、ドープ工程Aで用いるスラリーに含まれるものと同様のバインダーが挙げられる。上記スラリーは、活物質及びバインダーに加えて、その他の成分を含んでいてもよい。その他の成分としては、ドープ工程Aで用いるスラリーに含まれるものと同様の成分が挙げられる。また、集電体の材質、厚み等も、ドープ工程Aで用いる集電体と同様のものとすることができる。
 本開示の電極の製造方法は、アルカリイオン型のキャパシタ又は電池が備える負極の製造に適しており、アルカリイオン型のキャパシタ又は二次電池が備える負極の製造により適しており、リチウムイオンキャパシタ又はリチウムイオン二次電池が備える負極の製造に特に適している。
 本開示の電極の製造方法により得られた電極をリチウムイオン二次電池に用いる場合、その活物質層の密度は、好ましくは1.50~2.00g/ccであり、特に好ましくは1.60~1.90g/ccである。
 また、本開示の電極の製造方法により得られた電極をリチウムイオンキャパシタに用いる場合、その活物質層の密度は、好ましくは0.50~1.50g/ccであり、特に好ましくは0.70~1.20g/ccである。
 2.キャパシタ
 本開示のキャパシタは蓄電デバイスに対応する。キャパシタは、正極、負極及び電解質を備える。負極を本開示の電極の製造方法により製造することができる。キャパシタとしては、アルカリ金属イオンの挿入/脱離を利用するキャパシタであれば特に限定されるものではないが、例えば、リチウムイオンキャパシタ、ナトリウムイオンキャパシタ等が挙げられる。その中でもリチウムイオンキャパシタが好ましい。
  本開示のキャパシタを構成する正極の基本的な構成は、上記「電極の製造方法」において説明した電極の構成と同様であるが、正極活物質としては活性炭を使用することが好ましい。
  本開示のキャパシタを構成する電解質の形態は、通常、液状の電解液である。電解液の基本的な構成は、上記「電極の製造方法」において説明したプレドープ溶液の構成と同様であるが、コスト及び0℃以下の低温におけるセルの電気化学特性の点から、有機溶媒としては特定有機溶媒以外の有機溶媒を使用することが好ましい。また、アルカリ金属イオン(アルカリ金属塩)の濃度は、好ましくは0.1モル/L以上であり、より好ましくは0.5~1.5モル/Lの範囲内である。電解質は、漏液を防止する目的で、ゲル状又は固体状の形態を有していてもよい。
  本開示のキャパシタは、正極と負極との間に、それらの物理的な接触を抑制するためのセパレータを備えることができる。セパレータとしては、例えば、セルロースレーヨン、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリイミド等を原料とする不織布又は多孔質フィルムを挙げることができる。
  キャパシタの構造としては、例えば、正極及び負極と、それらを介するセパレータとから成る板状の構成単位が、3単位以上積層されて積層体を形成し、その積層体が外装フィルム内に封入された積層型セルが挙げられる。
  また、キャパシタの構造としては、例えば、正極及び負極と、それらを介するセパレータとから成る帯状の構成単位が捲回されて積層体を形成し、その積層体が角型又は円筒型の容器に収納された捲回型セル等が挙げられる。
  本開示のキャパシタは、例えば、少なくとも負極及び正極を含む基本構造を形成し、その基本構造に電解質を注入することにより製造できる。
 図1にキャパシタ1の構成の例を示す。キャパシタ1は、積層型の蓄電デバイスである。キャパシタ1は、電極ユニット3と、外装容器5と、電解質7と、を備える。
 電極ユニット3は、正極電極9と負極電極11とが、セパレータ13を介して積層された単位が、さらに複数積層された構造を有する積層型の電極ユニットである。電極ユニット3の上面及び下面には、それぞれ、膜状のリチウムイオン供給源15が積層されている。
 外装容器5は電極ユニット3を収容する。電解質7は外装容器5内に充填されている。正極電極9は、外装容器5における一方の端部に向けて延びており、正極電極端子17に接続している。正極電極端子17は、接続部材19により、外装容器5に固定されている。
 負極電極11は、外装容器5における前記一方とは反対の端部に向けて延びており、負極電極端子21に接続している。後述する電池も、例えば、図1に示す構成を有することができる。
  3.電池
 本開示の電池は、蓄電デバイスに対応する。電池は、正極、負極及び電解質を備える。負極を本開示の電極の製造方法により製造することができる。電池としては、アルカリ金属イオンの挿入/脱離を利用する電池であれば特に限定されるものではなく、一次電池であっても二次電池であってもよい。電池としては、例えば、リチウムイオン二次電池、ナトリウムイオン二次電池、空気電池等が挙げられる。その中でもリチウムイオン二次電池が好ましい。
 本開示の電池を構成する正極の基本的な構成は、上記「電極の製造方法」において説明した電極の構成と同様であるが、正極活物質としては、既に例示したものの他、ニトロキシラジカル化合物等の有機活物質や酸素を使用することもできる。
 本開示の電池を構成する電解質の構成、電池自体の構成については、上記「キャパシタ」において説明したものと同様である。
 本開示の電池は、例えば、少なくとも負極及び正極を含む基本構造を形成し、その基本構造に電解質を注入することにより製造できる。
 以下、実施例を挙げて、本開示の実施の形態をさらに具体的に説明する。ただし、本開示は、下記実施例に限定されない。なお、以下の各実施例および各比較例において活物質の諸物性の測定は、下記方法により行った。また、負極の製造は、気温23℃、露点-40℃に制御された空気環境下で行った。
 (実施例1)
 (i)負極前駆体の製造
 表面粗さRa=0.1μmの銅箔からなる集電体上に、厚さ40μmの前駆体層を形成した。前駆体層は、黒鉛(負極活物質、50%体積累積径D50=5μm)、カルボキシメチルセルロース、アセチレンブラック(導電剤)及び分散剤を、質量比で88:4:5:3の比率で含む層である。前駆体層は、上記の成分を含むスラリーを調製し、このスラリーを集電体上に塗布し、乾燥させることにより形成した。前駆体層に含まれる黒鉛は、アルカリ金属を吸蔵する前の状態である。集電体と、その上に形成された前駆体層とを併せて、以下では負極前駆体とする。
 (ii)負極の製造及び評価
 上記(i)で得られた負極前駆体を直径15.9mmの円形にカットした。また、リチウム金属を直径16.1mmの円形にカットして対極を作成した。そして、負極前駆体と、対極と、リチウム参照極と組み合わせて3極のフラットセルを作製した。
 プレドープ溶液をフラットセル内に注入した。プレドープ溶液は、LiN(FSOとトリグライムを等モル混合して得られた溶液である。プレドープ溶液は、アルカリ金属塩が有機溶媒に溶解した溶液の一例である。
 得られたフラットセルを充放電試験機に接続した。また、フラットセルを80℃の恒温槽に設置し、2時間静置した。その後、1Cの定電流で充電した。充電時間は、黒鉛の理論容量(372mAh/g)に対してリチウムの吸蔵率が76%になる時間を設定した。
 その結果、集電体と、その上に形成された、リチウムを吸蔵した負極活物質を含む層(負極活物質層)とを備えた負極が得られた。得られた負極のリチウム参照極に対する電位は、0.088Vであった。また、リチウム金属を対極として放電した際の負極の放電容量は、1.04mAhであった。
 (実施例2)
 充電の際の電流値を1Cから50Cに変更した点以外は実施例1と同様にして負極を製造した。得られた負極のリチウム参照極に対する電位は、0.087Vであった。また、リチウム金属を対極として放電した際の負極の放電容量は、1.02mAhであった。
 (実施例3)
 恒温槽の温度を80℃から25℃に変更した点以外は実施例1と同様にして負極を製造した。得られた負極のリチウム参照極に対する電位は、0.084Vであった。また、リチウム金属を対極として放電した際の負極の放電容量は、1.10mAhであった。
 (実施例4)
 トリグライムの代わりに同量のテトラグライムを用いた点以外は実施例1と同様にして負極を製造した。得られた負極のリチウム参照極に対する電位は、0.087Vであった。また、リチウム金属を対極として放電した際の負極の放電容量は、1.04mAhであった。
 (実施例5)
 トリグライムの代わりに同量のテトラグライムを用い、充電の際の電流値を1Cから10Cに変更した点以外は実施例1と同様にして負極を製造した。得られた負極のリチウム参照極に対する電位は、0.087Vであった。また、リチウム金属を対極として放電した際の負極の放電容量は、1.01mAhであった。
 (比較例1)
  実施例1と基本的には同様にフラットセルを作成した。ただし、フラットセルに注入するプレドープ溶液は、1.2MのLiPFを含むとともに、有機溶媒として、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとの混合溶媒を含む。エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとの体積比は、30:40:30である。
 得られたフラットセルを充放電試験機に接続した。また、フラットセルを80℃の恒温槽に設置し、2時間静置した。その後、実施例1と同様に充電を行うことにより負極を製造した。得られた負極のリチウム参照極に対する電位は、0.095Vであった。また、リチウム金属を対極として放電した際の負極の放電容量は、0.49mAhであった。
 充電の際の電流値が低レート(1C)であるにも関わらず、実施例1と比較して、負極の電位が高く、負極の放電容量が半減していた。プレドープ溶液を80℃に加熱したことにより、リチウムイオンが何らかの不可逆反応を起こし消費されたものと考えられる。
 (比較例2)
 充電の際の電流値を1Cから50Cに変更した点以外は比較例1と同様にして負極を製造しようとしたが、充電途中で負極電位が測定限界以下まで下がり、リチウムを吸蔵させることができなくなった。セルを解体し負極表面を観察すると、負極上に白くリチウム金属の析出が認められた。
 これは、黒鉛粒子内部でのリチウムイオンの拡散抵抗が高いため、高速充電により吸蔵速度を高めようとすると、黒鉛の層間にインターカレートできないリチウムが生じたことにより起きた現象と考えられる。
 (比較例3)
 恒温槽の温度を80℃から25℃に変更した点以外は比較例1と同様にして負極を製造した。得られた負極のリチウム参照極に対する電位は、0.084Vであった。また、リチウム金属を対極として放電した際の負極の放電容量は、1.10mAhであった。
 (比較例4)
 充電の際の電流値を1Cから50Cに変更した点以外は比較例3と同様にして負極を製造しようとしたが、充電途中で負極電位が測定限界以下まで下がり、リチウムを吸蔵させることができなくなった。セルを解体し負極表面を観察すると、負極上に白くリチウム金属の析出が認められた。充電の際の電流値が低レート(1C)であればリチウムを吸蔵させることは可能であったが、高レート(50C)でリチウムを吸蔵させることはできなかった。 
 
 

Claims (9)

  1.  キャパシタ又は電池を構成する電極の製造方法であって、
     キャパシタ又は電池を組み立てる前に、アルカリ金属塩が有機溶媒に溶解した溶液中で活物質にアルカリ金属を吸蔵させる工程を含み、
     前記有機溶媒が、3個以上のエーテル結合を有する化合物、β-ジケトン及びβ-ケトエステルよりなる群から選ばれる少なくとも1種である特定有機溶媒を含有する電極の製造方法。
  2.  前記特定有機溶媒の沸点が100~300℃である請求項1に記載の電極の製造方法。
  3.  前記有機溶媒の全量に対する前記特定有機溶媒の質量比は50質量%以上である請求項1又は2に記載の電極の製造方法。
  4.  前記特定有機溶媒は、4個又は5個のエーテル結合を有する化合物を含有する請求項1~3のいずれか1項に記載の電極の製造方法。
  5.  前記特定有機溶媒は、ポリアルキレングリコールジアルキルエーテルを含有する請求項1~3のいずれか1項に記載の電極の製造方法。
  6.  前記アルカリ金属塩がリチウム塩又はナトリウム塩である請求項1~5のいずれか1項に記載の電極の製造方法。
  7.  前記活物質にアルカリ金属を吸蔵させる工程において前記溶液を加熱する請求項1~6のいずれか1項に記載の電極の製造方法。
  8.  前記電極がキャパシタ又は電池の負極である請求項1~7のいずれか1項に記載の電極の製造方法。
  9.  負極、正極、及び電解質を備える蓄電デバイスの製造方法であって、 
      請求項1~7のいずれか1項に記載の製造方法で前記負極を製造する蓄電デバイスの製造方法。
     
PCT/JP2016/071635 2015-08-07 2016-07-22 電極の製造方法及び蓄電デバイスの製造方法 WO2017026253A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017534160A JP6730284B2 (ja) 2015-08-07 2016-07-22 電極の製造方法及び蓄電デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-157162 2015-08-07
JP2015157162 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017026253A1 true WO2017026253A1 (ja) 2017-02-16

Family

ID=57983158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071635 WO2017026253A1 (ja) 2015-08-07 2016-07-22 電極の製造方法及び蓄電デバイスの製造方法

Country Status (2)

Country Link
JP (1) JP6730284B2 (ja)
WO (1) WO2017026253A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163894A1 (ja) * 2018-02-22 2019-08-29 日産自動車株式会社 負極活物質のプレドープ方法、負極の製造方法、及び蓄電デバイスの製造方法
EP3657579A4 (en) * 2017-07-18 2020-07-01 Nissan Motor Co., Ltd. METHOD FOR PRODUCING A NEGATIVE ELECTRODE ACTIVE MATERIAL, ELECTRODE FOR AN ELECTRICAL DEVICE, AND METHOD FOR PRODUCING AN ELECTRICAL DEVICE
CN111758176A (zh) * 2018-02-22 2020-10-09 日产自动车株式会社 负极活性物质的预掺杂方法、负极的制造方法、以及蓄电装置的制造方法
CN112805850A (zh) * 2018-09-19 2021-05-14 武藏能源解决方案有限公司 电极制造装置
US11501927B2 (en) * 2018-05-02 2022-11-15 Jtekt Corporation Alkali metal ion capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204310A (ja) * 2011-03-28 2012-10-22 Kri Inc リチウムのプリドープ方法、電極の製造方法及びこれら方法を用いた蓄電デバイス
WO2013168727A1 (ja) * 2012-05-09 2013-11-14 株式会社Kri リチウムのプリドープ方法、リチウムプリドープ電極、及び蓄電デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204310A (ja) * 2011-03-28 2012-10-22 Kri Inc リチウムのプリドープ方法、電極の製造方法及びこれら方法を用いた蓄電デバイス
WO2013168727A1 (ja) * 2012-05-09 2013-11-14 株式会社Kri リチウムのプリドープ方法、リチウムプリドープ電極、及び蓄電デバイス

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657579A4 (en) * 2017-07-18 2020-07-01 Nissan Motor Co., Ltd. METHOD FOR PRODUCING A NEGATIVE ELECTRODE ACTIVE MATERIAL, ELECTRODE FOR AN ELECTRICAL DEVICE, AND METHOD FOR PRODUCING AN ELECTRICAL DEVICE
WO2019163894A1 (ja) * 2018-02-22 2019-08-29 日産自動車株式会社 負極活物質のプレドープ方法、負極の製造方法、及び蓄電デバイスの製造方法
CN111742428A (zh) * 2018-02-22 2020-10-02 日产自动车株式会社 负极活性物质的预掺杂方法、负极的制造方法、以及蓄电装置的制造方法
CN111758176A (zh) * 2018-02-22 2020-10-09 日产自动车株式会社 负极活性物质的预掺杂方法、负极的制造方法、以及蓄电装置的制造方法
EP3758113A4 (en) * 2018-02-22 2021-11-24 Nissan Motor Co., Ltd. NEGATIVE ELECTRODE ACTIVE SUBSTANCE PRE-DOPING PROCESS, NEGATIVE ELECTRODE MANUFACTURING PROCESS, AND STORAGE DEVICE MANUFACTURING PROCESS
EP3758112A4 (en) * 2018-02-22 2021-12-29 Nissan Motor Co., Ltd. Pre-doping method for negative electrode active material, production method for negative electrode, and production method for power storage device
US11456447B2 (en) 2018-02-22 2022-09-27 Nissan Motor Co., Ltd. Predoping method for negative electrode active material, manufacturing method for negative electrode, and manufacturing method for power storage device
CN111758176B (zh) * 2018-02-22 2023-09-08 日产自动车株式会社 负极活性物质的预掺杂方法、负极的制造方法、以及蓄电装置的制造方法
US12068471B2 (en) 2018-02-22 2024-08-20 Nissan Motor Co., Ltd. Predoping method for negative electrode active material, manufacturing method for negative electrode, and manufacturing method for power storage device
US11501927B2 (en) * 2018-05-02 2022-11-15 Jtekt Corporation Alkali metal ion capacitor
CN112805850A (zh) * 2018-09-19 2021-05-14 武藏能源解决方案有限公司 电极制造装置

Also Published As

Publication number Publication date
JP6730284B2 (ja) 2020-07-29
JPWO2017026253A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
US20140093761A1 (en) Lithium secondary battery
WO2017047280A1 (ja) リチウム二次電池及びその製造方法
US20190181494A1 (en) Nonaqueous electrolytic solution and lithium ion secondary battery
JP6380377B2 (ja) リチウムイオン二次電池
JP6730284B2 (ja) 電極の製造方法及び蓄電デバイスの製造方法
JP5031065B2 (ja) リチウムイオン二次電池
KR20160052382A (ko) 리튬 이차 전지
JPWO2016152425A1 (ja) ハイドロフルオロエーテル化合物、非水電解液およびリチウムイオン二次電池
JPWO2013128559A1 (ja) リチウムイオン二次電池
KR102112207B1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
JP5851801B2 (ja) リチウム二次電池
JP5523506B2 (ja) リチウムイオン二次電池の製造方法
JPWO2016013364A1 (ja) 非水電解液及びリチウムイオン二次電池
JP2016058130A (ja) リチウムイオン二次電池
JP6720974B2 (ja) リチウムイオン二次電池
JP2013149451A (ja) リチウム二次電池
WO2014054355A1 (ja) 密閉型電池及びその製造方法
JP2016062760A (ja) リチウム二次電池
WO2016098428A1 (ja) リチウムイオン二次電池
JP6064082B2 (ja) リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池
JP6398984B2 (ja) 新規化合物、電解液及び二次電池
JP5845096B2 (ja) リチウム二次電池
JP2020117497A (ja) リン酸ホウ素リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池の製造方法、及びリチウム二次電池
WO2018096889A1 (ja) 非水電解液、及びリチウムイオン二次電池
JP2017152223A (ja) 非水電解質二次電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834950

Country of ref document: EP

Kind code of ref document: A1